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Abstract. We prove weighted analytic regularity of solutions to the Dirichlet problem for the integral fractional4
Laplacian in polygons with analytic right-hand side. We localize the problem through the Caffarelli-Silvestre extension and5
study the tangential differentiability of the extended solutions, followed by bootstrapping based on Caccioppoli inequalities6
on dyadic decompositions of vertex, edge, and edge-vertex neighborhoods.7
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1. Introduction. In this work, we study the regularity of solutions to the Dirichlet problem for10

the integral fractional Laplacian11

(1.1) (−∆)su = f on Ω, u = 0 on R
d \ Ω,12

with 0 < s < 1, where we consider the case of a polygonal Ω and a source term f that is analytic. We13

derive weighted analytic-type estimates for the solution u, with vertex and edge weights that vanish on14

the domain boundary ∂Ω.15

Unlike their integer order counterparts, solutions to fractional Laplace equations are known to lose16

regularity near ∂Ω, even when the source term and ∂Ω are smooth (see, e.g., [Gru15]). After the17

establishment of low-order Hölder regularity up to the boundary for C1,1 domains in [ROS14], solutions18

to the Dirichlet problem for the integral fractional Laplacian have been shown to be smooth (after19

removal of the boundary singularity) in C∞ domains [Gru15]. Subsequent results have filled in the20

gap between low and high regularity in Sobolev [AG20] and Hölder spaces [ARO20], with appropriate21

assumptions on the regularity of the domain. Besov regularity of weak solutions u of (1.1) has recently22

been established in [BN21] in Lipschitz domains Ω. Finally, for polygonal Ω, the precise characterization23

of the singularities of the solution in vertex, edge, and edge-vertex neighborhoods is the focus of the24

Mellin-based analysis of [GSŠ21, Što20].25

For smooth geometries, [Gru15] characterizes the mapping properties of the integral fractional Lapla-26

cian, exhibiting in particular the anisotropic nature of solutions near the boundary. Interior regularity27

results have been obtained in [Coz17, BWZ17, FKM20] and, under analyticity assumptions on the right-28

hand side, (interior) analyticity of the solution has been derived even for certain nonlinear problems29

[KRS19, DFSS12, DFØS13]. The loss of regularity near the boundary can be accounted for by weights30

in the context of isotropic Sobolev spaces [AB17]. While all the latter references focus on the Dirichlet31

integral fractional Laplacian, which is also the topic of the present work, corresponding regularity results32

for the Dirichlet spectral fractional Laplacian are also available, see, e.g., [CS16].33

The purpose of the present work is a description of the regularity of the solution of (1.1) for piecewise34

analytic input data that reflects both the interior analyticity and the anisotropic nature of the solution35

near the boundary. This is achieved in Theorem 2.1 through the use of appropriately weighted Sobolev36

spaces. Unlike local elliptic operators in polygons, for which vertex-weighted spaces allow for regularity37

shifts (e.g., [BG88, MR10]), fractional operators in polygons require additionally edge-weights [Gru15].38

An observation that was influential in the analysis of elliptic fractional diffusion problems is their39

localization through a local, divergence form, elliptic degenerate operator in higher dimension. First40

pointed out in [CS07], it subsequently inspired many developments in the analysis of fractional problems.41

While not falling into the standard elliptic setting (see, e.g., the discussion in [Gru15]), the localization42

via a higher-dimensional local elliptic boundary value problem does allow one to leverage tools from43

elliptic regularity theory. Indeed, the present work studies the regularity of the higher-dimensional local44

degenerate elliptic problem and infers from that the regularity of (1.1) by taking appropriate traces.45

Our analysis is based on Caccioppoli estimates and bootstrapping methods for the higher-dimensional46

elliptic problem. Such arguments are well-known to require (under suitable assumptions on the data)47
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a basic regularity shift for variational solutions from the energy space of the problem (in the present48

case, a fractional order, nonweighted Sobolev space) into a slightly smaller subspace (with a fixed order49

increase in regularity). This is subsequently used to iterate in a bootstrapping manner local regularity50

estimates of Caccioppoli type on appropriately scaled balls in a Besicovitch covering of the domain. In51

the classical setting of non-degenerate elliptic problems, the initial regularity shift (into a vertex-weighted52

Sobolev space) is achieved by localization and a Mellin type analysis at vertices, as presented, e.g., in53

[MR10] and the references there. The subsequent bootstrapping can then lead to analytic regularity as54

established in a number of references for local non-degenerate elliptic boundary value problems (see, e.g.,55

[BG88, GB97a, GB97b, CDN12] and the references there). The bootstrapping argument of the present56

work structurally follows these approaches.57

While delivering sharp ranges of indices for regularity shifts (as limited by poles in the Mellin58

resolvent), the Mellin-based approach will naturally meet with difficulties in settings with multiple,59

non-separated vertices (as arise, e.g., in general Lipschitz polygons). Here, an alternative approach to60

extract some finite amount of regularity in nonweighted Besov-Triebel-Lizorkin spaces was proposed in61

[Sav98]; it is based on difference-quotient techniques and compactness arguments. In the present work,62

our initial regularity shift is obtained with the techniques of [Sav98]. In contrast to the Mellin approach,63

the technique of [Sav98] leads to regularity shifts even in Lipschitz domains but does not, as a rule,64

give better shifts for piecewise smooth geometries such as polygons. While this could be viewed as65

mathematically non-satisfactory, we argue in the present note that it can be quite adequate as a base66

shift estimate in establishing analytic regularity in vertex- and boundary-weighted Sobolev spaces, where67

quantitative control of constants under scaling takes precedence over the optimal range of smoothness68

indices.69

1.1. Impact on numerical methods. The mathematical analysis of efficient numerical methods70

for the numerical approximation of fractional diffusion has received considerable attention in recent years.71

We only mention the surveys [DDG+20, BBN+18, BLN20, LPG+20] and the references there for broad72

surveys on recent developments in the analysis and in the discretization of nonlocal, fractional models.73

At this point, most basic issues in the numerical analysis of discretizations of linear, elliptic fractional74

diffusion problems are rather well understood, and convergence rates of variational discretizations based75

on finite element methods on regular simplicial meshes have been established, subject to appropriate76

regularity hypotheses. Regularity in isotropic Sobolev/Besov spaces is available, [BN21], leading to cer-77

tain algebraically convergent methods based on shape-regular simplicial meshes. As discussed above, the78

expected solution behavior is anisotropic so that edge-refined meshes can lead to improved convergence79

rates. Indeed, a sharp analysis of vertex and edge singularities via Mellin techniques is the purpose of80

[GSŠ21, Što20] and allows for unravelling the optimal mesh grading for algebraically convergent methods.81

The analytic regularity result obtained in Theorem 2.1 captures both the anisotropic behavior of the82

solution and its analyticity so that exponentially convergent numerical methods for integral fractional83

Laplace equations in polygons can be developed in our follow-up work [FMMS21].84

1.2. Structure of this text. After having introduced some basic notation in the forthcoming85

subsection, in Section 2 we present the variational formulation of the nonlocal boundary value problem.86

We also introduce the scales of boundary-weighted Sobolev spaces on which our regularity analysis is87

based. In Section 2.2, we state our main regularity result, Theorem 2.1. The rest of this paper is devoted88

to its proof, which is structured as follows.89

Section 3 develops regularity estimates for the localized extension. In Section 4, we establish along90

the lines of [Sav98], a local regularity shift for the tangential derivatives of the solution of the extension91

problem, in a vicinity of (smooth parts of) the boundary. These estimates are combined in Section 592

with covering arguments and scaling to establish the weighted analytic regularity.93

Section 6 provides a brief summary of our main results, and outlines generalizations and applications94

of the present results.95

1.3. Notation. Let Ω ⊂ R
d be a bounded Lipschitz domain with boundary ∂Ω. For t ∈ N0, the96

spaces Ht(Ω) are the classical Sobolev spaces of order t. For t ∈ (0, 1), fractional order Sobolev spaces97

are given in terms of the Aronstein-Slobodeckij seminorm | · |Ht(Ω) and the full norm ‖ · ‖Ht(Ω) by98

|v|2Ht(Ω) =

∫

x∈Ω

∫

z∈Ω

|v(x)− v(z)|2
|x− z|d+2t

dz dx, ‖v‖2Ht(Ω) = ‖v‖2L2(Ω) + |v|2Ht(Ω),(1.2)99
100
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where we denote the Euclidean norm in R
d by | · |. Moreover, for t ∈ (0, 1) we require the spaces101

H̃t(Ω) :=
{
u ∈ Ht(Rd) : u ≡ 0 on R

d\Ω
}
, ‖v‖2H̃t(Ω)

:= ‖v‖2Ht(Ω) +
∥∥v/rt∂Ω

∥∥2
L2(Ω)

,102
103

where r∂Ω(x) := dist(x, ∂Ω) denotes the Euclidean distance of a point x ∈ Ω from the boundary ∂Ω. For104

t ∈ (0, 1)\{ 1
2}, the norms ‖·‖H̃t(Ω) and ‖·‖Ht(Ω) are equivalent, see, e.g., [Gri11]. Furthermore, for t > 0,105

the space H−t(Ω) denotes the dual space of H̃t(Ω), and we write 〈·, ·〉L2(Ω) for the duality pairing that106

extends the L2(Ω)-inner product.107

We denote by R+ the positive real numbers. For subsets ω ⊂ R
d, we will use the notation ω+ :=108

ω × R+. For any multi index β = (β1, . . . , βd) ∈ N
d
0, we denote ∂β

x = ∂β1
x1

· · · ∂βd
xd

and |β| =∑d
i=1 βi. We109

assume that empty sums are null, i.e.,
∑b

j=a cj = 0 when b < a.110

Throughout this article, we use the notation . to abbreviate ≤ up to a generic constant C > 0 that111

does not depend on critical parameters in our analysis.112

2. Setting. There are several different ways to define the fractional Laplacian (−∆)s for s ∈ (0, 1).113

A classical definition on the full space Rd is in terms of the Fourier transformation F , i.e., (F(−∆)su)(ξ) =114

|ξ|2s(Fu)(ξ). Alternative, equivalent definitions of (−∆)s are, e.g., via spectral, semi-group, or operator115

theory, [Kwa17] or via singular integrals.116

In the following, we consider the integral fractional Laplacian defined pointwise for sufficiently smooth117

functions u as the principal value integral118

(−∆)su(x) := C(d, s) P.V.
∫

Rd

u(x)− u(z)

|x− z|d+2s
dz with C(d, s) := −22s

Γ(s+ d/2)

πd/2Γ(−s)
,(2.1)119

120

where Γ(·) denotes the Gamma function. We investigate the fractional differential equation121

(−∆)su = f inΩ,(2.2a)122

u = 0 inΩc := R
d\Ω,(2.2b)123124

where s ∈ (0, 1) and f ∈ H−s(Ω) is a given right-hand side. Equation (2.2) is understood as in weak125

form: Find u ∈ H̃s(Ω) such that126

(2.3) a(u, v) := 〈(−∆)su, v〉L2(Rd) = 〈f, v〉L2(Ω) ∀v ∈ H̃s(Ω).127

The bilinear form a has the alternative representation128

(2.4) a(u, v) =
C(d, s)

2

∫ ∫

Rd×Rd

(u(x)− u(z))(v(x)− v(z))

|x− z|d+2s
dz dx ∀u, v ∈ H̃s(Ω).129

Existence and uniqueness of u ∈ H̃s(Ω) follow from the Lax–Milgram Lemma for any f ∈ H−s(Ω),130

upon the observation that the bilinear form a(·, ·) : H̃s(Ω)× H̃s(Ω) → R is continuous and coercive.131

2.1. The Caffarelli-Silvestre extension. A very influential interpretation of the fractional Lapla-132

cian is provided by the so-called Caffarelli-Silvestre extension, due to [CS07]. It showed that the nonlocal133

operator (−∆)s can be be understood as a Dirichlet-to-Neumann map of a degenerate, local elliptic PDE134

on a half space in R
d+1. Throughout the following text, we let135

(2.5) α := 1− 2s.136

2.1.1. Weighted spaces for the Caffarelli-Silvestre extension. To describe the Caffarelli-137

Silvestre extension, we introduce, for measurable subsets ω ⊂ R
d, the weighted L2-norm138

‖U‖2L2
α(ω+) :=

∫

y∈R+

yα
∫

x∈ω

|U(x, y)|2 dx dy,139
140

and denote by L2
α(ω

+) the space of square-integrable functions with respect to the weight yα. We141

introduce the Beppo-Levi space H1
α(R

d × R+) := {U ∈ L2
loc(R

d × R+) : ∇U ∈ L2
α(R

d × R+)}. For142

elements of H1
α(R

d×R+), one can give meaning to their trace at y = 0, which is denoted trU . Recalling143

α = 1− 2s, one has in fact trU ∈ Hs(Rd) (see, e.g., [KM19, Lem. 3.8]) with144

|trU |Hs(Rd) . ‖∇U‖L2
α(Rd×R+) .(2.6)145

146

The implied constant in the above inequality depends on s.147
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2.1.2. The Caffarelli-Silvestre extension. Given u ∈ H̃s(Ω), let U = U(x, y) denote the min-148

imum norm extension of u to R
d × R+, i.e., U = argmin{‖∇U‖2L2

α(Rd×R+) |U ∈ H1
α(R

d × R+), trU =149

u in Hs(Rd)}. The function U is indeed unique in H1
α(R

d × R+) (see, e.g., [KM19]).150

The Euler-Lagrange equations are151

div(yα∇U) = 0 in R
d × (0,∞),(2.7a)152

U(·, 0) = u in R
d.(2.7b)153154

Henceforth, when referring to solutions of (2.7), we will additionally understand that U ∈ H1
α(R

d×R+).155

The fractional Laplacian can be recovered as the Neumann data of the extension problem in the sense156

of distributions, [CS07, Section 3], [CS16]:157

−ds lim
y→0+

yα∂yU(x, y) = (−∆)su, ds = 22s−1Γ(s)/Γ(1− s).(2.8)158
159

2.2. Main result: weighted analytic regularity for polygonal domains in R
2. The following160

theorem is the main result of this article. It states that, provided the data f is analytic in Ω, we obtain161

analytic regularity for the solution u of (2.2) in a scale of weighted Sobolev spaces. In order to specify162

these weighted spaces, we need additional notation.163

Let Ω ⊂ R
2 be a bounded, polygonal Lipschitz domain. By V, we denote the set of vertices of the164

polygon Ω ⊂ R
2 and by E the set of its (open) edges. For v ∈ V and e ∈ E , we define the distance165

functions166

rv(x) := |x− v|, re(x) := inf
y∈e

|x− y|, ρve(x) := re(x)/rv(x).167
168

For each vertex v ∈ V, we denote by Ev := {e ∈ E : v ∈ e} the set of all edges that meet at v. For any169

e ∈ E , we define Ve
:= {v ∈ V : v ∈ e} as set of endpoints of e. For fixed, sufficiently small ξ > 0 and170

for v ∈ V, e ∈ E , we define vertex, edge-vertex and edge neighborhoods by171

ωξ
v
:= {x ∈ Ω : rv(x) < ξ ∧ ρve(x) ≥ ξ ∀e ∈ Ev},172

ωξ
ve

:= {x ∈ Ω : rv(x) < ξ ∧ ρve(x) < ξ},173

ωξ
e
:= {x ∈ Ω : rv(x) ≥ ξ ∧ re(x) < ξ ∀v ∈ Ve}.174175

Figure 1 illustrates this notation near a vertex v ∈ V of the polygon. Throughout the paper, we will176

assume that ξ is small enough so that ωξ
v
∩ ωξ

v
′ = ∅ for all v 6= v

′, that ωξ
e
∩ ωξ

e
′ = ∅ for all e 6= e

′ and177

ωξ
ve

∩ωξ
v
′
e
′ = ∅ for all v 6= v

′ and all e 6= e
′. We will also drop the superscript ξ unless strictly necessary.178

e
′

•v

e

ωve

ωv

ωve
′

Fig. 1: Notation near a vertex v.

Note that we can decompose each Lipschitz polygon into sectoral neighborhoods of vertices v which179

are unions of vertex and edge-vertex neighborhoods (as depicted in Figure 1), edge neighborhoods (that180

are away from a vertex) and an interior part Ωint, i.e.,181

Ω =
⋃

v∈V

(
ωv ∪

⋃

e∈Ev

ωve

)
∪
⋃

e∈E

ωe ∪ Ωint.182

183

We stress that each sectoral and edge neighborhood may have a different value ξ. However, since only184

finitely many different neighborhoods are needed to decompose the polygon, the interior part Ωint ⊂ Ω185

has a positive distance from the boundary.186
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In a given edge neighborhood ωe or an edge-vertex neighborhood ωve, we let e‖ and e⊥ be two unit187

vectors such that e‖ is tangential to e and e⊥ is normal to e. We introduce the differential operators188

Dx‖
v := e‖ · ∇xv, Dx⊥

v := e⊥ · ∇xv189190

corresponding to differentiation in the tangential and normal direction. Inductively, we can define higher191

order tangential and normal derivatives by Dj
x‖
v := Dx‖

(Dj−1
x‖

v) and Dj
x⊥

v := Dx⊥
(Dj−1

x⊥
v) for j > 1.192

Our main result provides local analytic regularity in edge- and vertex-weighted Sobolev spaces.193

Theorem 2.1. Let Ω ⊂ R
2 be a bounded polygonal Lipschitz domain. Let the data f ∈ C∞(Ω)194

satisfy195

(2.9)
∑

|β|=j

‖∂β
xf‖L2(Ω) ≤ γj+1

f jj ∀j ∈ N0196

with a constant γf > 0. Let v ∈ V, e ∈ E and ωv, ωve, ωe be fixed vertex, edge-vertex and edge-197

neighborhoods.198

Then, there is γ > 0 depending only on γf , s, and Ω such that for every ε > 0 there exists Cε > 0199

(depending only on ε and Ω) such that for all p ∈ N200

(2.10a)
∥∥∥r−1/2+ε

e
rp−s+ε
v

Dp
x‖
u
∥∥∥
L2(ωve)

≤ Cεγ
p+1pp,201

and, for all p‖ ∈ N0, p⊥ ∈ N with p‖ + p⊥ = p,202

(2.10b)
∥∥∥rp⊥−1/2−s+ε

e
r
p‖+ε
v Dp⊥

x⊥
D

p‖
x‖
u
∥∥∥
L2(ωve)

≤ Cεγ
p+1pp.203

Moreover, for all p ∈ N and β ∈ N
2
0 with |β| = p and all p‖ ∈ N0, p⊥ ∈ N with p‖ + p⊥ = p,204
∥∥∥rp−1/2−s+ε

v
∂β
xu
∥∥∥
L2(ωv)

≤ Cεγ
p+1pp,(2.11)205

∥∥∥rp⊥−1/2−s+ε
e

Dp⊥
x⊥

D
p‖
x‖
u
∥∥∥
L2(ωe)

≤ Cεγ
p+1pp.(2.12)206

207

For p‖ ∈ N we have208
∥∥∥r−1/2+ε

e
D

p‖
x‖
u
∥∥∥
L2(ωe)

≤ Cεγ
p+1pp.(2.13)209

210

Finally, for the interior part Ωint and all p ∈ N and β ∈ N
2
0 with |β| = p, we have211

(2.14)
∥∥∂β

xu
∥∥
L2(Ωint)

≤ γp+1pp.212

Remark 2.2. (i) Using Stirling’s formula, we may employ the estimate pp ≤ Cp!ep. Therefore,213

there exists a constant C̃ε such that214

(2.15)
∥∥∥r−1/2+ε

e
rp−s+ε
v

Dp
x‖
u
∥∥∥
L2(ωve)

≤ C̃ε(γe)
p+1

p!.215

In the same way, the factors γppp in Theorem 2.1 can be replaced by (γe)pp!.216

(ii) We note that (p‖+p⊥)
p‖+p⊥ ≤ p

p‖

‖ pp⊥

⊥ ep‖+p⊥ . Together with pp ≤ Cp!ep (using Stirling’s formula),217

one can also formulate the estimates (2.10b) and (2.12) as follows: There are constants C̃ε and218

γ̃ > 0 such that for all p‖ ∈ N0, p⊥ ∈ N219
∥∥∥rp⊥−1/2−s+ε

e
r
p‖+ε
v Dp⊥

x⊥
D

p‖
x‖
u
∥∥∥
L2(ωve)

≤ C̃εγ̃
p⊥+p‖p⊥! p‖!,(2.16)220

∥∥∥rp⊥−1/2−s+ε
e

Dp⊥
x⊥

D
p‖
x‖
u
∥∥∥
L2(ωe)

≤ C̃εγ̃
p⊥+p‖p⊥! p‖!.(2.17)221

222

(iii) The data f is assumed to be analytic on Ω. Inspection of the proof (in particular Lemma 5.5 and223

Lemma 5.7) shows that f could be admitted to be in vertex or edge-weighted classes of analytic224

functions. For simplicity of exposition, we do not explore this further.225

(iv) Inspection of the proofs also shows that, for fixed p, only finite regularity of the data f is required.226

227

5

This manuscript is for review purposes only.



3. Regularity results for the extension problem. In this section, we derive local (higher order)228

regularity results for solutions to the Caffarelli-Silvestre extension problem. As the techniques employed229

are valid in any space dimension, we formulate our results for general d ∈ N.230

Let data F ∈ C∞(Rd+1) and f ∈ C∞(Ω) be given. We consider the problem: Find the minimizer231

U = U(x, y) with x = (x1, . . . , xd) ∈ R
d and y ∈ R+ of the problem232

minimize F on K,(3.1)233234

where K := H1
α,0(R

d × R+) := {U ∈ H1
α(R

d × R+) : trU = 0 on Ωc} and235

F(U) :=
1

2
b(U,U)−

∫

Rd×R+

FU dx dy −
∫

Ω

f trU dx, b(U, V ) =

∫

Rd×R+

yα∇U · ∇V dx dy.(3.2)236
237

The minimization problem (3.1) has a unique solution with the a priori estimate238

‖∇U‖L2
α(Rd×R+) ≤ C

[
‖F‖L2

−α(Rd×R+) + ‖f‖H−s(Ω)

]
,(3.3)239

240

with constant C dependent on s ∈ (0, 1).241

Remark 3.1. The term ‖F‖L2
−α(Rd×R+) in (3.3) could be replaced with an appropriate dual norm for242

F ∈
(
H1

α,0(R
d × R+)

)′
.243

The Euler-Lagrange equations corresponding to (3.1) are: Find U ∈ H1
α,0(R

d × R+) such that244

− div(yα∇U) = F in R
d × (0,∞),(3.4a)245

∂nα
U(·, 0) = f in Ω,(3.4b)246

trU = 0 on Ωc,(3.4c)247248

where ∂nα
U(x, 0) = −ds limy→0 y

α∂yU(x, y). In view of (2.8) together with the fractional PDE (−∆)su =249

f , this is a Neumann-type Caffarelli-Silvestre extension problem with an additional source F .250

3.1. Global regularity: a shift theorem. The following lemma provides additional regularity251

of the extension problem in the x–direction. The argument uses the technique developed in [Sav98]252

that has recently been used in [BN21] to show a closely related shift theorem for the Dirichlet fractional253

Laplacian; the technique merely assumes Ω to be a Lipschitz domain in R
d. On a technical level, the254

difference between [BN21] and Lemma 3.2 below is that Lemma 3.2 studies (tangential) differentiability255

properties of the extension U , whereas [BN21] focuses on the trace u = trU .256

For functions U , F , f , it is convenient to introduce the abbreviation257

(3.5)

N2(U,F, f) :=
(
‖∇U‖2L2

α(Rd×R+) + ‖F‖L2
−α(Rd×R+)‖∇U‖L2

α(Rd×R+) + ‖f‖H1−s(Ω)‖∇U‖L2
α(Rd×R+)

)
.258

In view of the a priori estimate (3.3), we have the simplified bound (with updated constant C)259

(3.6) N2(U,F, f) ≤ C
(
‖f‖2H1−s(Ω) + ‖F‖2L2

−α(Rd×R+)

)
.260

Lemma 3.2. Let Ω ⊂ R
d be a bounded Lipschitz domain, and let BR̃ ⊂ R

d be a ball with Ω ⊂ BR̃. For261

t ∈ [0, 1/2), there is Ct > 0 (depending only on t, Ω, and R̃) such that for f ∈ C∞(Ω), F ∈ C∞(Rd+1)262

the solution U of (3.1) satisfies263

∫

R+

yα ‖∇U(·, y)‖2Ht(BR̃) dy ≤ CtN
2(U,F, f)264

265

with N2(U,F, f) given by (3.5).266

Proof. The idea is to apply the difference quotient argument from [Sav98] only in the x-direction.267

For h ∈ R
d denote ThU := ηUh + (1− η)U , where Uh(x, y) := U(x+ h, y) and η is a cut-off function268

that localizes to a suitable ball B2ρ(x0), i.e, 0 ≤ η ≤ 1, η ≡ 1 on Bρ(x0) and supp η ⊂ B2ρ(x0). In269

Steps 1–5 of this proof, we will abbreviate Bρ′ for Bρ′(x0) for ρ′ > 0.270
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The main result of [Sav98] is that estimates for the modulus ω(U) defined with the quadratic func-271

tional F as in (3.2) by272

ω(U) := sup
h∈D\{0}

F(ThU)−F(U)

|h| = ωb(U) + ωF (U) + ωf (U),273

ωb(U) :=
1

2
sup

h∈D\{0}

b(ThU, ThU)− b(U,U)

|h| ,274

ωF (U) := sup
h∈D\{0}

∫
Rd×R+

F (ThU − U)

|h| , ωf (U) := sup
h∈D\{0}

∫
Ω
f(tr(ThU − U)

|h| ,275
276

can be used to derive regularity results in Besov spaces.277

Here, D ⊂ R
d denotes a set of admissible directions h. These directions are chosen such that the278

function ThU is an admissible test function, i.e., ThU ∈ H1
α,0(R

d × R+). For this, we have to require279

supp tr(ThU) ⊂ Ω. In [Sav98, (30)] a description of this set is given in terms of a set of admissible outward280

pointing vectors Oρ(x0), which are directions h with |h| ≤ ρ such that the translation B3ρ(x0)\Ω + th281

for all t ∈ [0, 1] is completely contained in Ωc.282

Step 1. (Estimate of ωb(U)). The definition of the bilinear form b(·, ·), h ∈ D, and the definition of283

Th give284

b(ThU, ThU)− b(U,U) =

∫

Rd×R+

yα(|∇ThU |2 − |∇U |2) dx dy285

=

∫

Rd×R+

yα(|∇η(Uh − U) + Th∇U |2 − |∇U |2) dx dy286

=

∫

Rd×R+

yα(|∇η(Uh − U)|2 + 2Th∇U · ∇η(Uh − U)) dx dy287

+

∫

Rd×R+

yα(|Th∇U |2 − |∇U |2) dx dy288

=: T1 + T2.289290

For the first integral T1, we use the support properties of η and that ‖U(·, y)− Uh(·, y)‖L2(B2ρ)
.291

|h| ‖∇U(·, y)‖L2(B3ρ)
, which gives292

T1 .

∫

R+

yα(|h|2 ‖∇U(·, y)‖2L2(B3ρ)
+ |h| ‖∇U(·, y)‖L2(B3ρ)

‖Th∇U(·, y)‖L2(B2ρ)
) dy293

. |h|
∫

B+

3ρ

yα |∇U |2 dx dy.294

295

For the term T2, we use |Th∇U |2 ≤ η |∇Uh|2 + (1− η) |∇U |2 since 0 ≤ η ≤ 1 and the variable transfor-296

mation z = x+ h together with B2ρ(x0) + h ⊂ B3ρ(x0) to obtain297

T2 =

∫

Rd×R+

yα(|Th∇U |2 − |∇U |2) dx dy ≤
∫

R+

∫

B2ρ

yαη(|∇Uh|2 − |∇U |2) dx dy298

≤
∫

R+

∫

B3ρ

yα(η(x− h)− η(x)) |∇U |2 dx dy . |h|
∫

B+

3ρ

yα |∇U |2 dx dy.299

300

Altogether we get from the previous estimates that

ωb(U) .

∫

B+

3ρ

yα |∇U |2 dx dy.

Step 2. (Estimate of ωF (U)). Using the definition of Th, we can write U − ThU = η(U − Uh), and301

supp η ⊂ B2ρ(x0) implies302
∣∣∣∣∣

∫

Rd×R+

F (U − ThU) dx dy

∣∣∣∣∣ =
∣∣∣∣∣

∫

Rd×R+

Fη(U − Uh) dx dy

∣∣∣∣∣ ≤ ‖F‖L2
−α(B+

2ρ)
‖U − Uh‖L2

α(B+

2ρ)
303

. |h| ‖F‖L2
−α(B+

2ρ)
‖∇U‖L2

α(B+

3ρ)
,(3.7)304

305
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which produces
ωF (U) . ‖F‖L2

−α(B+

3ρ)
‖∇U‖L2

α(B+

3ρ)
.

Step 3. (Estimate of ωf (U)). For the trace term, we use a second cut-off function η̃ with η̃ ≡ 1 on306

B2ρ(x0) and supp(η̃) ⊂ B3ρ(x0) and get with the trace inequality (see, e.g., [KM19, Lemma 3.3])307

∣∣∣∣
∫

Ω

f tr(U − ThU) dx

∣∣∣∣ =
∣∣∣∣∣

∫

B2ρ

fη tr(U − Uh) dx

∣∣∣∣∣ =
∣∣∣∣∣

∫

B3ρ

(fη − (fη)−h) tr(η̃U) dx

∣∣∣∣∣308

≤ ‖fη − (fη)−h‖H−s(B3ρ)
‖tr(η̃U)‖Hs(B3ρ)

309

. |h| ‖f‖H1−s(B4ρ)
‖∇U‖L2

α(B+

4ρ)
,(3.8)310

311

where the estimate ‖fη − (fη)−h‖H−s(B3ρ) . |h|‖f‖H1−s(B4ρ) can be seen, for example, by interpolating312

the estimates ‖fη− (fη)−h‖H−1(Rd) . |h|‖ηf‖L2(Rd) and ‖fη− (fη)−h‖L2(Rd) . |h|‖ηf‖H1(Rd). We have313

thus obtained314

ωf (U) . ‖f‖H1−s(B4ρ)‖∇U‖L2
α(B+

4ρ)
.315

316

Step 4. (Application of the abstract framework of [Sav98]). We introduce the seminorms [U ]2 :=317 ∫
Rd×R+

yα|∇U |2 dxdy. By the coercivity of b(·, ·) on H1
α,0(R

d ×R+) with respect to [·]2 and the abstract318

estimates in [Sav98, Sec. 2], we have319

[U − ThU ]2
[Sav98]
. ω(U)|h| . |h| (ωb(U) + ωF (U) + ωf (U))320

steps 1-3

≤ |h|
(
‖∇U‖2

L2
α(B+

3ρ)
+ ‖F‖L2

−α(B+

2ρ)
‖∇U‖L2

α(B+

3ρ)
+ ‖f‖H1−s(B4ρ)‖∇U‖L2

α(B+

4ρ)

)
321

=: |h| C̃2
U,F,f .322323

Using that η ≡ 1 on B+
ρ (x0), we get324

∫

B+
ρ

yα|∇U −∇Uh|2 dx dy ≤
∫

Rd×R+

yα|∇(ηU − ηUh)|2 dx dy = [U − ThU ]2 ≤ |h| C̃2
U,F,f .(3.9)325

326

Step 5: (Removing the restriction h ∈ D). The set D contains a truncated cone C = {x ∈ R
d :327

|x · eD| > δ|x|} ∩ BR′(0) for some unit vector eD and δ ∈ (0, 1), R′ > 0. Geometric considerations328

then show that there is cD > 0 sufficiently large such that for arbitrary h ∈ R
d sufficiently small,329

h+ cD|h|eD ∈ D. For a function v defined on R
d, we observe330

v(x)− vh(x) = v(x)− v(x+ h) = v(x)− v(x+ (h+ cD|h|eD)) + v((x+ h) + cD|h|eD)− v(x+ h).331332

We may integrate over Bρ′(x0) and change variables to get333

‖v − vh‖2L2(Bρ′ )
≤ 2

∥∥v − vh+cD|h|eD

∥∥2
L2(Bρ′ )

+ 2
∥∥v − vcD|h|eD

∥∥2
L2(Bρ′+h)

.334
335

Selecting ρ′ = ρ/2 and for |h| ≤ ρ/2, we obtain336

‖v − vh‖2L2(Bρ/2)
≤ 2

∥∥v − vh+cD|h|eD

∥∥2
L2(Bρ)

+ 2
∥∥v − vcD|h|eD

∥∥2
L2(Bρ)

.337
338

Applying this estimate with v = ∇U and using that h + cD|h|eD ∈ D and cD|h|eD ∈ D, we get from339

(3.9) that340

‖∇U −∇Uh‖2L2
α(B+

ρ/2
) . |h| C̃2

U,F,f .341
342

The fact that Ω is a Lipschitz domain implies that the value of ρ and the constants appearing in the343

definition of the truncated cone C can be controlled uniformly in x0 ∈ Ω. Hence, covering the ball B2R̃344

(with twice the radius as the ball BR̃) by finitely many balls Bρ/2, we obtain with the constant N(U,F, f)345

of (3.5)346

‖∇U −∇Uh‖2L2
α(B

2R̃) . |h| N2(U,F, f)(3.10)347
348
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for all h ∈ R
d with |h| ≤ δ′ for some fixed δ′ > 0.349

Step 6: (Ht(BR̃)–estimate). For t < 1/2, we estimate with the Aronstein-Slobodecki seminorm350

∫

R+

|∇U(·, y)|2Ht(BR̃) dy ≤
∫

R+

∫

x∈BR̃

∫

|h|≤R̃

|∇U(x+ h, y)−∇U(x, y)|2
|h|d+2t

dh dx dy.351
352

The integral in h is split into the range |h| ≤ ε for some fixed ε > 0, for which (3.10) can be brought to353

bear, and ε < |h| < R̃, for which a triangle inequality can be used. We obtain354

∫

R+

|∇U(·, y)|2Ht(BR̃) dy . N2(U,F, f)

∫

|h|≤ε

|h|1−d−2t dh+ ‖∇U‖2L2
α(Rd×R+)

∫

ε<|h|<R̃

|h|−d−2t dh355

. N2(U,F, f),356357

which is the sought estimate.358

Remark 3.3. The regularity assumptions on F and f can be weakened by interpolation techniques359

as described in [Sav98, Sec. 4]. For example, by linearity, we may write U = UF +Uf , where UF and Uf360

solve (3.4) for data (F, 0) and (0, f). The a priori estimate (3.3) gives ‖∇Uf‖L2
α(Rd×R+) ≤ C‖f‖H−s(Ω)361

so that we have362

∫

R+

|∇Uf (·, y)|2Ht(BR̃) dy ≤ Ct

(
‖∇Uf‖2L2

α(Rd×R+) + ‖f‖H1−s(Ω)‖∇Uf‖L2
α(Rd×R+)

)
363

. ‖f‖2H−s(Ω) + ‖f‖H1−s(Ω)‖f‖H−s(Ω) . ‖f‖H1−s(Ω)‖f‖H−s(Ω).364365

By, e.g., [Tar07, Lemma 25.3], the mapping f 7→ Uf then satisfies366

∫

R+

|∇Uf (·, y)|2Ht(BR̃) dy ≤ Ct‖f‖2B1/2−s
2,1 (Ω)

,367
368

where B
1/2−s
2,1 (Ω) = (H−s(Ω), H1−s(Ω))1/2,1 is an interpolation space (K-method). We mention that369

B
1/2−s
2,1 (Ω) ⊂ H1/2−s−ε(Ω) for every ε > 0.370

A similar estimate could be obtained for UF , where, however, the pertinent interpolation space is371

less tractable.372

3.2. Interior regularity for the extension problem. In the following, we derive localized inte-373

rior regularity estimates, also called Caccioppoli inequalities, for solutions to the extension problem (3.4),374

where second order derivatives on some ball BR(x0) ⊂ Ω can be controlled by first order derivatives on375

some ball with a (slightly) larger radius.376

The following Caccioppoli type inequality provides local control of higher order x-derivatives and is377

structurally similar to [FMP21, Lem. 4.4].378

Lemma 3.4 (Interior Caccioppoli inequality). Let BR := BR(x0) ⊂ Ω ⊂ R
d be an open ball of379

radius R > 0 centered at x0 ∈ Ω, and let BcR be the concentric scaled ball of radius cR with c ∈ (0, 1).380

Let ζ ∈ C∞
0 (BR) with 0 ≤ ζ ≤ 1 and ζ ≡ 1 on BcR as well as ‖∇ζ‖L∞(BR) ≤ Cζ((1− c)R)−1 for some381

Cζ > 0 independent of c, R. Let U satisfy (3.4a), (3.4b) with given data f and F .382

Then, there is Cint > 0 independent of R and c such that for i ∈ {1, . . . , d}383

‖∂xi
(∇U)‖2L2

α(B+

cR) ≤ C2
int

(
((1− c)R)−2 ‖∇U‖2L2

α(B+

R) + ‖ζ∂xi
f‖2H−s(Ω) + ‖F‖2L2

−α(B+

R)

)
.(3.11)384

385

In particular, ‖ζ∂xif‖H−s(Ω) ≤ Cloc‖∂xif‖L2(BR) for some Cloc > 0 independent of R and f (cf.386

Lemma A.1).387

Proof. The function ζ is defined on R
d; through the constant extension we will also view it as a388

function on R
d × R+. With the unit vector exi

in the xi-coordinate and τ ∈ R\{0}, we define the389

difference quotient390

Dτ
xi
w(x) :=

w(x+ τexi)− w(x)

τ
.391

392
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For |τ | sufficiently small, we may use the test function V = D−τ
xi

(ζ2Dτ
xi
U) in the weak formulation of393

(3.4) and compute394

trV = − 1

τ2

(
ζ2(x− τexi

)(u(x)− u(x− τexi
)) + ζ2(x)(u(x)− u(x+ τexi

))
)
= D−τ

xi
(ζ2Dτ

xi
u).395

396

Integration by parts in (3.4) over R
d × R+ and using that the Neumann trace (up to the constant ds397

from (2.8)) produces the fractional Laplacian gives398

∫

Rd×R+

FV dx dy − 1

ds

∫

Rd

(−∆)su trV dx =

∫

Rd×R+

yα∇U · ∇V dx dy399

=

∫

Rd×R+

Dτ
xi
(yα∇U) · ∇(ζ2Dτ

xi
U) dx dy400

=

∫

B+

R

yαDτ
xi
(∇U) ·

(
ζ2∇Dτ

xi
U + 2ζ∇ζDτ

xi
U
)
dx dy401

=

∫

B+

R

yαζ2Dτ
xi
(∇U) ·Dτ

xi
(∇U) dx dy +

∫

B+

R

2yαζ∇ζ ·Dτ
xi
(∇U)Dτ

xi
U dx dy.402

403

We recall that by, e.g., [Eva98, Sec. 6.3], we have uniformly in τ404

(3.12) ‖Dτ
xi
v‖L2(Rd×R+) . ‖∂xi

v‖L2(Rd×R+).405

Using the equation (−∆)su = f on Ω, Young’s inequality, and the Poincaré inequality together with the406

trace estimate (2.6), we get the existence of constants Cj > 0, j ∈ {1, . . . , 5}, such that407

∥∥ζDτ
xi
(∇U)

∥∥2
L2

α(B+

R)
≤ C1

( ∣∣∣∣∣

∫

B+

R

yαζ∇ζ ·Dτ
xi
(∇U)Dτ

xi
U dx dy

∣∣∣∣∣+
∣∣∣∣∣

∫

Rd×R+

F D−τ
xi

ζ2Dτ
xi
U dx dy

∣∣∣∣∣408

+

∣∣∣∣
∫

Rd

Dτ
xi
f(ζ2Dτ

xi
u) dx

∣∣∣∣
)

409

≤ 1

4

∥∥ζDτ
xi
(∇U)

∥∥2
L2

α(B+

R)
+ C2

(
‖∇ζ‖2L∞(BR)

∥∥Dτ
xi
U
∥∥2
L2

α(B+

R)
410

+ ‖F‖L2
−α(B+

R) ‖∂xi(ζ
2Dτ

xi
U)‖L2

α(B+

R) +
∥∥ζDτ

xi
f
∥∥
H−s(Ω)

∥∥ζDτ
xi
u
∥∥
Hs(Rd)

)
411

≤ 1

2

∥∥ζDτ
xi
(∇U)

∥∥2
L2

α(B+

R)
+ C3

(
‖∇ζ‖2L∞(BR)‖∇U‖2

L2
α(B+

R)
+ ‖F‖2

L2
−α(B+

R)
412

+
∥∥ζDτ

xi
f
∥∥
H−s(Ω)

∣∣ζDτ
xi
u
∣∣
Hs(Rd)

)
413

(2.6)

≤ 1

2

∥∥ζDτ
xi
(∇U)

∥∥2
L2

α(B+

R)
+ C4

(
‖∇ζ‖2L∞(BR)‖∇U‖2

L2
α(B+

R)
+ ‖F‖2

L2
−α(B+

R)
414

+
∥∥ζDτ

xi
f
∥∥
H−s(Ω)

∥∥∇(ζDτ
xi
U)
∥∥
L2

α(Rd×R+)

)
415

≤ 3

4

∥∥ζDτ
xi
(∇U)

∥∥2
L2

α(B+

R)
416

+ C5

(
‖∇ζ‖2L∞(BR)‖∇U‖2

L2
α(B+

R)
+ ‖F‖2

L2
−α(B+

R)
+
∥∥ζDτ

xi
f
∥∥2
H−s(Ω)

)
.417

418

Absorbing the first term of the right-hand side in the left-hand side and taking the limit τ → 0, we419

obtain the sought inequality for the second derivatives since ‖∇ζ‖L∞(BR) . ((1− c)R)−1.420

Remark that the constant Cint of (3.11) depends on s, due to the usage of (2.6) in the proof above.421

The Caccioppoli inequality in Lemma 3.4 can be iterated on concentric balls to provide control of422

higher order derivatives by lower order derivatives locally, in the interior of the domain.423

Corollary 3.5 (High order interior Caccioppoli inequality). Let BR := BR(x0) ⊂ Ω ⊂ R
d be an424

open ball of radius R > 0 centered at x0 ∈ Ω, and let BcR be the concentric scaled ball of radius cR with425

c ∈ (0, 1). Let U satisfy (3.4a), (3.4b) with given data f and F .426
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Then, there is γ > 0 (depending only on s, Ω, and c) such that for all β ∈ N
d
0 with |β| = p ≥ 1, we427

have428
429

(3.13)
∥∥∂β

x∇U
∥∥2
L2

α(B+

cR)
≤ (γp)2pR−2p ‖∇U‖2L2

α(B+

R)430

+

p∑

j=1

(γp)2(p−j)R2(j−p)

(
max
|η|=j

‖∂η
xf‖2L2(BR) + max

|η|=j−1
‖∂η

xF‖2L2
−α(B+

R)

)
.431

432

Proof. We start by fixing p ∈ N and a multi index β such that |β| = p. As the x-derivatives commute433

with the differential operator in (3.4), we have that ∂β
xU solves equation (3.4) with data ∂β

xF and ∂β
xf .434

For given c > 0, let435

ci = c+ (i− 1)
1− c

p
, i = 1, . . . , p+ 1.436

Then, we have ci+1R − ciR = (1−c)R
p and c1R = cR as well as cp+1R = R. For ease of notation and437

without loss of generality, we assume that β1 > 0. Applying Lemma 3.4 iteratively on the sets B+
ciR

for438

i > 1 provides439

∥∥∂β
x∇U

∥∥2
L2

α(B+

cR)
≤ C2

int

(
p2

(1− c)2
R−2

∥∥∥∂(β1−1,β2)
x ∇U

∥∥∥
2

L2
α(B+

c2R)
+ C2

loc

∥∥∂β
xf
∥∥2
L2(Bc2R)

+
∥∥∥∂(β1−1,β2)

x F
∥∥∥
2

L2
−α(B+

c2R)

)
440

≤
(

Cintp

(1− c)

)2p

R−2p ‖∇U‖2L2
α(B+

R) + C2
loc

p∑

j=1

(
Cintp

(1− c)

)2p−2j

R−2p+2j max
|η|=j

‖∂η
xf‖2L2(Bcp−j+2R)441

+

p−1∑

j=0

(
Cintp

(1− c)

)2p−2j−2

R−2p+2j+2 max
|η|=j

‖∂η
xF‖2L2

−α(B+

cp−j+1R) .442
443

Choosing γ = max(C2
loc, 1)Cint/(1− c) concludes the proof.444

4. Local tangential regularity for the extension problem in 2d. Lemma 3.2 provides global445

regularity for the solution U of (3.4). In this section, we derive a localized version of Lemma 3.2 for446

tangential derivatives of U , where we solely consider the case d = 2.447

Lemma 3.4 is formulated as an interior regularity estimate as the balls are assumed to satisfy448

BR(x0) ⊂ Ω. Since u = 0 on Ωc (i.e., u satisfies “homogeneous boundary conditions”), one obtains449

estimates near ∂Ω for derivative in the direction of an edge.450

Lemma 4.1 (Boundary Caccioppoli inequality). Let e ⊂ ∂Ω be an edge of Ω. Let BR := BR(x0) be451

an open ball with radius R > 0 and center x0 ∈ e such that BR(x0)∩Ω is a half-ball, and let BcR be the452

concentric scaled ball of radius cR with c ∈ (0, 1). Let ζ ∈ C∞
0 (BR) be a cut-off function with 0 ≤ ζ ≤ 1453

and ζ ≡ 1 on BcR as well as ‖∇ζ‖L∞(BR) ≤ Cζ((1− c)R)−1 for some Cζ > 0 independent of c, R. Let454

U satisfy (3.4a), (3.4b), (3.4c) with given data f and F .455

Then, there exists a constant C > 0 (independent of R, c, and the data F , f) such that456

∥∥Dx‖
∇U

∥∥2
L2

α(B+

cR)
≤ C

(
((1− c)R)−2 ‖∇U‖2L2

α(B+

R) +
∥∥ζDx‖

f
∥∥2
H−s(Ω)

+ ‖F‖2L2
−α(B+

R)

)
.(4.1)457

458

In particular, ‖ζDx‖
f‖H−s(Ω) ≤ Cloc‖Dx‖

f‖L2(BR∩Ω) for some Cloc > 0 independent of R (cf. Lemma A.1).459

Proof. The proof is almost verbatim the same as that of Lemma 3.4. The key observation is that
V = D−τ

x‖
(ζ2Dτ

x‖
U) with the difference quotient

Dτ
x‖
w(x) :=

w(x+ τe‖)− w(x)

τ

is an admissible test function.460

Iterating the boundary Caccioppoli equation provides an estimate for higher order tangential deriv-461

atives.462

Corollary 4.2 (High order boundary Caccioppoli inequality). Let e ⊂ ∂Ω be an edge of Ω. Let463

BR := BR(x0) be an open ball with radius R > 0 and center x0 ∈ e such that BR(x0) ∩ Ω is a half-ball,464
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and let BcR be the concentric scaled ball of radius cR with c ∈ (0, 1). Let U satisfy (3.4a), (3.4b), (3.4c)465

with given data f and F .466

Let p ∈ N. Then, there is γ > 0 independent of p and R and the data f , F such that467

‖Dp
x‖
∇U‖2

L2
α(B+

cR)
≤ (γp)2pR−2p‖∇U‖2

L2
α(B+

R)
(4.2)468

+

p∑

j=1

(γp)2(p−j)R2(j−p)
(
‖Dj

x‖
f‖2L2(BR) + ‖Dj−1

x‖
F‖2

L2
−α(B+

R)

)
.469

470

Proof. The statement follows from Lemma 4.1 in the same way as Corollary 3.5 follows from471

Lemma 3.4.472

The term ‖∇U‖L2
α(B+

R) in (4.2) is actually small for R → 0 in the presence of regularity of U , which473

was asserted in Lemma 3.2; this is quantified in the following lemma.474

Lemma 4.3. Let SR := {x ∈ Ω : r∂Ω(x) < R} be the tubular neighborhood of ∂Ω of width R > 0.475

Then, for t ∈ [0, 1/2), there exists Creg > 0 depending only on t and Ω such that the solution U of (3.1)476

satisfies477

R−2t‖∇U‖2
L2

α(S+

R)
≤ ‖r−t

∂Ω∇U‖2L2
α(Ω+) ≤ CregCtN

2(U,F, f).(4.3)478
479

with the constant Ct > 0 from Lemma 3.2 and N2(U,F, f) given by (3.5).480

Proof. The first estimate in (4.3) is trivial. For the second bound, we start by noting that the shift481

result Lemma 3.2 gives the global regularity482

∫

R+

yα ‖∇U(·, y)‖2Ht(Ω) dy ≤ CtN
2(U,F, f).(4.4)483

484

For t ∈ [0, 1/2) and any v ∈ Ht(Ω), we have by, e.g., [Gri11, Thm. 1.4.4.3] the embedding result485

‖r−t
∂Ωv‖L2(Ω) ≤ Creg‖v‖Ht(Ω). Applying this embedding to ∇U(·, y), multiplying by yα, and integrating486

in y yields (4.3).487

The following lemma provides a shift theorem for localizations of tangential derivatives of U .488

Lemma 4.4 (High order localized shift theorem). Let U be the solution of (3.4). Let x0 ∈ e489

for an edge e, R ∈ (0, 1/2], and assume that BR(x0) ∩ Ω is a half-ball. Let η ∈ C∞
0 (BR(x0)) with490

‖∇jη‖L∞(BR(x0)) ≤ CηR
−j, j ∈ {0, 1, 2}, with a constant Cη > 0 independent of R. Then, for t ∈491

[0, 1/2), there is C > 0 independent of R and x0 such that, for each p ∈ N, the function Ũ (p) := ηDp
x‖
U492

satisfies493

∫

R+

yα
∥∥∥∇Ũ (p)(·, y)

∥∥∥
2

Ht(Ω)
dy ≤ CR−2p−1+2t(γp)2p(1 + γp)Ñ (p)(F, f),(4.5)494

495

where γ is the constant in Corollary 4.2 and496

Ñ (p)(F, f) := ‖f‖2H1(Ω) + ‖F‖2L2(R2×R+)(4.6)497

+

p+1∑

j=1

(γp)−2j

(
2j max

|β|=j
‖∂β

xf‖2L2(Ω) + 2j−1 max
|β|=j−1

‖∂β
xF‖2L2

−α(R2×R+)

)
.498

499

In addition,500

(4.7)
∫

R+

yα‖r−t
∂Ω∇Ũ (p)(·, y)‖2L2(Ω) dy ≤ CR−2p−1+2t(γp)2p(1 + γp)Ñ (p)(F, f).501

Proof. We abbreviate U
(p)
x‖

:= Dp
x‖
U , Ũ (p)(x, y) := η(x)Dp

x‖
U(x, y), F (p)

x‖
= Dp

x‖
F , and f

(p)
x‖

= Dp
x‖
f .502

Throughout the proof we will use the fact that, for all j ∈ N and all sufficiently smooth functions v, we503

have504

|Dj
x‖
v| ≤ 2j/2 max

|β|=j
|∂β

xv|.505
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Step 1. (Localization of the equation). Using that U solves the extension problem, we obtain that506

the function Ũ (p) = ηU
(p)
x‖

satisfies the equation507

div(yα∇Ũ (p)) = yα divx(∇xŨ
(p)) + ∂y(y

α∂yŨ
(p))508

= yα
(
(∆xη)U

(p)
x‖

+ 2∇xη · ∇xU
(p)
x‖

+ η∆xU
(p)
x‖

)
+ η∂y(y

α∂yU
(p)
x‖

)509

= yα
(
(∆xη)U

(p)
x‖

+ 2∇xη · ∇xU
(p)
x‖

)
+ η div(yα∇U (p)

x‖
)510

= yα
(
(∆xη)U

(p)
x‖

+ 2∇xη · ∇xU
(p)
x‖

)
+ ηF (p)

x‖
=: F̃ (p)511

512

as well as the boundary conditions513

∂nα
Ũ (p)(·, 0) = ηDp

x‖
f =: f̃ (p) on Ω,514

tr Ũ (p) = 0 on Ωc.515516

By Lemma 3.2, for all t ∈ [0, 1/2), there is a Ct > 0 such that517

(4.8)
∫

R+

yα‖∇Ũ (p)(·, y)‖2Ht(BR̃)dy ≤ CtN
2(Ũ (p), F̃ (p), f̃ (p)),518

where BR̃ is a ball containing Ω. By (3.5), we have to estimate N2(Ũ (p), F̃ (p), f̃ (p)), i.e., ‖∇Ũ (p)‖L2
α(R2×R+),519

‖F̃ (p)‖L2
−α(R2×R+), and ‖f̃ (p)‖H1−s(Ω). Let γ be the constant introduced in Corollary 4.2. We note that520

by (3.6) there exists CN > 0 such that, for all p ∈ N,521

(4.9) N2(U,F, f) ≤ CN Ñ (p)(F, f).522

Step 2. (Estimate of ‖∇Ũ (p)‖L2
α(R2×R+)). We write523

‖∇Ũ (p)‖2L2
α(R2×R+) ≤ 2‖(∇xη) · ∇U (p−1)

x‖
‖2L2

α(R2×R+) + 2‖∇U (p)
x‖

‖2
L2

α(B+

R)
524

≤ 2C2
ηR

−2‖∇U (p−1)
x‖

‖2
L2

α(B+

R)
+ 2‖∇U (p)

x‖
‖2
L2

α(B+

R)
.(4.10)525

526

We employ Corollary 4.2 with a ball B2R and c = 1/2 as well as Lemma 4.3 to obtain527

‖∇U (p)
x‖

‖2
L2

α(B+

R)
≤ (2R)−2p(γp)2p

(
‖∇U‖2

L2
α(B+

2R)
+

p∑

j=1

(2R)2j(γp)−2j
(
‖Dj

x‖
f‖2L2(B2R) + ‖Dj−1

x‖
F‖2

L2
−α(B+

2R)

))
528

≤ (2R)−2p(γp)2p
(
‖∇U‖2

L2
α(B+

2R)
529

+ (2R)2
p∑

j=1

(2R)2(j−1)(γp)−2j
(
2j max

|β|=j
‖∂β

xf‖2L2(B2R) + 2j−1 max
|β|=j−1

‖∂β
xF‖2

L2
−α(B+

2R)

))
530

R≤1/2,L.4.3

≤ (2R)−2p(γp)2p
(
CregCtR

2tN2(U,F, f) + (2R)2Ñ (p)(F, f)
)

531

t<1/2,(4.9)

≤ (2R)−2p(γp)2p(CregCtCN + 4)R2tÑ (p)(F, f).

(4.11)

532533

For p = 1, the term ‖∇U
(p−1)
x‖

‖2
L2

α(B+

R)
reduces to ‖∇U‖2

L2
α(B+

R)
and, as above, Lemma 4.3 together with534

(4.9) gives the desired estimate. For p > 1, we employ Corollary 4.2 for the (p−1)-derivative as in (4.11)535

and obtain536

‖∇U (p−1)
x‖

‖2
L2

α(B+

R)
≤ (2R)−2(p−1)(γ(p− 1))2(p−1)(CregCtCN + 4)R2tÑ (p−1)(F, f)537

≤ (2R)−2(p−1)(γp)2p(CregCtCN + 4)R2tÑ (p)(F, f).(4.12)538539

Inserting (4.11) and (4.12) into (4.10) provides the estimate540

‖∇Ũ (p)‖2L2
α(R2×R+) ≤ CR−2p+2t(γp)2pÑ (p)(F, f)541542
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with a constant C > 0 depending only on the constants Creg, Ct, Cη and CN .543

Step 3. (Estimate of ‖F̃ (p)‖L2
−α(R2×R+)). We treat the three terms appearing in ‖F̃ (p)‖L2

−α(R2×R+)544

separately. With (4.11), we obtain545

∥∥∥yα∇xη · ∇xU
(p)
x‖

∥∥∥
2

L2
−α(R2×R+)

=
∥∥∥∇xη · ∇xU

(p)
x‖

∥∥∥
2

L2
α(R2×R+)

≤ C2
η

1

R2

∥∥∥∇xU
(p)
x‖

∥∥∥
2

L2
α(B+

R)
546

(4.11)

≤ (2R)−2p(γp)2pC2
η(CregCtCN + 4)R−2+2tÑ (p)(F, f).547548

Similarly, we get549

∥∥∥yα(∆xη)U
(p)
x‖

∥∥∥
2

L2
−α(R2×R+)

=
∥∥∥(∆xη)U

(p)
x‖

∥∥∥
2

L2
α(B+

R)
≤ C2

η

1

R4

∥∥∥∇U (p−1)
x‖

∥∥∥
2

L2
α(B+

R)
550

(4.12)

≤ (2R)−2p(γp)2pC2
η(CregCtCN + 4)R−2+2tÑ (p)(F, f).551552

Finally, we estimate553

‖ηF (p)
x‖

‖2L2
−α(R2×R+) ≤ ‖F (p)

x‖
‖2
L2

−α(B+

R)
≤ 2p max

|β|=p
‖∂β

xF‖2
L2

−α(B+

R)
≤ (γp)2p+2Ñ (p)(F, f).554

555

Step 4. (Estimate of ‖f̃ (p)‖H1−s(Ω).) Here, we use Lemma A.1 and R < 1/2 together with s < 1 to556

obtain557

‖f̃ (p)‖2H1−s(Ω) ≤ 2C2
loc,2C

2
η

(
9R2s−2‖Dp

x‖
f‖2L2(Ω) + |Dp

x‖
f |2H1−s(Ω)

)
558

≤ CC2
loc,2C

2
ηR

2s−2

(
2p max

|β|=p
‖∂β

xf‖2L2(Ω) + 2p+1 max
|β|=p+1

‖∂β
xf‖2L2(Ω)

)
559

≤ CC2
loc,2C

2
ηR

2s−2(γp)2p(1 + (γp)2)Ñ (p)(F, f)560561

with a constant C > 0 depending only on Ω and s.562

Step 5. (Putting everything together.) Combining the above estimates, we obtain that there exists563

a constant C > 0 depending only on Creg, Ct, Cη, CN , and Cloc,2 such that564

N2(Ũ (p), F̃ (p), f̃ (p))565

=
(
‖∇Ũ (p)‖2L2

α(R2×R+) + ‖∇Ũ (p)‖L2
α(R2×R+)‖F̃ (p)‖L2

−α(R2×R+) + ‖∇Ũ (p)‖L2
α(R2×R+)‖f̃ (p)‖H1−s(Ω)

)
566

≤ C
(
R−2p+2t(γp)2p +R−p+t(γp)pR−p−1+t(γp)p(1 + γp) +R−p+t(γp)pRs−1(γp)p(1 + γp)

)
Ñ (p)(F, f)567

R≤1,t<1/2

≤ CR−2p−1+2t(γp)2p(1 + γp)Ñ (p)(F, f).568569

Inserting this estimate in (4.8) concludes the proof of (4.5).570

Step 6: The estimate (4.7) follows from [Gri11, Thm. 1.4.4.3], which gives571

∫

R+

yα‖r−t
∂Ω∇Ũ (p)(·, y)‖2L2(Ω) dy ≤ C

∫

R+

yα‖∇Ũ (p)(·, y)‖2Ht(Ω) dy,572

and from (4.5).573

5. Weighted Hp-estimates in polygons. In this section, we derive higher order weighted reg-574

ularity results, at first for the extension problem and finally for the fractional PDE. This is our main575

result, Theorem 2.1.576

5.1. Coverings. A main ingredient in our analysis are suitable localizations of vertex neighborhoods577

ωv and edge-vertex neighborhoods ωve near a vertex v and of edge neighborhoods ωe near an edge e. This578

is achieved by covering such neighborhoods by balls or half-balls with the following two properties:579

a) their diameter is proportional to the distance to vertices or edges and b) scaled versions of these580

balls/half-balls satisfy a locally finite overlap property.581

We start by recalling a lemma that follows from Besicovitch’s Covering Theorem:582
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•v

ωv

• Bcrv(xi)
(xi)

Fig. 2: Covering of “vertex cones” such as ωv by union of balls Bcrv(xi)(xi) with fixed c ∈ (0, 1).

•v

ωve

•
xi

Hi

e•
xi

•
xij

B̂ij

∼ re(xij)

H̃i

Hi

Fig. 3: Covering of ωve. Left: the half-balls Hi constructed in Lemma 5.3. Right: covering of Hi by
balls Bij such that the larger balls B̂ij are contained in a ball H̃i. For better illustration, only the larger
balls B̂ij are shown, the balls Bij are included therein and still provide a covering of Hi.

Lemma 5.1 ([MW12, Lemma A.1], [HMW13, Lemma A.1]). Let ω ⊂ R
d be bounded open and M be583

closed. Fix c, ζ ∈ (0, 1) such that 1− c(1 + ζ) =: c0 > 0. For each x ∈ ω, let Bx := Bc dist(x,M)(x) be the584

closed ball of radius c dist(x,M) centered at x, and let B̂x := B(1+ζ)c dist(x,M)(x) be the stretched closed585

ball of radius (1 + ζ)c dist(x,M) centered at x. Then, there is a countable set (xi)i∈I ⊂ ω (for some586

suitable index set I ⊂ N) and a number N ∈ N depending solely on d, c, ζ with the following properties:587

1. (covering property)
⋃

i Bxi
⊃ ω.588

2. (finite overlap) for x ∈ R
d there holds card{i |x ∈ B̂xi} ≤ N .589

Proof. The lemma is taken from [MW12, Lemma A.1] except that there M ⊂ ω is assumed and that590

x ∈ ω in the condition of finite overlap is assumed. Inspection of the proof shows that both conditions591

can be relaxed as given here.592

In the next lemma, we introduce a covering of ωv, see Figure 2.593

Lemma 5.2 (covering of ωv). Given ξ > 0 there are 0 < c < ĉ < 1 and points (xi)i∈N ⊂ ωv such594

that the collections B := {Bi := Bc dist(xi,v)(xi) | i ∈ N} and B̂ := {B̂i := Bĉ dist(xi,v)(xi) | i ∈ N} of (open)595

balls satisfy the following conditions: the balls from B cover ωv; the balls from B̂ satisfy a finite overlap596

property with overlap constant N depending only on the spatial dimension d = 2 and c, ĉ; the balls from597

B̂ are contained in Ω. Furthermore, for every δ > 0 there is Cδ > 0 (depending additionally on δ) such598

that with the radii Ri := ĉ dist(xi,v) there holds599

(5.1)
∑

i

Rδ
i ≤ Cδ.600

Proof. Apply Lemma 5.1 with M = {v} and sufficiently small parameters c, ζ > 0. Note that by601

possibly slightly increasing the parameter c, one can ensure that the open balls rather than the closed602

balls given by Lemma 5.1 cover ωv. Also, since c < 1, the index set I of Lemma 5.1 cannot be finite so603

that I = N.604

To see (5.1), we compute with the spatial dimension d = 2605

∑

i

Rδ
i =

∑

i

Rδ−d
i Rd

i .
∑

i

∫

B̂i

rδ−d
v

dx
finite overlap

.

∫

Ω

rδ−d
v

dx < ∞.606

607

We now introduce a covering of edge-vertex neighborhoods ωve. We start by a covering of half-balls608

resting on the edge e and with size proportional to the distance from the vertex, see Figure 3 (left).609
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Lemma 5.3 (covering of ωve). Given v ∈ V, e ∈ E(v) there is ξ > 0 and parameters 0 < c < ĉ < 1610

as well as points (xi)i∈N ⊂ e such that the following holds:611

(i) the sets Hi := Bc dist(xi,v)(xi)∩Ω are half-balls and the collection B := {Hi | i ∈ N} covers ωve (with612

ωve defined by the parameter ξ).613

(ii) The collection B̂ := {Ĥi := Bĉ dist(xi,v)(xi) ∩ Ω} is a collection of half-balls and satisfies a finite614

overlap property, i.e., there is N > 0 depending only on the spatial dimension d = 2 and the615

parameters c, ĉ such that for all x ∈ R
2 there holds card{i |x ∈ Ĥi} ≤ N .616

Furthermore, for every δ > 0 there is Cδ > 0 such that for the radii Ri := ĉ dist(xi,v)(xi) there holds617 ∑
i R

δ
i ≤ Cδ.618

Proof. Let ẽ be the (infinite) line containing e. We apply Lemma 5.1 to the 1D line segment619

e ∩ Bξ(v) (for some sufficiently small ξ) and M := {v} and the parameter c sufficiently small so that620

B2c dist(x,v)(x) ∩ Ω is a half-ball for all x ∈ e ∩Bξ(v). Lemma 5.1 provides a collection (xi)i∈N ⊂ e such621

the balls Bi := Bc dist(xi,v)(xi) ⊂ R
2 and the stretched balls B̂i := Bc(1+ζ) dist(xi,v)(xi) ⊂ R

2 (for suitable,622

sufficiently small ζ) satisfy the following: the intervals {Bi ∩ ẽ | i ∈ N} cover Bξ(v) ∩ ẽ and the intervals623

{B̂i ∩ ẽ | i ∈ N} satisfy a finite overlap condition on ẽ. By possibly slightly increasing the parameter624

c (e.g., by replacing c with c(1 + ζ/2)), the newly defined balls Bi then cover a set ωve for a possibly625

reduced ξ. It remains to see that the balls B̂i satisfy a finite overlap condition on R
2: given x ∈ R

2, its626

projection xe onto ẽ satisfies xe ∈ Bi since xi ∈ e ⊂ ẽ. This implies that the overlap constants of the627

balls B̂i in R
2 is the same as the overlap constant of the intervals B̂i∩ ẽ in ẽ. The half-balls Hi := Bi∩Ω628

and Ĥi := B̂i ∩ Ω have the stated properties.629

Finally, the convergence of the sum
∑

i R
δ
i is shown by the same arguments as in Lemma 5.2.630

We will also need a covering of the half-balls Hi constructed in Lemma 5.3, which we introduce in the631

next lemma. See also Figure 3 (right).632

Lemma 5.4. Let B = {Hi | i ∈ N} and B̂ = {Ĥi | i ∈ N} be constructed in Lemma 5.3. Fix a c̃ ∈ (c, ĉ)633

with c, ĉ from Lemma 5.3 and define the collection B̃ := {H̃i := Bc̃rv(xi)(xi) ∩ Ω | i ∈ N} of half-balls634

intermediate to the half-balls Hi and Ĥi.635

There are constants 0 < c1 < ĉ1 < 1 such that the following holds: for each i, there are points636

(xij)j∈N ⊂ Hi such that the collection Bi := {Bij := Bc1re(xij)(xij)} covers Hi and the collection B̂i :=637

{B̂ij := Bĉ1re(xij)(xij)} satisfies B̂ij ⊂ H̃i for all j as well as a finite overlap property, i.e., there is638

N > 0 independent of i such that for all x ∈ R
2 there holds card{j |x ∈ B̂ij} ≤ N .639

Proof. We apply Lemma 5.1 with M = {e} and ω = Hi. The parameters c and ζ are chosen small640

enough so that the balls Bx in Lemma 5.1 satisfy B̂x ⊂ H̃i. Then, the lemma follows from Lemma 5.1.641

5.2. Weighted Hp-regularity for the extension problem. To illustrate the techniques, we642

start with the simplest case of estimates in vertex neighborhoods ωv. It is worth stressing that we have643

re ∼ rv on ωv.644645

The following lemma provides higher order regularity estimates in a vertex weighted norm for solutions646

to the Caffarelli-Silvestre extension problem with smooth data.647

Lemma 5.5 (Weighted Hp-regularity in ωv). Let ωv be given for some ξ > 0. Let U be the solution648

of (3.1). There is γ > 0 depending only on s, Ω, and ωv and for every ε ∈ (0, 1), there exists Cε > 0649

depending on ε, Ω such that, for all β ∈ N
2
0 with |β| = p ∈ N,650

‖rp−1/2+ε
v

∂β
x∇U‖2

L2
α(ω+

v
)
≤ Cεγ

2p+1p2p
(
‖f‖2H1(Ω) + ‖F‖2L2

−α(R2×R+)651

+

p+1∑

j=1

p−2j

(
max
|η|=j

‖∂η
xf‖2L2(Ω) + max

|η|=j−1
‖∂η

xF‖2L2
−α(R2×R+)

))
.652

653

Proof. Let the covering ωv ⊂ ⋃i Bi with Bi = Bc dist(xi,v)(xi) and stretched balls B̂i = Bĉ dist(xi,v)(xi)654

be given by Lemma 5.2. It will be convenient to denote Ri := ĉ dist(xi,v) the radius of the ball B̂i and655

note that, for some CB > 0,656

(5.2) ∀i ∈ N ∀x ∈ B̂i C−1
B Ri ≤ rv(x) ≤ CBRi.657
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We assume (for convenience) that Ri ≤ 1/2 for all i.658

Let β be a multi index such that |β| = p. By (3.6) there is CN > 0 such that N2(U,F, f) ≤659

CN Ñ (p)(F, f) for all p ∈ N, where Ñ (p) is defined in (4.6). We employ Corollary 3.5 to the pair (Bi,660

B̂i) of concentric balls together with Lemma 4.3 for t = 1/2 − ε/2 and N2(U,F, f) ≤ CN Ñ (p)(F, f) to661

obtain, for suitable γ > 0,662

∥∥∂β
x∇U

∥∥2
L2

α(B+

i )
≤ γ2p+1R−2p+1−ε

i p2pÑ (p)(F, f).663
664

Summation over i (with very generous bounds for the data f , F ) and (5.2) provides665

‖rp−1/2+ε
v

∂β
x∇U‖2

L2
α(ω+

v
)
≤ C2p−1+2ε

B

∑

i

R2p−1+2ε
i ‖∂β

x∇U‖2
L2

α(B+

i )
666

≤ γ2p+1C2p+1
B p2p

(∑

i

Rε
i

)
Ñ (p)(F, f)667

≤ Cε(γCB)
2p+1p2p

{
‖f‖2H1(Ω) + ‖F‖2L2

−α(R2×R+)668

+

p+1∑

j=1

p−2j

(
max
|η|=j

‖∂η
xf‖2L2(Ω) + max

|η|=j−1
‖∂η

xF‖2L2
−α(R2×R+)

)}
,669

670

since
∑

i R
ε
i =: Cε < ∞ by Lemma 5.2. Relabelling γCB as γ gives the result.671

We continue with the more involved case of edge-vertex neighborhoods.672

Lemma 5.6 (Weighted Hp-regularity in ωve). Let ξ be sufficiently small. There exists γ > 0673

depending only on s, ξ and Ω and for any ε ∈ (0, 1), there exists Cε > 0 depending additionally on ε674

such that the solution U of (3.4) satisfies, for all p‖, p⊥ ∈ N0 with p = p‖ + p⊥ ≥ 1,675

∥∥∥rp⊥−1/2+ε/2
e

r
p‖+ε
v Dp⊥

x⊥
D

p‖
x‖
∇U

∥∥∥
2

L2
α((ωξ

ve
)+)

676

≤ Cεγ
2p+1p2p+1

[
‖f‖2H1(Ω) + ‖F‖2L2

−α(R2×R+) +

p+1∑

j=1

p−2j
(
max
|η|=j

‖∂η
xf‖2L2(Ω) + max

|η|=j−1
‖∂η

xF‖2L2
−α(R2×R+)

)]
.677

678

Proof. By Lemma 5.4, for sufficiently small ξ there is a covering of ωξ
ve

by half-balls (Hi)i∈N with679

corresponding stretched half-balls (Ĥi)i∈N and intermediate half-balls (H̃i)i∈N such that each Hi is cov-680

ered by balls Bi := {Bij | j ∈ N} with the stretched balls B̂ij satisfying a finite overlap condition and681

being contained in H̃i. We abbreviate the radii of the half-balls Ĥi and the balls B̂ij by Ri and Rij682

respectively. We note that the half-balls Ĥi and the balls B̂ij satisfy for all i, j:683

∀x ∈ Ĥi : C−1
B Ri ≤ rv(x) ≤ CBRi,(5.3)684

∀x ∈ B̂ij : C−1
B Rij ≤ re(x) ≤ CBRij(5.4)685686

for some CB > 0 depending only on ωξ
ve

. For convenience, we assume that Ri ≤ 1/2 for all i and that687

hence Rij ≤ 1/2 for all i, j.688

Let p‖, p⊥ ∈ N0. Since the balls (Bij)i,j∈N cover ωξ
ve

, we estimate using (5.3), (5.4)689

∥∥∥rp⊥−1/2+ε/2
e

r
p‖+ε
v Dp⊥

x⊥
D

p‖
x‖
∇U

∥∥∥
2

L2
α((ωξ

ve
)+)

690

≤ C
2p⊥−1+ε+2p‖+2ε

B

∑

i,j

R
2p‖+2ε

i R2p⊥−1+ε
ij

∥∥Dp⊥
x⊥

D
p‖
x‖
∇U

∥∥2
L2

α(B+

ij)
.(5.5)691

692

With the constant γ > 0 from Corollary 3.5, we abbreviate693

N̂
(p⊥)
i,j (F, f) :=

p⊥∑

n=1

(γp⊥)
−2n

(
max
|η|=n

∥∥∂η
xD

p‖
x‖
f
∥∥2
L2(B̂ij)

+ max
|η|=n−1

∥∥∂η
xD

p‖
x‖
F
∥∥2
L2

−α(B̂+

ij)

)
,694

N̂
(p⊥)
i (F, f) :=

p⊥∑

n=1

(γp⊥)
−2n

(
max
|η|=n

∥∥∂η
xD

p‖
x‖
f
∥∥2
L2(H̃i)

+ max
|η|=n−1

∥∥∂η
xD

p‖
x‖
F
∥∥2
L2

−α(H̃+

i )

)
.695

696
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Applying the interior Caccioppoli-type estimate (Corollary 3.5) for the pairs of concentric balls (Bij , B̂ij)697

(which are fully contained in Ω) and the function D
p‖
x‖
U (noting that this function satisfies (3.4) with698

data D
p‖
x‖
f , D

p‖
x‖
F ) provides (we also use Ri ≤ 1/2 ≤ 1)699

∥∥Dp⊥
x⊥

∇D
p‖
x‖
U
∥∥2
L2

α(B+

ij)
≤ 2p⊥ max

|β|=p⊥

∥∥∂β
x∇D

p‖
x‖
U
∥∥2
L2

α(B+

ij)
(5.6)700

≤ (
√
2γp⊥)

2p⊥R−2p⊥

ij

(∥∥∇D
p‖
x‖
U
∥∥2
L2

α(B̂+

ij)
+R2

ijN̂
(p⊥)
i,j (F, f)

)
701

(5.4)

≤ C1+ε
B (

√
2γp⊥)

2p⊥R−2p⊥+1−ε
ij

(∥∥∥r−1/2+ε/2
e

∇D
p‖
x‖
U
∥∥∥
2

L2
α(B̂+

ij)
+R1+ε

ij N̂
(p⊥)
i,j (F, f)

)
.702

703

Inserting this in (5.5), summing over all j, and using the finite overlap property as well as Rij ≤ Ri704

yields705
∥∥∥rp⊥−1/2+ε/2

e
r
p‖+ε
v Dp⊥

x⊥
D

p‖
x‖
∇U

∥∥∥
2

L2
α((ωξ

ve
)+)

706

. C
2p⊥+2+2p‖+2ε

B (
√
2γp⊥)

2p⊥

∑

i

R
2p‖+2ε

i

(
‖r−1/2+ε/2

e
∇D

p‖
x‖
U‖2

L2
α(H̃+

i )
+R1+ε

i N̂
(p⊥)
i (F, f)

)
,(5.7)707

708

with the implied constant reflecting the overlap constant. Using again Ri ≤ 1, we estimate the sum over709

the N̂
(p⊥)
i (F, f) (generously) by710

∑

i

R
2p‖+2ε

i R1+ε
i N̂

(p⊥)
i (F, f) ≤ C

p⊥∑

n=1

(γp)−2n

(
max
|η|=n

‖∂η
xD

p‖
x‖
f‖2L2(Ω) + max

|η|=n−1
‖∂η

xD
p‖
x‖
F‖2L2

−α(Ω×R+)

)
.711

The term involving ‖r−1/2+ε
e ∇D

p‖
x‖
U‖2

L2
α(H̃+

i )
in (5.7) is treated with Lemma 4.3 for the case p‖ = 0 and712

Lemma 4.4 for p‖ > 0. Considering first the case p‖ = 0, we estimate using the finite overlap property713

of the half-balls Ĥi and r∂Ω ≤ re714

∑

i

R
2p‖+2ε

i ‖r−1/2+ε/2
e

∇D
p‖
x‖
U‖2

L2
α(H̃+

i )

finite overlap,p‖=0

. ‖r−1/2+ε/2
∂Ω ∇U‖2L2

α(Ω+)

L. 4.3

. N2(U,F, f).715

For p‖ > 0, we use Lemma 4.4. To that end, we select, for each i ∈ N, a cut-off function ηi ∈ C∞
0 (R2)716

with supp ηi ∩ Ω ⊂ Ĥi and ηi ≡ 1 on H̃i. Applying Lemma 4.4 with t = 1/2 − ε/2 there and using the717

finite overlap property we get for Ũ
(p‖)

i := ηiD
p‖
x‖
U and Ñ (p‖)(F, f) from (4.6)718

∑

i

R
2p‖+2ε

i ‖r−1/2+ε/2
e

∇D
p‖
x‖
U‖2

L2
α(H̃+

i )
≤
∑

i

R
2p‖+2ε

i ‖r−1/2+ε/2
∂Ω ∇Ũ

(p‖)

i ‖2
L2

α(H̃+

i )
719

.
∑

i

R
2p‖+2ε−2p‖−1+2(1/2−ε/2)

i (γp‖)
p‖(1 + γp‖)Ñ

(p‖)(F, f) . (γp‖)
p‖(1 + γp‖)Ñ

(p‖)(F, f);720

721

here, we used that
∑

i R
ε
i < ∞ by Lemma 5.3.722

Combining the above estimates we have shown the existence of C4 ≥ 1 independent of p = p‖ + p⊥723

such that724
∥∥∥rp⊥−1/2+ε/2

e
r
p‖+ε
v Dp⊥

x⊥
D

p‖
x‖
∇U

∥∥∥
2

L2
α((ωξ

ve
)+)

725

≤ C2p+1
4

[
p2p⊥

⊥ p
2p‖+1

‖ Ñ (p‖)(F, f) +

p⊥∑

n=1

p2p⊥−2n
⊥

(
max
|η|=n

∥∥∂η
xD

p‖
x‖
f
∥∥2
L2(Ω)

+ max
|η|=n−1

∥∥∂η
xD

p‖
x‖
F
∥∥2
L2

−α(R2×R+)

)]
.726

727

Using 1 ≤ n ≤ p⊥ and p⊥ ≤ p we estimate728

p⊥∑

n=1

p
2(p⊥−n)
⊥ max

|η|=n
‖∂η

xD
p‖
x‖
f‖2L2(Ω) ≤

p⊥∑

n=1

p2(p⊥−n) max
|η|=n

‖∂η
xD

p‖
x‖
f‖2L2(Ω) ≤

p∑

j=1+p‖

p2(p−j) max
|η|=j

‖∂η
xf‖2L2(Ω)729

730

and analogously for the sum over the terms max|η|=n−1 ‖∂η
xD

p‖
x‖
F‖2

L2
−α(R2×R+)

. Also by similar arguments,731

we estimate p
2p‖

‖ Ñ (p‖)(F, f) ≤ p2p‖Ñ (p)(F, f). Using p‖+p⊥ = p as well as |Dp‖
x‖
v| ≤ 2p‖/2 max|β|=p‖

|∂β
xv|732

completes the proof of the edge-vertex case.733
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Lemma 5.7 (Weighted Hp-regularity in ωe). There is γ depending only on s, Ω, and ωe such that734

for every ε ∈ (0, 1) there is Cε > 0 depending additionally on ε such that the solution U of (3.1) satisfies,735

for all p‖, p⊥ ∈ N0 with p‖ + p⊥ = p ≥ 1736

∥∥∥rp⊥−1/2+ε
e

Dp⊥
x⊥

D
p‖
xp‖

∇U
∥∥∥
2

L2
α(ω+

e
)

737

≤ Cεγ
2pp2p

(
‖f‖2H1(Ω) + ‖F‖2L2

−α(R2×R+) +

p∑

j=1

p−2j
(
max
|η|=j

‖∂η
xf‖2L2(Ω) + max

|η|=j−1
‖∂η

xF‖2L2
−α(R2×R+)

))
.738

739

Proof. The proof is essentially identical to the case p‖ = 0 in the proof of Lemma 5.5 using a covering740

of ωe analogous to the covering of ωv given in Lemma 5.2 that is refined towards e rather than v, see741

Figure 4.742

e

ωe

•xi
∼ re(xi)

Fig. 4: Covering of edge-neighborhoods ωe.

Remark 5.8. The assumption that ξ is sufficiently small in Lemma 5.6 can be dropped (as long as743

ωve is well defined, as per Section 2.2). Indeed, for all ξ1, ξ2 such that ξ1 ≥ ξ2 > 0 there exists ξ3 ≥ ξ2744

such that745

(5.8) ωξ1
ve

⊂
(
ωξ2
ve

∪ ωξ3
v

∪ ωξ3
e

)
.746

In addition, there exists a constant Cξ3 > 0 that depends only on ξ3 and ε such that747

(5.9)
‖rp⊥−1/2+ε

e
r
p‖+ǫ
v Dp⊥

x⊥
D

p‖
xp‖

∇U‖2
L2

α((ω
ξ3
v

)+)
≤ 2p max

|β|=p
‖rp⊥−1/2+ε

e
r
p‖+ǫ
v ∂β

x∇U‖2
L2

α((ω
ξ3
v

)+)

≤ Cp+1
ξ3

max
|β|=p

‖rp−1/2+ε
v

∂β
x∇U‖2

L2
α((ω

ξ3
v

)+)

748

and that749

(5.10) ‖rp⊥−1/2+ε
e

r
p‖+ǫ
v Dp⊥

x⊥
D

p‖
xp‖

∇U‖2
L2

α((ω
ξ3
e

)+)
≤ Cp+1

ξ3

∥∥∥rp⊥−1/2+ε
e

Dp⊥
x⊥

D
p‖
xp‖

∇U
∥∥∥
2

L2
α((ω

ξ3
e

)+)
.750

Given ξ1 > 0, bounds in ωξ1
ve

can therefore be derived by choosing ξ2 such that Lemma 5.6 holds in751

ωξ2
ve

, exploiting the decomposition (5.8), using Lemmas 5.5 and 5.6 in ωξ3
v

and ωξ3
e

, respectively, and752

concluding with (5.9) and (5.10).753

5.3. Proof of Theorem 2.1 – weighted Hp regularity for fractional PDE. In order to obtain754

regularity estimates for the solution u of (−∆)su = f , we have to take the trace y → 0 in the weighted755

Hp estimates for the Caffarelli-Silvestre extension problem provided by the previous subsection.756

Proof of Theorem 2.1. We only show the estimates (2.10a) and (2.10b) using Lemma 5.6. The757

bounds (2.11) (using Lemma 5.5) and (2.12) (using Lemma 5.7) follow with identical arguments. The758

bound in Ωint follows directly from the interior Caccioppoli inequality, Corollary 3.5, and a trace estimate759

as below.760

Due to Lemma 5.6 and the analyticity of the data f and F , there exists a constant C > 0 such that761

for all q⊥, q‖ ∈ N0 and q⊥ + q‖ = q ∈ N we have762

(5.11)
∥∥∥rq⊥−1/2+ε

e
r
q‖+ε
v Dq⊥

x⊥
D

q‖
x‖
∇U

∥∥∥
2

L2
α(ω+

ve
)
≤ C2q+1q2q+1.763
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The last step of the proof of [KM19, Lem. 3.7] gives the multiplicative trace estimate764

|V (x, 0)|2 ≤ Ctr ‖V (x, ·)‖1−α
L2

α(R+) ‖∂yV (x, ·)‖1+α
L2

α(R+) ,(5.12)765
766

where for univariate v : R+ → R we write ‖v‖2L2
α(R+)

:=
∫∞

y=0
yα|v(y)|2 dy. Suppose first p⊥ ≥ 1. Using767

the trace estimate (5.12) with V = Dp⊥
x⊥

D
p‖
x‖
U and additionally multiplying with the corresponding weight768

(using that α = 1− 2s) provides769
770

r2p⊥−1−2s+2ε
e

r
2p‖+2ε
v

∣∣Dp⊥
x⊥

D
p‖
x‖
U(x, 0)

∣∣2771

≤ Ctr

∥∥∥rp⊥−3/2+ε
e

r
p‖+ε
v ∇Dp⊥−1

x⊥
D

p‖
x‖
U(x, ·)

∥∥∥
1−α

L2
α(R+)

∥∥∥rp⊥−1/2+ε
e

r
p‖+ε
v Dp⊥

x⊥
D

p‖
x‖
∇U(x, ·)

∥∥∥
1+α

L2
α(R+)

,772
773

where we have also used the fact that (Dx⊥
v)2 = (e⊥ ·∇xv)

2 ≤ |∇xv|2 for all sufficiently smooth functions774

v. Integration over ωve gives775

∥∥∥rp⊥−1/2−s+ε
e

r
p‖+ε
v Dp⊥

x⊥
D

p‖
x‖
u
∥∥∥
2

L2(ωve)
776

≤ Ctr

∥∥∥rp⊥−3/2+ε
e

r
p‖+ε
v Dp⊥−1

x⊥
D

p‖
x‖
∇U

∥∥∥
1−α

L2
α(ω+

ve
)

∥∥∥rp⊥−1/2+ε
e

r
p‖+ε
v Dp⊥

x⊥
D

p‖
x‖
∇U

∥∥∥
1+α

L2
α(ω+

ve
)

777

(5.11)

≤ Ctr(C
2p−1p2p−1)(1−α)/2(C2p+1p2p+1)(1+α)/2 = CtrC

2p+1+αp2p+α = γ2p+1p2p,778779

which is estimate (2.10b). If p⊥ = 0, we have instead780

∥∥∥r−1/2+ε
e

r
p‖−s+ε
v D

p‖
x‖
u
∥∥∥
2

L2(ωve)
781

≤ Ctr

∥∥∥r−1/2+ε
e

r
p‖−1+ε
v ∇D

p‖−1
x‖

U
∥∥∥
1−α

L2
α(ω+

ve
)

∥∥∥r−1/2+ε
e

r
p‖+ε
v D

p‖
x‖
∇U

∥∥∥
1+α

L2
α(ω+

ve
)
.782

783

Again, inserting (5.11) into the right-hand side of the two inequalities provides (2.10a).784

6. Conclusions. We briefly recapitulate the principal findings of the present paper, outline gener-785

alizations of the present results, and also indicate applications to the numerical analysis of finite element786

approximations of (2.2). We established analytic regularity of the solution u in a scale of edge- and787

vertex-weighted Sobolev spaces for the Dirichlet problem for the fractional Laplacian in a bounded poly-788

gon Ω ⊂ R
2 with straight sides, and for forcing f analytic in Ω.789

While the analysis in Sections 4 and 5 was developed at present in two spatial dimensions, we790

emphasize that all parts of the proof can be extended to higher spatial dimension d ≥ 3, and polytopal791

domains Ω ⊂ R
d. Details shall be presented elsewhere.792

Likewise, the present approach is also capable of handling nonconstant, analytic coefficients similar793

to the setting considered (for the spectral fractional Laplacian) in [BMN+19]. Details on this extension794

of the present results, with the presently employed techniques, will also be developed in forthcoming795

work.796

The weighted analytic regularity results obtained in the present paper can be used to establish797

exponential convergence rates with the bound C exp(−b 4
√
N) on the error for suitable hp-Finite Element798

discretizations of (2.2), with N denoting the number of degrees of freedom of the discrete solution in Ω.799

This will be proved in the follow-up work [FMMS21]. Importantly, as already observed in [BMN+19],800

achieving this exponential rate of convergence mandates anisotropic mesh refinements near the boundary801

∂Ω.802

Appendix A. Localization of Fractional Norms. The following elementary observation on803

localization of fractional norms was used in several places.804

Lemma A.1. Let η ∈ C∞
0 (BR) for some ball BR ⊂ Ω of radius R and s ∈ (0, 1). Then,805

‖ηf‖H−s(Ω) ≤ Cloc‖η‖L∞(BR)‖f‖L2(BR),(A.1)806

‖ηf‖H1−s(Ω) ≤ Cloc,2

[ (
Rs‖∇η‖L∞(BR) + (Rs−1 + 1)‖η‖L∞(BR)

)
‖f‖L2(Ω)

+ ‖η‖L∞(BR)|f |H1−s(Ω)

]
,

(A.2)807

808

where the constants Cloc, Cloc,2 depend only on Ω and s.809
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Proof. (A.1) follows directly from the embedding L2 ⊂ H−s. For (A.2), we use the definition of the810

Slobodecki norm and the triangle inequality to write811

|ηf |2H1−s(Ω) =

∫

Ω

∫

Ω

|η(x)f(x)− η(z)f(z)|2
|x− z|d+2−2s

dz dx812

.

∫

Ω

∫

Ω

|η(x)f(x)− η(x)f(z)|2
|x− z|d+2−2s

dz dx+

∫

Ω

∫

Ω

|η(x)f(z)− η(z)f(z)|2
|x− z|d+2−2s

dz dx.813
814

The first term on the right-hand side can directly be estimated by ‖η‖L∞(BR)|f |H1−s(Ω). For the second815

term, we split the integration over Ω×Ω into four subsets, B2R ×B3R, B2R ×Bc
3R ∩Ω, Bc

2R ∩Ω×BR,816

Bc
2R∩Ω×Bc

R∩Ω; here, we assume for simplicity for the concentric balls BR ⊂ B2R ⊂ B3R ⊂ Ω, otherwise817

one has to intersect all balls with Ω. For the last case, Bc
2R ∩ Ω × Bc

R ∩ Ω, we have that η(x) − η(z)818

vanishes and the integral is zero. For the case B2R ×Bc
3R, we have |x− z| ≥ R there. This gives819

∫

B2R

∫

Bc
3R∩Ω

|η(x)f(z)− η(z)f(z)|2
|x− z|d+2−2s

dz dx =

∫

B2R

∫

Bc
3R∩Ω

|η(x)f(z)|2
|x− z|d+2−2s

dz dx820

≤ R−d−2+2s ‖η‖2L∞(BR)

∫

B2R

∫

Bc
3R∩Ω

|f(z)|2dzdx . R−2+2s ‖η‖2L∞(BR) ‖f‖
2
L2(Ω) .821

822

For the integration over Bc
2R ∩ Ω×BR, we write using polar coordinates (centered at z)823

∫

Bc
2R∩Ω

∫

BR

|η(z)f(z)|2
|x− z|d+2−2s

dz dx =

∫

BR

|η(z)f(z)|2
∫

Bc
2R∩Ω

1

|x− z|d+2−2s
dx dz824

.

∫

BR

|η(z)f(z)|2
∫ ∞

R

1

r3−2s
dx dz . R2s−2 ‖η‖2L∞(BR) ‖f‖

2
L2(Ω) .825

826

Finally, for the integration over B2R × B3R, we use that |η(x)− η(z)| ≤ ‖∇η‖L∞(BR) |x− z| and polar827

coordinates (centered at z) to estimate828

∫

B2R

∫

B3R

|η(x)f(z)− η(z)f(z)|2
|x− z|d+2−2s

dz dx ≤ ‖∇η‖2L∞(BR)

∫

B3R

|f(z)|2
∫

B2R

1

|x− z|d−2s
dx dz829

. ‖∇η‖2L∞(BR)

∫

B3R

|f(z)|2
∫ 5R

0

r−1+2s dr dz . ‖∇η‖2L∞(BR) ‖f‖
2
L2(B3R) R

2s.830
831

The straightforward bound ‖ηf‖L2(Ω) ≤ ‖η‖L∞(BR)‖f‖L2(Ω) concludes the proof.832
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