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Deep Learning in High Dimension: Neural Network Expression Rates for Analytic
Functions in L2(Rd, γd)

Christoph Schwab∗ and Jakob Zech†

Abstract. For artificial deep neural networks, we prove expression rates for analytic functions f : Rd → R in the
norm of L2(Rd, γd) where d ∈ N ∪ {∞}. Here γd denotes the Gaussian product probability measure on
R

d. We consider in particular ReLU and ReLUk activations for integer k ≥ 2. For d ∈ N, we show
exponential convergence rates in L2(Rd, γd). In case d = ∞, under suitable smoothness and sparsity
assumptions on f : RN → R, with γ∞ denoting an infinite (Gaussian) product measure on (RN,B(RN)), we
prove dimension-independent expression rate bounds in the norm of L2(RN, γ∞). The rates only depend
on quantified holomorphy of (an analytic continuation of) the map f to a product of strips in C

d (in C
N for

d = ∞, respectively). As an application, we prove expression rate bounds of deep ReLU-NNs for response
surfaces of elliptic PDEs with log-Gaussian random field inputs.

1. Introduction. This paper addresses the approximation of analytic functions f : Rd → R

by deep neural networks (DNNs for short) in the space L2(Rd, γd). Here γd denotes the d-fold
product Gaussian measure, with d ∈ N∪ {∞}. To quantify DNN expression rates, we assume f to
belong to a class of functions that allows holomorphic extensions to certain cartesian products of
strips around the real line in the complex plane. This implies summability results on coefficients
in Wiener-Hermite polynomial chaos expansions of f . We separately discuss the finite dimensional
case d ∈ N and the (countably) infinite dimensional case d = ∞. Our expression rate analysis is
based on expressing such functions through their finite- or infinite-parametric Wiener-Hermite poly-
nomial chaos (gpc) expansion. Reapproximating the gpc expansion, we provide DNN architectures
and corresponding DNN size bounds which show that such functions can be approximated at an
exponential convergence rate in finite dimension d ∈ N. For d = ∞, i.e. in the infinite dimensional
case, our DNN expression rate bounds are free from the so-called curse of dimensionality: we prove
that in this case our DNN expression rate bounds are only determined by the summability of the
gpc expansion coefficient sequences. Thus, while we concentrate on analytic functions, the scope of
our results extends to statistical learning of any object that can be represented as a Wiener-Hermite
expansion with bound on summability of the coefficient sequences.

Relevance of the present investigation derives from the fact that functions belonging to the
above described class arise in particular as response maps in uncertainty quantification (UQ) for
partial differential equations (PDEs for short) with Gaussian random field inputs. Modelling un-
known inputs of elliptic or parabolic PDEs by a log-Gaussian random field, the corresponding PDE
response surface can under certain assumptions be shown to be of this type [5]. We discuss a
standard example in Sec. 6 ahead. As such, our results have broad implications for a wide range
of problems in forward and inverse UQ. Dating back to the seminal works [22, 4] the numerical
approximation of Gaussian Random Fields (GRFs for short) and response maps with GRF inputs
by truncated Hermite polynomial chaos expansions has received substantial attention during re-
cent years, specifically due to the ubiquitous role of GRFs in spatial statistics, theoretical physics,
data assimilation, and stochastic Partial Differential Equations (PDEs for short). We refer to the
surveys [3, 13, 10], to the recent publications [20, 12] and to the references there for the discussion
of GRFs, as well as to, e.g., [8, 2] and the references there for the approximation of PDE response
surfaces with log-GRF inputs.

1.1. Previous results. In recent years, there has been substantial activity in the analysis of
expression rates of ReLU-DNNs for various classes of functions. We mention for instance the papers
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[23, 24] which established optimal convergence rates for functions of finite regularity. Approxima-
tion in Lp-spaces was discussed in [18]. In [17], DNN expression rates were given for functions
from Sobolev- and Besov-spaces, as well as for certain classes of analytic functions. Holomorphic
functions of d ∈ N many variables on bounded domains were shown to admit exponential expression
rates by deep ReLU-NNs in [16]. The case of infinite-parametric holomorphic functions on carte-
sian products of bounded intervals was discussed in [19]. The analysis there is conceptually closely
related to the present work. In this reference, we proved deep ReLU-NN expression rate bounds
for gpc representations of countably-parametric functions on [−1, 1]N. The obtained approximation
rates do not suffer from the curse of dimensionality, and were shown to be governed only by a
suitable notion of sparsity, as quantified in terms of summability of gpc coefficients. Importantly,
with the exception of [19], all results in these references addressed approximation rate bounds for
functions defined on bounded subdomains D of Euclidean space Rn with moderate, fixed “physical”
dimension n ∈ N. Also in other contexts, ReLU-NN expression rate bounds are often stated and
proved for DNNs with bounded input ranges. On bounded intervals, ReLU-NNs afford in particular
the efficient emulation of orthogonal Jacobi polynomials.

Our previous paper [19] is conceptually closely related to the present work. In this reference, we
proved deep ReLU-NN expression rate bounds for generalized polynomial chaos (“gpc” for short)
representations of countably-parametric functions which approximation rates do not suffer from
the so-called curse of dimensionality. The DNN expression rates of such functions were shown in
[19] to be governed only by a suitable notion of sparsity, as quantified in terms of summability of
gpc coefficients. In [19], we only considered bounded parameter domains, and gpc expansions with
respect to polynomials that are orthonormal with respect to probability measures on these domains.
In particular, Legendre and Jacobi polynomials. Although the present results are in a similar spirit
as the results in [19], they do not follow from these results, but differ both in statement and proofs
in an essential way from the results in [19]. Similar to [19], the presently obtained expression rate
bounds will be based on known (in part rather recent) bounds on approximation rates of n-term
Hermite gpc expansions of GRFs, from [5].

Deep Neural Networks (DNNs) have seen intense research activity, mainly driven by successes
in practical deep learning approaches in the emerging field of data science. This momentum has
also initiated new developments in the numerical solution of PDEs, being based on DNNs as ap-
proximation architectures rather than “traditional” approaches built on Finite Element or Spectral
methods. In practical applications, at times spectacular performance (in terms of accuracy versus
DNN size) has been reported. These practical findings have been recently supported by theory
indicating that ReLU DNNs can, indeed, emulate a wide range of linear approximation methods
in classical function systems such as splines, multiresolution systems, polynomials, Fourier series,
etc. Here, ReLU-NNs with suitable architectures afford with corresponding expression rate bounds
which are equal, or only slighly inferior to rates afforded by the mentioned systems (see, e.g., [17, 16]
and the references there). Importantly, all results in these references addressed approximation rate
bounds for functions defined on bounded subdomains D of euclidean space Rn with moderate, fixed
“physical” dimension n ∈ N. Also in other contexts, ReLU-NN expression rate bounds are often
stated and proved for DNNs with bounded input ranges. On bounded intervals, ReLU-NNs afford
in particular the efficient emulation of orthogonal Jacobi polynomials.

The expression rate analysis of polynomial function systems on unbounded domains has received
less attention. In view of the wide use of Gaussian process (GP for short) models and of Gaussian
random fields in statistical modelling of uncertainty, and in theoretical physics [10], and due to the
close connection of Hermite orthogonal polynomials with the Gaussian measure (e.g. [21, 22, 12]
and the references there), expression rates of DNNs for Hermite polynomials in mean square with
respect to Gaussian measure over R are crucial for restablishing various approximation rate bounds
for Gaussian random fields, and in particular for operator equations with Gaussian random field
inputs. The present paper addresses this question. The focus is on DNNs with so-called ReLU
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activation function. Despite these specificities of ReLU-NNs, our DNN architectures and expression
rate bounds, which are explicit in the polynomial degree and in the accuracy, are valid also for wider
families of activation functions. We expect that similar arguments allow to prove expression rate
bounds also for other (smoother) activation functions.

1.2. Contributions. The present paper has the following principal contributions.
(i) We prove expression rate bounds for deep ReLU-NNs of univariate “probabilistic” Hermite

polynomials Hn of polynomial degree n ∈ N0 on R, in L2(R, γ1), i.e. in mean square with
respect to Gaussian measure γ1 on R. This result is then generalized to multivariate Hermite
polynomials, see Theorems 3.5 and 3.7.

(ii) In the case of finite parameter dimension d, we establish exponential convergence in
L2(Rd, γd) for the approximation of certain analytic functions by deep ReLU-NNs. See
Theorem 4.7.

(iii) In infinite dimension, for a class of infinite parametric functions satisfying an analyticity
condition, we prove ReLU-NN expression rate bounds L2(RN, γ∞) that are free from the
curse of dimension with explicit account of the NN size and depth. See Theorem 5.6.

(iv) As an example, we show how our result in infinite dimensions implies ReLU-NN expression
rate bounds for response surfaces of elliptic PDEs with infinite-parametric, log-Gaussian
random field input. See Proposition 6.2.

1.3. Notation. Throughout C > 0 is used to denote a generic constant that may change
its value even within the same equation. Moreover, z = x + iy ∈ C indicates that z ∈ C and
x = ℜ[z] ∈ R and y = ℑ[z] ∈ R. In particular, i shall denote the imaginary unit.

1.3.1. Gaussian measures. For finite d ∈ N, denote by γd the standard Gaussian measure on
R
d. Its density w.r.t. the Lebesgue measure on R

d is given by

1

(2π)d/2
e−

‖y‖22
2 ∀y ∈ R

d,

where ‖ · ‖2 is the Euclidean norm. Additionally, γ =
⊗

j∈N γ1 denotes the infinite product (proba-

bility) measure on R
N. We refer to [3, Chapter 2] for details. We write L2(Rd, γd) for the usual L2

space w.r.t. the measure γd. For d = ∞ we additionally introduce the shorthand notation U := R
N,

indicating a countable cartesian product of real lines, the corresponding L2-space is then L2(U, γ).
Similarly, for a Banach space V and k > 1, Lk(U, γ;V ) is the Bochner space of functions with
values in V .

1.3.2. Multiindices and polynomials. Throughout, N = {1, 2, ...} and N0 = {0, 1, 2, ...}. Multi-
indices in N

d
0 or N

N
0 shall be denoted by ν, i.e. ν = (νj)

d
j=1 or ν = (νj)j∈N respectively. The size

(or total order) of the multi-index ν is |ν| :=∑j≥1 νj . For d = ∞, by F = {ν ∈ N
N
0 : |ν| <∞} we

denote the countable subset of NN
0 of multi-indices of “finite support”: if ν ∈ F , we let suppν :=

{j : νj 6= 0} and |ν|0 := #(suppν). Comparison of multi-indices is component-wise: we write
µ ≤ ν iff for every j holds µj ≤ νj . A finite set Λ ⊆ N

d
0 or Λ ⊆ F will be called downward closed,

iff ν ∈ Λ implies µ ∈ Λ whenever µ ∈ Λ.
With Pn := span{xj : j ∈ {0, . . . , n}} we denote the space of all polynomials of degree at most

n with real coefficients. In the multivariate case, for a subset Λ ⊆ N
d
0 with d ∈ N or Λ ⊆ F , we

write PΛ := span{∏j∈suppν x
νj
j : ν ∈ Λ}.

1.3.3. Neural networks. We consider feedforward neural networks without skip connections.
That is, for a given activation function σ : R → R, we consider mappings Φ : Rn0 → R

nL+1 which
can be represented via

(1.1) Φ = AL ◦ σ ◦ · · · ◦ σ ◦A0
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for certain linear transformations Aj : R
nj → R

nj+1 : x 7→ Wjx + bj . Here Wj ∈ R
nj+1×nj are the

weight matrices and bj ∈ R
nj+1 are the bias vectors, and the application of σ in (1.1) is understood

componentwise. Such a function Φ will be called a σ-NN of depth L and size

size(Φ) := |{(j, k, l) : (Wj)k,l 6= 0} ∪ {(j, k) : (bj)k 6= 0}|.

We also use the notation depth(Φ) := L. Hence the depth corresponds to the number of applications
of the activation function, and the size corresponds to the number of nonzero weights and biases
in the network.

1.4. Layout. The structure of the paper is as follows. In Section 2.1, we recapitulate general
definitions and classical properties of Hermite polynomials. Section 2.2 addresses specific properties
of Hermite polynomials which are required in the proofs of the ensuing DNN emulation bounds.
Section 3 then contains the core results of the present paper: we provide explicit constructions of
ReLU and of ReLUk DNNs which emulate Hermite polynomials in one dimension. We generalize,
via the approximate product operator, also to multiple dimensions. Section 4 then has a first ap-
plication: exponential DNN emulation rate bounds of nonlinear, holomorphic maps on R

d, in finite
dimension d. Section 5 addresses the infinite-dimensional case. Section 6 presents an application,
dimension-independent expression rate bounds for solutions of linear, elliptic PDEs with a random
coefficient, which is a log-Gaussian random field. The final Section 7 reviews the main results, and
indicates extensions and further applications of the presently developed theory.

Acknowledgement: Work performed in part in the programme “Mathematics of Deep Learn-
ing” (MDL) at the Isaac Newton Institute, Cambridge, UK from July-December 2021. Fertile
exchanges, and stimulating workshops are warmly acknowledged.

2. Hermite polynomials and functions.

2.1. Basic definitions and properties. For n ∈ N0 we denote by Hn the nth probabilists’

Hermite polynomial1 normalized in L2(R, γ1), i.e.

(2.1) Hn(x) :=
(−1)n√
n!

e
x2

2
dn

dxn
e−

x2

2 ∀n ∈ N0

with the usual convention 0! = 1. Since for any f ∈ C1(R) holds

(2.2)
d

dx

(
f(x) e−

x2

2

)
= f ′(x) e−

x2

2 −xf(x) e−x2

2 ,

it is easy to see that Hn ∈ Pn.
Next, we introduce the Hermite functions via

(2.3) hn(x) :=
(−1)n√
π1/22nn!

e
x2

2
dn

dxn
e−x2 ∀n ∈ N0.

The relation between the Hermite polynomials and the Hermite functions is made clear by the
following lemma.

Lemma 2.1. The map

Θ : L2(R, γ1) → L2(R) : f(x) 7→ f(21/2x)
e−

x2

2

π
1
4

is an isometric isomorphism and Θ(Hn) = hn for all n ∈ N0.

1The physicists’ Hermite polynomials are defined as x 7→ Hn(2
1/2x). Since we shall not use them in this manu-

script, we simply refer to the (Hn)n∈N0
in the following as the Hermite polynomials.
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Proof. Let f ∈ L2(R, γ1). Using the change of variables x = 21/2y

(2.4) ‖f‖2L2(R,γ1)
=

∫

R

f(x)2
e−

x2

2√
2π

dx =

∫

R

f(21/2y)2
e−y2

π
1
2

dy = ‖Θ(f)‖2L2(R).

Thus Θ is an isometry. By a similar argument Θ̃(F )(y) := F ( y
21/2

) exp(y
2

4 )π
1/4 defines an isometry

from L2(R) → L2(R, γ1) and Θ ◦ Θ̃ is the identity. In all, Θ is an isometric isomorphism.
To show Θ(Hn) = hn, denote r(x) := e−x2

and r(ix) = ex
2
. Due to dn

dxn r(
x

21/2
) = 2−n/2r(n)( x

21/2
)

we have by (2.1)

Hn(x) =
(−1)n√
2nn!

r
(
i
x

21/2

)
r(n)

( x

21/2

)

and by (2.3)

hn(x) =
(−1)n√
π1/22nn!

e−
x2

2 r(ix)r(n)(x).

Thus

hn(x) = Hn(2
1/2x)

e−
x2

2

π
1
4

= Θ(Hn).

As is well-known, these sequences are orthonormal bases in the respective spaces. We recall the
classical proof for the convenience of the reader.

Proposition 2.2. It holds
(i) (Hn)n∈N0 is an ONB of L2(R, γ1),
(ii) (hn)n∈N0 is an ONB of L2(R).

Proof. We start by showing orthonormality of (Hn)n∈N0 in L2(R, γ1). Let n ∈ N0, m ∈ N and
n ≤ m. Integrating by parts we have

∫

R

Hn(x)Hm(x)dγ1(x) =
(−1)n+m

√
2πn!m!

∫

R

Hn(x)
dm

dxm
e−

x2

2 dx =
(−1)n√
2πn!m!

∫

R

e−
x2

2
dm

dxm
Hn(x)dx.

SinceHn ∈ Pn, for n < m the integrand vanishes. In case n = m, dn

dxnHn(x) equals n! times the lead-

ing coefficient of Hn. Using (2.1)-(2.2) one obtains dn

dxnHn(x) = (−1)nn!. Since
∫
R
H0(x)

2dγ1(x) =∫
R
1dγ1(x) = 1, we have shown

∫

R

Hn(x)Hm(x)dγ1(x) = δn,m ∀n,m ∈ N0.

We show completeness of (Hn)n∈N0 in L2(R, γ1). Since Hn ∈ Pn (with nonzero leading coeffi-
cient), it suffices to show density of all polynomials in L2(R, γ1). Let f ∈ L2(R, γ1) be such that∫
R
f(x)xndγ1(x) = 0 for all n ∈ N0. Define g(z) :=

∫
R
f(x) exp(zx)dγ1(x), which yields an entire

function on C. It holds g(n)(0) =
∫
R
xnf(x)dγ1(x) = 0 for all n ∈ N. Thus g ≡ 0. However,

R ∋ x 7→ g(−ix) is the Fourier transform of f . This implies f ≡ 0 and consequently the Hermite
polynomials (Hn)n∈N0 are dense in L2(R, γ1).

Finally, since Θ : L2(R, γ1) → L2(R) in Lemma 2.1 is an isometric isomorphism, it transforms
the ONB (Hn)n∈N0 of L2(R, γ1) to an ONB (Θ(Hn))n∈N0 = (hn)n∈N0 of L2(R).

2.2. Some preliminary bounds. We will use Cramer’s bound [9] on the Hermite functions,

(2.5) sup
x∈R

|hn(x)| ≤ π−1/4 ∀n ∈ N0.
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The Hermite polynomials allow the explicit representation, see, e.g., [21, Eqn. (5.5.4)]2

(2.6) Hn(x) =

⌊n/2⌋∑

j=0

√
n!(−1)j

j!(n− 2j)!2j
xn−2j .

In the following we also write Hn(x) =
∑n

j=0 cn,jx
n.

Lemma 2.3. For all n ∈ N0

(2.7)

n∑

j=0

|cn,j | ≤ 6n/2 ≤ 3n.

Proof. One checks (e.g. with Stirling’s inequality) that
√
n! ≤ 2n(⌊n/2⌋)! for all n ∈ N0. By

(2.6) the term
∑n

j=0 |cn,j | is bounded by

⌊n/2⌋∑

j=0

√
n!

j!(n− 2j)!2j
≤ 2n

⌊n/2⌋∑

j=0

⌊n2 ⌋!
j!(⌊n2 ⌋ − j)!2j

= 2n
⌊n/2⌋∑

j=0

(⌊n2 ⌋
j

)
2−j = 2n

(
1 +

1

2

)⌊n
2
⌋
.

The last term is bounded by 2n(3/2)n/2 ≤ 3n which concludes the proof.

Lemma 2.3 implies the (crude) bound

(2.8) |Hn(x)| ≤ (3max{1, |x|})n ∀x ∈ R.

In the following for n ∈ N0 ∪ {−1}, n!! denotes the double factorial, i.e. −1!! = 0!! = 1!! = 1
and n!! = n · (n− 2)!! if n ≥ 2.

Lemma 2.4. Let M ≥ 2 and n ∈ N0. Then

(2.9)

∫

|x|>M
e−

x2

2 xndx ≤ n!!Mn e−
M2

2 .

Proof. Set an :=
∫
x>M xn e−

x2

2 dx. For n = 0

a0 =

∫

x>M
e−

x2

2 dx =

∫

y>0
e−

(y+M)2

2 dy = e−
M2

2

∫

y>0
e−

y2

2
−My dy ≤ 1

2
e−

M2

2 ,

where we used

∫

y>0
e−

y2

2
−My dy ≤

∫

y>0
e−

y2

2
−2y dy ≤

(∫

y>0
e−y2 dy

)1/2(∫

y>0
e−4y dy

)1/2

=
π1/4

21/2
1√
4
<

1

2
,

which follows by the well-known fact
∫
y>0 e

−y2 dy =
√
π/2. For n = 1

a1 =

∫

x>M
x e−

x2

2 dx = −
∫

x>M
(e−

x2

2 )′dx = e−
M2

2 .

This shows (2.9) for n ∈ {0, 1}. For any n ≥ 2, using integration by parts

an =

∫

x>M
xn e−

x2

2 dx = −
∫

x>M
xn−1(e−

x2

2 )′dx =Mn−1 e−
M2

2 +(n− 1)

∫

x>M
xn−2 e−

x2

2 dx,

2A
√
n! factor is due to a different scaling, compare [21, Eqn. (5.5.3)] with (2.1).
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so that an = Mn−1 exp(−M2/2) + (n − 1)an−2. For n ∈ {0, 1} we have in particular shown
an ≤ (n− 1)!!Mn exp(−M2/2). Using Mn−1 +Mn−2 ≤Mn since M ≥ 2, by induction we get

∀n ≥ 2 : an ≤ e−
M2

2 Mn−1 + (n− 1)!!Mn−2 e−
M2

2 ≤ (n− 1)!!Mn e−
M2

2 .

Using this bound and again the recurrence we obtain for n ≥ 2

(2.10) an ≤ e−
M2

2 (Mn−1 + (n− 1)!!Mn−2) ≤ e−
M2

2 Mn−2(M + (n− 1)!!).

For all x ≥ 1 holds M + x ≤ 3
4M

2x because M ≥ 2. Furthermore (n− 1)!!(3/2) ≤ n!! for all n ≥ 2.
Hence, with x = (n − 1)!! ≥ 1 we get M + (n − 1)!! ≤ 3M2(n − 1)!!/4 ≤ 1

2M
2n!!. Together with

(2.10) this finally implies an ≤ 1
2n!!M

n exp(−M2/2) and concludes the proof.

We note in passing that Lemma 2.4 and (2.8) imply for every M ≥ 2, p ≥ 1 and n ∈ N0

(2.11)

∫

|x|>M
|Hn(x)|pdγ1(x) =

1√
2π

∫

|x|>M
|Hn(x)|p e−

x2

2 dx ≤ 1√
2π

(pn)!!(3M)pn e−
M2

2 .

3. DNN emulation of Hermite polynomials. A key technical step in the DNN expression rate
analysis of Gaussian random fields is the ReLU NN expression of Hermite polynomials. Due to
general representation of GRFs in terms of Hermite-expansions (e.g. [4, 10, 3] and the references
there) quantitative bounds for ReLU NN expression rates of GRFs will follow from assumptions on
summability of Hermite coefficient sequences of the GRFs and from ReLU DNN expression rates
of Hermite polynomials Hn. To establish the latter is the purpose of the present section. Due to
the goal of expressing truncated Hermite gpc expansions, our main result in the present section,
Theorem 3.7, will provide quantitative bounds of expression of (collections of tensor products of)
Hermite polynomials by by one common ReLU NN architecture.

3.1. Univariate Hermite polynomials. We start by recalling that univariate, continuous piece-
wise linear functions can be realized exactly by shallow ReLU-NNs, see, e.g., [19, Lemma 4.5].

Lemma 3.1. Let −∞ < x0 < x1 < · · · < xn−1 < xn <∞ induce a partition of R into n+ 2 ∈ N

intervals. For any continuous piecewise linear function f : R → R w.r.t. this partition, there exist
a ReLU NN φ : R → R such that φ(x) = f(x) for x ∈ R and size(φ) ≤ 2(n+ 2) + 1, depth(φ) = 1.

Next, we address truncation of ReLU-NNs to finite support in R.

Lemma 3.2. Let M > 0 and let φ : R → R be a ReLU NN. For every δ ∈ (0,M) there exists a
ReLU NN ψ : R → R satisfying supx∈[−M,M ] |ψ(x)| ≤ supx∈[−M,M ] |φ(x)|,

(3.1) ψ(x) =

{
φ(x) x ∈ [−M + δ,M − δ]

0 x ∈ R\[−M,M ]

size(ψ) ≤ C(1 + size(φ)) and depth(ψ) ≤ C(1 + depth(φ)), with C > 0 independent of M , δ, φ.

Proof. Since φ is a ReLU NN, there exists N > 0 such that φ|(−∞,−N ] and φ|[N,∞) are linear.
We now construct a ReLU NN η such that η|[−M,M ] = φ|[−M,M ] and η|(−∞,−M ] and η|[M,∞) are
linear.

Set

p(x) =
φ(M) + φ(−M)

2
+ x

φ(M)− φ(−M)

2M
,

i.e. p : R → R is linear and p(−M) = φ(−M), p(M) = φ(M). Then (φ−p)(M) = (φ−p)(−M) = 0.
For x ∈ R

q(x) :=M − σ(x)− σ(−x) =
{
x+M x < 0

−x+M x ≥ 0

7



is a ReLU NN satisfying q(−M) = q(M) = 0, q|(−M,M) > 0, q|(−∞,−M) < 0 and q|(M,∞) < 0. Since
(φ− p)|(−∞,N ] and (φ− p)|[N,∞) are linear, we can find α > 0 such that (φ− p) + αq is positive on
(−M,M) and negative on R\[−M,M ]. Then

η(x) = σ(φ(x)− p(x) + αq(x)) + p(x)− αq(x)

equals φ(x) for x ∈ [−M,M ] and η|(−∞,−M ] and η|[M,∞) are linear. Since we only added and
subtracted continuous, piecewise linear functions from φ and composed them with σ, the function
η can be expressed by a ReLU NN.

Now we construct ψ. Wlog let δ ∈ (0,M) be so small that η|[−M,−M+δ] and η|[M−δ,M ] are linear
(which is possible because η is a continuous, piecewise linear function). Then both, η|[M−δ,M ] and
η|[M,∞) are linear, and by Lemma 3.1 the function r : R → R that is continuous, piecewise linear on
the partition x0 = −∞, x1 =M − δ, x2 =M , x3 = ∞ and satisfies r|(−∞,M−δ] = 0, r(M) = η(M)
and r|[M,∞) = η|[M,∞) is expressed by a network of size O(1). Then η−r|(−∞,M−δ] = η|(−∞,M−δ] and
η−r|[M,∞) ≡ 0. Furthermore (η−r)(M−δ) = η(M−δ), (η−r)(M) = 0 and (η−r)|[M−δ,M ] is linear
so that supx∈[M−δ,M ] |η(x)− r(x)| ≤ |η(M − δ)|. Similarly, we can construct s : R → R continuous,
piecewise affine such that s|[−M+δ,∞) ≡ 0, s(−M) = η(−M) and s|(−∞,−M ] = η|(−∞,−M ]. Then
ψ = η − r − s is as claimed.

We are now in position to state our main result on architecture and quantitative bounds for emu-
lations of Hermite polynomials by deep ReLU-NNs.

Proposition 3.3. Let n ∈ N0, M > 0 and ε ∈ (0, e−1) be arbitrary. Then there exists a ReLU
NN H̃n,M,ε : R → R such that

(i) ‖Hn − H̃n,M,ε‖L2(R,γ1) ≤ ε+
√
2n!!(3M)n e−

M2

4 ,

(ii) H̃n,M,ε(x) = 0 for |x| > M and supx∈R |H̃n,M,ε(x)| ≤ 1 + (3M)n,
(iii) for a constant C > 0 independent of n, M , ε

size(H̃n,M,ε) ≤ C
(
1 + n2 log(M) + n log

(n
ε

))
,

depth(H̃n,M,ε) ≤ C((1 + log(n))(n log(M)− log(ε))).

Proof. In this proof we will need the following result shown in [17, Prop. 4.2]: for any polynomial
p(x) =

∑n
j=0 cjx

j , there exists a neural network p̃ such that |p(x) − p̃(x)| ≤ ε for all x ∈ [−1, 1],
and with C0 := max{2,∑n

j=0 |cj |} it holds

size(p̃) ≤ C
(
(1 + n) log

(C0

ε

)
+ n log(n)

)
, depth(p̃) ≤ C

(
(1 + log(n)) log

(C0

ε

)
+ log(n)3

)
,

where the constant C is independent of ε ∈ (0, e−1) and of n ∈ N0.
Denote byHn,M (x) = Hn(Mx) the rescaled Hermite polynomial. ThenHn,M (x) =

∑n
j=0 cn,jM

jxj .

By Lemma 2.3 it holds C0 :=
∑n

j=0 |cn,jM j | ≤ Mn
∑n

j=0 |cn,j | ≤ (3M)n. Thus by [17, Prop. 4.2]

there exists a neural network Ĥn,M,ε such that

(3.2) sup
x∈[−1,1]

|Hn,M (x)− Ĥn,M,ε(x)| ≤
ε

2

and

size(Ĥn,M,ε) ≤ C
(
1 + n2 log(M) + n log

(n
ε

))
,

depth(Ĥn,M,ε) ≤ C
(
(1 + log(n))(n log(M)− log(ε))

)
,(3.3)

for some constant C > 0 independent of M ≥ 2, n ∈ N0 and ε ∈ (0, e−1) (for the bound on the
depth we could absorb the term log(n)3 in n log(M), since log(M) > 0 due to M ≥ 2).
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With δ > 0 for the moment fixed, but to be chosen shortly (in dependence of n and ε), by
Lemma 3.2 there exists a NN H̃n,M,ε such that supx∈[−M,M ] |H̃n,M,ε(x)| ≤ supx∈[−1,1] |Ĥn,M,ε(x)|
and

H̃n,M,ε(x) :=

{
Ĥn,M,ε(

x
M ) x ∈ [−M + δ,M − δ]

0 x ∈ R\[−M,M ].

For x ∈ [−M + δ,M − δ]

|Hn(x)− H̃n,M,ε(x)| =
∣∣∣Hn,M

( x
M

)
− Ĥn,M,ε

( x
M

)∣∣∣ ≤ ε.

By Lemma 3.2, the depth and size bounds for Ĥn,M,ε from (3.3) are also valid for H̃n,M,ε (possibly
for a different constant C), which shows (iii).

Next, for x ∈ R\[−M,M ] it holds |Hn(x)− H̃n,M,ε(x)| = |Hn(x)|. By (2.8), (3.2) and Lemma
3.2 we find

(3.4) sup
x∈R

|H̃n,M,ε(x)| ≤ sup
x∈[−1,1]

|Ĥn,M,ε(x)| ≤ ε+ sup
x∈[−M,M ]

|Hn(x)| ≤ 1 + (3M)n,

and thus for x ∈ [−M,M ]\[−M + δ,M − δ] we get |Hn(x)− H̃n,M,ε(x)| ≤ 1+2(3M)n. Hence using
(2.11)

‖Hn − H̃n,M,ε‖L2(R,γ1) ≤ ‖Hn − H̃n,M,ε‖L2([−M,M ],γ) + ‖Hn − H̃n,M,ε‖L2([−M,M ]\[−M+δ,M−δ],γ)

+ ‖Hn‖L2(R\[−M,M ],γ)

≤ ε

2
+
√
δ(1 + 2(3M)n) +

√
(2n)!!(3M)n e−

M2

4 .

Choosing δ > 0 small enough it holds
√
δ(1 + 2(3M)n) ≤ ε

2 , which shows (i).

Finally, (ii) holds by (3.4) and the construction of H̃n,M,ε.

Lemma 3.4. For all n ∈ N it holds supx∈R x
n e−

x2

2 = n
n
2 e−

n
2 = e

n(log(n)−1)
2 .

Proof. We have (xn e−x2/2)′ = (nxn−1 − xn+1) e−x2/2 = xn−1(n− x2) e−x2/2. The only positive
root of this term is x =

√
n, which implies the lemma.

Corollary 3.5. Consider the setting of Proposition 3.3 and set, for ε ∈ (0, e−1),

(3.5) M(n, ε) :=
√

24(n log(2n)− log(ε)), n ∈ N.

With this choice of M , define the ReLU-NN H̃n,ε := H̃n,M,ε : R → R. It satisfies
(i) ‖Hn − H̃n,ε‖L2(R,γ1) ≤ 2ε,

(ii) H̃n,ε(x) = 0 for |x| > M and supx∈R |H̃n,ε(x)| ≤ 1 + (3M)n,
(iii) for some C > 0 independent of n and ε

size(H̃n,ε) ≤ C
(
1 + n2(log(n) + log(− log(ε))) + n log

(n
ε

))
,

depth(H̃n,ε) ≤ C(1 + n log(n)2 + n log(n) log(− log(ε))− log(n) log(ε)).

Proof. Inserting M from (3.5) into the bound in Proposition 3.3 (iii) we get

size(H̃n,ε) ≤ C

(
1 +

1

2
n2 log

(
24(n log(2n)− log(ε))

)
+ n log

(n
ε

))
.
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For a, b ≥ 1 it holds

log(a+ b) = log(a) +

∫ a+b

a

1

x
dx ≤ log(a) +

∫ 1+b

1

1

x
dx = log(a) + log(1 + b) ≤ 1 + log(a) + log(b).

With a = 24n log(2n) and b = −24 log(ε) we get

size(H̃n,ε) ≤ C

(
1 +

1

2
n2
(
1 + log(24n) + log(log(2n)) + log(−24 log(ε))

)
+ n log

(n
ε

))

≤ C
(
1 + n2(log(n) + log(− log(ε))) + n log

(n
ε

))

for a constant C independent of n and ε. This shows the bound on the size in (iii). The bound on
the depth is obtained similarly.

To show (i) we use Proposition 3.3 (i) and claim that
√
(2n)!!(3M)n e−

M2

4 ≤ ε. Since
√
(2n)!! ≤

(2n)n it is sufficient to show that

(3.6) − M2

4
+ n log(2n) + n log(3M)− log(ε) ≤ 0.

The definition of M implies M2

24 ≥ n log(2n)− log(ε) and thus

(3.7) − M2

24
+ n log(2n)− log(ε) ≤ 0.

Next we show

−M
2

6
+ n log(3M) ≤ 0,

which will then imply (3.6) due to 1
24 + 1

6 ≤ 1
4 . The last inequality is equivalent to M2

log(3M) ≥
6n. The function x 7→ x2

log(3x) is monotonically increasing for x ≥ 1 and by (3.5) it holds M ≥√
24n log(2n) =: x. Hence

M2

log(3M)
≥ x2

log(3x)
= 6n

4 log(2n)

log(3
√

24n log(2n))
.

It suffices to show that 4 log(2n)

log(3
√

24n log(2n))
≥ 1 for all n ∈ N. It is checked directly that this holds

for n = 1. Furthermore, this term is monotonically increasing for n ≥ 1, so that it is true for
all n ∈ N. Together with (3.7) this verifies (3.6). In all, together with Proposition 3.3 (i) we get
‖Hn − H̃n,ε‖L2(R,γ1) ≤ 2ε.

3.2. Multivariate Hermite polynomials. We proceed to show ReLU-NN expression bounds for
multivariate, tensorized Hermite polynomials.

Recall that F = {ν ∈ N
∞
0 : |ν| < ∞} denotes the (countable) set of all finitely supported

multiindices. For a finite index set Λ ⊆ F , we define

(3.8) suppΛ := {j ∈ suppν : ν ∈ Λ}

and we introduce the maximum order m(Λ) and the effective dimension d(Λ) of Λ as

(3.9) m(Λ) := max
ν∈Λ

|ν|1, d(Λ) := max
ν∈Λ

|ν|0.
10



Proposition 3.6 ([19, Proposition 3.3]). For any ε ∈ (0, e−1), for every d ∈ N and every A > 0,

there exists a ReLU-NN
∏̃

d,A,ε : [−A,A]d → R such that

(3.10) sup
(xi)di=1∈[−A,A]d

∣∣∣∣∣∣

d∏

j=1

xj −
∏̃

d,A,ε
(x1, . . . , xd)

∣∣∣∣∣∣
≤ ε.

There exists a constant C independent of ε ∈ (0, e−1), d ∈ N and A ≥ 1 such that

(3.11) size
(∏̃

d,A,ε

)
≤ C

(
1+d log

(dAd

ε

))
and depth

(∏̃
d,A,ε

)
≤ C

(
1+log(d) log

(dAd

ε

))
.

Theorem 3.7. Let Λ ⊆ F be finite and downward closed. Then for every ε ∈ (0, e−1) there exists
a neural network Φ = {H̃ε,ν}ν∈Λ : R| suppΛ| → R

|Λ| such that

max
ν∈Λ

‖Hν − H̃ε,ν‖L2(U,γ) ≤ ε,

and there exists a positive constant C (independent of m(Λ), d(Λ) and of ε ∈ (0, e−1)) such that

size(Φ) ≤ C|Λ|m(Λ)3 log(1 +m(Λ))d(Λ)2 log(ε−1),

depth(Φ) ≤ Cm(Λ) log(1 +m(Λ))2d(Λ) log(1 + d(Λ)) log(ε−1).

Proof. Fix ε ∈ (0, e−1). Throughout this proof, we write m := m(Λ), d := d(Λ) and we
assume w.l.o.g. that m ≥ 1 and d ≥ 1 (otherwise Λ = ∅ or Λ = {0}, and these cases are trivial).
Furthermore, with the constant M as defined in (3.5), set

A := 1 + (3M)m, ε̃ := ε2−d.

Step 1. We define H̃ε,ν and show that ‖Hν − H̃ε,ν‖L2(U,γ) ≤ ε.
Let H0 := 1 and for 0 6= ν ∈ Λ

H̃ε̃,ν :=
∏̃

|ν|0,A,ε
((H̃ε̃,νj (xj))j∈suppν).

Then for 0 6= ν ∈ Λ

‖Hν − H̃ε,ν‖L2(U,γ) ≤

∥∥∥∥∥∥
Hν −

∏

j∈suppν

H̃ε̃,νj

∥∥∥∥∥∥
L2(U,γ)

+

∥∥∥∥∥∥

∏

j∈suppν

H̃ε̃,νj −
∏̃

|ν|0,A,ε

(
(H̃ε̃,νj )j∈suppν

)
∥∥∥∥∥∥
L2(U,γ)

.(3.12)

By Corollary 3.5 (ii) it holds supx∈R |H̃ε̃,νj (x)| ≤ 1+(3M)νj ≤ A for all j ∈ suppν. Proposition 3.6
thus implies

∣∣∣∣∣∣

∏

j∈suppν

H̃ε̃,νj (yj)−
∏̃

|ν|0,A,ε

(
(H̃ε̃,νj (yj))j∈suppν

)
∣∣∣∣∣∣
≤ ε

for all y ∈ U so that ‖∏j∈suppν H̃νj − H̃ε,ν‖L2(U,γ) ≤ ε. To bound the first term in (3.12) we
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compute

∥∥∥∥∥∥

∏

j∈suppν

Hνj −
∏

j∈suppν

H̃ε̃,νj

∥∥∥∥∥∥
L2(U,γ)

≤
∑

j∈suppν

∏

i∈suppν
i<j

‖Hνi‖L2(R,γ1)

· ‖Hνj − H̃ε̃,νj‖L2(R,γ1) ·
∏

i∈suppν
i>j

‖H̃ε̃,νi‖L2(R,γ1).

For all i it holds ‖Hνi‖L2(R,γ1) = 1, ‖Hνi−H̃ε̃,νi‖L2(R,γ1) ≤ ε̃ by Corollary 3.5 and thus ‖H̃ε̃,νi‖L2(R,γ1) ≤
1 + ε̃ ≤ 3

2 (since ε̃ ≤ ε < e−1). Hence

∥∥∥∥∥∥

∏

j∈suppν

Hνj −
∏

j∈suppν

H̃ε̃,νj

∥∥∥∥∥∥
L2(U,γ)

≤ |ν|0ε̃(1 + ε̃)|ν|0−1 ≤ ε̃d
(3
2

)d−1
≤ ε̃2d ≤ ε,

where we used d(32)
d−1 ≤ 2d for all d ∈ N.

Step 2. We construct Φ = {H̃ε,ν}ν∈Λ and provide bounds on the size and depth of Φ.
Let Φ1 : R

| suppΛ| → R
m|Λ|, with output

(3.13) Φ1(y) =
{
H̃ε̃,j(yi)

}
i∈suppΛ,j∈{1,...,m}

.

Due to Corollary 3.5 for each j ≤ m

size(H̃ε̃,j) ≤ C
(
1 + j2

(
log(j) + log(− log(ε̃))

)
+ j log

(j
ε̃

))

= C

(
1 + j2

(
log(j) + log(d log(2)− log(ε))

)
+ j
(
log(j) + d log(2)− log(ε)

))

≤ C

(
1 +m2 log(m) +m2 log(d) +m2 log(− log(ε)) +md−m log(ε)

)

=: CC0(m, d, ε),(3.14)

with C0(m, d, ε) denoting the term in brackets, and C being a constant independent of m, d and ε.
Note that log(− log(ε)) is well defined since − log(ε) > 1 due to ε < e−1.

To derive a bound on the depth, we observe that by Corollary 3.5

depth(H̃ε̃,j) ≤ C(1 + j log(j)2 + j log(j) log(− log(ε̃))− log(j) log(ε̃))

≤ C
(
1 +m log(m)2 +m log(m) log(− log(ε)) +m log(m) log(d)− log(m) log(ε)

)

=: CC1(m, d, ε),(3.15)

where C1(m, d, ε) is the term in parentheses, and C is a positive constant that is independent
of m, d and ε. Concatenating H̃ε̃,j with CC1(m, d, ε) − depth(H̃ε̃,j) times the identity network
x = σ(x) − σ(−x), we may and will assume that each H̃ε̃,j(yi) in (3.13) has the same depth
CC1(m, d, ε), and the size is bounded by CC0(m, d, ε) +CC1(m, d, ε) ≤ CC0(m, d, ε) for a suitable
constant C that is independent of m, d and ε.

Next, we let Φ2 : R
m| suppΛ| → R

|Λ| denote the network

(3.16) Φ2 :=
{∏̃

|ν|0,A,ε

}
ν∈Λ

.
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Then

Φ2 ◦ Φ1 =
{∏̃

|ν|0,A,ε

(
(H̃ε/2d,νj )j∈suppν

)}
ν∈Λ

= Φ.

It remains to estimate the size and depth of Φ2. By Proposition 3.6

size
(∏̃

|ν|0,A,ε

)
≤ C(1 + |ν|0 log(|ν|0) + |ν|20 log(A)− |ν|0 log(ε))

≤ C(1 + d log(d) + d2 log(A)− d log(ε)).

By definition of A and M , using log(1 + x) ≤ 1 + log(x) for x ≥ 1,

log(A) ≤ 1 +m log(3
√
24(m log(2m)− log(ε))) ≤ C(1 +m log(m) +m log(− log(ε))).

Hence
(3.17)

size
(∏̃

|ν|0,A,ε

)
≤ C

(
1 + d log(d) + d2m log(m) + d2m log(− log(ε))− d log(ε)

)
=: CD0(m, d, ε).

In addition, by Propsition 3.6

depth
(∏̃

|ν|0,A,ε

)
≤ C

(
1 + log(d)(log(d) + d log(A)− log(ε))

)

≤ C
(
1 + log(d)2 + d log(d)m log(m) + d log(d)m log(− log(ε))− log(d) log(ε)

)

=: CD1(m, d, ε).(3.18)

Similar as before, by concatenating
∏̃

|ν|0,A,ε a suitable number of times with the identity network

x = σ(x) − σ(−x), we can assume that all networks
∏̃

|ν|0,A,ε, ν ∈ Λ, have the same depth, and a
uniform bound on the size given by (3.17).

We now sum the size of all subnetworks. First note that the downward closedness of Λ implies
| suppΛ| ≤ |Λ| (cf. (3.8)).

Hence, by (3.13), (3.14) and (3.16), (3.17) it follows that there exists a constant C > 0 such
that for all 0 < ε < e−1 holds

size(Φ) ≤ C(1 + size(Φ1) + size(Φ2))

≤ C(1 + (| suppΛ|m)C0(m, d, ε) + |Λ|D0(m, d, ε))

≤ C|Λ|
((

1 +m3(log(m) + d) +m3 log(ε)
)
+
(
d2m log(m) log(ε−1)

))

≤ C(1 + |Λ|m3 log(1 +m)d2 log(ε−1)).

Similarly by (3.15) and (3.18)

depth(Φ) ≤ C(1 + depth(Φ1) + depth(Φ2))

≤ C(1 + C1(m, d, ε) +D1(m, d, ε))

≤ C(1 + d log(1 + d)m log(1 +m)2 log(ε−1)).

Remark 3.8. The preceding analysis was based on approximating Hermite polynomials by ReLU-
NNs. The so-called “polynomial ReLU” activation ReLUk, sometimes also referred to as “rectified
power unit” (“RePU”), is capable of exactly expressing multivariate polynomials, i.e. without
emulation error. For an integer k ≥ 2, this activation function is given by ReLUk(x) := max{x, 0}k.
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Evidently, ReLUk ∈ W k,∞
loc (R), so that the resulting DNNs will inherit this regularity in the input-

output maps arising as their realizations. From [16, Prop. 2.14], we have the following statement.
Fix d ∈ N and k ∈ N, k ≥ 2 arbitrary. Then there exists a constant C > 0 (depending on

k but independent of d) such that for any finite, downward closed Λ ⊆ N
d
0 and for any p ∈ PΛ

there is a ReLUk-NN p̃ : R
d → R which realizes p exactly and such that size(p̃) ≤ C|Λ| and

depth(p̃) ≤ C log(|Λ|).
4. DNN approximation of analytic functions in L2(Rd, γd). In this section, we show that

certain analytic functions f ∈ L2(Rd, γd) with finite d ∈ N can be approximated at an exponential
rate by ReLU-NNs. To state the precise assumption on f , for κ > 0 introduce the complex open
strip

(4.1a) Sκ := {z = x+ iy ∈ C : |y| < κ} ⊂ C .

For τ = (τj)
d
j=1 ∈ (0,∞)d, we define the product domains

(4.1b) Sτ := ⊗d
j=1Sτj ⊂ C

d.

Assumption 4.1. There exists τ ∈ (0,∞)d so that f : Sτ → C is holomorphic. For every
0 ≤ β ≤ τ there exists B(β) > 0 such that for all x+ iy = (xj + iyj)

d
j=1 ∈ Sβ it holds

(4.2) |f(x+ iy)| ≤ B(β) exp




d∑

j=1

(
x2j
4

− 2−1/2|xj |(β2j −
1

2
y2j )

1/2

)
 .

Condition (4.2) is a growth condition on f on the domains Sτ ⊂ C
d. It states that f should

increase along the real axis in xj slower than exp(
x2
j

4 ). The parameters βj quantify this further,

and will determine the rate of convergence. The occurence of the factor exp(
x2
j

4 ) stems from the
fact, that we wish to approximate f in L2(Rd, γd), where the Gaussian γd has Lebesgue density

(2π)−d/2 exp(−∑d
j=1

x2
j

2 ). Hence f increasing faster than exp(
x2
j

4 ) would imply f /∈ L2(Rd, γd).

4.1. Polynomial approximation. Recall that the Hermite functions (hn)n∈N0 in (2.3) form an
ONB of L2(R). Our analysis in the finite dimensional case is based on the classical paper [7] of E.
Hille.

Theorem 4.2 ([7, Theorem 1]). Let τ > 0 and let g : Sτ → C be holomorphic and satisfy: for
every β ∈ (0, τ) exists B(β) <∞ such that for all x+ iy ∈ Sβ

(4.3) |g(x+ iy)| ≤ B(β) exp(−|x|(β2 − y2)1/2).

Then for every β ∈ (0, τ) exists a constant K(β) depending on β (but independent of g, τ and
n) such that for every n ∈ N

(4.4)

∣∣∣∣
∫

R

g(x)hn(x)dx

∣∣∣∣ ≤ K(β)B(β) exp(−β(2n+ 1)1/2).

We recall part of the proof of the theorem in Appendix A. The reason is that the result in [7,
Theorem 1] does not explicitly state the dependence of the occurring constants. In the following
we wish to repeatedly apply (4.4) coordinatewise to obtain a multivariate version. To this end we
need (4.4) to hold for some K(β), where K(β) is only a function of β but does not depend on g.

To state the multivariate version of Theorem 4.2, with Hn and hn from (2.1), (2.3), for all
ν ∈ N

d
0 in the following

Hν(x) :=

d∏

j=1

Hνj (xj) and hν(x) :=

d∏

j=1

hνj (xj).
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Moreover we use standard multivariate notation such as (0, τ ) to denote the cube ×d
j=1(0, τj) ⊂ R

d

for τ = (τj)
d
j=1 ∈ (0,∞)d.

Corollary 4.3. Let d ∈ N, τ ∈ (0,∞)d and let F : Sτ → C be holomorphic and satisfy: for every
β ∈ (0, τ ) exists B(β) > 0 such that for all x+ iy = (xj + iyj)

d
j=1 ∈ Sβ

(4.5) |F (x+ iy)| ≤ B(β) exp


−

d∑

j=1

|xj |(β2j − y2j )
1/2


 .

With K(βj) > 0 as in Theorem 4.2 then holds for every ν ∈ N
d
0 and every β ∈ (0, τ )

(4.6) |〈F, hν〉L2(Rd)| ≤




d∏

j=1

K(βj)


B(β) exp


−

d∑

j=1

βj(2νj + 1)1/2


 .

Proof. Fix ν ∈ N
d
0 and β ∈ (0, τ ). Then (4.5) and Theorem 4.2 imply for all zj = xj+iyj ∈ Sτj ,

j ∈ {2, . . . , d},
(4.7)
∣∣∣∣
∫

R

hν1(x1)F (x1, z2, . . . , zd)dx1

∣∣∣∣ ≤ K(β1)B(β) exp


−

d∑

j=2

|xj |(β2j − y2j )
1/2


 exp(−β1(2ν1 + 1)1/2).

The function (z2, . . . , zd) 7→
∫
R
hν1(x1)F (x1, z2, . . . , zd)dx1 is well-defined and holomorphic (e.g., by

the theorem in [15]) on Sτ2 ×· · ·×Sτd . Thus (4.7) and Theorem 4.2 imply for all zj = xj+iyj ∈ Sτj ,
j ∈ {3, . . . , d},
∣∣∣∣
∫

R

hν2(x2)

∫

R

hν1(x1)F (x1, x2, z3, . . . , zd)dx1dx2

∣∣∣∣

≤ K(β1)K(β2)B(β) exp


−

d∑

j=3

|xj |(β2j − y2j )
1/2


 exp(−β1(2ν1 + 1)1/2 − β2(2ν2 + 1)1/2).

Repeating the argument another d− 2 times concludes the proof.

Our goal is to bound the Fourier coefficients w.r.t. the orthonormal Hermite polynomials
(Hν)ν∈Nd

0
in L2(Rd, γd). Theorem 4.2 and Corollary 4.3 instead provide bounds on the Fourier

coefficients w.r.t. the Hermite functions (hν)ν∈Nd
0
in L2(R). The following multivariate version of

Lemma 2.1 relates the two.

Lemma 4.4. Let d ∈ N and set

Θ : L2(Rd, γd) → L2(Rd) : f(x) 7→ f(21/2x)
exp (−‖x‖22

2 )

π
d
4

.

Then Θ is an isometric isomorphism and Θ(Hν) = hν for all ν ∈ N
d
0. In particular, for every

f ∈ L2(Rd, γd)

(4.8) 〈f,Hν〉L2(Rd,γd)
= 〈Θ(f), hν〉L2(Rd) ∀ν ∈ N

d
0.

Equation (4.8) shows that, as long as Θ(f) satisfies the Assumptions of Corollary 4.3, we have
a bound of the type (4.4) on the Hermite coefficients |〈f,Hν〉L2(R,γ1)|. Upon observing that Θ(f)
satisfies Assumption 4.1 if f satisfies the assumptions of Corollary 4.3, A version of this theorem
has already been shown with essentially the same argument in [1, Lemma 4.6, Thm. 4.1]. For
completeness and because our statement and assumptions slightly differ3 from [1], we provide the
proof in the appendix.

3In particular we allow for stronger growth of f as x → ±∞.
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Theorem 4.5. Let f : Rd → R satisfy Assumption 4.1 for some τ ∈ (0,∞)d.
Then for all β ∈ (0, τ ) exist C > 0 (depending on β) such that there holds, with K(βj) as in

Theorem 4.2,
(i) for all ν ∈ N

d
0

(4.9) |〈f,Hν〉L2(Rd,γd)
| ≤ π−d/4B(β)




d∏

j=1

K(βj)


 exp


−

d∑

j=1

βj(2νj + 1)1/2


 ,

(ii) for all ε ∈ (0, 1) with

(4.10) Λε :=

{
ν ∈ N

d
0 : νj ≤

(
log(ε)

βj

)2
}

and

(4.11) δ(β) :=




d∏

j=1

βj




1
d

holds

(4.12)

∥∥∥∥∥f −
∑

ν∈Λε

〈f,Hν〉Hν

∥∥∥∥∥
L2(Rd,γd)

≤ Cε ≤ C exp
(
−2−

1
2 δ(β)|Λε|

1
2d

)
.

4.2. ReLU neural network approximation. The polynomial approximation result in the pre-
vious subsection together with the ReLU approximation result of Hermite polynomials provided in
Sec. 3 yield exponential convergence in L2(Rd, γd) of DNN approximations with ReLU activations.
We prepare the proof of the theorem by showing two basic properties of Λε.

Lemma 4.6. Fix β ∈ (0,∞)d and let Λε be as in (4.10). Then for all

(4.13) ε ∈
(
0, exp

(
− max

j∈{1,...,d}
βj

))

holds |Λε| ≤ 2d log(ε)2d
∏d

j=1 β
2
j

. Furthermore, m(Λε) ≤ log(ε)2(
∑d

j=1 β
−2
j ).

Proof. Due to (4.13) we have (log(ε)/βj)
2 ≥ 1 and therefore

|Λε| ≤
d∏

j=1

(
1 +

(
log(ε)

βj

)2
)

≤ 2d
log(ε)2d
∏d

j=1 β
2
j

.

In addition

m(Λε) = max
ν∈Λε

|ν|1 ≤
d∑

j=1

log(ε)2

β2j
.

Theorem 4.7. Let f : Rd → R satisfy Assumption 4.1 for some τ ∈ (0,∞)d.
Then for all β ∈ (0, τ ) exists C > 0 (depending on β and d) such that for all N ∈ N exists a

ReLU network f̃N : Rd → R such that

(4.14) size(f̃N ) ≤ CN(1 + log(N)), depth(f̃N ) ≤ CN
3

2d+7 (1 + log(N))2,

and

(4.15) ‖f − f̃N‖L2(Rd,γd)
≤ C exp

(
−2−

1
2 δ(β)N

1
2d+7

)
.

16



Proof. For M > 0, define with δ(β) as in (4.11)

(4.16) εM := exp


−

(
M
∏d

j=1 β
2
j

2d

) 1
2d


 = exp

(
−2−

1
2 δ(β)M

1
2d

)
.

Assume M > 2 is chosen so large that εM < exp
(
−maxj∈{1,...,d} βj

)
, i.e. (4.13) holds.

By Lemma 4.6 it holds |ΛεM | ≤M . Furthermore, (4.12) with εM in place of ε implies

(4.17)

∥∥∥∥∥∥
f −

∑

ν∈ΛεM

〈f,Hν〉Hν

∥∥∥∥∥∥
L2(Rd,γd)

≤ CεM ≤ C exp(−2−
1
2 δ(β)M

1
2d ).

Next, let (H̃εM ,ν)ν∈ΛεM
be the ReLU approximation from Theorem 3.7. As the coefficients 〈f,Hν〉

are summable according to (4.9), we get

∥∥∥∥∥∥

∑

ν∈ΛεM

〈f,Hν〉|Hν − H̃εM ,ν |

∥∥∥∥∥∥
L2(Rd,γd)

≤ εM
∑

ν∈Nd
0

|〈f,Hν〉| ≤ C exp(−2−
1
2 δ(β)M

1
2d ).

Together with (4.17) we observe that the network

g̃M :=
∑

ν∈ΛεM

〈f,Hν〉H̃εM ,ν

satisfies the error bound

(4.18) ‖f − g̃M‖L2(Rd,γd)
≤ C exp

(
−2−

1
2 δ(β)M

1
2d

)
.

Next we bound the size and depth of g̃M . By Lemma 4.6 and (4.16)

m(ΛεM ) ≤ log(εM )2
d∑

j=1

β−2
j ≤M

1
d δ(β)2

d∑

j=1

β−2
j ≤ CM

1
d

for some C = C(d,β). It holds size(g̃M ) ≤ C|ΛεM |+ size (H̃εM ,ν)ν∈ΛεM
. By Theorem 3.7

size(g̃M ) ≤ C|ΛεM |+ C|ΛεM |m(ΛεM )3 log(1 +m(ΛεM ))d(ΛεM )2| log(εM )|
≤ CM + CMM

3
d log(CM)d2M

1
2d

≤ C(1 +M)1+
3
d
+ 1

2d (1 + log(M)),(4.19)

where C depends on β and d and may change its value after each inequality in the above compu-
tation. Similarly, using again Theorem 3.7,

depth(g̃M ) ≤ C + Cm(ΛεM ) log(1 +m(ΛεM ))2d(ΛεM ) log(1 + d(ΛεM ))| log(εM )|
≤ C + CM

1
d log(1 +M)2d log(1 + d)M

1
2d

≤ CM
1
d
+ 1

2d (1 + log(M))2.(4.20)

Setting f̃N := g̃M with M := N
2d

2d+7 − 1, (4.18), (4.19), (4.20) imply the error, size and depth
bounds (4.14) and (4.15).

Finally, the condition εM ≤ exp
(
−maxj∈{1,...,d} βj

)
corresponds to M ≥M0 for some fixed M0

depending on d and β. Since the theorem holds for all M ≥ M0, it remains true for all M ∈ N

after possibly adjusting the constant C.
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5. DNN approximation of infinite-parametric, analytic functions in L2(RN, γ). In this section
we consider the ReLU-NN approximation of certain countably-parametric, analytic maps from U =
R
N to R in L2(RN, γ). Such maps arise as solutions of operator equations with Gaussian random

field inputs, which are represented in an affine-parametric fashion, via a Parseval frame [14] such
as e.g. a Karhunen-Loève or a Lévy-Cieselskii expansion of the GRF. We discuss an example in
Sec. 6. The proof of NN approximation bounds proceeds in two stages. First, a polynomial chaos
approximation is constructed based on the results in [5], and second, this approximation is emulated
by a deep ReLU-NN using our results from the preceding sections.

5.1. Wiener polynomial chaos approximation. We recall the notion of (b, ξ, δ)-holomorphy
from [5, Def. 6.1].

Definition 5.1 ((b, ξ, δ)-Holomorphy). Let b = (bj)j∈N ∈ (0,∞)N and let ξ > 0, δ > 0.
We say that ̺ ∈ (0,∞)N is (b, ξ)-admissible if for every N ∈ N

(5.1)
N∑

j=1

bj̺j ≤ ξ .

A real-valued function u ∈ L2(U, γ) is called (b, ξ, δ)-holomorphic if
(i) for every finite N ∈ N there exists uN : RN → R, which, for every (b, ξ)-admissible ̺ ∈ (0,∞)N ,

admits a holomorphic extension (denoted again by uN ) from S̺ → C; moreover for all N < M

(5.2) uN (y1, . . . , yN ) = uM (y1, . . . , yN , 0, . . . , 0) ∀(yj)Nj=1 ∈ R
N ,

(ii) for every N ∈ N there exists ϕN : RN → R+ such that ‖ϕN‖L2(RN ,γN ) ≤ δ and

(5.3) sup
̺∈(0,∞)N is (b,ξ)−adm.

sup
z∈B(̺)

|uN (y + z)| ≤ ϕN (y) ∀y ∈ R
N ,

(iii) with ûN : U → R defined by ûN (y) := uN (y1, . . . , yN ) for y ∈ U it holds

(5.4) lim
N→∞

‖u− ûN‖L2(U,γ) = 0.

In the following, for u : U → R as in Def. 5.1, we set

uν :=

∫

U
u(y)Hν(y)dγ(y) ∈ R, ν ∈ F ,

which are the so-called Wiener-Hermite polynomial chaos (PC) expansion coefficients. They are
well-defined since u ∈ L2(U, γ) and Hν ∈ L2(U, γ), and thus y 7→ u(y)Hν(y) ∈ L1(U, γ).

The following theorem specifies Hermite PC coefficient summability, see [5, Corollary 7.9].

Theorem 5.2. Let u be (b, ξ, δ)-holomorphic for some b ∈ ℓp(N) and some p ∈ (0, 23). Then

(uν)ν∈F ∈ ℓ2p/(2−p)(F).

Since p ∈ (0, 23), Theorem 5.2 implies (|uν |)ν∈F ∈ ℓ1(F) →֒ ℓ2(F). Since (Hν)ν∈F is an
orthonormal basis of L2(U, γ), the expansion

(5.5) u =
∑

ν∈F
uνHν ,

converges in L2(U, γ). Truncating this expansion yields an approximation to u. Proving convergence
rates of N -term truncated Wiener-Hermite pc expansions requires a more specific result however.
It is given in the next theorem that is shown in [5, Thm. 7.8, Lemmata 9.5 and 9.6].
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Theorem 5.3. Let u be (b, ξ, δ)-holomorphic for some b ∈ ℓp(N) and some p ∈ (0, 23). Let
r > 2/p− 1.

Then there exists K > 0 such that with

(5.6) cν :=
∏

j∈suppν

max
{
1,Kbp−1

j

}2
νrj ν ∈ F ,

it holds
(i) (c−1

ν )ν∈F ∈ ℓ
p

2(1−p) ,
(ii)

∑
ν∈F cνu

2
ν <∞.

In the following, for cν as in (5.6) we let similar to (4.10) for ε > 0

(5.7) Λε := {ν ∈ F : c−1
ν ≥ ε}.

It is easy to see that the definition of cν in (5.6) implies Λε to be finite and downward closed.

Corollary 5.4. Consider the setting of Theorem 5.3. Then for every ε > 0

∥∥∥∥∥u−
∑

ν∈Λε

uνHν

∥∥∥∥∥
L2(U,γ)

≤ ε1/2

(
∑

ν∈F
cνu

2
ν

)1/2

.

In addition,

(5.8) ε ≤ ‖(c−1
ν )ν∈F‖ℓp/(2(1−p)) |Λε|−

2(1−p)
p

so that in particular with the finite constant C := (‖(c−1
ν )ν∈F‖ℓp/(2(1−p))

∑
ν∈F cνu

2
ν)

1/2 holds

∥∥∥∥∥u−
∑

ν∈Λε

uνHν

∥∥∥∥∥
L2(U,γ)

≤ C|Λε|−
1
p
+1
.

Proof. By (5.5) and the orthogonality of the (Hν)ν∈F in L2(U, γ),

∥∥∥∥∥u−
∑

ν∈Λε

uνHν

∥∥∥∥∥
L2(U,γ)

=


 ∑

ν∈F\Λε

u2ν




1/2

.

It holds

∑

ν∈F\Λε

u2ν =
∑

ν∈F\Λε

u2νcνc
−1
ν ≤

∑

ν∈F
u2νcν sup

ν∈F\Λε

c−1
ν ≤ ε

∑

ν∈F
u2νcν

by definition of Λε = {ν : c−1
ν ≥ ε}.

By Theorem 5.3 we have
∑

ν∈F u
2
νcν < ∞ and (c−1

ν )ν∈F ∈ ℓp/(2(1−p)). Hence, using cν ≤ ε−1

for all ν ∈ Λε,

|Λε| =
∑

ν∈Λε

c
− p

2(1−p)
ν c

p
2(1−p)
ν ≤ ε

− p
2(1−p)

∑

ν∈F
c
− p

2(1−p)
ν

and consequently

ε ≤ |Λε|−
2(1−p)

p ‖(c−1
ν )ν∈F‖ℓp/(2(1−p)) .
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In all

∥∥∥∥∥u−
∑

ν∈Λε

uνHν

∥∥∥∥∥
L2(U,γ)

≤ ε1/2

(
∑

ν∈F
cνu

2
ν

)1/2

≤ |Λε|−
1
p
+1

(
‖(c−1

ν )ν∈F‖ℓp/(2(1−p))

∑

ν∈F
cνu

2
ν

)1/2

as claimed.

5.2. ReLU neural network approximation. Let again (cν)ν∈F be as in (5.6) with some b ∈
ℓp(N) and K > 0, and let Λε be as in (5.7). As in [25], we investigate the quantities m(Λε) and
d(Λε) defined in (3.9), as εց 0.

Lemma 5.5. Assume that there exists C0 > 0, s > 0 and p > 0 such that b = (bj)j∈N ∈ ℓp(N)

and bj ≥ C0j
− s

2(1−p) for all j ∈ N. Let (cν)ν∈F be as in (5.6) for this b and some K > 0. Then

(5.9) d(Λε) = o(log(|Λε|)) and m(Λε) = O
(
|Λε|

s
r

)
as εց 0.

Proof. With K as in (5.6) set

ˆ̺j := max{1,Kbp−1
j }.

Throughout this proof we assume wlog that (bj)j∈N is monotonically decreasing (otherwise permute
the sequence (bj)j∈N accordingly).

Denote by (xj)j∈N a monotonically decreasing rearrangement of (c−1
ν )ν∈F . Since bp−1

j → ∞,

there exists C1 > 0 such that ˆ̺j ≤ C1b
p−1
j for all j. We have c−1

ej
= ˆ̺−2

j ≥ C−2
1 b

−2(p−1)
j = C−2

1 b
2(1−p)
j .

Since bj is monotonically decreasing, by definition of xj it must hold xj ≥ C−2
1 b

2(1−p)
j . With the

assumption bj ≥ C0j
− s

2(1−p) we get

(5.10) xj ≥ C−2
1 C0j

−s = C2j
−s.

We will show that there are fixed constants C3, C4, C5 > 0 depending on (ˆ̺j)j∈N but independent
of d ∈ N so that there holds

(5.11) max
{ν∈F : |ν|0=d}

c−1
ν ≤ C3d

−C4d and max
{ν∈F : |ν|=m}

c−1
ν ≤ C5m

−r .

Denote F (t) := C3t
−C4t. Then F : [1,∞) → (0, C3] is strictly monotonically decreasing and

bijective. Hence F−1 : (0, C3] → [1,∞) is strictly decreasing and bijective. Using (5.11) and (5.10)
it holds

F (d(ΛN )) ≥ max
{ν∈F : |ν|0=d(ΛN )}

c−1
ν ≥ max

{ν∈ΛN : |ν|0=d(ΛN )}
c−1
ν ≥ min

ν∈ΛN

c−1
ν = xN ≥ C2N

−s.

If N is so large that C2N
−s ≤ C3, we may apply F−1 on both sides and conclude that d(ΛN ) ≤

F−1(C2N
−s). Since F−1(t) = o(− log(t)) as t→ 0, we obtain

d(ΛN ) = o(− log(N−s)) = o(log(N))

as N → ∞. Similarly, letting G(t) := C5t
−r and observing that G−1(t) = (t/C5)

−1/r = O(t−1/r)
as t→ 0, one shows that

m(ΛN ) ≤ G−1(C2N
−s) = O(N

s
r )

as N → ∞.
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It remains to verify (5.11). Without loss of generality we assume (ˆ̺−1
j )j∈N to be monotonically

decreasing. Using Hölder’s inequality and the fact that (ˆ̺−1
j )j∈N ∈ ℓq(N) with q := p/(1− p) (since

ˆ̺−1
j ∼ b1−p

j and (bj)j∈N ∈ ℓp(N)) one can show that ˆ̺−1
j ≤ ‖(ˆ̺−1

j )j∈N‖ℓq(N)j−1/q for all j ∈ N (see

for example [25, Lemma 2.9]). Therefore with C6 := ‖(ˆ̺−1
j )j∈N‖ℓq(N)

max
{ν∈F : |ν|0=d}

c−1
ν =

d∏

j=1

ˆ̺−2
j ≤

d∏

j=1

(C6j
− 1

q )2 ≤ C2d
6 (d!)

− 2
q ≤ C2d

6 (e−d dd)
− 2

q ≤ C2d
6 e

d 2
q d

−d 2
q .

This implies the first inequality in (5.11). To show the second inequality we note that

(5.12) max
|ν|1=m

c−1
ν = max

|ν|1=m

∏

j∈suppν

ˆ̺−1
j ν−r

j .

Observe that for ν = µ+ ei

c−1
ν

c−1
µ

=

∏
j∈suppν ˆ̺−1

j ν−r
j∏

j∈suppν ˆ̺−1
j µ−r

j

=

{
ˆ̺−1
i if νi = 0,(
νi

νi+1

)r
otherwise.

By definition ˆ̺j = max{1,K̺j} ≥ 1 for all j and thus ˆ̺−1
j ≤ 1 for all j ∈ N. Now suppose

that J ∈ N is so large that ˆ̺−1
j ≤ 2−r for all j ≥ J . Then for all m ≥ J , since (n/(n + 1))r is

monotonically increasing as a function of n ∈ N,

max
|ν|1=m

∏

j∈suppν

ˆ̺−1
j ν−r

j ≤
m−J∏

n=1

(
n

n+ 1

)r

= (m− J + 1)−r.

Together with (5.12) this implies the second inequality in (5.11).

We are now in position to state our main result in this section. It provides ReLU-NN expression
rates for countably-parametric, (b, ξ, δ)-holomorphic maps.

Theorem 5.6. Let u : U → R be (b, ξ, δ)-holomorphic for some b ∈ ℓp(N) with a p ∈ (0, 23). Fix
θ > 0 arbitrarily small.

Then there exists a constant C > 0 (depending on u and on θ) such that for every N ∈ N there
exists a ReLU-NN ũN with

(5.13) ‖u(y)− ũN (y)‖L2(U,γ) ≤ CN
− 1

p
+1
,

and it holds

(5.14) size(ũN ) ≤ CN1+θ, depth(ũN ) ≤ CN θ.

Proof. Define b̂j := max{bj , j−2/p}. Then b̂ ∈ ℓp(N) and b̂j ≥ bj for all j ∈ N. The definition of

(b, ξ, δ)-holomorphy implies that u is also (b̂, ξ, δ)-holomorphic. As in (5.7) we let Λε = {ν : c−1
ν ≥

ε}, with cν as in (5.6) defined with b̂ in place of b. We fix r > 2/p − 1 > 1 in (5.6) large enough
such that with s := (2/p)/(2(1− p)) > 0 it holds 4s

r < θ.

For ε ∈ (0, 1] set uε :=
∑

ν∈Λε
uνHν . By Corollary 5.4 with C1 := (

∑
ν∈F cνu

2
ν)

1/2 < ∞ holds

‖u− uε‖L2(U,γ) ≤ C1ε
1/2. By Theorem 3.7, there exists a ReLU-NN Φ = (H̃ε,ν)ν∈Λε : R| suppΛε| →

R
|Λε| such that ‖Hν − H̃ε,ν‖L2(U,γ) ≤ ε for each ν ∈ Λε. Then the NN ũε :=

∑
ν∈Λε

uνH̃ε,ν satisfies

‖uε − ũε‖L2(U,γ) ≤
∑

ν∈Λε

|uν |ε = ε
∑

ν∈Λε

|uν |.
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By Theorem 5.2 it holds C2 :=
∑

ν∈Λε
|uν | <∞. Hence (using 0 < ε ≤ ε1/2 ≤ 1)

(5.15) ‖u− ũε‖L2(U,γ) ≤ ‖u− uε‖L2(U,γ) + ‖uε − ũε‖L2(U,γ) ≤ (C1 + C2)ε
1/2.

Next, by Lemma 5.5

d(Λε) ≤ C log(|Λε|), m(Λε) ≤ C|Λε|
s
r ,

where s = (2/p)/(2(1− p)) > 0. Theorem 3.7 thus implies the bounds (here we use 4s/r < θ)

size(ũε) ≤ |Λε|+ size(Φ) ≤ C|Λε|m(Λε)
4d(Λε)

2 log(ε−1) ≤ C|Λε||Λε|
4s
r log(|Λε|)4 ≤ C|Λε|1+θ.

Similarly

depth(ũε) ≤ 1 + depth(Φ) ≤ 1 + Cm(Λε)
3d(Λε)

2 log(ε−1) ≤ 1 + C|Λε|
3s
r log(|Λε|)3 ≤ 1 + C|Λε|θ.

Now using (5.8) we have with C3 := ‖(c−1
ν )ν∈F‖ℓp/(2(1−p))

|Λε| ≤
1

C3
ε
− p

2(1−p) .

Finally, for N ∈ N so large that εN := (C3N)−2(1−p)/p is less or equal to 1 we have in particular
|ΛεN | ≤ N . This choice yields a network ũN := ũεN satisfying the size and depth bounds (5.14), as
well as the error bound (5.13) due to (5.15) and the definition of εN .

Remark 5.7. The network ũN in Theorem 5.6 has size upper bounded by CN1+θ but takes infin-
itely many inputs y ∈ R

N. This is to be understood as follows: ũN is a network with only finitely
many inputs (yj)j∈SN

for some finite set SN ⊆ N of cardinality |SN | ≤ CN1+θ. All other inputs
are ignored. If (bj)j∈N in Def. 5.1 is monotonically decreasing, the proof shows that one can choose
SN = {j ∈ N : j ≤ C̃N1+θ}.
We remark that inspection of the proof actually reveals slightly more precise bounds on size(ũε)
and on depth(ũε) than the claim (5.14).

6. DNN Expression rate bounds for response-surfaces of

PDEs with GRF input. We illustrate the expression rate bounds for the infinite-parametric case
obtained in Sec. 5.2, by applying them to pushforwards of Gaussian measures under PDE solution
maps. For definiteness, we consider standard, linear elliptic second order diffusion in a bounded
Lipschitz domain D ⊆ R

d. For a given source term f ∈ H−1(D), and for a log-Gaussian diffusion
coefficient a = exp(g) with a GRF g taking values in L∞(D), consider the Dirichlet problem

(6.1) ∇ · (a∇u) + f = 0 in D , u|∂D = 0 .

We assume the log-Gaussian random field g = log(a) to admit a representation in terms of a
Karhunen-Loève expansion

(6.2) log(a(x,y)) = g(x,y) =
∑

j≥1

yjψj(x) , x ∈ D,

where y = (yj)j∈N ∈ R
N with the yj ∈ R iid centered standard Gaussian, and for certain ψj ∈

L∞(D).

Remark 6.1. The functions g and u in (6.1)-(6.2) are well-defined for instance under the fol-
lowing assumptions: Assume that for every j ∈ N ψj ∈ L∞(D) and there exists (λj)j≥1 ∈ [0,∞)N

such that (i) (exp(−λ2j ))j≥1 ∈ ℓ1(N) and (ii)
∑

j∈N λj |ψj | converges in L∞(D).
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Then the set U0 := {y ∈ R
N : g(y) ∈ L∞(D)} has full measure, i.e. γ(U0) = 1, and for every

k ∈ N holds E(exp(k‖g‖L∞(D)) < ∞ (see [2, Thm. 2.2]). Furthermore, for all f ∈ H−1(D) and

for every y ∈ U0, (6.1) has a unique solution u(y) ∈ H1
0 (D), and u ∈ Lk(U, γ;H1

0 (D)) for all finite
k ∈ N.

For an observable G ∈ H−1(D), we consider the countably-parametric, deterministic PDE re-
sponse map G ◦ u with u denoting the solution to (6.1) for the log-Gaussian random field a as in
(6.2). This map can be formally expressed as

(6.3) G(u(y)) = U


exp


∑

j∈N
yjψj




 , y ∈ U,

for some mapping U : L∞(D) → R. More precisely, U maps a diffusion coefficient a ∈ L∞(D) to
the observable G applied to the solution of (6.1). By the complex Lax-Milgram Lemma, the map
U is in particular well-defined on the set {a ∈ L∞(D,C) : ess infx∈Dℜ(a) > 0}.

An abstract result shown in [5, Lemma 7.10], implies that functions of the type y 7→ U(exp(∑j yjψj))
as in (6.3) are (b, ξ, δ)-holomorphic with bj = ‖ψj‖L∞(D), as long as U is a holomorphic map be-

tween two Banach spaces and it holds b ∈ ℓp(N) for some p ∈ (0, 23). More precisely, [5, Lemma
7.10] shows that (under certain additional assumptions) the functions

vN (y1, . . . , yN ) := U


exp




N∑

j=1

yjψj






converge towards some v ∈ L2(U, γ) as N → ∞, and this v is (b, ξ, δ)-holomorphic. In this sense
v(y) = G(u(y)) ∈ L2(U, γ) is well-defined. We emphasize that the crucial assumption of U being
holomorphic can be shown for the diffusion problem (6.1), but the result is far from limited to this
specific PDE: similar statements can be shown for instance for the Maxwell’s equations [11] or for
well-posed parabolic PDEs [5] (see [5, Section 7], where well-definedness and (b, ξ, δ)-holomorphy
of U ∋ y 7→ G(u(y)) is verified in the current setting). ReLU-NN expression rates then follow with
Theorem 5.6. We collect these results in the following proposition.

Proposition 6.2. Let f ∈ H−1(D) and g(y) = log(a(y)) be as in (6.2). Suppose that (ψj)j∈N ⊆
L∞(D) in (6.2) is such that with bj := ‖ψj‖L∞(D) holds b ∈ ℓp(N) for some 0 < p < 2

3 . Denote the
solution of (6.1) by u(y) ∈ H1

0 (D) whenever g(y) ∈ L∞(D).
For a given observable G ∈ H−1(D), the map y 7→ G(u(y)) is well-defined as the limit

lim
N→∞

G(u(y1, . . . , yN , 0, 0, . . . )) ∈ L2(U, γ).

Moreover, for every θ > 0 (arbitrarily small) there exists C < ∞ such that for every N ∈ N there
exists a ReLU-NN R̃N satisfying

‖G ◦ u− R̃N‖L2(U,γ) ≤ CN
− 1

p
+1
,

and

size(R̃N ) ≤ CN1+θ, depth(R̃N ) ≤ CN θ.

7. Conclusions and extensions. In this paper we discussed the approximation of functions
in L2(Rd, γd) with deep ReLU-neural networks. We proved that the Hermite polynomials can be
approximated at an exponential convergence rate (in terms of the network size). From this, and
classical bounds on the Hermite coefficients, we deduced that ReLU-NNs are capable of approximat-
ing analytic functions on R

d that allow holomorphic extensions onto certain strips in the complex
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plane at an exponential convergence rate. This result was extended to the infinite dimensional case
d = ∞, in which case we showed algebraic convergence rates for the class of so-called “(b, ξ, δ)-
holomorphic functions”. This notion has previously occurred in the literature predominantly for
functions with domain [−1, 1]N. We recently extended this definition to functions with domain
R
N, and analysed the sparsity properties of this function class in [5]. The present analysis in the

case d = ∞ strongly draws from these results. Notably, while the investigation of the expressivity
of ReLU-NNs on function classes over bounded domains has drawn widespread attention in recent
years (see, e.g., the survey [6] and the references there), we provide such results on high-dimensional
inputs with unbounded parameter range.

As an application, we discussed the response map of an elliptic PDE, whose input is given
in the form of a Karhunen-Loève expansion of a log-Gaussian random field, and proved that this
map can be approximated at an algebraic convergence rate with ReLU-DNNs. We emphasize, that
similar results will hold also for other well-posed PDE models with log-GRF input. Moreover, as
shown in [5], also Bayesian posterior densities for certain PDE based inverse problems belong to
the class of (b, ξ, δ)-holomorphic functions. Hence our approximation result may also be applied to
such densities. Therefore our analysis could serve as a starting point for developing and analysing
neural network driven algorithms for parameter estimation in physical systems.

Appendix A. Proof of Theorem 4.2. We recall some of the main steps of the proof of
[7, Theorem 1], to exhibit the specific bound (4.4), in particular the claimed dependence of the
constants on β and f .

As in [7, (3.5)-(3.6)], let n ∈ N,

N := (2n+ 1)1/2

and define for z ∈ SN := {z ∈ C : ℜ[z] ∈ [−N + 1, N − 1], ℑ[z] ≥ 0}

(A.1) ξ(z) :=

∫ z

N
(N2 − t2)1/2dt.

Due to ℜ[z] ∈ [−N + 1, N − 1], we have ℜ[N2 − t2] ≥ 0 for all complex t in the straight line
connecting N and z. Throughout what follows, for all x ∈ C with ℜ[x] ≥ 0, x1/2 is understood as
the complex root with nonnegative real part (cp. [7, (3.8)]). Then (A.1) uniquely defines ξ(z) ∈ C

for all z ∈ SN .
There hold the following properties:
(i) As recalled in [7, (3.3)-(3.4)], there exist holomorphic functions4 (h̃n)n∈Z such that for all

n ∈ N

(A.2) hn(z) = π−3/4(2nn!)1/2
(
exp

(
nπi

2

)
h̃−n−1(iz) + exp

(−nπi
2

)
h̃−n−1(−iz)

)
.

(ii) As argued in [7, (3.11)], there exists an absolute constant M > 0 such that for all n ∈ N

and for all z ∈ SN
5 holds

(A.3) |h̃−n−1(−iz)| ≤MN−n−1

∣∣∣∣∣exp
(
N2

4

)(
1− z2

N2

)−1/4

exp(iξ(z))

∣∣∣∣∣ .

(iii) By [7, Lemma 2], with the ellipse

E(N, β) :=

{
x+ iy ∈ C :

x2

N2
+
y2

β2
= 1

}

4These functions are denoted by hn in [7].
5This bound holds outside of a neighbourhood of the points ±N , which are excluded in our definition of SN .
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it holds for all z ∈ E(N, β) ∩ SN that

(A.4) ℑ[ξ(z)] + |x|(β2 − y2)1/2 ≥ βN − 5

24

β3

N
.

For fixed n ∈ N, we bound |
∫
R
g(x)hn(x)dx|. Since the integrand is holomorphic in the strip

Sτ , the path of integration may be changed within the strip. Using (A.2) we can write
∫

R

g(x)hn(x)dx =

∫

|x|>N−1
g(x)hn(x)dx+ π−3/4(2nn!)1/2

∫

C1

g(z) exp

(
nπi

2

)
h̃−n−1(iz)dz

+ π−3/4(2nn!)1/2
∫

C2

g(z) exp

(
nπi

2

)
h̃−n−1(−iz)dz,(A.5)

where the contours C1 and C2 are sketched in Fig. A. In the following fix β ∈ (0, τ).
First, by (2.5) holds supx∈R |hn(x)| ≤ π−1/4. Using (4.3), we get

(A.6)

∣∣∣∣∣

∫

|x|>N−1
g(x)hn(x)dx

∣∣∣∣∣ ≤ 2π−1/4

∫ ∞

N−1
exp(−β|x|)dx =

2π−1/4 exp(β)

β
exp(−Nβ).

Next we bound the integral over C2 in (A.5). By symmetry, the one over C1 can be treated in
the same way. Denote the intersection of E(N, β) with {z ∈ C : ℜ[z] = −N + 1} in the second
quadrant with P , and the intersection of E(N, β) with {z ∈ C : ℜ[z] = N−1} in the first quadrant
with Q. Denote the vertical line connecting −N + 1 with with P by v1, and the one connecting
N − 1 with Q by v2. We start with the integral over v1 and compute P . We have ℜ[P ] = −N + 1.

The imaginary part of P is obtained by solving (N−1)2

N2 + y2

β2 = 1 for y. This yields

(A.7) ℑ[P ] = β
(2N − 1)1/2

N
.

We note in passing that [7] claims the length of the vertical parts of the path of integration is
O(n−3/4), but we obtain O(N−1/2) = O(n−1/4). This shall be, as we show, sufficient to conclude.
By (4.3) for all z = −(N − 1) + iy ∈ v1

|g(z)| ≤ B(β) exp
(
−(N − 1)(β2 − y2)1/2

)
≤ B(β) exp

(
−(N − 1)β

(
1− 2N − 1

N2

)1/2
)

= B(β) exp

(
−(N − 1)β

N − 1

N

)
≤ B(β) exp(2β) exp(−Nβ).(A.8)

Next observe that for z = −N + 1 + iy ∈ v1

ℑ[ξ(z)] = ℑ
[∫ −N+1

N
(N2 − t2)1/2dt+

∫ −N+1+iy

−N+1
(N2 − t2)1/2dt

]

= ℑ
[
i

∫ y

0
(N2 − (N − 1 + it)2)1/2dt

]
.

The last term is equal to
∫ y
0 ℜ[(N2− (N−1+it)2)1/2]dt, and this term is nonnegative by our choice

of the branch for the square root and since ℜ[N2 − (N − 1+ it)2] = N2 − (N − 1)2 + t2 ≥ 0. Hence

(A.9) | exp(iξ(z))| ≤ 1 ∀z ∈ v1.

Next, we bound the term |1 − z2

N2 |−1/4 occurring in (A.3). Assume z = x + iy ∈ SN , i.e.
x ∈ [−N + 1, N − 1] and y ≥ 0. Then

|N2 − z2|2 = |N2 − (x2 + 2ixy − y2)|2 = |N2 − x2 + y2 − 2ixy|2

= (N2 − x2 + y2)2 + 4x2y2 ≥ (N2 − x2)2,
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since the minimum is reached for y = 0. Hence, using that N2 − x2 ≥ 2N − 1 if |x| ≤ N − 1,

(A.10)

∣∣∣∣1−
z2

N2

∣∣∣∣
−1/4

=

∣∣∣∣
N2

N2 − z2

∣∣∣∣
1/4

≤
(

N2

2N − 1

)1/4

≤ N1/4 ∀z ∈ SN

where we usedN ≥ 1 so that N
2N−1 ≤ 1. Stirling’s formula n! < e(2πn)1/2(ne )

n implies (ne )
−1/2n−1/2 <

(n!)−1/2(2π)1/4 e1/2. Hence
(A.11)

N−n−1 exp

(
N2

4

)
= (2n+ 1)−

n+1
2 exp

(
2n+ 1

4

)
< 2−n/2

(n
e

)−1/2
n−1/2 < (2π e)1/2(2nn!)−1/2.

Combining (A.7)-(A.11) with (A.3) we get

∣∣∣∣
∫

v1

g(x)h̃−n−1(−iz)dz

∣∣∣∣ ≤MB(β) exp(2β) exp(−Nβ)
(
β
(2N − 1)1/2

N

)
N1/4 exp

(
N2

4

)
N−n−1

≤ 2M(2π e)1/2B(β)β exp(2β)(2nn!)−1/2 exp(−β(2n+ 1)1/2),(A.12)

where we used (2N−1)1/2N1/4

N ≤ 2 for all N ≥ 1. The integral over v2 can be treated in the same
way.

Finally, denote by a = E(N, β) ∩ SN the arc of the ellipse E(N, β) connecting P and Q. By
(4.3), (A.3), (A.4), (A.10) and (A.11) we have with z = x+ iy and because the length of the arc a
is bounded by 2(β +N)

∫

a
|g(z)h̃−n−1(−iz)|dz ≤MB(β)N−n−1 exp

(
N2

4

)∫

a
| exp(−iξ(z)− |x|(β2 − y2))|

∣∣∣∣1−
z2

N2

∣∣∣∣
−1/4

dz

≤M(2π e)1/2(2nn!)−1/2B(β)2(β +N)N1/4 exp

(
−βN +

5

24

β3

N

)

≤M(2π e)1/2(2nn!)−1/2B(β)2(1 + β) exp

(
5β3

24

)
(1 +N)5/4 exp(−βN).(A.13)

Using (A.5) and adding up all upper bounds in (A.6), (A.12) and (A.13) we obtain with

K̃(β) :=
2π−1/4 exp(β)

β
+4
[
Mπ−3/4(2π e)1/2β exp(2β)

]
+2

[
Mπ−3/4(2π e)1/22(1 + β) exp

(
5β3

24

)]

the bound

∣∣∣∣
∫

R

g(x)hn(x)dx

∣∣∣∣ ≤ B(β)K(β)(1 + (2n+ 1)1/2)5/4 exp(−β(2n+ 1)1/2).

Since this holds for all β ∈ (0, τ), absorbing6 (1 + (2n + 1)1/2)5/4 in the exponentially decreasing
term, we find that for all β ∈ (0, τ) exists K(β) depending on β (but not on n or g) such that (4.4)
holds.

Appendix B. Proof of Theorem 4.5. There holds the following Lemma [1, Lemma A.2]7:

Lemma B.1. Let r ∈ (0, 1) and s > 0. Then with a := r
√
2

∑

{k∈N0 : k>s}
r
√
2k+1 ≤ 2

a(1− a)
(
√
s+ 2 + 4)a

√
s.

6Here [7] obtains a term O(n1/4) instead of O(n5/8).
7Lemma A.2 in [1] is stated only for s ∈ N and with different constants. The current lemma follows by the same

argument after adjusting some constants.
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C1

N − 1

N
β

C2
P Q

v1 v2

Figure A.1: Paths of integration C1 and C2 in (A.5).

Proof of Theorem 4.5. With Θ from Lemma 4.4, denote F (x) := Θ(f)(x) = f(21/2x) e−‖x‖22 π−d/4.
Then, since f satisfies Assumption 4.1, for every β ∈ (0, τ ) and every x+ iy ∈ Sβ holds

|F (x+ iy)| = |f(21/2x+ i21/2y)|exp(−
∑d

j=1 x
2
j

2 )

π
d
4

≤ B(β) exp




d∑

j=1

(
(21/2xj)

2

4
− 2−1/2|21/2xj |(β2j −

1

2
(21/2yj)

2)

)
 exp(−

∑d
j=1 x

2
j

2 )

π
d
4

≤ B(β)

π
d
4

exp




d∑

j=1

−|xj |(β2j − yj)
2


 ,

so that F satisfies the assumption of Corollary 4.3 with the constant B(β)/π
d
4 . The first item thus

follows by Corollary 4.3 and Lemma 4.4.
To show the second item, we assume in the following (4.13), which implies by Lemma 4.6 with

δ(β) as in (4.11)

(B.1) |Λε| ≤ 2d
log(ε)2d
∏d

j=1 β
2
j

⇒ |Λε|
1
2d ≤ 2

1
2
| log(ε)|
δ(β)

.

It suffices to prove the theorem under the constraint (4.13), since ε ∈ (exp(−maxj∈{1,...,d} βj), 1)
only corresponds to finitely many sets Λε.

Denote χj := (log(ε))2/β2j . Then with K(β) :=
∏d

j=1K(βj), using that ν ∈ Λε iff νj ≤ χj for
all j (cp. (4.10)),

∥∥∥∥∥f −
∑

ν∈Λε

〈f,Hν〉Hν

∥∥∥∥∥

2

L2(Rd,γd)

=
∑

ν∈Nd
0\Λε

|〈f,Hν〉|2

≤ K(β)2B(β)2
d∑

j=1

∑

n>χj

exp(−2βj
√
2n+ 1)

∑

{(νi)i 6=j : νi∈N0}

∏

i 6=j

exp(−2βi
√
2νi + 1).

By Lemma B.1, with aj := exp(−23/2βj) and Cj :=
2

aj(1−aj)
,

∑

n>χj

exp(−2βj
√
2n+ 1) ≤ Cj(

√
χj + 2 + 4) exp(−23/2βj

√
χj) ≤ C̃j exp(−2βj

√
χj) = C̃jε

2,

for some C̃j depending on βj . Furthermore (e.g. by Lemma B.1) we haveD(βj) :=
∑

n∈N0
exp(−2βj

√
2n+ 1) <

∞, and thus

∑

{(νi)i 6=j : νi∈N0}

∏

i 6=j

exp(−2βi
√
2νi + 1) =

∏

i 6=j

∑

n∈N0

exp(−2βi
√
2n+ 1) ≤ (max

j≤d
D(βj))

d−1 =: Cmax.
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Hence

(B.2)

∥∥∥∥∥f −
∑

ν∈Λε

〈f,Hν〉Hν

∥∥∥∥∥

2

L2(Rd,γd)

≤ K(β)2B(β)2Cmax

d∑

j=1

C̃jε
2 = Cε2,

with the β and d-dependent constant C := K(β)2B(β)2Cmax
∑d

j=1 C̃j .
By (B.1)

ε ≤ exp
(
−2−

1
2 δ(β)|Λε|

1
2d

)

so that together with (B.2)

∥∥∥∥∥f −
∑

ν∈Λε

〈f,Hν〉Hν

∥∥∥∥∥
L2(Rd,γd)

≤ C exp(−2−
1
2 δ(β)|Λε|

1
2d ).
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[21] G. Szegő. Orthogonal polynomials. American Mathematical Society, Providence, R.I., fourth edition, 1975.
American Mathematical Society, Colloquium Publications, Vol. XXIII.

[22] N. Wiener. The Homogeneous Chaos. Amer. J. Math., 60(4):897–936, 1938.
[23] D. Yarotsky. Error bounds for approximations with deep ReLU networks. Neural Networks, 94:103–114, 2017.
[24] D. Yarotsky. Optimal approximation of continuous functions by very deep ReLU networks. In S. Bubeck,

V. Perchet, and P. Rigollet, editors, Proceedings of the 31st Conference On Learning Theory, volume 75 of
Proceedings of Machine Learning Research, pages 639–649. PMLR, 06–09 Jul 2018.

[25] J. Zech and C. Schwab. Convergence rates of high dimensional Smolyak quadrature. ESAIM Math. Model.
Numer. Anal., 54(4):1259–1307, 2020.

29


	Introduction
	Previous results
	Contributions
	Notation
	Gaussian measures
	Multiindices and polynomials
	Neural networks

	Layout

	Hermite polynomials and functions
	Basic definitions and properties
	Some preliminary bounds

	DNN emulation of Hermite polynomials
	Univariate Hermite polynomials
	Multivariate Hermite polynomials

	DNN approximation of analytic functions in L2(Rd,d)
	Polynomial approximation
	ReLU neural network approximation

	DNN approximation of infinite-parametric, analytic functions in L2(RN,)
	Wiener polynomial chaos approximation
	ReLU neural network approximation

	DNN Expression rate bounds for response-surfaces of PDEs with GRF input
	Conclusions and extensions
	Appendix A. Proof of Theorem 4.2
	Appendix B. Proof of Theorem 4.5

