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Abstract. We prove weighted analytic regularity of solutions to the Dirichlet problem for the integral fractional4
Laplacian in polygons with analytic right-hand side. We localize the problem through the Caffarelli-Silvestre extension and5
study the tangential differentiability of the extended solutions, followed by bootstrapping based on Caccioppoli inequalities6
on dyadic decompositions of vertex, edge, and edge-vertex neighborhoods.7
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1. Introduction. In this work, we study the regularity of solutions to the Dirichlet problem for10

the integral fractional Laplacian11

(1.1) (−∆)su = f on Ω, u = 0 on R
d \ Ω,12

with 0 < s < 1, where we consider the case of a polygonal Ω and a source term f that is analytic. We13

derive weighted analytic-type estimates for the solution u, with vertex and edge weights that vanish on14

the domain boundary ∂Ω.15

Unlike their integer order counterparts, solutions to fractional Laplace equations are known to lose16

regularity near ∂Ω, even when the source term and ∂Ω are smooth (see, e.g., [Gru15]). After the17

establishment of low-order Hölder regularity up to the boundary for C1,1 domains in [RS14], solutions to18

the Dirichlet problem for the integral fractional Laplacian have been shown to be smooth (after removal19

of the boundary singularity) in C∞ domains [Gru15]. Subsequent results have filled in the gap between20

low and high regularity in Sobolev [AG20] and Hölder spaces [ARO20], with appropriate assumptions on21

the regularity of the domain. Besov regularity of weak solutions u of (1.1) has recently been established in22

[BN21] in Lipschitz domains Ω. Finally, for polygonal Ω, the precise characterization of the singularities23

of the solution in vertex, edge, and edge-vertex neighborhoods is the focus of the Mellin-based analysis24

of [GSŠ21, Što20].25

For smooth geometries, [Gru15] characterizes the mapping properties of the integral fractional Lapla-26

cian, exhibiting in particular the anisotropic nature of solutions near the boundary. Interior regularity27

results have been obtained in [Coz17, BWZ17, FKM22] and, under analyticity assumptions on the right-28

hand side, (interior) analyticity of the solution has been derived even for certain nonlinear problems29

[KRS19, DFØS12, DFØS13] and more general integro-differential operators [AFV15]. The loss of reg-30

ularity near the boundary can be accounted for by weights in the context of isotropic Sobolev spaces31

[AB17]. While all the latter references focus on the Dirichlet integral fractional Laplacian, which is32

also the topic of the present work, corresponding regularity results for the Dirichlet spectral fractional33

Laplacian are also available, see, e.g., [CS16].34

The purpose of the present work is a description of the regularity of the solution of (1.1) for piecewise35

analytic input data that reflects both the interior analyticity and the anisotropic nature of the solution36

near the boundary. This is achieved in Theorem 2.1 through the use of appropriately weighted Sobolev37

spaces. Unlike local elliptic operators in polygons, for which vertex-weighted spaces allow for analytic38

regularity shifts (e.g., [BG88, MR10]), corresponding results for fractional operators in polygons require39

additionally edge-weights [Gru15].40

An observation that was influential in the analysis of elliptic fractional diffusion problems is their41

localization through a local, divergence form, elliptic degenerate operator in higher dimension. First42

pointed out in [CS07], it subsequently inspired many developments in the analysis of fractional problems.43

While not falling into the standard elliptic setting (see, e.g., the discussion in [Gru15]), the localization44

via a higher-dimensional local elliptic boundary value problem does allow one to leverage tools from45

∗Institut für Analysis und Scientific Computing, TU Wien, A-1040 Wien, Austria
†Dipartimento di Matematica “F. Casorati”, Università di Pavia, I-27100 Pavia, Italy
‡Seminar for Applied Mathematics, ETH Zurich, CH-8092 Zürich,Switzerland
Funding: The research of JMM is funded by the Austrian Science Fund (FWF) by the special research program

Taming complexity in PDE systems (grant SFB F65). The research of CM was performed during a PostDoctoral fellowship
at the Seminar for Applied Mathematics, ETH Zürich, in 2020-2021.

1

This manuscript is for review purposes only.



elliptic regularity theory. Indeed, the present work studies the regularity of the higher-dimensional local46

degenerate elliptic problem and infers from that the regularity of (1.1) by taking appropriate traces.47

Our analysis is based on Caccioppoli estimates and bootstrapping methods for the higher-dimensional48

elliptic problem. Such arguments are well-known to require (under suitable assumptions on the data)49

a basic regularity shift for variational solutions from the energy space of the problem (in the present50

case, a fractional order, nonweighted Sobolev space) into a slightly smaller subspace (with a fixed order51

increase in regularity). This is subsequently used to iterate in a bootstrapping manner local regularity52

estimates of Caccioppoli type on appropriately scaled balls in a Besicovitch covering of the domain. In53

the classical setting of non-degenerate elliptic problems, the initial regularity shift (into a vertex-weighted54

Sobolev space) is achieved by localization and a Mellin type analysis at vertices, as presented, e.g., in55

[MR10] and the references there. The subsequent bootstrapping can then lead to analytic regularity as56

established in a number of references for local non-degenerate elliptic boundary value problems (see, e.g.,57

[BG88, GB97a, GB97b, CDN12] and the references there). The bootstrapping argument of the present58

work structurally follows these approaches.59

While delivering sharp ranges of indices for regularity shifts (as limited by poles in the Mellin60

resolvent), the Mellin-based approach will naturally meet with difficulties in settings with multiple,61

non-separated vertices (as arise, e.g., in general Lipschitz polygons). Here, an alternative approach to62

extract some finite amount of regularity in nonweighted Besov-Triebel-Lizorkin spaces was proposed in63

[Sav98]; it is based on difference-quotient techniques and compactness arguments. In the present work,64

our initial regularity shift is obtained with the techniques of [Sav98]. In contrast to the Mellin approach,65

the technique of [Sav98] leads to regularity shifts even in Lipschitz domains but does not, as a rule,66

give better shifts for piecewise smooth geometries such as polygons. While this could be viewed as67

mathematically non-satisfactory, we argue in the present note that it can be quite adequate as a base68

shift estimate in establishing analytic regularity in vertex- and boundary-weighted Sobolev spaces, where69

quantitative control of constants under scaling takes precedence over the optimal range of smoothness70

indices.71

1.1. Impact on numerical methods. The mathematical analysis of efficient numerical methods72

for the numerical approximation of fractional diffusion has received considerable attention in recent years.73

We only mention the surveys [DDG+20, BBN+18, BLN20, LPG+20] and the references there for broad74

surveys on recent developments in the analysis and in the discretization of nonlocal, fractional models.75

At this point, most basic issues in the numerical analysis of discretizations of linear, elliptic fractional76

diffusion problems are rather well understood, and convergence rates of variational discretizations based77

on finite element methods on regular simplicial meshes have been established, subject to appropriate78

regularity hypotheses. Regularity in isotropic Sobolev/Besov spaces is available, [BN21], leading to cer-79

tain algebraically convergent methods based on shape-regular simplicial meshes. As discussed above, the80

expected solution behavior is anisotropic so that edge-refined meshes can lead to improved convergence81

rates. Indeed, a sharp analysis of vertex and edge singularities via Mellin techniques is the purpose of82

[GSŠ21, Što20] and allows for unravelling the optimal mesh grading for algebraically convergent methods.83

The analytic regularity result obtained in Theorem 2.1 captures both the anisotropic behavior of the84

solution and its analyticity so that exponentially convergent numerical methods for integral fractional85

Laplace equations in polygons can be developed in our follow-up work [FMMS22b]; see also [FMMS22a]86

for the corresponding convergence theory in 1D.87

1.2. Structure of this text. After having introduced some basic notation in the forthcoming88

subsection, in Section 2 we present the variational formulation of the nonlocal boundary value problem.89

We also introduce the scales of boundary-weighted Sobolev spaces on which our regularity analysis is90

based. In Section 2.2, we state our main regularity result, Theorem 2.1. The rest of this paper is devoted91

to its proof, which is structured as follows.92

Section 3 develops regularity estimates for the localized extension. In Section 4, we establish along93

the lines of [Sav98], a local regularity shift for the tangential derivatives of the solution of the extension94

problem, in a vicinity of (smooth parts of) the boundary. These estimates are combined in Section 595

with covering arguments and scaling to establish the weighted analytic regularity.96

Section 6 provides a brief summary of our main results, and outlines generalizations and applications97

of the present results.98

1.3. Notation. For open ω ⊆ R
d and t ∈ N0, the spaces Ht(ω) are the classical Sobolev spaces of99

order t. For t ∈ (0, 1), fractional order Sobolev spaces are given in terms of the Aronstein-Slobodeckij100
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seminorm | · |Ht(ω) and the full norm ‖ · ‖Ht(ω) by101

|v|2Ht(ω) =

∫

x∈ω

∫

z∈ω

|v(x)− v(z)|2
|x− z|d+2t

dz dx, ‖v‖2Ht(ω) = ‖v‖2L2(ω) + |v|2Ht(ω),(1.2)102
103

where we denote the Euclidean norm in R
d by | · |. For bounded Lipschitz domains Ω ⊂ R

d and t ∈ (0, 1),104

we introduce additionally105

H̃t(Ω) :=
{
u ∈ Ht(Rd) : u ≡ 0 on R

d\Ω
}
, ‖v‖2H̃t(Ω)

:= ‖v‖2Ht(Ω) +
∥∥v/rt∂Ω

∥∥2
L2(Ω)

,106
107

where r∂Ω(x) := dist(x, ∂Ω) denotes the Euclidean distance of a point x ∈ Ω from the boundary ∂Ω. On108

H̃t(Ω) we have, by combining [Gri11, Lemma 1.3.2.6] and [AB17, Proposition 2.3], the estimate109

(1.3) ∀u ∈ H̃t(Ω): ‖u‖H̃t(Ω) ≤ C|u|Ht(Rd)110

for some C > 0 depending only on t and Ω. For t ∈ (0, 1)\{ 1
2}, the norms ‖·‖H̃t(Ω) and ‖·‖Ht(Ω) are111

equivalent on H̃t(Ω), see, e.g., [Gri11, Sec. 1.4.4]. Furthermore, for t > 0, the space H−t(Ω) denotes112

the dual space of H̃t(Ω), and we write 〈·, ·〉L2(Ω) for the duality pairing that extends the L2(Ω)-inner113

product.114

We denote by R+ the positive real numbers. For subsets ω ⊂ R
d, we will use the notation ω+ :=115

ω × R+. For any multi index β = (β1, . . . , βd) ∈ N
d
0, we denote ∂β

x = ∂β1
x1

· · · ∂βd
xd

and |β| =∑d
i=1 βi. We116

adhere to convention that empty sums are null, i.e.,
∑b

j=a cj = 0 when b < a; this even applies to the117

case where the terms cj may not be defined. We also follow the standard convention 00 = 1.118

Throughout this article, we use the notation . to abbreviate ≤ up to a generic constant C > 0 that119

does not depend on critical parameters in our analysis.120

2. Setting. There are several different ways to define the fractional Laplacian (−∆)s for s ∈ (0, 1).121

A classical definition on the full space Rd is in terms of the Fourier transformation F , i.e., (F(−∆)su)(ξ) =122

|ξ|2s(Fu)(ξ). Alternative, equivalent definitions of (−∆)s are, e.g., via spectral, semi-group, or operator123

theory, [Kwa17] or via singular integrals.124

In the following, we consider the integral fractional Laplacian defined pointwise for sufficiently smooth125

functions u as the principal value integral126

(−∆)su(x) := C(d, s) P.V.
∫

Rd

u(x)− u(z)

|x− z|d+2s
dz with C(d, s) := −22s

Γ(s+ d/2)

πd/2Γ(−s)
,(2.1)127

128

where Γ(·) denotes the Gamma function. We investigate the fractional differential equation129

(−∆)su = f inΩ,(2.2a)130

u = 0 inΩc := R
d\Ω,(2.2b)131132

where s ∈ (0, 1) and f ∈ H−s(Ω) is a given right-hand side. Equation (2.2) is understood in weak form:133

Find u ∈ H̃s(Ω) such that134

(2.3) a(u, v) := 〈(−∆)su, v〉L2(Rd) = 〈f, v〉L2(Ω) ∀v ∈ H̃s(Ω).135

The bilinear form a has the alternative representation136

(2.4) a(u, v) =
C(d, s)

2

∫ ∫

Rd×Rd

(u(x)− u(z))(v(x)− v(z))

|x− z|d+2s
dz dx ∀u, v ∈ H̃s(Ω).137

Existence and uniqueness of u ∈ H̃s(Ω) follow from the Lax–Milgram Lemma for any f ∈ H−s(Ω),138

upon the observation that the bilinear form a(·, ·) : H̃s(Ω)× H̃s(Ω) → R is continuous and coercive.139

2.1. The Caffarelli-Silvestre extension. A very influential interpretation of the fractional Lapla-140

cian is provided by the so-called Caffarelli-Silvestre extension, due to [CS07]. It showed that the nonlocal141

operator (−∆)s can be be understood as a Dirichlet-to-Neumann map of a degenerate, local elliptic PDE142

on a half space in R
d+1. Throughout the following text, we let143

(2.5) α := 1− 2s.144
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2.1.1. Weighted spaces for the Caffarelli-Silvestre extension. Throughout the text, we single145

out the last component of points in R
d+1 by writing them as (x, y) with x = (x1, . . . , xd) ∈ R

d, y ∈ R.146

We introduce, for open sets D ⊂ R
d × R+, the weighted L2-norm ‖ · ‖L2

α(D) via147

(2.6) ‖U‖2L2
α(D) :=

∫

(x,y)∈D

yα |U(x, y)|2 dx dy.148

We denote by L2
α(D) the space of functions on D that are square-integrable with respect to the weight149

yα. We introduce H1
α(D) := {U ∈ L2

α(D) : ∇U ∈ L2
α(D)} as well as the Beppo-Levi space BL1

α := {U ∈150

L2
loc(R

d×R+) : ∇U ∈ L2
α(R

d×R+)}. For elements of the Beppo-Levi space BL1
α, one can give meaning151

to their trace at y = 0, which is denoted trU . Recalling α = 1− 2s, one has in fact trU ∈ Hs
loc(R

d) (see,152

e.g., [KM19, Lem. 3.8]). If supp trU ⊂ Ω for some bounded Lipschitz domain Ω, then trU ∈ H̃s(Ω) and153

‖ trU‖H̃s(Ω)

(1.3)

. | trU |Hs(Rd)

[KM19, Lem. 3.8]

. ‖∇U‖L2
α(Rd×R+)(2.7)154

155

with an implied constant depending on s and Ω.156

2.1.2. The Caffarelli-Silvestre extension. Given u ∈ H̃s(Ω), let U = U(x, y) denote the mini-157

mum norm extension of u to R
d×R+, i.e., U = argmin{‖∇U‖2L2

α(Rd×R+) |U ∈ BL1
α, trU = u in Hs(Rd)}.158

The function U is indeed unique in BL1
α (see, e.g., [KM19, p. 2900]). The Euler-Lagrange equations159

corresponding to this extension problem read160

div(yα∇U) = 0 in R
d × (0,∞),(2.8a)161

U(·, 0) = u in R
d.(2.8b)162163

Henceforth, when referring to solutions of (2.8), we will additionally understand that U ∈ BL1
α.164

The relevance of (2.8) is due to the fact that the fractional Laplacian applied to u ∈ H̃s(Ω) can be165

recovered as distributional normal trace of the extension problem [CS07, Section 3], [CS16]:166

(−∆)su = −ds lim
y→0+

yα∂yU(x, y), ds = 22s−1Γ(s)/Γ(1− s).(2.9)167
168

2.2. Main result: weighted analytic regularity for polygonal domains in R
2. The following169

theorem is the main result of this article. It states that, provided the data f is analytic in Ω, we obtain170

analytic regularity for the solution u of (2.2) in a scale of weighted Sobolev spaces. In order to specify171

these weighted spaces, we need additional notation.172

Let Ω ⊂ R
2 be a bounded, polygonal Lipschitz domain with finitely many vertices and (straight)173

edges (also, connectedness of the boundary is not necessary in the following). We denote by V the set of174

vertices and by E the set of the (open) edges. For v ∈ V and e ∈ E , we define the distance functions175

rv(x) := |x− v|, re(x) := inf
y∈e

|x− y|, ρve(x) := re(x)/rv(x).176
177

For each vertex v ∈ V, we denote by Ev := {e ∈ E : v ∈ e} the set of all edges that meet at v. For any178

e ∈ E , we define Ve
:= {v ∈ V : v ∈ e} as set of endpoints of e. For fixed, sufficiently small ξ > 0 and179

for v ∈ V, e ∈ E , we define vertex, edge-vertex and edge neighborhoods by180

ωξ
v
:= {x ∈ Ω : rv(x) < ξ ∧ ρve(x) ≥ ξ ∀e ∈ Ev},181

ωξ
ve

:= {x ∈ Ω : rv(x) < ξ ∧ ρve(x) < ξ},182

ωξ
e
:= {x ∈ Ω : rv(x) ≥ ξ ∧ re(x) < ξ2 ∀v ∈ Ve}.183184

Figure 1 illustrates this notation near a vertex v ∈ V of the polygon. Throughout the paper, we will185

assume that ξ is small enough so that ωξ
v
∩ ωξ

v
′ = ∅ for all v 6= v

′, that ωξ
e
∩ ωξ

e
′ = ∅ for all e 6= e

′ and186

ωξ
ve

∩ ωξ
v
′
e
′ = ∅ for all v 6= v

′ and all e 6= e
′. We will drop the superscript ξ unless strictly necessary.187

We can decompose the Lipschitz polygon Ω into sectoral neighborhoods of vertices v which are unions188

of vertex and edge-vertex neighborhoods (as depicted in Figure 1), edge neighborhoods (that are away189

from a vertex), and an interior part Ωint, i.e.,190

Ω =
⋃

v∈V

(
ωv ∪

⋃

e∈Ev

ωve

)
∪
⋃

e∈E

ωe ∪ Ωint.191

192
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e
′

•v

e

ωve

ωe

Ωint

ωv

ωve
′

ωe
′

Fig. 1: Notation near a vertex v.

Each sectoral and edge neighborhood may have a different value ξ. However, since only finitely many193

different neighborhoods are needed to decompose the polygon, the interior part Ωint ⊂ Ω has a positive194

distance from the boundary.195

In a given edge neighborhood ωe or an edge-vertex neighborhood ωve, we let e‖ and e⊥ be two unit196

vectors such that e‖ is tangential to e and e⊥ is normal to e. We introduce the differential operators197

Dx‖
v := e‖ · ∇xv, Dx⊥

v := e⊥ · ∇xv198199

corresponding to differentiation in the tangential and normal direction. Inductively, we can define higher200

order tangential and normal derivatives by Dj
x‖
v := Dx‖

(Dj−1
x‖

v) and Dj
x⊥

v := Dx⊥
(Dj−1

x⊥
v) for j > 1.201

Our main result provides local analytic regularity in edge- and vertex-weighted Sobolev spaces.202

Theorem 2.1. Let Ω ⊂ R
2 be a bounded polygonal Lipschitz domain. Let the data f ∈ C∞(Ω)203

satisfy204

(2.10)
∑

|β|=j

‖∂β
xf‖L2(Ω) ≤ γj+1

f jj ∀j ∈ N0205

with a constant γf > 0. Let v ∈ V, e ∈ E and ωv, ωve, ωe be fixed vertex, edge-vertex and edge-206

neighborhoods. Let u be the weak solution of (2.2).207

Then, there is γ > 0 depending only on γf , s, and Ω such that for every ε > 0 there exists Cε > 0208

(depending only on ε and Ω) such that for all p ∈ N0 and for all β ∈ N
2
0 with |β| = p209

(2.11)
∥∥∥rp−1/2−s+ε

v
∂β
xu
∥∥∥
L2(ωv)

≤ Cεγ
p+1pp,210

and for all (p⊥, p‖) ∈ N
2
0, with p = p⊥ + p‖211

∥∥∥rp⊥−1/2−s+ε
e

Dp⊥
x⊥

D
p‖
x‖
u
∥∥∥
L2(ωe)

≤ Cεγ
p+1pp,(2.12)212

∥∥∥rp⊥−1/2−s+ε
e

r
p‖+ε
v Dp⊥

x⊥
D

p‖
x‖
u
∥∥∥
L2(ωve)

≤ Cεγ
p+1pp.(2.13)213

214

Finally, for the interior part Ωint and all p ∈ N0 and β ∈ N
2
0 with |β| = p, we have215

(2.14)
∥∥∂β

xu
∥∥
L2(Ωint)

≤ γp+1pp.216

Remark 2.2. Inequalities (2.12) and (2.13) can be written in compact form: For all ν > −1/2 − s217

there exists Cν > 0 such that for • ∈ {e,ve}218

(2.15) ‖rp+ν
v

ρp⊥+ν
ve

D
p‖
x‖
Dp⊥

x⊥
u‖L2(ω•) ≤ Cνγ

p+1pp ∀(p⊥, p‖) ∈ N
2
0 with p = p‖ + p⊥.219

220
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Remark 2.3. (i) Stirling’s formula implies pp ≤ Cp!ep. Therefore, there exists a constant C̃ν such221

that (2.15) can also be written as222

(2.16) ‖rp+ν
v

ρp⊥+ν
ve

D
p‖
x‖
Dp⊥

x⊥
u‖L2(ω•) ≤ C̃ν(γe)

p+1
p!.223

and the same can also be done for (2.11) and (2.14) in Theorem 2.1.224

(ii) We note that (p‖+p⊥)
p‖+p⊥ ≤ p

p‖

‖ pp⊥

⊥ ep‖+p⊥ . Together with pp ≤ Cp!ep (using Stirling’s formula),225

one can also formulate the estimates (2.15) as follows: There are constants C̃ν and γ̃ > 0 such that226

for all (p‖, p⊥) ∈ N
2
0,227

‖rp+ν
v

ρp⊥+ν
ve

D
p‖
x‖
Dp⊥

x⊥
u‖L2(ω•) ≤ C̃ν γ̃

p⊥+p‖p⊥! p‖!.(2.17)228229

(iii) The assumption (2.10) on the data f expresses analyticity in Ω (combine Morrey’s embedding230

[Gri11, eq. (1,4,4,6)] to see f ∈ C∞ with [Mor66, Lemma 5.7.2]). Inspection of the proof (in231

particular Lemmas 5.5 and 5.7) shows that f could be admitted to be in vertex or edge-weighted232

classes of analytic functions. For simplicity of exposition, we do not explore this further.233

(iv) Inspection of the proofs also shows that, in order to obtain weighted regularity of fixed, finite order234

p, only finite regularity of the data f is required.235

(v) By Morrey’s embedding, e.g., [Gri11, eq. (1,4,4,6)], estimate (2.14) implies that the solution u ∈236

C∞(Ωint) as well as analyticity of u in Ωint, [Mor66, Lemma 5.7.2]. Other results on interior237

analytic regularity of more general, linear integro-differential operators are, e.g., in [AFV15], for238

1/2 < s < 1.239

3. Regularity results for the extension problem. In this section, we derive local (higher order)240

regularity results for solutions to the Caffarelli-Silvestre extension problem. As the techniques employed241

are valid in any space dimension, we formulate our results for general d ∈ N.242

Fix H > 0. Given F ∈ L2
−α(R

d×(0, H)) and f ∈ H−s(Ω), consider the problem to find the minimizer243

U = U(x, y) with x ∈ R
d and y ∈ R+ of244

minimize F on BL1
α,0,Ω := {U ∈ BL1

α : trU = 0 on Ωc} ,(3.1)245246

where247

F(U) :=
1

2
b(U,U)−

∫

Rd×(0,H)

FU dx dy −
∫

Ω

f trU dx, b(U, V ) :=

∫

Rd×R+

yα∇U · ∇V dx dy.(3.2)248
249

We have the following Poincaré type estimate:250

Lemma 3.1. (i) The map BL1
α,0,Ω ∋ U 7→ ‖∇U‖L2

α(Rd×R+) is a norm, and BL1
α,0,Ω endowed with251

this norm is a Hilbert space with corresponding inner-product given by the bilinear form b(·, ·) in252

(3.2).253

(ii) For every H∈ (0,∞), there is CH,α > 0 such that254

(3.3) ∀U ∈ BL1
α,0,Ω : ‖U‖L2

α(Rd×(0,H)) ≤ CH,α‖∇U‖L2
α(Rd×R+).255

Proof. Details of the proof are given in Appendix B.256

With Lemma 3.1 in hand, existence and uniqueness of solutions of (3.1) follows from the Lax-Milgram257

Lemma since, for F ∈ L2
−α(R

d × (0, H)) and f ∈ H−s(Ω), the map U 7→
∫
Rd×(0,H)

FU +
∫
Ω
f trU in258

(3.2) extends to a bounded linear functional on BL1
α,0,Ω. In view of (3.3) and the trace estimate (2.7),259

the minimization problem (3.1) admits by Lax-Milgram a unique solution U ∈ BL1
α,0,Ω with the a priori260

estimate261

‖∇U‖L2
α(Rd×R+) ≤ C

[
‖F‖L2

−α(Rd×(0,H)) + ‖f‖H−s(Ω)

]
(3.4)262

263

with constant C dependent on s ∈ (0, 1) and H > 0.264

The Euler-Lagrange equations formally satisfied by the solution U of (3.1) are:265

− div(yα∇U) = F in R
d × (0,∞),(3.5a)266

∂nαU(·, 0) = f in Ω,(3.5b)267

trU = 0 on Ωc,(3.5c)268269
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where ∂nα
U(x, 0) = −ds limy→0 y

α∂yU(x, y) and we implicitly extended F to R
d ×R+. In view of (2.9)270

together with the fractional PDE (−∆)su = f , this is a Neumann-type Caffarelli-Silvestre extension271

problem with an additional source F .272

Remark 3.2. (i) The system (3.5) is understood in a weak sense, i.e., to find U ∈ BL1
α,0,Ω such273

that274

(3.6) ∀V ∈ BL1
α,0,Ω : b(U, V ) =

∫

Rd×R+

FV dx dy +

∫

Ω

f trV dx.275

Due to (3.3), the integral
∫
Rd×R+

FV dx dy is well-defined.276

(ii) For the notion of solution of (3.5), the support requirement suppF ⊂ R
d × [0, H] can be relaxed277

e.g., to F ∈ L2
−α(R

d × R+) by testing with V ∈ H1
α,0,Ω(R

d × R+) := H1
α(R

d × R+) ∩ BL1
α,0,Ω. In278

this case, the integral
∫
Rd×R+

FV dx dy is well-defined by Cauchy-Schwarz.279

(iii) For open ω ⊂ R
d and F ∈ L2

−α(ω
+), we call U a solution to (3.5) on ω+ if (3.6) holds for all test280

functions V ∈ {V ∈ H1
α,0,Ω | suppV ⊂ ω+}.281

(iv) We note that working with functions supported in R
d× [0, H] induces an implicit dependence on H282

of all constants, which is due to the Poincaré type estimate (3.3). Alternatively to restricting the283

test space, one could also circumvent this by introducing suitable weights that control the behavior284

of F at infinity; we do not develop this here.285

3.1. Global regularity: a shift theorem. The following lemma provides additional regularity286

of the extension problem in the x–direction. The argument uses the technique developed in [Sav98]287

that has recently been used in [BN21] to show a closely related shift theorem for the Dirichlet fractional288

Laplacian; the technique merely assumes Ω to be a Lipschitz domain in R
d. On a technical level, the289

difference between [BN21] and Lemma 3.3 below is that Lemma 3.3 studies (tangential) differentiability290

properties of the extension U , whereas [BN21] focuses on the trace u = trU .291

For functions U , F , f , it is convenient to introduce the abbreviation292

(3.7) N2(U,F, f) := ‖∇U‖L2
α(Rd×R+)

(
‖∇U‖L2

α(Rd×R+) + ‖F‖L2
−α(Rd×(0,H)) + ‖f‖H1−s(Ω)

)
.293

In view of the a priori estimate (3.4), we have the simplified bound (with updated constant C)294

(3.8) N2(U,F, f) ≤ C
(
‖f‖2H1−s(Ω) + ‖F‖2L2

−α(Rd×(0,H))

)
.295

Lemma 3.3. Let Ω ⊂ R
d be a bounded Lipschitz domain, and let BR̃ ⊂ R

d be a ball with Ω ⊂ BR̃.296

For t ∈ [0, 1/2), there is Ct > 0 (depending only on s, t, Ω, R̃, and H) such that for f ∈ C∞(Ω),297

F ∈ L2
−α(R

d × (0, H)) the solution U of (3.1) satisfies298

∫

R+

yα ‖∇U(·, y)‖2Ht(BR̃) dy ≤ CtN
2(U,F, f)299

300

with N2(U,F, f) given by (3.7).301

Proof. The idea is to apply the difference quotient argument from [Sav98] only in the x-direction.302

Let x0 ∈ Ω be arbitrary. For h ∈ R
d denote ThU := ηUh + (1− η)U , where Uh(x, y) := U(x + h, y)303

and η is a cut-off function that localizes to a suitable ball B2ρ(x0), i.e, 0 ≤ η ≤ 1, η ≡ 1 on Bρ(x0) and304

supp η ⊂ B2ρ(x0). In Steps 1–5 of this proof, we will abbreviate Bρ′ for Bρ′(x0) for ρ′ > 0.305

The main result of [Sav98] is that estimates for the modulus ω(U) defined with the quadratic func-306

tional F as in (3.2) by307

ω(U) := sup
h∈D\{0}

F(ThU)−F(U)

|h| = ωb(U) + ωF (U) + ωf (U),308

ωb(U) :=
1

2
sup

h∈D\{0}

b(ThU, ThU)− b(U,U)

|h| ,309

ωF (U) := sup
h∈D\{0}

∫
Rd×(0,H)

F (ThU − U)

|h| , ωf (U) := sup
h∈D\{0}

∫
Ω
f tr(ThU − U)

|h| ,310
311
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can be used to derive regularity results in Besov spaces.312

Here, D ⊂ R
d denotes a set of admissible directions h. These directions are chosen such that313

the function ThU is an admissible test function, i.e., ThU ∈ BL1
α,0,Ω. For this, we have to require314

supp tr(ThU) ⊂ Ω. In [Sav98, (30)] a description of this set is given in terms of a set of admissible315

outward pointing vectors Oρ(x0), which are directions h with |h| ≤ ρ such that for all t ∈ [0, 1] the316

translate B3ρ(x0)\Ω+ th is completely contained in Ωc.317

Step 1. (Estimate of ωb(U)). The definition of the bilinear form b(·, ·), h ∈ D, and the definition of318

Th give319

b(ThU, ThU)− b(U,U) =

∫

Rd×R+

yα(|∇ThU |2 − |∇U |2) dx dy320

=

∫

Rd×R+

yα(|∇η(Uh − U) + Th∇U |2 − |∇U |2) dx dy321

=

∫

Rd×R+

yα(|∇η(Uh − U)|2 + 2Th∇U · ∇η(Uh − U)) dx dy322

+

∫

Rd×R+

yα(|Th∇U |2 − |∇U |2) dx dy323

=: T1 + T2.324325

For the first integral T1, we use the support properties of η and that ‖U(·, y)− Uh(·, y)‖L2(B2ρ)
.326

|h| ‖∇U(·, y)‖L2(B3ρ)
, which gives327

T1 .

∫

R+

yα(|h|2 ‖∇U(·, y)‖2L2(B3ρ)
+ |h| ‖∇U(·, y)‖L2(B3ρ)

‖Th∇U(·, y)‖L2(B2ρ)
) dy328

. |h|
∫

B+
3ρ

yα |∇U |2 dx dy.329

330

For the term T2, we first note |Th∇U |2 ≤ η |∇Uh|2 + (1 − η) |∇U |2 since 0 ≤ η ≤ 1. Using the variable331

transformation z = x+ h together with B2ρ(x0) + h ⊂ B3ρ(x0) we obtain332

T2 =

∫

Rd×R+

yα(|Th∇U |2 − |∇U |2) dx dy ≤
∫

R+

∫

B2ρ

yαη(|∇Uh|2 − |∇U |2) dx dy333

≤
∫

R+

∫

B3ρ

yα(η(x− h)− η(x)) |∇U |2 dx dy . |h|
∫

B+
3ρ

yα |∇U |2 dx dy.334

335

Altogether we get from the previous estimates that

ωb(U) .

∫

B+
3ρ

yα |∇U |2 dx dy.

Step 2. (Estimate of ωF (U)). Using the definition of Th, we can write U − ThU = η(U − Uh), and336

supp η ⊂ B2ρ(x0) implies337

∣∣∣∣∣

∫

Rd×(0,H)

F (U − ThU) dx dy

∣∣∣∣∣ =
∣∣∣∣∣

∫

Rd×(0,H)

Fη(U − Uh) dx dy

∣∣∣∣∣ ≤ ‖F‖L2
−α(B2ρ×(0,H)) ‖U − Uh‖L2

α(B+
2ρ)

338

. |h| ‖F‖L2
−α(B2ρ×(0,H)) ‖∇U‖L2

α(B+
3ρ)

,(3.9)339
340

which produces

ωF (U) . ‖F‖L2
−α(B3ρ×(0,H))‖∇U‖L2

α(B+
3ρ)

.

Step 3. (Estimate of ωf (U)). For the trace term, we use a second cut-off function η̃ ∈ C∞
0 (Rd+1)341

with η̃ ≡ 1 on B2ρ(x0) and supp(η̃) ⊂ B3ρ(x0)×(−H,H) and get with the trace inequality (2.7) and the342
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estimate (3.3)343

∣∣∣∣
∫

Ω

f tr(U − ThU) dx

∣∣∣∣ =
∣∣∣∣∣

∫

B2ρ

fη tr(U − Uh) dx

∣∣∣∣∣ =
∣∣∣∣∣

∫

B3ρ

(fη − (fη)−h) tr(η̃U) dx

∣∣∣∣∣344

≤ ‖fη − (fη)−h‖H−s(B3ρ)
‖tr(η̃U)‖H̃s(B3ρ)

345

(2.7),(3.3)

. |h| ‖f‖H1−s(B4ρ)
‖∇U‖L2

α(Rd×R+),(3.10)346
347

where the estimate ‖fη − (fη)−h‖H−s(B3ρ) . |h|‖f‖H1−s(B4ρ) can be seen, for example, by interpolating348

the estimates ‖fη− (fη)−h‖H−1(Rd) . |h|‖ηf‖L2(Rd) and ‖fη− (fη)−h‖L2(Rd) . |h|‖ηf‖H1(Rd), see, e.g.,349

[Tar07]. We have thus obtained350

ωf (U) . ‖f‖H1−s(B4ρ)‖∇U‖L2
α(Rd×R+).351352

Step 4. (Application of the abstract framework of [Sav98]). We introduce the seminorms [U ]2 :=353 ∫
Rd×R+

yα|∇U |2 dxdy. By the coercivity of b(·, ·) on BL1
α,0,Ω with respect to [·]2 and the abstract estimates354

in [Sav98, Sec. 2], we have355

[U − ThU ]2
[Sav98]
. ω(U)|h| . |h| (ωb(U) + ωF (U) + ωf (U))356

steps 1-3

≤ |h|
(
‖∇U‖2

L2
α(B+

3ρ)
+ ‖F‖L2

−α(B+
2ρ)

‖∇U‖L2
α(Rd×R+) + ‖f‖H1−s(B4ρ)‖∇U‖L2

α(Rd×R+)

)
357

=: |h| C̃2
U,F,f .358359

Using that η ≡ 1 on B+
ρ (x0), we get360

∫

B+
ρ

yα|∇U −∇Uh|2 dx dy ≤
∫

Rd×R+

yα|∇(ηU − ηUh)|2 dx dy = [U − ThU ]2 ≤ |h| C̃2
U,F,f .(3.11)361

362

Step 5: (Removing the restriction h ∈ D). The set D contains a truncated cone C = {x ∈ R
d :363

|x · eD| > δ|x|} ∩ BR′(0) for some unit vector eD and δ ∈ (0, 1), R′ > 0. Geometric considerations364

then show that there is cD > 0 sufficiently large such that for arbitrary h ∈ R
d sufficiently small,365

h+ cD|h|eD ∈ D. For a function v defined on R
d, we observe366

v(x)− vh(x) = v(x)− v(x+ h) = v(x)− v(x+ (h+ cD|h|eD)) + v((x+ h) + cD|h|eD)− v(x+ h).367368

We may integrate over Bρ′(x0) and change variables to get369

‖v − vh‖2L2(Bρ′ )
≤ 2

∥∥v − vh+cD|h|eD

∥∥2
L2(Bρ′ )

+ 2
∥∥v − vcD|h|eD

∥∥2
L2(Bρ′+h)

.370
371

Selecting ρ′ = ρ/2 and for |h| ≤ ρ/2, we obtain372

‖v − vh‖2L2(Bρ/2)
≤ 2

∥∥v − vh+cD|h|eD

∥∥2
L2(Bρ)

+ 2
∥∥v − vcD|h|eD

∥∥2
L2(Bρ)

.373
374

Applying this estimate with v = ∇U and using that h + cD|h|eD ∈ D and cD|h|eD ∈ D, we get from375

(3.11) that376

‖∇U −∇Uh‖2L2
α(B+

ρ/2
) . |h| C̃2

U,F,f .377
378

The fact that Ω is a Lipschitz domain implies that the value of ρ and the constants appearing in the379

definition of the truncated cone C can be controlled uniformly in x0 ∈ Ω. Hence, covering the ball B2R̃380

(with twice the radius as the ball BR̃) by finitely many balls Bρ/2, we obtain with the constant N(U,F, f)381

of (3.7)382

‖∇U −∇Uh‖2L2
α(B

2R̃) . |h| N2(U,F, f)(3.12)383
384

for all h ∈ R
d with |h| ≤ δ′ for some fixed δ′ > 0.385
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Step 6: (Ht(BR̃)–estimate). For t < 1/2, we estimate with the Aronstein-Slobodecki seminorm386

∫

R+

|∇U(·, y)|2Ht(BR̃) dy ≤
∫

R+

∫

x∈BR̃

∫

|h|≤2R̃

|∇U(x+ h, y)−∇U(x, y)|2
|h|d+2t

dh dx dy.387
388

The integral in h is split into the range |h| ≤ ε for some fixed ε > 0, for which (3.12) can be brought to389

bear, and ε < |h| < 2R̃, for which a triangle inequality can be used. We obtain390

∫

R+

|∇U(·, y)|2Ht(BR̃) dy . N2(U,F, f)

∫

|h|≤ε

|h|1−d−2t dh+ ‖∇U‖2L2
α(Rd×R+)

∫

ε<|h|<2R̃

|h|−d−2t dh391

. N2(U,F, f),392393

which is the sought estimate.394

Remark 3.4. The regularity assumptions on F and f can be weakened by interpolation techniques395

as described in [Sav98, Sec. 4]. For example, by linearity, we may write U = UF +Uf , where UF and Uf396

solve (3.5) for data (F, 0) and (0, f). The a priori estimate (3.4) gives ‖∇Uf‖L2
α(Rd×R+) ≤ C‖f‖H−s(Ω)397

so that we have398

∫

R+

|∇Uf (·, y)|2Ht(BR̃) dy ≤ Ct

(
‖∇Uf‖2L2

α(Rd×R+) + ‖f‖H1−s(Ω)‖∇Uf‖L2
α(Rd×R+)

)
399

. ‖f‖2H−s(Ω) + ‖f‖H1−s(Ω)‖f‖H−s(Ω) . ‖f‖H1−s(Ω)‖f‖H−s(Ω).400401

By, e.g., [Tar07, Lemma 25.3], the mapping f 7→ Uf then satisfies402

∫

R+

|∇Uf (·, y)|2Ht(BR̃) dy ≤ Ct‖f‖2B1/2−s
2,1 (Ω)

,403
404

where B
1/2−s
2,1 (Ω) = (H−s(Ω), H1−s(Ω))1/2,1 is an interpolation space (K-method). We mention that405

B
1/2−s
2,1 (Ω) ⊂ H1/2−s−ε(Ω) for every ε > 0.406

A similar estimate could, in principle, be obtained for UF ; however, the pertinent interpolation space407

is less tractable.408

3.2. Interior regularity for the extension problem. In the following, we derive localized inte-409

rior regularity estimates, also called Caccioppoli inequalities, for solutions to the extension problem (3.5),410

where second order derivatives on some ball BR(x0) ⊂ Ω can be controlled by first order derivatives on411

some ball with a (slightly) larger radius.412

The following Caccioppoli type inequality provides local control of higher order x-derivatives and is413

structurally similar to [FMP21, Lem. 4.4].414

Lemma 3.5 (Interior Caccioppoli inequality). Let BR := BR(x0) ⊂ Ω ⊂ R
d be an open ball of415

radius R > 0 centered at x0 ∈ Ω, and let BcR be the concentric scaled ball of radius cR with c ∈ (0, 1).416

Let ζ ∈ C∞
0 (BR) with 0 ≤ ζ ≤ 1 and ζ ≡ 1 on BcR as well as ‖∇ζ‖L∞(BR) ≤ Cζ((1 − c)R)−1 for417

some Cζ > 0 independent of c, R. Let U satisfy (3.5a), (3.5b) on B+
R with given data f and F (see418

Remark 3.2(iii)).419

Then, there is Cint > 0 independent of R and c such that for i ∈ {1, . . . , d}420

‖∂xi(∇U)‖2L2
α(B+

cR) ≤ C2
int

(
((1− c)R)−2 ‖∇U‖2L2

α(B+

R) + ‖ζ∂xif‖2H−s(Ω) + ‖F‖2L2
−α(B+

R)

)
.(3.13)421

422

In particular, ‖ζ∂xi
f‖H−s(Ω) ≤ Cloc‖∂xi

f‖L2(BR) for some Cloc > 0 independent of R, c, and f (cf.423

Lemma A.1).424

Proof. The function ζ is defined on R
d; through the constant extension we will also view it as a425

function on R
d × R+. With the unit vector exi

in the xi-coordinate and τ ∈ R\{0}, we define the426

difference quotient427

Dτ
xi
w(x) :=

w(x+ τexi)− w(x)

τ
.428

429
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For |τ | sufficiently small, we may use the test function V = D−τ
xi

(ζ2Dτ
xi
U) in the weak formulation of430

(3.5) (observe that this test function is in H1
α,0,Ω and has support in B+

R) and compute431

trV = − 1

τ2

(
ζ2(x− τexi

)(u(x)− u(x− τexi
)) + ζ2(x)(u(x)− u(x+ τexi

))
)
= D−τ

xi
(ζ2Dτ

xi
u).432

433

Integration by parts in (3.5) over R
d × R+ and using that the Neumann trace (up to the constant ds434

from (2.9)) produces the fractional Laplacian gives435

∫

Rd×R+

FV dx dy − 1

ds

∫

Rd

(−∆)su trV dx =

∫

Rd×R+

yα∇U · ∇V dx dy436

=

∫

Rd×R+

Dτ
xi
(yα∇U) · ∇(ζ2Dτ

xi
U) dx dy437

=

∫

B+

R

yαDτ
xi
(∇U) ·

(
ζ2∇Dτ

xi
U + 2ζ∇ζDτ

xi
U
)
dx dy438

=

∫

B+

R

yαζ2Dτ
xi
(∇U) ·Dτ

xi
(∇U) dx dy +

∫

B+

R

2yαζ∇ζ ·Dτ
xi
(∇U)Dτ

xi
U dx dy.439

440

We recall that by, e.g., [Eva98, Sec. 6.3], we have uniformly in τ441

(3.14) ‖Dτ
xi
v‖L2(Rd×R+) . ‖∂xiv‖L2(Rd×R+).442

Using the equation (−∆)su = f on Ω, Young’s inequality, and the Poincaré inequality together with the443

trace estimate (2.7), we get the existence of constants Cj > 0, j ∈ {1, . . . , 5}, such that444

∥∥ζDτ
xi
(∇U)

∥∥2
L2

α(B+

R)
≤ C1

( ∣∣∣∣∣

∫

B+

R

yαζ∇ζ ·Dτ
xi
(∇U)Dτ

xi
U dx dy

∣∣∣∣∣+
∣∣∣∣∣

∫

Rd×R+

F D−τ
xi

ζ2Dτ
xi
U dx dy

∣∣∣∣∣445

+

∣∣∣∣
∫

Rd

Dτ
xi
f(ζ2Dτ

xi
u) dx

∣∣∣∣
)

446

≤ 1

4

∥∥ζDτ
xi
(∇U)

∥∥2
L2

α(B+

R)
+ C2

(
‖∇ζ‖2L∞(BR)

∥∥Dτ
xi
U
∥∥2
L2

α(B+

R)
447

+ ‖F‖L2
−α(B+

R) ‖∂xi
(ζ2Dτ

xi
U)‖L2

α(B+

R) +
∥∥ζDτ

xi
f
∥∥
H−s(Ω)

∥∥ζDτ
xi
u
∥∥
Hs(Rd)

)
448

≤ 1

2

∥∥ζDτ
xi
(∇U)

∥∥2
L2

α(B+

R)
+ C3

(
‖∇ζ‖2L∞(BR)‖∇U‖2

L2
α(B+

R)
+ ‖F‖2

L2
−α(B+

R)
449

+
∥∥ζDτ

xi
f
∥∥
H−s(Ω)

∣∣ζDτ
xi
u
∣∣
Hs(Rd)

)
450

(2.7)

≤ 1

2

∥∥ζDτ
xi
(∇U)

∥∥2
L2

α(B+

R)
+ C4

(
‖∇ζ‖2L∞(BR)‖∇U‖2

L2
α(B+

R)
+ ‖F‖2

L2
−α(B+

R)
451

+
∥∥ζDτ

xi
f
∥∥
H−s(Ω)

∥∥∇(ζDτ
xi
U)
∥∥
L2

α(Rd×R+)

)
452

≤ 3

4

∥∥ζDτ
xi
(∇U)

∥∥2
L2

α(B+

R)
453

+ C5

(
‖∇ζ‖2L∞(BR)‖∇U‖2

L2
α(B+

R)
+ ‖F‖2

L2
−α(B+

R)
+
∥∥ζDτ

xi
f
∥∥2
H−s(Ω)

)
.454

455

Absorbing the first term of the right-hand side in the left-hand side and taking the limit τ → 0, we456

obtain the sought inequality for the second derivatives since ‖∇ζ‖L∞(BR) . ((1− c)R)−1.457

Remark that the constant Cint of (3.13) depends on s, due to the usage of (2.7) in the proof above.458

The Caccioppoli inequality in Lemma 3.5 can be iterated on concentric balls to provide control of459

higher order derivatives by lower order derivatives locally, in the interior of the domain.460

Corollary 3.6 (High order interior Caccioppoli inequality). Let BR := BR(x0) ⊂ Ω ⊂ R
d be an461

open ball of radius R > 0 centered at x0 ∈ Ω, and let BcR be the concentric scaled ball of radius cR with462

c ∈ (0, 1). Let U satisfy (3.5a), (3.5b) on B+
R with given data f and F (cf. Remark 3.2(iii)).463
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Then, there is γ > 0 (depending only on s, Ω, and c) such that for all β ∈ N
d
0 with |β| = p, we have464

465

(3.15)
∥∥∂β

x∇U
∥∥2
L2

α(B+

cR)
≤ (γp)2pR−2p ‖∇U‖2L2

α(B+

R)466

+

p∑

j=1

(γp)2(p−j)R2(j−p)

(
max
|η|=j

‖∂η
xf‖2L2(BR) + max

|η|=j−1
‖∂η

xF‖2L2
−α(B+

R)

)
.467

468

Proof. We start by noting that the case p = 0 is trivially true since empty sums are zero and 00 = 1.469

For p ≥ 1, we fix a multi index β such that |β| = p. As the x-derivatives commute with the differential470

operator in (3.5), we have that ∂β
xU solves equation (3.5) with data ∂β

xF and ∂β
xf . For given c > 0, let471

ci = c+ (i− 1)
1− c

p
, i = 1, . . . , p+ 1.472

Then, we have ci+1R − ciR = (1−c)R
p and c1R = cR as well as cp+1R = R. For ease of notation and473

without loss of generality, we assume that β1 > 0. Applying Lemma 3.5 iteratively on the sets B+
ciR

for474

i > 1 provides475

∥∥∂β
x∇U

∥∥2
L2

α(B+

cR)
476

≤ C2
int

(
p2

(1− c)2
R−2

∥∥∥∂(β1−1,β2)
x ∇U

∥∥∥
2

L2
α(B+

c2R)
+ C2

loc

∥∥∂β
xf
∥∥2
L2(Bc2R)

+
∥∥∥∂(β1−1,β2)

x F
∥∥∥
2

L2
−α(B+

c2R)

)
477

≤
(

Cintp

(1− c)

)2p

R−2p ‖∇U‖2L2
α(B+

R) + C2
loc

p∑

j=1

(
Cintp

(1− c)

)2p−2j

R−2p+2j max
|η|=j

‖∂η
xf‖2L2(Bcp−j+2R)478

+

p−1∑

j=0

(
Cintp

(1− c)

)2p−2j−2

R−2p+2j+2 max
|η|=j

‖∂η
xF‖2L2

−α(B+

cp−j+1R) .479

480

Choosing γ = max(C2
loc, 1)Cint/(1− c) concludes the proof.481

4. Local tangential regularity for the extension problem in 2d. Lemma 3.3 provides global482

regularity for the solution U of (3.5). In this section, we derive a localized version of Lemma 3.3 for483

tangential derivatives of U , where we solely consider the case d = 2.484

Lemma 3.5 is formulated as an interior regularity estimate as the balls are assumed to satisfy485

BR(x0) ⊂ Ω. Since u = 0 on Ωc (i.e., u satisfies “homogeneous boundary conditions”), one obtains486

estimates near ∂Ω for derivatives in the direction of an edge.487

Lemma 4.1 (Boundary Caccioppoli inequality). Let e ⊂ ∂Ω be an edge of the polygon Ω. Let488

BR := BR(x0) be an open ball with radius R > 0 and center x0 ∈ e such that BR(x0) ∩ Ω is a half-ball,489

and let BcR be the concentric scaled ball of radius cR with c ∈ (0, 1). Let ζ ∈ C∞
0 (BR) be a cut-off490

function with 0 ≤ ζ ≤ 1 and ζ ≡ 1 on BcR as well as ‖∇ζ‖L∞(BR) ≤ Cζ((1 − c)R)−1 for some Cζ > 0491

independent of c, R. Let U satisfy (3.5) on B+
R with given data f and F (cf. Remark 3.2(iii)).492

Then, there exists a constant C > 0 (independent of R, c, and the data F , f) such that493

∥∥Dx‖
∇U

∥∥2
L2

α(B+

cR)
≤ C

(
((1− c)R)−2 ‖∇U‖2L2

α(B+

R) +
∥∥ζDx‖

f
∥∥2
H−s(Ω)

+ ‖F‖2L2
−α(B+

R)

)
.(4.1)494

495

In particular, ‖ζDx‖
f‖H−s(Ω) ≤ Cloc‖Dx‖

f‖L2(BR∩Ω) for some Cloc > 0 independent of R (cf. Lemma A.1).496

Proof. The proof is almost verbatim the same as that of Lemma 3.5. The key observation is that
V = D−τ

x‖
(ζ2Dτ

x‖
U) with the difference quotient

Dτ
x‖
w(x) :=

w(x+ τe‖)− w(x)

τ

is an admissible test function.497

Iterating the boundary Caccioppoli equation provides an estimate for higher order tangential deriv-498

atives.499

12

This manuscript is for review purposes only.



Corollary 4.2 (High order boundary Caccioppoli inequality). Let e ⊂ ∂Ω be an edge of Ω. Let500

BR := BR(x0) be an open ball with radius R > 0 and center x0 ∈ e such that BR(x0) ∩ Ω is a half-ball,501

and let BcR be the concentric scaled ball of radius cR with c ∈ (0, 1). Let U satisfy (3.5) on B+
R with502

given data f and F (cf. Remark 3.2(iii)).503

Let p ∈ N0. Then, there is γ > 0 independent of p, R, and the data f , F such that504

‖Dp
x‖
∇U‖2

L2
α(B+

cR)
≤ (γp)2pR−2p‖∇U‖2

L2
α(B+

R)
(4.2)505

+

p∑

j=1

(γp)2(p−j)R2(j−p)
(
‖Dj

x‖
f‖2L2(BR) + ‖Dj−1

x‖
F‖2

L2
−α(B+

R)

)
.506

507

Proof. The statement follows from Lemma 4.1 in the same way as Corollary 3.6 follows from508

Lemma 3.5.509

The term ‖∇U‖L2
α(B+

R) in (4.2) is actually small for R → 0 in the presence of regularity of U , which510

was asserted in Lemma 3.3; this is quantified in the following lemma.511

Lemma 4.3. Let SR := {x ∈ Ω : r∂Ω(x) < R} be the tubular neighborhood of ∂Ω of width R > 0.512

Then, for t ∈ [0, 1/2), there exists Creg > 0 depending only on t and Ω such that the solution U of (3.1)513

satisfies514

R−2t‖∇U‖2
L2

α(S+

R)
≤ ‖r−t

∂Ω∇U‖2L2
α(Ω+) ≤ CregCtN

2(U,F, f)(4.3)515
516

with the constant Ct > 0 from Lemma 3.3 and N2(U,F, f) given by (3.7).517

Proof. The first estimate in (4.3) is trivial. For the second bound, we start by noting that the shift518

result Lemma 3.3 gives the global regularity519
∫

R+

yα ‖∇U(·, y)‖2Ht(Ω) dy ≤ CtN
2(U,F, f).(4.4)520

521

For t ∈ [0, 1/2) and any v ∈ Ht(Ω), we have by, e.g., [Gri11, Thm. 1.4.4.3] the embedding result522

‖r−t
∂Ωv‖L2(Ω) ≤ Creg‖v‖Ht(Ω). Applying this embedding to ∇U(·, y), multiplying by yα, and integrating523

in y yields (4.3).524

The following lemma provides a shift theorem for localizations of tangential derivatives of U .525

Lemma 4.4 (High order localized shift theorem). Let U be the solution of (3.1). Let x0 ∈ e526

for an edge e ∈ E of the polygon Ω. Let R ∈ (0, 1/2], and assume that BR(x0) ∩ Ω is a half-ball. Let527

ηx ∈ C∞
0 (BR(x0)) with ‖∇jηx‖L∞(BR(x0)) ≤ CηR

−j, j ∈ {0, 1, 2}, with a constant Cη > 0 independent of528

R. Let ηy ∈ C∞
0 ((−H,H)) with ηy ≡ 1 in (−H/2, H/2) and ‖∂j

yηy‖L∞(−H,H) ≤ CηH
−j, with a constant529

Cη > 0 independent of H. Let η(x, y) := ηx(x)ηy(y). Then, for t ∈ [0, 1/2), there is C > 0 independent530

of R and x0 such that, for each p ∈ N, the function Ũ (p) := ηDp
x‖
U satisfies531

∫

R+

yα
∥∥∥∇Ũ (p)(·, y)

∥∥∥
2

Ht(Ω)
dy ≤ CR−2p−1+2t(γp)2p(1 + γp)Ñ (p)(F, f),(4.5)532

533

where γ is the constant in Corollary 4.2 and534

Ñ (p)(F, f) := ‖f‖2H1(Ω) + ‖F‖2L2
−α(R2×(0,H))(4.6)535

+

p+1∑

j=2

(γp)−2j

(
2j max

|β|=j
‖∂β

xf‖2L2(Ω) + 2j−1 max
|β|=j−1

‖∂β
xF‖2L2

−α(R2×(0,H))

)
.536

537

In addition,538

(4.7)
∫

R+

yα‖r−t
∂Ω∇Ũ (p)(·, y)‖2L2(Ω) dy ≤ CR−2p−1+2t(γp)2p(1 + γp)Ñ (p)(F, f).539

Proof. We abbreviate U
(p)
x‖

:= Dp
x‖
U , Ũ (p)(x, y) := η(x)Dp

x‖
U(x, y), F (p)

x‖
= Dp

x‖
F , and f

(p)
x‖

= Dp
x‖
f .540

Throughout the proof we will use the fact that, for all j ∈ N and all sufficiently smooth functions v, we541

have542

|Dj
x‖
v| ≤ 2j/2 max

|β|=j
|∂β

xv|.543
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We also note that the assumptions on η(x, y) = ηx(x)ηy(y) imply the existence of C̃η > 0 (which absorbes544

the dependence on H that we do not further track) such that545

(4.8) ‖∇j
x∂

j′

y η‖L∞(R2×R) ≤ C̃ηR
−j , j ∈ {0, 1, 2}, j′ ∈ {0, 1, 2}.546

Step 1. (Localization of the equation). Using that U solves the extension problem (3.5), we obtain that547

the function Ũ (p) = ηU
(p)
x‖

satisfies the equation548

div(yα∇Ũ (p)) = yα divx(∇xŨ
(p)) + ∂y(y

α∂yŨ
(p))549

= yα
(
(∆xη)U

(p)
x‖

+ 2∇xη · ∇xU
(p)
x‖

+ η∆xU
(p)
x‖

)
+ η∂y(y

α∂yU
(p)
x‖

)+∂y(y
αU (p)

x‖
∂yη) + yα∂yU

(p)
x‖

∂yη550

= yα
(
(∆xη)U

(p)
x‖

+ 2∇xη · ∇xU
(p)
x‖

)
+∂y(y

αU (p)
x‖

∂yη) + yα∂yU
(p)
x‖

∂yη + η div(yα∇U (p)
x‖

)551

= yα
(
(∆xη)U

(p)
x‖

+ 2∇xη · ∇xU
(p)
x‖

)
+∂y(y

αU (p)
x‖

∂yη) + yα∂yU
(p)
x‖

∂yη + ηF (p)
x‖

=: F̃ (p)552553

as well as the boundary conditions554

∂nα
Ũ (p)(·, 0) = η(·, 0)Dp

x‖
f =: f̃ (p) on Ω,555

tr Ũ (p) = 0 on Ωc.556557

By the support properties of the cut-off function η, we have supp F̃ (p) ⊂ BR(x0)× [0, H] ⊂ R
2 × [0, H].558

By Lemma 3.3, for all t ∈ [0, 1/2), there is a Ct > 0 such that559

(4.9)
∫

R+

yα‖∇Ũ (p)(·, y)‖2Ht(BR̃)dy ≤ CtN
2(Ũ (p), F̃ (p), f̃ (p)),560

where BR̃ is a ball containing Ω. By (3.7), we have to estimate N2(Ũ (p), F̃ (p), f̃ (p)), i.e., ‖∇Ũ (p)‖L2
α(R2×R+),561

‖F̃ (p)‖L2
−α(R2×(0,H)), and ‖f̃ (p)‖H1−s(Ω). Let γ be the constant introduced in Corollary 4.2. We note that562

by (3.8) there exists CN > 0 such that, for all p ∈ N0,563

(4.10) N2(U,F, f) ≤ CN Ñ (p)(F, f).564

Step 2. (Estimate of ‖∇Ũ (p)‖L2
α(R2×R+)). We write565

‖∇Ũ (p)‖2L2
α(R2×R+) ≤ 2‖∇η‖2L∞‖∇xU

(p−1)
x‖

‖2
L2

α(R+

R)
+ 2‖η‖2L∞‖∇U (p)

x‖
‖2
L2

α(B+

R)
566

≤ 2C̃2
η

(
R−2‖∇U (p−1)

x‖
‖2
L2

α(B+

R)
+ ‖∇U (p)

x‖
‖2
L2

α(B+

R)

)
.(4.11)567

568

We employ Corollary 4.2 with a ball B2R and c = 1/2 as well as Lemma 4.3 to obtain for p ∈ N0569

‖∇U (p)
x‖

‖2
L2

α(B+

R)
≤ (2R)−2p(γp)2p

(
‖∇U‖2

L2
α(B+

2R)
+

p∑

j=1

(2R)2j(γp)−2j
(
‖Dj

x‖
f‖2L2(B2R) + ‖Dj−1

x‖
F‖2

L2
−α(B+

2R)

))
570

≤ (2R)−2p(γp)2p
(
‖∇U‖2

L2
α(B+

2R)
571

+ (2R)2
p∑

j=1

(2R)2(j−1)(γp)−2j
(
2j max

|β|=j
‖∂β

xf‖2L2(B2R) + 2j−1 max
|β|=j−1

‖∂β
xF‖2

L2
−α(B+

2R)

))
572

R≤1/2,L.4.3

≤ (2R)−2p(γp)2p
( (

CregCtR
2t+(2R)22γ−2

)
N2(U,F, f) + (2R)2Ñ (p)(F, f)

)
573

t<1/2,(4.10)

≤ (2R)−2p(γp)2p (CregCt(1 + 8γ−2)CN + 4)︸ ︷︷ ︸
=:Creg,N

R2tÑ (p)(F, f).

(4.12)

574

575

For p ∈ N, we apply (4.12) to the (p − 1)th derivative and exploit the structure of the expression576

(γ(p− 1))2p−2Ñ (p−1)(F, f) to get577

‖∇U (p−1)
x‖

‖2
L2

α(B+

R)
≤ (2R)−2(p−1)Creg,N(γ(p− 1))2(p−1)Ñ (p−1)(F, f)578

≤ (2R)−2(p−1)Creg,NR
2t(γp)2pÑ (p)(F, f).(4.13)579580
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Inserting (4.12) and (4.13) into (4.11) provides the estimate581

‖∇Ũ (p)‖2L2
α(R2×R+) ≤ CR−2p+2t(γp)2pÑ (p)(F, f)582583

with a constant C > 0 depending only on the constants Creg, Ct, C̃η, and CN .584

Step 3. (Estimate of ‖F̃ (p)‖L2
−α(R2×R+)). We treat the five terms appearing in ‖F̃ (p)‖L2

−α(R2×R+)585

separately. With (4.12), we obtain586

∥∥∥yα∇xη · ∇xU
(p)
x‖

∥∥∥
2

L2
−α(R2×(0,H))

=
∥∥∥∇xη · ∇xU

(p)
x‖

∥∥∥
2

L2
α(R2×R+)

≤ C2
η

1

R2

∥∥∥∇xU
(p)
x‖

∥∥∥
2

L2
α(B+

R)
587

(4.12)

≤ (2R)−2p(γp)2pC2
ηCreg,NR

−2+2tÑ (p)(F, f).588589

Similarly, we get590

∥∥∥yα(∆xη)U
(p)
x‖

∥∥∥
2

L2
−α(R2×(0,H))

=
∥∥∥(∆xη)U

(p)
x‖

∥∥∥
2

L2
α(B+

R)
≤ C2

η

1

R4

∥∥∥∇U (p−1)
x‖

∥∥∥
2

L2
α(B+

R)
591

(4.13)

≤ 4(2R)−2p(γp)2pC2
ηCreg,NR

−2+2tÑ (p)(F, f).592593

Next, we estimate594

‖ηF (p)
x‖

‖2L2
−α(R2×(0,H)) ≤ ‖F (p)

x‖
‖2
L2

−α(B+

R)
≤ 2p max

|β|=p
‖∂β

xF‖2
L2

−α(B+

R)
≤ (γp)2p+2Ñ (p)(F, f).595

596

Finally, for the term ∂y(y
αU

(p)
x‖

∂yη) + yα∂yU
(p)
x‖

∂yη, we observe that ∂yη vanishes near y = 0 so that the597

weight yα does not come into play as it can be bounded from above and below by positive constants598

depending only on H. We arrive at599
∥∥∥∂y(yαU (p)

x‖
∂yη) + yα∂yU

(p)
x‖

∂yη
∥∥∥
L2

−α(R2×(0,H))
≤ C

(
H−2‖U (p)

x‖
‖L2

α(BR×(0,H)) +H−1‖∇U (p)
x‖

‖L2
α(B+

R)

)
600

(4.12),(4.13)

≤ CH(γp)2pR−2p+2tÑ (p)(F, f),601602

for suitable CH > 0 depending on H.603

Step 4. (Estimate of ‖f̃ (p)‖H1−s(Ω).) Here, we use Lemma A.1 and R < 1/2 together with s < 1 to604

obtain605

‖f̃ (p)‖2H1−s(Ω) ≤ 2C2
loc,2C

2
η

(
9R2s−2‖Dp

x‖
f‖2L2(Ω) + |Dp

x‖
f |2H1−s(Ω)

)
606

≤ CC2
loc,2C

2
ηR

2s−2

(
2p max

|β|=p
‖∂β

xf‖2L2(Ω) + 2p+1 max
|β|=p+1

‖∂β
xf‖2L2(Ω)

)
607

≤ CC2
loc,2C

2
ηR

2s−2(γp)2p(1 + (γp)2)Ñ (p)(F, f)608609

with a constant C > 0 depending only on Ω and s.610

Step 5. (Putting everything together.) Combining the above estimates, we obtain that there exists611

a constant C > 0 depending only on Creg, Ct, C̃η, CN , Cloc,2, and H such that612

N2(Ũ (p), F̃ (p), f̃ (p))613

=
(
‖∇Ũ (p)‖2L2

α(R2×R+) + ‖∇Ũ (p)‖L2
α(R2×R+)‖F̃ (p)‖L2

−α(R2×(0,H)) + ‖∇Ũ (p)‖L2
α(R2×R+)‖f̃ (p)‖H1−s(Ω)

)
614

≤ C
(
R−2p+2t(γp)2p +R−p+t(γp)pR−p−1+t(γp)p(1 + γp) +R−p+t(γp)pRs−1(γp)p(1 + γp)

)
Ñ (p)(F, f)615

R≤1,t<1/2

≤ CR−2p−1+2t(γp)2p(1 + γp)Ñ (p)(F, f).616617

Inserting this estimate in (4.9) concludes the proof of (4.5).618

Step 6: The estimate (4.7) follows from [Gri11, Thm. 1.4.4.3], which gives619

∫

R+

yα‖r−t
∂Ω∇Ũ (p)(·, y)‖2L2(Ω) dy ≤ C

∫

R+

yα‖∇Ũ (p)(·, y)‖2Ht(Ω) dy,620

and from (4.5).621
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•v

ωv

• Bcrv(xi)
(xi)

Fig. 2: Covering of “vertex cones” such as ωv by union of balls Bcrv(xi)(xi) with fixed c ∈ (0, 1).

5. Weighted Hp-estimates in polygons. In this section, we derive higher order weighted reg-622

ularity results, at first for the extension problem and finally for the fractional PDE. This is our main623

result, Theorem 2.1.624

5.1. Coverings. A main ingredient in our analysis are suitable localizations of vertex neighborhoods625

ωv and edge-vertex neighborhoods ωve near a vertex v and of edge neighborhoods ωe near an edge e. This626

is achieved by covering such neighborhoods by balls or half-balls with the following two properties:627

a) their diameter is proportional to the distance to vertices or edges and b) scaled versions of these628

balls/half-balls satisfy a locally finite overlap property.629

We start by recalling a lemma that follows from Besicovitch’s Covering Theorem:630

Lemma 5.1 ([MW12, Lemma A.1], [HMW13, Lemma A.1]). Let ω ⊂ R
d be bounded, open and M ⊂631

∂ω be closed. Fix c, ζ ∈ (0, 1) such that 1− c(1 + ζ) =: c0 > 0. For each x ∈ ω, let Bx := Bc dist(x,M)(x)632

be the closed ball of radius c dist(x,M) centered at x, and let B̂x := B(1+ζ)c dist(x,M)(x) be the stretched633

closed ball of radius (1 + ζ)c dist(x,M) centered at x. Then, there is a countable set (xi)i∈I ⊂ ω (for634

some suitable index set I ⊂ N) and a number N ∈ N depending solely on d, c, ζ with the following635

properties:636

1. (covering property)
⋃

i Bxi
⊃ ω.637

2. (finite overlap) for x ∈ R
d it holds that card{i |x ∈ B̂xi

} ≤ N .638

Proof. The lemma is taken from [MW12, Lemma A.1] except that there x ∈ ω in the condition639

of finite overlap is assumed. Inspection of the proof shows that this condition can be relaxed as given640

here. Note that the proof of [MW12, Lemma A.1] required the balls Bxi
to be non-degenerate, which is641

ensured in the present setting of M ⊂ ∂ω.642

In the next lemma, we introduce a covering of ωv, see Figure 2.643

Lemma 5.2 (covering of ωv). Given v ∈ V and ξ > 0, there are 0 < c < ĉ < 1 and points644

(xi)i∈N ⊂ ωv= ωξ
v

such that the collections B := {Bi := Bc dist(xi,v)(xi) | i ∈ N} and B̂ := {B̂i :=645

Bĉ dist(xi,v)(xi) | i ∈ N} of (open) balls satisfy the following conditions: the balls from B cover ωv; the646

balls from B̂ satisfy a finite overlap property with overlap constant N depending only on the spatial647

dimension d = 2 and c, ĉ; the balls from B̂ are contained in Ω. Furthermore, for every δ > 0 there is648

Cδ > 0 (depending additionally on δ) such that with the radii Ri := ĉ dist(xi,v) it holds that649

(5.1)
∑

i

Rδ
i ≤ Cδ.650

Proof. Apply Lemma 5.1 with M = {v} and sufficiently small parameters c, ζ > 0. Note that by651

possibly slightly increasing the parameter c, one can ensure that the open balls rather than the closed652

balls given by Lemma 5.1 cover ωv. Also, since c < 1, the index set I of Lemma 5.1 cannot be finite so653

that I = N.654

To see (5.1), we compute with the spatial dimension d = 2655

∑

i

Rδ
i =

∑

i

Rδ−d
i Rd

i .
∑

i

∫

B̂i

rδ−d
v

dx
finite overlap

.

∫

Ω

rδ−d
v

dx < ∞.656

657

We now introduce a covering of edge-vertex neighborhoods ωve. We start by a covering of half-balls658

resting on the edge e and with size proportional to the distance from the vertex, see Figure 3 (left).659
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•v

ωve

•
xi

Hi

e•
xi

•
xij

B̂ij

∼ re(xij)

H̃i

Hi

Fig. 3: Covering of ωve. Left: the half-balls Hi constructed in Lemma 5.3. Right: covering of Hi by
balls Bij such that the larger balls B̂ij are contained in a ball H̃i. For better illustration, only the larger
balls B̂ij are shown, the balls Bij are included therein and still provide a covering of Hi.

Lemma 5.3 (covering of ωve). Given v ∈ V, e ∈ E(v), there is ξ > 0 and parameters 0 < c < ĉ < 1660

as well as points (xi)i∈N ⊂ e such that the following holds:661

(i) the sets Hi := Bc dist(xi,v)(xi)∩Ω are half-balls and the collection B := {Hi | i ∈ N} covers ωve= ωξ
ve

.662

(ii) The collection B̂ := {Ĥi := Bĉ dist(xi,v)(xi) ∩ Ω} is a collection of half-balls and satisfies a finite663

overlap property, i.e., there is N > 0 depending only on the spatial dimension d = 2 and the664

parameters c, ĉ such that for all x ∈ R
2 it holds that card{i |x ∈ Ĥi} ≤ N .665

Furthermore, for every δ > 0 there is Cδ > 0 such that for the radii Ri := ĉ dist(xi,v)(xi) it holds that666 ∑
i R

δ
i ≤ Cδ.667

Proof. Let ẽ be the (infinite) line containing e. We apply Lemma 5.1 to the 1D line segment668

e ∩ Bξ(v) (for some sufficiently small ξ) and M := {v} and the parameter c sufficiently small so that669

B2c dist(x,v)(x) ∩ Ω is a half-ball for all x ∈ e ∩Bξ(v). Lemma 5.1 provides a collection (xi)i∈N ⊂ e such670

the balls Bi := Bc dist(xi,v)(xi) ⊂ R
2 and the stretched balls B̂i := Bc(1+ζ) dist(xi,v)(xi) ⊂ R

2 (for suitable,671

sufficiently small ζ) satisfy the following: the intervals {Bi ∩ ẽ | i ∈ N} cover Bξ(v)∩ e, and the intervals672

{B̂i ∩ ẽ | i ∈ N} satisfy a finite overlap condition on ẽ. By possibly slightly increasing the parameter673

c (e.g., by replacing c with c(1 + ζ/2)), the newly defined balls Bi then cover a set ωξ
ve

for a possibly674

reduced ξ. It remains to see that the balls B̂i satisfy a finite overlap condition on R
2: given x ∈ B̂i, its675

projection xe onto ẽ satisfies xe ∈ B̂i∩ ẽ since xi ∈ e ⊂ ẽ. This implies that the overlap constants of the676

balls B̂i in R
2 is the same as the overlap constant of the intervals B̂i∩ ẽ in ẽ. The half-balls Hi := Bi∩Ω677

and Ĥi := B̂i ∩ Ω have the stated properties.678

Finally, the convergence of the sum
∑

i R
δ
i is shown by the same arguments as in Lemma 5.2.679

We will also need a covering of the half-balls Hi constructed in Lemma 5.3, which we introduce in the680

next lemma. See also Figure 3 (right).681

Lemma 5.4. Let B = {Hi | i ∈ N} and B̂ = {Ĥi | i ∈ N} be constructed in Lemma 5.3. Fix a c̃ ∈ (c, ĉ)682

with c, ĉ from Lemma 5.3 and define the collection B̃ := {H̃i := Bc̃rv(xi)(xi) ∩ Ω | i ∈ N} of half-balls683

intermediate to the half-balls Hi and Ĥi.684

There are constants 0 < c1 < ĉ1 < 1 such that the following holds: for each i, there are points685

(xij)j∈N ⊂ Hi such that the collection Bi := {Bij := Bc1re(xij)(xij)} covers Hi and the collection B̂i :=686

{B̂ij := Bĉ1re(xij)(xij)} satisfies B̂ij ⊂ H̃i for all j as well as a finite overlap property, i.e., there is687

N > 0 independent of i such that for all x ∈ R
2 it holds that card{j |x ∈ B̂ij} ≤ N .688

Proof. We apply Lemma 5.1 with M = {e} and ω = Hi. The parameters c and ζ are chosen small689

enough so that the balls Bx in Lemma 5.1 satisfy B̂x ⊂ H̃i. Then, the lemma follows from Lemma 5.1.690

5.2. Weighted Hp-regularity for the extension problem. To illustrate the techniques, we691

start with the simplest case of estimates in vertex neighborhoods ωv. It is worth stressing that we have692

re ∼ rv on ωv.693694

The following lemma provides higher order regularity estimates in a vertex weighted norm for solutions695

to the Caffarelli-Silvestre extension problem with smooth data.696

Lemma 5.5 (Weighted Hp-regularity in ωv). Let ωv= ωξ
v

be given for some ξ > 0 and v ∈ V. Let697

U be the solution of (3.1). There is γ > 0 depending only on s, Ω, and ωv and for every ε ∈ (0, 1), there698
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exists Cε > 0 depending on ε, Ω, H such that, for all β ∈ N
2
0 with |β| = p ∈ N0,699

‖rp−1/2+ε
v

∂β
x∇U‖2

L2
α(ω+

v
)
≤ Cεγ

2p+1p2p
(
‖f‖2H1(Ω) + ‖F‖2L2

−α(R2×(0,H))700

+

p+1∑

j=2

p−2j

(
max
|η|=j

‖∂η
xf‖2L2(Ω) + max

|η|=j−1
‖∂η

xF‖2L2
−α(R2×(0,H))

))
.701

702

Proof. The case p = 0 follows from Lemma 4.3 and the estimates (3.7), (3.8). We therefore assume703

p ∈ N.704

Let the covering ωv ⊂ ⋃i Bi with Bi = Bc dist(xi,v)(xi) and stretched balls B̂i = Bĉ dist(xi,v)(xi) be705

given by Lemma 5.2. It will be convenient to denote Ri := ĉ dist(xi,v) the radius of the ball B̂i and to706

note that, for some CB > 0,707

(5.2) ∀i ∈ N ∀x ∈ B̂i C−1
B Ri ≤ rv(x) ≤ CBRi.708

We assume (for convenience) that Ri ≤ 1/2 for all i.709

Let β be a multi index such that |β| = p. By (4.10) there is CN > 0 such that N2(U,F, f) ≤710

CN Ñ (p)(F, f) for all p ∈ N0, where Ñ (p) is defined in (4.6). We employ Corollary 3.6 to the pair (Bi,711

B̂i) of concentric balls together with Lemma 4.3 for t = 1/2 − ε/2 and N2(U,F, f) ≤ CN Ñ (p)(F, f) to712

obtain, for suitable γ > 0,713

∥∥∂β
x∇U

∥∥2
L2

α(B+
i )

≤ γ2p+1R−2p+1−ε
i p2pÑ (p)(F, f).714

715

Summation over i (with very generous bounds for the data f , F ) and (5.2) provides716

‖rp−1/2+ε
v

∂β
x∇U‖2

L2
α(ω+

v
)
≤ C2p−1+2ε

B

∑

i

R2p−1+2ε
i ‖∂β

x∇U‖2
L2

α(B+
i )

717

≤ γ2p+1C2p+1
B p2p

(∑

i

Rε
i

)
Ñ (p)(F, f)718

≤ Cε(γCB)
2p+1p2p

{
‖f‖2H1(Ω) + ‖F‖2L2

−α(R2×(0,H))719

+

p+1∑

j=2

p−2j

(
max
|η|=j

‖∂η
xf‖2L2(Ω) + max

|η|=j−1
‖∂η

xF‖2L2
−α(R2×(0,H))

)}
,720

721

since
∑

i R
ε
i =: Cε < ∞ by Lemma 5.2. Relabelling γCB as γ gives the result.722

We continue with the more involved case of edge-vertex neighborhoods.723

Lemma 5.6 (Weighted Hp-regularity in ωve). Let ξ > 0 be sufficiently small. There exists γ > 0724

depending only on s, ξ, and Ω and for any ε ∈ (0, 1), there exists Cε > 0 depending additionally on ε,725

and H such that the solution U of (3.1) satisfies, for all p‖, p⊥ ∈ N0 with p = p‖ + p⊥726

∥∥∥rp⊥−1/2+ε/2
e

r
p‖+ε
v Dp⊥

x⊥
D

p‖
x‖
∇U

∥∥∥
2

L2
α((ωξ

ve
)+)

727

≤ Cεγ
2p+1p2p

[
‖f‖2H1(Ω) + ‖F‖2L2

−α(R2×(0,H)) +

p+1∑

j=2

p−2j
(
max
|η|=j

‖∂η
xf‖2L2(Ω) + max

|η|=j−1
‖∂η

xF‖2L2
−α(R2×(0,H))

)]
.728

729

Proof. As in the proof of Lemma 5.5, the case p = 0 follows from Lemma 4.3 and the estimates (3.7),730

(3.8) so that we may assume p ∈ N. By Lemma 5.4, for sufficiently small ξ, there is a covering of ωξ
ve

731

by half-balls (Hi)i∈N with corresponding stretched half-balls (Ĥi)i∈N and intermediate half-balls (H̃i)i∈N732

such that each Hi is covered by balls Bi := {Bij | j ∈ N} with the stretched balls B̂ij satisfying a finite733

overlap condition and being contained in H̃i. We abbreviate the radii of the half-balls Ĥi and the balls734

B̂ij by Ri and Rij respectively. We note that the half-balls Ĥi and the balls B̂ij satisfy for all i, j:735

∀x ∈ Ĥi : C−1
B Ri ≤ rv(x) ≤ CBRi,(5.3)736

∀x ∈ B̂ij : C−1
B Rij ≤ re(x) ≤ CBRij(5.4)737738
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for some CB > 0 depending only on ωξ
ve

. For convenience, we assume that Ri ≤ 1/2 for all i and that739

hence Rij ≤ 1/2 for all i, j.740

Let p‖, p⊥ ∈ N0. Since the balls (Bij)i,j∈N cover ωξ
ve

, we estimate using (5.3), (5.4)741

∥∥∥rp⊥−1/2+ε/2
e

r
p‖+ε
v Dp⊥

x⊥
D

p‖
x‖
∇U

∥∥∥
2

L2
α((ωξ

ve
)+)

742

≤ C
2p⊥−1+ε+2p‖+2ε

B

∑

i,j

R
2p‖+2ε

i R2p⊥−1+ε
ij

∥∥Dp⊥
x⊥

D
p‖
x‖
∇U

∥∥2
L2

α(B+
ij)

.(5.5)743

744

With the constant γ > 0 from Corollary 3.6, we abbreviate745

N̂
(p⊥)
i,j (F, f) :=

p⊥∑

n=1

(γp⊥)
−2n

(
max
|η|=n

∥∥∂η
xD

p‖
x‖
f
∥∥2
L2(B̂ij)

+ max
|η|=n−1

∥∥∂η
xD

p‖
x‖
F
∥∥2
L2

−α(B̂ij×(0,H))

)
,746

N̂
(p⊥)
i (F, f) :=

p⊥∑

n=1

(γp⊥)
−2n

(
max
|η|=n

∥∥∂η
xD

p‖
x‖
f
∥∥2
L2(H̃i)

+ max
|η|=n−1

∥∥∂η
xD

p‖
x‖
F
∥∥2
L2

−α(H̃i×(0,H))

)
.747

748

Applying the interior Caccioppoli-type estimate (Corollary 3.6) for the pairs of concentric balls (Bij , B̂ij)749

(which are fully contained in Ω) and the function D
p‖
x‖
U (noting that this function satisfies (3.5) with750

data D
p‖
x‖
f , D

p‖
x‖
F ) provides (we also use Ri ≤ 1/2 ≤ 1)751

∥∥Dp⊥
x⊥

∇D
p‖
x‖
U
∥∥2
L2

α(B+
ij)

≤ 2p⊥ max
|β|=p⊥

∥∥∂β
x∇D

p‖
x‖
U
∥∥2
L2

α(B+
ij)

(5.6)752

≤ (
√
2γp⊥)

2p⊥R−2p⊥

ij

(∥∥∇D
p‖
x‖
U
∥∥2
L2

α(B̂+
ij)

+R2
ijN̂

(p⊥)
i,j (F, f)

)
753

(5.4)

≤ C1−ε
B (

√
2γp⊥)

2p⊥R−2p⊥+1−ε
ij

(∥∥∥r−1/2+ε/2
e

∇D
p‖
x‖
U
∥∥∥
2

L2
α(B̂+

ij)
+R1+ε

ij N̂
(p⊥)
i,j (F, f)

)
.754

755

Inserting this in (5.5), summing over all j, and using the finite overlap property as well as Rij ≤ Ri756

yields757

∥∥∥rp⊥−1/2+ε/2
e

r
p‖+ε
v Dp⊥

x⊥
D

p‖
x‖
∇U

∥∥∥
2

L2
α((ωξ

ve
)+)

758

. C
2p⊥+2p‖+2ε

B (
√
2γp⊥)

2p⊥

∑

i

R
2p‖+2ε

i

(
‖r−1/2+ε/2

e
∇D

p‖
x‖
U‖2

L2
α(H̃+

i )
+R1+ε

i N̂
(p⊥)
i (F, f)

)
,(5.7)759

760

with the implied constant reflecting the overlap constant. Using again Ri ≤ 1, we estimate the sum over761

the N̂
(p⊥)
i (F, f) (generously) by762

∑

i

R
2p‖+2ε

i R1+ε
i N̂

(p⊥)
i (F, f) ≤ C

p⊥∑

n=1

(γp⊥)
−2n

(
max
|η|=n

‖∂η
xD

p‖
x‖
f‖2L2(Ω) + max

|η|=n−1
‖∂η

xD
p‖
x‖
F‖2L2

−α(Ω×(0,H))

)
.763

The term involving ‖r−1/2+ε
e ∇D

p‖
x‖
U‖2

L2
α(H̃+

i )
in (5.7) is treated with Lemma 4.3 for the case p‖ = 0 and764

Lemma 4.4 for p‖ > 0. Considering first the case p‖ = 0, we estimate using the finite overlap property765

of the half-balls Ĥi and r∂Ω ≤ re766

∑

i

R
2p‖+2ε

i ‖r−1/2+ε/2
e

∇D
p‖
x‖
U‖2

L2
α(H̃+

i )

finite overlap,p‖=0

. ‖r−1/2+ε/2
∂Ω ∇U‖2L2

α(Ω+)

L. 4.3

. N2(U,F, f).767

For p‖ > 0, we use Lemma 4.4. To that end, we select, for each i ∈ N, a cut-off function ηi ∈ C∞
0 (R2)768

with supp ηi ∩ Ω ⊂ Ĥi and ηi ≡ 1 on H̃i. Applying Lemma 4.4 with t = 1/2 − ε/2 there and using the769

finite overlap property we get for Ũ
(p‖)

i := ηiD
p‖
x‖
U and Ñ (p‖)(F, f) from (4.6)770

∑

i

R
2p‖+2ε

i ‖r−1/2+ε/2
e

∇D
p‖
x‖
U‖2

L2
α(H̃+

i )
≤
∑

i

R
2p‖+2ε

i ‖r−1/2+ε/2
∂Ω ∇Ũ

(p‖)

i ‖2
L2

α(H̃+
i )

771

.
∑

i

R
2p‖+2ε−2p‖−1+2(1/2−ε/2)

i (γp‖)
2p‖(1 + γp‖)Ñ

(p‖)(F, f) . (γp‖)
2p‖(1 + γp‖)Ñ

(p‖)(F, f);772

773
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here, we used that
∑

i R
ε
i < ∞ by Lemma 5.3.774

Combining the above estimates we have shown the existence of C ≥ 1 independent of p = p‖ + p⊥775

such that776
∥∥∥rp⊥−1/2+ε/2

e
r
p‖+ε
v Dp⊥

x⊥
D

p‖
x‖
∇U

∥∥∥
2

L2
α((ωξ

ve
)+)

777

≤ C2p+1

[
p2p⊥

⊥ p
2p‖+1

‖ Ñ (p‖)(F, f) +

p⊥∑

n=1

p2p⊥−2n
⊥

(
max
|η|=n

∥∥∂η
xD

p‖
x‖
f
∥∥2
L2(Ω)

+ max
|η|=n−1

∥∥∂η
xD

p‖
x‖
F
∥∥2
L2

−α(R2×(0,H))

)]
.778

779

For p⊥ ≥ 1 we estimate with p⊥ ≤ p780

p⊥∑

n=1

p
2(p⊥−n)
⊥ max

|η|=n
‖∂η

xD
p‖
x‖
f‖2L2(Ω) ≤

p⊥∑

n=1

p2(p⊥−n) max
|η|=n

‖∂η
xD

p‖
x‖
f‖2L2(Ω) ≤

p∑

j=1+p‖

p2(p−j) max
|η|=j

‖∂η
xf‖2L2(Ω)781

782

and analogously for the sum over the terms max|η|=n−1 ‖∂η
xD

p‖
x‖
F‖2

L2
−α(R2×(0,H))

. Also by similar ar-783

guments, we estimate p
2p‖

‖ Ñ (p‖)(F, f) ≤ p2p‖Ñ (p)(F, f). Using p‖ + p⊥ = p as well as |Dp‖
x‖
v| ≤784

2p‖/2 max|β|=p‖
|∂β

xv| completes the proof of the edge-vertex case in view of the definition of Ñ (p)(F, f)785

from (4.6) and by suitably selecting γ.786

Lemma 5.7 (Weighted Hp-regularity in ωe). Given ξ > 0 and e ∈ E, there is γ depending only on787

s, Ω, and ωe= ωξ
e

such that for every ε ∈ (0, 1) there is Cε > 0 depending additionally on ε and H such788

that the solution U of (3.1) satisfies, for all p‖, p⊥ ∈ N0 with p‖ + p⊥ = p789

∥∥∥rp⊥−1/2+ε
e

Dp⊥
x⊥

D
p‖
xp‖

∇U
∥∥∥
2

L2
α(ω+

e
)

790

≤ Cεγ
2pp2p

(
‖f‖2H1(Ω) + ‖F‖2L2

−α(R2×(0,H)) +

p∑

j=1

p−2j
(
max
|η|=j

‖∂η
xf‖2L2(Ω) + max

|η|=j−1
‖∂η

xF‖2L2
−α(R2×(0,H))

))
.791

792

Proof. The proof is essentially identical to the case p‖ = 0 in the proof of Lemma 5.5 using a covering793

of ωe analogous to the covering of ωv given in Lemma 5.2 that is refined towards e rather than v, see794

Figure 4.795

e

ωe

•xi
∼ re(xi)

Fig. 4: Covering of edge-neighborhoods ωe.

Remark 5.8. The assumption that ξ is sufficiently small in Lemma 5.6 can be dropped (as long as796

ωve is well defined, as per Section 2.2). Indeed, for all ξ1, ξ2 such that ξ1 ≥ ξ2 > 0 there exists ξ3 ≥ ξ2797

such that798

(5.8) ωξ1
ve

⊂
(
ωξ2
ve

∪ ωξ3
v

∪ ωξ3
e

)
.799

In addition, there exists a constant Cξ3 > 0 that depends only on ξ3 and ε such that800

(5.9)
‖rp⊥−1/2+ε

e
r
p‖+ǫ
v Dp⊥

x⊥
D

p‖
xp‖

∇U‖2
L2

α((ω
ξ3
v

)+)
≤ 2p max

|β|=p
‖rp⊥−1/2+ε

e
r
p‖+ǫ
v ∂β

x∇U‖2
L2

α((ω
ξ3
v

)+)

≤ Cp+1
ξ3

max
|β|=p

‖rp−1/2+ε
v

∂β
x∇U‖2

L2
α((ω

ξ3
v

)+)

801

and that802

(5.10) ‖rp⊥−1/2+ε
e

r
p‖+ǫ
v Dp⊥

x⊥
D

p‖
xp‖

∇U‖2
L2

α((ω
ξ3
e

)+)
≤ Cp+1

ξ3

∥∥∥rp⊥−1/2+ε
e

Dp⊥
x⊥

D
p‖
xp‖

∇U
∥∥∥
2

L2
α((ω

ξ3
e

)+)
.803
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Given ξ1 > 0, bounds in ωξ1
ve

can therefore be derived by choosing ξ2 such that Lemma 5.6 holds in804

ωξ2
ve

, exploiting the decomposition (5.8), using Lemmas 5.5 and 5.6 in ωξ3
v

and ωξ3
e

, respectively, and805

concluding with (5.9) and (5.10).806

5.3. Proof of Theorem 2.1 – weighted Hp regularity for fractional PDE. In order to obtain807

regularity estimates for the solution u of (−∆)su = f , we have to take the trace y → 0 in the weighted808

Hp-estimates for the Caffarelli-Silvestre extension problem provided by the previous subsection.809

Proposition 5.9. Under the hypotheses of Theorem 2.1, there exists a constant γ̃ > 0 depending810

only on γf , s, and Ω such that for every ε > 0 there exists C̃ε > 0 (depending only on ε and Ω) such811

that for all p ∈ N812

(5.11a)
∥∥∥r−1/2+ε

e
rp−s+ε
v

Dp
x‖
u
∥∥∥
L2(ωve)

≤ Cεγ
p+1pp,813

and, for all p‖ ∈ N0, p⊥ ∈ N with p‖ + p⊥ = p,814

(5.11b)
∥∥∥rp⊥−1/2−s+ε

e
r
p‖+ε
v Dp⊥

x⊥
D

p‖
x‖
u
∥∥∥
L2(ωve)

≤ Cεγ
p+1pp.815

Moreover, for all β ∈ N
2
0 with |β| = p ≥ 1 and all p‖ ∈ N0, p⊥ ∈ N with p‖ + p⊥ = p,816

∥∥∥rp−1/2−s+ε
v

∂β
xu
∥∥∥
L2(ωv)

≤ Cεγ
p+1pp,(5.12)817

∥∥∥rp⊥−1/2−s+ε
e

Dp⊥
x⊥

D
p‖
x‖
u
∥∥∥
L2(ωe)

≤ Cεγ
p+1pp.(5.13)818

819

For p‖ ∈ N, we have820

∥∥∥r−1/2+ε
e

D
p‖
x‖
u
∥∥∥
L2(ωe)

≤ Cεγ
p+1pp.(5.14)821

822

Finally, for the interior part Ωint and all p ∈ N0 and β ∈ N
2
0 with |β| = p, we have823

(5.15)
∥∥∂β

xu
∥∥
L2(Ωint)

≤ γp+1pp.824

Proof. We only show the estimates (5.11a) and (5.11b) using Lemma 5.6. The bounds (5.12) (using825

Lemma 5.5) and (5.13), (5.14) (using Lemma 5.7) follow with identical arguments. The bound in Ωint fol-826

lows directly from the interior Caccioppoli inequality, Corollary 3.6, and a trace estimate as below. (Note827

that the case |β| = 0 follows directly from the energy estimate ‖u‖L2(Ωint) ≤ ‖u‖H̃s(Ω) ≤ C‖f‖H−s(Ω).)828

Due to Lemma 5.6, applied with F = 0, and the assumption (2.10) on the data f , there exists a829

constant C > 0 such that for all q⊥, q‖ ∈ N0 and q⊥ + q‖ = q ∈ N0 we have830

(5.16)
∥∥∥rq⊥−1/2+ε

e
r
q‖+ε
v Dq⊥

x⊥
D

q‖
x‖
∇U

∥∥∥
2

L2
α(ω+

ve
)
≤ C2q+1q2q.831

The last step of the proof of [KM19, Lem. 3.7] gives the multiplicative trace estimate832

|V (x, 0)|2 ≤ Ctr

(
‖V (x, ·)‖1−α

L2
α(R+) ‖∂yV (x, ·)‖1+α

L2
α(R+) + ‖V (x, ·)‖2L2

α(R+)

)
(5.17)833

834

where, for univariate v : R+ → R, we write ‖v‖2L2
α(R+)

:=
∫∞

y=0
yα|v(y)|2 dy.835

We have p = p⊥ + p‖ ≥ 1. Suppose first p⊥ ≥ 1 and p‖ ≥ 0. Using the trace estimate (5.17)836

with V = Dp⊥
x⊥

D
p‖
x‖
U and additionally multiplying with the corresponding weight (using that α = 1− 2s)837

provides838

r2p⊥−1−2s+2ε
e

r
2p‖+2ε
v

∣∣Dp⊥
x⊥

D
p‖
x‖
U(x, 0)

∣∣2839

≤ Ctr

∥∥∥rp⊥−3/2+ε
e

r
p‖+ε
v ∇Dp⊥−1

x⊥
D

p‖
x‖
U(x, ·)

∥∥∥
1−α

L2
α(R+)

∥∥∥rp⊥−1/2+ε
e

r
p‖+ε
v Dp⊥

x⊥
D

p‖
x‖
∇U(x, ·)

∥∥∥
1+α

L2
α(R+)

840

+Ctr

∥∥∥rp⊥−1/2−s+ε
e

r
p‖+ε
v ∇Dp⊥−1

x⊥
D

p‖
x‖
U(x, ·)

∥∥∥
2

L2
α(R+)

,841
842
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where we have also used the fact that (Dx⊥
v)2 = (e⊥ ·∇xv)

2 ≤ |∇xv|2 for all sufficiently smooth functions843

v. Integration over ωve together with r−s
e

. r−1
e

gives844

∥∥∥rp⊥−1/2−s+ε
e

r
p‖+ε
v Dp⊥

x⊥
D

p‖
x‖
u
∥∥∥
2

L2(ωve)
845

≤ Ctr

∥∥∥rp⊥−3/2+ε
e

r
p‖+ε
v Dp⊥−1

x⊥
D

p‖
x‖
∇U

∥∥∥
1−α

L2
α(ω+

ve
)

∥∥∥rp⊥−1/2+ε
e

r
p‖+ε
v Dp⊥

x⊥
D

p‖
x‖
∇U

∥∥∥
1+α

L2
α(ω+

ve
)

846

+Ctr

∥∥∥rp⊥−1/2−s+ε
e

r
p‖+ε
v Dp⊥−1

x⊥
D

p‖
x‖
∇U

∥∥∥
2

L2
α(ω+

ve
)

847

(5.16)

≤ Ctr(C
2p−1(p− 1)2(p−1))(1−α)/2(C2p+1p2p)(1+α)/2+CCtrC

2p−1(p− 1)2(p−1)848

= CtrC
2p+1+αp2p+α + CtrC

2p−1p2p≤γ2p+1p2p849850

for suitable γ > 0, which is estimate (5.11b). If p⊥ = 0, then p‖ ≥ 1 and we have instead851

∥∥∥r−1/2+ε
e

r
p‖−s+ε
v D

p‖
x‖
u
∥∥∥
2

L2(ωve)
852

≤ Ctr

∥∥∥r−1/2+ε
e

r
p‖−1+ε
v ∇D

p‖−1
x‖

U
∥∥∥
1−α

L2
α(ω+

ve
)

∥∥∥r−1/2+ε
e

r
p‖+ε
v D

p‖
x‖
∇U

∥∥∥
1+α

L2
α(ω+

ve
)

853

+Ctr

∥∥∥r−1/2+ε
e

r
p‖−s+ε
v ∇D

p‖−1
x‖

U
∥∥∥
2

L2
α(ω+

ve
)
.854

855

Again, inserting (5.16) into the right-hand side and proceeding similarly as above proves (5.11a).856

We now apply Proposition 5.9 to show our main result.857

Proof of Theorem 2.1. Proposition 5.9 already covers most of the statements in Theorem 2.1. Only858

some lowest-order cases p = 0 or p⊥ = 0 are missing. We consider the three inequalities (2.11), (2.12),859

and (2.13) separately by using a Hardy inequality and then appealing to Proposition 5.9.860

Proof of (2.11). Equation (2.11) with p = 0 follows from the weighted Hardy inequality [KMR97,861

Lem. 7.1.3], which provides862

‖r−1/2−s+ε
v

u‖L2(ωv) ≤ CH,1‖r1/2−s+ε
v

∇u‖L2(ωv)

Prop. 5.9
< ∞.863

Proof of (2.12). Let (x⊥, x‖) be the coordinate system associated with edge e. For µ, ξ > 0864

sufficiently small and an interval Iµ of length µ consider865

ωξ
e
⊆ {(x⊥, x‖) : x‖ ∈ Iµ, x⊥ ∈ (0, ξ2)} =: ω̃ξ,µ

e
866

The interval Iµ is chosen such that ωξ
e
⊂ ω̃ξ,µ

e
and ω̃ξ,µ

e
stays away from the vertices V and the edges867

E \ {e} so that the assertions of Proposition 5.9 still hold for ω̃ξ,µ
e

–cf. Remark 5.8. We will show (2.12)868

for ω̃e (dropping the superscripts ξ, µ).869

Let ũ be the function such that ũ(x⊥, x‖) = u(x1, x2) in ω̃e. By Fubini-Tonelli’s theorem, for almost870

all x‖ ∈ Iµ,871

(5.18)
(
x⊥ 7→ r1/2−s+ǫ

e
Dx⊥

(D
p‖
x‖
ũ)(x⊥, x‖)

)
∈ L2((0, ξ2)).872

The fundamental theorem of calculus, the Cauchy-Schwarz inequality, and (5.18), imply that, for almost873

all x‖ ∈ Iµ, one has for ǫ < s that (D
p‖
x‖
ũ)(·, x‖) ∈ C0,s−ǫ([0, ξ2]). As u ∈ H̃s(Ω), we infer the pointwise874

equality (D
p‖
x‖
ũ)(0, x‖) = 0 for almost all x‖. We can apply [KMR97, Lem. 7.1.3] again, in one dimension:875

for almost all x‖ ∈ Iµ,876

‖r−1/2−s+ǫ
e

(D
p‖
x‖
ũ)(·, x‖)‖L2((0,ξ2)) ≤ CH,2‖r1/2−s+ǫ

e
(Dx⊥

D
p‖
x‖
ũ)(·, x‖)‖L2((0,ξ2)).877

Squaring and integrating over x‖ ∈ Iµ concludes the proof of (2.12).878

Proof of (2.13). We use the same notation as in the previous part of the proof, but assume879

that the coordinate system (x1, x2) and the coordinate system (x⊥, x‖) associated with edge e satisfy880
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x1 = x‖ and x2 = x⊥. Correspondingly, we assume Iµ = (0, µ). We introduce the equivalent edge-vertex881

neighborhood882

ω̃ξ,µ
ve

= {(x⊥, x‖) : x‖ ∈ (0, µ), x⊥ ∈ (0, ξx‖)}.883

We remark that in ω̃ve there exists c ≥ 1 such that for all (x⊥, x‖) ∈ ω̃ve884

(5.19) x‖ ≤ rv(x‖, x⊥) ≤ cx‖.885

We note re(x⊥, x‖) = x⊥. Hence, for almost all x‖ ∈ (0, µ),886

(5.20)
(
x⊥ 7→ r1/2−s+ǫ

e
(Dx⊥

(D
p‖
x‖
ũ))(x⊥, x‖)

)
∈ L2((0, ξx‖)).887

By the same argument as above, it follows that, for almost all x‖ ∈ (0, µ), we have (D
p‖
x‖
ũ)(·, x‖) ∈888

C0,s−ǫ([0, ξx‖]) and hence (D
p‖
x‖
ũ)(0, x‖) = 0. Therefore, [KMR97, Lemma 7.1.3] gives for almost all889

x‖ ∈ (0, µ),890

‖r−1/2−s+ǫ
e

(D
p‖
x‖
ũ)(·, x‖)‖L2((0,ξx‖)) ≤ CH,3‖r1/2−s+ǫ

e
(Dx⊥

D
p‖
x‖
ũ)(·, x‖)‖L2((0,ξx‖)),891892

with constant CH,3 independent of x‖. Multiplying by r
p‖+ǫ
v , squaring, integrating over x‖ ∈ (0, µ), and893

using (5.19),894

‖r−1/2−s+ǫ
e

r
p‖+ǫ
v D

p‖
x‖
ũ‖L2(ω̃ve) ≤ cp‖+ǫCH,3‖r1/2−s+ǫ

e
r
p‖+ǫ
v Dx⊥

D
p‖
x‖
ũ‖L2(ω̃ve).895896

This completes the proof except for the fact that the region ωve \ ω̃ve is not covered yet. This region is897

treated with the observations of Remark 5.8.898

6. Conclusions. We briefly recapitulate the principal findings of the present paper, outline gener-899

alizations of the present results, and also indicate applications to the numerical analysis of finite element900

approximations of (2.2). We established analytic regularity of the solution u in a scale of edge- and901

vertex-weighted Sobolev spaces for the Dirichlet problem for the fractional Laplacian in a bounded poly-902

gon Ω ⊂ R
2 with straight sides, and for forcing f analytic in Ω.903

While the analysis in Sections 4 and 5 was developed at present in two spatial dimensions, we904

emphasize that all parts of the proof can be extended to higher spatial dimension d ≥ 3, and polytopal905

domains Ω ⊂ R
d. Details shall be presented elsewhere.906

Likewise, the present approach is also capable of handling nonconstant, analytic coefficients similar907

to the setting considered (for the spectral fractional Laplacian) in [BMN+19]. Details on this extension908

of the present results, with the presently employed techniques, will also be developed in forthcoming909

work.910

The weighted analytic regularity results obtained in the present paper can be used to establish911

exponential convergence rates with the bound C exp(−b 4
√
N) on the error for suitable hp-Finite Element912

discretizations of (2.2), with N denoting the number of degrees of freedom of the discrete solution in Ω.913

This will be proved in the follow-up work [FMMS22b]. Importantly, as already observed in [BMN+19],914

achieving this exponential rate of convergence mandates anisotropic mesh refinements near the boundary915

∂Ω.916

Appendix A. Localization of Fractional Norms. The following elementary observation on917

localization of fractional norms was used in several places.918

Lemma A.1. Let η ∈ C∞
0 (BR) for some ball BR ⊂ Ω of radius R and s ∈ (0, 1). Then,919

‖ηf‖H−s(Ω) ≤ Cloc‖η‖L∞(BR)‖f‖L2(BR),(A.1)920

‖ηf‖H1−s(Ω) ≤ Cloc,2

[ (
Rs‖∇η‖L∞(BR) + (Rs−1 + 1)‖η‖L∞(BR)

)
‖f‖L2(Ω)

+ ‖η‖L∞(BR)|f |H1−s(Ω)

]
,

(A.2)921

922

where the constants Cloc, Cloc,2 depend only on Ω and s.923
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Proof. (A.1) follows directly from the embedding L2 ⊂ H−s. For (A.2), we use the definition of the924

Slobodecki norm and the triangle inequality to write925

|ηf |2H1−s(Ω) =

∫

Ω

∫

Ω

|η(x)f(x)− η(z)f(z)|2
|x− z|d+2−2s

dz dx926

.

∫

Ω

∫

Ω

|η(x)f(x)− η(x)f(z)|2
|x− z|d+2−2s

dz dx+

∫

Ω

∫

Ω

|η(x)f(z)− η(z)f(z)|2
|x− z|d+2−2s

dz dx.927
928

The first term on the right-hand side can directly be estimated by ‖η‖L∞(BR)|f |H1−s(Ω). For the second929

term, we split the integration over Ω×Ω into four subsets, B2R ×B3R, B2R ×Bc
3R ∩Ω, Bc

2R ∩Ω×BR,930

Bc
2R∩Ω×Bc

R∩Ω; here, we assume for simplicity for the concentric balls BR ⊂ B2R ⊂ B3R ⊂ Ω, otherwise931

one has to intersect all balls with Ω. For the last case, Bc
2R ∩ Ω × Bc

R ∩ Ω, we have that η(x) − η(z)932

vanishes and the integral is zero. For the case B2R ×Bc
3R, we have |x− z| ≥ R there. This gives933

∫

B2R

∫

Bc
3R∩Ω

|η(x)f(z)− η(z)f(z)|2
|x− z|d+2−2s

dz dx =

∫

B2R

∫

Bc
3R∩Ω

|η(x)f(z)|2
|x− z|d+2−2s

dz dx934

≤ R−d−2+2s ‖η‖2L∞(BR)

∫

B2R

∫

Bc
3R∩Ω

|f(z)|2dzdx . R−2+2s ‖η‖2L∞(BR) ‖f‖
2
L2(Ω) .935

936

For the integration over Bc
2R ∩ Ω×BR, we write using polar coordinates (centered at z)937

∫

Bc
2R∩Ω

∫

BR

|η(z)f(z)|2
|x− z|d+2−2s

dz dx =

∫

BR

|η(z)f(z)|2
∫

Bc
2R∩Ω

1

|x− z|d+2−2s
dx dz938

.

∫

BR

|η(z)f(z)|2
∫ ∞

R

1

r3−2s
dx dz . R2s−2 ‖η‖2L∞(BR) ‖f‖

2
L2(Ω) .939

940

Finally, for the integration over B2R × B3R, we use that |η(x)− η(z)| ≤ ‖∇η‖L∞(BR) |x− z| and polar941

coordinates (centered at z) to estimate942

∫

B2R

∫

B3R

|η(x)f(z)− η(z)f(z)|2
|x− z|d+2−2s

dz dx ≤ ‖∇η‖2L∞(BR)

∫

B3R

|f(z)|2
∫

B2R

1

|x− z|d−2s
dx dz943

. ‖∇η‖2L∞(BR)

∫

B3R

|f(z)|2
∫ 5R

0

r−1+2s dr dz . ‖∇η‖2L∞(BR) ‖f‖
2
L2(B3R) R

2s.944
945

The straightforward bound ‖ηf‖L2(Ω) ≤ ‖η‖L∞(BR)‖f‖L2(Ω) concludes the proof.946

Appendix B. Proof of Lemma 3.1. Proof of Lemma 3.1: The proof follows from the arguments947

given in [KM19, Sec. 3]; a more general development of Beppo-Levi spaces is given in [DL54].948

Proof of (i): Fix a (nondegenerate) hypercube K =
∏d+1

i=1 (ai, bi) with ad+1 = 0. Elements of the949

Beppo-Levi space BL1
α are locally in L2, and one can equip the space BL1

α with the norm ‖U‖2
BL1

α
:=950

‖U‖2L2
α(K)+‖∇U‖2L2

α(Rd×R+). Endowed with this norm, BL1
α is a Hilbert space and C∞(Rd×[0,∞))∩BL1

α951

is dense, [KM19, Lemma 3.2]. On the subspace BL1
α,0,Ω we show the norm equivalence ‖U‖BL1

α
∼952

‖∇U‖L2
α(Rd×R+) using the bounded linear lifting operator E : Hs(Rd) → H1

α(R
d × R+) of [KM19,953

Lemma 3.9] and the norm equivalence of [KM19, Cor. 3.4]954

‖∇U‖L2
α(Rd×R+) ≤ ‖U‖BL1

α
≤ ‖U − E trU‖BL1

α
+ ‖E trU‖BL1

α
955

[KM19, Cor. 3.4]

. ‖∇(U − E trU)‖L2
α(Rd×R+) + ‖E trU‖BL1

α
956

[KM19, Lem. 3.9]

. ‖∇U‖L2
α(Rd×R+) + ‖ trU‖Hs(Rd)957

trU∈H̃s(Ω),(1.3)

. ‖∇U‖L2
α(Rd×R+) + | trU |Hs(Rd)

[KM19, Lem. 3.8]

. ‖∇U‖L2
α(Rd×R+).958959

Proof of (ii): From the fundamental theorem of calculus, we have for smooth univariate functions v and960

x ∈ (0, H) the estimate |v(x)| = |v(0) +
∫ x

t=0
v′(t) dt| . |v(0)|+

√∫ x

t=0
tα|v′(t)|2 dt.961
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Fix a closed hypercube K ′ ⊂ R
d of side length dK′ > 0 with K ′ ⊃ Ω. Define the translates962

Kj := dK′j +K ′ for j ∈ Z
d. For smooth U , we infer from the 1D estimate that963

‖U‖L2
α(K′×(0,H)) ≤ CK′

(
‖∇U‖L2

α(K′×(0,H)) + ‖ trU‖L2(K′)

)
.(B.1)964965

By the density of C∞(Rd× [0,∞))∩BL1
α in BL1

α from the proof of part (i), the estimate (B.1) holds for966

all U ∈ BL1
α. By translation invariance of the norms and spaces, (B.1) also holds for all U ∈ BL1

α and967

for all translates Kj , j ∈ Z
d, with the same constant CK′ . For U ∈ BL1

α,0,Ω, we observe ‖ trU‖L2(K0) ≤968

‖ trU‖H̃s(K0)
≤ CΩ| trU |Hs(Rd) (cf. (1.3)) and trU |Kj

= 0 for j 6= 0. Hence, using the Kronecker δj,0 we969

arrive at970

‖U‖L2
α(Kj×(0,H)) ≤ CK′

(
‖∇U‖L2

α(Kj×(0,H)) + CΩδj,0| trU |Hs(Rd)

)
.971972

Since R
d = ∪j∈ZdKj and the intersection Kj ∩Kj′ is a set of measure zero for j 6= j′, summation over973

all j implies974

‖U‖L2
α(Rd×(0,H)) . ‖∇U‖L2

α(Rd×(0,H)) + | trU |Hs(Rd).975976

The proof is completed by noting | trU |Hs(Rd) . ‖∇U‖L2
α(Rd×R+) by [KM19, Lemma 3.8].977
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