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Abstract

We introduce ProxNet, a collection of deep neural networks with ReLU activation which
emulate numerical solution operators of variational inequalities (VIs). We analyze the ex-
pression rates of ProxNets in emulating solution operators for variational inequality problems
posed on closed, convex cones in separable Hilbert spaces, covering the classical contact prob-
lems in mechanics, and early exercise problems as arise, e.g. in valuation of American-style
contracts in Black-Scholes financial market models. In the finite-dimensional setting, the VIs
reduce to matrix VIs in Euclidean space, and ProxNets emulate classical projected matrix it-
erations, such as PSOR and semi-smooth Newton iterations which are realized as primal-dual
active set strategies, which we encode in the novel PDASNet.

1 Introduction

Variational Inequalities (VIs for short) in infinite-dimensional spaces arise in variational formu-
lations of numerous models in the sciences. We refer only to [17, 7] and the references there for
models of contact problems in continuum mechanics, [20] and the references there for applications
from optimal stopping in finance (mainly option pricing with “American-style”, early exercise
features), contact problems in mechanics (e.g. [26] and the references there), and [4] and the refer-
ences there for ressource allocation and game theoretic models. Two broad classes of approaches
toward numerical solution of VIs can be identified: deterministic approaches, which are based on
discretization of the VI in function space, and probabilistic approaches, which exploit stochastic
numerical simulation and an interpretation of the solution of the VI as conditional expectations
of optimally stopped sample paths. The latter approach has been used to design ML algorithms
for the approximation of the solution of one instance of the VI in [3].

Deep neural network structures arise naturally in abstract variational inequality problems (VIs)
posed on the product of (possibly infinite-dimensional) Hilbert spaces in [5]. Therein, the activa-
tion functions correspond to proximity operators of certain potentials that define the constraints
of the VI. Weak convergence of this recurrent NN structure in the limit of infinite depth to feasible
solutions of the VI is shown under suitable assumptions. An independent, but related, develop-
ment in recent years has been the advent of DNN-based numerical approximations which are based
on encoding known, iterative solvers for discretized partial differential equations, and certain fixed
point iterations for nonlinear operator equations. We mention only [9], that developed DNNs
which emulate the ISTA iteration of [6], or the more recently proposed generalization of “deep
unrolling/unfolding” methodology [22]. Closer to PDE numerics, recently [11] proposed MGNet,
being neural network emulation of multilevel, iterative solver for linear, elliptic PDEs.

The general idea behind these approaches is to emulate by a DNN the contractive map, say
Φ, which is assumed to satisfy the conditions of Banach’s Fixed Point Theorem (BFPT). Let us
denote the approximate map realized by the DNN Φ̃. It follows from the universality theorem for
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DNNs in various function classes (see, e.g., [16, 25] and the references there) that for any ε > 0 a
DNN surrogate Φ̃ to the contraction map exists, which is ε-close to Φ, uniformly on the domain
of attraction of Φ.

Iteration of the DNN Φ̃ being realized by composition, any finite number K of steps of the
fixed point iteration can be realized by K-fold composition of the DNN surrogate Φ̃. Iterating Φ̃,
instead of Φ, induces an error of order O(ε/(1 − L)), uniformly in the number of iterations K,
where L ∈ (0, 1) denotes the contraction constant of Φ. Due to the contraction property of Φ, K
may be chosen as O(| log(ε)|) in order to output an approximate fixed point with accuracy ε upon
termination. The K-fold composition of the surrogate DNN Φ̃ is, in turn, itself a DNN of depth
O(depth(Φ̃)| log(ε)|). This reasoning is valid also in metric spaces, since the notions of continuity
and contractivity of the map Φ do not rely on availability of a norm. Hence, a (sufficiently
large) DNN Φ̃ exists which may be used likewise for the iterative solution of VIs in metric spaces.
Furthermore, the resulting fixed-point-iteration Nets obtained in this manner naturally exhibit a
recurrent structure, in the case (considered here) that the surrogate Φ̃ is fixed throughout the
K-fold composition (more refined constructions with stage-dependent approximations {Φ̃(k)}Kk=1

of increasing emulation accuracy could be considered, but shall not be addressed here).
In summary, with the geometric error reduction of FPIs which is implied by the contraction

condition, finite truncation at a prescribed emulation precision ε > 0 will imply O(| log(ε)|) it-
erations, and exact solution representation (of the fixed point of Φ̃) in the infinite depth limit.
In DNN calculus, finitely terminated FPIs can be realized via finite concatenation of the DNN
approximation Φ̃ of the contraction map Φ. The corresponding DNNs exhibit logarithmic in |ε|
depth, and naturally a recurrent structure due to the repetition of the Net Φ̃ their construction.
Thereby, recurrent DNNs can be built which encode numerical solution maps of fixed point iter-
ations. This idea has appeared in various incarnations in recent work; we refer to, e.g., MGNet
for the realization of Multi-grid iterative solvers of discretized elliptic PDEs [11]. The presently
proposed ProxNet and PDASNet architectures are, in fact, DNN emulations of corresponding
fixed point iterations of (discretized) variational inequalities. To analyze expression rates of deep
neural networks (DNNs) for emulating solution operators to VIs is the purpose of the present
paper. In line with recent work (e.g. [19, 21] and the references there), we take the perspective
of infinite-dimensional VIs, which are set on closed cones in separable Hilbert spaces. The task
at hand is then the analysis of rates of expression of the approximate data-to-solution map, which
relates the input data (i.e. operator, cone, etc.) to the unique solution of the VI.

1.1 Layout

The structure of this paper is as follows. In Section 2, we recapitulate basic notions and definitions
of proximal neural networks in infinite-dimensional, separable Hilbert spaces. A particular role is
taken by so-called proximal activations, and a calculus of ProxNets, which we shall use throughout
the rest of the paper to build solution operators of VIs. Section 3 addresses the conceptual use
of ProxNets in the constructive solution of VIs. We build in particular ProxNet emulators of
convergent fixed point iterations to construct solutions of VIs. Section 3.2 introduces quantitative
bounds for perturbations of ProxNets. Section 4 emphasizes that ProxNets may be regarded as
(approximate) solution operators to unilateral obstacle problems in infinite-dimensional Hilbert
spaces. Section 5 presents DNN emulations of iterative solvers of matrix LCPs which arise from
discretization of unilateral problems for PDEs. Section 6.1 introduces PDASNet, which emulate a
class of primal-dual active set strategies for the numerical solution of VIs. Section 7 presents several
numerical experiments, which illustrate the foregoing developments. More precisely, we consider
the numerical solution of free boundary value problems arising in the valuation of American-style
options. Section 8 provides a brief summary of the main results and indicates possible directions
for further research.
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1.2 Notation

We use standard notation. By L(H,K) we denote the Banach space of bounded, linear operators
from the Banach space H into K (surjectivity will not be required). Unless explicitly stated other-
wise, all Hilbert and Banach-spaces are infinite-dimensional. By bold symbols, we denote matrices
resp. linear maps between finite-dimensional spaces. Vectors in finite-dimensional, euclidean space
are always understood as column vectors, with ⊤ denoting transposition of matrices and vectors.
Acknowledgement: The preparation of this work benefited from the participation of ChS in the
thematic period “Mathematics of Deep Learning (MDL)” from 1 July to 17 December 2021, at
the Isaac Newton Institute, Cambridge, UK.

2 Proximal Neural Networks – ProxNets

We consider the following model for an artificial neural network : For finite m ∈ N, let H and
(Hi)0≤i≤m be real, separable Hilbert spaces. For every i ∈ {1, . . . ,m} let Wi ∈ L(Hi−1,Hi) be a
bounded linear operator, let bi ∈ Hi, let Ri : Hi → Hi be a nonlinear, continuous operator, and
define

Ti : Hi−1 → Hi, x 7→ Ri(Wix+ bi). (1)

Moreover, let W0 ∈ L(H0,H), Wm+1 ∈ L(Hm,H), bm+1 ∈ H and consider the neural network
(NN) model

Ψ : H0 → H, x 7→W0x+Wm+1(Tm ◦ · · · ◦ T1)(x) + bm+1. (2)

The operator W0 ∈ L(H0,H) allows to include skip connections in the model, similar to deep
residual neural networks as proposed in [12, 13]. This article focuses in particular on NNs with
identical input and output spaces as in [5, Model 1.1], that arise as special case of model (2) with
H0 = Hm = H and are of the form

Φ : H → H, x 7→ (1− λ)x+ λ(Tm ◦ · · · ◦ T1)(x), (3)

for a relaxation parameter λ > 0 to be adjusted for each application. The relation H0 = Hm = H
allows us to investigate fixed points of Φ : H → H, which are in turn solutions to variational
inequalities.

The nonlinear operatorsRi act as activation operators of the NNs and are subsequently given by
suitable proximity operators on Hi. We refer to Ψ and Φ as proximal neural networks or ProxNets
for short, and derive sufficient conditions on the operators Ti, resp. Wi and Ri, so that Φ defines
a contraction on H. Hence, the unique fixed point x∗ = Φ(x∗) ∈ H solves a variational inequality,
that is turn uniquely determined by the network parameters Wi, bi and Ri for i ∈ {1, . . . ,m}. On
the other hand, any well-posed variational inequality onH may be recast as fixed-point problem for
a suitable contractive ProxNet Φ : H → H. This enables us to approximate solutions to variational
inequality problems as fixed-point iterations of ProxNets and derive convergence rates. Due to the
contraction property of Φ, the fixed-point iteration xn = Φ(xn−1), n ∈ N converges to x∗ = Φ(x∗)
for any x0 ∈ H at linear rate. Moreover, the iteration is stable under small perturbations of the
network parameters. As we show in Subsection 5.3 below, the latter property allows us to solve
entire classes of variational inequality problems using only one ProxNet with fixed parameters.

2.1 Proximal Activations

Definition 2.1. Let i ∈ {0, . . . ,m} be a fixed index, ψi : Hi → R ∪ {∞} and dom(ψi) := {x ∈
Hi|ψi(x) < ∞}. We denote by Γ0(Hi) the set of all proper, lower semi-continuous functions on
Hi, that is

Γ0(Hi) :=

{
ψi : Hi → R ∪ {∞}

∣∣∣ lim inf
y→x

ψi(y) ≥ ψi(x) for all x ∈ Hi and dom(ψi) 6= ∅.
}
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For any ψi ∈ Γ0(Hi), the subdifferential of ψi at x ∈ Hi is

∂ψi(x) := {v ∈ Hi| (y − x, v) + f(x) ≤ f(y) for all y ∈ Hi} ⊂ Hi, x ∈ Hi,

and the proximity operator of ψi is

proxψi
: Hi → Hi, x 7→ argmin

y∈Hi

ψi(y) +
‖x− y‖2Hi

2
. (4)

It is well-known that proxψi
is a firmly nonexpansive operator, i.e., 2proxψi

−id is nonexpansive,
see, e.g., [2, Proposition 12.28]. As outlined in [5, Section 2], there is a natural relation between
proximity operators and activation functions in neural networks: Virtually any commonly used
activation function such as rectified linear unit, tanh, softmax, etc. may be expressed as proximity
operator on Hi = R

d, d ∈ N, for an appropriate ψi ∈ Γ0(Hi) (see [5, Section 2] for examples). We
consider a set of particular proximity operators given by

A(Hi) := {Ri = proxψi
|ψi ∈ Γ0(Hi) such that ψi is minimal at 0 ∈ Hi}, (5)

cf. [5, Definition 2.20]. Besides being continuous and nonexpansive, any Ri ∈ A(Hi) satisfies
Ri(0) = 0 ([5, Proposition 2.21]). Therefore, in the case Hi = R, the elements in A(R) are also
referred to as stable activation functions, cf. [10, Lemma 5.1]. With this in mind, we formally
define proximal neural networks, or ProxNets.

Definition 2.2. Let Ψ : H0 → H be the m-layer neural network model in (2). If Ri ∈ A(Hi)
holds for any i ∈ {1, . . . ,m}, Ψ is called a proximal neural network or ProxNet.

2.2 ProxNet Calculus

Before investigating the relation of Φ in (3) to variational inequality models, we record several
useful definitions and results for NN calculus in the more general model Ψ from Equation (2).

Definition 2.3. Let j ∈ {1, 2}, mj ∈ N, let H(j),H(j)
0 , . . . ,H(j)

mj be seperable Hilbert spaces such

that H(2) = H(1)
0 , and let Ψj be mj-layer ProxNets as in (2) given by

Ψj : H(j)
0 → H(j), x 7→W

(j)
mj+1

(
T (j)
mj

◦ · · · ◦ T (j)
1

)
(x) + b

(j)
m+1.

The concatenation of Ψ1 and Ψ2 is defined by the map

Ψ1 •Ψ2 : H(2)
0 → H(1), x 7→ (Ψ1 ◦Ψ2)(x). (6)

Remark 2.4. Due to W
(j)
0 ≡ 0 there are no skip connections after the last proximal activation

in Ψj , hence Ψ1 •Ψ2 is in fact a ProxNet as in (2) with 2m layers and no skip connection.

Definition 2.5. Let m ∈ N, j ∈ {1, 2}, let H(j),H(j)
0 , . . . ,H(j)

mj be seperable Hilbert spaces such

that H(1)
0 = H(2)

0 , and let Ψj be m-layer ProxNets as in (2) given by

Ψj : H(j)
0 → H(j), x 7→W

(j)
0 x+W

(j)
m+1

(
T (j)
mj

◦ · · · ◦ T (j)
1

)
(x) + b

(j)
m+1.

The parallelization of Ψ1 and Ψ2 is given for H0 := H(1)
0 = H(2)

0 by

P (Ψ1,Ψ2) : H0 → H(1) ⊕H(2), x 7→ (Ψ1(x),Ψ2(x)).

Proposition 2.6. The parallelization P (Ψ1,Ψ2) of two ProxNets Ψ1 and Ψ2 as in Definition 2.5
is a ProxNet.
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Proof. We set H(j)
m+1 := H(j) for j ∈ {1, 2}, fix i ∈ {1, . . . ,m} and observe that H(1)

i ⊕ H(2)
i

equipped with the scalar product (·, ·)
H

(1)
i ⊕H

(2)
i

:= (·, ·)
H

(1)
i

+ (·, ·)
H

(2)
i

is again a separable Hilbert

space. We define

W0 : H0 7→ H(1) ⊕H(2), x 7→ (W
(1)
0 x,W

(2)
0 y),

W1 : H0 7→ H(1)
1 ⊕H(2)

1 , x 7→ (W
(1)
1 x,W

(2)
1 y),

Wi : H(1)
i−1 ⊕H(2)

i−1 7→ H(1)
i ⊕H(2)

i , (x, y) 7→ (W
(1)
i x,W

(2)
i y), i ∈ {2, . . . ,m+ 1},

bi := (b
(1)
i , b

(2)
i ) ∈ H(1)

i ⊕H(2)
i , i ∈ {1, . . . ,m+ 1},

Ri : H(1)
i ⊕H(2)

i 7→ H(1)
i ⊕H(2)

i , (x, y) 7→ (R
(1)
i x,R

(2)
i y), i ∈ {0, 1, . . . ,m}.

Note that all Wi are bounded, linear operators. Moreover, if R
(j)
i = prox

ψ
(j)
i

∈ A(H(j)
i ) holds

for ψ
(j)
i ∈ Γ0(H(j)

i ) and j ∈ {1, 2}, then Ri = proxψi
, where ψi ∈ Γ0(H(1)

i ⊕ H(2)
i ) is defined by

ψi(x, y) := ψ
(1)
i (x) + ψ

(2)
i (y). Hence, Ri ∈ A(H(1)

i ⊕H(2)
i ) and it holds that

P (Ψ1,Ψ2) : H0 → H(1) ⊕H(2), x 7→W0x+Wm+1(Tm ◦ · · · ◦ T1)(x) + bm+1,

with Ti := Ri(Wi ·+bi) for i ∈ {1, . . . ,m}, which shows the claim.

3 ProxNets and Variational Inequalities

3.1 Contractive ProxNets

We formulate sufficient conditions on the neural network model in (3) so that Φ : H → H is a
contraction. The associated fixed-point iteration converges to the unique solution of a variational
inequality, which is characterized in the following.

Assumption 3.1. Let Φ be a ProxNet as in (3) with m ∈ N layers such that Wi ∈ L(Hi−1,Hi),
bi ∈ Hi, and Ri ∈ A(Hi) for all i ∈ {1, . . . ,m}. It holds that λ ∈ (0, 2) and the operators Wi

satisfy

LΦ :=

m∏

i=1

‖Wi‖L(Hi−1,Hi) < min(1, 2/λ− 1).

Theorem 3.2. Let Φ be as in (3), let x0 ∈ H and define the iteration xk+1 := Φ(xk), k ∈ N0.
Under Assumption 3.1, the sequence (xk, k ∈ N0) converges for any x0 ∈ H to the unique fixed-
point x∗ ∈ H. For any finite number k ∈ N the error is bounded by

‖x∗ − xk‖H ≤ ‖Φ(x0)− x0‖
1− LΦ,λ

LkΦ,λ, LΦ,λ := |1− λ|+ λLΦ ∈ [0, 1). (7)

It holds that

(x∗1, . . . , x
∗
m) := (T1x

∗, (T2 ◦ T1)x∗, . . . , (Tm−1 ◦ · · · ◦ T1)x∗, x∗) ∈ H1 × · · · × Hm

is the unique solution to the variational inequality problem: find x1 ∈ H1, . . . , x0 = xm ∈ Hm,
such that

Wixi−1 + bi − xi ∈ ∂ψi(xi), i ∈ {1, . . . ,m}. (8)

Moreover, x∗ is bounded by

‖x∗‖H ≤ C∗
m∑

i=1




m∏

j=i+1

‖Wj‖L(Hj−1,Hj)


 ‖bi‖Hi

, C∗ :=

{
1

1−LΦ
<∞, λ ∈ (0, 1]

λ
2−λ(1+LΦ) <∞, λ ∈ (1, 2)

.

5



Proof. By the non-expansiveness of Ri : Hi → Hi for i ∈ {1, . . . ,m} it follows for any x, y ∈ H
that

‖Φ(x)− Φ(y)‖H ≤ |1− λ|‖x− y‖H + λ‖(Tm ◦ · · · ◦ T1)x− (Tm ◦ · · · ◦ T1)y‖Hm

≤ |1− λ|‖x− y‖H
+ λ‖(Wm ◦ (Tm−1 ◦ · · · ◦ T1))x− (Wm ◦ (Tm−1 ◦ · · · ◦ T1))y‖Hm

≤ |1− λ|‖x− y‖H
+ λ‖Wm‖L(Hm−1,Hm)‖(Tm−1 ◦ · · · ◦ T1)x− (Tm−1 ◦ · · · ◦ T1)y‖Hm−1

≤ |1− λ|‖x− y‖H + λ

(
m∏

i=1

‖Wi‖L(Hi−1,Hi)

)
‖x− y‖H0

= (|1− λ|+ λLΦ)︸ ︷︷ ︸
:=LΦ,λ

‖x− y‖H.

As λ ∈ (0, 2) and LΦ < min(1, 2/λ − 1) by Assumption 3.1, it follows that LΦ,λ < 1, hence
Φ : H → H is a contraction. Existence and uniqueness of x∗ ∈ H and the first part of the claim
then follow by Banach’s fixed-point theorem for any initial value x0 ∈ H.

By [2, Proposition 16.44], it holds for any i ∈ {1, . . . ,m}, xi, yi ∈ Hi and ψi ∈ Γ0(Hi) that

xi = proxψi
(yi) ⇔ yi − xi ∈ ∂ψi(xi).

Now let x∗0 := x∗ and x∗i := (Ti ◦ · · · ◦ T1)(x∗) for i ∈ {1, . . . ,m}. This yields Φ(x∗0) = (1− λ)x∗ +
λx∗m = x∗ and hence x∗m = x∗. Recalling that Ri = proxψi

with ψi ∈ Γ0(Hi) for all i ∈ {1, . . . ,m},
it hence follows that

Wix
∗
i−1 + bi − x∗i ∈ ∂ψi(x

∗
i ),

cf. [5, Propostion 4.3]. Finally, to bound x∗, we use that

‖x∗‖H ≤ ‖Φ(x∗)− Φ(0)‖H + ‖Φ(0)‖H ≤ LΦ,λ‖x∗‖H + λ‖(Tm ◦ · · · ◦ T1)(0)‖Hm
.

As Ri ∈ A(Hi), it holds Ri(0) = 0 and therefore ‖Ri(x)‖Hi
≤ ‖x‖Hi

for all x ∈ Hi, which in turn
shows

‖(Tm ◦ · · · ◦ T1)(0)‖Hm
≤ ‖Wm‖L(Hm1

,Hm)‖(Tm−1 ◦ · · · ◦ T1)(0)‖Hm−1 + ‖bm‖Hm

≤ ‖Wm‖L(Hm1 ,Hm)

·
(
‖Wm−1‖L(Hm−2,Hm−1)‖(Tm−2 ◦ · · · ◦ T1)(0)‖Hm−2 + ‖bm−1‖Hm−1

)

+ ‖bm‖Hm

≤
m∑

i=1




m∏

j=i+1

‖Wj‖L(Hj−1,Hj)


 ‖bi‖Hi

.

The claim follows with LΦ < min(1, 2/λ− 1), since

1− LΦ,λ =

{
λ(1− LΦ) > 0, λ ∈ (0, 1]

2− λ(1 + LΦ) > 0, λ ∈ (1, 2)
.

3.2 Perturbation Estimates for ProxNets

We introduce a perturbed version of the ProxNet Φ in (3) in this subsection. Besides changing
the network parameters Wi, bi and Ri, we also augment the input space H and allow an architec-
ture that approximates each nonlinear operator Ti itself by a multilayer network. These changes
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allow us to consider ProxNet as an approximate data-to-solution operator for infinite-dimensional
variational inequalities and to control perturbations of the network parameters. For instance, we
show in Example 3.4 that augmented ProxNets mimic the solution operator to Problem (8), that
maps the bias vectors b1, . . . , bm to the solution x1, . . . , xm.

Let H̃0, . . . , H̃m−1 be arbitrary separable Hilbert spaces and let H̃ := H̃0. Then, for i ∈
{0, . . . ,m− 1} the direct sum Hi ⊕ H̃i equipped with the inner product (·, ·)Hi

+ (·, ·)H̃i
is again

a separable Hilbert space. For notational convenience, we set H̃m := {0 ∈ Hm} and use the

identification Hm ⊕ H̃m = Hm = H. We consider the ProxNet

Φ̃ : H⊕ H̃ → H, (x, x̃) 7→ (1− λ)x+ λ(T̃m ◦ · · · ◦ T̃1)(x, x̃), (9)

where we allow that the operators T̃i are itself multi-layer ProxNets: For any i ∈ {1, . . . ,m} let

mi ∈ N and let H(i)
0 := Hi−1⊕H̃i−1, H(i)

1 , . . . ,H(i)
mi−1,H

(i)
mi := Hi⊕H̃i be separable Hilbert spaces.

For ji ∈ {1, . . . ,mi} consider the operators T̃
(i)
ji

(·) = R
(i)
ji
(W

(i)
ji

·+b(i)ji ) given by

R
(i)
ji

∈ A(H(i)
ji
), W

(i)
ji

∈ L(H(i)
ji−1,H

(i)
ji
), b

(i)
ji

∈ H(i)
ji
.

We then define T̃i as

T̃i : Hi−1 ⊕ H̃i−1 → Hi ⊕ H̃i, (xi−1, x̃i−1) 7→ (T̃ (i)
mi

◦ · · · ◦ T̃ (i)
1 )(xi−1, x̃i−1),

which in turn determines Φ̃ in (9). By construction, Φ̃ is a ProxNet of the form (2) with
∑m
i=1mi ≥

m layers. As compared to Φ, we augmented the input and intermediate spaces by H̃i. The
composite structure of the maps T̃i allows to choose input vectors x̃i−1 ∈ H̃i−1 such that the first

component of T̃i(xi−1, x̃i−1) approximates Ti(xi−1) uniformly on a subset of Hi−1. As we show
in Subsection 5.3 below, this enables us to solve large classes of variational inequalities with only
one fixed ProxNet Φ̃, that in turn approximates a data-to-solution operator, instead of employing
different fixed maps Φ : H → H for every problem.

To formulate reasonable assumptions on Φ̃ we denote for any i ∈ {1, . . . ,m− 1} by

PHi
: Hi ⊕ H̃i 7→ Hi, (xi, x̃i) 7→ xi,

PH̃i
: Hi ⊕ H̃i 7→ H̃i, (xi, x̃i) 7→ x̃i

the projections to the first and second component for an element inHi⊕H̃i, respectively. Moreover,

we define the closed ball B
(i)
r := {xi ∈ Hi| ‖xi‖Hi

≤ r} ⊂ Hi with radius r > 0.

Assumption 3.3. Let Φ and Φ̃ be proximal neural networks defined as in Equations (3) and (9),

respectively. There are constants L̃ ∈ (0, 1), δ ≥ 0 and Θ1 ≥ Θ0 ≥ Θ2 > 0 such that

1. Φ satisfies Assumption 3.1 with λ ∈ (0, 1] and LΦ ≤ L̃ ∈ (0, 1).

2. It holds that

 max
i∈{0,1,...,m}

i∏

j=1

‖Wj‖L(Hj−1,Hj)


Θ0 +

m∑

i=1




m∏

j=i+1

‖Wj‖L(Hj−1,Hj)


 (‖bi‖Hm

+ δ) ≤ Θ1,

m∑

i=1




m∏

j=i+1

‖Wj‖L(Hj−1,Hj)


 ‖bi‖Hi

≤ (1− L̃)Θ2,

as well as

Θ2 +
δ

(1− L̃)

m∑

i=1




m∏

j=i+1

‖Wj‖L(Hj−1,Hj)


 ≤ Θ0.
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3. There is a vector x̃0 ∈ H̃0, such that for i ∈ {1, . . . ,m}, any xi−1 ∈ B
(i−1)
Θ1

⊂ Hi−1 and

x̃i := PH̃i
T̃i(xi−1, x̃i−1) it holds

‖Ti(xi−1)− PHi
T̃i(xi−1, x̃i−1)‖Hi

≤ δ.

Before we derive error bounds, we provide an example to motivate the construction of Φ̃ and
Assumption 3.3.

Example 3.4 (Bias-to-solution operator). Let Φ be as in Assumption 3.1 with m = 2 layers and

network parameters Ri,Wi, bi for i ∈ {1, 2}. We construct a ProxNet Φ̃ that takes the bias vectors
b1, b2 of Φ as inputs to represent Φ for any choice of bi ∈ Hi, and therefore may be concatenated to
map any choice of b1, b2 to the respective solution (x1, x2) of (8). In other words, we approximate
the bias-to-solution operator

Ob1,b2 : H1 ⊕H2 7→ H1 ⊕H2, (b1, b2) 7→ (x1, x2).

To this end, we set H̃0 = H1 ⊕H2, H̃1 = H2, n1 = n2 = 1, bi,1 = 0 ∈ Hi ⊕ H̃i and

W
(1)
1 : H⊕H1 ⊕H2 → H1 ⊕H2, (x, x1, x2) 7→ (W1x+ x1, x2)

W
(2)
1 : H1 ⊕H2 → H2, (x1, x2) 7→W2x1 + x2,

R
(1)
1 : H1 ⊕H2 → H1 ⊕H2, (x1, x2) 7→ R1(x1) + x2,

R
(2)
1 : H2 → H2, x2 7→ R2(x2).

Note that R
(1)
1 = prox

ψ
(1)
1

with ψ
(1)
1 (x1, x2) := ψ1(x1) for any (x1, x2) ∈ H1 ⊕ H2, where ψ1

determines R1 = proxψ1
. Hence, R

(1)
1 ∈ A(H1 ⊕ H̃1), and it follows with x̃0 := (b1, b2) ∈ H1 ⊕H2

for any x ∈ H and x1 ∈ H1 that

T1(x) = R1(W1x+ b1) = PH1
(R1(W1x+ b1), b2) = PH1

R
(1)
1 (W

(1)
1 (x, x̃0)) = PH1

T̃1(x, x̃0)

T2(x) = R2(W2x1 + b2) = R
(2)
1 (W

(2)
1 (x1, b2)) = PH2

R
(2)
1 (W

(2)
1 (x1, PH̃1

T̃1(x1, x̃0)).

Therefore, the last part of Assumption 3.3 holds with δ = 0 for arbitrary large Θ1 > 0 and hence
the constants Θ0,Θ1,Θ2 do not play any role in this example. The generalization to m > 2 layers
follows by a similar construction of Φ.

Now let (x1, x2) be the solution to (8) for any choice b1 ∈ H1, b2 ∈ H2. It follows from
Theorem 3.2 that the operator

Õb1,b2 : H⊕H1 ⊕H2 → H, (x, b1, b2) 7→ Φ̃(·, b1, b2) • · · · • Φ̃(·, b1, b2)︸ ︷︷ ︸
k times

(x)

satisfies x2 ≈ Õb1,b2(x
0, b1, b2) and x1 ≈ T1(Õb1,b2(x

0, b1, b2)) for any choice of (x0, b1, b2) ∈ H ⊕
H1 ⊕H2, for a sufficiently large number k of concatenations of Φ̃(·, b1, b2).

The augmented ProxNet Φ̃ may also be utilized to consider families of obstacle problems,
as shown in Example 4.4 below. Therein, the parametrization is with respect to the proximity
operators Ri instead of the bias vectors bi, and we construct an approximate obstacle-to-solution
operator in the fashion of Example 3.4. In the finite-dimensional case (where the linear operators

Wi correspond to matrices) the input of Φ̃ may even be augmented by a suitable space of operators,
see Subsection 5.3 below for a detailed discussion. We conclude this section with a perturbation
estimate that allows us to approximate the fixed-point of Φ by the augmented NN Φ̃.
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Theorem 3.5. Let Φ and Φ̃ be proximal neural networks as in Equations (3) and (9) that satisfy

Assumption 3.3, and denote by x∗ ∈ H the unique fixed-point of Φ from Theorem 3.2. Let x0 ∈ B
(0)
Θ2

be arbitrary, let x̃0 be as in Assumption 3.3 and define the sequence x̃k+1 := Φ̃(x̃k, x̃0) for k ∈ N0,
where x̃0 := x0. Then there is a constant C > 0 which is independent of δ > 0 and x̃0, such that
for any k ∈ N it holds

‖x∗ − x̃k‖H ≤ C
(
L̃kλ + δ

)
,

where L̃λ := (1− λ) + λL̃ < 1.

Proof. Let x ∈ B
(0)
Θ0

and let x̃0 ∈ H̃0 be as in Assumption 3.3. We define v0 = x, vi := PHi
(T̃i ◦

· · · ◦ T̃1)(x, x̃0) ∈ Hi for i ∈ {1, . . . ,m − 1}, and vm := (T̃m ◦ · · · ◦ T̃1)(x, x̃0) ∈ H. With x̃i :=

PH̃i
T̃i(xi−1, x̃i−1) and the convention that PHm

= id, we obtain the recursion formula

vi = PHi
T̃i(vi−1, x̃i−1), i ∈ {1, . . . ,m}. (10)

We now show by induction that ‖vi‖Hi
≤ Θ1 for i ∈ {0, . . . ,m}. By Assumption 3.3 it holds

‖v0‖H0
= ‖x‖H

≤ Θ0 =




0∏

j=1

‖Wj‖L(Hj−1,Hj)


Θ0 +

0∑

j=1




0∏

ℓ=j+1

‖Wℓ‖L(Hℓ−1,Hℓ)


 (‖bj‖Hj

+ δ)

≤ Θ1.

Now let

‖vi‖Hi
≤




i∏

j=1

‖Wj‖L(Hj−1,Hj)


Θ0 +

i∑

j=1




i∏

ℓ=j+1

‖Wℓ‖L(Hℓ−1,Hℓ)


 (‖bj‖Hj

+ δ)

hold for a fixed i ∈ {0, . . . ,m− 1}. Assumption 3.3 yields with Equation (10)

‖Ti+1(vi)− vi+1‖Hi+1
= ‖Ti+1(vi)− PHi+1

T̃i+1(vi, x̃0)‖Hi+1
≤ δ.

Using ‖Ri+1(x)‖Hi+1
≤ ‖x‖Hi+1

for x ∈ Hi+1 then yields together with the triangle inequality
and the induction hypothesis

‖vi+1‖Hi+1
≤ δ + ‖Ti+1(vi)‖Hi+1

≤ δ + ‖Wi+1‖L(Hi,Hi+1)‖vi‖Hi
+ ‖bi+1‖Hi+1

≤



i+1∏

j=1

‖Wj‖L(Hj−1,Hj)


Θ0 +

i+1∑

l=1




i+1∏

j=l+1

‖Wℓ‖L(Hℓ−1,Hℓ)


 (‖bj‖Hj

+ δ)

≤ Θ1,

and hence vi ∈ B
(i)
Θ1

for all i ∈ {0, . . . ,m}. With Assumption 3.3 and Equation (10) we further

obtain for each x ∈ B
(0)
Θ0

1

λ
‖Φ(x)− Φ̃(x, x̃0)‖Hm

= ‖(Tm ◦ · · · ◦ T1)(x)− vm‖H
≤ ‖(Tm ◦ · · · ◦ T1)(x)− Tm(vm−1)‖H + ‖Tm(vm−1)− T̃m(vm−1, x̃m)‖H
≤ ‖Wm‖L(Hm−1,Hm)‖(Tm−1 ◦ · · · ◦ T1)(x)− vm−1‖Hm−1 + δ,

and by iterating this estimate over i ∈ {1, . . . ,m}

‖Φ(x)− Φ̃(x, x̃0)‖Hm
≤ λδ

m∑

i=1




m∏

j=i+1

‖Wj‖L(Hj−1,Hj)


 =: λδCΦ. (11)
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Now let x∗ ∈ H be the unique fixed-point of Φ as in Theorem 3.2, let xk = Φ(xk−1) and

x̃k = Φ̃(x̃k−1, x̃0) for any k ∈ N and a given initial value x0 = x̃0 ∈ H with ‖x0‖H ≤ Θ2. We
obtain as in the proof of Theorem 3.2

‖x1‖H ≤ ‖Φ(x0)− Φ(0)‖H + ‖Φ(0)‖H

≤ LΦ,λ‖x0‖H + λ

m∑

i=1




m∏

j=i+1

‖Wj‖L(Hj−1,Hj)


 ‖bi‖Hi

≤ (1− λ)Θ2 + λ


L̃Θ2 +

m∑

i=1




m∏

j=i+1

‖Wj‖L(Hj−1,Hj)


 ‖bi‖Hi




≤ Θ2,

(12)

where we have used that LΦ,λ = (1−λ)+λLΦ ≤ (1−λ)+λL̃ and Assumption 3.3. Hence, we have
‖xk‖H ≤ Θ2 inductively for all k ∈ N. In the next step, we show that ‖x̃k‖H ≤ Θ0 by induction
over k. First, we obtain with ‖x0‖ ≤ Θ2 ≤ Θ0, (11) and (12) that

‖x̃1‖H = ‖Φ̃(x0, x̃0)‖H ≤ ‖Φ̃(x0, x̃0)− Φ(x0)‖H + ‖Φ(x0)‖H ≤ λδCΦ +Θ2.

Thus, ‖x̃1‖H ≤ Θ0 follows with Assumption 3.3 on the relation of Θ0 and Θ2 as λ(1 − L̃) < 1.

Using the induction hypothesis ‖x̃k − xk‖H ≤ λδCΦ

∑k−1
j=0 L̃

j
Φ,λ for a fixed k ∈ N, ‖xk‖H ≤ Θ2,

and LΦ,λ ≤ L̃λ := (1− λ) + λL̃ < 1 yields similarly

‖x̃k+1‖H ≤ ‖Φ̃(x̃k, x̃0)− Φ(x̃k)‖H + ‖Φ(x̃k)− Φ(xk)‖H + ‖Φ(xk)‖H
≤ λδCΦ + LΦ,λ‖x̃k − xk‖H +Θ2

≤ λδCΦ

k∑

j=0

L̃jλ +Θ2,

and hence ‖x̃k‖H ≤ λδCΦ/(λ(1− L̃)) + Θ2 ≤ Θ0 holds by induction for all k ∈ N. We apply the
bounds from Theorem 3.2 and (11) and conclude the proof by deriving

‖x∗ − x̃k‖ ≤ ‖x∗ − xk‖+ ‖Φ(xk−1)− Φ(x̃k−1)‖+ ‖Φ(x̃k−1)− Φ̃(x̃k−1, x̃0)‖

≤ ‖x1 − x0‖
1− LΦ,λ

LkΦ,λ + LΦ,λ‖xk−1 − x̃k−1‖H + λδCΦ

≤ ‖Φ(x0)− x0‖
1− L̃λ

L̃kλ + λδCΦ

k−1∑

j=0

L̃jλ

≤ max(2Θ0, λCΦ)

1− L̃λ

(
L̃kλ + δ

)
.

4 Variational Inequalities in Hilbert Spaces

In the previous sections we have considered a ProxNet model and derived the associated variational
inequalities. Now we use the variational inequality as starting point derive suitable ProxNets for
its (numerical) solution. Let (H, (·, ·)H) be a separable Hilbert space with topological dual space
denoted by H′ and let H′〈·, ·〉H be the associated dual pairing. Let a : H ×H → R be a bilinear
form, let f : H → R be a functional and let K ⊂ H be a subset of H. We consider the variational
inequality problem

find u ∈ K: a(u, v − u) ≥ f(v − u), ∀v ∈ K. (13)
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Assumption 4.1. The bilinear form a : H × H → R is bounded and coercive on H, i.e. there
exists constants C−, C+ > 0 such that for any v, w ∈ H it holds

a(v, w) ≤ C+‖v‖H‖w‖H and a(v, v) ≥ C−‖v‖2H.

Moreover, f ∈ H′ and K ⊂ H is nonempty, closed and convex.

Problem (13) arises in various applications in the natural sciences, engineering and finance.
It is well-known that there exists a unique solution u ∈ K under Assumption 4.1, see, e.g., [14,
Theorem A.3.3] for a proof. We also mention that well-posedness of Problem (13) is ensured under
weaker conditions as Assumption 4.1, in particular, the coercivity requirement may be relaxed as
shown in [8]. For this article, however, we focus on the bounded and coercive case in order to
obtain numerical convergence rates for ProxNet approximations.

4.1 Fixed-Point Approximation by ProxNets

Theorem 4.2. Let Assumption 4.1 hold, and define H1 := H0 := H. Then, there exists a one-
layer ProxNet Φ as in Equation 3 such that u ∈ K is the unique fixed-point of Φ. Moreover, for
a given u0 ∈ H define the iteration uk := Φ(uk−1), k ∈ N. There are constants LΦ,λ ∈ (0, 1) and
C = C(u0) > 0, independent of k, such that

‖u− uk‖ ≤ CLkΦ,λ, k ∈ N. (14)

Proof. We recall the fixed-point argument, e.g. in [14, Theorem A.3.3], for proving existence and
uniqueness of u as a starting point, since it is the base for the ensuing ProxNet construction:
Assumption 4.1 ensures that a(v, ·), f ∈ H′ for any v ∈ H. The Riesz representation theorem
yields the existence of A ∈ L(H) and F ∈ H such that for all v, w ∈ H

(Av,w)H = a(v, w) and (F, v)H = f(v).

Since K is closed convex, the H-orthogonal projection PK : H → K onto K is well-defined and for
any ω > 0 there holds

u solves (13) ⇐⇒ u = PK(ω(F −Au) + u).

Hence, u is a fixed-point of the mapping

Tω : H → H, v 7→ PK(ω(F −Av) + v).

By Assumption 4.1 it is now possible to choose ω > 0 sufficiently small, so that Tω is a contraction
on H, which proves existence and uniqueness of u. The optimal choice in terms of the bounds
C−, C+ is ω∗ = C−/C

2
+, leading to ‖Tω∗‖2L(H) = (1− C2

1/C
2
2 ) < 1, see e.g. [14, Theorem A.3.3].

To transfer this proof of in the ProxNet setting, we denote by ιK the indicator function of K
given by

ιK : H → (−∞,∞], v 7→
{
0, if v ∈ K,

∞, otherwise.

Since K is closed convex, it holds that ιK ∈ Γ0(H) and proxιK = PK (cf. [2, Examples 1.25 and
12.25]). Now let m = 1, H1 = H, W1 := I − ωA ∈ L(H), b1 := ωF ∈ H, and R1 := proxιK , where
ω > 0 is such that I − ωA is a contraction. Define the ProxNet

Φ : H → H, v 7→ (1− λ)v + λR1(W1v + b1)︸ ︷︷ ︸
:=T1(v)

.

Since ‖W1‖L(H) < 1, Assumption 3.1 is satisfied for λ ∈ (0, 1] and Theorem 3.2 yields that the

iteration uk := Φ(uk−1) converges for any u0 ∈ H to a unique fixed-point u∗ ∈ H with error
bounded by (14) and LΦ,λ := (1 − λ) + λ‖W1‖L(H) ∈ (0, 1). Since Φ(v) = (1 − λ)v + λT1(v), it
follows that u∗ is in turn the unique fixed-point of T1, hence u = u∗, which proves the claim.
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Remark 4.3. In the fashion of Example 3.4, we may construct an augmented ProxNet Φ̃ :
H ⊗ H → H such that Φ̃(v, F ) = Φ(v) for any v ∈ H, where F ∈ H is the Riesz representative
of f ∈ H′ in Problem (13). The only difference is that F has to be multiplied with ω in the

first linear transform to obtain b1 = ωF instead of F as bias vector. The parameters of Φ̃ in this
construction are independent of F , hence Theorem 3.5 yields that for any f ∈ H′ (resp. F ∈ H)
and x0 ∈ H it holds

‖u− ũk‖ ≤ CLkΦ,λ, k ∈ N,

where ũk := Φ̃(uk−1, F ).

The previous remark shows that one fixed ProxNet is sufficient to solve Problem (13) for any
f ∈ H′. A similar result is achieved if the set K ⊂ H associated Problem (13) is parameterized by
a suitable family of functions:

Example 4.4 (Obstacle-to-solution operator). Let H be a Hilbert space of real-valued functions
over a domain D ⊂ R

d such that C(D)∩H is a dense subset, e.g., H = L2(D) or H = H1(D), and
let K := {v ∈ H| v ≥ g almost everywhere} for a sufficiently smooth function g : D → R. With
this choice of K, (13) is an obstacle problem and PK(v) = max(v, g) holds for any v ∈ H ∩ C(D).
We construct a ProxNet approximation to the obstacle-to-solution operator Og : H → H, g 7→ u
corresponding to Problem (13) with K = {v ∈ H| v ≥ g almost everywhere}.

Assume Φ(v) = PK(W1v + b1) for W1 ∈ L(H) and b1 ∈ H are as in Theorem 4.2 and let
K0 := {v ∈ H| v ≥ 0 almost everywhere}. To obtain a ProxNet that uses the obstacle g ∈ H as
input, we define

Φ̃ : H⊕H → H, (v, g) 7→ T̃1(v, g) = (T̃
(1)
2 ◦ T̃ (1)

1 )(v, g)

via T̃
(1)
j1

(v, g) := R
(1)
j1

(W
(1)
j1

(v, g) + b
(1)
j1

) which are, for j1 ∈ {1, 2}, defined by

W
(1)
1 : H⊕H → H⊕H, (v1, v2) 7→ (W1v1 − v2, v2),

b
(1)
1 := (b1, 0) ∈ H ⊕H, R

(1)
1 := prox

ψ
(1)
1
, ψ

(1)
1 (v, g) := ιK0

(v),

W
(1)
2 : H⊕H → H, (v1, v2) 7→ v1 + v2, b

(1)
2 := 0 ∈ H, R

(1)
2 := id ∈ A(H).

Note that this yields W
(1)
1 ∈ L(H ⊕ H), W

(1)
2 ∈ L(H), and R

(1)
1 (v1, v2) = (PK0

v1, v2) for all
v1, v2 ∈ H. It now follows for any given v, g ∈ H and K := {v ∈ H| v ≥ g almost everywhere}

Φ(v) = PK(W1v + b1)

= PK0(W1v + b1 − g) + g

= R
(1)
2 (W

(1)
2 (PK0(W1v + b1 − g), g) + b

(1)
2 )

= T̃
(1)
2 ((PK0

(W1v + b1 − g), g))

= T̃
(1)
2 ◦ (R(1)

1 (W
(1)
1 (v, g) + b

(1)
1 ))

= Φ̃(v, g).

As in Example 3.4 we concatenate Φ̃ to obtain the operator

Õg : H⊕H → H, (x, g) 7→
[
Φ̃(·, g) • · · · • Φ̃(·, g)

]
(x).

Convergence of Õg(x
0, g) to u for any choice of (x0, g) ∈ H⊕H is again guaranteed as the number

of concatenations tends to infinity. Therefore, as in Example 3.4, we are able to solve a family of
obstacle problems with parameter g ∈ H with only one ProxNet Φ̃.

A combination of the ProxNets from Remark 4.3 and Example 4.4 enables us to consider both,
f and K in (13), as input variables of a suitable NN Φ̃ : H ⊕ H ⊕ H → H. This allows, in
particular, to construct an approximation of the data-to-solution operator to Problem (13) that
maps (F, g) ∈ H ⊕H to u.
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5 Example: Linear Matrix Complementarity Problems

Common examples for Problem (13) arise in financial and engineering applications, where the
bilinear form a : H×H → R stems from a second order elliptic or parabolic differential operator.
In this case, H ⊂ Hs(D), where Hs(D) is the Sobolev space of smoothness s > 0 with respect to
the spatial domain D ⊂ R

n, n ∈ N. Coercivity and boundedness of a as in Assumption 4.1 often
arises naturally in this setting. To obtain a computationally tractable problem it is necessary
to discretize (13), for instance by a Galerkin approximation with respect to a finite dimensional
subspace Hd ⊂ H. To illustrate this, we assume that dim(Hd) = d ∈ N is a suitable finite-
dimensional subspace with basis {v1, . . . , vd} and consider an obstacle problem with K = {v ∈
H| v ≥ g almost everywhere} for a smooth function g ∈ H.

Following Example 4.4 we introduce the set K0 := {v ∈ H| v ≥ 0 almost everywhere} and note
that Problem (13) is equivalent to finding u = u0 + g ∈ K

with u0 ∈ K0 such that: a(u0, v − u0) ≥ f(v − u0)− a(g, v − u0), ∀v ∈ K0. (15)

5.1 Discretization and Matrix LCP

Any element v ∈ Hd may be expanded as v =
∑d
i=1 wivi for a coefficient vector w ∈ R

d. To
preserve non-negativity of the discrete approximation to (15), we assume that v ∈ K0 if and only
if the basis coordinates are nonnegative, i.e., if w ∈ R

d
≥0. This property holds, for instance, in

finite element approaches. We write the discrete solution as ud =
∑d
i=1 xivi. Then ud ∈ K0 if and

only if x ∈ R
d
≥0. Consequently, the discrete version of (15) is to

find x ∈ R
d
≥0: (y − x)⊤Ax ≥ (y − x)⊤c, ∀y ∈ R

d
≥0, (16)

where the matrix A ∈ R
d×d and the vector c ∈ R

d are given by

Aij := a(vj , vi) and ci := H′〈f, vi〉H − a(g, vi), i, j ∈ {1, . . . , d}. (17)

Problem (16) is equivalent to the linear complementary problem (LCP) to find x ∈ R
d such that

for A ∈ R
d×d and c ∈ R

d as in (17) it holds

Ax ≥ c, x ≥ 0, x⊤(Ax− c) = 0, (18)

see, e.g., [14, Lemma 5.1.3]. If a : H ×H → R is bounded and coercive as in Assumption 4.1, it
readily follows that

C−‖x‖22 ≤ x⊤Ax ≤ C+‖x‖22, x ∈ R
d, (19)

where the constants C+ ≥ C− > 0 stem from Assumption 4.1 and ‖ · ‖2 is the Euclidean norm on
R
d. This implies in particular that the LCP (18) has a unique solution x ∈ R

d, see [23, Theorem
4.2]. Equivalently, we may regard Problem (16), resp. (18), as variational inequality on the finite-
dimensional Hilbert space R

d equipped with the Euclidean scalar product (·, ·)2. Well-posedness
then follows directly from Assumption 4.1 with the identification H = R

d and the discrete bilinear
form a : Rd × R

d → R, (x, y) 7→ x⊤Ay.

5.2 Solution of Matrix LCPs by ProxNets

The purpose of this section is to show that several well-known iterative algorithms to solve (finite-
dimensional) LCPs may be recovered as particular cases of ProxNets in the setting of Section 2. To
this end, we fix d ∈ N and use the notation H := R

d for convenience. We denote by {e1, . . . , ed} ⊂
R
d the canonical basis of H. To approximately solve LCPs by ProxNets, and to introduce a

numerical LCP solution map, we introduce the scalar and vector-valued Rectified Linear Unit
(ReLU) activation function.
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Definition 5.1. The scalar ReLU activation function ̺ is defined as ̺ : R → R, x 7→ max(x, 0).
The component-wise ReLU activation in R

d is given by

̺(d) : Rd → R
d, x 7→

d∑

i=1

̺((x, ei)H)ei. (20)

Remark 5.2. The scalar ReLU activation function ̺ satisfies ̺ = proxι[0,∞)
with ι[0,∞) ∈ Γ0(R)

(see [5, Example 2.6]). This in turn yields that ̺(d) ∈ A(Rd) for any d ∈ N by [5, Proposition
2.24].

Example 5.3 (PJORNet). Consider the LCP (18) with matrix A and the triangular decompo-
sition

A = D+ L+U, (21)

where D ∈ R
d×d contains the diagonal entries of A, and L,U ∈ R

d×d are the (strict) lower and
upper triangular parts of A, respectively. The projected Jacobi (PJOR) overrelaxation method to
solve LCP (18) is given as:

Algorithm 1 Projected Jacobi overrelaxation method

Given: initial guess x0 ∈ R
d, relaxation parameter ω > 0 and tolerance ε > 0.

1: for k = 0, 1, 2, . . . do
2: xk+1 = max

(
(Id − ωD−1A)xk + ωD−1c, 0

)

3: if ‖xk+1 − xk‖2 < ε then

4: return xk+1

5: end if

6: end for

The max-function in Algorithm 1 acts component-wise on each entry of a vector in R
d. Hence,

one iteration of the PJOR may be expressed as a ProxNet in Model (3) with m = 1, λ = 1 and
̺(d) from Equation (20) as

ΦPJOR : Rd → R
d, x 7→ T1(x) := ̺(d)((Id − ωD−1A)︸ ︷︷ ︸

=:W1

x+ ωD−1c︸ ︷︷ ︸
:=b1

).

If A satisfies (19) for constants C+ ≥ C− > 0, it holds that

‖W1‖2L(H) = ‖Id − ωD−1A‖22
= sup
x∈Rd,‖x‖2=1

x⊤x− ωx⊤D−1(A⊤ +A)x+ ω2(xD−1A)⊤D−1Ax

≤ 1− 2ω min
i∈{1,...,d}

1

Aii
C− + ω2 max

i∈{1,...,d}

1

A2
ii

‖A‖22

≤ 1− 2ω
C−

C+
+ ω2 ‖A‖22

C2
−

=: Λ(ω).

The choice ω∗ := C3
−/(C+‖A‖22) minimizes Λ such that Λ(ω∗) < 1. Moreover, Λ(0) = 1, Λ is

strictly decreasing on [0, ω∗], and increasing for ω > ω∗. Hence, there exists ω > 0 such that for
any ω ∈ (0, ω) the mapping ΦPJOR : Rd → R

d is a contraction. An application of Theorem 3.2
then shows that Algorithm (1) converges linearly for suitable ω > 0 and any initial guess x0. In
the special case that A is strictly diagonally dominant, choosing ω = 1 is sufficient to ensure
convergence, i.e., no relaxation before the activation is necessary.

Example 5.4 (PSORNet). Another popular algorithm to numerically solve LCPs is the projected
successive overrelaxation (PSOR) method in Algorithm 2.
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Algorithm 2 Projected successive overrelaxation algorithm

Given: initial guess x0 ∈ R
d, relaxation parameter ω > 0 and tolerance ε > 0.

1: for k = 0, 1, 2, . . . do
2: for i = 1, 2, . . . , d do

3: yk+1
i = 1

Aii

(
ci −

∑i−1
j=0 Aijx

k+1
j −∑d

j=i+1 Aijx
k
j

)

4: xk+1
i = max((1− ω)xki + ωyk+1

i , 0)
5: end for

6: if ‖xk+1 − xk‖2 < ε then

7: return xk+1

8: end if

9: end for

To represent the PSOR-iteration by a ProxNet as in (3), we use the scalar ReLU activation ̺
from Definition 5.1 and and define for i ∈ {1, . . . , d}

Ri : R
d → R

d, x 7→ ̺((x, ei)H)ei +

d∑

j=1, j 6=i

xjej . (22)

In contrast to ̺(d) in Equation (20), the activation operator Ri takes the maximum only with re-
spect to the i-th entry of the input vector. Nevertheless, Ri ∈ A(Rd) holds again by [5, Proposition
2.24]. Now define bi ∈ R

d and Wi ∈ R
d×d by

bi = (0, . . . , 0, ω
ci
Aii︸ ︷︷ ︸

i-th entry

, 0, . . . , 0), (Wi)lj =





1− ω l = j = i,

1 l = j ∈ {1, . . . , d} \ {i},
−ωAij

Aii
, l = i, j ∈ {1, . . . , d} \ {i},

0, elsewhere,

and let Ti(x) := Ri(Wix+ bi) for x ∈ R
d. Given the k-th iterate xk and xk+1

1 , . . . , xk+1
i−1 from the

inner loop of Algorithm 2, it follows for zk,i−1 := (xk+1
1 , . . . , xk+1

i−1 , x
k
i , . . . , x

k
d)

⊤ that

xk+1
i = zk,ii , zk,i = Ti(z

k,i−1), i ∈ {1, . . . , d}, k ∈ N. (23)

As zk−1,d = zk,0 = xk for k ∈ N, this shows xk+1 = ΦPSOR(x
k) for

ΦPSOR : Rd → R
d, x 7→ (Td ◦ · · · ◦ T1)(x). (24)

Provided (19) holds, we derive similarly to Example 5.3

‖Wi‖22 = sup
x∈Rd,‖x‖2=1

x⊤x− 2
ω

Aii
x⊤A[i]xi +

ω2

A2
ii

(x⊤A[i])
2

≤ 1− 2ω
1

Aii
C− +

ω2

A2
ii

‖A‖2,

where A[i] denotes the i-th row of A. Hence, ω∗ := C3
−/(C+‖A‖22) is sufficient to ensure that

ΦPSOR is a contraction, and convergence to a unique fixed-point follows as in Theorem 3.2.

Remark 5.5. Both, the PJORNet and PSORNet from Examples 5.3 and 5.4 may be augmented
as in 3.4 to take c ∈ R

d as additional input vector, and therefore to solve the LCP (18) for varying c.
That is, concatenation of the PJORNet/PSORNet again yields an approximation to the solution
operator Oc : Rd → R

d, c 7→ x associated to the LCP (18). This is of particular interest, for
instance, in the valuation of American options, where a collection of LCPs with varying model
parameters has to be solved, see [14, Chapter 5] and the numerical examples in Section 7. Recall
that ci := H′〈f, vi〉H − a(g, vi) if the matrix LCP stems from a discretized obstacle problem as
introduced in the beginning of this section. Hence, by varying c it is possible to modify the right
hand side f , as well as the obstacle g, of the underlying variational inequality.
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5.3 Solution of Parametric Matrix LCPs by ProxNets

In this section we construct ProxNets that take arbitrary LCPs (A, c) in finite-dimensional, Eu-
clidean space as input, and output approximations of the solution x to (18) with any prescribed
accuracy. Consequently, these ProxNets realize approximate data-to-solution operators

OA,c : {A ∈ R
d2 | there are C−, C+ > 0 s.t. A satisfies (19)} ⊗ R

d → R
d, (A, c) 7→ x.

The key step is to realize Algorithm (1) for any given matrix A, meaning the weights of the NN
may not depend on A as in the previous section. To this end, we use that the multiplication of real
numbers may be emulated by ReLU-NNs with controlled error and growth bounds on the layers
and size of the network. This was first shown in [27], and then extended to the multiplication of
n ∈ N real numbers in [24].

Proposition 5.6. [24, Proposition 2.6] For any δ0 ∈ (0, 1), n ∈ N and Θ ≥ 1, there exists a

ProxNet
∏̃n

δ0,Θ
: Rn → R of the form (2) such that

sup
(x1,...,xn)∈[−Θ,Θ]n

∣∣∣∣∣
n∏

i=1

xi −
∏̃n

δ0,Θ
(x1, . . . , xn)

∣∣∣∣∣ ≤ δ0,

ess sup
(x1,...,xn)∈[−Θ,Θ]n

sup
j∈{1,...,n}

∣∣∣∣∣∂xj

n∏

i=1

xi − ∂xj

∏̃n

δ0,Θ
(x1, . . . , xn)

∣∣∣∣∣ ≤ δ0,

(25)

where ∂xj
is the weak derivative with respect to xj. The neural network

∏̃n

δ0,Θ
uses only ReLUs as

in Definition 5.1 as proximal activations. There exists a constant C, independent of δ0 ∈ (0, 1),

n ∈ N and Θ ≥ 1, such that the number of layers mn,δ0,Θ ∈ N of
∏̃n

δ0,Θ
is bounded by

mn,δ0,Θ ≤ C

(
1 + log(n) log

(
nΘn

δ

))
.

Remark 5.7. For our purposes, it is sufficient to consider the cases n ∈ {2, 3}, therefore we
assume without loss of generality that there is a constant C, independent of δ0 ∈ (0, 1) and Θ ≥ 1,
such that for n ∈ {2, 3} it holds

mn,δ0,Θ ≤ C

(
1 + log

(
Θ

δ0

))
.

Moreover, we may assume without loss of generality thatm2,δ0,Θ = m3,δ0,Θ, as it is always possible
to add ReLU-layers that emulate the identity function to the shallower network (see [24, Section
2] for details).

With this at hand, we are ready to proof the main result of this section.

Theorem 5.8. Let Θ ≥ 2 be a fixed constant, d ≥ 2 and let (A, c) ∈ R
d×d × R

d be any tuplet
such that ‖c‖∞ ≤ Θ and A ∈ R

d×d satisfies (19) with Θ ≥ C+ ≥ C− ≥ Θ−1 > 0. For the

triangular decomposition A = D+L+U as in (21), define zA := vec(D−1+L+U) ∈ R
d2 , where

vec : Rd×d → R
d2 is the row-wise vectorization of a R

d×d-matrix. Let x∗ be the unique solution to
the LCP (A, c) and let x̃0 ∈ R

d be arbitrary such that ‖x̃0‖2 ≤ Θ.
For any ε > 0 there exists a ProxNet

Φ̃ : Rd ⊕ R
d2 ⊕ R

d → R
d (26)

as in (9) and a kε ∈ N such that
‖x∗ − x̃kε‖2 ≤ ε

holds for the sequence x̃k := Φ̃(x̃k−1, zA, c) generated by Φ̃ and any tuplet (A, c) as above. More-

over, kε ≤ C1(1+log(|ε|)), where C1 > 0 only depends on Θ and Φ̃ has m ≤ C2(1+log(|ε|)+log(d))
layers, where C2 > 0 is independent of Θ.
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Proof. Our strategy is to approximate ΦPJOR for given (A, c) from Example 5.3 by Φ̃(·, zA, c). We

achieve this by constructing Φ̃ based on the approximate multiplication NNs from Proposition 5.6
and show that ΦPJOR and Φ̃ satisfy Assumption 3.3 to apply the error estimate from Theorem 3.5.

We start by defining the mapping Φ̃ : Rd ⊕ R
d2 ⊕ R

d → R
d via

Φ̃(x, zA, c)i = max


(1− ω)xi − ω

∑

j=1,j 6=i

∏̃3

δ0,Θ

(
xj ,

1

Aii
,Aij

)
+ ω

∏̃2

δ0,Θ

(
1

Aii
, ci

)
, 0


 ,

for i ∈ {1, . . . , d} and 0 < ω := Θ−6 ≤ C3
−

C+‖A‖2
2
= ω∗ and δ0 ∈ (0, d−3/2].

We show in the following that Φ̃ is indeed a ProxNet. To bring the input into the correct order
for multiplication, we define for i ∈ {1, . . . , d} the binary matrix W (i) ∈ R

(2d+1)×(d2+2d) by

(
W (i)

)
lj
:=





1 l = j ∈ {1, . . . , d},
1 l ∈ {d+ 1, . . . , 2d}, j = d+ d(i− 1) + (l − d),

1 l = 2d+ 1, j = d+ d2 + i,

0 elsewhere.

Hence, we obtain

W (i)



x
zA
c


 =

(
x⊤, (Aij)j<i ,

1

Aii
, (Aij)j>i , ci

)⊤

.

Now let e1, . . . , ed+2 ⊂ R
2d+1 be the canonical basis of R2d+1 and define furthermore E

(i)
i :=

e⊤i ∈ R
1×(2d+1), E

(i)
j := [ej ed+i ed+j ]

⊤ ∈ R
3×(2d+1) for j ∈ {1, . . . , d} \ {i} and E

(i)
d+1 :=

[ed+i e2d+1]
⊤ ∈ R

2×(2d+1). By Remark 5.7, we may assume that
∏̃3

δ0,Θ
and

∏̃2

δ0,Θ
have an identical

number of layers, denoted by mδ0,Θ ∈ N. Moreover, it is straightforward to construct a ProxNet
Idmδ0,Θ

: R → R with mδ0,Θ layers that corresponds to the identity map, i.e. Idmδ0,Θ
(x) = x for

all x ∈ R. We use the concatenation from Definition 2.3 to define

Φ̃
(i)
i := Idmδ0,Θ

• (E(i)
i W (i)) : Rd

2+2d → R

Φ̃
(i)
j :=

∏̃2

δ0,Θ
• (E(i)

j W (i)) : Rd
2+2d → R, j ∈ {1, . . . , d} \ {i},

Φ̃
(i)
d+1 :=

∏̃3

δ0,Θ
• (E(i)

d+1W
(i)) : Rd

2+2d → R.

Note that this yields

Φ̃
(i)
i (x, zA, c) = xi, Φ̃

(i)
j (x, zA, c) =

∏̃3

δ0,Θ

(
xj ,

1

Aii
,Aij

)
, Φ̃

(i)
d+1(x, zA, c) =

∏̃2

δ0,Θ

(
1

Aii
, ci

)
.

Furthermore, we set n1 := mδ0,Θ + 1 and define T̃
(+,i)
n1 : Rd

2+d → R, x 7→ ̺(W
(+,i)
n1 x), where

̺ : R → R is the (scalar) ReLU activation and W
(+,i)
n1 ∈ R

1×(d+1) is given by

(
W (+,i)
n1

)
j
:=





1− ω j = i,

−ω j ∈ {1, . . . , d} \ {i},
ω j = d+ 1.

As Φ̃
(i)
1 , . . . , Φ̃

(i)
d+1 have the same input dimension, the same number of mδ0,Θ layers, and no

skip connections, we may parallelize as in Definition 2.5 to ensure

Φ̃(x, zA, c)i =max


(1− ω)xi − ω

∑

j=1,j 6=i

∏̃3

δ0,Θ

(
xj ,

1

Aii
,Aij

)
+ ω

∏̃2

δ0,Θ

(
1

Aii
, ci

)
, 0




=
(
T̃ (+)
n1

• P
(
Φ̃

(i)
1 , . . . , Φ̃

(i)
d+1

))
(x, zA, c).
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It holds that Φ̃i := T̃
(+)
n1 •P

(
Φ̃

(i)
1 , . . . , Φ̃

(i)
d+1

)
is a ProxNet as in Equation (9) with Φ̃i : R

d2+2d → R

and n1 = mδ0,Θ + 1 layers for any i ∈ {1, . . . , d}. We parallelize once more and obtain that

Φ̃ := P (Φ̃1, . . . , Φ̃d) is a ProxNet with mδ0,Θ+1 layers that may be written as Φ̃ = T̃
(1)
1 ◦ · · · ◦ T̃ (1)

n1

for suitable one-layer networks T̃
(1)
1 : Rdj−1 → R

dj and dimensions dj ∈ N for j ∈ {1, . . . , n1} such
that d0 = d2 + 2d and dn1

= d.
We now fix (A, c) and let ΦPJOR := R(W1 · +b1) be as in Example 5.3 with ω = Θ−6,

W1 = Id − ωD−1A and b1 := ωD−1c. This shows that ΦPJOR has Lipschitz constant LΦ =
‖W1‖2 ≤

√
1− 2Θ−4 +Θ−8 = 1−Θ−4 < 1 and ‖b1‖2 ≤ ωΘ2 ≤ Θ−4.

Note that |ci|, 1/Aii, |Aij | ≤ Θ for any i, j ∈ {1, . . . , d}. Therefore, Proposition 5.6 yields for
x̃0 := (zA, c) and any x ∈ R

d with ‖x‖∞ ≤ Θ that

‖Φ(x)− Φ̃(x, x̃0)‖22 = ‖T1(x)− T̃1(x, x̃0)‖22

= ω2
d∑

i=1


 ci
Aii

−
∏̃2

δ0,Θ

(
ci,

1

Aii

)
−

d∑

j=1,j 6=i

Aij

Aii
xj −

∏̃3

δ0,Θ

(
Aij ,

1

Aii
, xj

)


2

≤ ω2d3δ20 .

Hence, since δ0 ∈ (0, d−3/2] and ω = Θ−6, ΦPSOR and Φ̃ satisfy Assumption 3.3 with

L̃ := 1−Θ−4 ∈ (0, 1), δ := ωd3/2δ0 ≥ 0, Θ1 := Θ ≥ 2,

Θ0 := Θ1 − ‖b1‖2 − δ ≥ Θ−Θ−4 − ωd3/2δ0 ≥ 123

64
,

Θ2 := Θ0 − δ/(1− L̃) ≥ Θ0 −
Θ−6

Θ−4
≥ 123

64
− 1

4
> 0.

Theorem 3.5 then yields

‖x∗ − x̃k‖H ≤ C
(
L̃k + δ

)
,

where C ≤ max(2Θ0, 1)/(1− L̃) ≤ 2Θ5 is independent of k. Given ε > 0, we choose

kε =:

⌈
log(ε)− log(2C)

log(L̃)

⌉
, δ0 :=

min
(
1, ε

2Cω

)

d3/2
≥ min

(
1, εΘ4

)

d3/2

to ensure ‖x∗ − x̃kε‖ ≤ ε. Hence, kε ≤ C1(1 + log(|ε|)), where C1 = C1(Θ) > 0 is independent
of d. Moreover, Proposition 5.6 and the choice of δ0 show that mδ0,Θ ≤ C2(1 + log(|ε|) + log(d)),

where C2 > 0 is independent of Θ. The claim follows since Φ̃ has n1 = mδ0,Θ + 1 layers by
construction.

As before, we may now concatenate Φ̃ to obtain the approximate data-to-solution operator

ÕA,c(x,A, c) :=
[
Φ̃(·, zA, c) • · · · • Φ̃(·, zA, c)

]
(x)

and obtain that ÕA,c(x
0,A, c) ≈ OA,c(A, c) = x holds for any (x0,A, c), satisfying the assump-

tions of Theorem 5.8.
Furthermore, the construction of Φ̃ by approximate ReLU-multiplications even allows to derive

Lipschitz continuity of ÕA,c. This is established by the following version of Strang’s Lemma for
the approximate solutions of variational inequalities.

Theorem 5.9. Let (A(1), c(1)) and (A(2), c(2)) be any two LCPs that satisfy the assumptions of
Theorem 5.8 for some Θ ≥ 2. For l ∈ {1, 2}, let A(l) = D(l) + L(l) +U(l) be the decomposition of

A(l) as in (21) and define zA(l) := vec((D(l))−1 + L(l) +U(l)) ∈ R
d2 . For arbitrary ε > 0 let Φ̃ be

the ProxNet as in (26), let x̃0 ∈ R
d be such that ‖x̃0‖2 ≤ Θ, and define the sequences

x̃(l),k := Φ̃(x̃(l),k−1, zA(l) , c(l)), k ∈ N, x̃(l),0 := x̃0, l ∈ {1, 2}. (27)
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Furthermore, let ‖ · ‖F denote the Frobenius norm on R
d×d.

Then there is a constant C > 0 depending only on Θ and d, such that for any k ∈ N0 and
arbitrary, fixed ε > 0 it holds that

‖x̃(l),k − x̃(l),k‖2 ≤ C̃
(
‖A(1) −A(2)‖F + ‖c(1) − c(2)‖2

)
. (28)

Proof. By the construction of Φ̃ in Theorem 5.8 we have for any x ∈ R
d, l ∈ {1, 2}, and i ∈

{1, . . . , d} that

Φ̃(x, zA(l) , c(l))i = max


(1− ω)xi − ω

d∑

j=1,j 6=i

∏̃3

δ0,Θ

(
xj ,

1

A
(l)
ii

,A
(l)
ij

)
+ ω

∏̃2

δ0,Θ

(
1

A
(l)
ii

, c
(l)
i

)
, 0


 .

Therefore, we estimate by the triangle inequality

|Φ̃(x, zA(1) , c(1))i − Φ̃(x, zA(2) , c(2))i|

≤ω
d∑

j=1,j 6=i

∣∣∣∣∣
∏̃3

δ0,Θ

(
xj ,

1

A
(1)
ii

,A
(1)
ij

)
−
∏̃3

δ0,Θ

(
xj ,

1

A
(2)
ii

,A
(2)
ij

)∣∣∣∣∣

+ ω

∣∣∣∣∣
∏̃2

δ0,Θ

(
1

A
(1)
ii

, c
(1)
i

)
−
∏̃2

δ0,Θ

(
1

A
(2)
ii

, c
(2)
i

)∣∣∣∣∣

≤ω
d∑

j=1,j 6=i

∣∣∣∣∣
∏̃3

δ0,Θ

(
xj ,

1

A
(1)
ii

,A
(1)
ij

)
−
∏̃3

δ0,Θ

(
xj ,

1

A
(1)
ii

,A
(2)
ij

)∣∣∣∣∣

ω

d∑

j=1,j 6=i

∣∣∣∣∣
∏̃3

δ0,Θ

(
xj ,

1

A
(1)
ii

,A
(2)
ij

)
−
∏̃3

δ0,Θ

(
xj ,

1

A
(2)
ii

,A
(2)
ij

)∣∣∣∣∣

+ ω

∣∣∣∣∣
∏̃2

δ0,Θ

(
1

A
(1)
ii

, c
(1)
i

)
−
∏̃2

δ0,Θ

(
1

A
(1)
ii

, c
(2)
i

)∣∣∣∣∣

+ ω

∣∣∣∣∣
∏̃2

δ0,Θ

(
1

A
(1)
ii

, c
(2)
i

)
−
∏̃2

δ0,Θ

(
1

A
(2)
ii

, c
(2)
i

)∣∣∣∣∣ .

By the assumptions on (A(l), c(l)), l ∈ {1, 2}, it holds for any i, j ∈ {1, . . . , d} that 1/A
(l)
ii , A

(l)
ij ,

c
(l)
i ∈ [−Θ,Θ]. Hence, for any x with ‖x‖∞ ≤ Θ we obtain by Θ ≥ 2 and the second estimate
from Proposition 5.6

|Φ̃(x, zA(1) , c(2))i − Φ̃(x, zA(2) , c(2))i|

≤ω
d∑

j=1,j 6=i

(
δ0 +

∣∣∣∣∣
xj

A
(1)
ii

∣∣∣∣∣

) ∣∣∣A(1)
ij −A

(2)
ij

∣∣∣+ ω
(
δ0 + |xjA(2)

ij |
) ∣∣∣∣∣

1

A
(1)
ii

− 1

A
(2)
ii

∣∣∣∣∣

+ ω

(
δ0 +

1

A
(1)
ij

)∣∣∣c(1)i − c
(2)
i

∣∣∣+ ω
(
δ0 + |c(2)i |

) ∣∣∣∣∣
1

A
(1)
ii

− 1

A
(2)
ii

∣∣∣∣∣

≤ω2(δ0Θ2 +Θ4)




d∑

j=1

∣∣∣A(1)
ij −A

(2)
ij

∣∣∣+
∣∣∣c(1)i − c

(2)
i

∣∣∣




≤ω(δ0Θ2 +Θ4)


d1/2




d∑

j=1

∣∣∣A(1)
ij −A

(2)
ij

∣∣∣
2




1/2

+
∣∣∣c(1)i − c

(2)
i

∣∣∣


 .
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We have used the mean-value theorem to obtain the bound∣∣∣∣∣
1

A
(1)
ii

− 1

A
(2)
ii

∣∣∣∣∣ ≤ Θ2
∣∣∣A(1)

ii −A
(2)
ii

∣∣∣

in the second last inequality and the Cauchy-Schwarz inequality in the last step. We recall from the
proof of Theorem 5.8 that ω = Θ−6 and δ0 ≤ d−3/2, hence, there is a constant C = C(Θ, d) > 0,
depending only on the indicated parameters, such that for any x ∈ R

d with ‖x‖∞ ≤ Θ it holds

‖Φ̃(x, zA(1) , c(1))− Φ̃(x, zA(2) , c(2))‖2 ≤ C
(
‖A(1) −A(2)‖F + ‖c(1) − c(2)‖2

)
. (29)

Moreover, for any x, y ∈ R such that ‖x‖∞, ‖y‖∞ ≤ Θ, it holds by the mean-value theorem
and the second estimate from Proposition 5.6

|Φ̃(x, zA(1) , c(1))i − Φ̃(y, zA(1) , c(1))i|
≤
∣∣∣Φ̃(x, zA(1) , c(1))i − Φ̃(y, zA(1) , c(1))i − ((Id − ωD−1A)(x− y))i

∣∣∣
+
∣∣((Id − ωD−1A)(x− y))i

∣∣

=ω

∣∣∣∣∣∣

d∑

j=1,j 6=i

∏̃3

δ0,Θ

(
xj ,

1

A
(1)
ii

,A
(1)
ij

)
−
∏̃3

δ0,Θ

(
yj ,

1

A
(1)
ii

,A
(1)
ij

)
−

A
(1)
ij

A
(1)
ii

(xj − yj)

∣∣∣∣∣∣
+
∣∣((Id − ωD−1A)(x− y))i

∣∣

≤ωδ0
d∑

j=1,j 6=i

|xj − yj |+
∣∣((Id − ωD−1A)(x− y))i

∣∣

Hence, Young’s inequality yields for any ε > 0 that

‖Φ̃(x, zA(1) , c(1))− Φ̃(y, zA(1) , c(1))‖22

≤
d∑

i=1

(
1 +

1

4ε

)
ω2δ20




d∑

j=1,j 6=i

|xj − yj |




2

+ (1 + ε)‖(Id − ωD−1A)(x− y)‖22

≤
((

1 +
1

4ε

)
ω2δ20d(d− 1) + (1 + ε)‖Id − ωD−1A‖22

)
‖x− y‖22

(30)

where we have used the Cauchy-Schwarz inequality in the last step. From the proof of Theorem 5.8
we have as before that ω = Θ−6, δ0 ≤ d−3/2, and, furthermore ‖Id−ωD−1A‖2 ≤ 1−Θ4. Setting

ε := Θ−4 and using Θ ≥ 2, d ≥ 1 therefore shows that Φ̃(·, zA(1) , c(1)) : Rd → R
d is a contraction

on (Rd, ‖ · ‖2) with Lipschitz constant L̃1 > 0 bounded by

L̃1 ≤
((

Θ−12 +
Θ−8

4

)
d−1 + (1−Θ−8)

)1/2

≤
√
1− 11

16
Θ−8 ∈ (0, 1). (31)

Now let (x̃(l),k) for l ∈ {1, 2} and k ∈ N0 denote the iterates as defined in (27) and recall from
the proof of Theorem 3.5 that ‖x̃(l),k‖∞ ≤ ‖x̃(l),k‖2 ≤ Θ. Therefore, we may apply the estimates
in (29) and (30), and to obtain

‖x̃(1),k − x̃(2),k‖2 ≤ ‖x̃(1),k − Φ̃(x̃(2),k−1, zA(1) , c(1))‖2 + ‖Φ̃(x̃(2),k, zA(1) , c(1))− x̃(2),k‖2
≤ L̃1‖x̃(1),k−1 − x̃(2),k−1‖2 + C

(
‖A(1) −A(2)‖F + ‖c(1) − c(2)‖2

)

≤ C
(
‖A(1) −A(2)‖F + ‖c(1) − c(2)‖2

) k−1∑

j=1

L̃j1

≤ C

1− L̃1

(
‖A(1) −A(2)‖F + ‖c(1) − c(2)‖2

)
.

The claim follows since C = C(Θ, d) and L̃1 is bounded independently in ε and k by (31).
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6 PDASNet: From Linear to Superlinear Convergence

We have shown in the previous two sections that solutions to variational inequalities and the as-
sociated discrete LCPs (18) may be approximated by fixed-point iterations of ProxNets. The con-
traction property of the NNs yields linear convergence rates, both in finite and infinite-dimensional
Hilbert spaces. In practice, one always works in the finite-dimensional setting, and we show in
this section that even superlinear convergence is possible for a different ProxNet architecture. The
key is to switch the analysis from fixed-point iterations to a primal-dual active set strategy, and
to approximate the binary decision for the active/inactive sets by ReLU activation functions.

6.1 Primal-dual active set (PDAS) strategy

Besides PJOR and PSOR, to solve (18) the primal-dual active set (PDAS) method has been
proposed in [15]. We construct corresponding DNN emulations. To introduce the PDAS, we first
note that (18) may be reformulated as an LCP problem which is to find x, µ ∈ R

d such that

Ax− µ = c, x ≥ 0, µ ≥ 0, x⊤µ = 0. (32)

Let η > 0 be an arbitrary positive constant and define

C : Rd × R
d → R

d, (x, µ) 7→ µ−max(µ− ηx, 0),

so that Problem (32) is equivalent to find (x, µ) ∈ R
d × R

d such that

Ax− µ = c, C(x, µ) = 0. (33)

The equivalent formulation of (18) to (33) motivates the PDAS method given in Algorithm 3.
By interpreting the PDAS as a semi-smooth Newton method, the authors show in [15] that Algo-
rithm 3 converges globally for any initial value in finite time, and locally at a superlinear rate to
the unique solution (x, µ) of Equation (33) under mild assumptions.

Algorithm 3 Primal-dual active set algorithm

Given: initial guesses x0, µ0 ∈ R
d, η > 0 and tolerance ε > 0.

1: for k = 0, 1, 2, . . . do
2: Set

Ik := {i ∈ {1, . . . , d} : µki − ηxki ≤ 0},
Ak := {i ∈ {1, . . . , d} : µki − ηxki > 0}.

3: Solve Axk+1 − µk+1 = c such that xk+1
i = 0 for i ∈ Ak and µk+1

i = 0 for i ∈ Ik.
4: if ‖xk+1 − xk‖2 < ε then

5: return xk+1

6: end if

7: end for

Theorem 6.1. [15, Theorem 3.1] Let A be a P-matrix, i.e., all principal minors of A are positive,
and let (x, µ) be the solution of Equation (33). Then, provided that ‖x0 − x‖2 + ‖µ0 − µ‖2 is
sufficiently small, the PDAS converges to the solution (x, µ) in finitely many steps. Furthermore,
the convergence is locally superlinear: for sufficiently large k ∈ N it holds that

‖x− xk‖2 + ‖µ− µk‖2 ≤ C̃k
(
‖x− xk−1‖2 + ‖µ− µk−1‖2

)
,

where C̃k ≥ 0 for all k ∈ N and limk→∞ C̃k = 0.

Global of the PDAS requires stricter assumptions on A and is established in the next theorem.
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Theorem 6.2. [15, Theorem 3.3/3.4] Let A satisfy one of the following assumptions:

• A is a M -matrix, i.e., A is regular, Aij ≤ 0 for any i 6= j and A−1 ≥ 0.

• A is a P -matrix and for every partitioning of the index set {1, . . . , d} into disjoint sets I a
A it holds

‖(A−1
I,IAI,A)+‖1 < 1, and,

∑

i∈I

(AI,IyI)i ≥ 0

for any yI ≥ 0, where (B)+ contains the positive parts of the elements of a matrix B.

Then, the PDAS converges for any initial guess (x0, µ0) to the solution (x, µ) of Equation (33) in
finitely many steps and the convergence is locally superlinear.

Remark 6.3. The bounds (19) imply that A is a P -matrix, and therefore guarantee local con-
vergence in Theorem 6.1. Interpreting the PDAS as a Newton method yields locally superlinear
convergence, in contrast to the fixed-point iterations in Algorithms 1 and 2, which converge (glob-
ally) at linear speed. In most applications, this results in a significantly better performance of
the PDAS algorithm. We emphasize, however, that the fixed-point approach works for abstract
variational inequality problems in arbitrary Hilbert spaces as introduced in Section 4. Conver-
gence for the PDAS, on the other hand, is only ensured for finite-dimensional LCPs and it cannot
be expected to find a straightforward analogue of the PDAS for infinite-dimensional variational
inequalities. For further details, we refer to examples and discussion in [15, Section 4].

By introducing the auxiliary variable µ, we now consider the solution operator

OPDAS,c : R
d → R

d ⊕ R
d, c 7→ (x, µ) (34)

associated to Problem (33), rather than Oc : R
d → R

d c 7→ x as the fixed point methods to solve
LCP (18).

6.2 Merging PDAS and ProxNets: PDASNet

The structure of Algorithm 3 suggest that one iteration of the PDAS may be realized by a two-
layer neural network with a discontinuous activation layer based on the binary step unit (BiSU)
activation function ̺BS(x) := 1{x>0}. This approach, however, is not desirable as discontinu-
ous activation functions do not correspond to proximal operators, thus lack stability and entail
difficulties in the training process of the network. Fortunately, we may circumvent this issue by
approximation the BiSU by ReLU activation functions.

Lemma 6.4. Let ̺BS : R → {0, 1}, x 7→ 1{x>0} be the BiSU and let ̺ : R → [0,∞), x 7→
max(x, 0) be the scalar ReLU as in Definition 5.1. For any γ > 0 define

̺γ : R → R≥0, x 7→ ̺(x/γ)− ̺(x/γ − 1). (35)

It holds that ̺γ(x) = ̺BS(x) for any x ∈ R \ (0, γ).

The proof of Lemma 6.4 is immediate, but this simple observation enables us to realize one
iteration of the PDAS as ProxNet and achieve superlinear convergence. As the construction of
this network slightly differs from the fixed-point architectures, we provide the proof directly for
an augmented network as in setting (2). Hence, this allows us again to approximate the solution
operator OPDAS,c from (34) by using c in (18) as input variable.

Proposition 6.5. Let β, γ, ξ > 0 be fixed constants, let (A, c) ∈ R
d×d×R

d be any LCP (18) such
that A satisfies (19), ci /∈ (−γ, 0) and (Ac)i /∈ (−β, 0) holds for all i ∈ {1, . . . , d}, and such that
‖c‖∞, ‖A−1c‖∞ < ξ. Furthermore, let x0, µ0 ∈ R

d and η ≥ γ/β > 0 be such that µ0
i − ηx0i /∈ (0, γ)

holds for all i ∈ {1, . . . , d}, and such that ‖x0‖∞, ‖µ0‖∞ < ξ. Let k ∈ N, and let (xk, µk) be the
associated k-th iterate of the PDAS (Algorithm 3) with parameter η ≥ γ/β > 0 for the LCP (A, c).
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There is a two-layer ProxNet ΨPDAS : R3d → R
2d as in (2) such that for any pair (A, c) and

any initial value (x0, µ0) as above it holds that

(
xk+1

µk+1

)
= ΨPDAS



xk

µk

c


 , k ∈ N0.

The weights and biases of ΨPDAS depend on γ, ξ, η and A, but are independent of c.

Proof. For any k ∈ N0 and (xk, µk), let Ak and Ik be the active and inactive set, respectively, as
defined in Algorithm 3. Let gk ∈ R

d be the binary vector given for i ∈ {1, . . . , d} by

gki := ̺BS(µki − ηxki ) =

{
1, i ∈ Ak

0, i ∈ Ik
.

Moreover, let Gk := diag(gk) and note that the update in Algorithm 3 is the solution to the linear
system (

A −Id
Gk Id −Gk

)(
xk+1

µk+1

)
=

(
c
0

)
.

As Gkx
k+1 = (Id −Gk)µ

k+1 = 0 and A is regular, this is equivalent to solving

(
A(Id −Gk) −Gk

Gk Id −Gk

)(
xk+1

µk+1

)
=

(
c
0

)
.

Observing that G2
k = Gk, (Id −Gk)

2 = Id −Gk, Gk(Id −Gk) = 0d, where 0d ∈ R
d×d has only

zero entries, together with GkA = A⊤Gk then yields

(
xk+1

µk+1

)
=

(
(Id −Gk)A

−1 Gk

−Gk Id −Gk

)(
c
0

)
=

(
(Id −Gk)A

−1c
−Gkc

)
. (36)

Since µ0
i − ηx0i ∈ R \ (0, γ) holds by assumption for every i ∈ {1, . . . , d}, Lemma 6.4 yields that

̺γ(µ
0
i − ηx0i ) = ̺BS(µ0

i − ηx0i ),

and therefore
g0 = ̺(d)((µ0 − ηx0)/γ)− ̺(d)((µ0 − ηx0)/γ − 1d),

where ̺(d) : Rd → R
d is the component-wise ReLU activation from (20). We denote by ̺(4d) :

R
4d → R

4d the corresponding ReLU in R
4d and define the ProxNet

Ψ1 : R3d → R
2d,



x
µ
c


 7→ W̃2̺

(4d)


W1



x
µ
c


+ b1


 ,

where

W1 :=




− η
γ Id

1
γ Id 0d

− η
γ Id

1
γ Id 0d

0d 0d Id
0d 0d −Id


 , b1 :=




0
−1d
0
0


 , W̃2 :=

(
Id −Id 0d 0d
0d 0d Id −Id

)
. (37)

It hence follows that

Ψ1





x0

µ0

c




 =

(
g0

c

)
.
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Now recall that Gk := diag(gk), and note that for any y ∈ R
d such that ‖y‖∞ ≤ ξ it holds

Gky = diag(gk)y = max(y + ξ(2gk − 1d), 0)− ξgk

(Id −Gk)y = diag(1d − gk)y = max(y + ξ(−2gk + 1d), 0)− ξ(1d − gk).

We define the ProxNet

Ψ2 : R2d → R
2d,

(
g
c

)
7→W3̺

(3d)

(
Ŵ2

(
g
c

)
+ b2

)
+ b3, (38)

where ̺(3d) : R3d → R
3d is the component-wise ReLU in R

3d and with

Ŵ2 :=



−2ξId A−1

2ξId −Id
Id 0d


 , b2 :=



ξ1d
−ξ1d
0


 , W3 :=

(
Id 0d ξId
0d Id −ξId

)
, b3 :=

(
−ξ1d
0

)
. (39)

Equation (36) then shows together with ̺(d)(g0) = g0 that

Ψ2

((
g0

c

))
=

(
(Id −G0)A

−1c
−G0c

)
=

(
x1

µ1

)
,

and since Ψ1 and Ψ2 have no skip connections, we may concatenate to obtain

Ψ2 •Ψ1





x0

µ0

c




 =

(
x1

µ1

)
.

Note that the second linear transform in Ψ2 • Ψ1 : R3d → R
2d is given by the matrix W2 :=

Ŵ2W̃2 ∈ R
3d×4d and the vector b2 from Equations (37) and (39).

The claim follows inductively if we can ensure that µki − ηxki /∈ (0, γ) holds for all k ∈ N0. By
(36) we have for any k ∈ N0

µk+1
i − ηxk+1

i =
(
Gk(ηA

−1 − Id)c− ηA−1c
)
i
=

{
−ci, if gki = 1,

−η(A−1c)i, if gki = 0,

and, by assumption, it holds that ci /∈ (−γ, 0), (Ac)i /∈ (−β, 0). The claim now follows since
η ≥ γ

β > 0 and therefore µki − ηxki /∈ (0, γ).

The approximate solution operator built on the PDASNet is given as

ÕPDAS,c : R
d ⊕ R

d ⊕ R
d → R

d ⊕ R
d, (x, µ, c) 7→ [ΨPDAS(·, ·, c) • · · · •ΨPDAS(·, ·, c)] (x, µ).

Combining Proposition 6.5 and Theorem 6.1 show that ÕPDAS,c(x
0, µ0, c) → OPDAS,c(c) for

suitable (x0, µ0) and any c at superlinear rate.

Theorem 6.6. Let β, γ, ξ > 0 be fixed constants, let (A, c) ∈ R
d×d × R

d be any LCP (18) such
that A satisfies (19), ci /∈ (−γ, 0) and (Ac)i /∈ (−β, 0) holds for all i ∈ {1, . . . , d}, and such that
‖c‖∞, ‖A−1c‖∞ < ξ. Furthermore, let x0, µ0 ∈ R

d and η ≥ γ/β > 0 be such that µ0
i − ηx0i /∈ (0, γ)

holds for all i ∈ {1, . . . , d}, and such that ‖x0‖∞, ‖µ0‖∞ < ξ. Let ΨPDAS be as in Proposition 6.5,
so that (xk, µk) is the associated k-th iterate generated by ΨPDAS for any k ∈ N, and let (x, µ) be
the unique solution to (32).

Then, there is a decreasing function k : (0, 1) → N, depending only on A and ξ, such that for
any ε ∈ (0, 1), and any x0, µ0, c as above such that ‖x0 − x‖2 + ‖µ0 − µ‖2 is sufficiently small it
holds

‖x− xk(ε)‖2 + ‖µ− µk(ε)‖2 ≤ ε and lim
ε→0

k(ε)

log(1/ε)
= 0.
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Proof. Proposition 6.5 shows that the PDAS with initial values x0 and µ0 is realized by the se-
quence ((xk, µk), k ∈ N) under the given Assumptions. By Theorem 6.1, (xk, µk), k ∈ N) converges
to (x, µ) for a sufficiently close initial guess (x0, µ0), hence for any ε > 0, there is a kε ∈ N such
that

‖x− xkε‖2 + ‖µ− µkε‖2 ≤ ε.

It remains to prove the asymptotic behavior of kε. By Theorem 6.1, there is a nonnegative sequence
(C̃k, k ∈ N) decreasing to zero and an integer k0 ∈ N0, such that for any k > k0

‖x− xk‖2 + ‖µ− µk‖2 ≤ C̃k
(
‖x− xk−1‖2 + ‖µ− µk−1‖2

)
.

We iterate this estimate until k0 to obtain

‖x− xk‖2 + ‖µ− µk‖2 ≤
(

k∏

l=k0+1

C̃l

)
(
‖x− xk0‖2 + ‖µ− µk0‖2

)
, (40)

and note that
‖x− xk0‖2 + ‖µ− µk0‖2 ≤ ‖x− x0‖2 + ‖µ− µ0‖2 =: C0.

Note that from (Ax − c)⊤x = 0 and µ = Ax − c it follows with (19) that ‖x‖2 ≤ ξ/C− and
‖µ‖2 ≤ ξ(C+/C− + 1). Hence, C0 < ∞ is bounded uniformly with respect to x0, µ0 and c. We

may assume without loss of generality that (C̃k, k ∈ N0) is monotone decreasing and C̃k ≤ 1 for
all any k ∈ N. For any given ε > 0 this yields

ε
!
≥
(

k∏

l=k0+1

C̃l

)
C0 ⇐⇒ log(ε)− log(C0) ≥

k∑

l=k0+1

log(C̃l) ≥ k log(C̃k).

Now define
k : (0, 1) → N, ε 7→ min{k ∈ N : k log(C̃k) ≤ log(ε)− log(C0)}.

As k log(C̃k) → −∞ for k → ∞, k is well-defined and decreasing on (0, 1). Moreover, for ε→ 0 it

follows that k(ε) → ∞ and hence C̃k(ε) → 0. This yields

0 ≤ lim
ε→0

k(ε)

log(1/ε)
= lim
ε→0

k(ε) log(C̃k(ε))

log(1/ε) log(C̃k(ε))
≤ lim
ε→0

log(ε)− log(C0)

log(1/ε) log(C̃k(ε))
= 0.

7 Numerical Experiments – Valuation of American Options

7.1 Black-Scholes Model

To illustrate an application for ProxNets, we consider the valuation of an American option in
the Black-Scholes model. The associated payoff function of the American option is denoted by
g : R≥0 → R≥0 and we assume a time horizon T = [0, T ] for T > 0. In any time t ∈ T and for
any spot price x0 ≥ 0 of the underlying stock, the value of the option is denoted by V (t, x) and
defines a mapping V : T × R≥0 → R≥0. Changing to time-to-maturity and log-price yields the
map v : T × R → R≥0, (t, x) 7→ V (T − t, ex), which is the solution to the free boundary value
problem

∂tv −
σ2

2
∂xxv −

(
r − σ2

2

)
∂xv + rv ≥ 0 in (0, T ]× R,

v(t, x) ≥ g(ex) in (0, T ]× R,
(
∂tv −

σ2

2
∂xxv −

(
r − σ2

2

)
∂xv + rv

)
(g − v) = 0 in (0, T ]× R,

v(0, ex) = g(ex) in R,

(41)

25



see, e.g., [14, Chapter 5.1]. The parameters σ > 0 and r ∈ R are the volatility of the underlying
stock and the interest rate, respectively. We assume that g ∈ H1(R≥0) and construct in the
following a ProxNet-approximation to the payoff-to-solution operator at time t ∈ T given by

Og,t : H
1(R≥0) → H1(R), g 7→ v(t, ·). (42)

As V and v, and therefore Og, are in general not known in closed-form, a common approach
to approximate v for a given payoff function g is to restrict Problem (41) to a bounded domain
D ⊂ R and to discretize D by linear finite elements based on d equidistant nodal points. The payoff
function is interpolated with respect to the nodal basis and we collect the respective interpolation
coefficients of g in the vector g ∈ R

d. The time domain [0, T ] is split by M ∈ N equidistant time
steps and step size ∆t = T/M , the temporal derivative is approximated by a backward Euler
approach. This space-time discretization of the free boundary problem (41) leads to a sequence
of discrete variational inequalities: Given g ∈ R

d and u0 := 0 ∈ R
d find um ∈ R

d such that for
m ∈ {1, . . . ,M} it holds

Aum+1 ≥ Fm, um+1 ≥ 0, (Aum+1 − Fm)⊤um+1 = 0. (43)

The LCP (43) is defined by the matricesA := M+∆tABS ∈ R
d×d,ABS := σ2

2 S+(σ
2

2 −r)B+rM ∈
R
d×d and right hand side Fm := −∆t(ABS)⊤g + Mum ∈ R

d. The matrices S,B,M ∈ R
d×d

represent the finite element stiffness, advection and mass matrices, hence A is tri-diagonal and

asymmetric if σ2

2 6= r. The true value of the options at time km is approximated at the nodal
points via v(∆tm, ·) ≈ um + g. This yields the discrete payoff-to-solution operator at time ∆tm
defined by

Og,∆tm : Rd 7→ R
d, g 7→ um + g, m ∈ {1, . . . ,M}. (44)

Problem (43) may be solved for all m using a shallow ProxNet

Φ : Rd ⊕ R
d ⊕ R

d → R
d, x 7→ R(W1x+ b1),

with ReLU-activation R = ̺(d) : Rd → R
d. The architecture of Φ allows to take g and um as

additional inputs in each step, therefore we train only one shallow ProxNet that may be used for
any payoff function g and every time horizon T. Therefore, we learn the payoff-to-solution operator
Og associated to Problem (41) by concatenating Φ. The parameters W1 ∈ R

d×3d and b1 ∈ R
d are

learned in the training process and shall emulate one step of the PJOR Algorithm 1, as well as
the linear transformation (g, um) 7→ Fm to obtain the the right hand side in (43). Therefore, a

total of 3d2 + d parameters have to be learned in each example.
For our experiments we use the Python-based machine learning package PyTorch1. All exper-

iments are run on a notebook with 8 CPUs, each with 1.80 GHz, and 16 GB memory. To train

Φ, we sample Ns ∈ N input data points x(i) := (x
(i)
0 , g(i), u(i)) ∈ R

3d, i ∈ {1, . . . , Ns}, from a

3d-dimensional standard-normal distribution. The output-training data samples y(i) consist of

one iteration of Algorithm 1 with ω = 1, initial value x0 := x
(i)
0 , with A as in (43) and right hand

side given by c := −∆t(ABS)⊤g(i) +Mu(i) ∈ R
d. We draw a total of Ns = 2 · 104 input-output

samples, use half of the data for training, and the other half for validation. In the training process,
we use mini-batches of size Nbatch = 100 and the Adam Optimizer [18] with initial learning rate
10−3, which is reduced by 50% every 20 epochs. As error criterion we use the mean-squared error
(MSE) loss function, which is for each batch of inputs ((x(ij), g(ij), u(ij)), j = 1, . . . , Nbatch) and

outputs (y(ij), j = 1, . . . , Nbatch) given by

Loss
(
(x(i1), g(i1), u(i1)), . . . , (x(iNbatch

), g(iNbatch
), u(iNbatch

))
)

:=
1

Nbatch

Nbatch∑

j=1

‖Φ(x(ij), g(ij), u(ij))− y(ij)‖22.

1https://pytorch.org/
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Figure 1: Decay of the loss function for d = 600 (left) and d = 1000 (right). In all of our experiments the
training loss falls below the threshold of 10−12 before the 250-th epoch, and training is stopped early.

d 200 400 600 800 1000

training time in sec. 19.80 83.71 182.42 330.74 519.95
errval 9.88 · 10−7 9.79 · 10−7 7.29 · 10−7 1.29 · 10−6 1.40 · 10−6

Table 1: Training times and validation errors for the ProxNets in the Black-Scholes model in several
dimensions, as estimated in (45) based on Nval = 104 samples. The relative error remains stable with
increasing problem dimension.

We stop the training process if the loss function falls below the tolerance 10−12 or after a maximum
of 300 epochs. The number of spatial nodal points d that determines the size of the matrix LCPs
are varied throughout our experiments in d ∈ {200, 400, . . . , 1000}. We choose the Black-Scholes
parameters σ = 0.1, r = 0.01 and T = 1. Spatial and temporal refinement are balanced by
using M = d time steps of size ∆t = T/M = 1/d. The decay of the loss-curves throughout in
dimension d is depicted in Figure 1. The reduction of the learning rate every 20 epochs explains
the characteristic ”steps” in the decay. This stabilizes the training procedure, and we reached a
loss of O(10−12) for each d before the 250-th epoch. Once training is terminated, we compress
the resulting weight matrix of the trained single-layer ProxNet by setting all entries with absolute
value lower than 10−8 to zero. This speeds up evaluation of the trained network, while the resulting
error is negligible. As the matrix W1 in the trained ProxNet is close to the ”true” tri-diagonal
matrix A from (43), this procedure eliminates most of the ProxNet’s O(d2) parameters, and only
O(d) non-trivial entries remain.

The relative validation error is estimated based on the Nval := 104 validation samples via

err2val :=

∑Nval

j=1 ‖Φ(x(ij), g(ij), u(ij))− y(ij)‖22∑Nval

j=1 ‖y(ij)‖22
. (45)

The validation errors and training times for each dimension are found in Table 1, and confirm the
successful training of the ProxNet. Naturally, training time increases in d, while the validation
error is small of order O(10−6) for all d.

To test the trained neural networks on Problem (43) for the valuation of an American option,
we consider a basket of 20 put options with payoff function gi(x) := max(Ki − x, 0), and strikes
Ki = 10+90 i

20 for i ∈ {1, . . . , 20}. Hence, we use the same ProxNet for 20 different payoff vectors
g
i
. Note that we did not train our networks on payoff functions, but on random samples, and

thus we could in principle consider an arbitrary basket containing different types of payoffs. The
restriction to put options is for the sake of brevity only. We denote by um,i for m ∈ {0, . . . ,M}
the sequence of solutions to (43) with payoff vector g

i
and u0,i = 0 ∈ R

d for each i.
Concatenating Φ k times yields an approximation to the discrete operator in (44) for any
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d 200 400 600 800 1000

errrel 1.84 · 10−4 7.43 · 10−4 1.48 · 10−3 2.35 · 10−3 3.80 · 10−3

time ProxNet in sec. 0.32 1.93 5.85 15.06 34.07
time reference in sec. 1.88 6.40 23.86 66.41 134.44

Table 2: Relative errors and computational times of a ProxNet solver for a basket of American
put options in the Black-Scholes model. ProxNets significantly reduce computational time, while
their relative error remains sufficiently small for all d.

m ∈ {1, . . . ,M} via

Õg,∆tm : Rd ⊕ R
d ⊕ R

d → R
d, (x, ũm, g) 7→


Φ(·, g, ũm) • · · · • Φ(·, g, ũm)
︸ ︷︷ ︸

k-fold concatenation


 (x).

An approximating sequence of (um,i,m ∈ {0, . . . ,M}) is then in turn generated by

ũm+1,i := Õg,km(ũm,i, ũm,i, g), ũ0,i := u0,i = 0 ∈ R
d.

That is, ũm+1,i is given by iterating Φ k times with initial input x0 = ũm,i ∈ R
d and fixed inputs

and g
i
and ũm,i. We stop for each m after k iterations if two subsequent iterates xk and xk−1

satisfy ‖xk − xk−1‖2 < 10−3.
The reference solution uM,i is calculated by a Python-implementation that uses the PDAS

Algorithm 3 to solve (43) with tolerance ε = 10−6 in every time step. Compared to a fixed-
point iteration, the standard PDAS implementation converges (locally) superlinear according to
Theorem 6.1, but has to be called seperately for each payoff function gi. In contrast, the ProxNet
Φ may be iterated for the entire batch of 20 payoffs at once in PyTorch. We measure the relative
error

erri,rel := ‖ũM,i − uM,i‖2/‖uM,i‖2
for each payoff vector g

i
at the end point T = ∆tM = 1 and report the sample mean error

errrel :=
1

20

20∑

i=1

erri,rel. (46)

Sample mean errors and computational times are depicted for d ∈ {200, 400, . . . , 1000} in Table 2.
The results clearly show that ProxNets significantly accelerate the valuation of American option
baskets, if compared to the standard, PDAS-based implementation. This holds true for any spatial
resolution, i.e., the number of grid points d, while the relative error is small of magnitude O(10−3)
or O(10−4). We observe that computational times scale similarly for both, ProxNet and reference
solution, in d. Hence, in our experiments, ProxNets are computationally advantageous even for a
very fine resolution of d = 1000 nodal points.

7.2 Jump-Diffusion Model

We generalize the setting of the previous subsection from the Black-Scholes market to an expo-
nential Lévy model. That is, the log-price of the stock evolves as a Lévy process, with jumps
distributed with respect to the Lévy measure ν : B(R) → [0,∞). The option value v (in log-price
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d 200 400 600 800 1000

training time in sec. 23.92 80.79 182.86 332.02 515.56
errval 1.14 · 10−6 1.09 · 10−6 8.78 · 10−7 1.12 · 10−6 1.38 · 10−6

Table 3: Training times and validation errors for the ProxNets in the jump-diffusion model, as estimated
in (45) based on Nval = 104 samples. The relative error remains stable with increasing problem dimension.

and time-to-maturity) is now the solution of a partial integro-differential inequality given by

∂tv −
σ2

2
∂xxv − γ∂xv +

∫

R

v(·+ z)− v − ∂xvν(dz) + rv ≥ 0 in (0, T ]× R,

v(t, x) ≥ g(ex) in (0, T ]× R,
(
∂tv −

σ2

2
∂xxv − γ∂xv +

∫

R

v(·+ z)− v − ∂xvν(dz) + rv

)
(g − v) = 0 in (0, T ]× R,

v(0, ex) = g(ex) in R.

(47)

Introducing jumps in the model hence adds a non-local integral term to Equation (41). The drift
is set to γ := −σ2/2−

∫
R
(ez − 1− z)ν(dz) ∈ R in order to eliminate arbitrage in the market. We

discretize Problem (47) by an equidistant grid in space and time as in the previous subsection,
for details, e.g., integration with respect to ν, we refer to [14, Chapter 10]. The space-time
approximation yields again a sequence of LCPs of the form

ALum+1 ≥ Fm, um+1 ≥ 0, (ALum+1 − Fm)⊤um+1 = 0, (48)

where AL := M + ∆tALevy ∈ R
d×d with ALevy := σ2

2 S +AJ , and where the matrix AJ stems
from the integration of ν. A crucial difference to (43) is that AL is not anymore tri-diagonal, but
a dense matrix, due to the non-local integral term caused by the jumps. Moreover, AL does not
necessarily satisfy the assumptions for global convergence of the PDAS in Theorem 6.2, which
has to be taken into account when calculating the reference solutions. The drift γ and interest
rate r are transformed into the right hand side, such that Fm := −∆t(ALevy)⊤g

m
+Mum ∈ R

d,

where g
m

is the nodal interpolation of the transformed payoff gm(x) := gerkm(x − (γ + r)km).
The inverse transformation gives an approximation to the solution v of (47) at the nodal points
via v(km, · − (γ + r)T ) ≈ e−rTuM . We refer to [14, Chapter 10.6] for further details on the
discretization of American options in Lévy models.

The jumps are distributed according to the Lévy measure

ν(dz) = λpβ+e
−β+z1{z>0}(z) + λ(1− p)β−e

−β−z1{z<0}(z), z ∈ R. (49)

That is, the jumps follow an asymmetric, double-sided exponential distribution with jump intensity
λ = ν(R) ∈ (0,∞). We choose the parameters p = 0.7, β+ = 25, β− = 20 to characterize the tails
of ν and set jump intensity to λ = 1. We further use σ = 0.1 and r = 0.01 as in the Black-Scholes
example.

We use the same training procedure and parameters as in the previous subsection to train the
shallow ProxNets. Training times and validation errors are depicted in Table 3, and indicate again
a successful training. The decay of the training loss is for each d very similar to Figure 1, and
training is again stopped in each case before the 300-th epoch.

After training, we again concatenate the shallow nets to approximate the operator Og,t in (42),
that maps the payoff function g to the corresponding option value v(t, ·) at any (discrete) point
in time. We repeat the test from Subsection 7.1 in the jump-diffusion model with the identical
basket of put options to test the trained ProxNets. The reference solution is again computed by
a standard, PDAS-based implementation. The results for American options in the jump-diffusion
model are depicted in Table 4. Again, we see that the trained ProxNets approximated the solution
v to (47) for any g to an error of magnitude O(10−3) or less. While keeping the relative error small,
ProxNets again significantly reduce computational time, and are therefore a valid alternative even
in more involved financial market models.
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d 200 400 600 800 1000

errrel 9.76 · 10−5 4.96 · 10−4 1.06 · 10−3 1.61 · 10−3 2.13 · 10−3

time ProxNet in sec. 0.29 1.64 6.71 12.89 27.81
time reference in sec. 1.90 6.99 27.05 72.72 160.18

Table 4: Relative errors and computational times of a ProxNet solver for a basket of American
put options in the jump-diffusion model. ProxNets significantly reduce computational time, while
their relative error remains sufficiently small for all d.

8 Conclusions

We proposed deep neural networks which realize approximate input-to-solution operators for uni-
lateral, inequality problems in separable Hilbert spaces. Their construction was based on realizing
approximate solution constructions in the continuous (infinite dimensional) setting, via proximinal
and contractive maps. As particular cases, several classes of finite-dimensional projection maps
(PSOR, PJOR, primal-dual active set strategies) were shown to be representable by the proposed
DNN architectures, ProxNet and PDASNet. The general construction principle behind ProxNet
and PDASNet introduced in the present paper can be employed to realize further DNN architec-
tures, also in more general settings. We refer to [1] for multilevel and multigrid methods to solve
(discretized) variational inequality problems. The algorithms in this reference may also be realized
as concatenation of ProxNets, similarly to the PJOR-Net and PSOR-Net from Examples 5.3 and
5.4. However, we leave the further analysis and representation of multigrid methods as ProxNets
for future research.
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