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Abstract

Following [2], we introduce ProxNet, a collection of deep neural networks with ReLU
activation which emulate numerical solution operators of variational inequalities (VIs). We
analyze the expression rates of ProxNets in emulating solution operators for variational in-
equality problems posed on closed, convex cones in real, separable Hilbert spaces, covering
the classical contact problems in mechanics, and early exercise problems as arise, e.g. in
valuation of American-style contracts in Black-Scholes financial market models. In the finite-
dimensional setting, the VIs reduce to matrix VIs in Euclidean space, and ProxNets emulate
classical projected matrix iterations, such as projected Jacobi and projected SOR methods.

1 Introduction

Variational Inequalities (VIs for short) in infinite-dimensional spaces arise in variational formu-
lations of numerous models in the sciences. We refer only to [17, 7] and the references there for
models of contact problems in continuum mechanics, [20] and the references there for applications
from optimal stopping in finance (mainly option pricing with “American-style”, early exercise
features), contact problems in mechanics (e.g. [26] and the references there), and [4] and the refer-
ences there for ressource allocation and game theoretic models. Two broad classes of approaches
toward numerical solution of VIs can be identified: deterministic approaches, which are based on
discretization of the VI in function space, and probabilistic approaches, which exploit stochastic
numerical simulation and an interpretation of the solution of the VI as conditional expectations
of optimally stopped sample paths. The latter approach has been used to design ML algorithms
for the approximation of the solution of one instance of the VI in [3].

Deep neural network structures arise naturally in abstract variational inequality problems
(VIs) posed on the product of (possibly infinite-dimensional) Hilbert spaces, as review e.g. in
[5]. Therein, the activation functions correspond to proximity operators of certain potentials that
define the constraints of the VI. Weak convergence of this recurrent NN structure in the limit of
infinite depth to feasible solutions of the VI is shown under suitable assumptions. An independent,
but related, development in recent years has been the advent of DNN-based numerical approxi-
mations which are based on encoding known, iterative solvers for discretized partial differential
equations, and certain fixed point iterations for nonlinear operator equations. We mention only
[9], that developed DNNs which emulate the ISTA iteration of [6], or the more recently proposed
generalization of “deep unrolling/unfolding” methodology [22]. Closer to PDE numerics, recently
[11] proposed MGNet, being neural network emulation of multilevel, iterative solver for linear,
elliptic PDEs.

The general idea behind these approaches is to emulate by a DNN a contractive map, say
Φ, which is assumed to satisfy the conditions of Banach’s Fixed Point Theorem (BFPT), and
whose unique fixed point is the solution of the operator equation of interest. Let us denote the
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approximate map realized by emulating Φ with a DNN by Φ̃. The universality theorem for DNNs
in various function classes implies (see, e.g., [16, 25] and the references there) that for any ε > 0 a
DNN surrogate Φ̃ to the contraction map exists, which is ε-close to Φ, uniformly on the domain
of attraction of Φ.

Iteration of the DNN Φ̃ being realized by composition, any finite number K of steps of the
fixed point iteration can be realized by K-fold composition of the DNN surrogate Φ̃. Iterating Φ̃,
instead of Φ, induces an error of order O(ε/(1 − L)), uniformly in the number of iterations K,
where L ∈ (0, 1) denotes the contraction constant of Φ. Due to the contraction property of Φ, K
may be chosen as O(| log(ε)|) in order to output an approximate fixed point with accuracy ε upon
termination. The K-fold composition of the surrogate DNN Φ̃ is, in turn, itself a DNN of depth
O(depth(Φ̃)| log(ε)|). This reasoning is valid also in metric spaces, since the notions of continuity
and contractivity of the map Φ do not rely on availability of a norm. Hence, a (sufficiently
large) DNN Φ̃ exists which may be used likewise for the iterative solution of VIs in metric spaces.
Furthermore, the resulting fixed-point-iteration Nets obtained in this manner naturally exhibit a
recurrent structure, in the case (considered here) that the surrogate Φ̃ is fixed throughout the
K-fold composition (more refined constructions with stage-dependent approximations {Φ̃(k)}Kk=1

of increasing emulation accuracy could be considered, but shall not be addressed here).
In summary, with the geometric error reduction of FPIs which is implied by the contraction

condition, finite truncation at a prescribed emulation precision ε > 0 will imply O(| log(ε)|) it-
erations, and exact solution representation (of the fixed point of Φ̃) in the infinite depth limit.
In DNN calculus, finitely terminated FPIs can be realized via finite concatenation of the DNN
approximation Φ̃ of the contraction map Φ. The corresponding DNNs exhibit logarithmic in |ε|
depth, and naturally a recurrent structure due to the repetition of the Net Φ̃ in their construction.
Thereby, recurrent DNNs can be built which encode numerical solution maps of fixed point itera-
tions. This idea has appeared in various incarnations in recent work; we refer to, e.g., MGNet for
the realization of Multi-grid iterative solvers of discretized elliptic PDEs [11]. The presently pro-
posed ProxNet architectures are, in fact, DNN emulations of corresponding fixed point iterations
of (discretized) variational inequalities.

Recent work has promoted so-called Deep Operator Nets which emulate Data-to-Solution op-
erators for classes of PDEs. We mention only [19] and the references there. To analyze expression
rates of deep neural networks (DNNs) for emulating data-to-solution operators for VIs is the pur-
pose of the present paper. In line with recent work (e.g. [19, 21] and the references there), we
take the perspective of infinite-dimensional VIs, which are set on closed cones in separable Hilbert
spaces. The task at hand is then the analysis of rates of expression of the approximate data-to-
solution map, which relates the input data (i.e. operator, cone, etc.) to the unique solution of the
VI.

1.1 Layout

The structure of this paper is as follows. In Section 2, we recapitulate basic notions and definitions
of proximal neural networks in infinite-dimensional, separable Hilbert spaces. A particular role is
taken by so-called proximal activations, and a calculus of ProxNets, which we shall use throughout
the rest of the paper to build solution operators of VIs. Section 3 addresses the conceptual use
of ProxNets in the constructive solution of VIs. We build in particular ProxNet emulators of
convergent fixed point iterations to construct solutions of VIs. Section 3.2 introduces quantitative
bounds for perturbations of ProxNets. Section 4 emphasizes that ProxNets may be regarded as
(approximate) solution operators to unilateral obstacle problems in infinite-dimensional Hilbert
spaces. Section 5 presents DNN emulations of iterative solvers of matrix LCPs which arise from
discretization of unilateral problems for PDEs. Section 6 presents several numerical experiments,
which illustrate the foregoing developments. More precisely, we consider the numerical solution of
free boundary value problems arising in the valuation of American-style options, and in parametric
obstacle problems. Section 7 provides a brief summary of the main results and indicates possible
directions for further research.
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1.2 Notation

We use standard notation. By L(H,K) we denote the Banach space of bounded, linear operators
from the Banach space H into K (surjectivity will not be required). Unless explicitly stated other-
wise, all Hilbert and Banach-spaces are infinite-dimensional. By bold symbols, we denote matrices
resp. linear maps between finite-dimensional spaces. We use the notation conventions

∑0
i=1 · = 0

and Π0
i=1· = 1 for the empty sum and empty product, respectively. Vectors in finite-dimensional,

euclidean space are always understood as column vectors, with ⊤ denoting transposition of ma-
trices and vectors.

Acknowledgement: The preparation of this work benefited from the participation of ChS in
the thematic period “Mathematics of Deep Learning (MDL)” from 1 July to 17 December 2021,
at the Isaac Newton Institute, Cambridge, UK.

2 Proximal Neural Networks (ProxNets)

We consider the following model for an artificial neural network : For finite m ∈ N, let H and
(Hi)0≤i≤m be real, separable Hilbert spaces. For every i ∈ {1, . . . ,m} let Wi ∈ L(Hi−1,Hi) be a
bounded linear operator, let bi ∈ Hi, let Ri : Hi → Hi be a nonlinear, continuous operator, and
define

Ti : Hi−1 → Hi, x 7→ Ri(Wix+ bi). (1)

Moreover, let W0 ∈ L(H0,H), Wm+1 ∈ L(Hm,H), bm+1 ∈ H and consider the neural network
(NN) model

Ψ : H0 → H, x 7→W0x+Wm+1(Tm ◦ · · · ◦ T1)(x) + bm+1. (2)

The operator W0 ∈ L(H0,H) allows to include skip connections in the model, similar to deep
residual neural networks as proposed in [12, 13]. This article focuses in particular on NNs with
identical input and output spaces as in [5, Model 1.1], that arise as special case of model (2) with
H0 = Hm = H and are of the form

Φ : H → H, x 7→ (1− λ)x+ λ(Tm ◦ · · · ◦ T1)(x), (3)

for a relaxation parameter λ > 0 to be adjusted for each application. The relation H0 = Hm = H
allows us to investigate fixed points of Φ : H → H, which are in turn solutions to variational
inequalities. The nonlinear operators Ri act as activation operators of the NNs and are subse-
quently given by suitable proximity operators on Hi. We refer to Ψ and Φ as proximal neural
networks or ProxNets for short, and derive sufficient conditions on the operators Ti, resp. Wi and
Ri, so that Φ defines a contraction on H. Hence, the unique fixed point x∗ = Φ(x∗) ∈ H solves a
variational inequality, that is turn uniquely determined by the network parameters Wi, bi and Ri
for i ∈ {1, . . . ,m}. On the other hand, any well-posed variational inequality on H may be recast
as fixed-point problem for a suitable contractive ProxNet Φ : H → H.

As an example, consider an elliptic variational inequality onH, with solution u ∈ K ⊂ H, where
K is a closed, convex set. The set of contractive mappings onH is open, therefore we may construct
a one-layer ProxNet Φ : H → H, such that u is the unique fixed-point of Φ. Therein, W1 ∈ L(H)
stems from the bilinear form of the variational inequality, λ > 0 is a relaxation parameter chosen
to ensure a Lipschitz constant below one, and R1 is the H-orthogonal projection onto K, see
Section 4.1 for a detailed construction.

This enables us to approximate solutions to variational inequality problems as fixed-point
iterations of ProxNets and derive convergence rates. Due to the contraction property of Φ, the
fixed-point iteration xn = Φ(xn−1), n ∈ N converges to x∗ = Φ(x∗) for any x0 ∈ H at linear
rate. Moreover, as the set of contractions on H is open, the iteration is stable under small
perturbations of the network parameters. As we show in Subsection 5.3 below, the latter property
allows us to solve entire classes of variational inequality problems using only one ProxNet with
fixed parameters.
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2.1 Proximal Activations

Definition 2.1. Let i ∈ {0, . . . ,m} be a fixed index, ψi : Hi → R ∪ {∞} and dom(ψi) := {x ∈
Hi|ψi(x) < ∞}. We denote by Γ0(Hi) the set of all proper, lower semi-continuous functions on
Hi, that is

Γ0(Hi) :=

{
ψi : Hi → R ∪ {∞}

∣∣∣ lim inf
y→x

ψi(y) ≥ ψi(x) for all x ∈ Hi and dom(ψi) 6= ∅
}
.

For any ψi ∈ Γ0(Hi), the subdifferential of ψi at x ∈ Hi is

∂ψi(x) := {v ∈ Hi| (y − x, v) + f(x) ≤ f(y) for all y ∈ Hi} ⊂ Hi, x ∈ Hi,

and the proximity operator of ψi is

proxψi
: Hi → Hi, x 7→ argmin

y∈Hi

ψi(y) +
‖x− y‖2Hi

2
. (4)

It is well-known that proxψi
is a firmly nonexpansive operator, i.e., 2proxψi

−id is nonexpansive,
see, e.g., [2, Proposition 12.28]. As outlined in [5, Section 2], there is a natural relation between
proximity operators and activation functions in neural networks: Virtually any commonly used
activation function such as rectified linear unit, tanh, softmax, etc. may be expressed as proximity
operator on Hi = R

d, d ∈ N, for an appropriate ψi ∈ Γ0(Hi) (see [5, Section 2] for examples). We
consider a set of particular proximity operators given by

A(Hi) := {Ri = proxψi
|ψi ∈ Γ0(Hi) such that ψi is minimal at 0 ∈ Hi}, (5)

cf. [5, Definition 2.20]. Apart from being continuous and nonexpansive, any Ri ∈ A(Hi) satisfies
Ri(0) = 0 ([5, Proposition 2.21]). Therefore, in the case Hi = R, the elements in A(R) are also
referred to as stable activation functions, cf. [10, Lemma 5.1]. With this in mind, we formally
define proximal neural networks, or ProxNets.

Definition 2.2. Let Ψ : H0 → H be the m-layer neural network model in (2). If Ri ∈ A(Hi)
holds for any i ∈ {1, . . . ,m}, Ψ is called a proximal neural network or ProxNet.

2.2 ProxNet Calculus

Before investigating the relation of Φ in (3) to variational inequality models, we record several
useful definitions and results for NN calculus in the more general model Ψ from Equation (2).

Definition 2.3. Let j ∈ {1, 2}, mj ∈ N, let H(j),H(j)
0 , . . . ,H(j)

mj be separable Hilbert spaces such

that H(2) = H(1)
0 , and let Ψj be mj-layer ProxNets as in (2) given by

Ψj : H(j)
0 → H(j), x 7→W

(j)
mj+1

(
T (j)
mj

◦ · · · ◦ T (j)
1

)
(x) + b

(j)
m+1.

The concatenation of Ψ1 and Ψ2 is defined by the map

Ψ1 •Ψ2 : H(2)
0 → H(1), x 7→ (Ψ1 ◦Ψ2)(x). (6)

Remark 2.4. Due to W
(j)
0 ≡ 0 there are no skip connections after the last proximal activation

in Ψj , hence Ψ1 •Ψ2 is in fact a ProxNet as in (2) with 2m layers and no skip connection.

Definition 2.5. Let m ∈ N, j ∈ {1, 2}, let H(j),H(j)
0 , . . . ,H(j)

mj be separable Hilbert spaces such

that H(1)
0 = H(2)

0 , and let Ψj be m-layer ProxNets as in (2) given by

Ψj : H(j)
0 → H(j), x 7→W

(j)
0 x+W

(j)
m+1

(
T (j)
mj

◦ · · · ◦ T (j)
1

)
(x) + b

(j)
m+1.

The parallelization of Ψ1 and Ψ2 is given for H0 := H(1)
0 = H(2)

0 by

P (Ψ1,Ψ2) : H0 → H(1) ⊕H(2), x 7→ (Ψ1(x),Ψ2(x)).
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Proposition 2.6. The parallelization P (Ψ1,Ψ2) of two ProxNets Ψ1 and Ψ2 as in Definition 2.5
is a ProxNet.

Proof. We set H(j)
m+1 := H(j) for j ∈ {1, 2}, fix i ∈ {1, . . . ,m} and observe that H(1)

i ⊕ H(2)
i

equipped with the scalar product (·, ·)
H

(1)
i ⊕H

(2)
i

:= (·, ·)
H

(1)
i

+ (·, ·)
H

(2)
i

is again a separable Hilbert

space. We define

W0 : H0 7→ H(1) ⊕H(2), x 7→ (W
(1)
0 x,W

(2)
0 x),

W1 : H0 7→ H(1)
1 ⊕H(2)

1 , x 7→ (W
(1)
1 x,W

(2)
1 x),

Wi : H(1)
i−1 ⊕H(2)

i−1 7→ H(1)
i ⊕H(2)

i , (x, y) 7→ (W
(1)
i x,W

(2)
i y), i ∈ {2, . . . ,m+ 1},

bi := (b
(1)
i , b

(2)
i ) ∈ H(1)

i ⊕H(2)
i , i ∈ {1, . . . ,m+ 1},

Ri : H(1)
i ⊕H(2)

i 7→ H(1)
i ⊕H(2)

i , (x, y) 7→ (R
(1)
i x,R

(2)
i y), i ∈ {0, 1, . . . ,m}.

Note that all Wi are bounded, linear operators. Moreover, if R
(j)
i = prox

ψ
(j)
i

∈ A(H(j)
i ) holds

for ψ
(j)
i ∈ Γ0(H(j)

i ) and j ∈ {1, 2}, then Ri = proxψi
, where ψi ∈ Γ0(H(1)

i ⊕ H(2)
i ) is defined by

ψi(x, y) := ψ
(1)
i (x) + ψ

(2)
i (y). Hence, Ri ∈ A(H(1)

i ⊕H(2)
i ) and it holds that

P (Ψ1,Ψ2) : H0 → H(1) ⊕H(2), x 7→W0x+Wm+1(Tm ◦ · · · ◦ T1)(x) + bm+1,

with Ti := Ri(Wi ·+bi) for i ∈ {1, . . . ,m}, which shows the claim.

3 ProxNets and Variational Inequalities

3.1 Contractive ProxNets

We formulate sufficient conditions on the neural network model in (3) so that Φ : H → H is a
contraction. The associated fixed-point iteration converges to the unique solution of a variational
inequality, which is characterized in the following.

Assumption 3.1. Let Φ be a ProxNet as in (3) with m ∈ N layers such that Wi ∈ L(Hi−1,Hi),
bi ∈ Hi, and Ri ∈ A(Hi) for all i ∈ {1, . . . ,m}. It holds that λ ∈ (0, 2) and the operators Wi

satisfy

LΦ :=
m∏

i=1

‖Wi‖L(Hi−1,Hi) < min(1, 2/λ− 1).

Theorem 3.2. Let Φ be as in (3), let x0 ∈ H and define the iteration xk+1 := Φ(xk), k ∈ N0.
Under Assumption 3.1, the sequence (xk, k ∈ N0) converges for any x0 ∈ H to the unique fixed-
point x∗ ∈ H. For any finite number k ∈ N the error is bounded by

‖x∗ − xk‖H ≤ ‖Φ(x0)− x0‖
1− LΦ,λ

LkΦ,λ, LΦ,λ := |1− λ|+ λLΦ ∈ [0, 1). (7)

It holds that

(x∗1, . . . , x
∗
m) := (T1x

∗, (T2 ◦ T1)x∗, . . . , (Tm−1 ◦ · · · ◦ T1)x∗, x∗) ∈ H1 × · · · × Hm

is the unique solution to the variational inequality problem: find x1 ∈ H1, . . . , x0 = xm ∈ Hm,
such that

Wixi−1 + bi − xi ∈ ∂ψi(xi), i ∈ {1, . . . ,m}. (8)

Moreover, x∗ is bounded by

‖x∗‖H ≤ C∗
m∑

i=1




m∏

j=i+1

‖Wj‖L(Hj−1,Hj)


 ‖bi‖Hi

, C∗ :=

{
1

1−LΦ
<∞, λ ∈ (0, 1]

λ
2−λ(1+LΦ) <∞, λ ∈ (1, 2)

.
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Proof. By the non-expansiveness of Ri : Hi → Hi for i ∈ {1, . . . ,m} it follows for any x, y ∈ H

‖Φ(x)− Φ(y)‖H ≤ |1− λ|‖x− y‖H + λ‖(Tm ◦ · · · ◦ T1)x− (Tm ◦ · · · ◦ T1)y‖Hm

≤ |1− λ|‖x− y‖H
+ λ‖(Wm ◦ (Tm−1 ◦ · · · ◦ T1))x− (Wm ◦ (Tm−1 ◦ · · · ◦ T1))y‖Hm

≤ |1− λ|‖x− y‖H
+ λ‖Wm‖L(Hm−1,Hm)‖(Tm−1 ◦ · · · ◦ T1)x− (Tm−1 ◦ · · · ◦ T1)y‖Hm−1

≤ |1− λ|‖x− y‖H + λ

(
m∏

i=1

‖Wi‖L(Hi−1,Hi)

)
‖x− y‖H0

= (|1− λ|+ λLΦ)︸ ︷︷ ︸
:=LΦ,λ

‖x− y‖H.

As λ ∈ (0, 2) and LΦ < min(1, 2/λ − 1) by Assumption 3.1, it follows that LΦ,λ < 1, hence
Φ : H → H is a contraction. Existence and uniqueness of x∗ ∈ H and the first part of the claim
then follow by Banach’s fixed-point theorem for any initial value x0 ∈ H.

By [2, Proposition 16.44], it holds for any i ∈ {1, . . . ,m}, xi, yi ∈ Hi and ψi ∈ Γ0(Hi) that

xi = proxψi
(yi) ⇔ yi − xi ∈ ∂ψi(xi).

Now let x∗0 := x∗ and x∗i := (Ti ◦ · · · ◦ T1)(x∗) for i ∈ {1, . . . ,m}. This yields Φ(x∗0) = (1− λ)x∗ +
λx∗m = x∗ and hence x∗m = x∗. Recalling that Ri = proxψi

with ψi ∈ Γ0(Hi) for all i ∈ {1, . . . ,m},
it hence follows that

Wix
∗
i−1 + bi − x∗i ∈ ∂ψi(x

∗
i ),

cf. [5, Propostion 4.3]. Finally, to bound x∗, we use that

‖x∗‖H ≤ ‖Φ(x∗)− Φ(0)‖H + ‖Φ(0)‖H ≤ LΦ,λ‖x∗‖H + λ‖(Tm ◦ · · · ◦ T1)(0)‖Hm
.

As Ri ∈ A(Hi), it holds Ri(0) = 0 and therefore ‖Ri(x)‖Hi
≤ ‖x‖Hi

for all x ∈ Hi, which in turn
shows

‖(Tm ◦ · · · ◦ T1)(0)‖Hm
≤ ‖Wm‖L(Hm1

,Hm)‖(Tm−1 ◦ · · · ◦ T1)(0)‖Hm−1
+ ‖bm‖Hm

≤ ‖Wm‖L(Hm1
,Hm)

·
(
‖Wm−1‖L(Hm−2,Hm−1)‖(Tm−2 ◦ · · · ◦ T1)(0)‖Hm−2

+ ‖bm−1‖Hm−1

)

+ ‖bm‖Hm

≤
m∑

i=1




m∏

j=i+1

‖Wj‖L(Hj−1,Hj)


 ‖bi‖Hi

.

The claim follows with LΦ < min(1, 2/λ− 1), since

1− LΦ,λ =

{
λ(1− LΦ) > 0, λ ∈ (0, 1]

2− λ(1 + LΦ) > 0, λ ∈ (1, 2)
.

3.2 Perturbation Estimates for ProxNets

We introduce a perturbed version of the ProxNet Φ in (3) in this subsection. Besides changing
the network parameters Wi, bi and Ri, we also augment the input space H and allow an architec-
ture that approximates each nonlinear operator Ti itself by a multilayer network. These changes
allow us to consider ProxNet as an approximate data-to-solution operator for infinite-dimensional

6



variational inequalities and to control perturbations of the network parameters. For instance, we
show in Example 3.4 that augmented ProxNets mimic the solution operator to Problem (8), that
maps the bias vectors b1, . . . , bm to the solution x1, . . . , xm.

Let H̃0, . . . , H̃m−1 be arbitrary separable Hilbert spaces and let H̃ := H̃0. Then, for i ∈
{0, . . . ,m− 1} the direct sum Hi ⊕ H̃i equipped with the inner product (·, ·)Hi

+ (·, ·)H̃i
is again

a separable Hilbert space. For notational convenience, we set H̃m := {0 ∈ Hm} and use the

identification Hm ⊕ H̃m = Hm = H. We consider the ProxNet

Φ̃ : H⊕ H̃ → H, (x, x̃) 7→ (1− λ)x+ λ(T̃m ◦ · · · ◦ T̃1)(x, x̃), (9)

where we allow that the operators T̃i are itself multi-layer ProxNets: For any i ∈ {1, . . . ,m} let

mi ∈ N and let H(i)
0 := Hi−1⊕H̃i−1, H(i)

1 , . . . ,H(i)
mi−1,H

(i)
mi := Hi⊕H̃i be separable Hilbert spaces.

For ji ∈ {1, . . . ,mi} consider the operators T̃
(i)
ji

(·) = R
(i)
ji
(W

(i)
ji

·+b(i)ji ) given by

R
(i)
ji

∈ A(H(i)
ji
), W

(i)
ji

∈ L(H(i)
ji−1,H

(i)
ji
), b

(i)
ji

∈ H(i)
ji
.

We then define T̃i as

T̃i : Hi−1 ⊕ H̃i−1 → Hi ⊕ H̃i, (xi−1, x̃i−1) 7→ (T̃ (i)
mi

◦ · · · ◦ T̃ (i)
1 )(xi−1, x̃i−1),

which in turn determines Φ̃ in (9). By construction, Φ̃ is a ProxNet of the form (2) with
∑m
i=1mi ≥

m layers. As compared to Φ, we augmented the input and intermediate spaces by H̃i. The
composite structure of the maps T̃i allows to choose input vectors x̃i−1 ∈ H̃i−1 such that the first

component of T̃i(xi−1, x̃i−1) approximates Ti(xi−1) uniformly on a subset of Hi−1. As we show
in Subsection 5.3 below, this enables us to solve large classes of variational inequalities with only
one fixed ProxNet Φ̃, that in turn approximates a data-to-solution operator, instead of employing
different fixed maps Φ : H → H for every problem.

To formulate reasonable assumptions on Φ̃ we denote for any i ∈ {1, . . . ,m− 1} by

PHi
: Hi ⊕ H̃i 7→ Hi, (xi, x̃i) 7→ xi,

PH̃i
: Hi ⊕ H̃i 7→ H̃i, (xi, x̃i) 7→ x̃i

the projections to the first and second component for an element inHi⊕H̃i, respectively. Moreover,

we define the closed ball B
(i)
r := {xi ∈ Hi| ‖xi‖Hi

≤ r} ⊂ Hi with radius r > 0.

Assumption 3.3. Let Φ and Φ̃ be proximal neural networks defined as in Equations (3) and (9),

respectively. There are constants L̃ ∈ (0, 1), δ ≥ 0 and Θ1 ≥ Θ0 ≥ Θ2 > 0 such that

1. Φ satisfies Assumption 3.1 with λ ∈ (0, 1] and LΦ ≤ L̃ ∈ (0, 1).

2. It holds that

 max
i∈{0,1,...,m}

i∏

j=1

‖Wj‖L(Hj−1,Hj)


Θ0 +

m∑

i=1




m∏

j=i+1

‖Wj‖L(Hj−1,Hj)


 (‖bi‖Hm

+ δ) ≤ Θ1,

m∑

i=1




m∏

j=i+1

‖Wj‖L(Hj−1,Hj)


 ‖bi‖Hi

≤ (1− L̃)Θ2,

as well as

Θ2 +
δ

(1− L̃)

m∑

i=1




m∏

j=i+1

‖Wj‖L(Hj−1,Hj)


 ≤ Θ0.
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3. There is a vector x̃0 ∈ H̃0, such that for i ∈ {1, . . . ,m}, any xi−1 ∈ B
(i−1)
Θ1

⊂ Hi−1 and

x̃i := PH̃i
T̃i(xi−1, x̃i−1) it holds

‖Ti(xi−1)− PHi
T̃i(xi−1, x̃i−1)‖Hi

≤ δ.

Before we derive error bounds, we provide an example to motivate the construction of Φ̃ and
Assumption 3.3.

Example 3.4 (Bias-to-solution operator). Let Φ be as in Assumption 3.1 with m = 2 layers and

network parameters Ri,Wi, bi for i ∈ {1, 2}. We construct a ProxNet Φ̃ that takes the bias vectors
b1, b2 of Φ as inputs to represent Φ for any choice of bi ∈ Hi, and therefore may be concatenated to
map any choice of b1, b2 to the respective solution (x1, x2) of (8). In other words, we approximate
the bias-to-solution operator

Obias : H1 ⊕H2 7→ H1 ⊕H2, (b1, b2) 7→ (x1, x2).

To this end, we set H̃0 = H1 ⊕H2, H̃1 = H2, m1 = m2 = 1, bi,1 = 0 ∈ Hi ⊕ H̃i and

W
(1)
1 : H⊕H1 ⊕H2 → H1 ⊕H2, (x, x1, x2) 7→ (W1x+ x1, x2)

W
(2)
1 : H1 ⊕H2 → H2, (x1, x2) 7→W2x1 + x2,

R
(1)
1 : H1 ⊕H2 → H1 ⊕H2, (x1, x2) 7→ R1(x1) + x2,

R
(2)
1 : H2 → H2, x2 7→ R2(x2).

Note that R
(1)
1 = prox

ψ
(1)
1

with ψ
(1)
1 (x1, x2) := ψ1(x1) for any (x1, x2) ∈ H1 ⊕ H2, where ψ1

determines R1 = proxψ1
. Hence, R

(1)
1 ∈ A(H1 ⊕ H̃1), and it follows with x̃0 := (b1, b2) ∈ H1 ⊕H2

for any x ∈ H and x1 ∈ H1 that

T1(x) = R1(W1x+ b1) = PH1(R1(W1x+ b1), b2) = PH1R
(1)
1 (W

(1)
1 (x, x̃0)) = PH1 T̃1(x, x̃0)

T2(x) = R2(W2x1 + b2) = R
(2)
1 (W

(2)
1 (x1, b2)) = PH2

R
(2)
1 (W

(2)
1 (x1, PH̃1

T̃1(x1, x̃0)).

Therefore, the last part of Assumption 3.3 holds with δ = 0 for arbitrary large Θ1 > 0 and hence
the constants Θ0,Θ1,Θ2 do not play any role in this example. The generalization to m > 2 layers
follows by a similar construction of Φ.

Now let (x1, x2) be the solution to (8) for any choice (b1, b2) ∈ H1 ⊕ H2. It follows from
Theorem 3.2 that the operator

Õbias : H1 ⊕H2 → H, (b1, b2) 7→ Φ̃(·, b1, b2) • · · · • Φ̃(·, b1, b2)︸ ︷︷ ︸
k times

(x0)

satisfies x2 ≈ Õbias(b1, b2) and x1 ≈ T1(Õbias(b1, b2)) for any fixed x0 ∈ H and any tuple (b1, b2) ∈
H1 ⊕H2, for a sufficiently large number k of concatenations of Φ̃(·, b1, b2).

The augmented ProxNet Φ̃ may also be utilized to consider parametric families of obstacle
problems, as shown in Example 4.4 below. Therein, the parametrization is with respect to the
proximity operators Ri instead of the bias vectors bi, and we construct an approximate obstacle-
to-solution operator in the fashion of Example 3.4. In the finite-dimensional case (where the linear

operators Wi correspond to matrices) the input of Φ̃ may even be augmented by a suitable space
of operators, see Subsection 5.3 below for a detailed discussion. We conclude this section with a
perturbation estimate that allows us to approximate the fixed-point of Φ by the augmented NN
Φ̃.
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Theorem 3.5. Let Φ and Φ̃ be proximal neural networks as in Equations (3) and (9) that satisfy

Assumption 3.3, and denote by x∗ ∈ H the unique fixed-point of Φ from Theorem 3.2. Let x0 ∈ B
(0)
Θ2

be arbitrary, let x̃0 be as in Assumption 3.3 and define the sequence x̃k+1 := Φ̃(x̃k, x̃0) for k ∈ N0,
where x̃0 := x0. Then there is a constant C > 0 which is independent of δ > 0 and x̃0, such that
for any k ∈ N it holds

‖x∗ − x̃k‖H ≤ C
(
L̃kλ + δ

)
,

where L̃λ := (1− λ) + λL̃ < 1.

Proof. Let x ∈ B
(0)
Θ0

and let x̃0 ∈ H̃0 be as in Assumption 3.3. We define v0 = x, vi := PHi
(T̃i ◦

· · · ◦ T̃1)(x, x̃0) ∈ Hi for i ∈ {1, . . . ,m − 1}, and vm := (T̃m ◦ · · · ◦ T̃1)(x, x̃0) ∈ H. With x̃i :=

PH̃i
T̃i(xi−1, x̃i−1) and the convention that PHm

= id, we obtain the recursion formula

vi = PHi
T̃i(vi−1, x̃i−1), i ∈ {1, . . . ,m}. (10)

We now show by induction that ‖vi‖Hi
≤ Θ1 for i ∈ {0, . . . ,m}. By Assumption 3.3 it holds

‖v0‖H0
= ‖x‖H

≤ Θ0 =




0∏

j=1

‖Wj‖L(Hj−1,Hj)


Θ0 +

0∑

j=1




0∏

ℓ=j+1

‖Wℓ‖L(Hℓ−1,Hℓ)


 (‖bj‖Hj

+ δ)

≤ Θ1.

Now let

‖vi‖Hi
≤




i∏

j=1

‖Wj‖L(Hj−1,Hj)


Θ0 +

i∑

j=1




i∏

ℓ=j+1

‖Wℓ‖L(Hℓ−1,Hℓ)


 (‖bj‖Hj

+ δ)

hold for a fixed i ∈ {0, . . . ,m− 1}. Assumption 3.3 yields with Equation (10)

‖Ti+1(vi)− vi+1‖Hi+1
= ‖Ti+1(vi)− PHi+1

T̃i+1(vi, x̃0)‖Hi+1
≤ δ.

Using ‖Ri+1(x)‖Hi+1
≤ ‖x‖Hi+1

for x ∈ Hi+1 then yields together with the triangle inequality
and the induction hypothesis

‖vi+1‖Hi+1
≤ δ + ‖Ti+1(vi)‖Hi+1

≤ δ + ‖Wi+1‖L(Hi,Hi+1)‖vi‖Hi
+ ‖bi+1‖Hi+1

≤



i+1∏

j=1

‖Wj‖L(Hj−1,Hj)


Θ0 +

i+1∑

l=1




i+1∏

j=l+1

‖Wℓ‖L(Hℓ−1,Hℓ)


 (‖bj‖Hj

+ δ)

≤ Θ1,

and hence vi ∈ B
(i)
Θ1

for all i ∈ {0, . . . ,m}. With Assumption 3.3 and Equation (10) we further

obtain for each x ∈ B
(0)
Θ0

1

λ
‖Φ(x)− Φ̃(x, x̃0)‖Hm

= ‖(Tm ◦ · · · ◦ T1)(x)− vm‖H
≤ ‖(Tm ◦ · · · ◦ T1)(x)− Tm(vm−1)‖H + ‖Tm(vm−1)− T̃m(vm−1, x̃m−1)‖H
≤ ‖Wm‖L(Hm−1,Hm)‖(Tm−1 ◦ · · · ◦ T1)(x)− vm−1‖Hm−1 + δ,

and by iterating this estimate over i ∈ {1, . . . ,m}

‖Φ(x)− Φ̃(x, x̃0)‖Hm
≤ λδ

m∑

i=1




m∏

j=i+1

‖Wj‖L(Hj−1,Hj)


 =: λδCΦ. (11)
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Now let x∗ ∈ H be the unique fixed-point of Φ as in Theorem 3.2, let xk = Φ(xk−1) and

x̃k = Φ̃(x̃k−1, x̃0) for any k ∈ N and a given initial value x0 = x̃0 ∈ H with ‖x0‖H ≤ Θ2. We
obtain as in the proof of Theorem 3.2

‖x1‖H ≤ ‖Φ(x0)− Φ(0)‖H + ‖Φ(0)‖H

≤ LΦ,λ‖x0‖H + λ

m∑

i=1




m∏

j=i+1

‖Wj‖L(Hj−1,Hj)


 ‖bi‖Hi

≤ (1− λ)Θ2 + λ


L̃Θ2 +

m∑

i=1




m∏

j=i+1

‖Wj‖L(Hj−1,Hj)


 ‖bi‖Hi




≤ Θ2,

(12)

where we have used that LΦ,λ = (1−λ)+λLΦ ≤ (1−λ)+λL̃ and Assumption 3.3. Hence, we have
‖xk‖H ≤ Θ2 inductively for all k ∈ N. In the next step, we show that ‖x̃k‖H ≤ Θ0 by induction
over k. First, we obtain with ‖x0‖ ≤ Θ2 ≤ Θ0, (11) and (12) that

‖x̃1‖H = ‖Φ̃(x0, x̃0)‖H ≤ ‖Φ̃(x0, x̃0)− Φ(x0)‖H + ‖Φ(x0)‖H ≤ λδCΦ +Θ2.

Thus, ‖x̃1‖H ≤ Θ0 follows with Assumption 3.3 on the relation of Θ0 and Θ2 as λ(1 − L̃) < 1.

Using the induction hypothesis ‖x̃k − xk‖H ≤ λδCΦ

∑k−1
j=0 L̃

j
Φ,λ for a fixed k ∈ N, ‖xk‖H ≤ Θ2,

and LΦ,λ ≤ L̃λ := (1− λ) + λL̃ < 1 yields similarly

‖x̃k+1‖H ≤ ‖Φ̃(x̃k, x̃0)− Φ(x̃k)‖H + ‖Φ(x̃k)− Φ(xk)‖H + ‖Φ(xk)‖H
≤ λδCΦ + LΦ,λ‖x̃k − xk‖H +Θ2

≤ λδCΦ

k∑

j=0

L̃jλ +Θ2,

and hence ‖x̃k‖H ≤ λδCΦ/(λ(1− L̃)) + Θ2 ≤ Θ0 holds by induction for all k ∈ N. We apply the
bounds from Theorem 3.2 and (11) and conclude the proof by deriving

‖x∗ − x̃k‖ ≤ ‖x∗ − xk‖+ ‖Φ(xk−1)− Φ(x̃k−1)‖+ ‖Φ(x̃k−1)− Φ̃(x̃k−1, x̃0)‖

≤ ‖x1 − x0‖
1− LΦ,λ

LkΦ,λ + LΦ,λ‖xk−1 − x̃k−1‖H + λδCΦ

≤ ‖Φ(x0)− x0‖
1− L̃λ

L̃kλ + λδCΦ

k−1∑

j=0

L̃jλ

≤ max(2Θ0, λCΦ)

1− L̃λ

(
L̃kλ + δ

)
.

4 Variational Inequalities in Hilbert Spaces

In the previous sections we have considered a ProxNet model and derived the associated variational
inequalities. Now we use the variational inequality as starting point derive suitable ProxNets for
its (numerical) solution. Let (H, (·, ·)H) be a separable Hilbert space with topological dual space
denoted by H′ and let H′〈·, ·〉H be the associated dual pairing. Let a : H ×H → R be a bilinear
form, let f : H → R be a functional and let K ⊂ H be a subset of H. We consider the variational
inequality problem

find u ∈ K: a(u, v − u) ≥ f(v − u), ∀v ∈ K. (13)
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Assumption 4.1. The bilinear form a : H × H → R is bounded and coercive on H, i.e. there
exists constants C−, C+ > 0 such that for any v, w ∈ H it holds

a(v, w) ≤ C+‖v‖H‖w‖H and a(v, v) ≥ C−‖v‖2H.

Moreover, f ∈ H′ and K ⊂ H is nonempty, closed and convex.

Problem (13) arises in various applications in the natural sciences, engineering and finance.
It is well-known that there exists a unique solution u ∈ K under Assumption 4.1, see, e.g., [14,
Theorem A.3.3] for a proof. We also mention that well-posedness of Problem (13) is ensured under
weaker conditions as Assumption 4.1, in particular, the coercivity requirement may be relaxed as
shown in [8]. For this article, however, we focus on the bounded and coercive case in order to
obtain numerical convergence rates for ProxNet approximations.

4.1 Fixed-Point Approximation by ProxNets

Theorem 4.2. Let Assumption 4.1 hold, and define H1 := H0 := H. Then, there exists a one-
layer ProxNet Φ as in Equation (3) such that u ∈ K is the unique fixed-point of Φ. Furthermore,
for a given u0 ∈ H define the iteration uk := Φ(uk−1), k ∈ N.

Then, there are constants LΦ,λ ∈ (0, 1) and C = C(u0) > 0 such that

‖u− uk‖ ≤ CLkΦ,λ, k ∈ N. (14)

Proof. We recall the fixed-point argument, e.g. in [14, Theorem A.3.3], for proving existence and
uniqueness of u since it is the base for the ensuing ProxNet construction: Assumption 4.1 ensures
that a(v, ·), f ∈ H′ for any v ∈ H. The Riesz representation theorem yields the existence of
A ∈ L(H) and F ∈ H such that for all v, w ∈ H

(Av,w)H = a(v, w) and (F, v)H = f(v).

Since K is closed convex, the H-orthogonal projection PK : H → K onto K is well-defined and for
any ω > 0 there holds

u solves (13) ⇐⇒ u = PK(ω(F −Au) + u).

Hence, u is a fixed-point of the mapping

Tω : H → H, v 7→ PK(ω(F −Av) + v).

By Assumption 4.1 it is now possible to choose ω > 0 sufficiently small, so that Tω is a contraction
on H, which proves existence and uniqueness of u. The optimal relaxation parameter in terms
of the bounds C−, C+ is ω∗ = C−/C

2
+, leading to ‖Tω∗‖2L(H) = (1 − C2

1/C
2
2 ) < 1, see e.g. [14,

Theorem A.3.3].
To transfer this constructive proof of existence and uniqueness of solutions to the ProxNet

setting, we denote by ιK the indicator function of K given by

ιK : H → (−∞,∞], v 7→
{
0, if v ∈ K,

∞, otherwise.

Since K is closed convex, it holds that ιK ∈ Γ0(H) and proxιK = PK (cf. [2, Examples 1.25 and
12.25]). Now let m = 1, H1 = H, W1 := I − ωA ∈ L(H), b1 := ωF ∈ H, and R1 := proxιK , where
ω > 0 is such that I − ωA is a contraction.

The ProxNet emulation Φ of the contraction map reads: for a parameter λ ∈ (0, 1],

Φ : H → H, v 7→ (1− λ)v + λR1(W1v + b1)︸ ︷︷ ︸
:=T1(v)

.

11



Since ‖W1‖L(H) < 1, Assumption 3.1 is satisfied for every λ ∈ (0, 1]. Theorem 3.2 yields that

the iteration uk := Φ(uk−1) converges for any u0 ∈ H to a unique fixed-point u∗ ∈ H with error
bounded by (14) and LΦ,λ := (1 − λ) + λ‖W1‖L(H) ∈ (0, 1). Since Φ(v) = (1 − λ)v + λT1(v), it
follows that u∗ is in turn the unique fixed-point of T1, hence u = u∗, which proves the claim.

Remark 4.3. In the fashion of Example 3.4, we may construct an augmented ProxNet Φ̃ :
H ⊗ H → H such that Φ̃(v, F ) = Φ(v) for any v ∈ H, where F ∈ H is the Riesz representer of
f ∈ H′ in Problem (13). The only difference is that F has to be multiplied with ω in the first

linear transform to obtain b1 = ωF instead of F as bias vector. The parameters of Φ̃ in this
construction are independent of F , hence Theorem 3.5 yields that for any f ∈ H′ (resp. F ∈ H)
and x0 ∈ H it holds

‖u− ũk‖ ≤ CLkΦ,λ, k ∈ N,

where ũk := Φ̃(uk−1, F ). ✷

The previous remark shows that one fixed ProxNet is sufficient to solve Problem (13) for any
f ∈ H′. A similar result is achieved if the set K ⊂ H associated Problem (13) is parameterized by
a suitable family of functions:

Example 4.4 (Obstacle-to-solution operator). Let H be a Hilbert space of real-valued functions
over a domain D ⊂ R

d such that C(D)∩H is a dense subset, e.g., H = L2(D) or H = H1(D), and
let K := {v ∈ H| v ≥ g almost everywhere} for a sufficiently smooth function g : D → R. With
this choice of K, (13) is an obstacle problem and PK(v) = max(v, g) holds for any v ∈ H ∩ C(D).
We construct a ProxNet approximation to the obstacle-to-solution operator Oobs : H → H, g 7→ u
corresponding to Problem (13) with K = {v ∈ H| v ≥ g almost everywhere}.

Assume Φ(v) = PK(W1v + b1) for W1 ∈ L(H) and b1 ∈ H are as in Theorem 4.2 and let
K0 := {v ∈ H| v ≥ 0 almost everywhere}. To obtain a ProxNet that uses the obstacle g ∈ H as
input, we define

Φ̃ : H⊕H → H, (v, g) 7→ T̃1(v, g) = (T̃
(1)
2 ◦ T̃ (1)

1 )(v, g)

via T̃
(1)
j1

(v, g) := R
(1)
j1

(W
(1)
j1

(v, g) + b
(1)
j1

) which are, for j1 ∈ {1, 2}, defined by

W
(1)
1 : H⊕H → H⊕H, (v1, v2) 7→ (W1v1 − v2, v2),

b
(1)
1 := (b1, 0) ∈ H ⊕H, R

(1)
1 := prox

ψ
(1)
1
, ψ

(1)
1 (v, g) := ιK0

(v),

W
(1)
2 : H⊕H → H, (v1, v2) 7→ v1 + v2, b

(1)
2 := 0 ∈ H, R

(1)
2 := id ∈ A(H).

Note that this yields W
(1)
1 ∈ L(H ⊕ H), W

(1)
2 ∈ L(H), and R

(1)
1 (v1, v2) = (PK0

v1, v2) for all
v1, v2 ∈ H. It now follows for any given v, g ∈ H and K := {v ∈ H| v ≥ g almost everywhere}

Φ(v) = PK(W1v + b1)

= PK0(W1v + b1 − g) + g

= R
(1)
2 (W

(1)
2 (PK0(W1v + b1 − g), g) + b

(1)
2 )

= T̃
(1)
2 ((PK0(W1v + b1 − g), g))

= T̃
(1)
2 ◦ (R(1)

1 (W
(1)
1 (v, g) + b

(1)
1 ))

= Φ̃(v, g).

As in Example 3.4 we concatenate Φ̃ to obtain for a fixed choice of x0 ∈ H the operator

Õobs : H → H, g 7→
[
Φ̃(·, g) • · · · • Φ̃(·, g)

]
(x0).

Convergence of Õobs(g) to u for any g ∈ H (with arbitrary a-priori fixed x0 ∈ H) with contraction
rate that is uniform with respect to g ∈ H is again guaranteed as the number of concatenations
tends to infinity. Therefore, as in Example 3.4, there exists one ProxNet Φ̃ that approximately
solves a family of obstacle problems with obstacle ‘parameter’ g ∈ H. ✷
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A combination of the ProxNets from Remark 4.3 and Example 4.4 enables us to consider both,
f and K in (13), as input variables of a suitable NN Φ̃ : H ⊕ H ⊕ H → H. This allows, in
particular, to construct an approximation of the data-to-solution operator to Problem (13) that
maps (F, g) ∈ H ⊕H to u.

5 Example: Linear Matrix Complementarity Problems

Common examples for Problem (13) arise in financial and engineering applications, where the
bilinear form a : H×H → R stems from a second order elliptic or parabolic differential operator.
In this case, H ⊂ Hs(D), where Hs(D) is the Sobolev space of smoothness s > 0 with respect to
the spatial domain D ⊂ R

n, n ∈ N. Coercivity and boundedness of a as in Assumption 4.1 often
arises naturally in this setting. To obtain a computationally tractable problem it is necessary
to discretize (13), for instance by a Galerkin approximation with respect to a finite dimensional
subspace Hd ⊂ H. To illustrate this, we assume that dim(Hd) = d ∈ N is a suitable finite-
dimensional subspace with basis {v1, . . . , vd} and consider an obstacle problem with K = {v ∈
H| v ≥ g almost everywhere} for a smooth function g ∈ H.

Following Example 4.4 we introduce the set K0 := {v ∈ H| v ≥ 0 almost everywhere} and note
that Problem (13) is equivalent to finding u = u0 + g ∈ K

with u0 ∈ K0 such that: a(u0, v − u0) ≥ f(v − u0)− a(g, v − u0), ∀v ∈ K0. (15)

5.1 Discretization and Matrix LCP

Any element v ∈ Hd may be expanded as v =
∑d
i=1 wivi for a coefficient vector w ∈ R

d. To
preserve non-negativity of the discrete approximation to (15), we assume that v ∈ K0 if and only
if the basis coordinates are nonnegative, i.e., if w ∈ R

d
≥0. This property holds, for instance, in

finite element approaches. We write the discrete solution as ud =
∑d
i=1 xivi. Then ud ∈ K0 if and

only if x ∈ R
d
≥0. Consequently, the discrete version of (15) is to

find x ∈ R
d
≥0: (y − x)⊤Ax ≥ (y − x)⊤c, ∀y ∈ R

d
≥0, (16)

where the matrix A ∈ R
d×d and the vector c ∈ R

d are given by

Aij := a(vj , vi) and ci := H′〈f, vi〉H − a(g, vi), i, j ∈ {1, . . . , d}. (17)

Problem (16) is equivalent to the linear complementary problem (LCP) to find x ∈ R
d such that

for A ∈ R
d×d and c ∈ R

d as in (17) it holds

Ax ≥ c, x ≥ 0, x⊤(Ax− c) = 0, (18)

see, e.g., [14, Lemma 5.1.3]. If a : H ×H → R is bounded and coercive as in Assumption 4.1, it
readily follows that

C−‖x‖22 ≤ x⊤Ax ≤ C+‖x‖22, x ∈ R
d, (19)

where the constants C+ ≥ C− > 0 stem from Assumption 4.1 and ‖·‖2 is the Euclidean norm on
R
d. This implies in particular that the LCP (18) has a unique solution x ∈ R

d, see [23, Theorem
4.2]. Equivalently, we may regard Problem (16), resp. (18), as variational inequality on the finite-
dimensional Hilbert space R

d equipped with the Euclidean scalar product (·, ·)2. Well-posedness
then follows directly from Assumption 4.1 with the identification H = R

d and the discrete bilinear
form a : Rd × R

d → R, (x, y) 7→ x⊤Ay.

5.2 Solution of Matrix LCPs by ProxNets

The purpose of this section is to show that several well-known iterative algorithms to solve (finite-
dimensional) LCPs may be recovered as particular cases of ProxNets in the setting of Section 2. To
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this end, we fix d ∈ N and use the notation H := R
d for convenience. We denote by {e1, . . . , ed} ⊂

R
d the canonical basis of H. To approximately solve LCPs by ProxNets, and to introduce a

numerical LCP solution map, we introduce the scalar and vector-valued Rectified Linear Unit
(ReLU) activation function.

Definition 5.1. The scalar ReLU activation function ̺ is defined as ̺ : R → R, x 7→ max(x, 0).
The component-wise ReLU activation in R

d is given by

̺(d) : Rd → R
d, x 7→

d∑

i=1

̺((x, ei)H)ei. (20)

Remark 5.2. The scalar ReLU activation function ̺ satisfies ̺ = proxι[0,∞)
with ι[0,∞) ∈ Γ0(R)

(see [5, Example 2.6]). This in turn yields ̺(d) ∈ A(Rd) for any d ∈ N by [5, Proposition 2.24].

Example 5.3 (PJORNet). Consider the LCP (18) with matrix A and triangular decomposition

A = D+ L+U, (21)

where D ∈ R
d×d contains the diagonal entries of A, and L,U ∈ R

d×d are the (strict) lower and
upper triangular parts of A, respectively. The projected Jacobi (PJOR) overrelaxation method to
solve LCP (18) is given as:

Algorithm 1 Projected Jacobi overrelaxation method

Given: initial guess x0 ∈ R
d, relaxation parameter ω > 0 and tolerance ε > 0.

1: for k = 0, 1, 2, . . . do
2: xk+1 = max

(
(Id − ωD−1A)xk + ωD−1c, 0

)

3: if ‖xk+1 − xk‖2 < ε then

4: return xk+1

5: end if

6: end for

The max-function in Algorithm 1 acts component-wise on each entry of a vector in R
d. Hence,

one iteration of the PJOR may be expressed as a ProxNet in Model (3) with m = 1, λ = 1 and
̺(d) from Equation (20) as

ΦPJOR : Rd → R
d, x 7→ T1(x) := ̺(d)((Id − ωD−1A)︸ ︷︷ ︸

=:W1

x+ ωD−1c︸ ︷︷ ︸
:=b1

).

If A satisfies (19) for constants C+ ≥ C− > 0, it holds that

‖W1‖2L(H) = ‖Id − ωD−1A‖22
= sup
x∈Rd,‖x‖2=1

x⊤x− ωx⊤D−1(A⊤ +A)x+ ω2(xD−1A)⊤D−1Ax

≤ 1− 2ω min
i∈{1,...,d}

1

Aii
C− + ω2 max

i∈{1,...,d}

1

A2
ii

‖A‖22

≤ 1− 2ω
C−

C+
+ ω2 ‖A‖22

C2
−

=: Λ(ω).

The choice ω∗ := C3
−/(C+‖A‖22) minimizes Λ such that Λ(ω∗) < 1. Moreover, Λ(0) = 1, Λ is

strictly decreasing on [0, ω∗], and increasing for ω > ω∗. Hence, there exists ω > 0 such that for
any ω ∈ (0, ω) the mapping ΦPJOR : Rd → R

d is a contraction. An application of Theorem 3.2
then shows that Algorithm (1) converges linearly for suitable ω > 0 and any initial guess x0. In
the special case that A is strictly diagonally dominant, choosing ω = 1 is sufficient to ensure
convergence, i.e., no relaxation before the activation is necessary.
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Algorithm 2 Projected successive overrelaxation algorithm

Given: initial guess x0 ∈ R
d, relaxation parameter ω > 0 and tolerance ε > 0.

1: for k = 0, 1, 2, . . . do
2: for i = 1, 2, . . . , d do

3: yk+1
i = 1

Aii

(
ci −

∑i−1
j=0 Aijx

k+1
j −∑d

j=i+1 Aijx
k
j

)

4: xk+1
i = max((1− ω)xki + ωyk+1

i , 0)
5: end for

6: if ‖xk+1 − xk‖2 < ε then

7: return xk+1

8: end if

9: end for

Example 5.4 (PSORNet). Another popular algorithm to numerically solve LCPs is the projected
successive overrelaxation (PSOR) method in Algorithm 2.

To represent the PSOR-iteration by a ProxNet as in (3), we use the scalar ReLU activation ̺
from Definition 5.1 and and define for i ∈ {1, . . . , d}

Ri : R
d → R

d, x 7→ ̺((x, ei)H)ei +

d∑

j=1, j 6=i

xjej . (22)

In contrast to ̺(d) in Equation (20), the activation operator Ri takes the maximum only with re-
spect to the i-th entry of the input vector. Nevertheless, Ri ∈ A(Rd) holds again by [5, Proposition
2.24]. Now define bi ∈ R

d and Wi ∈ R
d×d by

bi = (0, . . . , 0, ω
ci
Aii︸ ︷︷ ︸

i-th entry

, 0, . . . , 0), (Wi)lj =





1− ω l = j = i,

1 l = j ∈ {1, . . . , d} \ {i},
−ωAij

Aii
, l = i, j ∈ {1, . . . , d} \ {i},

0, elsewhere,

and let Ti(x) := Ri(Wix+ bi) for x ∈ R
d. Given the k-th iterate xk and xk+1

1 , . . . , xk+1
i−1 from the

inner loop of Algorithm 2, it follows for zk,i−1 := (xk+1
1 , . . . , xk+1

i−1 , x
k
i , . . . , x

k
d)

⊤ that

xk+1
i = zk,ii , zk,i = Ti(z

k,i−1), i ∈ {1, . . . , d}, k ∈ N. (23)

As zk−1,d = zk,0 = xk for k ∈ N, this shows xk+1 = ΦPSOR(x
k) for

ΦPSOR : Rd → R
d, x 7→ (Td ◦ · · · ◦ T1)(x). (24)

Provided (19) holds, we derive similarly to Example 5.3

‖Wi‖22 = sup
x∈Rd,‖x‖2=1

x⊤x− 2
ω

Aii
x⊤A[i]xi +

ω2

A2
ii

(x⊤A[i])
2

≤ 1− 2ω
1

Aii
C− +

ω2

A2
ii

‖A‖2,

where A[i] denotes the i-th row of A. Hence, ω∗ := C3
−/(C+‖A‖22) is sufficient to ensure that

ΦPSOR is a contraction, and convergence to a unique fixed-point follows as in Theorem 3.2.

Remark 5.5. Both, the PJORNet and PSORNet from Examples 5.3 and 5.4 may be augmented
as in 3.4 to take c ∈ R

d as additional input vector, and therefore to solve the LCP (18) for
varying c. That is, concatenation of the PJORNet/PSORNet again yields an approximation to
the solution operator ORHS : Rd → R

d, c 7→ x associated to the LCP (18) for fixed A. This is of
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particular interest, for instance, in the valuation of American options, where a collection of LCPs
with varying model parameters has to be solved, see [14, Chapter 5] and the numerical examples
in Section 6. Recall that ci := H′〈f, vi〉H − a(g, vi) if the matrix LCP stems from a discretized
obstacle problem as introduced in the beginning of this section. Hence, by varying c it is possible
to modify the right hand side f , as well as the obstacle g, of the underlying variational inequality
(cf. Example 4.4 and Subsection 6.3). ✷

5.3 Solution of Parametric Matrix LCPs by ProxNets

In this section we construct ProxNets that take arbitrary LCPs (A, c) in finite-dimensional, Eu-
clidean space as input, and output approximations of the solution x to (18) with any prescribed
accuracy. Consequently, these ProxNets realize approximate data-to-solution operators

O : {A ∈ R
d2 | there are C−, C+ > 0 s.t. A satisfies (19)} × R

d → R
d, (A, c) 7→ x. (25)

The idea is to construct a NN that realizes Algorithm (1) that achieves prescribed error threshold
ε > 0 uniformly for LCP data (A, c) from a set AΘ, meaning the weights of the NN may not
depend on A as in the previous section. To this end, we use that the multiplication of real numbers
may be emulated by ReLU-NNs with controlled error and growth bounds on the layers and size
of the ReLU NN. This was first shown in [27], and subsequently extended to the multiplication of
an arbitrary number n ∈ N of real numbers in [24].

Proposition 5.6. [24, Proposition 2.6] For any δ0 ∈ (0, 1), n ∈ N and Θ ≥ 1, there exists a

ProxNet
∏̃n

δ0,Θ
: Rn → R of the form (2) such that

sup
(x1,...,xn)∈[−Θ,Θ]n

∣∣∣∣∣

n∏

i=1

xi −
∏̃n

δ0,Θ
(x1, . . . , xn)

∣∣∣∣∣ ≤ δ0,

ess sup
(x1,...,xn)∈[−Θ,Θ]n

sup
j∈{1,...,n}

∣∣∣∣∣∂xj

n∏

i=1

xi − ∂xj

∏̃n

δ0,Θ
(x1, . . . , xn)

∣∣∣∣∣ ≤ δ0,

(26)

where ∂xj
denotes the weak derivative with respect to xj. The neural network

∏̃n

δ0,Θ
uses only

ReLUs as in Definition 5.1 as proximal activations. There exists a constant C, independent of

δ0 ∈ (0, 1), n ∈ N and Θ ≥ 1, such that the number of layers mn,δ0,Θ ∈ N of
∏̃n

δ0,Θ
is bounded by

mn,δ0,Θ ≤ C

(
1 + log(n) log

(
nΘn

δ0

))
. (27)

Remark 5.7. For our purposes, it is sufficient to consider the cases n ∈ {2, 3}, therefore we
assume without loss of generality that there is a constant C, independent of δ0 ∈ (0, 1) and Θ ≥ 1,
such that for n ∈ {2, 3} it holds

mn,δ0,Θ ≤ C

(
1 + log

(
Θ

δ0

))
.

Moreover, we may assume without loss of generality thatm2,δ0,Θ = m3,δ0,Θ, as it is always possible
to add ReLU-layers that emulate the identity function to the shallower network (see [24, Section
2] for details).

With this at hand, we are ready to prove a main result of this section.

Theorem 5.8. Let Θ ≥ 2 be a fixed constant, d ≥ 2, and define for any given Θ ≥ 2 the set

AΘ :=

{
(A, c) ∈ R

d×d × R
d
∣∣∣ A satisfies (19) with Θ ≥ C+ ≥ C− ≥ Θ−1 > 0,

and ‖c‖∞ ≤ Θ

}
. (28)
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For the triangular decomposition A = D+L+U as in (21), define zA := vec(D−1+L+U) ∈ R
d2 ,

where vec : Rd×d → R
d2 is the row-wise vectorization of a R

d×d-matrix. Let x∗ be the unique
solution to the LCP (A, c) and let x̃0 ∈ R

d be arbitrary such that ‖x̃0‖2 ≤ Θ.
For any ε > 0 there exists a ProxNet

Φ̃ : Rd ⊕ R
d2 ⊕ R

d → R
d (29)

as in (9) and a kε ∈ N such that
‖x∗ − x̃kε‖2 ≤ ε

holds for the sequence x̃k := Φ̃(x̃k−1, zA, c) generated by Φ̃ and any tuple (A, c)∈ AΘ. Moreover,

kε ≤ C1(1 + | log(ε)|), where C1 > 0 only depends on Θ and Φ̃ has m ≤ C2(1 + | log(ε)|+ log(d))
layers, where C2 > 0 is independent of Θ.

Proof. Our strategy is to approximate ΦPJOR from Example 5.3 for given (A, c) ∈ ∈ AΘ by

Φ̃(·, zA, c). We achieve this by constructing Φ̃ based on the approximate multiplication NNs from

Proposition 5.6 and show that ΦPJOR and Φ̃ satisfy Assumption 3.3 to apply the error estimate
from Theorem 3.5.

We start by defining the map Φ̃ : Rd ⊕ R
d2 ⊕ R

d → R
d via

Φ̃(x, zA, c)i = max


(1− ω)xi − ω

∑

j=1,j 6=i

∏̃3

δ0,Θ

(
xj ,

1

Aii
,Aij

)
+ ω

∏̃2

δ0,Θ

(
1

Aii
, ci

)
, 0


 ,

for i ∈ {1, . . . , d}, 0 < ω := Θ−6 ≤ C3
−

C+‖A‖2
2
= ω∗ and δ0 ∈ (0, d−3/2].

We show in the following that Φ̃ is indeed a ProxNet. To bring the input into the correct order
for multiplication, we define for i ∈ {1, . . . , d} the binary matrix W(i) ∈ R

(2d+1)×(d2+2d) by

W
(i)
lj :=





1 l = j ∈ {1, . . . , d},
1 l ∈ {d+ 1, . . . , 2d}, j = d+ d(i− 1) + (l − d),

1 l = 2d+ 1, j = d+ d2 + i,

0 elsewhere.

Hence, we obtain

W(i)



x
zA
c


 =

(
x⊤, (Aij)j<i ,

1

Aii
, (Aij)j>i , ci

)⊤

.

Now let e1, . . . , e2d+1 ⊂ R
2d+1 be the canonical basis of R

2d+1 and define E
(i)
i := e⊤i ∈

R
1×(2d+1), E

(i)
j := [ej ed+i ed+j ]

⊤ ∈ R
3×(2d+1) for j ∈ {1, . . . , d}\{i} and E

(i)
d+1 := [ed+i e2d+1]

⊤ ∈
R

2×(2d+1). By Remark 5.7, we may assume that
∏̃3

δ0,Θ
and

∏̃2

δ0,Θ
have an identical number of lay-

ers, denoted bymδ0,Θ ∈ N. Moreover, it is straightforward to construct a ProxNet Idmδ0,Θ
: R → R

with mδ0,Θ layers that corresponds to the identity map, i.e. Idmδ0,Θ
(x) = x for all x ∈ R. We use

the concatenation from Definition 2.3 to define

Φ̃
(i)
i := Idmδ0,Θ

• (E(i)
i W(i)) : Rd

2+2d → R

Φ̃
(i)
j :=

∏̃2

δ0,Θ
• (E(i)

j W(i)) : Rd
2+2d → R, j ∈ {1, . . . , d} \ {i},

Φ̃
(i)
d+1 :=

∏̃3

δ0,Θ
• (E(i)

d+1W
(i)) : Rd

2+2d → R.

Note that this yields

Φ̃
(i)
i (x, zA, c) = xi, Φ̃

(i)
j (x, zA, c) =

∏̃3

δ0,Θ

(
xj ,

1

Aii
,Aij

)
, Φ̃

(i)
d+1(x, zA, c) =

∏̃2

δ0,Θ

(
1

Aii
, ci

)
.
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Furthermore, we set m1 := mδ0,Θ + 1 and define T̃
(+,i)
m1 : Rd

2+d → R, x 7→ ̺(W(+,i)x), where
̺ : R → R is the (scalar) ReLU activation and W(+,i) ∈ R

1×(d+1) is given by

W
(+,i)
j :=





1− ω j = i,

−ω j ∈ {1, . . . , d} \ {i},
ω j = d+ 1.

As Φ̃
(i)
1 , . . . , Φ̃

(i)
d+1 have the same input dimension, the same number of mδ0,Θ layers, and no

skip connections, we may parallelize as in Definition 2.5 to ensure

Φ̃(x, zA, c)i =max


(1− ω)xi − ω

∑

j=1,j 6=i

∏̃3

δ0,Θ

(
xj ,

1

Aii
,Aij

)
+ ω

∏̃2

δ0,Θ

(
1

Aii
, ci

)
, 0




=
(
T̃ (+,i)
m1

• P
(
Φ̃

(i)
1 , . . . , Φ̃

(i)
d+1

))
(x, zA, c).

It holds that Φ̃i := T̃
(+,i)
m1 •P

(
Φ̃

(i)
1 , . . . , Φ̃

(i)
d+1

)
is a ProxNet as in Equation (9) with Φ̃i : R

d2+2d → R

and m1 = mδ0,Θ + 1 layers for any i ∈ {1, . . . , d}. We parallelize once more and obtain that

Φ̃ := P (Φ̃1, . . . , Φ̃d) is a ProxNet with mδ0,Θ+1 layers that may be written as Φ̃ = T̃
(1)
1 ◦ · · · ◦ T̃ (1)

m1

for suitable one-layer networks T̃
(1)
1 : Rdj−1 → R

dj and dimensions dj ∈ N for j ∈ {1, . . . ,m1}
such that d0 = d2 + 2d and dm1

= d.
We now fix (A, c)∈ AΘ and let ΦPJOR := R(W1 · + b1) be as in Example 5.3 with ω = Θ−6,

W1 = Id − ωD−1A and b1 := ωD−1c. This shows that ΦPJOR has Lipschitz constant LΦ =
‖W1‖2 ≤

√
1− 2Θ−4 +Θ−8 = 1−Θ−4 < 1 and ‖b1‖2 ≤ ωΘ2 ≤ Θ−4.

Note that |ci|, 1/Aii, |Aij | ≤ Θ for any i, j ∈ {1, . . . , d}. Therefore, Proposition 5.6 yields for
x̃0 := (zA, c) and any x ∈ R

d with ‖x‖∞ ≤ Θ that

‖Φ(x)− Φ̃(x, zA, c)‖22
=‖T1(x)− T̃1(x, zA, c)‖22

=ω2
d∑

i=1


 ci
Aii

−
∏̃2

δ0,Θ

(
ci,

1

Aii

)
−

d∑

j=1,j 6=i

Aij

Aii
xj −

∏̃3

δ0,Θ

(
Aij ,

1

Aii
, xj

)


2

≤ω2d3δ20 .

Hence, since δ0 ∈ (0, d−3/2] and ω = Θ−6, ΦPJOR and Φ̃ satisfy Assumption 3.3 with

L̃ := 1−Θ−4 ∈ (0, 1), δ := ωd3/2δ0 ≥ 0, Θ1 := Θ ≥ 2,

Θ0 := Θ1 − ‖b1‖2 − δ ≥ Θ−Θ−4 − ωd3/2δ0 ≥ 123

64
,

Θ2 := Θ0 − δ/(1− L̃) ≥ Θ0 −
Θ−6

Θ−4
≥ 123

64
− 1

4
> 0.

Theorem 3.5 then yields that there exists a constant C > 0 such that for all k, δ holds

‖x∗ − x̃k‖H ≤ C
(
L̃k + δ

)
.

Here C ≤ max(2Θ0, 1)/(1− L̃) ≤ 2Θ5 is independent of k. Given ε > 0, we choose

kε =:

⌈
log(ε)− log(2C)

log(L̃)

⌉
, δ0 :=

min
(
1, ε

2Cω

)

d3/2
≥ min

(
1, εΘ4

)

d3/2

to ensure ‖x∗ − x̃kε‖ ≤ ε. Hence, kε ≤ C1(1 + | log(ε)|), where C1 = C1(Θ) > 0 is independent
of d. Moreover, Inequality (27) in Proposition 5.6 and the choice δ0≤ d−3/2 show that mδ0,Θ ≤
C2(1 + | log(ε)| + log(d)), where C2 > 0 is independent of Θ. The claim follows since Φ̃ has
m1 = mδ0,Θ + 1 layers by construction.
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For fixed Θ and ε, the ProxNets Φ̃ emulate one step of the PJOR algorithm for any LCP
(A, c) ∈ AΘ and a given initial guess x̃0. This in turn allows to approximate the data-to-solution
operator O from (25) to arbitrary accuracy by concatenation of suitable ProxNets. The precise
statement is given in the main result of this section:

Theorem 5.9. Let Θ ≥ 2 be fixed, let AΘ be given as in (28), and let the data-to-solution operator

O be given as in (25). Then, for any ε > 0, there is a ProxNet Õε : AΘ → R
d such that for any

LCP (A, c) ∈ AΘ there holds

‖O(A, c)− Õε(A, c)‖2 ≤ ε.

Furthermore, let ‖·‖F denote the Frobenius norm on R
d×d. There is a constant C̃ > 0, depending

only on Θ and d, such that for any ε > 0 and any two (A(1), c(1)), (A(2), c(2)) ∈ AΘ there holds

‖Õε(A(1), c(1))− Õε(A
(2), c(2))‖2 ≤ C̃

(
‖A(1) −A(2)‖F + ‖c(1) − c(2)‖2

)
. (30)

We give an explicit construction of the approximate data-to-solution operator Õε in the proof
of Theorem 5.9 at the end of this section. To show the Lipschitz continuity of Õε with respect to
the parametric LCPs in AΘ, we derive an operator version of the so-called Strang Lemma:

Lemma 5.10. Let Θ ≥ 2, d ≥ 2, and let (A(1), c(1)), (A(2), c(2)) ∈ AΘ. For l ∈ {1, 2}, let
A(l) = D(l)+L(l)+U(l) be the decomposition of A(l) as in (21) and define zA(l) := vec((D(l))−1+

L(l) + U(l)) ∈ R
d2 . For target emulation accuracy ε > 0, let Φ̃ be the ProxNet as in (29), let

x̃0 ∈ R
d be such that ‖x̃0‖2 ≤ Θ, and define the sequences

x̃(l),k := Φ̃(x̃(l),k−1, zA(l) , c(l)), k ∈ N, x̃(l),0 := x̃0, l ∈ {1, 2}. (31)

Then there is a constant C̃ > 0, depending only on Θ and d, such that for any k ∈ N0 and
arbitrary, fixed ε > 0 it holds that

‖x̃(1),k − x̃(2),k‖2 ≤ C̃
(
‖A(1) −A(2)‖F + ‖c(1) − c(2)‖2

)
. (32)

Proof. By construction of Φ̃ in Theorem 5.8 we have for x ∈ R
d, l ∈ {1, 2}, and i ∈ {1, . . . , d} that

Φ̃(x, zA(l) , c(l))i = max


(1− ω)xi − ω

d∑

j=1,j 6=i

∏̃3

δ0,Θ

(
xj ,

1

A
(l)
ii

,A
(l)
ij

)
+ ω

∏̃2

δ0,Θ

(
1

A
(l)
ii

, c
(l)
i

)
, 0


 .

Therefore, we estimate by the triangle inequality

|Φ̃(x, zA(1) , c(1))i − Φ̃(x, zA(2) , c(2))i|

≤ω
d∑

j=1,j 6=i

∣∣∣∣∣
∏̃3

δ0,Θ

(
xj ,

1

A
(1)
ii

,A
(1)
ij

)
−
∏̃3

δ0,Θ

(
xj ,

1

A
(2)
ii

,A
(2)
ij

)∣∣∣∣∣

+ ω

∣∣∣∣∣
∏̃2

δ0,Θ

(
1

A
(1)
ii

, c
(1)
i

)
−
∏̃2

δ0,Θ

(
1

A
(2)
ii

, c
(2)
i

)∣∣∣∣∣

≤ω
d∑

j=1,j 6=i

∣∣∣∣∣
∏̃3

δ0,Θ

(
xj ,

1

A
(1)
ii

,A
(1)
ij

)
−
∏̃3

δ0,Θ

(
xj ,

1

A
(1)
ii

,A
(2)
ij

)∣∣∣∣∣

ω

d∑

j=1,j 6=i

∣∣∣∣∣
∏̃3
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Since (A(l), c(l)) ∈ AΘ for l ∈ {1, 2}, it holds for any i, j ∈ {1, . . . , d} that 1/A
(l)
ii , A

(l)
ij , c

(l)
i ∈

[−Θ,Θ]. Hence, for any x with ‖x‖∞ ≤ Θ we obtain by Θ ≥ 2 and the second estimate in (26)

|Φ̃(x, zA(1) , c(2))i − Φ̃(x, zA(2) , c(2))i|

≤ω
d∑

j=1,j 6=i

(
δ0 +

∣∣∣∣∣
xj

A
(1)
ii

∣∣∣∣∣

) ∣∣∣A(1)
ij −A
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ij
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− 1
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+ ω
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A
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ij
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i
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(
δ0 + |c(2)i |
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A
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ii
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A
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
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ij −A
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ij
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We have used the mean-value theorem to obtain the bound
∣∣∣∣∣

1

A
(1)
ii

− 1

A
(2)
ii

∣∣∣∣∣ ≤ Θ2
∣∣∣A(1)

ii −A
(2)
ii

∣∣∣

in the second last inequality and the Cauchy-Schwarz inequality in the last step. We recall from the
proof of Theorem 5.8 that ω = Θ−6 and δ0 ≤ d−3/2, hence, there is a constant C = C(Θ, d) > 0,
depending only on the indicated parameters, such that for any x ∈ R

d with ‖x‖∞ ≤ Θ it holds

‖Φ̃(x, zA(1) , c(1))− Φ̃(x, zA(2) , c(2))‖2 ≤ C
(
‖A(1) −A(2)‖F + ‖c(1) − c(2)‖2

)
. (33)

Moreover, for any x, y ∈ R such that ‖x‖∞, ‖y‖∞ ≤ Θ, it holds by the mean-value theorem
and the second estimate in (26)

|Φ̃(x, zA(1) , c(1))i − Φ̃(y, zA(1) , c(1))i|
≤
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+
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+
∣∣((Id − ωD−1A)(x− y))i
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≤ωδ0
d∑

j=1,j 6=i

|xj − yj |+
∣∣((Id − ωD−1A)(x− y))i

∣∣ .

Hence, Young’s inequality yields for any ǫ > 0 that

‖Φ̃(x, zA(1) , c(1))− Φ̃(y, zA(1) , c(1))‖22

≤
d∑

i=1

(
1 +

1

ǫ

)
ω2δ20




d∑

j=1,j 6=i

|xj − yj |




2

+ (1 + ǫ)‖(Id − ωD−1A)(x− y)‖22

≤
((

1 +
1

ǫ

)
ω2δ20d(d− 1) + (1 + ǫ)‖Id − ωD−1A‖22

)
‖x− y‖22,

(34)
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where we have used the Cauchy-Schwarz inequality in the last step. From the proof of Theorem 5.8
we have as before that ω = Θ−6, δ0 ≤ d−3/2, and, furthermore ‖Id−ωD−1A‖2 ≤ 1−Θ4. Setting

ǫ := Θ−4 therefore shows that Φ̃(·, zA(1) , c(1)) : Rd → R
d is a contraction on (Rd, ‖ · ‖2) with

Lipschitz constant L̃1 > 0 bounded by

L̃1 ≤
((
Θ−12 +Θ−8

)
d−1 + (1−Θ−8)

)1/2 ≤
√

1 + Θ−12 − Θ−8

2
≤
√

1− 7

16
Θ−8 ∈ (0, 1). (35)

Note that we have used d ≥ 2 and Θ ≥ 2 in the last two steps to obtain (35). Now let (x̃(l),k)
for l ∈ {1, 2} and k ∈ N0 denote the iterates as defined in (31) and recall from the proof of
Theorem 3.5 that ‖x̃(l),k‖∞ ≤ ‖x̃(l),k‖2 ≤ Θ. Therefore, we may apply the estimates in (33) and
(34) to obtain

‖x̃(1),k − x̃(2),k‖2 ≤ ‖x̃(1),k − Φ̃(x̃(2),k−1, zA(1) , c(1))‖2 + ‖Φ̃(x̃(2),k, zA(1) , c(1))− x̃(2),k‖2
≤ L̃1‖x̃(1),k−1 − x̃(2),k−1‖2 + C

(
‖A(1) −A(2)‖F + ‖c(1) − c(2)‖2

)

≤ C
(
‖A(1) −A(2)‖F + ‖c(1) − c(2)‖2

) k−1∑

j=1

L̃j1

≤ C

1− L̃1

(
‖A(1) −A(2)‖F + ‖c(1) − c(2)‖2

)
.

The claim follows for C̃ := C

1−L̃1
<∞, since C = C(Θ, d), and L̃1 is bounded independently with

respect to ε and k by (35).

Proof of Theorem 5.9. For fixed Θ and ε, let the ProxNet Φ̃ : Rd⊕R
d2 ⊕R

d → R
d and kε ∈ N be

given as in Theorem 5.8. We define the operator Õε by concatenation of Φ̃ via

Õε(A, c) :=


Φ̃(·, zA, c) • · · · • Φ̃(·, zA, c)︸ ︷︷ ︸

kε-fold concatenation


 (0), (A, c) ∈ AΘ.

Note that the initial value x̃0 := 0 ∈ R
d satisfies ‖x̃0‖∞ ≤ Θ for arbitrary Θ > 0 1 . Thus,

applying Theorem 5.8 with x̃0 = 0 yields for any LCP (A, c) ∈ AΘ with solution x∗ ∈ R
d that

‖O(A, c)− Õε(A, c)‖2 = ‖x∗ − x̃kε‖2 ≤ ε.

To show the second part of the claim, we set x̃1,0 = x̃2,0 := 0 and observe that x(1),kε , x(2),kε in
Lemma 5.10 are given by x(l),kε = Õε(A

(l), c(l)) for l ∈ {1, 2}. Hence, the estimate (30) follows
immediately for any ε > 0 and (A(1), c(1)), (A(2), c(2)) ∈ AΘ from (32), by setting k = kε.

6 Numerical Experiments

6.1 Valuation of American Options: Black-Scholes Model

To illustrate an application for ProxNets, we consider the valuation of an American option in
the Black-Scholes model. The associated payoff function of the American option is denoted by
g : R≥0 → R≥0 and we assume a time horizon T = [0, T ] for T > 0. In any time t ∈ T and for
any spot price x0 ≥ 0 of the underlying stock, the value of the option is denoted by V (t, x) and

1We could have also used any other x̃0 6= 0 ∈ R
d such that ‖x̃0‖∞ ≤ Θ to define Õε for given Θ and ε, but

decided to fix the Θ-independent initial guess x̃0 := 0 for simplicity.
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defines a mapping V : T × R≥0 → R≥0. Changing to time-to-maturity and log-price yields the
map v : T × R → R≥0, (t, x) 7→ V (T − t, ex), which is the solution to the free boundary value
problem

∂tv −
σ2

2
∂xxv −

(
r − σ2

2

)
∂xv + rv ≥ 0 in (0, T ]× R,

v(t, x) ≥ g(ex) in (0, T ]× R,
(
∂tv −

σ2

2
∂xxv −

(
r − σ2

2

)
∂xv + rv

)
(g − v) = 0 in (0, T ]× R,

v(0, ex) = g(ex) in R,

(36)

see, e.g., [14, Chapter 5.1]. The parameters σ > 0 and r ∈ R are the volatility of the underlying
stock and the interest rate, respectively. We assume that g ∈ H1(R≥0) and construct in the
following a ProxNet-approximation to the payoff-to-solution operator at time t ∈ T given by

Opayoff,t : H
1(R≥0) → H1(R), g 7→ v(t, ·). (37)

As V and v, and therefore Opayoff,t, are in general not known in closed-form, a common
approach to approximate v for a given payoff function g is to restrict Problem (36) to a bounded
domain D ⊂ R and to discretize D by linear finite elements based on d equidistant nodal points.
The payoff function is interpolated with respect to the nodal basis and we collect the respective
interpolation coefficients of g in the vector g ∈ R

d. The time domain [0, T ] is split by M ∈ N

equidistant time steps and step size ∆t = T/M , the temporal derivative is approximated by a
backward Euler approach. This space-time discretization of the free boundary problem (36) leads
to a sequence of discrete variational inequalities: Given g ∈ R

d and u0 := 0 ∈ R
d find um ∈ R

d

such that for m ∈ {1, . . . ,M} it holds

Aum+1 ≥ Fm, um+1 ≥ 0, (Aum+1 − Fm)⊤um+1 = 0. (38)

The LCP (38) is defined by the matricesA := M+∆tABS ∈ R
d×d,ABS := σ2

2 S+(σ
2

2 −r)B+rM ∈
R
d×d and right hand side Fm := −∆t(ABS)⊤g + Mum ∈ R

d. The matrices S,B,M ∈ R
d×d

represent the finite element stiffness, advection and mass matrices, hence A is tri-diagonal and

asymmetric if σ2

2 6= r. The true value of the options at time km is approximated at the nodal
points via v(∆tm, ·) ≈ um + g. This yields the discrete payoff-to-solution operator at time ∆tm
defined by

Opayoff,∆tm : Rd 7→ R
d, g 7→ um + g, m ∈ {1, . . . ,M}. (39)

Problem (38) may be solved for all m using a shallow ProxNet

Φ : Rd ⊕ R
d ⊕ R

d → R
d, x 7→ R(W1x+ b1),

with ReLU-activation R = ̺(d) : Rd → R
d. The architecture of Φ allows to take g and um as

additional inputs in each step, hence we train only one shallow ProxNet that may be used for any
payoff function g and every time horizon T. Therefore, we learn the payoff-to-solution operator
Opayoff,t associated to Problem (36) by concatenating Φ. The parametersW1 ∈ R

d×3d and b1 ∈ R
d

are learned in the training process and shall emulate one step of the PJOR Algorithm 1, as well
as the linear transformation (g, um) 7→ Fm to obtain the the right hand side in (38). Therefore, a

total of 3d2 + d parameters have to be learned in each example.
For our experiments we use the Python-based machine learning package PyTorch2. All exper-

iments are run on a notebook with 8 CPUs, each with 1.80 GHz, and 16 GB memory. To train

Φ, we sample Ns ∈ N input data points x(i) := (x
(i)
0 , g(i), u(i)) ∈ R

3d, i ∈ {1, . . . , Ns}, from a

3d-dimensional standard-normal distribution. The output-training data samples y(i) consist of

one iteration of Algorithm 1 with ω = 1, initial value x0 := x
(i)
0 , with A as in (38) and right hand

side given by c := −∆t(ABS)⊤g(i) +Mu(i) ∈ R
d. We draw a total of Ns = 2 · 104 input-output

2https://pytorch.org/
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Figure 1: Decay of the loss function for d = 600 (left) and d = 1000 (right). In all of our experiments the training
loss falls below the threshold of 10−12 before the 250-th epoch, and training is stopped early.

samples, use half of the data for training, and the other half for validation. In the training process,
we use mini-batches of size Nbatch = 100 and the Adam Optimizer [18] with initial learning rate
10−3, which is reduced by 50% every 20 epochs. As error criterion we use the mean-squared error
(MSE) loss function, which is for each batch of inputs ((x(ij), g(ij), u(ij)), j = 1, . . . , Nbatch) and

outputs (y(ij), j = 1, . . . , Nbatch) given by

Loss
(
(x(i1), g(i1), u(i1)), . . . , (x(iNbatch

), g(iNbatch
), u(iNbatch

))
)

:=
1

Nbatch

Nbatch∑

j=1

‖Φ(x(ij), g(ij), u(ij))− y(ij)‖22.

We stop the training process if the loss function falls below the tolerance 10−12 or after a maximum
of 300 epochs. The number of spatial nodal points d that determines the size of the matrix LCPs
are varied throughout our experiments in d ∈ {200, 400, . . . , 1000}. We choose the Black-Scholes
parameters σ = 0.1, r = 0.01 and T = 1. Spatial and temporal refinement are balanced by using
M = d time steps of size ∆t = T/M = 1/d. The decay of the loss-curves is depicted in Figure 1,
where the reduction of the learning rate every 20 epochs explains the characteristic ”steps” in
the decay. This stabilizes the training procedure, and we reached a loss of O(10−12) for each d
before the 250-th epoch. Once training is terminated, we compress the resulting weight matrix
of the trained single-layer ProxNet by setting all entries with absolute value lower than 10−7 to
zero. This speeds up evaluation of the trained network, while the resulting error is negligible. As
the matrix W1 in the trained ProxNet is close to the ”true” tri-diagonal matrix A from (38), this
eliminates most of the ProxNet’s O(d2) parameters, and only O(d) non-trivial entries remain.

The relative validation error is estimated based on the Nval := 104 validation samples via

err2val :=

∑Nval

j=1 ‖Φ(x(ij), g(ij), u(ij))− y(ij)‖22∑Nval

j=1 ‖y(ij)‖22
. (40)

The validation errors and training times for each dimension are found in Table 1, and confirm the
successful training of the ProxNet. Naturally, training time increases in d, while the validation
error is small of order O(10−6) for all d.

To test the trained neural networks on Problem (38) for the valuation of an American option,
we consider a basket of 20 put options with payoff function gi(x) := max(Ki − x, 0), and strikes
Ki = 10+90 i

20 for i ∈ {1, . . . , 20}. Hence, we use the same ProxNet for 20 different payoff vectors
g
i
. Note that we did not train our networks on payoff functions, but on random samples, and

thus we could in principle consider an arbitrary basket containing different types of payoffs. The
restriction to put options is for the sake of brevity only. We denote by um,i for m ∈ {0, . . . ,M}
the sequence of solutions to (38) with payoff vector g

i
and u0,i = 0 ∈ R

d for each i.
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d 200 400 600 800 1000

training time in sec. 6.06 39.38 90.69 311.04 466.87
errval 1.15 · 10−6 1.08 · 10−6 8.88 · 10−7 1.04 · 10−6 1.36 · 10−6

Table 1: Training times and validation errors for the ProxNets in the Black-Scholes model in several dimensions,
as estimated in (40) based on Nval = 104 samples. The relative error remains stable with increasing problem
dimension.

Concatenating Φ k times yields an approximation to the discrete operator Opayoff,∆tm in (39)
for any m ∈ {1, . . . ,M} via

Õpayoff,∆tm : Rd ⊕ R
d ⊕ R

d → R
d, (x, ũm, g) 7→


Φ(·, g, ũm) • · · · • Φ(·, g, ũm)
︸ ︷︷ ︸

k-fold concatenation


 (x).

An approximating sequence of (um,i,m ∈ {0, . . . ,M}) is then in turn generated by

ũm+1,i := Õpayoff,∆tm(ũm,i, ũm,i, g), ũ0,i := u0,i = 0 ∈ R
d.

That is, ũm+1,i is given by iterating Φ k times with initial input x0 = ũm,i ∈ R
d and fixed inputs

and g
i
and ũm,i. We stop for each m after k iterations if two subsequent iterates xk and xk−1

satisfy ‖xk − xk−1‖2 < 10−3.
The reference solution uM,i is calculated by a Python-implementation that uses the Primal-

Dual Active Set (PDAS) Algorithm from [15] to solve LCP (38) with tolerance ε = 10−6 in every
time step. Compared to a fixed-point iteration, the PDAS method converges (locally) superlinear
according to [15, Theorem 3.1], but has to be called seperately for each payoff function gi. In
contrast, the ProxNet Φ may be iterated for the entire batch of 20 payoffs at once in PyTorch. We
measure the relative error

erri,rel := ‖ũM,i − uM,i‖2/‖uM,i‖2
for each payoff vector g

i
at the end point T = ∆tM = 1 and report the sample mean error

errrel :=
1

20

20∑

i=1

erri,rel. (41)

Sample mean errors and computational times are depicted for d ∈ {200, 400, . . . , 1000} in Table 2,
where we also report the number of iterations k for each d to achieve the desired tolerance of 10−3.
The results clearly show that ProxNets significantly accelerate the valuation of American option
baskets, if compared to the standard, PDAS-based implementation. This holds true for any spatial
resolution, i.e., the number of grid points d, while the relative error is small of magnitude O(10−3)
or O(10−4). For d ≥ 600, we actually find that the combined times for training and evaluation of
ProxNets is below the runtime of the reference solution. We further observe that computational
times scale similarly for both, ProxNet and reference solution, in d. Hence, in our experiments,
ProxNets are computationally advantageous even for a fine resolution of d = 1000 nodal points.

6.2 Valuation of American Options: Jump-Diffusion Model

We generalize the setting of the previous subsection from the Black-Scholes market to an expo-
nential Lévy model. That is, the log-price of the stock evolves as a Lévy process, with jumps
distributed with respect to the Lévy measure ν : B(R) → [0,∞). The option value v (in log-price
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d 200 400 600 800 1000

errrel 2.15 · 10−4 7.89 · 10−4 1.52 · 10−3 2.41 · 10−3 3.48 · 10−3

iterations to tolerance 9 13 15 17 18
time ProxNet in sec. 0.26 1.16 6.23 15.06 30.45
time reference in sec. 4.37 33.17 142.01 350.86 761.10

Table 2: Relative errors and computational times of a ProxNet solver for a basket of American put options in
the Black-Scholes model. ProxNets significantly reduce computational time, while their relative error remains
sufficiently small for all d.

and time-to-maturity) is now the solution of a partial integro-differential inequality given by

∂tv −
σ2

2
∂xxv − γ∂xv +

∫

R

v(·+ z)− v − ∂xvν(dz) + rv ≥ 0 in (0, T ]× R,

v(t, x) ≥ g(ex) in (0, T ]× R,
(
∂tv −

σ2

2
∂xxv − γ∂xv +

∫

R

v(·+ z)− v − ∂xvν(dz) + rv

)
(g − v) = 0 in (0, T ]× R,

v(0, ex) = g(ex) in R.

(42)

Introducing jumps in the model hence adds a non-local integral term to Equation (36). The drift
is set to γ := −σ2/2−

∫
R
(ez − 1− z)ν(dz) ∈ R in order to eliminate arbitrage in the market. We

discretize Problem (42) by an equidistant grid in space and time as in the previous subsection,
for details, e.g., integration with respect to ν, we refer to [14, Chapter 10]. The space-time
approximation yields again a sequence of LCPs of the form

ALum+1 ≥ Fm, um+1 ≥ 0, (ALum+1 − Fm)⊤um+1 = 0, (43)

where AL := M + ∆tALevy ∈ R
d×d with ALevy := σ2

2 S + AJ , and the matrix AJ stems from
the integration of ν. A crucial difference to (38) is that AL is not anymore tri-diagonal, but a
dense matrix, due to the non-local integral term caused by the jumps. The drift γ and interest
rate r are transformed into the right hand side, such that Fm := −∆t(ALevy)⊤g

m
+Mum ∈ R

d,

where g
m

is the nodal interpolation of the transformed payoff gm(x) := gerkm(x − (γ + r)km).
The inverse transformation gives an approximation to the solution v of (42) at the nodal points
via v(km, · − (γ + r)T ) ≈ e−rTuM . We refer to [14, Chapter 10.6] for further details on the
discretization of American options in Lévy models.

The jumps are distributed according to the Lévy measure

ν(dz) = λpβ+e
−β+z1{z>0}(z) + λ(1− p)β−e

−β−z1{z<0}(z), z ∈ R. (44)

That is, the jumps follow an asymmetric, double-sided exponential distribution with jump intensity
λ = ν(R) ∈ (0,∞). We choose p = 0.7, β+ = 25, β− = 20 to characterize the tails of ν and set
jump intensity to λ = 1. We further use σ = 0.1 and r = 0.01 as in the Black-Scholes example.

We use the same training procedure and parameters as in the previous subsection to train the
shallow ProxNets. As only difference, we compress the weight matrix with tolerance 10−8 instead
of 10−7 (recall that AL is dense). This yields slightly better relative errors in this example, while
it does not affect the time to evaluate the ProxNets. Training times and validation errors are
depicted in Table 3, and indicate again a successful training. The decay of the training loss is for
each d very similar to Figure 1, and training is again stopped in each case before the 300-th epoch.

After training, we again concatenate the shallow nets to approximate the operator Opayoff,t

in (37), that maps the payoff function g to the corresponding option value v(t, ·) at any (discrete)
point in time. We repeat the test from Subsection 6.1 in the jump-diffusion model with the identical
basket of put options to test the trained ProxNets. The reference solution is again computed by
a PDAS-based implementation. The results for American options in the jump-diffusion model
are depicted in Table 4. Again, we see that the trained ProxNets approximated the solution v to
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d 200 400 600 800 1000

training time in sec. 6.59 37.03 88.22 300.40 461.79
errval 1.18 · 10−6 1.09 · 10−6 9.79 · 10−7 9.96 · 10−6 1.43 · 10−6

Table 3: Training times and validation errors for the ProxNets in the jump-diffusion model, as estimated in (40)
based on Nval = 104 samples. The relative error remains stable with increasing problem dimension.

d 200 400 600 800 1000

errrel 1.55 · 10−4 4.97 · 10−4 9.62 · 10−4 1.52 · 10−3 2.09 · 10−3

iterations to tolerance 6 7 7 7 6
time ProxNet in sec. 0.21 1.04 4.81 11.62 34.27
time reference in sec. 4.29 31.52 147.20 354.25 782.45

Table 4: Relative errors and computational times of a ProxNet solver for a basket of American put options in
the jump-diffusion model. ProxNets significantly reduce computational time, while their relative error remains
sufficiently small for all d.

(42) for any g to an error of magnitude O(10−3) or less. While keeping the relative error small,
ProxNets again significantly reduce computational time, and are therefore a valid alternative
in more involved financial market models. We finally observe that the number of iterations to
tolerance in the jump-diffusion model is stable at 6 − 7 for all d, whereas this number increases
with d in the Black-Scholes market (compare the third row in Tables 2 and 4). The explanation
for this effect is that the excess-to-payoff vector uM has a smaller norm in the jump-diffusion
case, but the iterations terminate at the (absolute) treshold 10−3 in both, the Black-Scholes and
jump-diffusion model. Therefore, we require less iterations in the latter scenario, although the
option prices v and relative errors are of comparable magnitude in both examples.

6.3 Parametric Obstacle Problem

To show an application for ProxNets beyond finance, we consider an elliptic obstacle problem in
the two-dimensional domain D := (−1, 1)2. We define H := H1

0 (D), and aim to find the solution
u ∈ H to the partial differential inequality

−△u ≥ f in D, u ≥ g in D, u = 0 on ∂D. (45)

Therein, f ∈ H′ is a given source term and g ∈ H is an obstacle function, for which we assume
g ∈ C(D) ∩ H for simplicity in the following. We introduce the convex set K := {v ∈ H| v ≥
g almost everywhere} and the bilinear form

a : H×H → R, (v, w) 7→
∫

D

∇v · ∇wdx,

and note that a, f and K satisfy Assumption 4.1. The variational inequality problem associated
to (45) is then to

find u ∈ K such that: a(u, v − u) ≥ f(v − u), ∀v ∈ K. (46)

As for (15) at the beginning of Section 5, we introduce K0 := {v ∈ H| v ≥ 0 almost everywhere},
and Problem (46) is equivalent to finding u = u0 + g ∈ K

with u0 ∈ K0 such that: a(u0, v − u0) ≥ f(v − u0)− a(g, v − u0), ∀v ∈ K0. (47)

As for the previous examples in this section, we use ProxNets to emulate the obstacle-to-solution
operator

Oobs : H → H, g 7→ u. (48)
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d 100 400 900 1600

training time in sec. 4.34 22.97 259.19 907.07
errval 1.11 · 10−6 1.16 · 10−6 9.11 · 10−7 1.78 · 10−6

Table 5: Training times and validation errors for the ProxNets in the Obstacle Problem, as estimated in (40) based
on Nval = 104 samples. The relative error remains stable with increasing problem dimension.

We discretize D = [−1, 1]2 for d0 ∈ N by a (d0 + 2)2-dimensional nodal basis of linear finite
elements, based on (d0 + 2) equidistant points in every dimension. Due to the homogeneous
Dirichlet boundary conditions in (45), we only have to determine the discrete approximation of u
within D, and may restrict ourselves to a finite element basis {v1, . . . , vd}, for d := d20, with respect
to the interior nodal points. Following the procedure outlined in Subsection 5.1, we denote by
g ∈ R

d again the nodal interpolation coefficients of g (recall that we have assumed g ∈ C(D)) and

by A ∈ R
d×d the finite element stiffness matrix with entries Aij := a(vj , vi) for i, j ∈ {1, . . . , d}

This leads to the matrix LCP to find u ∈ R
d such that

Au ≥ c, u ≥ 0, u⊤(Au− c) = 0, (49)

where c ∈ R
d is in turn given by ci := f(vi) − (AT g)i for i ∈ {1, . . . , d}. Given a fixed spatial

discretization based on d nodes, we again approximate the discrete obstacle-to-solution operator

Oobs : R
d → R

d, g 7→ u (50)

by concatenating shallow ProxNets Φ : Rd ⊕ R
d → R

d.
The training process of the ProxNets in the obstacle problem is the same as in Subsections 6.1

and 6.2, and thus is not further outlined here. The only difference is that we draw the input data
for training now from a 2d-dimensional standard normal distribution. The output samples again
correspond to one PJOR-Iteration with A and c as in (49) and ω = 1, where the initial value and
g are both replaced by the 2d-dimensional random input vector. After training, we again compress

the weight matrices by setting all entries with absolute value lower than 10−7 to zero. We test the
ProxNets for LCPs of dimension d ∈ {102, 202, 302, 402}, and report training times and validation
errors in Table 5. As before, training is successful and aborted early for each d, since the loss
function falls below 10−12 before the 300-th epoch.

Once Φ : Rd ⊕ R
d → R

d is trained for given d, we use the initial value zero x = 0 ∈ R
d and

concatenate Φ k times to obtain for any g the approximate discrete obstacle-to-solution operator

Õobs : R
d → R

d, g 7→


Φ(·, g) • · · · • Φ(·, g)︸ ︷︷ ︸

k-fold concatenation


 (0).

This yields u = Oobs(g) ≈ uk := Õobs(g). We test the trained ProxNets on the parametric family
of obstacles (gr, r > 0) ⊂ H, given by

gr(x) := min

(
max

(
e−r‖x‖

2
2 − 1

2
, 0

)
,
1

4

)
, x ∈ D. (51)

For given r > 0, let g
r
∈ R

d denote the nodal interpolation of gr, and let ur be discrete solution
to the corresponding obstacle problem. We approximate the solutions ur to (49) for a basket
of 100 obstacles gr with r ∈ R := {1 + 4i

99 | i ∈ {0, . . . , 99}}. For this, we iterate the ProxNets
Φ again on the entire batch of obstacles and denote by ukr the k-th iterate for any r ∈ R. We
stop the concatenation of Φ after k iterations if maxr∈R ‖ukr − uk−1

r ‖2 < 10−4, and report on the
value of k for each d. The lower absolute tolerance is necessary in the obstacle problem, since
the solutions ur now have lower absolute magnitude as compared to the previous examples. The
reference solution is again calculated by solving (49) with the PDAS algorithm, which has to be
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Figure 2: From left to right: Obstacle gr as in (51) with scale parameter r = 2, the corresponding discrete solution
u
r
with refinement parameter h := 1

40+2
in each spatial dimension (corresponds to d = 402 interior nodal points

in D), and its ProxNet approximation uk
r
based on k = 698 iterations.

d 100 400 900 1600

errrel 3.69 · 10−4 5.89 · 10−4 9.20 · 10−4 1.14 · 10−3

iterations to tolerance 56 206 416 698
time ProxNet in sec. 0.01 0.07 0.50 2.71
time reference in sec. 0.08 0.51 3.13 26.67

Table 6: Relative errors and computational times of a ProxNet solver for a family of parametric obstacle problems.
ProxNets again reduce computational time, while keeping the relative error sufficiently small for all d. The number
of iterations to tolerance is now significantly larger as in the previous examples.

called separately for each obstacle in (gr, r ∈ R). A sample of gr together with the associated
discrete solution ur and its ProxNet approximation ukr is depicted in Figure 2.

The relative error of the ProxNet approximation, the number of iterations and the compu-
tational times are depicted in Table 6. ProxNets approximate the discrete solutions well with
relative errors of magnitude O(10−4) for all d. However, compared to the examples in Subsec-
tions 6.1 and 6.2, we observe that significantly more iterations are necessary to achieve the absolute
tolerance of 10−4. This is due to the larger contraction constants in the obstacle problem, which
are very close to one for all d. The lower absolute tolerance of 10−4 adds more iterations, but
is not the main reason why we observe larger values of k in the obstacle problem. Nevertheless,
ProxNets still outperform the reference solver in terms of computational time, with a relative error
of at most 0.1% for large d.

7 Conclusions

We proposed deep neural networks which realize approximate input-to-solution operators for uni-
lateral, inequality problems in separable Hilbert spaces. Their construction was based on realizing
approximate solution constructions in the continuous (infinite dimensional) setting, via proximinal
and contractive maps. As particular cases, several classes of finite-dimensional projection maps
(PSOR, PJOR) were shown to be representable by the proposed ProxNet DNN architecture. The
general construction principle behind ProxNet introduced in the present paper can be employed
to realize further DNN architectures, also in more general settings. We refer to [1] for multilevel
and multigrid methods to solve (discretized) variational inequality problems. The algorithms in
this reference may also be realized as concatenation of ProxNets, similarly to the PJOR-Net and
PSOR-Net from Examples 5.3 and 5.4. The analysis and representation of multigrid methods as
ProxNets will be considered in a forthcoming work.
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