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WEIGHTED ANALYTIC REGULARITY FOR THE INTEGRAL FRACTIONAL
LAPLACIAN IN POLYGONS

MARKUS FAUSTMANN*, CARLO MARCATI!, JENS MARKUS MELENK*, AND CHRISTOPH SCHWAB!

Abstract. We prove weighted analytic regularity of solutions to the Dirichlet problem for the integral fractional
Laplacian in polygons with analytic right-hand side. We localize the problem through the Caffarelli-Silvestre extension and
study the tangential differentiability of the extended solutions, followed by bootstrapping based on Caccioppoli inequalities
on dyadic decompositions of vertex, edge, and edge-vertex neighborhoods.
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1. Introduction. In this work, we study the regularity of solutions to the Dirichlet problem for
the integral fractional Laplacian

(1.1) (=A)°u= fonQ, u=0onR*\Q,

with 0 < s < 1, where we consider the case of a polygonal €2 and a source term f that is analytic. We
derive weighted analytic-type estimates for the solution u, with vertex and edge weights that vanish on
the domain boundary 0f).

Unlike their integer order counterparts, solutions to fractional Laplace equations are known to lose
regularity near Jf2, even when the source term and 92 are smooth (see, e.g., [Grul5]). After the
establishment of low-order Hélder regularity up to the boundary for C1'! domains in [RS14], solutions to
the Dirichlet problem for the integral fractional Laplacian have been shown to be smooth (after removal
of the boundary singularity) in C* domains [Grul5]. Subsequent results have filled in the gap between
low and high regularity in Sobolev [AG20] and Holder spaces [ARO20], with appropriate assumptions on
the regularity of the domain. Besov regularity of weak solutions u of (1.1) has recently been established in
[BN21] in Lipschitz domains Q. Finally, for polygonal €, the precise characterization of the singularities
of the solution in vertex, edge, and edge-vertex neighborhoods is the focus of the Mellin-based analysis
of [GSS21, Sto20].

For smooth geometries, [Grul5| characterizes the mapping properties of the integral fractional Lapla-
cian, exhibiting in particular the anisotropic nature of solutions near the boundary. Interior regularity
results have been obtained in [Coz17, BWZ17, FKM22| and, under analyticity assumptions on the right-
hand side, (interior) analyticity of the solution has been derived even for certain nonlinear problems
[KRS19, DFOS12, DFOS13] and more general integro-differential operators [AFV15]. The loss of reg-
ularity near the boundary can be accounted for by weights in the context of isotropic Sobolev spaces
[AB17]. While all the latter references focus on the Dirichlet integral fractional Laplacian, which is
also the topic of the present work, corresponding regularity results for the Dirichlet spectral fractional
Laplacian are also available, see, e.g., [CS16].

The purpose of the present work is a description of the regularity of the solution of (1.1) for piecewise
analytic input data that reflects both the interior analyticity and the anisotropic nature of the solution
near the boundary. This is achieved in Theorem 2.1 through the use of appropriately weighted Sobolev
spaces. Unlike local elliptic operators in polygons, for which vertex-weighted spaces allow for analytic
regularity shifts (e.g., [BG88, MR10]), corresponding results for fractional operators in polygons require
additionally edge-weights [Grulb].

An observation that was influential in the analysis of elliptic fractional diffusion problems is their
localization through a local, divergence form, elliptic degenerate operator in higher dimension. First
pointed out in [CS07], it subsequently inspired many developments in the analysis of fractional problems.
While not falling into the standard elliptic setting (see, e.g., the discussion in [Grul5]), the localization
via a higher-dimensional local elliptic boundary value problem does allow one to leverage tools from
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elliptic regularity theory. Indeed, the present work studies the regularity of the higher-dimensional local
degenerate elliptic problem and infers from that the regularity of (1.1) by taking appropriate traces.

Our analysis is based on Caccioppoli estimates and bootstrapping methods for the higher-dimensional
elliptic problem. Such arguments are well-known to require (under suitable assumptions on the data)
a basic regularity shift for variational solutions from the energy space of the problem (in the present
case, a fractional order, nonweighted Sobolev space) into a slightly smaller subspace (with a fixed order
increase in regularity). This is subsequently used to iterate in a bootstrapping manner local regularity
estimates of Caccioppoli type on appropriately scaled balls in a Besicovitch covering of the domain. In
the classical setting of non-degenerate elliptic problems, the initial regularity shift (into a vertex-weighted
Sobolev space) is achieved by localization and a Mellin type analysis at vertices, as presented, e.g., in
[MR10] and the references there. The subsequent bootstrapping can then lead to analytic regularity as
established in a number of references for local non-degenerate elliptic boundary value problems (see, e.g.,
[BG88, GB97a, GBI7b, CDN12] and the references there). The bootstrapping argument of the present
work structurally follows these approaches.

While delivering sharp ranges of indices for regularity shifts (as limited by poles in the Mellin
resolvent), the Mellin-based approach will naturally meet with difficulties in settings with multiple,
non-separated vertices (as arise, e.g., in general Lipschitz polygons). Here, an alternative approach to
extract some finite amount of regularity in nonweighted Besov-Triebel-Lizorkin spaces was proposed in
[Sav98]; it is based on difference-quotient techniques and compactness arguments. In the present work,
our initial regularity shift is obtained with the techniques of [Sav98]. In contrast to the Mellin approach,
the technique of [Sav98] leads to regularity shifts even in Lipschitz domains but does not, as a rule,
give better shifts for piecewise smooth geometries such as polygons. While this could be viewed as
mathematically non-satisfactory, we argue in the present note that it can be quite adequate as a base
shift estimate in establishing analytic regularity in vertex- and boundary-weighted Sobolev spaces, where
quantitative control of constants under scaling takes precedence over the optimal range of smoothness
indices.

1.1. Impact on numerical methods. The mathematical analysis of efficient numerical methods
for the numerical approximation of fractional diffusion has received considerable attention in recent years.
We only mention the surveys [DDGT20, BBNT18, BLN20, LPG™20] and the references there for broad
surveys on recent developments in the analysis and in the discretization of nonlocal, fractional models.
At this point, most basic issues in the numerical analysis of discretizations of linear, elliptic fractional
diffusion problems are rather well understood, and convergence rates of variational discretizations based
on finite element methods on regular simplicial meshes have been established, subject to appropriate
regularity hypotheses. Regularity in isotropic Sobolev/Besov spaces is available, [BN21], leading to cer-
tain algebraically convergent methods based on shape-regular simplicial meshes. As discussed above, the
expected solution behavior is anisotropic so that edge-refined meshes can lead to improved convergence
rates. Indeed, a sharp analysis of vertex and edge singularities via Mellin techniques is the purpose of
[GS§21, StoQO] and allows for unravelling the optimal mesh grading for algebraically convergent methods.
The analytic regularity result obtained in Theorem 2.1 captures both the anisotropic behavior of the
solution and its analyticity so that exponentially convergent numerical methods for integral fractional
Laplace equations in polygons can be developed in our follow-up work [FMMS22b]; see also [FMMS22a]
for the corresponding convergence theory in 1D.

1.2. Structure of this text. After having introduced some basic notation in the forthcoming
subsection, in Section 2 we present the variational formulation of the nonlocal boundary value problem.
We also introduce the scales of boundary-weighted Sobolev spaces on which our regularity analysis is
based. In Section 2.2, we state our main regularity result, Theorem 2.1. The rest of this paper is devoted
to its proof, which is structured as follows.

Section 3 develops regularity estimates for the localized extension. In Section 4, we establish along
the lines of [Sav98], a local regularity shift for the tangential derivatives of the solution of the extension
problem, in a vicinity of (smooth parts of) the boundary. These estimates are combined in Section 5
with covering arguments and scaling to establish the weighted analytic regularity.

Section 6 provides a brief summary of our main results, and outlines generalizations and applications
of the present results.

1.3. Notation. For open w C R? and t € Ny, the spaces H'(w) are the classical Sobolev spaces of
order t. For t € (0,1), fractional order Sobolev spaces are given in terms of the Aronstein-Slobodeckij
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seminorm | - |g+(,y and the full norm || Nt ) by

Iv v(2)|?
(1.2) [0 () = /z@/ d+2t dzdr,  |vllfrw) = 101Z2 ) + 105 w),

where we denote the Euclidean norm in R by | - |. For bounded Lipschitz domains Q@ € R? and ¢ € (0, 1),
we introduce additionally

~ — 2
Ht(Q) = {u € Ht(Rd) cu=0on Rd\Q}, HUH%"(Q) = HU”iﬁ(Q) + ||v/rgﬂ||L2(Q),

where rgq(x) = dist(z, 9Q) denotes the Euclidean distance of a point « € ) from the boundary 92. On
H'(Q)) we have, by combining [Grill, Lemma 1.3.2.6] and [AB17, Proposition 2.3|, the estimate

(1.3) Vue H'(Q):  |ullgiq < Clulm @

for some C' > 0 depending only on ¢ and . For t € (0,1)\{3}, the norms H'”ﬁ”(ﬂ) and ||| ge(q) are
equivalent on H'(Q), see, e.g., [Grill, Sec. 1.4.4]. Furthermore, for ¢ > 0, the space H*(2) denotes

the dual space of H!(2), and we write (-, ") r2(q) for the duality pairing that extends the L?(2)-inner
product.

We denote by R the positive real numbers. For subsets w C R? we will use the notation wt =
w x Ry. For any multi index 8 = (B1,...,84) € N, we denote 87 = 951 --- 9% and [B| = Z?:l Bi. We
adhere to convention that empty sums are null, i.e., Z?:a ¢; = 0 when b < a; this even applies to the
case where the terms c; may not be defined. We also follow the standard convention 0% = 1.

Throughout this article, we use the notation < to abbreviate < up to a generic constant C' > 0 that
does not depend on critical parameters in our analysis.

2. Setting. There are several different ways to define the fractional Laplacian (—A)® for s € (0,1).
A classical definition on the full space R¢ is in terms of the Fourier transformation F, i.e., (F(—A)%u)(¢) =
|€12%(Fu)(€). Alternative, equivalent definitions of (—A)* are, e.g., via spectral, semi-group, or operator
theory, [Kwal7] or via singular integrals.

In the following, we consider the integral fractional Laplacian defined pointwise for sufficiently smooth
functions w as the principal value integral

I'(s+d/2)
/20 (—s)’

o) —uE) g with C(d,s) = —22

(2.1) (—A)’u(z) = C(d,s) P.V N

Re |z —
where I'(+) denotes the Gamma function. We investigate the fractional differential equation
(2.2a) (=A)Y’u=f in€Q,

(2.2b) u=0  inQ°:=R\Q,

where s € (0,1) and f € H%(Q) is a given right-hand side. Equation (2.2) is understood in weak form:
Find u € H*(Q) such that

(2.3) a(u,v) = ((=A)*u,v) ooy = (F,0) 12y Vv € HY(Q).

The bilinear form a has the alternative representation

(2.4) alu, v) d i / /R " “(i))(”(x)_“(z)) dzdx  Vu,v € H*(Q).

Z|d+2s

Existence and uniqueness of u € H*(Q) follow from the Lax-Milgram Lemma for any f € H*(€),
upon the observation that the bilinear form a(-,-) : H*(Q) x H*(2) — R is continuous and coercive.

2.1. The Caffarelli-Silvestre extension. A very influential interpretation of the fractional Lapla-
cian is provided by the so-called Caffarelli-Silvestre extension, due to [CS07]. It showed that the nonlocal
operator (—A)?® can be be understood as a Dirichlet-to-Neumann map of a degenerate, local elliptic PDE
on a half space in R?T!. Throughout the following text, we let
(2.5) a=1-2s.
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2.1.1. Weighted spaces for the Caffarelli-Silvestre extension. Throughout the text, we single

out the last component of points in R4T! by writing them as (z,y) with z = (z1,...,24) € RY, y € R.
We introduce, for open sets D C R x Ry, the weighted L?-norm || - || 2 (p) via
2 o 2
(2.0 U1 = [ UG dedy
(z,y)€D

We denote by L2 (D) the space of functions on D that are square-integrable with respect to the weight
y®. We introduce HL(D) := {U € L2(D) : VU € L?(D)} as well as the Beppo-Levi space BL}, :== {U ¢
L} (RTxRy) : VU € L2(R? xR, )}. For elements of the Beppo-Levi space BL’,, one can give meaning

loc

to their trace at y = 0, which is denoted tr U. Recalling o = 1 —2s, one has in fact trU € Hj (R?) (see,

e.g., [KM19, Lem. 3.8]). If supptr U C € for some bounded Lipschitz domain Q, then tr U € H*(Q) and

(1.3) [KM19, Lem. 3.8]
(2.7) [t Ul ge) S 1trUlmsre) S IVUl 2 (R xr,)

with an implied constant depending on s and Q.
2.1.2. The Caffarelli-Silvestre extension. Given u € H*(Q), let U = U(x,y) denote the mini-
mum norm extension of u to RIxR ., i.e., U = argmin{HVUH%i(Rdxﬂh) |U € BLL, tr U = u in H*(R%)}.
The function U is indeed unique in BL}, (see, e.g., [KM19, p. 2900]). The Euler-Lagrange equations
corresponding to this extension problem read
(2.8a) div(y*VU) =0 in R? x (0, o0),
(2.8b) U(-0)=u  inR%
Henceforth, when referring to solutions of (2.8), we will additionally understand that U € BLL,.

The relevance of (2.8) is due to the fact that the fractional Laplacian applied to u € H*(2) can be
recovered as distributional normal trace of the extension problem [CS07, Section 3], [CS16]:

(2.9) (—A)*u = —dg lim y*9,U(z,y), ds =270 (s)/T(1 — s).
y—0t

2.2. Main result: weighted analytic regularity for polygonal domains in R?. The following
theorem is the main result of this article. It states that, provided the data f is analytic in , we obtain
analytic regularity for the solution u of (2.2) in a scale of weighted Sobolev spaces. In order to specify
these weighted spaces, we need additional notation.

Let Q C R? be a bounded, polygonal Lipschitz domain with finitely many vertices and (straight)
edges (also, connectedness of the boundary is not necessary in the following). We denote by V the set of
vertices and by £ the set of the (open) edges. For v € V and e € &, we define the distance functions

rv(z) =]z —v|, re(z) = ll/Ielf; |z —yl, pve(x) = re(x)/ry ().

For each vertex v € V, we denote by &, = {e € £ : v € €} the set of all edges that meet at v. For any
e € &, we define Ve :={v €V : v € &} as set of endpoints of e. For fixed, sufficiently small £ > 0 and
for v eV, e € £, we define vertex, edge-vertex and edge neighborhoods by

Wi={reQ:r(z) <& A pul(z)>E Veeb},
e ={x€Q i ry(x) <E AN pre() < &Y,
Wwi={zeQ ir(r)>€ A re(z) <€ WvEVe)

Figure 1 illustrates this notation near a vertex v € V of the polygon. Throughout the paper, we will
assume that ¢ is small enough so that w§ N wi, = () for all v # v/, that w§ N wt, =0 for all e # € and

e
wse N wf,,e, = for all v # v’ and all e # €’. We will drop the superscript ¢ unless strictly necessary.
We can decompose the Lipschitz polygon 2 into sectoral neighborhoods of vertices v which are unions
of vertex and edge-vertex neighborhoods (as depicted in Figure 1), edge neighborhoods (that are away

from a vertex), and an interior part iy, i.e.,

Q= U (va U wve> U UweUQim.

vey ecéy ecé&
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Fig. 1: Notation near a vertex v.

Each sectoral and edge neighborhood may have a different value £. However, since only finitely many
different neighborhoods are needed to decompose the polygon, the interior part 2, C €2 has a positive
distance from the boundary.

In a given edge neighborhood we or an edge-vertex neighborhood wye, we let € and e be two unit
vectors such that e is tangential to e and e is normal to e. We introduce the differential operators

DIHU =e| - Vv, D, vi=e; Vv

corresponding to differentiation in the tangential and normal direction. Inductively, we can define higher
order tangential and normal derivatives by D] v := Dy, (D%lv) and DI v:= D, (Di 1v)for j > 1.

Our main result provides local analytic regularity in edge- and vertex-weighted Sobolev spaces.

THEOREM 2.1. Let Q C R? be a bounded polygonal Lipschitz domain. Let the data f € C°()
satisfy

(2.10) Z 108 fll L2y < W}Hjj Vi € Ng
|Bl=3

with a constant vy > 0. Let v € V, e € £ and Wy, Wye, We be fized vertex, edge-vertex and edge-
neighborhoods. Let u be the weak solution of (2.2).

Then, there is v > 0 depending only on ¢, s, and §2 such that for every e > 0 there exists C; > 0
(depending only on € and Q) such that for all p € Ng and for all B € N& with |5| = p

(2.11) ‘

T€_1/2_S+88£UH < Cg’Yp+1pp,
L2 (wy)
and for all (p1,py) € N§, with p = p1 +p)

(2.12)

p1L—1/2—s+e pHpL HPI p+1,p
e DMDI”“HLM ) S G

(2.13) ‘

—1/2—s p|+e D 1
e e o Dl <oty
Wyve

Finally, for the interior part Qin, and all p € Ng and 3 € N2 with |3| = p, we have

(2.14) |07 ull 2 gy < PP

int) -

Remark 2.2. Inequalities (2.12) and (2.13) can be written in compact form: For all v > —1/2 — s
there exists C, > 0 such that for e € {e, ve}

(2.15) |72 p2 et Dl DR ul| p2(oy) < CuAPTpP Y(po,py) € N§ with p=pj +p..

L
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Remark 2.3. (i) Stirling’s formula implies p? < CpleP. Therefore, there exists a constant C, such
that (2.15) can also be written as
(2.16) I8+ phs ™ D2} DRl L2,y < Co(e)™pl,

L

and the same can also be done for (2.11) and (2.14) in Theorem 2.1.
ii) We note that (p; +p. )PITPL < pllpPtePitPL Together with p? < Cple? (using Stirling’s formula),
I | PL

one can also formulate the estimates (2.15) as follows: There are constants C, and 7 > 0 such that
for all (p|,p.) € Ng,
(2.17) [P pa ¥ DRI D2l ooy < G +71p, iy
(iii) The assumption (2.10) on the data f expresses analyticity in © (combine Morrey’s embedding
[Grill, eq. (1,4,4,6)] to see f € C°° with [Mor66, Lemma 5.7.2]). Inspection of the proof (in
particular Lemmas 5.5 and 5.7) shows that f could be admitted to be in vertex or edge-weighted
classes of analytic functions. For simplicity of exposition, we do not explore this further.
(iv) Inspection of the proofs also shows that, in order to obtain weighted regularity of fixed, finite order
p, only finite regularity of the data f is required.
(v) By Morrey’s embedding, e.g., [Grill, eq. (1,4,4,6)|, estimate (2.14) implies that the solution u €
C>™(Qint) as well as analyticity of u in Qip, [Mor66, Lemma 5.7.2]. Other results on interior
analytic regularity of more general, linear integro-differential operators are, e.g., in [AFV15], for
1/2 <s< 1. .

3. Regularity results for the extension problem. In this section, we derive local (higher order)
regularity results for solutions to the Caffarelli-Silvestre extension problem. As the techniques employed
are valid in any space dimension, we formulate our results for general d € N.

Fix H > 0. Given F € L2 _(R%x (0, H)) and f € H—*(Q), consider the problem to find the minimizer
U=U(x,y) with z € R and y € R, of

(3.1) minimize F on BL;O’Q ={UeBL. : trU =0 on Q°} ,

where
1

(3.2) F(U):=zb(U,U) —/ FU dzx dy —/ ftrUdz, b(U,YV) :z/ y*VU - VV dz dy.
2 R4 x(0,H) Q REXRy

We have the following Poincaré type estimate:

LEMMA 3.1. (i) The map BL;QQ 35U = |[VU||12 (rixr,) i a norm, and BL}%&Q endowed with

this norm is a Hilbert space with corresponding inner-product given by the bilinear form b(-,-) in
(3.2).
(i) For every He (0,00), there is Cp o > 0 such that

(3.3) YU €BLy g 00 NUllL2®ixo,m) < CrallVU|l L2 ®ixr,)-

Proof. Details of the proof are given in Appendix B. 0

With Lemma 3.1 in hand, existence and uniqueness of solutions of (3.1) follows from the Lax-Milgram
Lemma since, for F € L2 _(R? x (0, H)) and f € H~*(Q), the map U + Jraso,m FU+ Jo ftrU in
(3.2) extends to a bounded linear functional on BL}%O’Q. In view of (3.3) and the trace estimate (2.7),

the minimization problem (3.1) admits by Lax-Milgram a unique solution U € BL;O,Q with the a priori
estimate

(3.4) VU2 ®axr,) < C|I1FllL2_ ®axo,m)) + ||f||H—S(Q)}

with constant C' dependent on s € (0,1) and H > 0.
The Euler-Lagrange equations formally satisfied by the solution U of (3.1) are:

(3.5a) —div(y*VU) = F in R? x (0, 00),
(3.5b) 0, U(-,0)=f in Q,
(3.5¢) trU =0 on Q°

This manuscript is for review purposes only.
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where 9, U(x,0) = —d, limy_,0 y*9,U(z,y) and we implicitly extended F to R? x R.. In view of (2.9)
together with the fractional PDE (—A)*u = f, this is a Neumann-type Caffarelli-Silvestre extension
problem with an additional source F'.

Remark 3.2. (i) The system (3.5) is understood in a weak sense, i.., to find U € BL] ;¢ such
that

(3.6) YV € BLL oo b(UJ/):/ Fdedy+/ ftrVde.
Rd xR, Q

Due to (3.3), the integral fRdx]R+ FV dzx dy is well-defined.

(ii) For the notion of solution of (3.5), the support requirement supp F' C R¢ x [0, H] can be relaxed
e.g., to F € L2 (R x R}) by testing with V € H! ; o(R? x Ry) := HL(R? x Ry) NBLL . In
this case, the integral fRdxﬂh FV dx dy is well-defined by Cauchy-Schwarz.

(iii) For open w C R% and F € L2 _(w*), we call U a solution to (3.5) on w* if (3.6) holds for all test
functions V e {V € H) ;| suppV Cc wt}.

(iv) We note that working with functions supported in R? x [0, H] induces an implicit dependence on H
of all constants, which is due to the Poincaré type estimate (3.3). Alternatively to restricting the
test space, one could also circumvent this by introducing suitable weights that control the behavior
of F at infinity; we do not develop this here. .

3.1. Global regularity: a shift theorem. The following lemma provides additional regularity
of the extension problem in the az—direction. The argument uses the technique developed in [Sav98]
that has recently been used in [BN21] to show a closely related shift theorem for the Dirichlet fractional
Laplacian; the technique merely assumes €2 to be a Lipschitz domain in R?. On a technical level, the
difference between [BN21| and Lemma 3.3 below is that Lemma 3.3 studies (tangential) differentiability
properties of the extension U, whereas [BN21] focuses on the trace u = tr U.

For functions U, F, f, it is convenient to introduce the abbreviation

(3.7) N*(U,F, f) == |VU| 12 raxr,) <||VU||L3(Rde+) + 1 F N2 (max o,y + ||f||H1—s(Q)) :

In view of the a priori estimate (3.4), we have the simplified bound (with updated constant C)
(3.8) N*(U,F, f)<C (Hf“?{lfs(ﬂ) + ||F|\%3Q(Rdx(o,H))) :

LEMMA 3.3. Let Q C R? be a bounded Lipschitz domain, and let Bz C R? be a ball with Q C Bg.
For t € [0,1/2), there is Cy > 0 (depending only on s, t, Q, R, and H) such that for f € C>=(%),
FeL?_ (RYx (0,H)) the solution U of (3.1) satisfies

| 9 IV e dy < CNAOLF )
.

with N*(U, F, f) given by (3.7).

Proof. The idea is to apply the difference quotient argument from [Sav98| only in the z-direction.

Let 2o € Q be arbitrary. For h € R? denote T},U = nUj, + (1 — n)U, where Uy, (x,y) == U(z + h,y)
and 7 is a cut-off function that localizes to a suitable ball By, (z¢), i.e, 0 <1 <1, n=1 on B,(zg) and
suppn C Ba,(z9). In Steps 1-5 of this proof, we will abbreviate B, for B,/ (z¢) for p’ > 0.

The main result of [Sav98] is that estimates for the modulus w(U) defined with the quadratic func-
tional F as in (3.2) by

F(TwU) — F(U)

wlU) = sup ———"—>=wp(U)+wprU)+wsU),
heD\{0} |h|
1 T; T, —
Wb(U) == sup b( hU7 hU) b(U7 U)’
2 heD\ {0} |h|
4 F(TU - U) tr(T,U — U
wrp(U) == sup fR x(0.H) , wr(U) = sup fﬂf H(Th )7
heD\{0} Al heD\{0} R
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can be used to derive regularity results in Besov spaces.

Here, D C R? denotes a set of admissible directions h. These directions are chosen such that
the function T,U is an admissible test function, i.e., TRU € BL}),O,Q' For this, we have to require
supp tr(TRU) C Q. In [Sav98, (30)] a description of this set is given in terms of a set of admissible
outward pointing vectors O,(z(), which are directions h with |h| < p such that for all ¢ € [0,1] the
translate Bs,(20)\§ + th is completely contained in Q°.

Step 1. (Estimate of w,(U)). The definition of the bilinear form b(-,-), h € D, and the definition of
Th give

W(THU, T,U) — b(U,U) = / Yy (IVTLU|? — |VU?) dx dy
RE xR

= / Y (IVn(Uy — U) + T, VU|* — |VU|?) dz dy
Re xR

/ Yy (IV(Un — U) + 21,V U - Vy(Un — U)) da dy
Ré xR

+/ Yy (ITW VU = |VU?) da dy
RexR4

ZT1 +T2

~

For the first integral Ty, we use the support properties of n and that ||U(-,y) — Uh('vy)”H(BQp)
IMINVU G 9)ll 2B, > Which gives

TS / Y (B VU )220, + LIV )l o) 1TH VU ) )
+

Sil [ v IVUP dod,
BSp

For the term Ty, we first note |13, VU|* < 1 |VUL|* + (1 — 1) |VU|? since 0 < < 1. Using the variable
transformation z = « + h together with B, (xo) + h C Bs,(xo) we obtain

T, :/ Y (ITWVU? = |VU?) da dy g/ / Yo n(|VUL|* = |[VU|?) da dy
RdXR+ Ry ng

<[ [ vte-n - a@)VUP dedy S hl [ o IVOP dedy.
R J Bz, By,
Altogether we get from the previous estimates that

a(0)5 [y IVUP dedy.

3p

Step 2. (Estimate of wp(U)). Using the definition of T}, we can write U — T, U = n(U — Up,), and
suppn C Ba, (o) implies

/ FU - TyU) dz dy / Fn(U = Up) dedy| < |Fll 2 (8,,x 0.0 IU = UnllL2 (85 )
R4 X (0,H) R4 X (0,H) « aroEp
(3.9) SIRIEN 2 (Bayx 0, IV Ul L2 (85 »

which produces

wr(U) S IFN2 (o, 0.0 IVUl 22 (85 )

Step 3. (Estimate of w(U)). For the trace term, we use a second cut-off function 77 € C§°(R4*1)
with 77 = 1 on By, (z9) and supp(7]) C Bs,(zo)x(—H, H) and get with the trace inequality (2.7) and the

8
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343

estimate (3.3)

[ru@-nwyds|=|[ gy -vids| = |[ (a0 uv) o
Q Bs, Bs,
< =) -nll -8y, 1@ 7+ (5,
(2.7),(3.3)
(3.10) S I oy, VUl 2 RExR )
where the estimate || fn — (fn)-nllz-+8,,) S [Pl flz1-+(B,,) can be seen, for example, by interpolating

the estimates [|fn — (F) 1 1oy 1017 | z2qeo) and [ £ — (Fn)-nlzecaay < Bl Sl ey, see. ..
[Tar07]. We have thus obtained

wr(U) S HfHHl*S(B@)||VUHL§(]R“1><1R+)-

Step 4. (Application of the abstract framework of [Sav98]). We introduce the seminorms [U]? :=
Jraxw, ¥° |VU|? dzdy. By the coercivity of b(-, ) on BL;, ; o, with respect to []? and the abstract estimates

in [Sav98, Sec. 2|, we have

B 2[82?& -
(U —T,U] w(U)[h] S bl (wp(U) +wrp(U) + wp(U))

~

steps 1-3
< (IO gy + 1P NLze 2 ) IVU Lz ey + 1 1= |9 2 )

= |h| ngvaf.

Using that n =1 on B (z0), we get

Gu) [ VU VOPdedy < [ NGU - aUP dedy = [0 - TP < 0 C .
B R

p dxXRy

Step 5: (Removing the restriction h € D). The set D contains a truncated cone C' = {x € R? :
|z - ep| > &lx|} N Br/(0) for some unit vector ep and 6 € (0,1), R’ > 0. Geometric considerations
then show that there is ¢p > 0 sufficiently large such that for arbitrary h € R sufficiently small,
h+ cplhlep € D. For a function v defined on R?, we observe

v(x) —vp(z) =v(z) —v(x+ h) =v(x) —v(x + (h+cplhlep)) + v((x + h) + eplhlep) — v(z + h).
We may integrate over B,/ (zo) and change variables to get
2 < 2 2
v = vnllzas,) < 2[l0 = vnrepinien [ 1as,) 210 = vepinten 2, 1
Selecting p’ = p/2 and for |h| < p/2, we obtain
2 2 2
lo = vnllZam, 0y < 2[1v = vhreninten |2 s,y + 210 = Veninten | 25, -

Applying this estimate with v = VU and using that h + cp|hlep € D and cplhlep € D, we get from
(3.11) that

9 ~
HVU - VUhHLg(B:/z) 5 |h| CIQJ,F,f'
The fact that Q is a Lipschitz domain implies that the value of p and the constants appearing in the
definition of the truncated cone C' can be controlled uniformly in z¢ € . Hence, covering the ball B,z
(with twice the radius as the ball Bg) by finitely many balls B,,/5, we obtain with the constant N (U, F, f)
of (3.7)
2
(3.12) IVU = VU125, < 7] N*(U,F, f)

for all h € R? with |h| < §' for some fixed §’ > 0.
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Step 6: (H'(Bjy)-estimate). For ¢ < 1/2, we estimate with the Aronstein-Slobodecki seminorm

/ VUG )l s, dy < / / / _ EE dh dz dy.
R+ RJr CEGBE ‘h‘SZR

The integral in h is split into the range |h| < € for some fixed ¢ > 0, for which (3.12) can be brought to
bear, and € < |h| < 2R, for which a triangle inequality can be used. We obtain

| VUC By dy S NOELD [ B VU s, [ B dn
R4 ) |h|<e e<|h|<2R

S N*(UF, f),

which is the sought estimate. ]

Remark 3.4. The regularity assumptions on F' and f can be weakened by interpolation techniques
as described in [Sav98, Sec. 4]. For example, by linearity, we may write U = Up + Uy, where Ur and Uy
solve (3.5) for data (F,0) and (0, f). The a priori estimate (3.4) gives |[VUy||L2 maxr,) < Clflla—+(0)
so that we have

/R VU)o 49 < Co (VU1 oy + 1l IVUll 2 o))
.
S r—s ) + I L@ 1 L+ @) S W f 1@ I fll -+ 0)-

By, e.g., [Tar07, Lemma 25.3], the mapping f + Uy then satisfies
2 2
/ VUL A S oy

where Bé,/f_s(ﬂ) = (H™%(2),H'*(2))1/2,1 is an interpolation space (K-method). We mention that
3217/12_8(9) C H'Y?757¢(Q) for every ¢ > 0.

A similar estimate could, in principle, be obtained for Up; however, the pertinent interpolation space
is less tractable. .

3.2. Interior regularity for the extension problem. In the following, we derive localized inte-
rior regularity estimates, also called Caccioppoli inequalities, for solutions to the extension problem (3.5),
where second order derivatives on some ball Br(x¢) C € can be controlled by first order derivatives on
some ball with a (slightly) larger radius.

The following Caccioppoli type inequality provides local control of higher order z-derivatives and is
structurally similar to [FMP21, Lem. 4.4].

LeEMMA 3.5 (Interior Caccioppoli inequality). Let Br := Bgr(zo) C Q C R? be an open ball of
radius R > 0 centered at xg € ), and let B.r be the concentric scaled ball of radius cR with ¢ € (0,1).
Let ¢ € C§°(Bg) with 0 < ¢ <1 and ¢ = 1 on Beg as well as |V{| 1=y < Ce((1 = c)R)™ for
some C¢ > 0 independent of ¢, R. Let U satisfy (3.5a), (3.5b) on B}, with given data f and F (see
Remark 3.2(iii)).

Then, there is Cint > 0 independent of R and ¢ such that fori e {1,...,d}

(813) 100 (V)3 ) < Cle (1= OR)2IVUIT gty + 100 S oy + IF W2 1)) -
In particular, [|(0z, fllg-+) < ClocllO; fllL2(BRr) for some Cioe > 0 independent of R, c, and f (cf.

Lemma A.1).

Proof. The function ¢ is defined on R?; through the constant extension we will also view it as a
function on R? x R,. With the unit vector e,, in the x;-coordinate and 7 € R\{0}, we define the
difference quotient

w(x + Tey,) — w(x)

DI w(z) =

Tq

10
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For |7| sufficiently small, we may use the test function V' = D_7(¢(>*D7 U) in the weak formulation of

(3.5) (observe that this test function is in H, o and has support in B}) and compute

iV = 5 (o — 7 (ule) — ula — e2,)) + (@) (w(z) — ulw +7e2,)) = D (DL, w).

Integration by parts in (3.5) over R? x R, and using that the Neumann trace (up to the constant d
from (2.9)) produces the fractional Laplacian gives

/ FVdxdy — 1 (=AYutrVdz = / y*VU - VVdz dy
RdXR+ ds R4 RdXR+

= / D7 (y*VU)-V(¢*D U) dx dy
RdXR+

= / L YDL(VU) - (C*VDI U +2¢V(D} U) dz dy
B

R
— [ v CDL(VU) DL (VU)dedy + [ 2°CVC- DL (VU)DLU dod.
BR BR

We recall that by, e.g., [Eva98, Sec. 6.3], we have uniformly in 7

(3.14) 1Dz, vl L2 @axry) < (10,0

|2 (RexR,)-

Using the equation (—A)%u = f on 2, Young’s inequality, and the Poincaré inequality together with the
trace estimate (2.7), we get the existence of constants C; > 0, j € {1,...,5}, such that
T 2 {07 T T
167 (VU2 ey < Ci (| [ 47CVC- DL (VU)DZU dedy| +
k2 LO( (BR) B+ 3 2
R

)

1
4 ||CD;-(VU)||2L§(B;;) + Oy ( ||VCHioo(BR) HD;UH;(BH

/ F D;7¢*D U da dy
RIXR ) )

+ ‘ / D] f(¢*D] u)dx
Rd

IN

FUF N2 190, (62D2, 0 s ey + D5 Lo

&Y )

1 - 2
< S ICDL (VD)2 )+ C (nva%w%)nwnia iy HIFIZ

A

+ 605 A o)
(27 1 2
5 ||CD U)||L§(B+) + C4<||V§LOC(BR)”VU”L2 B+) + HFH B+)
16D o IV CDE Dy e )
3 T
< 3¢z, (V0

+ cs(||v<||%w(BR)||VU||§g oy FIFIZ: e +1CDL )

Absorbing the first term of the right-hand side in the left-hand side and taking the limit 7 — 0, we
obtain the sought inequality for the second derivatives since ||V, g,y S (1 — c)R)~L. d

Remark that the constant Cing of (3.13) depends on s, due to the usage of (2.7) in the proof above.
The Caccioppoli inequality in Lemma 3.5 can be iterated on concentric balls to provide control of
higher order derivatives by lower order derivatives locally, in the interior of the domain.
COROLLARY 3.6 (High order interior Caccioppoli inequality). Let Br := Bgr(zo) C Q C R be an
open ball of radius R > 0 centered at xy € €2, and let B.r be the concentric scaled ball of radius cR with
€ (0,1). Let U satisfy (3.5a), (3.5b) on Bj, with given data f and F (cf. Remark 3.2(iii)).
11
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Then, there is v > 0 (depending only on s, 2, and c) such that for all B € N& with |8| = p, we have

(3.15) HafVU]|L2 < (W)PRP VU 72 52

(Bz) =

p
+3 ()0 R <|max||8 fI2. BR)+|nr|1i:?X1|8;7F||2LQa(B;)>.

Jj=1

Proof. We start by noting that the case p = 0 is trivially true since empty sums are zero and 0° = 1.

For p > 1, we fix a multi index § such that |5| = p. As the z-derivatives commute with the differential

operator in (3.5), we have that 92U solves equation (3.5) with data 9°F and 92 f. For given ¢ > 0, let
1-c¢

ci=c+(1—1) , i=1,...,p+1.
p

Then, we have ¢;11 R — ¢;R =

(1;6)3 and ciR = cR as well as ¢p41 R = R. For ease of notation and

without loss of generality, we assume that 5; > 0. Applying Lemma 3.5 iteratively on the sets B:Z g for
1 > 1 provides

2

||35VUHL§(BC+R)

<C? ’ X c2 ||oef|? o
(] R A e

< Cintp R_ngVUHQ +02 i Cintp 2p*2jR—2p+2jma ”317]0”2
“\1-9 B T e (1= o) iy 27 By yia)

» 2p—25—2 )
+Z( ) R |1

Inl=3 ~a(Bey im0

Choosing v = max(CZ,_,1)Cint/(1 — ¢) concludes the proof. d

4. Local tangential regularity for the extension problem in 2d. Lemma 3.3 provides global
regularity for the solution U of (3.5). In this section, we derive a localized version of Lemma 3.3 for
tangential derivatives of U, where we solely consider the case d = 2.

Lemma 3.5 is formulated as an interior regularity estimate as the balls are assumed to satisfy
Bpr(zg) C Q. Since u = 0 on Q€ (i.e., u satisfies “homogeneous boundary conditions”), one obtains
estimates near 02 for derivatives in the direction of an edge.

LEMMA 4.1 (Boundary Caccioppoli inequality). Let e C 0 be an edge of the polygon Q. Let
Bpgr = Br(xo) be an open ball with radius R > 0 and center xg € e such that Br(xo) N Q is a half-ball,
and let Ber be the concentric scaled ball of radius cR with ¢ € (0,1). Let { € C§°(Br) be a cut-off
function with 0 < ¢ <1 and ¢ =1 on Beg as well as [|[V{|| L=y < Cc((1 = c)R)™F for some Cc > 0
independent of ¢, R. Let U satisfy (3.5) on B} with given data f and F (cf. Remark 3.2(iii)).

Then, there exists a constant C' > 0 (independent of R, ¢, and the data F, f) such that

(4.1) ||D1HVU||L2 (54 < C’(((lfc) )2 IVUI s 52, + 1CDa, £, Q)+IIFHiga<B;)).

In particular, |(Dy fllz-+) < Clocll Dz fllL2(Brna) for some Cloe > 0 independent of R (cf. Lemma A.1).

Proof. The proof is almost verbatim the same as that of Lemma 3.5. The key observation is that
V=D." (C2DIH U) with the difference quotient

w(z + 7€) — w(x)

T

D7 w(r) =

Z

is an admissible test function. O

Iterating the boundary Caccioppoli equation provides an estimate for higher order tangential deriv-
atives.

12
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COROLLARY 4.2 (High order boundary Caccioppoli inequality). Let e C 9Q be an edge of Q. Let
Bpg = Bg(xzg) be an open ball with radius R > 0 and center xg € e such that Br(xo) N is a half-ball,
and let Ber be the concentric scaled ball of radius cR with ¢ € (0,1). Let U satisfy (3.5) on By, with
given data f and F (cf. Remark 3.2(iii)).

Let p € Ng. Then, there is v > 0 independent of p, R, and the data f, F' such that

(4.2) ||DchvUHL2(B+ ('Yp)QpR_QpHVU”ii(B;)

p
3 (20D R (||Dgc“f|\L2(BR)+|\DmH FI2, (B+)).

j=1
Proof. The statement follows from Lemma 4.1 in the same way as Corollary 3.6 follows from
Lemma 3.5. |
The term ||VU||L%!(B}+%) in (4.2) is actually small for R — 0 in the presence of regularity of U, which
was asserted in Lemma 3.3; this is quantified in the following lemma.
LEMMA 4.3. Let Sg = {z € Q : raa(x) < R} be the tubular neighborhood of Q of width R > 0.

Then, fort € [0,1/2), there exists Creg > 0 depending only on t and Q such that the solution U of (3.1)
satisfies

(4.3) R™H|IVUIIL, 54y < a0 VU Tz 0+) < CregCiN(U, P, f)

with the constant Cy > 0 from Lemma 3.5 and N?(U, F, f) given by (5.7).

Proof. The first estimate in (4.3) is trivial. For the second bound, we start by noting that the shift
result Lemma 3.3 gives the global regularity

(4.4) / Y IVU )0y dy < CNA(U, F, f).
+

For t € [0,1/2) and any v € H!(Q), we have by, e.g., [Grill, Thm. 1.4.4.3] the embedding result
Iragvllzz@) < Cregllvllare(). Applying this embedding to VU(:,y), multiplying by y®, and integrating
in y yields (4.3). |

The following lemma provides a shift theorem for localizations of tangential derivatives of U.

LEMMA 4.4 (High order localized shift theorem). Let U be the solution of (5.1). Let zy € e
for an edge e € £ of the polygon Q). Let R € (0,1/2], and assume that Br(zo) N Y is a half-ball. Let
Ne € C3°(Br(x0)) with [V 0|l Lo (Bawe)) < CnR™7, j € {0,1, 2}, with a constant Cy) > 0 independent of
R. Letn, € Cg°((—H, H)) withn, =1 in (—=H/2,H/2) and ||0)ny | Lo (—m,m) < CpH ™7, with a constant
Cy, > 0 independent of H. Let n(x,y) := n.(z)ny(y). Then, fort € [0,1/2), there is C' > 0 independent
of R and xq such that, for each p € N, the function U® = ann U satisfies

(4.5) / K

where 7y is the constant in Corollary 4.2 and

~ 2 ~
U(p)("y)HHtm) dy < CR™#7H2 (yp)? (1 4 yp) NP)(F, ),

~ 2 2
(4.6) N@)(F, f) = [z ) + HF”LEQ(RZX(O,H))
p+1
+ Z yp)~ (23 max ||66f|\L2(Q + 2771 Iﬁrlnax HaﬂFHLQ (R2 % (0, H)))
In addition,
(4.7) / Y o VTP ()32 ) dy < CR™2P712 (4p) P (1 + 4p) NP(F, f).
R4

Proof. We abbreviate UQEIHJ) =D U, U@ (z,y) = (@)D}, Uz, y), Fz(H) DE F, and f(p) DE,
Throughout the proof we will use the fact that, for all j € N and all sufficiently smooth functlons v, We
have

|DI v| < 27/2 max |0Pv).
Bl=j

Tyt = |

13
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We also note that the assumptions on 7(z,y) = 1, (x)n, (y) imply the existence of C,, > 0 (which absorbes
the dependence on H that we do not further track) such that

(4.8) V200 0| Lo ra ey < CuR™T,  j €{0,1,2},5" € {0,1,2}.

Step 1. (Localization of the equation). Using that U solves the extension problem (3.5), we obtain that
the function U® = nU,Eﬁ ) satisfies the equation

div(y> VU ) =y div, (V,UP) + 9, (y0,0®)
=y (AU + 2V, VoUD + 08, ULD ) + 00, (50,0040, (y* UL yn) + 50,08 0n

|| Z Z| i ol

=y (AU + 2V, V,UD) 40, (" UL yn) + 50,00 9y + n div(y* VUL

Z ol ol

=y~ ((A MUP) +2V,n-V, U(”))+8( UP ) +y*0,UP 0, + nFP) = F®

dl dl
as well as the boundary conditions
O TP (-,0) = n(-,0) DY f = f@ on Q,
trU® =0 on 2°.

By the support properties of the cut-off function 7, we have supp F® ¢ Br(zo) x [0, H] € R? x [0, H].
By Lemma 3.3, for all ¢ € [0,1/2), there is a Cy > 0 such that

(4.9) / v IVTD () 3 dy < CNHT P, F®), f0)),
Ry
where B is a ball containing Q. By (3.7), we have to estimate NQ(ﬁ(p), F@®), f(”)), ie., 2 (R2xR,)>

| F® 22 (2% (0,m))> and | @ |15 (q)- Let v be the constant introduced in Corollary 4.2. We note that
by (3.8) there exists Cy > 0 such that, for all p € Ny,

(4.10) N2(U,F, f) < CyNP(F, f).

Step 2. (Estimate of | VU ® ||L2 (R2xR.))- We write

IVTP1Z2 g2 xr,) < 20Vl VUL VN7, o) + 200l 3 VDI, )

Z

(4.11) <202 (R2INUL VN2, ) + IVUD 2, ) ) -

We employ Corollary 4.2 with a ball Bap and ¢ = 1/2 as well as Lemma 4.3 to obtain for p € Ny

VU1, gy < R ) (901 +Z2R 02 (104, 7y + D2 F I )
< R 2p<w>2p(||w|m o)

p
QZ (2R) 2(j—1) “Yp) 2](2] ‘max ||6ﬁf||L2(Bzg)+2j 1‘ﬂmax Haﬁ ||L2Q(B§R)))
j=1

R<1/2,L.4.3
<

(28)72(19)* ( (CresCiR*+(2R)?2y™%) N*(U, F, f) + (2R)*NV)(F, f))

(4.12)
Y o R) 20 ()2 (Crog Co(1 + 8972 + 4) RN (F
= ( ) (p) ( reg t( Y ) N ) ( 7f)

:3Creg,N

For p € N, we apply (4.12) to the (p — 1) derivative and exploit the structure of the expression
(v(p = 1)) 2NETI(E, f) to get

||VU(p 1)

) ||L2 (B+ — (QR) 2(p 1)Oeg N( ( - 1))2(17_1)]’\7(1)_1)(}77 f)

(4.13) < (2R)"HP "D oy xR (yp) P NW)(F, f).

14
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581 Inserting (4.12) and (4.13) into (4.11) provides the estimate
283 VTP |32 g2 xm, ) < CR™F2 (4p)* N®)(F, f)

584 with a constant C' > 0 depending only on the constants Cig, Ct, CN’,], and Cy.
585 Step 3. (Estimate of ||[F®)]|,2 (R2xR,)). We treat the five terms appearing in |F® M| z2 _(RxRy)
586 separately. With (4.12), we obtain

2
o a . (p) — . (p) 27 U@
o ‘y Vet - Vol 2 (R?x(o,H))_va Ve Ux” L2 (R2xR) C”R2 HVz P llL2 (B
(4.12)
S8 < (2R)P(1p) P C2Creg RN (F, f).
590 Similarly, we get
2
5 Agn (p) — H A, ) Hv =1 ’
91 ( )UIH L2 (RZX(O,H)) ( 77) x| Li(BE) — "7R4 ) L?X(B;)
(4.13)
503 < A(2R) " (yp)* C2CregnR P N(F, f).
594 Next, we estimate
595 IEPN 2 g2 o,y < IEDNZ. =Y maXHBBFHLz ) S < (yp)PPPNW(E, ).

596 18]

597  Finally, for the term 9, (y* Uggﬁ)ayn) + yaayUgEﬁ)ayn, we observe that dyn vanishes near y = 0 so that the
598  weight y® does not come into play as it can be bounded from above and below by positive constants
599 depending only on H. We arrive at

600 Ha y* UL dyn) + y*9, UOE’”’ yn‘

il

< C(H_2||U£ﬁ)|\L2(BRx(0 my) +H™ VoS ) ||L2 B+)>

(4.12),(4.13)

L% (R2x(0,H))

603 < Culw)"RPHNCNE ),

603  for suitable Cy > 0 depending on H.

604 Step 4. (Estimate of || f(")||1-.(q).) Here, we use Lemma A.1 and R < 1/2 together with s < 1 to
605 obtain

606 Hf(p)H%rlfs(sz) < 20100 202 (9R29 2||Dwuf||L2 @t |D:va|§-I1*S(Q))

< CCp,CRR> 72 (2 o fl7 vt afl7

60 < CC e 2l f;gll e fll220) + |5I\Ii%}i1 195 fll72(0)

0 < OCRe 2O R* 2 (4p) (L + ()" )NW(F, f)

610 with a constant C' > 0 depending only on 2 and s.
611 Step 5. (Putting everything together.) Combining the above estimates, we obtain that there exists
612 a constant C' > 0 depending only on Cieg, Ct, Cp, Cn, Cloc,2, and H such that

613 NQ(ﬁ(P), F®), J?(p))

614 = (||Vﬁ(p)||2Lg(R2xR+) + IVUP || 22 2 xr ) IF Pl 12 w2 (0,m1)) + HVU(p)||Lg(R2xR+)||f(p)||H1—s(Q))
615 < C (R (yp)* + R™H (yp)? B2~ (yp)P (1 + yp) + R (yp)? R*™ (vp)? (1 + yp)) NV (F, f)
R<1,t<1/2 ~
616 < CR77U2(yp)® (14 yp) NP(F, f).
618 Inserting this estimate in (4.9) concludes the proof of (4.5).
619 Step 6: The estimate (4.7) follows from [Grill, Thm. 1.4.4.3], which gives
2 Nrak VU P (-, 9) |22y dy < C VTP ()20 d
620 ¥ a0 ( 7y)HL2(Q) Y= vl ( ay)HH"(Q) Y,
Ry Ry
621 and from (4.5). d
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Fig. 2: Covering of “vertex cones” such as wy by union of balls B, (s,)(%;) with fixed ¢ € (0,1).

5. Weighted HP-estimates in polygons. In this section, we derive higher order weighted reg-
ularity results, at first for the extension problem and finally for the fractional PDE. This is our main
result, Theorem 2.1.

5.1. Coverings. A main ingredient in our analysis are suitable localizations of verter neighborhoods
wy and edge-vertex neighborhoods wye near a vertex v and of edge neighborhoods we near an edge e. This
is achieved by covering such neighborhoods by balls or half-balls with the following two properties:
a) their diameter is proportional to the distance to vertices or edges and b) scaled versions of these
balls/half-balls satisfy a locally finite overlap property.

We start by recalling a lemma that follows from Besicovitch’s Covering Theorem:

LEMMA 5.1 ([MW12, Lemma A.1], [HMW13, Lemma A.1]). Letw C R? be bounded, open and M C

Ow be closed. Fiz c, ¢ € (0,1) such that 1 —c¢(14 ) = ¢o > 0. For each x € w, let B, = Pcdist(m’M)(x)
be the closed ball of radius cdist(xz, M) centered at x, and let Em = §(1+§)cdist(z,M)(x) be the stretched
closed ball of radius (1 + ¢)cdist(x, M) centered at x. Then, there is a countable set (x;)iex C w (for
some suitable index set T C N) and a number N € N depending solely on d, ¢, ¢ with the following
properties:

1. (covering property) \J, Bz, D w.

2. (finite overlap) for x € R? it holds that card{i|x € Em,} <N.

Proof. The lemma is taken from [MW12, Lemma A.1l] except that there z € w in the condition
of finite overlap is assumed. Inspection of the proof shows that this condition can be relaxed as given
here. Note that the proof of [MW12, Lemma A.1] required the balls B,, to be non-degenerate, which is
ensured in the present setting of M C Jw. ]

In the next lemma, we introduce a covering of wy, see Figure 2.

LEMMA 5.2 (covering of wy). Given v € V and £ > 0, there are 0 < ¢ < ¢ < 1 and points
(zi)ien C wy=w§ such that the collections B == {B; = Bedist(s:v)(%:) |7 € N} and B = {B; =
Be dist(z;,v)(wi) |1 € N} of (open) balls satisfy the following conditions: the balls from B cover wy; the
balls from B satisfy a finite overlap property with overlap constant N depending only on the spatial
dimension d = 2 and ¢, ¢; the balls from B are contained in 2. Furthermore, for every 6 > 0 there is
Cs > 0 (depending additionally on &) such that with the radii R; = ¢dist(z;,v) it holds that

(5.1) > R <Cs.

Proof. Apply Lemma 5.1 with M = {v} and sufficiently small parameters ¢, { > 0. Note that by
possibly slightly increasing the parameter ¢, one can ensure that the open balls rather than the closed
balls given by Lemma 5.1 cover wy,. Also, since ¢ < 1, the index set Z of Lemma 5.1 cannot be finite so
that Z = N.

To see (5.1), we compute with the spatial dimension d = 2

finite overlap

Z Rf = ZRf_de < Z /A rf,fd dx < / rf,fd dz < oco. d
i i i /B Q

We now introduce a covering of edge-vertex neighborhoods wye. We start by a covering of half-balls
resting on the edge e and with size proportional to the distance from the vertex, see Figure 3 (left).
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Fig. 3: Covering of wye. Left: the half-balls H; constructed in Lemma 5.3. Right: covering of H; by
balls B;; such that the larger balls B;; are contained in a ball H;. For better illustration, only the larger

balls B;; are shown, the balls B;; are included therein and still provide a covering of H;.

LEMMA 5.3 (covering of wye). Givenv €V, e € E(v), there is £ > 0 and parameters 0 < c < ¢ <1
as well as points (x;);en C e such that the following holds:
(i) the sets H; = By dist(x; v) (2:)NQ are half-balls and the collection B :== {H; |i € N} covers wye= wi,.
(ii) The collection B = {ﬁl = Badist(z;,v) (i) N Q} is a collection of half-balls and satisfies a finite
overlap property, i.e., there is N > 0 depending only on the spatial dimension d = 2 and the
parameters c, € such that for all x € R? it holds that card{i|z € H;} < N.
Furthermore, for every 6 > 0 there is Cs > 0 such that for the radii R; = ¢dist(x;,v)(x;) it holds that
> Rf < Cs.
Proof. Let € be the (infinite) line containing e. We apply Lemma 5.1 to the 1D line segment
e N B¢(v) (for some sufficiently small ) and M := {v} and the parameter ¢ sufficiently small so that
B dist(w,v) () N is a half-ball for all 2 € e N Be(v). Lemma 5.1 provides a collection (x;);en C € such
the balls B; = B qist(z,,v)(%i) C R? and the stretched balls B; = Be(14¢) dist(zsv) (Ti) C R? (for suitable,
sufficiently small () satisfy the following: the intervals {B; Ne€|i € N} cover B¢(v)Ne, and the intervals
{Ez Neli € N} satisfy a finite overlap condition on €. By possibly slightly increasing the parameter
c (e.g., by replacing ¢ with ¢(1 + ¢/2)), the newly defined balls B; then cover a set w$, for a possibly
reduced £. It remains to see that the balls El satisfy a finite overlap condition on R?: given x € EZ—, its
projection z, onto e satisfies 7o € B;Ne since z; € e C €. This implies that the overlap constants of the
balls B; in E&Q is the same as the overlap constant of the intervals B;Ne in €. The half-balls H; := B; N}
and H; := B; N have the stated properties.
Finally, the convergence of the sum ), Rf is shown by the same arguments as in Lemma 5.2. O

We will also need a covering of the half-balls H; constructed in Lemma 5.3, which we introduce in the
next lemma. See also Figure 3 (right).

LEMMA 5.4. Let B={H;|i € N} and B = {H; |i € N} be constructed in Lemma 5.3. Fiz a ¢ € (c,?)
with ¢, ¢ from Lemma 5.3 and define the collection B = {.FNIZ = B (a;) (i) N Q|1 € N} of half-balls
intermediate to the half-balls H; and ﬁz

There are constants 0 < ¢ < ¢1 < 1 such that the following holds: for each i, there are points
(xij)jen C H; such that the collection B; == {B;; = Bclre(xij)(xij)} covers H; and the collection B; =
{Bij = Bz ro(x,;)(wij)} satisfies Bi; C H; for all j as well as a finite overlap property, i.e., there is
N > 0 independent of i such that for all x € R? it holds that card{j |z € Eij} < N.

Proof. We apply Lemma 5.1 with M = {e} and w = H,. The parameters ¢ and ¢ are chosen small
enough so that the balls B, in Lemma 5.1 satisfy ﬁm C H,. Then, the lemma follows from Lemma 5.1.0

5.2. Weighted HP-regularity for the extension problem. To illustrate the techniques, we
start with the simplest case of estimates in vertex neighborhoods wy. It is worth stressing that we have
Te ~ Ty on Wy .

The following lemma provides higher order regularity estimates in a vertex weighted norm for solutions
to the Caffarelli-Silvestre extension problem with smooth data.

LEMMA 5.5 (Weighted HP-regularity in wy). Let wy= w$ be given for some & >0 and v € V. Let
U be the solution of (3.1). There is vy > 0 depending only on s, 2, and wy and for every e € (0,1), there

17
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728
729

oI B S (R B |
W W W oW W W

exists C. > 0 depending on ¢, 2, H such that, for all 3 € N2 with |3| = p € Ny,

I 13282, g, < O QP(anlm P22 ooy

p+1

Proof. The case p = 0 follows from Lemma 4.3 and the estimates (3.7), (3.8). We therefore assume
peN. ~
Let the covering wy C |J; B; with B; = B gist(a,,v)(2:) and stretched balls B; = Bz gist(a,,v) (2i) be

given by Lemma 5.2. It will be convenient to denote R; := ¢dist(x;,v) the radius of the ball B; and to
note that, for some Cp > 0,
(5.2) VieN VoeB; Cg'R;<ry(z)<CpRi.

We assume (for convenience) that R; < 1/2 for all 4.

Let 8 be a multi index such that || = p. By (4.10) there is Cy > 0 such that N?(U, F, f) <
CNN(p)(F f) for all p € Ng, where N® is defined in (4.6). We employ Corollary 3.6 to the pair (B;,
B;) of concentric balls together with Lemma 4.3 for ¢ = 1/2 — /2 and N2(U, F, f) < Cx N®)(F, f) to

obtain, for suitable v > 0,

2 _ _ ~
HaﬂgVUHLg(B;r) < 4*PF1R; 2p+1 spsz(p)(R ).
Summation over i (with very generous bounds for the data f, F') and (5.2) provides

=22 OIVUIT, () < CF “%ZR” N0V UL (5

< yPPHICETpP < > Rf) N@(F, f)

< C(rCp)2 1 2p{||f||H1(Q) FIFIZ: o)

p+1

since ), RS =: C. < oo by Lemma 5.2. Relabelling vCp as ~y gives the result. |
We continue with the more involved case of edge-vertex neighborhoods.
LEMMA 5.6 (Weighted HP-regularity in wye). Let & > 0 be sufficiently small. There exists v > 0
depending only on s, &, and Q and for any € € (0,1), there exists Ce > 0 depending additionally on ¢,
and H such that the solution U of (3.1) satisfies, for all py, p1 € No with p=p; +pL

e/ o pliy |

L2 ((w%e) )
p+1

., 2 2
< Cor™ 15 1B+ I oy + Do (102 oy + o IZFIE ey ) |
=2

Inl=

Proof. As in the proof of Lemma 5.5, the case p = 0 follows from Lemma 4.3 and the estimates (3. 7)
(3.8) so that we may assume p € N. By Lemma 5.4, for suﬁi(nently small £, there is a covering of w$,
by half-balls (H;);en with corresponding stretched half-balls (HZ)ZGN and intermediate half-balls (HZ)ZGN
such that each H; is covered by balls B; := {B;; | j € N} with the stretched balls Blj satlsfymg a finite

overlap condition and being contained in H,. We abbreviate  the radii of the half-balls H and the balls
Bl] by R; and R;; respectively. We note that the half-balls H and the balls Bw satisfy for all 7, j:

(5.3) Vee H;:  Cg'R; <ry(z)<CpR,
(54) Vo S Eij . CElRl‘j S Te(l‘) S CBRZ‘j
18
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740
741

746

763

for some Cz > 0 depending only on w,. For convenience, we assume that R; < 1/2 for all i and that
hence R;; < 1/2 for all 4, j.
Let p, p1 € No. Since the balls (B;;); jen cover wi,, we estimate using (5.3), (5.4)

H“’L V/2+e/2, 01 pra pl VU‘ 2
Lz (st

2p ) —14+e+2p|+2¢ 2p+2¢ n2p | —1+4e P 2
(5.5) <Cp D R R~ HD“DIHVUHLg(B;)'
4,J

With the constant v > 0 from Corollary 3.6, we abbreviate

pL
p ) —2n P P|
N S(ES) = Z('Vpi) (?i’i”angme(B”) +| 1nax HanD“JHFHL2 (B”x(O,H))>’
n=1
(1) o 2 2
A (P — -2 Il P
NH(R f) = ;(W’pﬂ " <I}?§’T{L HangufHLz(ﬁi) + mﬁi}il Ha;]DxIIFHL2a(ﬁix(O,H))) :
Applying the interior Caccioppoli-type estimate (Corollary 3.6) for the pairs of concentric balls (B;;, )

ij
(which are fully contained in ) and the function Df-""U (noting that this function satisfies (3.5) Wlth
data Dg”f, Dg"" F) provides (we also use R; <1/2 <1)

(5.6) HDMVD;’\\UHLQ(B+ < 9Pt max ||8§VD§HUHL2(B+

_ 2 —~
< (V2ypL ) R < |V Dz Ul L2 B T RLNH(F, f)>

(OS Cl s(\[’YpL)QpLR 2p1+1— E(H 71/2+5/2VDPH

+

+REENIY (R, f)> :
Inserting this in (5.5), summing over all j, and using the finite overlap property as well as R;; < R;
yields

+e
rzu 1/2+€/2 pII D;DLDgl‘l‘ ‘

L2 (w¥e) )

2 2 2e 2 2e _ <
(5.7) < C,Bm+ P+ (\/§7PL)2M ZRipll+ (||7’e 1/2+e/2VD§C’\|\|UHL2 i + Ri1+ENi(pJ—)(F7 f)) 7

with the implied constant reflecting the overlap constant. Using again R; < 1, we estimate the sum over
the NZ-(M)(F, f) (generously) by

pL
2p 42 - —om
STRPVTERIFENID(E £ <Y (pr) (mifl”agDZ"fniz(n)‘Fnn_lifl||82D§"F||%2_Q(Qx(o,H))>'

7 n=1

The term involving ||re UZJFEVD?;” U||L2 ()
Lemma 4.4 for p > 0. Considering first the case p| = 0, we estimate using the finite overlap property
of the half-balls H; and roa < Te

in (5.7) is treated with Lemma 4.3 for the case pj = 0 and

2426 _1/24e/20 Pl finite Ovcgapmuzo C1/24e)2 ) L<43 ,
ZRi H/re vaHU||L2 H+) ~ HT@Q vU“Li(Q+) ~ N (U7F7f)

For p > 0, we use Lemma 4.4. To that end, we select, for each i € N, a cut-off function 7; € C§° (R?)
with suppn; N1 Q C H; and n; = 1 on H;. Applying Lemma 4.4 with ¢ = 1/2 — ¢/2 there and using the
finite overlap property we get for T}i(p”) = mDi“ U and N®(F, f) from (4.6)

21 +2 _ 2p+2 -
ZRZ-p” 6||7"e 1/2+5/2VD5”U”L2 (H+) < ZR P 5” 1/2+€/2VU(pII)HL2 (H+

2 2e—2p—142(1/2—€/2 ~
<SRRI )(7p|\)2””(1+7p||)N PO(F, £) S (vp)) PV (1 + vp) ) N®D(F, f);
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799

here, we used that ), RS < co by Lemma 5.3.
Combining the above estimates we have shown the existence of C' > 1 independent of p = p| +pL
such that

‘r“ 1/2+¢/2, 00 pre R vy ‘
! L2 ((whe) >
2p+1 | 2 2p|+1 2p, —2 DI |12 D)
<o l Ty N®O(F, f) +Zp - n(?iﬁ”‘agDrlfHLz(m +| max HanDTHFHLZ L (R2x(0, H)))] :
n=1

For p; > 1 we estimate with p; <p

pPL p
S pire max ax |9 D%) 720 <Zp2<“ ™) max ax 01D%) [l < D pﬂmma_o;nam%m)
n=1 n=1 J=1+p| B

1l

and analogously for the sum over the terms max|,—,_1 [|0J Dz, F||?, (R2x Also by similar ar-

(0,H))"
guments, we estimate pﬁp”]v(p“)(F,f) < pQPIIJV(p)(F,f). Using p| +p1L = p as well as |Dva| <
2op)|/2 max|g|—p, |8%v| completes the proof of the edge-vertex case in view of the definition of N®)(F, f)
from (4.6) and by suitably selecting ~. O

LEMMA 5.7 (Weighted HP-regularity in we). Given & >0 and e € £, there is v depending only on
s, Q, and we= w§ such that for every ¢ € (0,1) there is C. > 0 depending additionally on & and H such
that the solution U of (3.1) satisfies, for all p, p1 € No with pj +p1 =p

Tpy

HTPJ. 1/2+5DPJ_ DI

L2 (wd)
- ; 2 2
< 0572p292p(||f||?11(9) + ||F||2L§a(R2x(o,H)) + ZPQJ (Irgli); ”agf”L?(Q) + |UI|IE;}£1 Ha;c]F”Lia(RZX(O,H)) ))
J=1 B B
Proof. The proof is essentially identical to the case p| = 0 in the proof of Lemma 5.5 using a covering
of we analogous to the covering of w, given in Lemma 5.2 that is refined towards e rather than v, see

Figure 4. ]

Fig. 4: Covering of edge-neighborhoods we.

Remark 5.8. The assumption that ¢ is sufficiently small in Lemma 5.6 can be dropped (as long as
wye 1s well defined, as per Section 2.2). Indeed, for all &1, & such that & > & > 0 there exists &3 > &
such that

(5.8) wih C (Wi Uwd Uws).
In addition, there exists a constant C¢, > 0 that depends only on {3 and € such that

“TgL*1/2+ET€||+EDPLDp|| VU”zL < P lrélax ||ppe—1/24e p”“aﬁVUH

(5.9) Tp) 2 (w§)+) LE((@3)h)
. p+1 p—1/2+e 5B
< G e TPV UL, (o
and that
pL—1/2+e,. PH+€ pL HPI Pl H pL=1/24e ppL phl ‘
(510) ||7“ D szH VU||L2 (( 53)+) S C ’I" D sz” Li((w?)*) .
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Given & > 0, bounds in wél can therefore be derived by choosing ¢» such that Lemma 5.6 holds in
w2, exploiting the decomposition (5.8), using Lemmas 5.5 and 5.6 in w$® and w§?, respectively, and
concluding with (5.9) and (5.10). .

5.3. Proof of Theorem 2.1 — weighted HP? regularity for fractional PDE. In order to obtain
regularity estimates for the solution u of (—A)*u = f, we have to take the trace y — 0 in the weighted

HP-estimates for the Caffarelli-Silvestre extension problem provided by the previous subsection.

PROPOSITION 5.9. Under the hypotheses of Theorem 2.1, there exists a constant 7 > 0 depending
only on vy, s, and Q such that for every € > 0 there exists C. > 0 (depending only on ¢ and Q) such
that for all p € N

(5.11a) H S1/2re - s+sD§H ’ » )_Cg,yp-i-lpp’
and, for all p| € No, p1. € N with py +p1 = p,

pL—1/2—s+e PH+€ pL Pl b+l p
(5.115) ’r o D1 Dayu ‘szve) < CAPTph

Moreover, for all B € N with |3 =p > 1 and all py € No, p1. € N with py +pL =p,

< CeAPHipP,

5.12 H p=1/2=s+ef ‘
5.12) oo s

(5.13) ’

p1L—1/2—s+ep P p+1, p
PP D LDQUH HLZ(%) < CAPTpP.

For p| € N, we have

71/2+5DPH

(5.14) ‘ Py, ‘

= Ca'}/erlpp'

L2(we)
Finally, for the interior part Qin, and all p € Ng and 3 € N2 with |8| = p, we have

(5.15) H@fu”m Q) S < AP HLpP.

Proof. We only show the estimates (5.11a) and (5.11b) using Lemma 5.6. The bounds (5.12) (using
Lemma 5.5) and (5.13), (5.14) (using Lemma 5.7) follow with identical arguments. The bound in Qjy; fol-
lows directly from the interior Caccioppoli inequality, Corollary 3.6, and a trace estimate as below. (Note
that the case 3| = 0 follows directly from the energy estimate |lul|r2(q,.) < [ull 7. (o) < ClfllH-:(2)-)

Due to Lemma 5.6, applied with F' = 0, and the assumption (2.10) on the data f, there exists a
constant C' > 0 such that for all ¢, , ¢ € Ng and g1 + ¢ = ¢ € Ng we have

(5.16) ‘

_ +e
TqL 1/2+a ‘ZH qi Dg‘l‘l VUH 02q+1q2q.
wve

The last step of the proof of [KM19, Lem. 3.7] gives the multiplicative trace estimate

(5.17) V(2 0)P < Cue (IV @ M1z 10,V ) ey + IV ) ) )

where, for univariate v : Ry — R, we write ||v]|2, ®y) = fyoio y|v(y)|? dy.

We have p = p. +p > 1. Suppose first p; > 1 and p; > 0.  Using the trace estimate (5.17)
with V' = DP+ Dg“ U and additionally multiplying with the corresponding weight (using that o = 1—2s)
provides

r2pL1m2e42e I pps DRI (2, 0)]

11—« 1+«

< O | VDL DY UG, |

P2 D DY VU o, )|

LZ(Ry) LZ,(Ry)

PP 1/2—s+e p\\+€vD1)L 1D§”U( )‘2

+Ct ’ )
L2 (Ry)
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where we have also used the fact that (D, v)? = (e -V,v)? < |V,v|? for all sufficiently smooth functions
v. Integration over wye together with ro% < rot gives

2

_ _ p|te P
rbt 1/2=s+e, Dl Dngm”u
L2 (wge)

-«
— p|+e —1nP
‘,rgl 3/2+ETVH ng: 1D7:HVU‘ )
L2 (wve)
2

1+«
—1/2+4¢€, P|TE p U
TZJ‘ / E’I"V” DpEJ‘ Dz” \% ‘

<C
= Yitr Li(wje)

—1/2— p|+e -1 P
+Cop || 2ot D Dl v |

L2 (w3e)

(5.16)
< Ctr(c2p_1(p _ 1)2(;)—1))(1—a)/2(C2p+1p2p)(1+o¢)/2+CCtrcv2p—1(p _ 1)2(17—1)

— Ctr02p+1+ap2p+o¢ 4 Otr02p71p2pgfy2p+1p2p

for suitable v > 0, which is estimate (5.11b). If p; = 0, then pj > 1 and we have instead

2

— p||—S+E P
po1/24e, D) Da:Hu‘

L2(wye)
11—« 14+«
—1/24¢, Pl 1teg P -1
< Cur Hre LA L2

2
_ p|—s+e p—1
+Cu||re e T DY T | .
L, ()

- P|+€ P
rg 2l Dl v |

L2 (wde)

Again, inserting (5.16) into the right-hand side and proceeding similarly as above proves (5.11a). d
We now apply Proposition 5.9 to show our main result.

Proof of Theorem 2.1. Proposition 5.9 already covers most of the statements in Theorem 2.1. Only
some lowest-order cases p = 0 or p; = 0 are missing. We consider the three inequalities (2.11), (2.12),
and (2.13) separately by using a Hardy inequality and then appealing to Proposition 5.9.

Proof of (2.11). Equation (2.11) with p = 0 follows from the weighted Hardy inequality [KMR97,
Lem. 7.1.3], which provides

_ _ _ Prop. 5.9
”,r,v 1/2 s+€uHL2(wv) < OH,1||’I"‘1,/2 S+EVU”L2(wV) < 0.

Proof of (2.12). Let (x1,z)) be the coordinate system associated with edge e. For p, £ > 0
sufficiently small and an interval I, of length ;1 consider

wt C {(wi, )z ely,zy € (0,62)} = @5+

The interval I, is chosen such that w§ C @3 and w§* stays away from the vertices V and the edges
&\ {e} so that the assertions of Proposition 5.9 still hold for @$*#—cf. Remark 5.8. We will show (2.12)
for We (dropping the superscripts &, ).

Let u be the function such that @(x1,z)) = u(x1,22) in We. By Fubini-Tonelli’s theorem, for almost
all T € IM’

(5.18) (mL s pl/2mstep (Di’{\ u)(zy, x|)> € L2((0,£%)).

The fundamental theorem of calculus, the Cauchy-Schwarz inequality, and (5.18), imply that, for almost
all z; € I, one has for € < s that (Dg” a)(-, @) € CO*([0,£%]). Asu € H*(£2), we infer the pointwise
equality (Dg“ ©)(0,2)) = 0 for almost all ;. We can apply [KMR97, Lem. 7.1.3| again, in one dimension:
for almost all x| € I,

Irg /2= (D @) (a2 .62y < Crallre> T (Do, D2V () L2 (0.62))-

Squaring and integrating over x| € I,, concludes the proof of (2.12).
Proof of (2.13). We use the same notation as in the previous part of the proof, but assume
that the coordinate system (z1,72) and the coordinate system (z.,x|) associated with edge e satisfy
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x; =z and x3 = 2. Correspondingly, we assume I,, = (0, ). We introduce the equivalent edge-vertex
neighborhood

5t ={(zr, ) xy € (0,p), 21 € (0,8x))}.
We remark that in Wye there exists ¢ > 1 such that for all (z1,2)) € Wye
(5.19) x) < TV(Z‘H,J‘L) < cz.

We note re(21, 7)) = 2. Hence, for almost all ) € (0, i),
(520) (.’L’L — 7”(13/275+6(D1J_ (DZ““ ﬂ))(l’L, x|)> S L2((0, £$H))

By the same argument as above, it follows that, for almost all z € (0,u), we have (DZH u)(-,z)) €

C%57¢([0,&zy]) and hence (D;)H u)(0,z) = 0. Therefore, [KMR97, Lemma 7.1.3] gives for almost all
) € (0, ),

lrg 2ot (D) (- ) 20,60y ) < Cusllre’> < (Da, DRV )| 20,62 )

with constant Cy 3 independent of x| . Multiplying by re”—H, squaring, integrating over ) € (0, 1), and

using (5.19),
—-1/2— + ~ - + ~
||7“e 1/2 s+er€H 6D§”“||L2(&ve) < Cp||+ECH73||7‘é/2 s+e,,,€H EDa:LDQHUHL%:;VE)-

This completes the proof except for the fact that the region wye \ Wye is not covered yet. This region is
treated with the observations of Remark 5.8. ]

6. Conclusions. We briefly recapitulate the principal findings of the present paper, outline gener-
alizations of the present results, and also indicate applications to the numerical analysis of finite element
approximations of (2.2). We established analytic regularity of the solution u in a scale of edge- and
vertex-weighted Sobolev spaces for the Dirichlet problem for the fractional Laplacian in a bounded poly-
gon Q) C R? with straight sides, and for forcing f analytic in €.

While the analysis in Sections 4 and 5 was developed at present in two spatial dimensions, we
emphasize that all parts of the proof can be extended to higher spatial dimension d > 3, and polytopal
domains Q C R?. Details shall be presented elsewhere.

Likewise, the present approach is also capable of handling nonconstant, analytic coeflicients similar
to the setting considered (for the spectral fractional Laplacian) in [BMNT19]. Details on this extension
of the present results, with the presently employed techniques, will also be developed in forthcoming
work.

The weighted analytic regularity results obtained in the present paper can be used to establish
exponential convergence rates with the bound C exp(—b v N ) on the error for suitable hAp-Finite Element
discretizations of (2.2), with N denoting the number of degrees of freedom of the discrete solution in €.
This will be proved in the follow-up work [FMMS22b|. Importantly, as already observed in [BMNT19],
achieving this exponential rate of convergence mandates anisotropic mesh refinements near the boundary

00.

Appendix A. Localization of Fractional Norms. The following elementary observation on
localization of fractional norms was used in several places.

LEMMA A.1. Let n € C5°(Bg) for some ball B C Q of radius R and s € (0,1). Then,

(A1) [nfllz—+ ) < Cloclnlle ) Ifl2(BR);
(A.2) 7SNl -2 0) < Cloc2[ (R*IVnl Loe(Br) + (R + Dlnllzer) 1f1l220)
+ ||77||Loo(BR)|f|H1—s(Q)L

where the constants Cloc, Cloc,2 depend only on 2 and s.
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Proof. (A.1) follows directly from the embedding L? C H~*. For (A.2), we use the definition of the
Slobodecki norm and the triangle inequality to write

sl = [ LG
// btz d+g$)2j:(2) dde+// Itz d+g )Qfs(Z)P dz dw.

The first term on the right-hand side can directly be estimated by [[1]| L (B)|f|z1-+(q). For the second
term, we split the integration over Q x ) into four subsets, Baog X Bsg, Bag X B§p N Q, BSp NQ X Bp,
BS N x BL N, here, we assume for simplicity for the concentric balls B C Bog C Bsg C £, otherwise
one has to intersect all balls with 2. For the last case, B5p N Q x Bf, N, we have that n(z) — n(z)
vanishes and the integral is zero. For the case Bop x BSp, we have |x — z| > R there. This gives

(2) —n(2)f(2) f)1?
/ / d12-2s dz dr = d+2 55 dzdz
Bagr J BS,NQ z| Bar J Bg,nQ |x

—d— - 2
< R4 ||77HL°°(BR)/B /BC . f(2)]Pdzda S R72% ||77||L°°(BR) ||fHL2(Q) :
2R

For the integration over BS, N x Br, we write using polar coordinates (centered at z)

(=) 1
/ / d+2 2s dzdr = ‘H(Z)f(2)|2 T d+2—2s dx dz
2R Br \:c Br Bg,nQ |x — 2|

(oo}
1 o— 2 2
S [ @R [ dads S B gy 1y
R

Finally, for the integration over Bag x Bsg, we use that |n(z) —n(z)| < |Vl = p,) [v — 2| and polar
coordinates (centered at z) to estimate

—n(z)f(2)P 1
/ / d+2—2s dzdx < anHiN(BR) f(2)]? — =g, drdz
Bar Y B3r | Bsr Bar ‘55' - Z|

5R
2 — s 2 2 s
s||Vn||Lw(BR> /B SR [ 4 dr e S IV 1y B
3R

The straightforward bound ||nf||z2() < I9llzeBx)If]|L2(0) concludes the proof. 1]

Appendix B. Proof of Lemma 3.1. Proof of Lemma 3.1: The proof follows from the arguments
given in [KM19, Sec. 3]; a more general development of Beppo-Levi spaces is given in [DL54].

Proof of (i): Fix a (nondegenerate) hypercube K = Hdﬂ(ai, b;) with agy1 = 0. Elements of the
Beppo-Levi space BL1 are locally in L2, and one can equip the space BLiy with the norm ||U||2BLl =
||U||2L§(K) + ||VUHL2 (Rixw, ) Endowed with this norm, BL. is a Hilbert space and C*°(R?x [0, 00))NBL}
is dense, [KM19, Lemma 3.2]. On the subspace BL}LO,Q we show the norm equivalence ||U|lgrs ~
VU 2 (rixr,) using the bounded linear lifting operator & : H*RY) — HI(R? x Ry) of [KM19,
Lemma 3.9] and the norm equivalence of [KM19, Cor. 3.4]

VU 22 rexr,) < |UllLy < U = EtrUllpry + |Etr Ullpry

[KM19, Cor. 3.4]
V(U = EtrU)| 12 maxr,) + 1€ tr Ullpry

[KM19, Lem. 3.9

S VUl L2 maxr,) + [t Ul o ey
trUeH®(2),(1.3) [KM19, Lem. 3.8]
S VU L2 Raxr,) + [t Ul s me) S VUl L2 (maxR,)-

Proof of (ii): From the fundamental theorem of calculus, we have for smooth univariate functions v and

x € (0, H) the estimate |v(z)| = |[v(0) + ft Cov (@) dt] S Ju(0)] + ftio tofu (¢)[2 dt.
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Fix a closed hypercube K’ C R? of side length dg: > 0 with K’ O Q. Define the translates
K;:=dyj+ K’ for j € Z%. For smooth U, we infer from the 1D estimate that

(B.1) U2 (5 x 0,1)) < Crr (IVU |22 (57 x(0,1)) + 100 Ul L2(57)) -

By the density of C>°(R% x [0,00)) NBL, in BL), from the proof of part (i), the estimate (B.1) holds for
all U € BL}. By translation invariance of the norms and spaces, (B.1) also holds for all U € BL} and
for all translates K;, j € Z¢, with the same constant C. For U € BLLO,Q, we observe || tr Ul 12(x,) <
|| tr U||I§S(KO) < CaltrUlgsgey (cf. (1.3)) and tr Uk, = 0 for j # 0. Hence, using the Kronecker d; 0 we
arrive at

U2 (5, % (0,1)) < Crr (IIVU |12 (), x (0,11)) + Cadjol tr Ul g (ray) -

Since R? = Ujeze K and the intersection K; N K/ is a set of measure zero for j # j’, summation over
all 7 implies

1U| L2 rax (0,1)) S IVU L2 R x (0,81)) + [t Ul s (may.-

The proof is completed by noting | tr U|g«ge) S [[VU|| L2 e xr,) by [KM19, Lemma 3.8]. 0
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