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EXPONENTIAL CONVERGENCE OF DEEP OPERATOR NETWORKS
FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

CARLO MARCATI∗ AND CHRISTOPH SCHWAB∗

Abstract. We construct deep operator networks (ONets) between infinite-dimensional spaces that emulate with an
exponential rate of convergence the coefficient-to-solution map of elliptic second-order PDEs. In particular, we consider
problems set in d-dimensional periodic domains, d = 1, 2, . . . , and with analytic right-hand sides and coefficients. Our
analysis covers diffusion-reaction problems, parametric diffusion equations, and elliptic systems such as linear isotropic
elastostatics in heterogeneous materials.

We leverage the exponential convergence of spectral collocationmethods for boundary value problemswhose solutions
are analytic. In the present periodic and analytic setting, this follows from classical elliptic regularity. Within the ONet
branch and trunk construction of Chen and Chen [4] and of Lu et al. [13], we show the existence of deep ONets which
emulate the coefficient-to-solution map to accuracy ε > 0 in the H1 norm, uniformly over the coefficient set. We prove
that the neural networks in the ONet have sizeO(|log(ε)|κ) for some κ > 0 depending on the physical space dimension.
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1. Introduction. We construct deep operator network (ONet) emulations of coefficient-to-
solution maps for boundary value problems with linear elliptic divergence-form operators. In
particular, we consider operator networks with rectified linear unit (ReLU) activation and prob-
lems formulated in domainswithout boundary andwith analytic right-hand sides and coefficients.
In this setting, we construct operator networks that approximate the (nonlinear) coefficient-to-
solution map with exponential accuracy in the corresponding function spaces. We bound—poly-
logarithmically with respect to the energy norm of the error—both the size of the approximating
network and the number of sampling points where the coefficient is queried.

1.1. Existing Results. The use of deep neural networks (DNN) in the numerical solution of
differential equations in science and engineering has received considerable attention in recent
years. We refer to the survey [2] for uses and successes of DNN based numerical simulations
in computational fluid mechanics, and to [22] for their use in computational finance and com-
putational option pricing. First uses of DNNs in numerical PDE solution in engineering and the
sciences focused on leveraging DNNs for “mesh-free” solution approximation and representation
(see, e.g., [21, 7]), with good success explained, to some extent, by approximation properties of DNNs
in function spaces (see, e.g., [19, 17, 18, 15, 23, 8]) in particular overcoming the so-called Curse-of-
Dimensionality (CoD) in high-dimensional approximation of PDE solution manifolds [23, 9], of
parametric PDEs and of PDEs on high-dimensional state spaces, as arising e.g. in computational
finance (see [22, 1] and the references there).

Reference [11] addressed the expression rate of ReLU NNs for the solution maps of paramet-
ric PDEs. The analysis in that paper proceeds through the DNN emulation of reduced bases for the
approximation of solutions of the PDEs. The expression rate bounds obtained in [11] are subject to
strong hypotheses on the DNN approximability of reduced bases for the PDEs of interest. The pa-
rameter sets (i.e., the domains of the solution operator) considered in [11] are finite-dimensional;
this paper mostly concerns instead the approximation of solution maps between infinite dimen-
sional spaces. We nonetheless show how expression rates for parametric PDEs also follow from
our main results, see Theorem 5.10 and Remark 5.12.

DNNs have been leveraged in [6, 13, 12] for the DNN emulation of data-to-solution operators for
partial differential equations. See also the review [14]. Here, previous investigations have focused
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2 C. MARCATI AND CH. SCHWAB

on universality of NNs for operator approximation. The pioneering work [4] established this for a
certain type of NNs with a “branch and trunk” architecture, which will also be used in the pres-
ent work. While [4] imposed strong compactness assumptions, more recently [12] extended these
results to certain settings without the compactness assumptions of [4]. In these papers, focus has
been on emulating nonlinear maps, such as domain-to-solution, or coefficient-to-solution maps.
For well-posed PDE problems, continuous dependence on the problem data implies that these
maps are continuous, in the appropriate topologies on the data and the solution space. We refer to
[10, 13] and the references there. In these references, some theory explaining some of the numer-
ically observed performances of NN emulation of nonlinear operators has been developed (see,
e.g., [12, 6]).

The convergence rate estimates proved in these references indicate that a) DNNs are capable of
parsimonious numerical representations of the nonlinear, smooth data-to-solutionmaps for PDEs,
and b) they are not prone to the CoD in connection with the countable number of parameters due,
e.g., to series representations of inputs in separable Banach spaces of possibly infinite dimension.

1.2. Contributions. We construct DNN approximations of data-to-solution maps, so-called
“Operator Networks” for linear second order divergence-form PDEs with non-homogeneous co-
efficients and source terms. We establish exponential expression rates for these coefficient-to-solution
operators for elliptic PDEs.

Our argument relies on analytic regularity for elliptic PDEs with analytic coefficients, on the a
priori analysis of the spectral approximation of PDEs, and on numerical quadrature. We consider
linear second order divergence-form elliptic boundary value problems with analytic coefficients,
and (uniformly) analytic solutions, whose inputs and solutions can be approximated with expo-
nential accuracy from space of high-degree polynomials. Furthermore, our results show also that
neural networks can emulate accurately the (discrete) solutionmap ofGalerkinmethods for the el-
liptic PDEs mentioned above with numerical integration. The operator networks we construct are
composed of encoding, approximation, and reconstruction operators. In the encoding step, the input
datum is queried on collocation points in the physical domain. The reconstruction and approxima-
tion parts of the operator networks are composed of two neural networks, one that approximates a
polynomial basis, while the other maps point evaluations of the diffusion coefficient to coefficients
over the basis.

For the sake of clarity of exposition, we develop this strategy for model, linear second or-
der elliptic PDEs in divergence form, with inhomogeneous coefficients. We then show, using the
compositionality of NNs, how to include problems with parametric diffusion, typically arising in
computational uncertainty quantification. Finally, we mention the minor modifications required
for PDEs with reaction coefficients and discuss in some detail ONet emulation of the coefficient-
to-solution map for linear elasticity.

1.3. Structure of this paper. To fix a setting for developing our results, we introduce in Sec-
tion 2 a scalar, elliptic, isotropic diffusion equation. The coefficient-to-solution operator that will be
the main target of approximation by neural networks is also introduced in this section. Then, in
Section 3, we define feed forward neural networks (with ReLU activation) and operator networks
with the branch and trunk architecture of [4, 13], that approximate maps between infinite dimen-
sional spaces. We conclude the section by defining some operations on networks that will then
be used for the approximation analysis. In Section 4, we gather (classical) results on the polyno-
mial approximation of solutions to the elliptic problem. The main results of this paper are then
proved in Section 5. In Theorem 5.7 we show the exponential convergence of the operator net
approximation of the coefficient-to-solution map for the elliptic isotropic diffusion problem. We
extend the analysis to parametric diffusion coefficients in Theorem 5.10. Finally, in Section 6 we
extend our ONet approximation to further second order problems comprising reaction-diffusion
with nonzero reaction coefficients and linear elastostatics.
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1.4. Notation. We use standard notation and symbols: N denotes the set of positive natural
numbers N = {1, 2, 3, . . . } and N0 = {0} ∪ N. We write vectors in lowercase boldface characters
and matrices in uppercase boldface characters. We denote ‖a‖2 the ℓ2-norm of a vector a, while
for anymatrixA, we denote ‖A‖2 = sup‖x‖2=1 ‖Ax‖2 its operator norm. The spectrum of amatrix
A is written σ(A). For n ∈ N, Idn is the n× n identity matrix, while 0n is a vector of zeros of size
n. We denote by ⊗ the Kronecker product: given two matrices A ∈ Rm×n and B ∈ Rp×q , then
C = A⊗B ∈ Rmp×nq , such that

C =



A11B · · · A1nB

...
. . .

...
Am1B · · · AmnB


 .

We denote by [a1| . . . |an] the matrix resulting from the horizontal concatenation of n equal length
vectors a1, . . . ,an. We indicate by vec : Rm×n → Rmn and matr : Rmn → Rm×n the vectoriza-
tion and matricization operators, such that matr(vec(A)) = A for any matrix A. All results are
independent of the ordering of the vectorization operation; the dimensions of the matricization
operation will be clear from the context. We denote by Rn×nsym the space of symmetric matrices of
size n× n. Given two matrices A,B ∈ Rn×n, we writeA : B =

∑n
i,j=1 AijBij .

Let d ∈ N. For k ∈ N0, p ∈ [1,∞], and a domain D ⊂ Rd, we indicate byW k,p(D) the classical
Sobolev spaces. In the Hilbertian case p = 2, we write Hk(D); in addition, Lp(D) = W 0,p(D) and
L2(D) = H0(D). Given Q = (0, 1)d and Ω = (R/Z)d, we denote

Hk(Ω) = Hk
per(Q) :=

{
v ∈ Hk

loc(R
d) : v|Q+k = v|Q, ∀k ∈ Zd

}
,

where Hk
loc(R

d) indicates functions that are in Hk(D) for any bounded subset D of Rd. Further-
more, we slightly abuse notation and denote integrals as

∫
Ω

=
∫
Q

and norms as ‖ · ‖Wk,p(Ω) =

‖ · ‖Wk,p(Q). We denote by (·, ·) the L2 scalar product inQ. All function spaces in Ω are understood
in their periodic version.

For C > 0, define Hol(Ω;C) as the set of functions v that are real analytic in Ω with

(1.1) ‖v‖Wk,∞(Ω) ≤ Ck+1k!, ∀k ∈ N0.

Define furthermore the set of all real analytic functions in Ω asHol(Ω) =
⋃
C>0 Hol(Ω;C). Accord-

ing to our convention, the functions inHol(Ω) are analytic inRd and periodic with period 1 in each
coordinate direction. Furthermore, by the Arzelà-Ascoli theorem, Hol(Ω;C) is compact in L∞(Ω).

2. Problem formulation.

2.1. Statement of the elliptic model problem. We recall that d ∈ N, Q = (0, 1)d, and Ω =
(R/Z)d. We introduce the set of admissible dataD as follows: for each coefficient a ∈ Dwe assume
ellipticity in the form that there exist constants amin, amax > 0 such that

(2.1) ∀x ∈ Ω, ∀a ∈ D amin ≤ a(x) ≤ amax .

We also assume that all a ∈ D are real analytic, with uniform bounds on the radius of convergence
of the Taylor series: there exists a constant AD > 0 such that

(2.2) D ⊂ Hol(Ω;AD).

The ellipticity hypotheses (2.1) and the Poincaré inequality (2.5) below imply that for every f ∈
L2(Ω) such that

∫
Ω
f = 0, and for each a ∈ D, the elliptic boundary value problem

(2.3) −∇ · (a∇ua) = f in Ω
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admits a unique solution

ua ∈ X :=

{
v ∈ H1(Ω) :

∫

Ω

v = 0

}
≃ H1(Ω)/R.

It satisfies the variational formulation: given a ∈ D, find u ∈ X such that

(2.4) b
a(u, v) = (f, v) ∀v ∈ X.

Here, for given a ∈ Hol(Ω), the bilinear form b
a(·, ·) : H1(Ω)×H1(Ω) → R is given by

b
a(w, v) :=

∫

Ω

(a∇w · ∇v) .

In what follows, we assume the fixed source term f ∈ Hol(Ω) ∩X to be given and denote, for this
choice of f , the unique solution of (2.4) for a ∈ Hol(Ω) by ua.

We denote (still keeping the source term f in (2.4) fixed) with S the data-to-solution operator
a 7→ ua in (2.4). We let U = S(D) the set of solutions of (2.4) corresponding to inputs from D. As
shown in Lemma B.1 in Appendix B, the data-to-solution map S : L∞(Ω) → H1(Ω) is Lipschitz
continuous. Furthermore, standard elliptic regularity (see [16, 5] and Lemma 4.1 below) implies
S(D) ⊂ Hol(Ω).

As it will be useful in the sequel, we define the Poincaré constant Cpoi > 0 such that

(2.5) ‖v − 1

|Ω|

∫

Ω

v‖L2(Ω) ≤ Cpoi‖∇v‖L2(Ω), ∀v ∈ H1(Ω).

3. Neural and operator networks. The goal of this paper is to derive bounds for the approxi-
mation of the solution operator S : D → X ⊆ H1(Ω) defined in Section 2 by an operator network.
In order to properly define operator networks, we start by the definition of classical feed forward
neural networks with ReLU activation

ReLU : R → R : x 7→ max{0, x}.

3.1. Feed forward neural network.

Definition 3.1 ([19, Definition 2.1]). Let d, L ∈ N. A neural network Φwith input dimension
d and L layers is a sequence of matrix-vector tuples

Φ =
(
(A1, b1), (A2, b2), . . . , (AL, bL)

)
,

where N0 := d and N1, . . . , NL ∈ N, and whereAℓ ∈ RNℓ×Nℓ−1 and bℓ ∈ RNℓ for ℓ = 1, ..., L.
For a NN Φ, we define the associated realization of the NN Φ as

R(Φ) : Rd → RNL : x 7→ xL =: R(Φ)(x),

where the output xL ∈ RNL results from

x0 := x,

xℓ := ReLU(Aℓ xℓ−1 + bℓ), for ℓ = 1, . . . , L− 1,

xL := AL xL−1 + bL.

(3.1)

Here ReLU is understood to act component-wise on vector-valued inputs, i.e., for y = (y1, . . . , ym) ∈ Rm,

ReLU(y) := (ReLU(y1), . . . ,ReLU(ym)). We call N(Φ) := d +
∑L
j=1Nj the number of neurons

of the NN Φ, L(Φ) := L the number of layers or depth, Mj(Φ) := ‖Aj‖0 + ‖bj‖0 the number of

nonzero weights in the j-th layer, and M(Φ) :=
∑L
j=1 Mj(Φ) the number of nonzero weights of Φ,

also referred to as its size. We refer to NL as the dimension of the output layer of Φ.



EXPONENTIAL CONVERGENCE OF DEEP OPERATOR NETWORKS FOR ELLIPTIC PDES 5

D H1(Ω)

Rn Rm

Encoding
a 7→ a = a(x1), . . . , a(xn)

S

Approximation
a 7→ c = c1, . . . , cm

Reconstruction
c 7→ uaNN =

∑
i ciψi

Fig. 1: Diagram of operator network between infinite dimensional spaces

3.2. Operator networks. The operator network approximating the solution operator S can be
seen as the composition R ◦ A ◦ E of three mappings:

• Encoding E : D → Rn, for n ∈ N,
• Approximation A : Rn → Rm, form ∈ N,
• Reconstruction R : Rm → H1(Ω),

see the diagram in Figure 1. We refer the reader to [12, 10] for a broader view on and thorough
discussion of operator networks between infinite dimensional spaces. In our analysis, the encoding
step will map functions a ∈ D to the vector a ∈ Rn of their point evaluations, i.e.

a = E{x1,...,xn}(a) := [a(x1), . . . , a(xn)]
⊤
,

for suitable collection of points x1, . . . ,xn ∈ Q. The approximate solution operator A is realized as a
feed-forward NN Φbranch:

AΦbranch(a) = R(Φbranch)(a).

For the reconstruction step R, we introduce a neural network Φtrunk so that, for all c ∈ Rm and
x ∈ Q,

RΦtrunk(c)(x) =
(
R(Φtrunk)(x)

)
· c.

This constructs the operator network mapping from D to H1(Ω), defined by

RΦtrunk ◦ AΦbranch ◦ E{x1,...,xn} : a 7→ uaNN := R(Φbranch)([a(x1), . . . , a(xn)]
⊤) · R(Φtrunk),

see Figure 2.
We aim for operator networks that approximate, for all a ∈ D, solutions ua of (2.3) in the

H1(Ω)-norm, uniformly over the input space D, i.e., such that

sup
a∈D

‖ua − uaNN‖H1(Ω) ≤ ε.

The main result of this paper consists in proofs for upper bounds on n, m, and on the sizes of
Φtrunk and Φbranch as functions of the error ε.

3.3. Operations on neural networks. We introduce and recall some operations on neural net-
works that will be necessary for the construction of the branch and trunk networks.

3.3.1. Concatenation and sparse concatenation.
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Fig. 2: Structure of the branch and trunk network; uaNN(x) := R(Φbranch)(a) · R(Φtrunk)(x).

Definition 3.2 (NN concatenation, [19, Definition 2.2]). Let L1, L2 ∈ N and let

Φ1 = ((A1
1, b

1
1), . . . , (A

1
L1
, b1L1

)), Φ2 = ((A2
1, b

2
1), . . . , (A

2
L2
, b2L2

))

be two neural networks such that the input layer of Φ1 has the same dimension as the output layer of Φ2.
Then, Φ1 Φ2 denotes the following L1 + L2 − 1 layer network:

Φ1
 Φ2 := ((A2

1, b
2
1), . . . , (A

2
L2−1, b

2
L2−1), (A

1
1A

2
L2
,A1

1b
2
L2

+ b11), (A
1
2, b

1
2), . . . , (A

1
L1
, b1L1

)).

We call Φ1 Φ2 the concatenation of Φ1 and Φ2.

Proposition 3.3 (NN sparse concatenation, [19, Remark 2.6]). Let L1, L2 ∈ N, and let Φ1,Φ2

be two NNs of respective depths L1 and L2 such that N1
0 = N2

L2
=: d, i.e., the input layer of Φ1 has the

same dimension as the output layer of Φ2.
Then, there exists a NN Φ1 ⊙ Φ2, called the sparse concatenation of Φ1 and Φ2, such that Φ1 ⊙ Φ2

has L1 + L2 layers, R(Φ1 ⊙ Φ2) = R(Φ1) ◦ R(Φ2) andM
(
Φ1 ⊙ Φ2

)
≤ 2M

(
Φ1
)
+ 2M

(
Φ2
)
.

3.3.2. Emulation of matrix inversion. Dense matrix inversion can be approximated by suit-
able ReLU NNs. We recall the following result from [11] where, for Z ∈ R+ and N ∈ N,

KZ
N := {vec(A) : A ∈ RN×N , ‖A‖2 ≤ Z}.

Theorem 3.4. [11, Theorem 3.8] For ε, δ ∈ (0, 1) define

m(ε, δ) :=

⌈
log (0.5εδ)

log(1− δ)

⌉
.

There exists a universal constant Cinv > 0 such that for every N ∈ N, ε ∈ (0, 1/4) and every δ ∈ (0, 1)

there exists a NNΦ1−δ,N
inv,ε withN2-dimensional input,N2-dimensional output and the following properties:

1. L
(
Φ1−δ,N

inv;ε

)
≤ Cinv log (m(ε, δ)) · (log (1/ε) + log (m(ε, δ)) + log(N)),

2. M
(
Φ1−δ,N

inv;ε

)
≤ Cinvm(ε, δ) log2(m(ε, δ))N3 · (log (1/ε) + log (m(ε, δ)) + log(N)),

3. sup
vec(A)∈K1−δ

N

∥∥∥(IdN −A)
−1 −matr

(
R
(
Φ1−δ,N

inv;ε

)
(vec(A))

)∥∥∥
2
≤ ε,

4. for any vec(A) ∈ K1−δ
N we have

∥∥∥matr

(
R
(
Φ1−δ,N

inv;ε

)
(vec(A))

)∥∥∥
2
≤ ε+

∥∥∥(IdN −A)
−1
∥∥∥
2
≤ ε+

1

1− ‖A‖2
≤ ε+

1

δ
.
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4. Regularity and polynomial approximation. We shall exploit the classical fact that the an-
alyticity of the coefficient a and of the source term f in Ω combined with periodicity implies an-
alyticity of the solution u of (2.3). This, in turn, will imply exponential convergence of tensor
product polynomial (spectral) approximations, which will be the basis of the NN approximation
developed in Section 5 ahead.

4.1. Regularity. The following result follows from [5, Remark 1.6.5 and Theorem 1.7.1].

Lemma 4.1. There exists AU > 0 such that S(D) ⊂ Hol(Ω;AU ).

Proof. From [5, Theorem 1.7.1], it follows that S(D) ⊂ Hol(Ω) and, for each u ∈ S(D), there
exists Au > 0 such that

1

k!
|u|Hk(Ω) ≤ Ak+1

u



k−2∑

j=0

1

j!
|f |Hj(Ω) + ‖u‖H1(Ω))


 , ∀k ∈ N0.

Furthermore, from [5, Remark 1.6.5], inspecting the proof of [5, Theorem 1.7.1], and from (2.2),
the proof is completed since it follows that

AU := sup
u∈S(D)

Au <∞.

4.2. Polynomial basis and quadrature. For all p ∈ N, writing nb = (p+1)d− 1, we introduce
the L2(Ω)-orthonormal basis functions {ϕi}nb

i=1 ⊂ Qp(Q) with

(4.1)

∫

Ω

ϕi = 0, ∀i ∈ {1, . . . , nb} and

∫

Ω

ϕiϕj = δij , ∀(i, j) ∈ {1, . . . , nb}2.

Those functions are L2(Ω) normalized Legendre polynomials, excluding the constant function. In
particular,

Xnb
:= span({ϕ1, . . . , ϕnb

}) ⊂ X.

For a quadrature order parameter q ≥ 2, denotingnq = qd, we consider theGauss-Lobatto quadrature

rule with weights {w(q)
k }nq

k=1 and points {x(q)
k }nq

k=1 such that

∫

Ω

f =

nq∑

k=1

w
(q)
k f(x

(q)
k ), ∀f ∈ Q2q−3(Ω).

There exist constants cquad,1, cquad,2 > 0 such that

(4.2) cquad,1‖v‖2L2(Ω) ≤
(p+1)d∑

k=1

w
(p+1)
k (v(x

(p+1)
k ))2 ≤ cquad,2‖v‖2L2(Ω), ∀v ∈ Qp(Ω), ∀p ∈ N,

see [3, Equation (6.4.52)]. We assume, for ease of notation, that cquad,1 ≤ 1 and cquad,2 ≥ 1. We
introduce furthermore the bilinear form with quadrature banq

b
a
nq
(u, v) =

nq∑

k=1

w
(q)
k a(x

(q)
k )∇u(x(q)

k ) · ∇v(x(q)
k ), ∀u, v ∈ C1(Ω).

Eventually, here u, v shall be tensor product polynomials in Ω.
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For each a ∈ D, we introduce the matrices

[
A
a
nb

]
ij
= b

a(ϕj , ϕi),
[
A
a
nb,nq

]
ij
= b

a
nq
(ϕj , ϕi), (i, j) ∈ {1, . . . , nb}2.

Let A1
nb,nq

be the matrix obtained with a ≡ 1 in Ω. Let q ≥ p + 1: for all nonzero x ∈ Rnb , there

exists v ∈ Xnb
\{0} such that, for all a ∈ D, x⊤

A
a
nb,nq

x = b
a
nq
(v, v) > 0, due to the equivalence

of norms (4.2) and to the Poincaré inequality (2.5). Hence, the matrices Aa
nb,nq

and A
1
nb,nq

are
invertible. Denote then

Ã
a
nb,nq

= (A1
nb,nq

)−1
A
a
nb,nq

.

We also introduce the right-hand side vector cf ;nb
∈ Rnb such that

[cf ;nb
]i =

∫

Ω

fϕi, i ∈ {1, . . . , nb} ,

and the vector

c̃f ;nb
= (A1

nb,nq
)−1cf ;nb

.

Finally, let

(4.3) cau;nb,nq
:= (Aa

nb,nq
)−1cf ;nb

.

Here and in the sequel, for all q ∈ N, with nq = qd, we will denote anq
∈ Rnq the vector with

entries

[
anq

]
i
= a(x

(q)
k ), ∀k ∈ {1, . . . , nq}.

The following two statements concern the norms of the matrices introduced, and will be nec-
essary for later estimates.

Lemma 4.2. There exist Ccoer, Ccont > 0 such that for all a ∈ D, all p ∈ N, and all integer q ≥ p+ 1,

(4.4) σ(Ãa
nb,nq

) ⊂ [Ccoer, Ccont], σ((Ãa
nb,nq

)−1) ⊂ [1/Ccont, 1/Ccoer] ,

with nb = (p+ 1)d − 1 and nq = qd.

Proof. For all x ∈ Rnb ,

aminx
⊤
A

1
nb,nq

x ≤ x⊤
A
a
nb,nq

x ≤ amaxx
⊤
A

1
nb,nq

x.

Since the matrices A1
nb,nq

and A
a
nb,nq

are symmetric, this implies

σ((A1
nb,nq

)−1
A
a
nb,nq

) ⊂ [amin, amax].

The assertion follows with Ccoer = amin and Ccont = amax.

Lemma 4.3. There exists a constant CA > 0 such that, for all p ∈ N, and for all integer q ≥ p+ 1,

‖(A1
nb,nq

)−1‖2 ≤ CA,

with nb = (p+ 1)d − 1 and nq = qd.
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Proof. From (4.2) and (2.5) and the symmetry of the bilinear form, it follows that

λmin (A
1
nb,nq

) := min
λ∈σ(A1

nb,nq
)
λ ≥ inf

v∈Xnb

b
1
nq
(v, v)

‖v‖2L2(Ω)

(4.2)
≥ c2quad,1 inf

v∈Xnb

‖∇v‖2L2(Ω)

‖v‖2L2(Ω)

(2.5)
≥

c2quad,1
C2

poi

.

This concludes the proof, since ‖(A1
nb,nq

)−1‖2 = 1/λmin (A
1
nb,nq

).

5. NN approximation. We detail the structure of the branch and trunk networks and state
and prove their convergence rate bounds.

5.1. Branch network.

5.1.1. Input layer. For all k ∈ {1, . . . , nq}, denote D̂nb
(x

(q)
k ) the matrix with entries

[
D̂nb

(x
(q)
k )
]
ij
= w

(q)
k ∇ϕi(x(q)

k ) · ∇ϕj(x(q)
k ), (i, j) ∈ {1, . . . , nb}2.

The following statement follows from this definition.

Lemma 5.1. For all α ∈ R the one layer NN

ΦA,αnb,nq
:=
((

−α
[
vec(D̂nb

(x
(q)
1 ))| . . . |vec(D̂nb

(x(q)
nq

))
]
,0nb

))

is such that

(5.1) matr

(
R(ΦA,αnb,nq

)(anq)
)
= −αAa

nb,nq
,

and M(ΦA,αnb,nq
) ≤ n2bnq .

Proof. We have

[
R
(
ΦA,αnb,nq

)
(anq

)
]
i
= −α

nq∑

k=1

[
vec(D̂(x

(q)
k ))

]
i
a(x

(q)
k ),

hence the equality after matricization. The size bound follows from the fact that

‖D̂nb
(x

(q)
k )‖0 ≤ nb, k ∈ {1, . . . , nq} .

Lemma 5.2. For all α ∈ R the two layer NN

(5.2) ΦÃ,Id,αnb,nq
:=
((

Idnb
⊗ (A1

nb,nq
)−1,vec(Idnb

)
))

⊙ ΦA,αnb,nq

is such that

matr

(
R(ΦA,Id,αnb,nq

)(anq)
)
= −αÃa

nb,nq
+ Idnb

,

andM(ΦÃ,Id,αnb,nq
) ≤ 2n2

bnq + 2n3
b + 2nb .

Proof. For all m,n, l ∈ N and all A ∈ Rm×n and X ∈ Rn×l, vec(AX) = (Idl ⊗ A)vec(X).
Hence,

R(ΦÃ,Id,αnb,nq
)
(5.2)
= (Idnb

⊗ (A1
nb,nq

)−1)R(ΦA,αnb,nq
) + vec(Idnb

)

(5.1)
= −α(Idnb

⊗ (A1
nb,nq

)−1)vec(Aa
nb,nq

) + vec(Idnb
)

= −αvec((A1
nb,nq

)−1
A
a
nb,nq

) + vec(Idnb
).
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Finally, by Proposition 3.3,

M(ΦÃ,Id,αnb,nq
) ≤ 2M(ΦA,αnb,nq

) + 2
(
‖Idnb

⊗ (A1
nb,nq

)−1‖0 + ‖Idnb
‖0
)
≤ 2M(ΦA,αnb,nq

) + 2(n3
b + nb).

The following statement is a consequence of Lemmas 4.2 and 5.2.

Lemma 5.3. Let Ccont, Ccoer be the constants introduced in Lemma 4.2. For all a ∈ D, for all p ∈ N,
for all integer q ≥ p+ 1, and for all α ∈ (0, 1/Ccont),

‖matr

(
R(ΦÃ,Id,αnb,nq

)(anq
)
)
‖2 ≤ 1− αCcoer =: 1− δ,

with nb = (p+ 1)d − 1 and nq = qd.

Proof. By Lemma 5.2,matr

(
R(ΦÃ,Id,αnb,nq

)(anq)
)
= Idnb

−αÃa
nb,nq

. Due to Lemma 4.2 and since

α ≤ 1/Ccont, this matrix is symmetric positive definite and

‖Idnb
− αÃa

nb,nq
‖2 = sup

x∈Rnb

‖x‖2=1

x⊤(Idnb
− αÃa

nb,nq
)x = 1− α inf

x∈Rnb

‖x‖2=1

x⊤
Ã
a
nb,nq

x ≤ 1− αCcoer,

where the last inequality follows from Lemma 4.2.

Thanks to Theorem 3.4 we can construct the network that approximates the inversion of the “pre-

conditionedGalerkin-Numerical Integrationmatrix” Ãa
nb,nq

(more precisely, the network that em-

ulates the map anq
7→ (Ãa

nb,nq
)−1).

Proposition 5.4. Let Ccoer, Ccont be defined as in Lemma 4.2. There exists a constant Cinv,A > 0
such that for all nb ∈ N and for all εinv ∈ (0, 1), writing α = 1/(Ccoer+Ccont), δ = αCcoer, nq = nb+1,
and denoting

(5.3) ΦÃinv;εinv,nb
:= ((αIdnb

,0nb
))  Φ1−δ,nb

inv;
εinv
α

⊙ ΦÃ,Id,αnb,nq
,

we have

sup
a∈D

‖(Aa
nb,nq

)−1 −matr(R(ΦÃinv;εinv,nb
))(anq

)‖2 ≤ εinv,

and

L(ΦÃinv;εinv,nb
) ≤ Cinv,A

[
log(1 + |log εinv|) + log(nb)

]
·
[
|log εinv|+ log(nb) + log(1 + |log εinv|)

]

M(ΦÃinv;εinv,nb
) ≤ Cinv,An

3
b

[
1 + |log εinv|

][
log(1 + |log εinv|) + log(nb)

]2

×
[
|log εinv|+ log(nb) + log(1 + |log εinv|)

]

Proof. We start by estimating the approximation error. By Lemma 5.3,

‖matr(R(ΦÃ,Id,αnb,nq
(anq)))‖2 ≤ 1− δ.

Then, we have, for all a ∈ D,

‖(Ãa
nb,nq

)−1 −matr(R(ΦÃinv;εinv,nb
))(anq)‖2

(5.3)
= α‖(αÃa

nb,nq
)−1 −matr(R(Φ1−δ,nb

inv;
εinv
α

⊙ ΦÃ,Id,αnb,nq
))(anq

)‖2
L. 5.2
= α‖(αÃa

nb,nq
)−1 −matr(R(Φ1−δ,nb

inv;
εinv
α

)(−αvec(Ãa
nb,nq

) + vec(Idnb
))‖2

T. 3.4
≤ α

εinv
α

= εinv.
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We now have to bound the depth and size of ΦÃinv;εinv,nb
. First, we remark that

m(εinv/α, δ) =

⌈
log (Ccoerεinv/2)

log(1δ)

⌉
,

where m(·, ·) is defined in Theorem 3.4. Now, we use the fact that there exists C1 > 0 such that,
for all εinv ∈ (0, 1),

| log(Ccoerεinv/2)| ≤ C1(1 + | log εinv|).

Furthermore, there existsC2 > 0 such that for all nb ∈ N, δ ≥ C−1
2 . Remark then that |log(1− y)| ≥

y for all y ∈ (0, 1), hence |log(1− δ)|−1 ≤ C2. We infer that for all εinv ∈ (0, 1) and for all nb ∈ N,

m(εinv/α, δ) ≤ C1C2(1 + | log εinv|)

Therefore, from Theorem 3.4 we obtain that there exist constants C4, C5 > 0 dependent only on
Ccoer, Ccont, and d such that

L
(
Φ1−δ,nb

inv;
εinv
α

)
≤ C4 (log(1 + | log εinv|) + log(nb)) · (| log εinv|+ log(nb) + log(1 + | log εinv|))

and

M
(
Φ1−δ,nb

inv;
εinv
α

)
≤ C5(1 + | log εinv|)n3

b

[
log(1 + | log εinv|) + log(nb)

]2

×
[
| log εinv|+ log(nb) + log(1 + | log εinv|)

]
.

Since, in addition,

L(ΦÃ,Id,αnb,nq
) = 2, M(ΦÃ,Id,αnb,nq

) ≤ C6n
3
b,

for C6 > 0 independent of nb, we obtain the bounds on the depth and size of ΦÃinv;εinv,nb
.

5.1.2. Computation of the coefficients.

Proposition 5.5. There exists a constant Ccu > 0 such that for all nb ∈ N and for all εu ∈ (0, 1),
writing nq = nb + 1 and

Φcuεu,nb
:=
(
(c̃⊤f ;nb

⊗ Idnb
,0nb

)
)
⊙ ΦÃinv;εu/(‖f‖L2(Ω)CA),nb

,

where CA is the constant from Lemma 4.3, we have

sup
a∈D

‖cau;nb,nq
− R(Φcuεu,nb

)(anq
)‖2 ≤ εu

and

L(Φcuεu,nb
) ≤ Ccu

[
log(1 + |log εu|) + log(nb)

]
·
[
|log εu|+ log(nb) + log(1 + |log εu|)

]

M(Φcuεu,nb
) ≤ Ccun

3
b

[
1 + |log εu|

][
log(1 + |log εu|) + log(nb)

]2

×
[
|log εu|+ log(nb) + log(1 + |log εu|)

]
.

Proof. We will use the following identity: for all m,n, l ∈ N, let B ∈ Rm×n and C ∈ Rn×l.
Then,

vec(BC) = (C⊤ ⊗ Idm)vec(B).
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Then

(5.4)
(
c̃⊤f ;nb

⊗ Idnb

)
R(ΦÃinv;εu/(‖f‖L2(Ω)CA),nb

)(anq)

= matr

(
R(ΦÃinv;εu/(‖f‖L2(Ω)CA),nb

)(anq
)
)
c̃f ;nb

.

Therefore, for all a ∈ D,

‖cau;nb,nq
− R(Φcuεu,nb

)(anq
)‖2

(4.3)
= ‖

(
(Ãa

nb,nq
)−1 −matr

(
R(ΦÃinv;εu/(‖f‖L2(Ω)CA),nb

)(anq
)
))
c̃f ;nb

‖2

≤ ‖(Ãa
nb,nq

)−1 −matr

(
R(ΦÃinv;εu/(‖f‖L2(Ω)CA),nb

)(anq
)
)
‖2‖c̃f ;nb

‖2
P. 5.4
≤ εu

‖f‖L2(Ω)
‖(A1

nb,nq
)−1‖2‖cf ;nb

‖2

L. 4.3, (4.1)
≤ εu

CA‖f‖L2(Ω)
CA‖f‖L2(Ω) = εu,

where in the last two steps we have used the orthonormality of the basis, Proposition 5.4, and

Lemma 4.3. To derive the bounds on the size and depth of ΦÃinv;εu/(‖f‖L2(Ω)CA),nb
, it is sufficient to

remark that

‖c̃⊤f ;nb
⊗ Idnb

‖0 ≤ n2
b,

that replacing εinv with εu/(‖f‖L2(Ω)CA) can be absorbed by a change of constants in Proposition
5.4, and conclude with Proposition 5.4.

5.2. Trunk network. The following emulation rates for the approximation of the polynomial
basis are a direct consequence of [18, Proposition 2.13].

Proposition 5.6. There exists Cb > 0 such that, for all εb ∈ (0, 1) and all nb ∈ N, there exists a NN
Φb
εb,nb

such that R(Φb
εb,nb

) : Rd → Rnb , that

max
i∈{1,...,nb}

‖ϕi −
[
R(Φb

εb,nb
)
]
i
‖H1(Ω) ≤ εb,

and that

L(Φb
εb,nb

) ≤ Cb

(
|log εb|+ n

1/d
b

)
log nb

M(Φb
εb,nb

) ≤ Cb

(
n
2/d
b + n

1/d
b |log εb|+ nb(1 + log nb + |log εb|)

)
.

5.3. Operator network expression rates. Combining the results from Sections 5.1 and 5.2, we
obtain the main result on the operator network approximation of (2.3). The general structure of
the operator network is represented in Figures 1 and 2.

Theorem 5.7. There exists C > 0 such that, for all ε ∈ (0, 1), for all a ∈ D with ua = S(a) as defined
in Section 2, there exist

(a) nb, nq ∈ N,
(b) a set of points xenc := {x1, . . .xnq

} ⊂ Q,
(c) two NNs Φbr

ε and Φtr
ε with R(Φbr

ε ) : Rnq → Rnb and R(Φtr
ε ) : Q→ Rnb ,

such that
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(i) nb, nq ≤ C(1 + |log ε|d),
(ii) the following error bound holds:

sup
a∈D

‖ua − (RΦtr
ε
◦ AΦbr

ε
◦ Exenc)(a)‖H1(Ω) ≤ ε,

(iii) as ε ↓ 0,

L(Φbr
ε ) = O (|log ε| (log |log ε|)) , M(Φbr

ε ) = O
(
|log ε|3d+2

(log |log ε|)2
)
,

and

L(Φtr
ε ) = O (|log ε| (log |log ε|)) , M(Φtr

ε ) = O
(
|log ε|d+1

)
.

Proof. Due to Lemma A.2, there exist constants CG, bG, Cq > 0 such that for all nb ∈ N, there
exists nq ≤ Cqnb such that

sup
a∈D

‖ua − uanb,nq
‖H1(Ω) ≤ CG exp(−bGn1/d

b ),

where uanb,nq
=
∑nb

i=1

[
cau;nb,nq

]
i
ϕi ∈ Xnb

is the Galerkin-Numerical Integration projection of ua,

such that

b
a
nq
(uanb,nq

, v) = (f, v), ∀v ∈ Xnb
.

Fix now

(5.5) nb(ε) =

⌈ |log(ε/3)|+ logCG

bG

⌉d

and nq(ε) = nb(ε) + 1,
We observe that (5.5) implies that there exists a constant Cb > 0 such that, for all ε ∈ (0, 1),

we have nb(ε), nq(ε) ≤ Cb(1 + |log ε|d), i.e., item (i) of the statement of the theorem.
We also define Cpol > 0 as a constant such that, for all p ∈ N,

(5.6) ‖∇q‖L2(Ω) ≤ Cpolp
2‖q‖L2(Ω), ∀q ∈ Qp(Ω).

This inverse inequality follows straightforwardly from the classical Markov inequality in (0, 1),

with a tensorization argument (which yields that Cpol ∼
√
d). With nb(ε) as in (5.5) define

(5.7) εb :=
ε

3nb(ε)1/2(2 + supa∈D ‖ua‖L2(Ω))
, εu :=

ε

3(1 + C2
polnb(ε)1+4/d)1/2

, εG :=
ε

3
.

Due to (5.5),

(5.8) sup
a∈D

‖ua − uanb,nq
‖H1(Ω) ≤ εG.

Define then

Φbr
ε = Φcuεu,nb(ε)

and Φtr
ε = Φb

εb,nb(ε)
,

where the NNs Φcuεu,nb(ε)
and Φb

εb,nb(ε)
are defined in Propositions 5.5 and 5.6, respectively.
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Error estimate. For all a ∈ D,

‖ua −
(
R(Φbr

ε )(anq
)
)
· R(Φtr

ε )‖H1(Ω)

≤ ‖ua − uanb,nq
‖H1(Ω) + ‖uanb,nq

−
(
R(Φbr

ε )(anq
)
)
· R(Φtr

ε )‖H1(Ω) =: (I) + (II).

We have already established that (I) ≤ εG = ε/3. Let us consider (II) then. We have

(II) = ‖
nb(ε)∑

i=1

([
cau;nb,nq

]
i
ϕi −

[
R(Φcuεu,nb(ε)

)(anq
)
]
i

[
R(Φb

εb,nb(ε)
)
]
i

)
‖H1(Ω)

≤ ‖
nb(ε)∑

i=1

([
cau;nb,nq

]
i
−
[
R(Φcuεu,nb(ε)

)(anq
)
]
i

)
ϕi‖H1(Ω)

+ ‖
nb(ε)∑

i=1

[
R(Φcuεu,nb(ε)

)
]
i

(
ϕi −

[
R(Φb

εb,nb(ε)
)
]
i

)
‖H1(Ω)

=: (IIa) + (IIb).

Denote, for all i ∈ {1, . . . , nb(ε)},

ηi :=
[
cau;nb,nq

]
i
−
[
R(Φcuεu,nb(ε)

)(anq)
]
i
.

Using the L2(Ω)-orthonormality of the basis, the Cauchy-Schwarz inequality, the polynomial in-
verse inequality (5.6) and Proposition 5.5, we obtain

(IIa)2 ≤ ‖
nb(ε)∑

i=1

ηiϕi‖2H1(Ω) =

∫

Ω



nb(ε)∑

i=1

ηiϕi




2

+

∫

Ω



nb(ε)∑

i=1

ηi∇ϕi




2

(4.1)
=

nb(ε)∑

i=1

η2i

∫

Ω

ϕ2
i +

∫

Ω



nb(ε)∑

i=1

ηi∇ϕi




2

C-S
≤



nb(ε)∑

i=1

η2i




1 +

nb(ε)∑

i=1

∫

Ω

|∇ϕi|2



(5.6)
≤ ‖cau;nb,nq

− R(Φcuεu,nb(ε)
)(anq

)‖22
(
1 + C2

polnb(ε)
1+4/d

)

P. 5.5
≤ ε2u

(
1 + C2

polnb(ε)
1+4/d

)

(5.7)
≤
(ε
3

)2
.

Next, we estimate

(5.9)

‖R(Φcuεu,nb(ε)
)(anq

)‖2 ≤ ‖R(Φcuεu,nb(ε)
)(anq

)− cau;nb,nq
‖2 + ‖cau;nb,nq

‖2
P. 5.5,(4.1)

≤ 1 + ‖uanb,nq
‖L2(Ω)

≤ 1 + ‖uanb,nq
− ua‖L2(Ω) + ‖ua‖L2(Ω)

(5.8)
≤ 2 + ‖ua‖L2(Ω).
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Then,

(IIb)2
C-S
≤ ‖R(Φcuεu,nb(ε)

)(anq)‖22
nb(ε)∑

i=1

‖ϕi −
[
R(Φb

εb,nb(ε)
)
]
i
‖2H1(Ω)

≤ nb(ε)‖R(Φcuεu,nb(ε)
)(anq)‖22 max

i∈{1,...,nb(ε)}
‖ϕi −

[
R(Φb

εb,nb(ε)
)
]
i
‖2H1(Ω)

P. 5.6,(5.9)
≤ (2 + ‖ua‖L2(Ω))

2ε2b

≤
(ε
3

)2
.

We can conclude that

‖ua −
(
R(Φbr

ε )(anq)
)
· R(Φtr

ε )‖H1(Ω) ≤ (I) + (IIa) + (IIb) ≤ ε.

Depth and size bounds. Using (5.5) and the definitions (5.7), we obtain that there exists a
constant C1 > 0 such that, for all ε ∈ (0, 1),

1 + max (|log εb| , |log εG| , |log εu|) ≤ C1(1 + |log ε|).

We infer then, from Proposition 5.5, that there exists C2 > 0 such that, for all ε ∈ (0, 1),

L(Φcuεu,nb(ε)
) ≤ C2

(
1 + log(1 + |log ε|d)

)
(1 + |log ε|)

and

M(Φcuεu,nb(ε)
) ≤ C2

(
1 + |log ε|d

)3
(1 + |log ε|)2

(
1 + log(1 + |log ε|d)

)2
.

Furthermore, from Proposition 5.6, we have that there exists C3 > 0 such that for all ε ∈ (0, 1)

L(Φb
εb,nb(ε)

) ≤ C3(1 + |log ε|) log(1 + |log ε|d)

and

M(Φb
εb,nb(ε)

) ≤ C3(1 + |log ε|d+1
).

Using the definition of Φtr
ε and Φbr

ε gives Item (iii) and concludes the proof.

5.4. Parametric diffusion coefficient. In many applications, for example in uncertainty quan-
tification, one is interested in the case where the diffusion coefficient in (2.3) is parametric. This
is naturally accommodated for by composition with solution operator networks and we briefly
detail this here. Specifically, suppose that there exists dp ∈ N and a compact set P ⊂ Rdp such
that a : P → Hol(Ω) and that there exist constants amin, Cp, bp, αp, Ap, Aψ > 0, and functions
ψi : Ω → R and ai : P → R, i ∈ N, such that

(5.10) inf
y∈P

inf
x∈Ω

a(y)(x) ≥ amin,

that

(5.11) ∀np ∈ N, sup
y∈P

‖a(y)−
np∑

i=1

ai(y)ψi‖L∞(Ω) ≤ Cp exp(−bpnαp
p ),
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with

(5.12) ∀i ∈ N, ψi ∈ Hol(Ω;Aψ), ai ∈ Hol(P;Ap),

and that

(5.13) sup
y∈P

∞∑

i=1

|ai(y)| ≤ Ap.

Here, we use the same constantAp in the second hypothesis in (5.12) and in (5.13) only to simplify
notation. For all y ∈ P , we denote uy ∈ X the solution to

(5.14) −∇ · (a(y)∇uy) = f, in Ω.

Remark 5.8. Functions that can be written in Fourier series as

a(y)(x) =
∑

k∈Zd

ak(y)e
ik·x,

where ak ∈ Hol(P, Ap), with exponential decrease of supy∈P |ak(y)| with respect to |k|, and such
that a is bounded from below, fulfill conditions (5.11), (5.12) and (5.13).

Lemma 5.9. There exists C > 0 such that for all np ∈ N and for all ε ∈ (0, 1), there exists a NN
Φa,coefε,np

with input dimension dp and output dimension np such that

(5.15) max
i=1,...,np

‖ai −
[
R(Φa,coefε,np

)
]
i
‖L∞(P) ≤ ε

and that L(Φa,coefε,np
) ≤ C(1 + |log ε|)(1 + log |log ε|) and M(Φa,coefε,np

) ≤ C(1 + |log ε|dp+1
)np.

Proof. The statement follows from a parallelization of the network of [18, Theorem 3.6]

Theorem 5.10. Let dp ∈ N and let a and uy be defined as above. There exists C > 0 such that, for all
ε ∈ (0, 1), there exist

(a) nb ∈ N,
(b) two NNs Φbr

ε and Φtr
ε with R(Φbr

ε ) : Rdp → Rnb and R(Φtr
ε ) : Q→ Rnb ,

such that
(i) nb ≤ C(1 + |log ε|d),
(ii) the following error estimate holds:

sup
y∈P

‖uy −
(
R(Φbr

ε )(y)
)
· R(Φtr

ε )‖H1(Ω) ≤ ε,

(iii) as ε ↓ 0,

L(Φbr
ε ) = O (|log ε| (log |log ε|)) ,

M(Φbr
ε ) = O

(
|log ε|3d+2

(log |log ε|)2 + |log ε|1+dp+1/αp

)
,

and

L(Φtr
ε ) = O (|log ε| (log |log ε|)) , M(Φtr

ε ) = O
(
|log ε|d+1

)
.
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Proof. The proof proceeds in several steps. We first prove a basis consistency bound, then
detail the construction of the ONet, and conclude with bounds on the depth and size of the ONet.

Let CL > 0 be the constant such that, given a1, a2 ∈ L∞(Ω) such that

(5.16) 0 <
amin

4
≤ ai ≤ max(amax, (1 +Ap)Aψ), a. e. in Ω and for i = 1, 2,

and ui = S(ai), i = 1, 2, then

‖u1 − u2‖H1(Ω) ≤ CL‖a1 − a2‖L∞(Ω),

see Lemma B.1. We suppose, without loss of generality and for ease of notation, that Aψ ≥ 1 and
CL ≥ 1. Let now np be the smallest integer such that

CLCp exp(−bpnαp
p ) ≤ min

(ε
3
,
amin

2

)
.

This implies that there exists a constant C1 > 0 (depending only on CL, Cp, bp, amin) such that

np ≤ C1(1 + |log ε|1/αp)

and that, due to (5.10), (5.11), (5.12), and (5.13),

(5.17) inf
y∈P

inf
x∈Ω

np∑

i=1

ai(y)ψi(x) ≥
amin

2
, sup

y∈P
‖
np∑

i=1

ai(y)ψi‖L∞(Ω) ≤ ApAψ.

Let then

(5.18) εp :=
1

npAψ
min

(
ε

3CL
,
amin

4

)
, ã :=

np∑

i=1

[
R(Φa,coefεp,np

)
]
i
ψi,

where the network Φa,coefεp,np
is defined in Lemma 5.9. We now show that ã fulfills conditions like

(2.1) and (2.2) (with updated values of the constants amin, amax, AD), uniformly with respect to
np and εp. From (5.15) and (5.17), it follows that, for all k ∈ N0,

(5.19)
sup
y∈P

‖ã‖Wk,∞(Ω) ≤ sup
y∈P

np∑

i=1

(
|ai(y)−

[
R(Φa,coefεp,np

)
]
i
|+ |ai(y)|

)
‖ψi‖Wk,∞

≤ (npεp +Ap)A
k+1
ψ k! ≤ (1 +Ap)A

k+1
ψ k!.

Furthermore, for all y ∈ P and all x ∈ Ω,

(5.20)

ã(y)(x) ≥
np∑

i=1

([
R(Φa,coefεp,np

)(y)
]
i
− ai(y)

)
ψi(x) +

np∑

i=1

ai(y)ψi(x)

≥ amin

2
− npεpAψ,

≥ amin

4
.

Here we have used (5.13), (5.15), (5.17), and the definition of εp in (5.18).
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Construction of the operator network and error estimate. For q ∈ N, nq = qd, we introduce
the matrixVnq,np

∈ Rnq×np with entries

(5.21)
[
Vnq,np

]
ij
= ψj(x

(q)
i ), i = 1, . . . , nq, j = 1, . . . , np,

where x
(q)
1 , . . . ,x

(q)
nq are the quadrature nodes introduced in Section 4.2. Then the NN

(5.22) Φã

εp,np,nq
=
((
Vnq,np ,0nq

))
⊙ Φa,coefεp,np

has realization such that

R(Φã

εp,np,nq
)(y) =




ã(y)(x
(q)
1 )

...

ã(y)(x
(q)
nq )


 .

Let ũy ∈ X denote, for each y ∈ P , the solution to

∇ · (ã(y)∇ũy) = f, in Ω.

Thanks to (5.19), (5.20), and to Theorem 5.7, there exist a constant C2 independent of ε, nq ∈ N

such that nq ≤ C2(1 + |log ε|), and networks Φ̃br
ε/3 and Φ̃tr

ε/3 such that, for all y ∈ P ,

‖ũy −
(
R(Φ̃br

ε/3) ◦ R(Φã

εp,np,nq
)
)
(y) · R(Φ̃tr

ε/3)‖H1(Ω) ≤
ε

3
.

Furthermore, for all y ∈ P , a(y) and ã(y) satisfy the conditions in (5.16), hence

‖uy − ũy‖H1(Ω) ≤ CL‖a(y)− ã(y)‖L∞(Ω)

≤ CL

(
‖a(y)−

np∑

i=1

ai(y)ψi‖L∞(Ω) + ‖
np∑

i=1

(
ai(y)−

[
R(Φa,coefε,np

)(y)
]
i

)
ψi‖L∞(Ω)

)

≤ ε

3
+ CLnpεpAψ

≤ 2

3
ε.

We deduce that

sup
y∈P

‖uy −
(
R(Φ̃br

ε/3) ◦ R(Φã

εp,np,nq
)
)
(y) · R(Φ̃tr

ε/3)‖H1(Ω) ≤ ε,

which is Item (ii), with

Φbr
ε := Φ̃br

ε/3 ⊙ Φã

εp,np,nq
, Φtr

ε := Φ̃tr
ε/3.

Depth and size bounds. The bounds on the depth and size ofΦtr
ε can be inferred directly from

Theorem 5.7. To compute bounds on the size and depth of Φbr
ε , note that, by Lemma 5.9, there

exist C3, C4, C5, C6 independent of ε such that

(5.23) L(Φa,coefεp,np
) ≤ C3(1 + |log εp|)(1 + log |log εp|) ≤ C4(1 + |log ε|)(1 + log |log ε|)

and

(5.24) M(Φa,coefεp,np
) ≤ C5(1 + |log εp|dp+1

)np ≤ C6(1 + |log ε|dp+1+1/αp).
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Furthermore, there exists C7 independent of ε such that

(5.25) ‖Vnq,np‖0 ≤ npnq ≤ C7(1 + |log ε|1+1/αp).

From (5.24) and (5.25) it follows that

(5.26) L(Φã

εp,np,nq
) ≤ C8(1 + |log ε|)(1 + log |log ε|), M(Φã

εp,np,nq
) ≤ C9(1 + |log ε|dp+1+1/αp),

for constants C8, C9 independent of ε. Combining the bounds in (5.26) with the bounds on the

depth and size of Φ̃br
ε/3 coming from Theorem 5.7 concludes the proof.

Remark 5.11. If each function ai does not depend on all the parameters but only on a subset of
them, the size bound of Theorem 5.10 results in an overestimation. Specifically, for all i ∈ N, let Pi
be the domain of ai and denote dp,i := dim(Pi). Then, with a slight modification of Lemma 5.9 we
obtain in Theorem 5.10 that there exists a constant c > 0 independent of ε such that for ε ↓ 0,

M(Φbr
ε ) = O


|log ε|3d+2

(log |log ε|)2 +
c|log ε|1/αp∑

i=1

|log ε|1+dp,i

 .

Clearly, setting dp,i = dp for all i in the equation above gives the estimate in Theorem 5.10.

Remark 5.12. Similar results to Theorem 5.10 can be obtained through the technique in [11], by
using the exponential convergence of polynomial approximations to the functions in the solution
manifold M = {u(y) : y ∈ P} to derive an upper bound on the n-width of M.

6. Generalizations. All steps of the analysis of ONet emulation rates for the coefficient-to-
solutionmap of (2.3) directly generalize to other, structurally similar, linear divergence-form ellip-
tic PDEs. We illustrate the extension of the preceding result by two of these: anisotropic diffusion-
reaction equations and linear elastostatics.

6.1. Linear anisotropic diffusion-reaction equations.

6.1.1. Definition of the problem. We consider again the torus Ω = (R/Z)d. For a constant
ADrd > 0, introduce the set of admissible data

Drd ⊂ Hol(Ω;ADrd)d×d ×Hol(Ω;ADrd)

of pairs (A, c) and suppose there exist Q0 ⊂ Q, amin, cmin > 0 such that for all (A, c) ∈ Drd,
• A is symmetric and is uniformly positive definite, i.e.,Aij = Aji and

∀x ∈ Ω, ∀ξ ∈ Rd, ξ⊤A(x)ξ ≥ amin|ξ|2 ,

• c(x) ≥ cmin for all x ∈ Q0.
For all (A, c) ∈ Drd, the bilinear form b

(A,c)(·, ·) : H1(Ω)×H1(Ω) → R given by

b
(A,c)(w, v) :=

∫

Ω

((A∇w) · ∇v + cwv)

is coercive, i.e., there exists a constant α0 > 0 independent of (A, c) such that

∀v ∈ H1(Ω), b
(A,c)(v, v) ≥ α0‖v‖2H1(Ω) .

The continuity of the form b
(A,c)(·, ·) on H1(Ω) × H1(Ω) → R being evident, the Lax-Milgram

Lemma implies that for every f ∈ Hol(Ω) there exists a unique solution

u ∈ H1(Ω) : b
(A,c)(u, v) = (f, v) ∀v ∈ H1(Ω).
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For given, fixed f ∈ Hol(Ω), the coefficient-to-solution map

Srd : (A, c) 7→ u

is analytic. Furthermore, there exists AUrd > 0 such that

Srd(Drd) ⊂ Hol(Ω;AUrd),

which can be proven as in Lemma 4.1.

6.1.2. Operator network approximation. We introduce, for allnq ∈ N such that q := n
1/d
q ∈ N,

the encoding operator Erd
xenc

: C(Ω)d×d × C(Ω) → Rd
2nq+nq such that

Erd
xenc

(A, c) =




vec(A(x
(q)
1 ))

...

vec(A(x
(q)
nq ))

c(x
(q)
1 )
...

c(x
(q)
nq )




,

where xenc = x
(q)
1 , . . . ,x

(q)
nq are the points from Section 4.2. Theorem 5.7 can then be extended to

this class of reaction-diffusion equations.

Theorem 6.1. Theorem 5.7 holds with a ∈ D replaced by (A, c) ∈ Drd, S(a) replaced by Srd(A, c),
and Exenc

(a) replaced by Erd
xenc

(A, c).

For all p ∈ N, writing ñb = (p + 1)d, we consider L2(Ω)-orthonormal basis functions {ϕ̃i}ñb
i=1

of Qp(Ω), i.e.,

∫

Ω

ϕ̃iϕ̃j = δij , ∀(i, j) ∈ {1, . . . , ñb}2.

Let then

X̃nb
:= span({ϕ̃1, . . . , ϕ̃ñb

}) ⊂ X̃ := H1(Ω).

In order to prove Theorem 6.1, we have to replace the input layer network introduced in
Lemma 5.1 with an input layer adapted for anisotropic diffusion-reaction problems, as introduced

in Lemma 6.2. For k ∈ {1, . . . , nq}, we introduce D̃(x
(q)
k ) such that

D̃
ij
mn(x

(q)
k ) = w

(q)
k (∂xn ϕ̃j)(x

(q)
k )(∂xm ϕ̃i)(x

(q)
k ), (i, j) ∈ {1, . . . , nb}2, (m,n) ∈ {1, . . . , d}2.

Furthermore, let v : N2 → N be the reordering such that for any matrix A,

(6.1) vec(A)v(i,j) = Aij .

We introduce the operation ṽec : Rnb×nb×d×d → Rn
2
b×d

2

ṽec(D̃(x
(q)
k ))v(i,j)v(m,n) = D̃

ij
mn(x

(q)
k ).

Finally, define

M̂ij(x
(q)
k ) = w

(q)
k ϕ̃i(x

(q)
k )ϕ̃j(x

(q)
k ).
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Lemma 6.2. For all α ∈ R the one layer NN

Φ(A,c),α
nb,nq

:=
((

−α
[
ṽec(D̃(x

(q)
1 ))| . . . | ṽec(D̃(x(q)

nq
))|vec(M̂(x

(q)
1 )| . . . |vec(M̂(x(q)

nq
))
]
,0nb

))

is such that

matr

(
R(Φ(A,c),α

nb,nq
)(Erd

xenc
(A, c))

)
ij
= −αb(A,c)(ϕ̃j , ϕ̃i)

and M(Φ
(A,c),α
nb,nq ) ≤ (d2 + 1)n2

bnq .

Proof. We have

[
R
(
Φ(A,c),α
nb,nq

)
(Erd

xenc
(A, c))

]
v(i,j)

= −α
nq∑

k=1

w
(q)
k

(
d∑

m,n=1

[Amn(∂xn
ϕ̃j)(∂xm

ϕ̃i)] (x
(q)
k ) + [cϕ̃jϕ̃i] (x

(q)
k )

)

= −α
nq∑

k=1

w
(q)
k

(
[(A∇ϕ̃i) · (∇ϕ̃j)] (x(q)

k ) + [cϕ̃jϕ̃i] (x
(q)
k )
)
,

hence the equality after matricization. The size bound follows from the fact that

‖D̃(x
(q)
k )‖0 ≤ d2n2

b, ‖M̂(x
(q)
k )‖0 ≤ n2

b,

for all k ∈ {1, . . . , nq}.
We can now prove Theorem 6.1.

Proof of Theorem 6.1. The proof follows along the same lines as the proof of Theorem 5.7. In
particular, in the construction of Φbr

ε , the input network ΦA,αnb,nq
and Lemma 5.1 are replaced by the

network Φ
(A,c),α
nb,nq and Lemma 6.2. Then, the spaces X and Xnb

are replaced by X̃ and X̃ñb
. The

basis {ϕ̃1, . . . , ϕ̃ñb
} is equal to {ϕ1, . . . , ϕnb

} with the addition of a constant function, which can
be emulated exactly by deep ReLU neural networks. Hence, Proposition 5.6 can be extended to
this case. Finally, the matrices Aa

nb,nq
and A

1
nb,nq

used in the proof of Theorem 5.7 are replaced,
respectively, by the matrices with entries

b
(A,c)
nq

(ϕ̃j , ϕ̃i) and b
(Idd,1)
nq

(ϕ̃j , ϕ̃i), (i, j) ∈ {1, . . . , ñb}2,

where

b
(A,c)
nq

(u, v) :=

nq∑

k=1

w
(q)
k

(
A(x

(q)
k )∇u(x(q)

k )
)
· ∇v(x(q)

k ) +

nq∑

k=1

w
(q)
k c(x

(q)
k )u(x

(q)
k )v(x

(q)
k ),

for all u, v ∈ C1(Ω). Since the bilinear form b
(A,c) is coercive and continuous on H1(Ω), results

equivalent to Lemmas 4.2 and 4.3 with the new matrices can be proven directly. The rest of the
proof is the same as the proof of Theorem 5.7.

6.2. Linear Elastostatics.

6.2.1. Definition of the problem. We assume d = 2, 3. Small, linear elastic deformation of
a body occupying Q = (0, 1)d with periodic boundary conditions and subject to a prescribed,
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periodic body force f : Ω = Rd/Zd → Rd can be described by the displacement field u : Ω → Rd

which satisfies the equilibrium of stress

(6.2) divσ[u] + f = 0 in Ω.

Here σ[u] : Ω → Rd×dsym is symmetric matrix function, the so-called stress tensor. It depends on the

displacement field u via the (linearized) strain tensor ε[u] : Ω → Rd×dsym which is given by

(6.3) ε[u] :=
1

2

(
gradu+ (gradu)⊤

)
, (ε[u])ij :=

1

2
(∂jui + ∂iuj), i, j = 1, ..., d .

In the linearized theory, the tensors σ and ε in (6.2), (6.3) are related by the linear constitutive
stress-strain relation (“Hooke’s law”)

(6.4) σ = Aε.

In (6.4), A is a fourth order tensor field, i.e. A = {Aijkl : i, j, k, l = 1, ..., d}, with certain symmetries:
the d4 component functions Aijkl(x) are assumed analytic in [0, 1]d and 1-periodic with respect to
each coordinate, and satisfy for every x ∈ Ω,

(6.5) ∀τ ∈ Rd×dsym , A(x)τ ∈ Rd×dsym and ∀τ ,σ ∈ Rd×dsym , (A(x)τ ) : σ = (A(x)σ) : τ .

Key assumption on A is coercivity: there exists a constant amin > 0 such that

(6.6) ∀x ∈ Ω, ∀τ ∈ Rd×dsym , (A(x)τ ) : τ ≥ amin‖τ‖22 .

see, e.g., [24] for details. Inserting (6.4) into (6.2), integrating by parts and noting the periodic
boundary conditions, the so-called “primal variational formulation” of (6.2) reads: find uA ∈
[H1(Ω)/R]d such that

(6.7) b
A(uA,v) :=

∫

Ω

ε[v] : (Aε[uA]) =

∫

Ω

f · v ∀v ∈ [H1(Ω)/R]d .

Unique solvability of (6.7) is implied by the Lax-Milgram Lemmawith (6.6) and Korn’s inequality
upon noticing that the space Xd = [H1(Ω)/R]d does not contain rigid body motions: rigid body
rotations are eliminated due to the periodicity of the present setting, and rigid body translations
with the factoring of constants in each component. TheKorn inequality and the Poincaré inequality
(2.5) imply existence of a positive constant c such that

∀v ∈ Xd : b
A(v,v) ≥ camin‖v‖2H1(Ω) .

For given, fixed f ∈ [Hol(Ω)/R]d, which is 1-periodic in each argument, there exists a unique
solution of (6.7). Furthermore, the coefficient-to-solution map Sel : A 7→ uA is analytic from the

set Del = {A ∈ Hol(Ω, ADel)d
4

: (6.6) and (6.5) hold} to Uel = Sel(Del) ⊂ Xd ∩ Hol(Ω, AUel)d, for
positive constants ADel , AUel .

6.2.2. Operator network approximation. For the operator network approximation of themap
Sel, we introduce modified encoding and reconstruction operators. To construct the encoding
operator, we extend the definition of the vectorization operation to fourth order tensors so that,
for all B ∈ Rn1×···×n4 , vec(B) ∈ Rn1···n4 . We consequently extend the definition of the reordering
function introduced in Section 6.1 to v : N× N× N× N such that

(6.8) vec(B)v(m,n,p,q) = Bmnpq.
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The modified encoding operator Eel
xenc

: [C([0, 1]d)]d×d×d×d → Rd
4nq is then given by

(6.9) Eel
xenc

(A) :=




vec(A(x
(q)
1 ))

...

vec(A(x
(q)
nq ))


 ,

where xenc = x
(q)
1 , . . . ,x

(q)
nq are the usual quadrature points. For all m ∈ N, the modified recon-

struction operator Rel : Rdm → H1(Ω)d is instead defined, given a neural network Φbranch such
that R(Φbranch) : Ω → Rm, as

(6.10) Rel
Φbranch(c)(x) =

(
Idd ⊗ R(Φbranch)(x)

)⊤
c, ∀x ∈ Ω, ∀c ∈ Rdm.

We can now state the operator network approximation result for problem (6.2).

Theorem 6.3. Theorem 5.7 holds with a ∈ D replaced by A ∈ Del, S(a) replaced by Sel(A), Exenc
(a)

replaced by Eel
xenc

(A), andRΦbr
ε
replaced byRel

Φbr
ε
.

Proof. We construct a basis of the dnb-dimensional discrete space Xd
nb

approximating Xd as

ψ1 =



ϕ1

...
0


 , . . . ,ψnb

=



ϕnb

...
0


 , . . . ,ψ(d−1)nb+1 =




0
...
ϕ1


 ,ψdnb

=




0
...

ϕnb


 ,

where ϕ1, . . . , ϕnb
are the Legendre polynomials defined in Section 4.2. The trunk network Φtr

ε is
then constructed as in the proof of Theorem 5.7: it follows that the jth column of

(
Idd ⊗ R(Φtr

ε )
)⊤

contains an approximation of ψj , for each j ∈ {1, . . . , dnb}.
To construct the branch network Φbr

ε , we replace the input layer used in the proof of Theorem
5.7, in a similar way as we did in Lemma 6.2. Define, for all i, j ∈ {1, . . . , dnb} and m,n, p, q ∈
{1, . . . , d},

D̃
ij
mnpq(x

(q)
k ) = w

(q)
k

(
ε[ψi](x

(q)
k )
)
mn

(
ε[ψj ](x

(q)
k )
)
pq

and let ṽec(D̃(x
(q)
k )) ∈ Rd

2n2
b×d

4

such that

ṽec(D̃(x
(q)
k ))v(i,j)v(m,n,p,q) = D̃

ij
mnpq(x

(q)
k ),

with v defined in (6.1) and (6.8) for two and four arguments, respectively. Then,

ΦA,α
nb,nq

:=
((

−α
[
ṽec(D̃(x

(q)
1 ))| . . . | ṽec(D̃(x(q)

nq
))
]
,0nb

))

is such that

matr

(
R(ΦA,α

nb,nq
)(Eel

xenc
(A))

)
ij
= −αbA(ψj ,ψi), ∀(i, j) ∈ {1, . . . , dnb}2.

We can then construct Φtr
ε as in the proof of Theorem 5.7, with ΦA,α

nb,nq
replacing ΦA,αnb,nq

. The rest
of the proof follows the same argument as the proof of Theorem 5.7.
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7. Conclusions. We proved, in the periodic setting on Ω = Rd/Zd, the exponential conver-
gence of deep operator network emulation of the coefficient-to-solutionmap of some linear elliptic
equations, under the assumption of analytic coefficients a and right-hand sides f . The proof used
the analytic regularity of solutions ua of (2.3) implied by classical elliptic regularity results and
the consequential exponential convergence of polynomial approximations of a and ua and of fully
discrete spectral-Galerkin numerical schemes. We have developed the analysis for isotropic diffu-
sion equations and extended it to problems with parametric diffusion, with anisotropic diffusion
and reaction, and to linear elastostatics.

AppendixA.Convergence of fully discrete Spectral-Galerkin Solution. Wepresent here the
exponential convergence of fully discrete Spectral-Galerkin solutions of the problems considered
in this paper. The following classical approximation result will be useful.

Lemma A.1. Let A > 0. Then, there exist C, b > 0 such that for all p ∈ N0 and for all v ∈ Hol(Ω;A),

inf
w∈Qp(Ω)

‖v − w‖L∞(Ω) ≤ C exp(−bp).

Proof. The statement is a consequence of, e.g., [18, Remark 3.1 and Theorem 3.5].

The following lemma, then, concerns the convergence of fully discrete Spectral-Galerkin solutions
for problems in Ω, with analytic right-hand sides and coefficients.

Lemma A.2. LetΘ ∈ {D,Drd,Del} and d = d for linear elasticity, d = 1 otherwise. Let f ∈ Hol(Ω)d

and, for coefficients θ ∈ Θ, let bθ(·, ·) be one of the bilinear forms defined in Sections 2.1, 6.1.1, or 6.2.1.
There exists C1, C2 > 0 such that, for all p ∈ N and for all integer q ≥ p+ 1,

sup
θ∈Θ

‖uθ − uθnb,nq
‖H1(Ω) ≤ C1 exp(−C2p),

where uθnb,nq
∈ Qp(Ω)

d is such that bθqd(u
θ
nb,nq

, v) = (f, v) for all v ∈ Qp(Ω)
d.

Proof. Strang’s lemma [20, Lemma 10.1] implies that there exists C > 0 independent of θ ∈ Θ,
p, and q, such that

‖uθ − uθnb,nq
‖H1(Ω) ≤ C inf

v∈Qp(Ω)d

(
‖uθ − v‖H1(Ω) + sup

w∈Qp(Ω)d\{0}

|bθ(v, w)− b
θ
nq
(v, w)|

‖v‖H1(Ω)‖w‖H1(Ω)

)
.

By [3, Section 6.4.3], then, denoting p̃ = ⌊p/2⌋, there exists C̃ > 0 independent of θ ∈ Θ, p, and q
such that

‖uθ − uθnb,nq
‖H1(Ω) ≤ C̃

(
inf

v∈Qp̃(Ω)d
‖uθ − v‖H1(Ω) + inf

v∈Yp̃

‖θ − v‖L∞(Ω)

)
,

where the space Yp̃ depends on the problem under consideration:

Yp̃ =





Qp̃(Ω) if Θ = D,{
A ∈ Qp̃(Ω)

d×d : Aij = Aji

}
×Qp̃(Ω) if Θ = Drd,{

A ∈ Qp̃(Ω)
d×d×d×d : (6.5) holds

}
if Θ = Del.

Since functions in Θ and in S(D), Srd(Drd), or Sel(Del) are analytic with uniform bounds on the
norms at all orders, using Lemma A.1 concludes the proof.

Appendix B. Lipschitz continuity of the data-to-solutionmap. For the readers’ convenience,
we provide a proof of the (known) Lipschitz dependence of the solution of the PDEs considered
in this paper on the coefficients.
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Lemma B.1. Let X be a Hilbert space, let Y be a Banach space, and let Θ ⊂ Y . Let furthermore
b
θ : X ×X → R be a bilinear form that is also linear with respect to the coefficient θ. Suppose that

(B.1) b
θ(u, v) ≤ ‖θ‖Y ‖u‖X‖v‖X , ∀u, v ∈ X, ∀θ ∈ Y.

Furthermore, suppose there exists θmin > 0 such that

(B.2) b
θ(u, u) ≥ θmin‖u‖2X , ∀u ∈ X, ∀θ ∈ Θ.

For fixed f ∈ X ′ and for each θ ∈ Θ, define uθ ∈ X as the function such that

(B.3) b
θ(uθ, v) = 〈f, v〉, ∀v ∈ X.

Then, there exists CL > 0 (depending only on θmin and f) such that

‖uθ1 − uθ2‖X ≤ CL‖θ1 − θ2‖Y , ∀θ1, θ2 ∈ Θ.

Proof. Denote ui = uθi , i = 1, 2. Using (B.2), (B.3), the continuity of the bilinear form with
respect to the coefficient, and (B.1)

‖u1 − u2‖2X ≤ 1

θmin
b
θ1(u1 − u2, u1 − u2)

≤ 1

θmin

(
b
θ2(u2, u1 − u2)− b

θ1(u2, u1 − u2)
)

≤ 1

θmin
‖θ2 − θ1‖Y ‖u2‖X‖u1 − u2‖X .

The Lax-Milgram bound ‖u2‖X ≤ 1
θmin

‖f‖X′ concludes the proof.
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