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Abstract. We are concerned with the quantitative mathematical un-
derstanding of surface plasmon resonance (SPR). SPR is the resonant
oscillation of conducting electrons at the interface between negative and
positive permittivity materials and forms the fundamental basis of many
cutting-edge applications of metamaterials. It is recently found that
the SPR concentrates due to curvature effect. In this paper, we derive
sharper and more explicit characterisations of the SPR concentration at
high-curvature places in both the static and quasi-static regimes. The
study can be boiled down to analyzing the geometries of the so-called
Neumann-Poincaré (NP) operators, which are certain pseudo-differential
operators sitting on the interfacial boundary. We propose to study the
joint Hamiltonian flow of an integral system given by the moment map
defined by the NP operator. Via considering the Heisenberg picture and
lifting the joint flow to a joint wave propagator, we establish a more
general version of quantum ergodicity on each leaf of the foliation of
this integrable system, which can then be used to establish the desired
SPR concentration results. The mathematical framework developed in
this paper leverages the Heisenberg picture of quantization and extends
some results of quantum integrable system via generalising the concept
of quantum ergodicity, which can be of independent interest to the spec-
tral theory and the potential theory.
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1. Introduction

1.1. Physical background and motivation. In this paper, we are con-
cerned with the quantitative mathematical understanding of surface plasmon
resonance (SPR). SPR is the resonant oscillation of conducting electrons at
the interface between negative and positive permittivity materials and forms
the fundamental basis of many cutting-edge applications of metamaterials.
To motivate the study, we briefly discuss the mathematical setup of SPR.

Let D be a bounded C2,α(0 < α < 1) domain in Rd, d ≥ 2, with a
connected complement Rd\D. Let γc and γm be two real constants with
γm ∈ R+ given and fixed. Let

(1.1) γD = γcχ(D) + γmχ(R
d\D),

1
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where and also in what follows, χ stands for the characteristic function of a
domain. Consider the following homogeneous problem for a potential field
u ∈ H1

loc(R
d),

LγDu = 0 in Rd; u(x) = O(|x|1−d) as |x| → ∞,(1.2)

where LγDu := ∇(γD∇u). It is clear that u ≡ 0 is a trivial solution to
(1.2). If there exists a nontrivial solution u to (1.2), then γc is called a
plasmonic eigenvalue and u is the associated plasmonic eigenfunction. It is
apparent that a plasmonic eigenvalue must be negative, since otherwise by
the ellipticity of the partial differential operator (PDO) LγDu := ∇(γD∇u),
(1.2) admits only a trivial solution. That is, the negativity of γc may enable
that Ker(LγD) 6= ∅ which consists of the nontrivial solutions to (1.2). In
the physical scenario, the nontrivial kernel can induce a resonant field in a
standard way. In fact, let us consider the following electrostatic problem for
u ∈ H1

loc(R
d):

{
∇ · (γD∇u) = 0 in Rd,

(u− u0)(x) = O(|x|1−d) as |x| → ∞,
(1.3)

where u0 is a harmonic function in Rd that signifies an incident field, and
u is the incurred electric potential field. In the physical setting, γc and
γm respectively specify the dielectric constants of the inclusion D and the
matrix space Rd\D. If γc is a plasmonic eigenvalue and moreover if u0
is properly chosen in a way that LγDu0 sits in the space spanned by the
plasmonic eigenfunctions, it is clear that a resonant field can be induced
which is a linear superposition of the fields in Ker(LγD). It is not surprising
that the resonant field exhibits a highly oscillatory pattern. However, it
is highly intriguing that the high oscillation mainly propagates along the
material interface, namely ∂D. This peculiar phenomenon is referred to
as the surface plasmon resonance (SPR). The SPR forms the fundamental
basis for an array of frontier industrial and engineering applications including
highly sensitive biological detectors to invisibility cloaks [14,24,34,40,42,49,
52, 55, 65]. Its theoretical understanding also arouses growing interest in
the mathematical literature [2, 7, 8, 10, 17, 26, 33, 38, 41, 43, 44], especially its
intriguing and delicate connection to the spectral theory of the Neumann-
Poincaré (NP) operator as described in what follows.

The NP operator is a classical weakly-singular boundary integral operator
in potential theory [6, 32] and is defined by:

K∗
∂D[φ](x) :=

1

̟d

∫

∂D

〈x− y, ν(x)〉
|x− y|d φ(y)dσ(y), x ∈ ∂D,(1.4)

where ̟d signifies the surface area of the unit sphere in Rd and ν(x) signifies
the unit outward normal at x ∈ ∂D. In studying the plasmonic eigenvalue
problem (1.2), we shall also need to introduce the following single-layer
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potential:

S∂D[φ](x) :=

∫

∂D
Γ(x− y)φ(y)dσ(y), x ∈ Rd,(1.5)

where Γ is the fundamental solution to −∆ in Rd :

Γ(x− y) =

{
− 1

2π log |x− y| if d = 2 ,
1

(2−d)̟d
|x− y|2−d if d > 2 .

(1.6)

The following jump relation holds across ∂D for φ ∈ H−1/2(∂D):

∂

∂ν
(S∂D[φ])

± (x) = (±1

2
Id+K∗

∂D)[φ](x), x ∈ ∂D,(1.7)

where ± signify the traces taken from the inside and outside of D respec-
tively, and Id is the identity operator. Using (1.4)–(1.7), it can directly
verified that the plasmonic eigenvalue problem (1.2) can be reduced to the
following spectral problem of determining λ(γc, γm) := (γc+γm)/[2(γc−γm)]

and a density distribution φ ∈ H−1/2(∂D, dσ) such that:

u(x) = S∂D[φ](x), x ∈ Rd; K∗
∂D[φ](x) = λ(γc, γm)φ(x), x ∈ ∂D.(1.8)

That is, in order to determine the plasmonic eigenvalue γc of (1.2), it is
sufficient to determine the eigenvalues of the NP operator K∗

∂D. On the
other hand, in order to understand the peculiar behaviour of the plasmonic
resonant field, one needs to study the quantitative properties of the NP
eigenfunctions in (1.8) as well as the associated single-layer potentials in
(1.5).

The NP operator K∗
∂D is compact and hence its eigenvalues are discrete,

infinite and accumulating at zero. A classical result is that λ(K∗
∂D) ⊂

(−1/2, 1/2], which consolidates the negativity of a plasmonic eigenvalue in
(1.8). Due to their connection to the SPR discussed above, the quantitative
properties of the NP eigenvalues have been extensively studied in recent
years; see e.g. [3, 16, 17, 30, 36, 43, 44] and the references cited therein. As
is mentioned earlier that the SPR mainly oscillates around the material in-
terface ∂D, which is rigorously justified in [12]. It is found mainly through
numerics in [16] that the SPR tends to concentrate at high-curvature places
on ∂D. In [5], a theoretical understanding is established to investigate such
a peculiar curvature effect of the SPR when ∂D is convex. In [22], a spe-
cific (possibly curved) nanorod geometry was considered, and it is shown
that the SPR concentrates at the two ends of the nanorod, where both the
mean and Gaussian curvatures are high. In this paper, by developing and
exploring new technical tools, we shall derive sharper and more explicit char-
acterisations of the SPR concentration phenomenon driven by the extrinsic
curvature. It is remarked that according to the discussion in [5], in order to
study the SPR concentration, it is sufficient for us to consider the concen-
tration of the NP eigenfunctions in (1.8) driven by the extrinsic curvature.
Moreover, in addition to the static problem (1.2), we shall also consider



4 HABIB AMMARI, YAT TIN CHOW, HONGYU LIU, AND MAHESH SUNKULA

the study in the quasi-static regime, which shall be described in Section 6.
Finally, we would like to mention in passing some related works on the po-
lariton resonance associated with elastic metamaterials [11,20,21,37,39,45]
and the mathematical framework developed in this paper can be extended
to study the geometric properties of the polartion resonance.

1.2. Discussion of the technical novelty. In order to provide a global
view of the technical contributions in this article, we briefly discuss the
mathematical strategies and the new technical tools that are proposed and
developed for tackling the concentration of the NP eigenfunctions and hence
the SPR.

The layer potential operators are pseudo-differential operators whose prin-
cipal symbols encode the geometric characters of ∂D. Hence, the main idea
is to analyze the quantum ergodicity properties of these operators. To that
end, we study the joint Hamiltonian flow of commuting Hamiltonians, one
of which is the principal symbol of the NP operator. Using this, we derive
a new version of generalized Weyl’s law that the asymptotic average of the
magnitude of the joint eigenfunctions of the joint spectrum sitting inside a
given polytope in a neighbourhood of each point is directly proportional to
a weighted volume of the pre-image of the polytope by the moment map
at the respective point. In particular, we would like to point out that it
generalizes the related results in [68–70].

Then, we lift the joint Hamiltonian flow to a joint wave propagator via
the Heisenberg picture. We obtain a quantum ergodicity result on each leaf
of the foliation of the underlying integral system. This extends the classi-
cal results in the literature [18, 27, 53, 54, 61–64]. By using the established
quantum ergodicity result, we further obtain a subsequence (of density one)
of eigenfunctions such that their magnitude weakly converges to a weighted
average of ergodic measures over each of the leaf, where this weighted aver-
age at different points again relates to the volume of the pre-image of the
polytope by the moment map at the respective point. We provide explicit
upper and lower bounds of the aforementioned volume as functions only
depending on the principal curvatures. When the joint flow is ergodic with
respect to the Liouville measures on each of the leaves, we obtain a more
explicit description of the weighted average. With that, we provides a more
explicit and sharper characterization of the localization of the plasmon reso-
nance driven the associated extrinsic curvature at a specific boundary point.
In fact, we provide an explicit and motivating example of a manifold with
rotational symmetry, where the joint flow and the Lagrangian foliation can
be explicitly worked out, and the bounds via the principal curvatures can
also be calculated explicitly. From our result, we have associated the quanti-
tative understanding of the plasmon resonances to the dynamical properties
of the Hamiltonian flows.

Finally, we would like remark that at the first glance, it is a bit paradox-
ical to still hold the name of quantum ergodicity when we are investigating
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a quantum integrable system, since as is conventionally known that the de-
scriptions of a (complete) integrable system and that of ergodicity are almost
on the opposite sides of the spectrum of a dynamical system. However, our
discussion is on the ergodicity on the leaves of the foliation given by the inte-
grable system, say e.g. the Lagrangian tori if we have a complete integrable
system, and therefore no paradox emerges.

The rest of the paper is organized as follows. Sections 2 and 3 are devoted
to preliminaries for the sake of completeness and self-containedness of the
paper. In Section 2, we briefly recall the principal symbols of the layer-
potential operators following the discussions in [4,5]. In Section 3, we provide
a general and brief introduction to quantum integrable systems. In Section
4, we establish a generalized Weyl’s law over quantum integrable systems for
our purpose, and generalize the argument of the quantum ergodicity over
each leaf of the folliation to obtain a variance-like estimate. Section 5 and 6
are respectively devoted to the quantitative results of the concentration of
the plasmon resonances in the static and quasi-static regimes.

2. Potential operators as pseudo-differential operators

2.1. h-pseudodifferential operators. Let us consider the manifold M =

R2d or M = T ∗X, with the symplectic form ω =

d∑

i=1

dxi ∧ dξi, where X is a

d−dimensional closed manifold. The h−pseudo differential operators acting
on the Hilbert space H = L2(Rd) (or L2(X)) give semiclassical operators.
To start with, we let Sm(R2d) be the Hörmander class (symbol class) of
order m whose elements are functions f in the space C∞(R2d) such that, for
m ∈ R,

(2.1) |∂α(x,ξ)f | ≤ Cα〈(x, ξ)〉m, (x, ξ) ∈ R2d,

for every α ∈ N2d. Here, 〈z〉 := (1 + |z|2) 1
2 .

Definition 2.1. Let f ∈ Sm(R2d). The h−pseudodifferential operators of

f are given on the Schwartz space S̃(Rd) by the expressions:

(Left) (OpLf,h(u))(x)

:=
1

(2πh)d

∫

Rd

∫

Rd

exp

(
i

h
(x− y) · ξ

)
f (y, ξ)u(y) dy dξ;

(Weyl) (OpWf,h(u))(x)

:=
1

(2πh)d

∫

Rd

∫

Rd

exp

(
i

h
(x− y) · ξ

)
f

(
x+ y

2
, ξ

)
u(y) dy dξ;

(Right) (OpRf.h(u))(x)

:=
1

(2πh)d

∫

Rd

∫

Rd

exp

(
i

h
(x− y) · ξ

)
f (x, ξ)u(y) dy dξ.
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h−pseudodifferential operators also give rise to semiclassical operators on
M = T ∗X,(X is a closed d−dimentional manifold). Let X be covered by a
collection of smooth charts {U1, · · · , Uℓ}, such that each Ui, 1 ≤ i ≤ ℓ, is a
convex bounded domain of Rd. There exists a partition of unity χ2

1, · · · , χ2
ℓ

which is subordinate to the cover {U1, · · · , Uℓ}. Let Sm(T ∗X) be the space
of functions f in the space C∞(T ∗X) such that, for m ∈ R,

(2.2) |∂αx ∂βξ f(x, ξ)| ≤ Cα,β〈(ξ)〉m−|β|,

for every α, β ∈ Nn. Define the operator on X to be

Op
L/W/R
f,h (u) :=

ℓ∑

j=1

χj · (OpL/W/R)
j

f,h(χju), u ∈ C∞(X),(2.3)

where (OpL/W/R)
j

h(f) are the pseudodifferential operators on Uj with the

principal symbol fχ2
j . Following [67], we have that the operators Op

L/W/R
h (f)

are all pseudodifferential operator on X with the principal symbol f .

Proposition 2.2. Let Sm(T ∗X) be a Hörmander class, I = (0, 1], h ∈ I,
and Hh = L2(X) (independent of h). Then the pseudodifferential operators

on X, namely all of the above quantizations Op
L/R
h (f) and OpWh (f) defined

in (2.3), form a space of semiclassical operators.

Proof. We refer the readers to [67] for a proof of this theorem for OpWf,h. It is

noted that after applying the operator exp
(
±ih2∂x∂ξ

)
, the Weyl quantization

OpWf,h and left/right quantizations Op
L/R
f,h differ only in the higher order

term. Hence, one can conclude that the Beal’s criterion applies to OpWf,h if

and only if it applies to Op
L/R
f,h , which readily completes the proof. �

From now on, whenever we do not specify whether it is left, right or
Weyl, we presume Opf,h := OpRf,h is the right quantization. We notice that

Weyl qanitization is symmetric in the L2 metric by definition. In fact, if
we do not specify the cover {Ui}1≤i≤l, an operator so defined (via any of

the quantization Op
L/W/R
f,h ) is unique up to hΦSOm−1

h if f ∈ Sm(T ∗(∂D)))

belonging to the symbol class of order m.

2.2. Geometric description of ∂D. For the subsequent need, we briefly
introduce the geometric description ofD ⊂ Rd. Let X : u = (u1, u2, ..., ud−1) ∈
U ⊂ Rd−1 → X(u) ∈ ∂D ⊂ Rd be a regular parametrization of the sur-

face ∂D and let Xj := ∂X
∂uj

, j = 1, 2, . . . , d − 1. We denote ×d−1
j=1Xj =

X1 ×X2...×Xd−1. Since X is regular, we know ×d−1
j=1Xj is non-zero, and the

normal vector ν := ×d−1
j=1Xj/| ×d−1

j=1 Xj | is well-defined. Let ∇̄ be the stan-

dard covariant derivative on the ambient space Rd, and II be the second
fundamental form given by

II(v,w) = −〈∇̄vν,w〉ν = 〈ν, ∇̄vw〉ν, (v,w) ∈ T (∂D)× T (∂D).
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Define

A (x) := (Aij(x)) = 〈IIx(Xi,Xj), νx〉 , x ∈ ∂D.

Let g = (gij) be the induced metric tensor on ∂D and (gij) = g−1. Finally,
we write H (x), x ∈ ∂D as the mean curvature satisfying

trg(x)(A (x)) :=

d−1∑

i,j=1

gij(x)Aij(x) := (d− 1)H (x).

Throughout the rest of the paper, we always assume A (x) 6= 0 for all
x ∈ ∂D.

2.3. Principal symbols of layer potential operators. Throughout the
rest of the paper, with a bit abuse of notations, we shall also denote by S∂D

the single-layer potential operator which is given in (1.5) but with x ∈ ∂D.
This should be clear from the context in what follows. We let K∂D signify
the L2(∂D, dσ)-adjoint of the NP operator K∗

∂D. K∗
∂D is symmetrizable on

H−1/2(∂D, dσ) (cf., e.g., [9,31]) due to the following Kelley symmetrization
identity:

(2.4) S∂D K∗
∂D = K∂D S∂D.

In this section, we treat the layer potential operators as pseudodifferential
operators and derive several important properties, especially their principal
symbols. In fact, the special three-dimensional case was treated in [43, 44],
whereas the general case was considered in [4,5]. Since this result forms the
starting point for our subsequent analysis, we discuss the main ingredients
as follows. Before that, we introduce a slightly more relaxed symbol class
S̃m(T ∗(∂D)) (compared to Sm(T ∗(∂D))):
⋃

i

Ui = ∂D , Fi : π
−1(Ui) → Ui × Rd−1 ,

∑

i

ψ2
i = 1 , supp(ψi) ⊂ Ui ;

S̃m(Ui × Rd−1\{0}) :=
{
a : Ui × (Rd−1\{0}) → C ;

a ∈ C∞(Ui × (Rd−1\{0})) , |∂αξ ∂βxa(x, ξ)| ≤ Cα,β(|ξ|)m−|α|

}
;

S̃m(T ∗(∂D)) :=

{
a : T ∗(∂D)\∂D × {0} → C ;

a =
∑

i

ψiF
∗
i

(
[F−1

i ]∗(ψi) ai
)
, ai ∈ S̃m(Ui × Rd−1\{0})

}
;

where π : T ∗(∂D) → ∂D is the bundle projection. Similar to our discussion

in Section 2.1, for a symbol a ∈ S̃m(T ∗(∂D)), we can define Opa,h to be the

h-pseudodifferential operator. In the sequel, we let Φ̃SO
m

h denote the class

of pseudodifferential operators of order m associated with S̃m(T ∗(∂D)). We

also let Φ̃SO
m

:= Φ̃SO
m

1 , namely h = 1.
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Theorem 2.3. Assume that ∂D ∈ C2,α. The operators K∗
∂D and S∂D are

pseudodifferential operators of order −1 with their symbols given as follows
in the geodesic normal coordinate around each point x:

pK∗
∂D

(x, ξ) =pK∗
∂D,−1(x, ξ) +O(|ξ|−2)

=(d− 1)H (x) |ξ|−1 − 〈A (x) ξ, ξ〉 |ξ|−3 +O(|ξ|−2) ,
(2.5)

and

pS∂D
(x, ξ) = pS∂D,−1(x, ξ) +O(|ξ|−2

g(x)) =
1

2
|ξ|−1

g(x) +O(|ξ|−2
g(x)) ,(2.6)

where the asymptotics O depends on ‖X‖C2. The result in (2.5) holds also
for K∂D if only the leading-order term is concerned.

Using the symmetrization identity (2.4) and the self-adjointness of S∂D,
we have

K∗
∂D =|D|−1

{
(d− 1)H (x)∆∂D

−
d−1∑

i,j,k,l=1

1√
|g(x)|

∂ig
ij(x)

√
|g(x)|Ajk(x)g

kl(x)∂l

}
|D|−2 mod Φ̃SO

−2
,

S∂D =
1

2
|D|−1 mod Φ̃SO

−2
,

(2.7)

where ∆∂D is the surface Laplacian of ∂D, and |D|−1 := Op|ξ|−1
g(x)

. Moreover,

we have K∗
h,∂D := 1

h |D|− 1
2K∗

∂D|D| 12 , which is self-adjoint up to mod hΦ̃SO
−2

h .

Finally, we note that
(
λ̃i

2
, φi
)

is an eigenpair of K∗
∂D if and only if

(
λ̃i

h , |D|− 1
2φi
)
is an eigenpair of K∗

h,∂D. Hencefore, we write

(2.8) (λ̃i
2
(h), φi(h)) :=

(
λ̃i

2

h
, |D|− 1

2φi

)
.

3. Classical and Quantum Integrable Systems

In this section, we give a brief review of the classical and quantum inte-
grable systems, which shall be needed in our subsequent analysis.

3.1. Classical integrable systems. LetM be a 2d−dimensional symplec-
tic manifold with a non-degenerate 2−form ω.

Definition 3.1. A completely integrable Hamiltonian system (M,ω, F )
on a 2d-dimensional symplectic manifold (M,ω) is given by a set of d
smooth functions H1, . . . , Hd ∈ C∞(M), that are functionally independent
and Poisson-commuting, i.e.,

{Hi, Hj} := −ω(XHi , XHj ) = 0, i, j ∈ {1, . . . , d},
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where we recall that XHi is the symplectic gradient vector field given by

ιXHi
ω = dHi .

The map F = (H1, . . . , Hd) :M → Rd is called the moment map.

The level sets of the moment map in a completely integrable system form
a Lagrangian foliation F :M → Rd.

Definition 3.2. Let F = (H1, . . . , Hd) be the moment map of a completely
integrable system on R2d. A point m ∈ R2d is said to be a regular point if

rank{XH1(m), . . . , XHd
(m)} = d .

If
rank{XH1(m), . . . , XHd

(m)} = r, 0 ≤ r < d ,

then the point m ∈ R2d is said to be a singular point of rank r. The value
F (m) ∈ Rd is called a regular value if m is a regular point and a singular
value if m is a singular point.

Suppose that m ∈ R2d is a singular point of rank r for a completely
integrable system F = (H1, . . . , Hd) on R2d. After replacing the Hi’s with
invertible linear combinations of Hj ’s if necessary, we may assume that

XH1(m) = · · · = XHd−r
(m) = 0,

and the XHi ’s are linearly independent for d − r < i ≤ d. The quadratic
parts of H1, . . . , Hd−r form an abelian subalgebra sm of the Lie algebra of
quadratic forms, with the Poisson bracket as the Lie bracket.

Definition 3.3. A singular point m or rank r is said to be a non-degenerate
singular point of rank r if the sub-algebra sm is a Cartan sub-algebra of the
Lie algebra sp(2d− 2r,R) of the symplectic group Sp(2d− 2r,R).

Remark 3.4. In an obvious way, Definitions 3.2 and 3.3 can be carried
over to a completely integrable system (M,ω, F ) on a general 2d-dimensional
symplectic manifold.

In 1936, Williamson [66] classified the Cartan subalgebras of the Lie al-
gebra of the symplectic group.

Theorem 3.5 (Williamson). Let s ⊂ sp(2l;R) be a Cartan subalgebra.
Then there exist canonical coordinates (q1, . . . , ql, p1, . . . , pl) for R

2l, a triple
(kel, khy, kff ) ∈ Z3

≥0 satisfying the condition kel+khy+2kff = l, and a basis
f1, . . . , fl of s such that

fi =
q2i + p2i

2
, i = 1, . . . , kel,

fj = qjpj , j = kell + 1, . . . , kel + khy,

fk =

{
qkpk + qk+1pk+1,

qkpk+1 − qk+1pk,

k = kel + khy + 1, kel + khy + 3, . . . , l − 1,

k = kel + khy + 2, kel + khy + 4, . . . , l.
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Additionally, two Cartan subalgebras s, s
′ ⊂ sp(2l;R) are conjugate if and

only if their corresponding triples are equal.
The elements of the basis of s are called elliptic blocks, hyperbolic blocks

or focus-focus blocks according to whether they are of the form
q2i +p2i

2 , qjpj
or a pair qkpk + qk+1pk+1, qkpk+1 − qk+1pk, respectively.

Given a completely integrable system
(
M,ω, F = (H1, . . . , Hd)

)
. Suppose

m ∈ M is a non-degenerate singularity of rank r. Then with the help of
Williamson’s Theorem, locally one can write the Hamiltons Hi as fi for
i = 1, · · · , kel+khy+2kff , and Hi = pi for i = kel+khy+2kff +1, · · · , kel+
khy + 2kff + r = n.

3.2. Quantum Integrable Systems. Next, we would like to provide a
tool for the discussion of the lift of the classical Hamiltonian system to its
operator counterpart. For this purpose, we define the quantum integrable
system.

Let M be a 2d−dimensional symplectic manifold with a non-degenerate
2−form ω. Let I ⊂ (0, 1] be any set that accumulates at 0. If H is a complex
Hilbert space, we denote by L(H) the set of linear (possibly unbounded) self-
adjoint operators on H with a dense domain.

Definition 3.6. A space Ψ of semiclassical operators is a subspace of∏

h∈I

L(Hh), containing the identity, and equipped with a weak principal sym-

bol map, which is an R-linear map

(3.1) σ : Ψ 7→ C∞(M ;R),

with the following properties:

(1) σ(Id) = 1; (normalization)
(2) if P,Q ∈ Ψ and if P ◦Q is well defined and is in Ψ, then σ(P ◦Q) =

σ(P )σ(Q); (product formula)
(3) if σ(P ) ≥ 0, then there exists a function h 7→ ǫ(h) tending to zero as

h→ 0, such that P ≥ −ǫ(h), for all h ∈ I. (wear positivity)

If P = (Ph)h∈I, then σ(P ) is called the principal symbol of P.

Such a family of Hilbert spaces can be obtained e.g. by the Weyl quan-
tization (which we will specify later) or the geometric quantization with
complex polarizations.

Definition 3.7. A quantum integrable system on M consists of d semiclas-
sical operators

P1 = (P1,h), · · · , Pd = (Pd,h)

acting on Hh which commute, i.e., [Pi,h, Pj,h] = 0 for all i, j ∈ {1, 2, · · · , d},
for all h and whose principal symbols f1 := σ(P1), · · · , fd := σ(Pd) form a
completely integrable system on M .
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Definition 3.8. Suppose P and Q are commuting semiclassical operators on
Hh. Then the joint spectrum of (Ph, Qh) is the support of the joint spectral
measure, which is denoted as Σ(Ph, Qh). If Hh is a finite dimensional (or,
more generally, when the joint spectrum is discrete), then

(3.2) Σ(Ph, Qh) =
{
(λ1, λ2) ∈ R2 : ∃v 6= 0, Phv = λ1v,Qhv = λ2v

}
.

The joint spectrum of P,Q, denoted by Σ(P,Q), is the collection of all joint
spectra of (Ph, Qh), h ∈ I.

Suppose that (P1,h), · · · , (Pd,h) form a quantum integrable system on M .

Then the joint spectrum of
(
(P1,h), · · · , (Pd,h)

)
is

(3.3)

Σ
(
(P1,h), · · · , (Pd,h)

)
:=

{
(λ1, · · · , λd) ∈ Rd :

d⋂

i=1

ker(Pi,h − λiI) 6= {0}
}
.

We would like to remark that in case the operators Pi,h are not bounded,
the commuting property of the operators is understood in the strong sense:
the spectral measures (obtained via the spectral theorem as a projector-
valued measure) of Pi,h and Pj,h commute.

4. Generalized Weyl’s law

In this section, we recall the concept of generalized Weyl’s law and quan-
tum ergodicity from the pioneering works of Shnirelman [53, 54], Zelditch
[61–64], Colin de Verdiere [18] and Helffer-Martinez-Robert [27], and gener-
alize them to the case when we have a quantum integrable system [68–70] for
our purpose. For our subsequent use, we would like to further generalize it
to provide a more reinforced description for the quantum integrable system.

4.1. Hamiltonian flows of principal symbols. Consider the Hamilton-
ian H : T ∗(∂D) → R:

(4.1) H(x, ξ) := [pK∗
∂D,−1(x, ξ)]

2 ≥ 0 .

Throughout the rest of the paper, we impose the following assumption in
our study.

Assumption (A) We assume 〈A (x) g−1(x)ω , g−1(x)ω〉 6= (d − 1)H (x)
for all x ∈ ∂D and ω ∈ {ξ : |ξ|2g(x) = 1} ⊂ T ∗

x (∂D).

Assumption (A) holds if and only if {H = 1}⋂ (∂D × {0}) = ∅, which is
further equivalent to the condition that the Hamiltonian H 6= 0 everywhere.
As discussed in [4], (at least) when d = 3, this condition holds if and only
of ∂D is convex. With this, gazing at (1.8), it can be directly inferred that
φ ∈ C∞(∂D). In this work, we always assume the validity of Assumption
(A).
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Next, we set ρ(r) = 1−exp(−r) : R+ → R. It is realized that ρ(r) ≥ 0 and
ρ′(r) > 0 for all R+. Moreover, ρ(1/r2) ∈ C∞(R), with ∂ℓr|r=0

[
ρ(1/r2)

]
= 0

for all ℓ ∈ N and

|∂ℓrρ(1/r2)| ≤ Cℓ(1 + |r|2)−2−ℓ
2 .

Define H̃(x, ξ) = ρ(H(x, ξ)) : T ∗(∂D) → R. It can be directly verified that

under Assumption (A) and together with the fact that H ∈ S̃−2(T ∗(∂D)),

one has H̃ ∈ S−2(T ∗(∂D)).
Let us now consider k(≤ d) Poisson commuting and functionally inde-

pendent Hamiltonians f1 = H̃, f2, · · · fk ∈ Sm(T ∗(∂D)) for m ≥ −2 (if
k = d, then we will have a completely integrable system on M). Let
F = (f1, · · · , fk) be the k-tuple of the above Hamiltonian functions. We also
consider the corresponding h-pseudodifferntial operators Opf1,h, · · · ,Opfk,h
acting on Hh = L2(∂D).

Next we consider the following solution under the (joint) Hamiltonian
flows:

(4.2)





∂
∂tj
a(t1, ..., tk) = {fj , a(t1, ..., tk)},

a0(x, ξ) ∈ Sm(T ∗X),

which exists since {fi, fj} = 0, where we recall {·, ·} is the Poisson bracket
given by

{f, g} := Xf g = −ω(Xf , Xg) .

With this notion in hand, we have ∂
∂tj
a = Xfja, and it is clear that, writing

t = (t1, ..., tk), we have a(t) = a0(γ(t), p(t)) where




∂
∂tj

(γ(t), p(t)) = Xfj (γ(t), p(t)),

(γ(0), p(0)) = (x, ξ) ∈M.
(4.3)

To emphasize the dependence of a on the initial value (x, ξ), we also some-
times write

a(x,ξ)(t) = a(t) with (γ(0), p(0)) = (x, ξ) .

Next we introduce the Heisenberg’s picture and lift the above flow to the
operator level via the well-known Egorov’s theorem together with the com-
mutativity of Opfi,h and Opfj ,h, for our situation. Since this is a handy

extension of the original Egorov’s theorem (cf. [4, 23, 28, 29]), we only pro-
vide a sketch of the proof.

Proposition 4.1. Under Assumption (A), we consider the following oper-
ator evolution equation for each j ∈ {1, · · · , k}:

(4.4)





∂
∂tj
Ah(t) =

i
h

[
Opfj ,h, Ah(t)

]
,

Ah(0) = Opa0,h.
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For |t| < C log(h), it defines a unique Fourier integral operator (up to
h∞ΦSO−∞

h )

Ah(t1, ..., tk) = e
−

∑k
j=1

itj
h
Opfj ,h Ah(0) e

∑k
j=1

itj
h
Opfj ,h +O(hΦSOm−1

h )

= Opa(t),h +O(hΦSOm−1
h ).

Proof. First, by noting that [Opa,Opb] = Op{a,b} + O(hΦSOm+n−2
h ) if a ∈

Sm(T ∗(∂D)) and b ∈ Sn(T ∗(∂D)) and using the given condition that when-
ever i 6= j, [Opfi,h,Opfj ,h] = 0, one can construct the symbol in the principal
level. Then one can construct the full symbol in an inductive manner, and
bounds the error operator via the Calderón-Vaillancourt theorem repeat-
edly. By Beal’s theorem, the operator is guaranteed as a Fourier integral
operator. Explicit expression of Ah(t) comes from checking the principal
symbols, and bounding the error operator via the Zygmund trick. �

We proceed to consider f1(x, ξ) = H̃(x, ξ) = ρ
(
[pK∗

∂D
(x, ξ)]2

)
, and can

immediately see that

Opf1,h = OpH̃,h = ρ
(
[K∗

h,∂D]
2
)
mod (hΦSO−3

h ) .

Let us also denote {Lj,h}kj=2 a family of pseudo-differential opererators such
that

Opfj ,h = Lj,h (hΦSO
m
h ) ,

then we immediately obtain the following corollary.

Corollary 4.2. Under Assumption (A), it holds that

Ah(t) = e−
it1
h
ρ([K∗

h,∂D]2)−
∑k

j=2

itj
h
Lj,h Ah(0) e

it1
h
ρ([K∗

h,∂D]2)−
∑k

j=2

itj
h
Lj,h

+O(hΦSOm−1
h )

= Ah(t) = Opa(t),h,+O(hΦSOm−1
h ).

4.2. Trace formula and generalized Weyl’s law. We first state the
Schwartz functional calculus as follows without proof.

Lemma 4.3. [28, 29] Recall that S(R) is the space of Schwartz functions
on R. Then for f ∈ S(R), f(Opa,h) ∈ ΦSO−∞

h and

(4.5) f(Opa,h) = Opf(a) +O(hΦSO−∞
h ).

The above lemma leads us to the following trace theorem:

Proposition 4.4. [18,28,29,53,58] Given a ∈ Sm(T ∗(∂D)), if Opa,h is in
the trace class and f ∈ S(R), then

(2πh)(d−1)tr(f(Opa,h)) =

∫

T ∗(∂D)
f(a) dσ ⊗ dσ−1 +O(h) ,

where dσ⊗dσ−1 is the Liouville measure given by the top form ωd−1/(d−1)!.
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Let (λi1(h), · · · , λik(h)) be elements of the joint spectrum Σ(Ophf1, · · · ,Ophfk)
(for simplicity of notation, let us call it Σ), with the joint eigenstates φi(h);
that is, Ophfjφ

i(h) = λij(h)φ
i(h), j ∈ {1, · · · , k}.We remark that, with this

notation, it holds that (λ̃i(h), φi(h)) is an eigenpair of Kh,∂D if and only if
(λi1(h) = ρ(λi(h))2, φi(h)) is an eigenpair of ρ(K2

h,∂D). Then we can prove
the following result.

Proposition 4.5. Under assumption (A), let C ⊂ Rk be a compact convex
polytope. Then for any aj ∈ Sm(T ∗(∂D)), j ∈ {1, 2, · · · , ak}, we have as
h→ +0,

(2πh)d−k
∑

(λi
1(h),··· ,λ

i
k(h))∈C

ci 〈Opa,h φ
i(h), φi(h)〉L2(∂D,dσ)

=

∫

{F=(f1,··· ,fk)∈C}
a dσ ⊗ dσ−1 + oC(1),(4.6)

where ci := |φi|−2

H− 1
2 (∂X,dσ)

and the little-o depends on C.

Proof. Let us first take C :=
∏k

j=1[rj , sj ] a k dimensional rectangle. Take

χ1,ε

(
ρ[K∗

h,∂D]
2
)
, χ2,ε (L2,h) , · · · , χk,ε (Lk,h) ,

where χε(x) :=
∏k

j=1 χj,ε(xj) ∈ S̃(Rk) approximate χ∏k
j=1[rj ,sj ]

. Then

χ1,ε

(
ρ[K∗

h,∂D]
2
)
∈ ΦSO−∞

h and χj,ε (Lj,h) ∈ ΦSO−∞
h , for each j ∈ {2, · · · , k}

by the functional calculus with the trace formula

(2πh)(d−k)tr


χ1,ε

(
ρ[K∗

h,∂D]
2
) k∏

j=2

χj,ε (Lj,h) Opa,h χ1,ε

(
ρ[K∗

h,∂D]
2
) k∏

j=2

χj,ε (Lj,h)




=

∫

T ∗(∂D)
aχ2

1,ε(ρ(H))
k∏

j=2

χ2
j,ε(fj) dσ ⊗ dσ−1 +OC,ε(h) ,

(4.7)

whereO depends on C, ε. Passing ε to 0 in (4.7), χ1,ε

(
ρ[K∗

h,∂D]
2
)∏k

j=2 χj,ε (Lj,h)

converges to the spectral projection operator when the joint spectrum fulfils

that (λi1(h), · · · , λik(h)) ∈ C =
∏k

j=1[rj , sj ], which readily gives (4.6) when

C =
∏k

j=1[rj , sj ]. Next we realize that a general compact convex polytope
C is rectifyable, and can hence be approximated by artituary refinement of
cover by a finite disjoint union of k dimensional rectangles, and a standard
approximation argument leads ust to (4.6) for a general C. Finally, we notice
that ‖φi(h)‖L2(X,dσ) = ‖φi‖

H− 1
2 (X,dσ)

.

The proof is complete. �

If taking a = 1 in (4.6), one readily has the classical Weyl’s law [18,28,29,
53,58] and [5] . An algebraic proof of this result can also be found in [50,51].
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Corollary 4.6. Let C ⊂ Rk be a compact convex polytope.
∑

(λi
1(h),··· ,λ

i
k(h))∈C

1 = (2πh)k−d

∫

{F=(f1,··· ,fk)∈C}
dσ ⊗ dσ−1 + oC(h

−n).(4.8)

4.3. Ergodic decomposition theorem and quantum ergodicity on
the leaves of the foliation by the integrable system. From now on,
denoting

T : T ∗(∂D)× [0,∞)k → T ∗(∂D)

T ((x, ξ), t) = (γ(t), p(t))(4.9)

where (γ(·), p(·)) is the (4.3), we may adopt the notion in [56] in our case
when [0,∞)k forms a semi-group (we may in fact extend it to Rk by extend-
ing the Hamiltonian flow, but it is not necessary) and recall the definition
of ergodicity for our purpose.

Definition 4.7. Consider the family of maps {Tt(·) := T (·, t)}t∈[0,∞)k .

Consider an invariant subspace M ⊂ T ∗(∂D), i.e. Tt(M) = M for all
t ∈ [0,∞)k. We call a Radon measure over M ⊂ T ∗(∂D) an invariant
measure µ with respect to the joint Hamiltonian flow of the vector fields
Xfj , j ∈ {1, · · · , k} on M if

[Tt]#µ = µ for all t ∈ [0,∞)k,

i.e. the push-foward measure of the measure coincide with itself. We denote
the set of such invariant measure as MXF

(M) (which forms a convex set.)
An invariant measure is ergodic with respect to the joint Hamiltonian flow
generated by the vector fields Xfj , j ∈ {1, · · · , k} on M if for any measurable
set A ⊂M :

µ(A∆Tt(A)) = 0 for all t ∈ [0,∞)k =⇒ µ(A) = 0 or 1 .

We denote the set of such ergodic measures as MXF ,erg(M) (which can be
directly checked to be the set of extremal points of MXF

(M).)

We remark that the standard equivalence of ergodicity, say e.g. for any
measurable set A ⊂M :

T −1
t (A) ⊂ A for all t ∈ [0,∞)k =⇒ µ(A) = 0 or 1 ,

can be readily shown via standard and elementary arguments. We would
also like to remark that this definition of ergodicity is not that of the joint
ergodicity of the family of commuting one parameter subgroups generated
by each Xfi as introduced in e.g. [13,56], (which is instead a generalization
of the mixing properties.)

Now, similar to our study in [5], let us consider the set {F = (f1, · · · , fk) =
(ρ(1), e2, · · · , ek)} denoted by F(1,e2,··· ,ek), for the functions fj ∈ Sm(T ∗(∂D))

defined as above, with f1 = H̃. Let us denote σF(1,e2,··· ,ek)
as the Liouville

measure on F(1,e2,··· ,ek) ⊂ T ∗(∂D), and the same σF(E,e2,··· ,ek)
as that of
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F(E,e2,··· ,ek) := {F = (f1, · · · , fk) = (ρ(E), e2, · · · , ek)} when E 6= 1. For
notational sake, from now on, we write

F = {e := (e2, ..., ek) ∈ Rk−1 : F(1,e2,...,ek) 6= ∅} .
For all such e ∈ F , since Xfjfi = 0 and LXfj

ωd−1 = 0 for all i, j ∈
{1, · · · , k}, we have that

σF(1,e)
:= lim

ε→0
εdim(F(1,e)) χF(1,e)

dσ ⊗ dσ−1

is an invariant measure of the (joint) flow on F(1,e), where dim(F(1,e)) denotes
the dimension of F(1,e) and is generically d− 1− k.

With the previous notion of ergodicity in hand, we next considerMXF
(F(1,e)),

which is the set of invariant measures on F(1,e), andMXF ,erg(F(1,e)), which is
the set of ergodic measures on F(1,e). Since F(1,e) has a countable base, the
weak-* topology ofMXF

(F(1,e)) is metrizable, and hence Choquet’s theorem
can be applied to obtain the following generalized version of the ergodic
decomposition theorem in [60].

Lemma 4.8. Given a probability measure η ∈ MXF
(M), there exists a

probability measure νe ∈M(MXF ,erg(F(1,e))) such that

η =

∫

MXF ,erg(F(1,e))
µe dνe(µe) .

Applying Lemma 4.8 to σF1,e/σF(1,e)
(F(1,e)), we have a probability measure

νe ∈M(MXF ,erg(F(1,e)) such that

σF(1,e)
= σF(1,e)

(F(1,e))

∫

MXF ,erg(F(1,e))
µe dν(µe) .

Note by rescaling F(E,e) = E−1/2F(1,e), we have σF(E,e)
= E

1+k−d
2 σF(1,e)

.

Then, from the smoothness of F and the non-degeneracy of DF (up to a
co-dimensional 1 subset), we can see that the decomposition

dσ ⊗ dσ−1 =

∫

F

(
E

1+k−d
2 dE ⊗ dσF(1,e)

)
ϕ(e) de

holds for some density ϕ ∈ L1(F , de) (with {ϕ = 0} of measure 0 with
respect to de) via a change of variable formula.

For any µe ∈MXF ,erg(F(1,e)), we let µ(E,e) := [mE−1/2 ]#µe ∈MXf ,erg(F(E,e))
be the push-forward measure given by

mE−1/2 : T ∗(∂D) → T ∗(∂D) , (x, ξ) 7→ (x,E−1/2ξ) .

It then holds that

σ ⊗ σ−1

=

∫

F

∫

(0,∞)×MXF ,erg(F(1,e))
µ(E,e) σF(1,e)

(F(1,e))h(e)E
1+k−d

2 (dE ⊗ dνe)(E, µe) de .
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Next, we shall derive a general version of the quantum ergodicity on the
leaves of the foliation by a quantum integrable system. Since [0,∞)k is a
countable amenable semi-group, ergodicity of a measure µ on T ∗(∂D) is
equivalent to that for all f ∈ L2(T ∗(∂D), dµ) (cf. [56]):

lim
T→0

1
∏k

j=1 |Tj |

∫
∏k

j=1[0,Tj ]
f ◦ Tt dt =

∫

T ∗(∂D)
fdµ

in the L2(T ∗(∂D), dµ) metric, which is in fact the Von-Neumann’s ergodic
theorem [48] in this scenario. Following [4], we have the following application
from Birkhoff [15] and Von-Neumann’s ergodic theorems [48].

Lemma 4.9. Under assumption (A), for any rj ≤ sj , j ∈ {1, · · · , k} and

all a0 ∈ S̃m(T ∗X), we have as T → ∞,

1
∏k

j=1 Tj

∫

∏k
j=1[0,Tj ]

a(x,ξ)(t)dt→a.e.dσ⊗dσ−1 and L2(∩k
j=1{rj≤fj≤sj},dσ⊗dσ−1) ā(x, ξ)

for ā ∈ L2(∩k
j=1{rj ≤ fj ≤ sj}, dσ ⊗ dσ−1) and a.e. (dE ⊗ dνe)(E, µe) de,

with

ā(x, ξ) =

∫

F(E,e)

a0 dµ(E,e) a.e. dµ(E,e).

Proof. By Birkhoff and Von-Neumann’s ergodic theorems [15, 48], we have
on χ{∩k

j=1{rj≤fj≤sj}}
dσ ⊗ dσ−1 as T → ∞:

1
∏k

j=1 |Tj |

∫
∏k

j=1[0,Tj ]
a(x,ξ)(t)dt→a.e.dσ⊗dσ−1 and L2({∩k

j=1{rj≤fj≤sj}},dσ⊗dσ−1) ā(x, ξ),

for some ā ∈ L2(∩k
j=1{rj ≤ fj ≤ sj}, dσ ⊗ dσ−1) invariant under the joint

Hamiltonian flow. Set

E :=

{
(x, ξ) ∈ ∩k

j=1{rj ≤ fj ≤ sj} :

lim sup
T

∣∣∣∣∣
1

∏k
j=1 |Tj |

∫
∏k

j=1[0,Tj ]
a(x,ξ)(t)dt− ā(x, ξ)

∣∣∣∣∣ > 0

}
.

It is clearly seen that σ ⊗ σ−1(E) = 0. Next, we can show by Lemma 4.8
that ∫

F
⋂∏k

j=2[rj ,sj ]

∫

[r1,s1]×MXF ,erg(F(1,e))

µ(E,e)(E)σF(1,e)
(F(1,e))ϕ(e)E

1+k−d
2 (dE ⊗ dνe)(E, µe) de

= σ ⊗ σ−1(E) = 0 .

Since {ϕ = 0} is of measure zero with respect to de, we have, for a.e.
(dE ⊗ dνe)(E, µe) de, we have µ(E,e)(E) = 0. Meanwhile, by using the
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Birkhoff and Von-Neumann’s ergodic theorems [15, 48] again, we have on
each leaf that

1
∏k

j=1 |Tj |

∫
∏k

j=1[0,Tj ]
a(x,ξ)(t)dt

→a.e.µ(E,e) and L2(F(E,e),dµ(E,e))

∫

F(E,e)

a0 dµ(E,e) as T → ∞.

Finally, setting

Eµ(E,e)
:=

{
(x, ξ) ∈ ∩k

j=1{rj ≤ fj ≤ sj} :

lim sup
T

∣∣∣∣∣
1

∏k
j=1 |Tj |

∫
∏k

j=1[0,Tj ]
a(x,ξ)(t)dt−

∫

F(E,e)

a0 dµ(E,e)

∣∣∣∣∣ > 0

}
,

we can show that µ(E,e)(Eµ(E,e)
) = 0. Therefore, a.e. (dE ⊗ dνe)(E, µe) de,

µ(E,e)

(
E ⋃ Eµ(E,e)

)
= 0. By the uniqueness of the limit, the proof can be

readily concluded. �

With the above preparations, we can establish the following theorem that
shall play an important role in our subsequent analysis.

Theorem 4.10. Let C ⊂ Rk be a compact convex polytope and ci :=
|φi|−2

H− 1
2 (X,dσ)

. Then the following (variance-like) estimate holds as h→ +0:

1∑
(λi

1(h),··· ,λ
i
k(h))∈C

1

∑

(λi
1(h),··· ,λ

i
k(h))∈C

c2i

∣∣∣∣〈Ah φ
i(h), φi(h)〉L2(∂D,dσ)

− 〈Opā,h φ
i(h), φi(h)〉L2(∂D,dσ)

∣∣∣∣
2

→ 0.

(4.10)

Proof. Via considering the Hamiltonian flow of the principle symbol, we can
lift the Birkhoff and Von-Neumann to the operator level. Set Ah(0) = Ah.
From the definition of φi(h), we have, for each i,

〈Ah(t)φ
i(h), φi(h)〉L2(∂D,dσ)

=〈Ah(0) e
it1
h
ρ([K∗

h,∂D]2)−
∑k

j=2

itj
h
Lj,hφi(h), e

it1
h
ρ([K∗

h,∂D]2)−
∑k

j=2

itj
h
Lj,hφi(h)〉L2(∂D,dσ)

+Ot(h)

=〈Ah φ
i(h), φi(h)〉L2(X,dσ) +Ot(h),

(4.11)

where we make use of Proposition 4.1 as well as the definition of the NP
eigenfunctions in (2.8). Averaging both sides of (4.11) with respect to T ,
we can arrive at

〈
Υφi(h), φi(h)

〉
L2(∂D,dσ)

= 〈Ahφ
i(h), φi(h)〉L2(X,dσ) +OT (h),
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where

Υ :=
1

∏k
j=1 |Tj |

∫

∏k
j=1[0,Tj ]

Ah(t)dt.

By using Proposition 4.1 again, one can directly verify that

1
∏k

j=1 |Tj |

∫

∏k
j=1[0,Tj ]

Ah(t)dt−Opā,h = Op 1
∏k

j=1
|Tj |

∫
∏k

j=1
[0,Tj ]

a(x,ξ)(t)dt−ā +OT (h).

Next by using the Cauchy-Schwarz inequality, we have

∣∣∣∣∣

〈
Opā,hφ

i(h), φi(h)
〉
L2(∂D,dσ)

〈φi(h), φi(h)〉L2(∂D,dσ)
−

〈Ahφ
i(h), φi(h)〉L2(∂D,dσ)

〈φi(h), φi(h)〉L2(∂D,dσ)

∣∣∣∣∣

2

≤
〈
Ξ∗Ξφi(h), φi(h)

〉
L2(∂D,dσ)

〈φi(h), φi(h)〉L2(∂D,dσ)
+OT (h

2),

(4.12)

with

Ξ := Υ−Opā,h.

Therefore, summing up over the joint spectrum of φi of (4.12) and applying
(4.6) and (4.8), we have

1∑
(|λi

1(h)|,··· ,λ
i
k(h))∈C

1

∑

(|λi
1(h)|,··· ,λ

i
k(h))∈C

c2i

∣∣∣∣〈Ah φ
i(h), φi(h)〉L2(∂D,dσ)

− 〈Opā,h φ
i(h), φi(h)〉L2(∂D,dσ)

∣∣∣∣
2

≤

∫
{F=(f1,··· ,fk)∈C}

∣∣∣∣∣∣
1∏k

j=1 |Tj |

∫
∏k

j=1[0,Tj ]

a(x,ξ)(t)dt− ā

∣∣∣∣∣∣

2

dσ ⊗ dσ−1

∫
{F=(f1,··· ,fk)∈C}

dσ ⊗ dσ−1
+ oC,T (1).

(4.13)

Finally, by noting that the first term at the right-hand side of (4.13) goes to
zero as T = (T1, ..., Tk) goes to infinity, one can readily have (4.10), which
completes the proof. �

With Theorem 4.10, together with Chebeychev’s trick and a diagonal
argument, we can have the following quantum ergodicity result, which gen-
eralizes the relevant results in [18, 25,53,54,57,58,61–64].

Corollary 4.11. Let C ⊂ Rk be a compact convex polytope. There exists
S(h) ⊂ J(h) := {i ∈ N : (λi1(h), · · · , λik(h)) ∈ C} such that for all a0 ∈
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Sm(T ∗X), we have as h→ +0,

max
i∈S(h)

ci

∣∣∣
〈
(Ah −Opā,h)φ

i(h), φi(h)
〉
L2(X,dσ)

∣∣∣ = oC(1),

∑
i∈S(h) 1∑
i∈J(h) 1

= 1 + oC(1) .
(4.14)

It is noted that the choice of S(h) is independent of a0.

Remark 4.12. It is indeed a bit paradoxical to still call the above theorem
as that of quantum ergodicity when we now have a quantum integrable sys-
tem. Since as is customarily understood, the case of (complete) integrable
system and that of ergodicity is almost on the opposite side of the spectrum
in the description of a dynamical system. However, our discussion is on the
ergodicity on the leaves of the foliation given by the integrable system (e.g.
the Lagrangian tori if we have a complete integrable system), and therefore
no paradox emerges.

5. Locolization/concentration of plasmon resonances in
electrostatics

In this section, we are in a position to present one of our main results on
the localization/concentration of plasmon resonances in electrostatics.

5.1. Consequences of generalized Weyl’s law and quantum ergod-
icity. In the following, we let σx,F(1,e)

signify the Liouville measure on

F(1,e)(x) := {F (x, ·) = (ρ(1), e)} ⊂ T ∗
x (∂D). By the generalized Weyl’s

law in Section 4, we can obtain the following result, which characterizes the
local behaviour of the NP eigenfunctions and their relative magnitude.

Theorem 5.1. Given any x ∈ ∂D, we consider {χx,δ}δ>0 being a family
of smooth nonnegative bump functions compactly supported in Bδ(x) with∫
∂D χp,δ dσ = 1. Under Assumption (A), fixing a compact convex polytope

C ⊂ F ⊂ Rk−1, [r, s] ⊂ R, α ∈ R and p, q ∈ ∂D, there exists a choice of δ(h)
depending on C, p, q, r, s and α such that, as h→ +0, we have δ(h) → 0 and

∑
(λi

1(h),··· ,λ
i
k(h))∈[r,s]×C ci

∫
∂D χp,δ(h)(x)||D|α φi(x)|2dσ(x)

∑
(λi

1(h),··· ,λ
i
k(h))∈[r,s]×C ci

∫
∂D χq,δ(h)(x)||D|α φi(x)|2dσ(x)

=

∫
F

∫
F(1,e)(p)

|ξ|1+2α
g(y) dσp,F(1,e)

h(e)de
∫
F

∫
F(1,e)(q)

|ξ|1+2α
g(y) dσq,F(1,e)

h(e)de
+ oC,r,s,p,q,α(1),

(5.1)

where ci := |φi|−2

H− 1
2 (∂D,dσ)

. In particular, if α = −1
2 , the RHS term of (5.1)

is the ratio between the volumes of
⋃

e∈F F(1,e)(·) at the respective points.

Proof. Taking p ∈ ∂D, we consider a(x, ξ) := χp,δ(x)|ξ|1+2α
g(x) in (4.6). With

the fact that Opa,h = h1+2α|D|1/2+αOpχp,δ(x),h
|D|1/2+α−hOpãp,δ ,h for some
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ãp,δ ∈ S2α(T ∗(∂D)), we have after applying (4.6) once more upon ãp,δ:

(2πh)(d+2α)
∑

(λi
1(h),··· ,λ

i
k(h))∈[r,s]×C

ci

∫

∂D
χp,δ(x)||D|α φi(x)|2dσ(x)

=

∫

{(f1,··· ,fk)∈[r,s]×C}
χp,δ(x)|ξ|1+2α

g(x) dσ ⊗ dσ−1

+ h

∫

{(f1,··· ,fk)∈[r,s]×C}
ãp,δ dσ ⊗ dσ−1 + oC,r,s,α(1).

(5.2)

With (5.2), we have, after choosing another point q ∈ ∂D and taking a
quotient between the two, that

∑
(λi

1(h),··· ,λ
i
k(h))∈[r,s]×C ci

∫
∂D χp,δ(x)||D|α φi(x)|2dσ(x)

∑
(λi

1(h),··· ,λ
i
k(h))∈[r,s]×C ci

∫
∂D χq,δ(x)||D|α φi(x)|2dσ(x)

=
a

b
+ oC,r,s,α(1),

with

a =

∫

{(f1,··· ,fk)∈[r,s]×C}
χp,δ(x)|ξ|1+2α

g(x) dσ ⊗ dσ−1

+h

∫

{(f1,··· ,fk)∈[r,s]×C}
ãp,δ dσ ⊗ dσ−1,

b =

∫

{(f1,··· ,fk)∈[r,s]×C}
χq,δ(x)|ξ|1+2α

g(x) dσ ⊗ dσ−1

+h

∫

{(f1,··· ,fk)∈[r,s]×C}
ãq,δ dσ ⊗ dσ−1.

Now, for any given h, we can make a choice of δ(h) depending on C, r, s, p, q, α
such that as h→ +0, we have δ(h) → 0 (much slower than h) and
∣∣∣∣∣h
∫

{(f1,··· ,fk)∈[r,s]×C}
ãp,δ(h) dσ ⊗ dσ−1

∣∣∣∣∣+
∣∣∣∣∣h
∫

{(f1,··· ,fk)∈[r,s]×C}
ãq,δ(h) dσ ⊗ dσ−1

∣∣∣∣∣→ 0 .

We also realize as h → +0, with this choice of δ(h) that δ(h) → 0, and one
has for y = p, q that
∫

{(f1,··· ,fk)∈[r,s]×C}
χy,δ(h)(x)|ξ|1+2α

g(x) dσ⊗dσ−1 →
∫

{(f1(y,·),··· ,fk(y,·))∈[r,s]×C}
|ξ|1+2α

g(y) dσ
−1 .

Therefore, we have
∑

(λi
1(h),··· ,λ

i
k(h))∈[r,s]×C ci

∫
∂D χp,δ(h)(x)||D|α φi(x)|2dσ(x)

∑
(λi

1(h),··· ,λ
i
k(h))∈[r,s]×C ci

∫
∂D χq,δ(h)(x)||D|α φi(x)|2dσ(x)

=

∫
{(f1(p,·),··· ,fk(p,·))∈[r,s]×C} |ξ|1+2α

g(p) dσ
−1

∫
{(f1(q,·),··· ,fk(q,·))∈[r,s]×C} |ξ|1+2α

g(q) dσ
−1

+ oC,r,s,p,q,α(1) .
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To conclude our proof, we realize that for all y = p, q,

∫

{(f1(y,·),··· ,fk(y,·))∈[r,s]×C}
|ξ|1+2α

g(y) dσ
−1

=

(∫ s

r
E− k

2
−α− d

2 dE

)(∫

F

∫

F(1,e)(y)
|ξ|1+2α

g(y) dσy,F(1,e)
h(e)de

)
,

where we recall h ∈ L1(F , de) and d−1−k is the generic dimension of F(1,e).
The proof is complete. �

Theorem 5.1 states that, given p, q ∈ ∂D, the relative magnitude between
a ci-weighted sum of a weighed average of ||D|αφi|2 over a small neighbor-
hood of p to that of q asymptotically depends on the ratio between the
weighted volume of {(f1(p, ·), · · · , fk(p, ·)) = (ρ(1), e) , e ∈ C} and that of
{(f1(q, ·), · · · , fk(q, ·)) = (ρ(1), e) , e ∈ C}. This is critical for our subsequent
analysis since it reduces our study to analyzing the aforementioned weighted
volumes.

Theorem 5.2. Under Assumption (A), there is a family of distributions:

{Φµ,e}µ∈MXF ,erg(F(1,e)),e∈F ∈ D′(∂D × ∂D),

which are the Schwartz kernels of Kµe such that they form a partition of the
identity operator Id as follows:

(5.3) Id =

∫

F

∫

MXF ,erg(F(1,e))
Kµe dνe (µe) de(e) .

It holds in the weak operator topology satisfying that for any given compact
convex polytope C ⊂ (0,∞) × F ⊂ Rk, there exists S(h) ⊂ J(h) := {i ∈ N :
(λi1(h), · · · , λik(h)) ∈ C} such that for all ϕ ∈ C∞(∂D) and as h→ +0,

max
i∈S(h)

∣∣∣∣∣

∫

∂D
ϕ(x)

(
ci ||D|− 1

2φi(x)|2

−
∫

F

∫

MXF ,erg(F(1,e))
µ(x, e) gi(µe) dνe (µe) de(e)

)
dσ(x)

∣∣∣∣∣ = oC(1) .

(5.4)

In (5.10),

gi(µe) := ci〈Kµe |D|− 1
2φi, |D|− 1

2φi〉L2(∂D,dσ) ,
∫

F

∫

MXF ,erg(F(1,e))
gi(µe) dνe (µe) de(e) = 1 ,

∑
i∈S(h) 1∑
i∈J(h) 1

= 1 + oC(1) ,
(5.5)
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and moreover,

µ(p, e) ≥ 0 ,

∫

∂Ω
µ(p, e)dσ(p) = 1 ,

∫
MXF ,erg(F(1,e))

µ(p, e) dνe(µe)
∫
MXF ,erg(F(1,e))

µ(q, e) dνe(µe)
=

∫
F(1,e)(p)

dσp,F(1,e)∫
F(1,e)(q)

dσq,F(1,e)

a.e. (dσ ⊗ dσ)(p, q) .

(5.6)

Proof. Let f, ϕ ∈ C∞(∂D) be given. Let us consider a(x, ξ) := ϕ(x). Then
we have

∫

F(E,e)

ϕdµE,e =

∫

F(1,e)

ϕdµe.

Take a partition of unity {χi} on {Ui}. With an abuse of notation via
identification of points with the local trivialisation {Fi}, by Lemmas 4.8
and 4.9, we have

[Opϕ̄,hf ](y)

=

∫

F

∫

(0,∞)×MXF ,erg(F(1,e))

∑

l

(∫

F(E,e)

exp(〈x− y, ξ〉/h)ā(x, ξ)

× χl(x)f(x)dµ(E,e)(x)

)
× σF(1,e)

(F(1,e))h(e)E
1+k−d

2 (dE ⊗ dνe)(E, µe) de(e) .

=

∫

F

∫

(0,∞)×MXF ,erg(F(1,e))

∑

l

(∫

F(1,e)

ϕdµe

)(∫

F(1,e)

exp(〈x− y,E− 1
2 ξ〉/h)

× χl(x)f(x)dµe(x)

)
× σF(1,e)

(F(1,e))h(e)E
1+k−d

2 (dE ⊗ dνe)(E, µe) de(e) .

(5.7)

On the other hand, considering Id = Op1,h = Op1̄,h (which is independent
of h), one can show that

[Op1,hf ](y)

=

∫

F

∫

(0,∞)×MXF ,erg(F(1,e))

∑

l

(∫

F(E,e)

exp(〈x− y, ξ〉/h)χl(x)f(x)dµ(E,e)(x)

)

× σF(1,e)
(F(1,e))h(e)E

1+k−d
2 (dE ⊗ dνe)(E, µe) de(e) .

=

∫

F

∫

(0,∞)×MXF ,erg(F(1,e))

∑

l

(∫

F(1,e)

exp(〈x− y,E− 1
2 ξ〉/h)χl(x)f(x)dµe(x)

)

× σF(1,e)
(F(1,e))h(e)E

1+k−d
2 (dE ⊗ dνe)(E, µe) de(e) .

(5.8)
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If defining Kµ (which is again independent of h) to be such that

[Kµef ](y) :=

∫

(0,∞)

∑

l

(∫

F(1,e)

exp(〈x− y,E− 1
2 ξ〉/h)χl(x)f(x)dµe(x)

)

×σF(1,e)
(F(1,e))h(e)E

1+k−d
2 dE(E) ,

we have by definition in the weak operator topology that

Id =

∫

F

∫

MXF ,erg(F(1,e))
Kµe dνe (µe) de(e)

That is,

〈f, f〉L2(∂D,dσ) =

∫

F

∫

MXF ,erg(F(1,e))
〈Kµef, f〉L2(∂D,dσ) dνe (µe) de(e) ,

whereas

〈Opϕ,hf, f〉L2(∂D,dσ)

=

∫

F

∫

MXF ,erg(F(1,e))

(∫

F(1,e)

ϕdµe

)
〈Kµef, f〉L2(∂D,dσ) dνe (µe) de .

Recall that dσF(1,e)
(x, ξ)/σF (F(1,e)) = dµe(x, ξ) dνe(µe) is a probability mea-

sure. We now apply the disintegration theorem to the measure dµe(x, ξ) dνe(µe)
and obtain a disintegration dµp,e(x, ξ) dνe(µe) ⊗ dσ(p), where the measure-
valued map (µe, p) 7→ µp,e is a dνe ⊗ dσ measurable function together with
µp,e

(
F(1,e)\(F(1,e)(p)

⋂
spt(µe))

)
= 0 a.e. dνe ⊗ dσ. Therefore, we obtain

〈Opϕ,hf, f〉L2(∂D,dσ)

=

∫

F

∫

MXF ,erg(F(1,e))×∂D

∫

F(1,e)

ϕ 〈Kµef, f〉L2(∂D,dσ) dµp,e (dνe ⊗ dσ) (µe, p) de(e) .

It is also observed that∫

F(1,e)

ϕdµp,e =

∫

F(1,e)(p)
ϕdµp,e = ϕ(p)µp,e(F(1,e)).

If we denote

µ(p, e) := µp,e(F(1,e)) ≥ 0 ,

then a.e. dνe(µe), the function µ(·, e) ∈ L1(∂Ω, dσ). As a result of the
disintegration, we have a.e. dνe(µe),∫

∂Ω
µ(p, e)dσ(p) = µe(F(1,e)) = 1 .

Furthermore, we have

〈Opϕ,hf, f〉L2(∂D,dσ)

=

∫

F

∫

MXF ,erg(F(1,e))×∂D
ϕ(x)µ(x, e) 〈Kµef, f〉L2(∂D,dσ) (dνe ⊗ dσ) (µe, x) de(e) .
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Finally, we choose f = φi(h) = |D|− 1
2φi and apply (4.14) to obtain the

conclusion of our theorem. It is noted that the choice of S(h) is independent
of ϕ ∈ C∞(∂D). The ratio in the last line of the theorem comes from the
fact that a.e. dσ(p) we have by definition

∫

MXF ,erg(F(1,e))
µ(p, e) dνe(µe) :=

∫

MXF ,erg(F(1,e))
µp,e(F(1,e)(p)) dνe(µe)

=

∫
F(1,e)(p)

dσp,F(1,e)∫
F(1,e)

dσF(1,e)

.

(5.9)

The proof is complete. �

Theorem 5.2 indicates that most of the function ci||D|− 1
2φi(x)|2 weakly

converges to a gi(µe) dνe(µe)-weighted average of µ(x, e) on each leaf F(1,e),
where the ratio between a dνe(µ2)-weighted average of µ(p, e) and that of
µ(q, e) depends solely on the ratio between the volume of F(1,e)(p) and that
of F(1,e)(q).

For the sake of completeness, we also give the following corollary, which
generalizes a similar result in [5] and can be viewed as a generalization of
the quantum ergodicity over the leaves of the foliation generated by the
integrable system.

Corollary 5.3. Under Assumption (A), if the joint Hamiltonian flow given
by Xfj ’s is ergodic on F(1,e) with respect to the Liouville measure for each
e ∈ F , then there is a family of distributions {Φe}e∈F ∈ D′(∂D × ∂D) as
the Schwartz kernels of Ke such that they form a partition of the identity
operator Id as follows:

(5.10) Id =

∫

F
Ke de(e) ,

which holds in the weak operator topology satisfying that for any given com-
pact convex polytope C ⊂ (0,∞) ⊂ Rk, there exists S(h) ⊂ J(h) := {i ∈ N :
(λi1(h), · · · , λik(h)) ∈ C} such that for all ϕ ∈ C∞(∂D) and as h→ +0,
(5.11)

max
i∈S(h)

∣∣∣∣∣

∫

∂D
ϕ(x)

(
ci ||D|− 1

2φi(x)|2 −
∫

F

σx,F(1,e)

(
F(1,e)(x)

)

σF(1,e)

(
F(1,e)

) gi(e) de(e)

)
dσ(x)

∣∣∣∣∣ = oC(1) .

In (5.10),
(5.12)

gi(e) := ci〈Ke|D|− 1
2φi, |D|− 1

2φi〉L2(∂D,dσ) ,

∫

F
gi(e) de(e) = 1 ,

∑
i∈S(h) 1∑
i∈J(h) 1

= 1+oC(1) .

Proof. The conclusion follows by noting that if the joint flow of Xfj ’s is er-
godic with respect to σF(1,e)

for each e ∈ F , then σF(1,e)
∈MXF ,erg(F(1,e)) and

we can take ν = δσF(1,e)
which is the Dirac measure of σF(1,e)

∈MXF ,erg(F(1,e)).

�
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By Corollary 5.3, we see that if the joint flow of Xfj is ergodic on F(1,e)

with respect to the Liouville measure for all e ∈ F , then most of the function

ci||D|− 1
2φi(x)|2 weakly converges to a gi(e)

σF(1,e)
(F(1,e))

-weighted average of the

volumns of F(1,e)(x) over e ∈ F . Therefore the value of eigenfunction at
x ∈ ∂D goes high as the volumn of F(1,e)(x) goes up for each leaf indexed
by e ∈ F .

5.2. Localization/concentration of plasmon resonance. From Theo-
rems 5.1 and 5.2 in the previous subsection, it is clear that the relative mag-
nitude of the NP eigenfunction φi at a point x depends on the (weighted)
volume of each leaf F(1,e)(x). Therefore, in order to understand the local-
ization of plasmon resonance, it is essential to obtain a better description of
this volume. Again, as we notice similar to [5], this volume heavily depends
on the magnitude of the second fundamental form A (x) at the point x. As
we will see in this subsection, in general, the higher the magnitude of the
second fundamental form A (x) is, the larger the volume of the characteristic
variety becomes. In particular, in a relatively simple case when the second
fundamental forms at two points are constant multiple of each other, we
have the following volume comparison.

Lemma 5.4. Let p, q ∈ ∂D be such that A (p) = βA (q) for some β > 0
and g(p) = g(q). Then |F(1,e)(p)| = βd−2||F(1,e)(q)|. We also have

∫

F(1,e)(p)
|ξ|1+2α

g(p) dσp,F(1,e)
= βd−1+2α

∫

F(1,e)(q)
|ξ|1+2α

g(q) dσq,F(1,e)
.

Proof. From −2 homogeneity of H, we have H(p, ξ) = H(q, ξ/β), and there-
fore {F (x, ξ) = (ρ(1), e2, · · · , ek)} = β{F (q, ξ) = (ρ(1), e2, · · · , ek)}, which
readily yields the conclusion of the theorem. �

Similar to [5], localization can be better understood via a more delicate
volume comparison of the characteristic variety at different points with the
help of Theorems 5.1 and 5.2 and Corollary 5.3. However, it is difficult
to give a more explicit comparison of the volumes between F(1,e)(p) and
F(1,e)(q) by their respective second fundamental forms A (p) and A (q). The
following lemma provides a detour to control how the (weighted) volume of

F(1,e)(p) depends on the principal curvatures {κi(p)}d−1
i=1 .

Lemma 5.5. Let Ge
α : ∂D × Rd−1 → R be given as

Ge
α

(
p, {κi}d−1

i=1

)

:=

∫
⋂k

l=2{fl(p,ω
∑d−1

i=1 κ̃i ω2
i )=el}

∣∣∣∣∣

d−1∑

i=1

κ̃iω
2
i

∣∣∣∣∣

d−1+2α
√√√√

d−1∑

i=1

κ̃i
2ω2

i dωp,e,
(5.13)
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where

(5.14) κ̃i :=

d−1∑

j=1

κj − κi.

Then the following inequality holds:
(5.15)

Ge
α

(
p, {κi(p)}d−1

i=1

)
≤
∫

F(1,e)(p)
|ξ|1+2α

g(p) dσp,F(1,e)
≤ 2Ge

α

(
p, {κi(p)}d−1

i=1

)
.

Proof. We first fix a point p and choose a geodesic normal coordinate with
the principal curvatures along the directions ξi. In doing so, we can simplify
the expression of H(p, ξ) = 1. In fact, we then have

H(p, ξ) =

(
d−1∑

i=1

κ̃i(p) ξ
2
i

)2/(
d−1∑

i=1

ξ2i

)3

.

Due to the −2 homogeneity of H(p, ξ) with respect to ξ, we parametrize the
surface {H(p, ξ) = 1} by ω ∈ Sd−2 with ξ(ω) := r(ω)ω. Then we have

r(ω) =

d−1∑

i=1

κ̃i(p)ω
2
i ,

Now with the above parametrization ξ(ω) = r(ω)ω, we substitute to have

F(1,e)(p) =

k⋂

l=2

{
(p, r(ω)ω) : ω ∈ Sd−2, fl

(
p, ω

d−1∑

i=1

κ̃i(p)ω
2
i

)
= el

}
.

Writing the (d−1−k)-Hausdorff measure of the variety
⋂k

l=2{fl
(
p, ω

∑d−1
i=1 κ̃i(p)ω

2
i

)
=

el} on Sd−2 as:

dωp,e := δ⋂k
l=2

{
ω∈Sd−2 : fl

(
p,ω

∑d−1
i=1 κ̃i(p)ω2

i

)
=el

}(dω)

and by following a similar argument to that of Lemma 4.5 in [5], we can
show that

∣∣∣∣∣

d−1∑

i=1

κ̃i(p)ω
2
i

∣∣∣∣∣

d−1+2α
√√√√

d−1∑

i=1

κ̃i(p)
2
ω2
i dωp,e

≤ |ξ|1+2α
g(p) dσp,F(1,e)

≤ 2

∣∣∣∣∣

d−1∑

i=1

κ̃i(p)ω
2
i

∣∣∣∣∣

d−1+2α
√√√√

d−1∑

i=1

κ̃i(p)
2
ω2
i dωp,e .

The proof is complete. �

By Lemma 5.5, we can readily see that in order to compare the ration
of the magnitudes of the NP eigenfunctions, one can actually compare the
ration of the magnitudes of the principal curvatures at the respective point.
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For instance, if it happens that mini |κ̃i(p)| ≫ maxi |κ̃i(q)|, then it is clear
that the weighted volume of F(1,e)(p) is much bigger than that at q.

In the next subsection, we discuss a motivating example which shows
how the above lemma can be simplified and provide precise and concrete
description.

5.3. A motivating example: surface with rotational symmetry. In
what follow, we discuss a motivating example, which illustrates how the
knowledge of another communting Hamiltonian simplifies the understanding
of the Hamiltonian flow of our concern and provide explicit description of
eigenfunction concentration.

Example 5.6. Consider that D ⊂ R3 is convex and without loss of gen-

erality take G :=

{(
U 0
0 1

)
: U ∈ SO(2)

}
⊂ SO(3) such that G(D) = D,

i.e. D (and hence ∂D) is invariant under the rotation group G. Then, writ-
ing (x1, x2, x3, ξ1, ξ2, ξ3) as a coordinate in T ∗(R3), we recall the Lie algebra
isomorophism:

j : so(3) = {A ∈ R3×3 : A+AT = 0} → R3,


0 −a3 a2
a3 0 −a1
−a2 a1 0


 7→ (a1, a2, a3),

where j([A,B]) = j(A) × j(B) is the three dimensional cross product, and
the moment map:

µ : T ∗(R3) → so(3)∗,

µ(x, ξ) = ξ × x .

Therefore the Hamiltonian that generates the one parameter subgroup G ⊂
SO(3) is given by

〈µ(x, ξ),−→e3〉 = 〈ξ × x, (0, 0, 1)〉 = ξ1x2 − ξ2x1 .

Now we define F = (f1, f2), where f1(x, ξ) = H̃(x, ξ) defined as above and

f2 : T
∗(∂D) → R

f2(x, ξ) = 〈µ(ι(x, ξ)),−→e3〉,
where ι : T ∗(∂D) → T ∗(R3) is the canonical embedding. Notice that {fi, fj} =
δij for i = 1, 2 since G(∂D) = ∂D and for all g ∈ G, the rotational symme-

try gives that g∗H̃ = H̃, and hence {f2, f1} = Xf2(H̃) = 0. Hence (f1, f2)
forms a completely integrable system.

Next we gaze at Ge
α, where e = e2 ∈ F ⊂ R. Let us first look into the

case when e2 6= 0. With this system, we realize the two principal curvatures
satisfy, for i = 1, 2,

κi(p) = κi(pz) ,
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where p ∈ ∂D 7→ (px, py, pz) ∈ R3 is the canonical embedding (which can be
represented via the parametrization X), and hence in (5.14):

κ̃1(p) := κ2(pz) , κ̃2(p) := κ1(pz) .

Moreover, for ω = (cos(θ), sin(θ)) ∈ S1, writing {vi(p)}i=1,2 ∈ Tp(∂D) ∼=
T ∗
p (∂D) to be the principal directions, A(p)vi(p) = κi(p)vi(p) under a geo-

desic normal coordinate and denoting ι(p, ξ) = (px, py, pz, (ξp)x, (ξp)y, (ξp)z) ∈
R6 with the choice that (v1(p))z = 0 (which makes the choice unique), we

have f2

(
p, ω

∑2
i=1 κ̃i(p)ω

2
i

)
= e2 if and only if θ satisfies

e2 =
(
κ22(pz) cos

2(θ) + κ21(pz) sin
2(θ)

)

× (cos(θ) ((v1(p))xpy − (v1(p))ypx) + sin(θ) ((v2(p))xpy − (v2(p))ypx))

=
(
κ22(pz) cos

2(θ) + κ21(pz) sin
2(θ)

)

×
sin
(
θ + θ̃(p)

)

√
((v1(p))xpy − (v1(p))ypx)

2 + ((v1(p))xpy − (v1(p))ypx)
2
,(5.16)

where

θ̃(p) = tan−1

(
(v1(p))xpy − (v1(p))ypx
(v1(p))xpy − (v1(p))ypx

)
.

The RHS term in (5.16) is invariant by the rotational action (recall g∗f2 =
f2 for all g ∈ G), and therefore is a function only of (zp, θ). θ can now
be found via the tangent-half-angle formula and a solution to a sixth order
polynomial. In any case, it is either an empty set if e2 is too large, or a set
of a finite number of points. Let us also denote |e2|max as the extremal value
of |e2| such that the solution to (5.16) is non-empty, i.e.

F = [−|e2|max, |e2|max] .

For a given (pz, e2), we denote the number of solutions to (5.16) as N(pz, e2).
If 0 < |e2| ≤ |e2|max, we can see that 1 ≤ N(pz, e2) ≤ 2 and the so-
lutions have the same value of cos(θ). Denoting them as θl(pz, e2), l =
1, ..., N(pz, e2), we have in (5.13):

Gα

(
p, {κi(p)}2i=1

)
=2
(
κ2(pz) cos

2(θ1(pz, e2)) + κ1(pz) sin
2(θ1(pz, e2))

)2+2α

×
√
κ22(zp) cos

2(θ1(pz, e2)) + κ21(zp) sin
2(θ1(pz, e2)) .

It is now clear that Ge
α

(
p, {κi(p)}2i=1

)
increases seperately when either one

of κ1(p), κ2(p) increases. We remark that, in the case when |e2| = |e2|max,
the only solution to (5.16) is when θ = 0 if e2 > 0 and θ = π if e2 < 0, i.e.
N(pz, e2) = 1. We next gaze at when e2 = 0. When (px, py) 6= (0, 0), and
taking (v1(p))z = 0, we only have θ = π

2 and π
3 that satisfies (5.16), and

hence

Ge
α

(
p, {κi(p)}2i=1

)
= 2κ3+2α

1 (pz) .
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When px = py = 0, we have κ̃1(p) = κ̃2(p) = 0, and however we choose the
directions vi(p), we then have that (5.16) is satisfied for all θ ∈ [0, 2π), and
in such a case:

Ge
α

(
p, {κi(p)}2i=1

)
=

∫ 2π

0
κ(pz)

3+2αdθ = 2πκ(pz)
3+2α .

Again, we can see that in either situations Gα

(
p, {κi(p)}2i=1

)
increases sep-

arately when either one of κ1(p) increases.
Next, we look more closely into the flow induced by X ˜̃H

on F(1,e2). We first

focus on the case when 0 < |e2| < |e2|max. We denote pz,max,e2 and pz,min,e2

as respectively the largest and smallest values of pz for (p, ξ) ∈ F(1,e2). Then
we realize that

F(1,e2)

=
⋃

pz∈[pz,min,e2
,pz,max,e2 ]

{(
p, r(pz, e2) (cos(θl(pz, e2))v1(p) + sin(θl(pz, e2))v2(p))

)

l = 1, ..., N(pz, e2)

}
,

where r(pz, e2) := κ22(zp) cos
2(θ1(pz, e2)) + κ21(zp) sin

2(θ1(pz, e2)). It is re-
marked that when p = pz,min,e2 or p = pz,min,e2, θ = 0 or π and p satisfies

|e2| = κ22(pz)
√
p2x + p2y,

where the RHS term is again a function only of pz. One can show that on
F(1,e2), we have XH̃ = 0 if and only if ξ = 0. Assume that we start with
(x, ξ) ∈ F(1,e2) and flow accordingly with at = (p(t), ξ(t)). Then there exists
[s1, s2] with the smallest interval length containing 0 such that p′z(s1) =
p′z(s2) = 0 (which coincides with that when pz = pz,max,e2 or pz = pz,min,e2

). Via reflection symmetry , we have for all t ∈ R, n ∈ Z:

at−s1+2n(s2−s1) = a−(t−s1)+n(s2−s1) = at−s1 .

That is, at is 2(s2 − s1) periodic and symmetric about s2. Hence the or-
bit of the flow generated by XH̃ = 0 on F(1,e2) can either be periodic or
quasi-periodic. It is realized that when pz,min,e2 < pz < pz,max,e2, we have
N(pz, e2) = 2; whereas, at pz = pz,max,e2 or pz = pz,min,e2, θl(pz, e2)) = 0 or
π, and hence N(pz, e2) = 1. Therefore, tracing the points, we have

F(1,e2)
∼= T2,

which is a smooth 2-dimensional surface. With that, there are only two cases
if 0 < |e2| < |e2,max|:

(1) When a Hamiltonian curve is periodic on T2, a shift of the curve
gives all the periodic orbits of the Hamiltonian flow. Hence we can
exhaust the ergodic measures of XH̃ on F(1,e2) indexed as {µ(1,e2),a}a∈[0,1)
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where µ(1,e2),a contains the point (p, ξ) such that

(px, py, pz) =
(√

p2x + p2y cos (2aθper) ,
√
p2x + p2y sin (2aθper) , pz,max,e2

)

with θper = cos−1

(
px(s2)px(s1)+py(s2)py(s1)√
p2x(s2)+p2y(s2)

√
p2x(s1)+p2y(s1)

)
;

(2) When a curve is on the other hand quasi-periodic on T2, we have that
the flow of XH̃ is ergodic on the torus T2 on the Liouville measure

restricted on T2.

If |e2| = |e2,max|, we realize N(pz, e2) = 1, and

F(1,e2)
∼= S1.

If e2 = 0, we can verify that N(pz, e2) = 2, and the solutions to (5.16) are
θ = π

2 and π
3 . The flow is periodic with

θper = cos−1


 px(s2)px(s1) + py(s2)py(s1)√

p2x(s2) + p2y(s2)
√
p2x(s1) + p2y(s1)


 = π.

We have
F(1,e2)

∼= T2 ,

and we can exhaust the ergodic measures of XH̃ on F(1,e2) indexed as µ(1,e2),[0,1]
µ(1,e2),a containing the point (p, ξ) such that

(px, py, pz) =
(√

p2x + p2y cos (2πa) ,
√
p2x + p2y sin (2πa) , pz,max,e2

)
.

Finally, we notice that in all the cases, the joint flow given by XF is er-
godic on F(1,e2) with respect to the Liouville measure for all possible values

of (1, e2) such that F(1,e2) is non-empty: it trivially holds when F(1,e2)
∼= S1

and if the flow by XH̃ is quasi-periodic on F(1,e2)
∼= T2; and it holds when

the flow by XH̃ is periodic on F(1,e2)
∼= T2 since G induces a transitive on

the index set {µ(1,e2),a}a∈[0,1). Therefore Corollary 5.3 applies to obtain a

density-one subsequence i ∈ S(h) ⊂ J(h) of ci||D|− 1
2φi(x)|2 weakly converg-

ing to
|e2|max∫

−|e2|max

σx,F(1,e)
(F(1,e2)

(x))
σF(1,e2)

(F(1,e2))
gi(e2) de(e2) where

Ge
− 1

2

(
p, {κi(p)}2i=1

)
≤ σx,F(1,e)

(
F(1,e2)(x)

)
≤ 2Ge

− 1
2

(
p, {κi(p)}2i=1

)
,

with Ge
− 1

2

(
p, {κi(·)}d−1

i=1

)
in Lemma 5.5 as

Ge
1
2

(
p, {κi(p)}2i=1

)

=

{
2
√
κ22(zp) cos

2(θ1(pz, e2)) + κ21(zp) sin
2(θ1(pz, e2)) when e2 6= 0 ,

2πκ(pz) when e2 = 0 .

It is clear now that the magnitude is monotonically increasing separately as
each of the κi increasing.



32 HABIB AMMARI, YAT TIN CHOW, HONGYU LIU, AND MAHESH SUNKULA

As a remark, a direct check of the (singular) fibration π̃ : {H̃ = 1} →
F := [−|e2|max, |e2|max] with

π̃−1(e2) =

{
T2 when |e2| < |e2,max| ,
S1 when |e2| = |e2,max| ,

is that, topologically,

{H̃ = 1} ∼= S(S2) ∼= SO(3) ∼= RP3

via diffeomorphism where S(S2) is the sphere bundle of S2. Via the well
known Gysin sequence, we obtain that

H0({H̃ = 1}) = Z, H1({H̃ = 1}) = 0,

H2({H̃ = 1}) = Z/2Z, H3({H̃ = 1}) = Z .

Now, one can verify that
⋃

e2∈F

π̃−1(e2) = S1
⋃(

T2 × (−|e2|max, |e2|max)
)⋃

S1 ∼= S(S2) .

Remark 5.7. Our previous description and analysis may extend to sys-
tems that are nearly integrable via a perturbation analysis. Here, the sys-
tem is given as a Komorogov non-degenerate perturbation of a (completely)

integrable system (of class at least C2(d−1),α) via a classical KAM theory
[35, 46, 47]. In such a case, if k = n = d − 1, it is known that for an ǫ-
perturbation of the system, the flow will stay quasi-periodic on the surviving
invariant Lagrangian tori which foliates/occupies 1 − O(

√
ǫ) of the space.

The invariant measures will then be localized on the these surviving invari-
ant Lagrangian tori. The dynamics in the remaining O(

√
ǫ)-space may on

the other hand be complicated, say e.g. Arnold diffusion may occur. How-
ever, when d− 1 = 2, i.e. d = 3, topological obstruction prevents the Arnold
diffusion from happening.

In the previous example with rotational symmetry with d = 3, we may
perturb a rotational symmetric shape to a shape of thin rod, and our result
echoes with that in [22].

6. Localization/concentration of plasmon resonances for
quasi-static wave scattering

In this section, we extend all of the electrostatic results to the quasi-static
case governed by the Helmholtz system. We refer to [5] for the discussion of
the physical background, and moreover, by following the treatment therein,
the concentration result in the quasi-static regime can be obtained by di-
rectly modifying the relevant results in the previous section. Hence, in what
follows, we shall be brief in our discussion.

Let ε0, µ0, ε1, µ1 be real constants and assume that ε0 and µ0 are positive.
Let D be given as that in Section 1, and set

µD = µ1χ(D) + µ0χ(R
d\D), εD = ε1χ(D) + ε0χ(R

d\D).
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Let ω ∈ R+ denote the angular frequency of the operating wave. Set
k0 := ω

√
ε0µ0 and k1 := ω

√
ε1µ1, with ℑkj ≥ 0, j = 0, 1. Let u0 be an

entire solution to (∆ + k20)u0 = 0 in Rd. Consider the following Helmholtz
scattering problem for u ∈ H1

loc(R
d) satisfying




∇ · ( 1

µD
∇u) + ω2εDu = 0 in Rd,

( ∂
∂|x| − ik0)(u− u0) = o(|x|− d−1

2 ) as |x| → ∞.
(6.1)

Henceforth, we assume that ω ≪ 1, or equivalently k0 ≪ 1, which is known
as the quasi-static regime.

Let

Γk(x− y) := Cd(k|x− y|)− d−2
2 H

(1)
d−2
2

(k|x− y|),(6.2)

be the outgoing fundamental solution to −(∆ + k2), where Cd is some di-

mensional constant and H
(1)
d−2
2

is the Hankel function of the first kind and

order (d − 2)/2. We introduce the following single-layer and NP operators
associated with a given wavenumber k ∈ R+:

Sk
∂D[φ](x) :=

∫

∂D
Γk(x− y)φ(y)dσ(y), x ∈ ∂D,(6.3)

Kk
∂D

∗
[φ](x) :=

∫

∂D
∂νxΓk(x− y)φ(y)dσ(y) , x ∈ ∂D.(6.4)

Following the discussion in [5], we consider the generalized plasmon res-

onance problem: find φ ∈ H−1/2(∂D, dσ) such that for some m ∈ N,

{
1

2

(
1

µ0
Id+

1

µ1

(
Sk1
∂D

)−1
Sk0
∂D

)
+

1

µ0
Kk0

∂D
∗ − 1

µ1
Kk1

∂D

∗
(
Sk1
∂D

)−1
Sk0
∂D

}m

φ = 0.(6.5)

It is remarked that m must be finite.
The following two lemmas in [5] characterize the plasmon resonance when

ω ≪ 1.

Lemma 6.1. Under Assumption (A) and supposing ω ≪ 1, we have that a
solution ((µ0, µ1, ε0, ε1, ω),m, φµ0,µ1,ε0,ε1,ω,m) to (6.5) with a unit L2-norm
possesses the following property for all s ∈ R:

{
‖|D|sφµ0,µ1,ε0,ε1,ω,m − |D|sφi‖C0(∂D) = Oi,s(ω

2),

λ(µ−1
0 , µ−1

1 )− λ̃i = Oi(ω
2),

for some eigenpair (λ̃i, φi) of the Neumann-Poincaré operator K∗
∂D, and

m ≤ mi, where m and mi signify the algebraic multiplicities of λ and λi,
respectively.
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Lemma 6.2. Given any non-zero λi ∈ σ(K∗
∂D) and for any (µ̃0, µ̃1) ∈ Di :=

{(µ0, µ1) ∈ C2\{(0, 0)} : λ(µ̃−1
0 , µ̃−1

1 ) = λ̃i , µ0 − µ1 6= 0 } (which is non-
empty), there exists 0 < ωi ≪ 1 such that for all ω < ωi, the set

{
(µ0, µ1, ε0, ε1) ∈ C2\{µ0 − µ1 = 0} × (C\R+)2;

there exists m ∈ N, φ ∈ H−1/2(∂D, σ) such that

((µ0, µ1, ε0, ε1, ω), φ,m) satisfies (6.5)

}

forms a complex co-dimension 1 surface in a neighborhood of (µ̃0, µ̃1).

By Lemma 6.2, we easily see that there are infinitely many choices of
(ε1, µ1) such that the (genearalized) plasmon resonance occurs around λ̃i.
Combining with a similar perturbation argument as in the proof of Lemma 6.2,
our conclusions of the plasmon resonance in the electrostatic case transfers
to the Helmholtz transmission problem to show concentration of plasmon
resonances at high-curvature points.

Theorem 6.3. Given any x ∈ ∂D, let us consider {χx,δ}δ>0 being a family
of smooth nonnegative bump functions compactly supported in Bδ(x) with∫
∂D χp,δ dσ = 1. Under Assumption (A), Under Assumption (A), fixing a

compact convex polytope C ⊂ F ⊂ Rk−1, [r, s] ⊂ R, α ∈ R and p, q ∈ ∂D,
we have a choice of δ(h) and ω(h) both depending on C, p, q and α such that
for any ω < ω(h), there exists

(
(µ0,i, µ1,i, ε0,i, ε1,i, ω),mi, φµ0,i,µ1,i,ε0,i,ε1,i,ω,mi

)

solving (6.5), and as h→ +0, we have δ(h) → 0, ω(h) → 0 and
∑

{(λi
1(h),λ

i
2(h),··· ,λ

i
k(h))∈[r,s]×C} ci

∫
∂D χp,δ(h)(x)||D|αφµ0,i,µ1,i,ε0,i,ε1,i,ω,mi(x)|2dσ(x)∑

{(λi
1(h),λ

i
2(h),··· ,λ

i
k(h))∈[r,s]×C} ci

∫
∂D χq,δ(h)(x)||D|αφµ0,i,µ1,i,ε0,i,ε1,i,ω,mi(x)|2dσ(x)

=

∫
F

∫
F(1,e)(p)

|ξ|1+2α
g(y) dσp,F(1,e)

h(e)de
∫
F

∫
F(1,e)(q)

|ξ|1+2α
g(y) dσq,F(1,e)

h(e)de
+ oC,r,s,p,q,α(1),

where ci := |φi|−2

H− 1
2 (∂D,dσ)

. Here, the little-o depends on C, r, s, p, q and α.

Proof. From Theorem 5.1, we have a choice of δ(h) depending on C, p, q and
α such that, for any given ε > 0, there exists h0 depending on C, p, q, α such
that for all h < h0,∣∣∣∣∣

∑
{(λi

1(h),λ
i
2(h),··· ,λ

i
k(h))∈[r,s]×C} ci

∫
∂D χp,δ(h)(x)||D|α φi(x)|2dσ

∑
{(λi

1(h),λ
i
2(h),··· ,λ

i
k(h))∈[r,s]×C} ci

∫
∂D χq,δ(h)(x)||D|α φi(x)|2dσ

−
∫
F

∫
F(1,e)(p)

|ξ|1+2α
g(y) dσp,F(1,e)

h(e)de
∫
F

∫
F(1,e)(q)

|ξ|1+2α
g(y) dσq,F(1,e)

h(e)de

∣∣∣∣∣
≤ ε.

(6.6)
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Now for each h < h0, from Lemma 6.2, one can readily see that there
exists ω̃(h) := min{i∈N:(λi

1(h),λ
i
2(h),··· ,λ

i
k(h))∈C}

{ωi} such that for all ω < ω(h),

the following triplet

(
(µ0,i, µ1,i, ε0,i, ε1,i, ω),mi, φµ0,i,µ1,i,ε0,i,ε1,i,ω,mi

)

solves (6.5). By Lemma 6.1, upon a rescaling of φµ0,i,µ1,i,ε0,i,ε1,i,ω,mi while
still denoting it as φµ0,i,µ1,i,ε0,i,ε1,i,ω,mi , we have

‖|D|αφµ0,i,µ1,i,ε0,i,ε1,i,ω,mi − |D|αφi‖C0(∂D) ≤ Ci,αω
2.

In particular, we can make a smaller choice of ω(h) < ω̃(h) depending on
C, r, s, p, q, α such that for all ω < ω(h), we have

‖||D|αφµ0,i,µ1,i,ε0,i,ε1,i,ω,mi |2 − ||D|αφi|2‖C0(∂D) ≤ 10−2ε/Θ,

where

Θ :=
∑

(λi
1(h),λ

i
2(h),··· ,λ

i
k(h))∈[r,s]×C

ci/min




1, min

y=p,q








∑

(λi
1(h),λ

i
2(h),··· ,λ

i
k(h))∈[r,s]×C

ϑi




−2





,

and

ϑi := ci

∫

∂D
χy,δ(h)(x)||D|α φi(x)|2dσ.

Therefore, with this choice of ω(h), we have, for all ω < ω(h)

∣∣∣∣∣

∑
{(λi

1(h),λ
i
2(h),··· ,λ

i
k(h))∈[r,s]×C} ci

∫
∂D χp,δ(h)(x)||D|αφµ0,i,µ1,i,ε0,i,ε1,i,ω,mi(x)|2dσ(x)∑

{(λi
1(h),λ

i
2(h),··· ,λ

i
k(h))∈[r,s]×C} ci

∫
∂D χq,δ(h)(x)||D|αφµ0,i,µ1,i,ε0,i,ε1,i,ω,mi(x)|2dσ(x)

−
∫
F

∫
F(1,e)(p)

|ξ|1+2α
g(y) dσp,F(1,e)

h(e)de
∫
F

∫
F(1,e)(q)

|ξ|1+2α
g(y) dσq,F(1,e)

h(e)de

∣∣∣∣∣ ≤ ε.

(6.7)

Combining (6.7) with (6.6) readily yields our conclusion.
The proof is complete. �

In a similar manner, we obtain the following result.

Theorem 6.4. Under Assumption (A), given a compact convex polytope
C ⊂ R×F ⊂ Rk, there exists S(h) ⊂ J(h) := {i ∈ N :

(
λi1(h), λ

i
2(h), · · · , λik(h)

)
∈

C} and ω(h) such that, for all ϕ ∈ C∞(∂D), we have for any ω < ω(h),
there exists

(
(µ0,i, µ1,i, ε0,i, ε1,i, ω),mi, φµ0,i,µ1,i,ε0,i,ε1,i,ω,mi

)



36 HABIB AMMARI, YAT TIN CHOW, HONGYU LIU, AND MAHESH SUNKULA

solving (6.5), such that as h→ +0, we have ω(h) → 0 and

max
i∈S(h)

∣∣∣∣
∫

∂D
ϕ(x)

(
ci ||D|− 1

2φµ0,i,µ1,i,ε0,i,ε1,i,ω,mi(x)|2

−
∫

F

∫

MXF ,erg(F(1,e))
µ(x, e) gi(µe) dνe (µe) de(e)

)
dσ(x)

∣∣∣∣ = or,s(1) .

(6.8)

Here, S(h), {gi :
⋃

e∈F MXF ,erg(F(1,e)) → C}i∈N and µ(p, e) are described as
in Theorem 5.2. In particular, we remind that
∫
MXF ,erg(F(1,e))

µ(p, e) dνe(µe)
∫
MXF ,erg(F(1,e))

µ(q, e) dνe(µe)
=

∫
F(1,e)(p)

dσp,F(1,e)∫
F(1,e)(q)

dσq,F(1,e)

a.e. (dσ ⊗ dσ)(p, q) .

if the joint Hamiltonian flow given by Xfj ’s is ergodic on F(1,e) with respect
to the Louville measure for each e ∈ F , then

max
i∈S(h)

∣∣∣∣∣

∫

∂D
ϕ(x)

(
ci ||D|− 1

2φµ0,i,µ1,i,ε0,i,ε1,i,ω,mi(x)|2

−
∫

F

σx,F(1,e)

(
F(1,e)(x)

)

σF(1,e)

(
F(1,e)

) gi(e) de(e)

)
dσ(x)

∣∣∣∣∣ = oC(1) ,

where {gi : F → C}i∈N is now defined as in Corollary 5.3.

Proof. Let the compact convex polytope C be given. Consider ϕ ∈ C∞(∂D).
Given ε > 0, by Theorem 5.2 and considering h0 small enough such that for
all h < h0, we have

max
i∈S(h)

∣∣∣∣∣

∫

∂D
ϕ(x)

(
ci |D|− 1

2φi(x)|2 −
∫

F

∫

MXF ,erg(F(1,e))
µ(x, e) gi(µe) dνe (µe) de(e)

)
dσ(x)

∣∣∣∣∣ ≤ ε.

Now, for each h < h0, from Lemma 6.2, there exists ω̃(h) = min
{
mini∈S(h) ωi, 1

}

such that for all ω < ω̃(h), there exists
(
(µ0,i, µ1,i, ε0,i, ε1,i, ω),mi, φµ0,i,µ1,i,ε0,i,ε1,i,ω,mi

)

solving (6.5). By Lemma 6.1, again upon a rescaling of φµ0,i,µ1,i,ε0,i,ε1,i,ω,mi

while still denoting it as φµ0,i,µ1,i,ε0,i,ε1,i,ω,mi , we have

max
i∈S(h)

ci

∣∣∣∣
∫

∂D
ϕ(x)

(
||D|− 1

2φi(x)|2 − ||D|− 1
2φµ0,i,µ1,i,ε0,i,ε1,i,ω,mi(x)|2

)
dσ(x)

∣∣∣∣

≤ CS(h)‖ϕ‖C0(∂D) ω
2.

(6.9)

We may now choose

ω(h) ≤ min
{
ε, ω̃(h), ω̃(h)/CS(h)

}
.



QUANTUM INTEGRABLE SYSTEMS AND PLASMON RESONANCES 37

Then for all ω < ω(h), we finally have from (6.9) and Corollary 5.3 that

max
i∈S(h)

∣∣∣∣
∫

∂D
ϕ(x)

(
ci ||D|− 1

2φµ0,i,µ1,i,ε0,i,ε1,i,ω,mi(x)|2

−
∫

F

∫

MXF ,erg(F(1,e))
µ(x, e) gi(µe) dνe (µe) de(e)

)
dσ(x)

∣∣∣∣

≤
(
1 + ‖ϕ‖C0(∂D)

)
ε .

The proof is complete. �

We would like to remark that a similar conclusion holds for the explicit
motivating example discussed in Section 5.3 in the quasi-static case when
ω ≪ 1, which we choose not to repeat.
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[18] Y. Colin de Verdiere, Ergodicité et functions propres du Laplacien, Commun. Math.
Phys. 102 (1985), 497–502.

[19] J.B. Conway, A Course in Functional Analysis, Graduate Texts in Mathematics 96,
Springer, 1990.

[20] Y. Deng, H. Li and H. Liu, On spectral properties of Neuman-Poincaré operator and
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on intersecting disks and analysis of plasmon resonance, Arch. Ration. Mech. Anal.,
226 (2017), 83–115.

[31] D. Khavinson, M. Putinar, H.S. Shapiro, Poincaré’s variational problem in potential
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tential theory, Arch. Ration. Mech. Anal., 185 (2007), 143–184.



QUANTUM INTEGRABLE SYSTEMS AND PLASMON RESONANCES 39

[34] V. V. Klimov, Nanoplasmonics, CRC Press, 2014.
[35] A. N. Kolmogorov, On the conservation of conditionally periodic motions under small

perturbation of the Hamiltonian, Dokl. Akad. Nauk. SSR 98 (1954), No. 527, pp. 2-3.
[36] H. Li, J. Li and H. Liu, On quasi-static cloaking due to anomalous localized resonance

in R3, SIAM J. Appl. Math., 75 (2015), 1245–1260.
[37] H. Li, J. Li and H. Liu, On novel elastic structures inducing plariton resonances with

finite frequencies and cloaking due to anomalous localized resonance, J. Math. Pures
Appl., 120 (2018), 195–219.

[38] H. Li and H. Liu, On anomalous localized resonance and plasmonic cloaking beyond
the quasi-static limit, Proc. R. Soc. A, 474 (2018), 20180165.

[39] H. Li and H. Liu, On anomalous localized resonance for the elastostatic system, SIAM

J. Math. Anal., 48 (2016), no. 5, 3322–3344.
[40] B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen,

and C. T. Chong, The Fano resonance in plasmonic nanostructures and metamate-
rials, Nature Materials, 9 (2010), 707.

[41] I.D. Mayergoyz, D.R. Fredkin, and Z. Zhang, Electrostatic (plasmon) resonances in
nanoparticles, Phys. Rev. B, 72 (2005), 155412.

[42] G. W. Milton and N.-A. P. Nicorovici, On the cloaking effects associated with anoma-
lous localized resonance, Proc. R. Soc. A, 462 (2006), 3027–3059.

[43] Y. Miyanishi, Weyl’s law for the eigenvalues of the Neumann-Poincaré operators in
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