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Abstract

Stochastic models of biomolecular reaction networks are commonly employed
in systems and synthetic biology to study the effects of stochastic fluctuations
emanating from reactions involving species with low copy-numbers. For such
models, the Kolmogorov’s forward equation is called the chemical master equation
(CME), and it is a fundamental system of linear ordinary differential equations
(ODEs) that describes the evolution of the probability distribution of the random
state-vector representing the copy-numbers of all the reacting species. The size of
this system is given by the number of states that are accessible by the chemical
system, and for most examples of interest this number is either very large or
infinite. Moreover, approximations that reduce the size of the system by retaining
only a finite number of important chemical states (e.g. those with non-negligible
probability) result in high-dimensional ODE systems, even when the number of
reacting species is small. Consequently, accurate numerical solution of the CME is
very challenging, despite the linear nature of the underlying ODEs. One often
resorts to estimating the solutions via computationally intensive stochastic
simulations.

The goal of the present paper is to develop a novel deep-learning approach for
computing solution statistics of high-dimensional CMEs by reformulating the
stochastic dynamics using Kolmogorov’s backward equation. The proposed
method leverages superior approximation properties of Deep Neural Networks
(DNNs) to reliably estimate expectations under the CME solution for several
user-defined functions of the state-vector. This method is algorithmically based on
reinforcement learning and it only requires a moderate number of stochastic
simulations (in comparison to typical simulation-based approaches) to train the
“policy function”. This allows not just the numerical approximation of various
expectations for the CME solution but also of its sensitivities with respect to all
the reaction network parameters (e.g. rate constants). We provide four examples
to illustrate our methodology and provide several directions for future research.

Author summary

We develop a deep learning framework for estimating solutions of the chemical master
equation (CME) that is fundamental to stochastic analysis of reaction networks. The
CME is a system of ordinary differential equations that describes the time-evolution of
the probability density of the random state-vector, and owing to an inherent curse of
dimensionality, directly solving the CME is generally impractical with existing
approaches. Moreover, the commonly employed simulation-based approaches for
estimating CME solutions often require an exorbitant amount of computational time,
even for moderately-sized networks.
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To counter these issues, we develop a deep reinforcement learning based method,
called DeepCME, in this paper. DeepCME not only estimates function expectations
based on the CME solution, but it also solves the more challenging problem of
estimating their sensitivities with respect to all the model parameters. We illustrate our
approach with four carefully chosen reaction network examples with varying sizes. Our
results demonstrate that DeepCME reliably estimates the expectations of interest, along
with all the parametric sensitivities, at a fraction of the computational cost of
simulation-based estimators. We present many directions for future research and
suggest further improvements to DeepCME that can greatly enhance its accuracy and
applicability.

1 Introduction

Stochastic modelling in systems and synthetic biology has become an indispensable tool
to quantitatively understand the intrinsically noisy dynamics within living cells [1].
Intracellular reaction networks typically involve low copy-number species in reactions
that fire intermittently at random times, as opposed to continuously. Hence,
deterministic models of such networks based on Ordinary Differential Equations (ODEs)
fail to capture the essential properties of the system, and stochastic models become
necessary [2].

Among the most widely used stochastic models are continuous-time Markov chains
(CTMCs) whose states represent the copy-numbers of all species involved in the
Chemical Reaction Network (CRN) [3]. If the number of species in the CRN is n, the
Markov chain evolves over a discrete, possibly infinite, state-space X ⊂ N

n
0 comprising

all accessible states. In most applications, the key object of interest is the probability
distribution p(t) of the random state X(t) ∈ X at time t. This probability distribution
evolves in time t according to Kolmogorov’s forward equation that is more famously
known in the chemical literature as the Chemical Master Equation (CME) (see, e.g., [4],
and (8)). The CME is a system of coupled, deterministic ODEs describing the rates of
inflow and outflow of probability at each state in the state-space X. For even very small
examples of CRNs, X can be very large or infinite, and hence the CME cannot be solved
directly despite the linear nature of its constituent ODEs. Hence, one typically
estimates CME solutions numerically either by simulating the CTMC trajectories with
numerical methods like the Stochastic Simulation Algorithm (SSA) [5] or the modified
Next Reaction Method (mNRM) [6], or one models (parts of) the CME asymptotically
in various parameter regimes, such as the large copy-number limit, or the large systems
limit (see, e.g., [3, 7] and the references therein). Then, Fokker-Planck PDEs govern the
evolution of the limiting densities. Solutions of these PDEs are known to admit DNN
approximations which are free from the “Curse of Dimensionality” (CoD), see e.g. [8]
and the references there.

The main drawback of simulation-based solvers is that obtaining statistically precise
estimates of the CME solution can be very cumbersome, due to the high cost of CTMC
trajectory simulation. This led to the development of the Finite State Projection (FSP)
method [9] that approximately solves the CME by truncating the state-space to a finite,
tractable size. The FSP has been successfully used in many important biological studies
with stochastic reaction network models. Over time, numerous algorithmic
improvements to the original FSP method have been made, using advanced techniques
such as Krylov Subspace approximations [10] or Tensor-Train representations [11].
Despite these advances, the scope of FSP’s applicability is still fairly limited because of
the CoD inherent to the CME for complex CRNs: the dimension of the copy-number
space of a large number of species involved in the CRN can be potentially prohibitive.
With the algorithmic complexity of deterministic solution methods of the CME scaling
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exponentially with the number of species n, the CoD obviates the efficient numerical
treatment of the CME for complex CRNs. In spite of these drawbacks, simulation
schemes like the SSA or mNRM combined with FSP and its variants have emerged as
the methodology of choice during the past decades for the computational exploration of
complex CRNs in systems biology. This is mainly due to the lack of computational
schemes that can effectively deal with CoD.

In the past decade, with the ubiquitous emergence of possibly massive, noisy data
from natural biological CRNs, and the possibility of engineering synthetic biological
CRNs, the question of efficient numerical analysis of CRNs has become pivotal. Indeed
several tasks in computational biology strongly depend on the availability of scalable,
efficient computational tools to analyse large CRNs. These include structure and
parameter identification in large CRNs, assimilation of observable data into CRN
models, Bayesian estimation of non-observable quantities of interest conditional on
CRNs, among many others.

Recently, in the context of high-dimensional partial differential equations (PDEs),
deep-learning based numerical approaches have been found highly effective in dealing
with the CoD in these settings and appear efficient in numerical approximation of PDE
solutions with high-dimensional state and parameter spaces [12–14]. We refer to the
survey [8] and the references therein. Importantly, several types of PDEs considered in
these studies also arise from various asymptotic scalings (large copy-numbers, large
systems limits) of large CRNs. (e.g. [4, 7, 15, 16]). Furthermore, DNNs have been shown
to be at least as expressive as certain tensor-structured formats from numerical
multi-linear algebra, which were developed for the CME in [11] (see also [17]).

Motivated by these advances and observations, in this paper we develop and explore
corresponding deep-learning approaches for the efficient numerical solution of CMEs
and for the related tasks of parameter estimation, and inference.

Before detailing our approach, we remark that leveraging Machine Learning (ML)
based approaches for the numerical treatment of complex CRNs is, in our view, natural
and critical: CRNs being themselves networks, any viable computational approach
should, in some sense, mimic this structure in order to accommodate the complexity of
CRNs. This is in line with our previous work on tensor network based computational
methods (e.g. [11, 18]). On the other hand, ML-based computational methodologies for
data assimilation and quantitative prediction of complex systems is currently
undergoing intense development. We therefore expect that corresponding advances in
computational ML, such as progress in interpretability and training methods for DNNs,
will entail corresponding methodological advances in the exploration of large, complex
CRNs in biological systems engineering.

Next we briefly describe our ML approach to solving the CME. Instead of estimating
the probability p(t, x) for each state x ∈ X, one is often interested in learning the
expectation of suitable real-valued functions g, referred to as the output function, under
this probability distribution. Therefore, one is interested in the input-output map that
associates an initial density {p(0, x0) : x0 ∈ X} to∗

E(g(X(t))) =
∑

x∈X

g(x)p(t, x). (1)

For example, if g(x1, . . . , xn) = xmi , for some m ∈ N0 and i ∈ {1, . . . , n}, then the
output to be estimated is the m-th moment of the random copy-number of the i-th
species at time t, i.e.

E(g(X(t))) = E(Xm
i (t)).

∗In the case #(X) = ∞ this sum is formal for now. We later will indicate some sufficient conditions
for this sum to be well-defined. Applying state-space truncation schemes e.g. [9], we may assume that
#(X) < ∞ holds with a small error in the estimated expectation, which renders the summation finite.
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Another relevant example is when g(x) = 1lA(x), the indicator function for some subset
A ⊂ X defined as

1lA(x) =

{
1 if x ∈ A
0 otherwise.

Then the output is the probability of the state X(t) being in set A at time t

E(g(X(t))) = P(X(t) ∈ A).

One method of choice to numerically approximate the map p(0, ·) 7→ E(g(X(t))) is
by stochastic simulations generated with the SSA and its variants (e.g. [5, 19–21] and
the references therein) combined with ensemble averaging. Generally, this approach
mandates a large number of sample paths, to achieve Monte Carlo convergence to
reasonable accuracy for E(g(X(t))) at fixed t > 0. In the present paper, we propose
DeepCME, a deep neural network based methodology to emulate the above-mentioned
map. Also in the present approach path simulation is required, during the DNN
training phase. However, we find that the number of paths to achieve DNN training
generally is lower than by direct use of Monte Carlo estimator combined with stochastic
simulations; accuracy is achieved through the generalization properties of DNNs rather
than through approximation of admissible sets of initial densities.

As is by now well-known in ML, an essential ingredient in DNN based approaches to
emulate high-dimensional maps is the mathematical setup of suitable loss-functions
which determine the training process. In DeepCME, we propose a particular loss
function which is inspired by other, recent approaches in computational finance
(e.g. [12] and the references therein). Specifically, using Kolmogorov’s backward
equation, Kurtz’s random time change formulation [22] and Ito’s formula for jump
processes, we identify an equation that the output quantity of interest E(g(X(t))) along
with some “policy map” V(t,X(t)) must uniquely satisfy for each stochastic trajectory
(X(t))t≥0 almost surely. Minimising a “loss” function that measures the error in this
equation, allows us to train a deep neural network to learn the policy map and the
quantity of interest E(g(X(t))) in a reinforcement learning framework. Remarkably, this
approach also yields the sensitivities of the quantity of interest E(g(X(t))) w.r.t. all
model parameters. Estimating these parametric sensitivities is important for many
applications, but it is considered a difficult problem towards which a lot of research
effort has recently been directed [23–31].

This paper is organised as follows. In Section 2 we provide some background on the
CTMC model of a reaction network. In Section 3 we present our main results that allow
us to cast the problem of solving a CME into the reinforcement learning framework. In
Section 4 we describe our deep-learning approach and its implementation in
TensorFlow. In Section 5 we illustrate this approach with four examples. Finally, in
Section 6 we conclude and present directions for future research.

2 Preliminaries

2.1 The stochastic model

We start by describing the continuous-time Markov chain (CTMC) model of a reaction
network. Consider a network with n species, denoted by X1, . . . ,Xn, that participate in
K reactions of the form

n∑

i=1

νkiXi −→
n∑

i=1

ν′kiXi , k = 1, ...,K, (2)
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where νki (resp. ν
′
ki) is the number of molecules of species Xi consumed (resp.

produced) by reaction k. The system’s state x = (x1, . . . , xn) ∈ N
n
0 at any time is the

vector of copy-numbers of the n species. As time advances, this state gets displaced by
the stoichiometric vector ζk = (ν′k1 − νk1, . . . , ν

′
kn − νkn) when reaction k fires, and this

event occurs at rate λk(x) where λk : Nn
0 → [0,∞) is the propensity function for

reaction k. Commonly λk is given by mass-action kinetics [3]

λk(x1, . . . , xn) = ck

n∏

i=1

(
xi
νki

)

, (3)

with ck > 0 being the associated rate constant.
There are many ways to formally specify the CTMC representing a reaction network.

One way is through its generator, which is an operator that captures the rate of change
of the probability distribution of the process (see Chapter 4 in [22]). It is given by

Af(x) =
K∑

k=1

λk(x) (f(x+ ζk)− f(x)) , (4)

for any f that is a bounded real-valued function on the state-space X ⊂ N
n
0 of the

Markov chain. The state-space X is assumed to be nonempty and closed under the
reaction dynamics, i.e. if x ∈ X and λk(x) > 0 then (x+ ζk) is also in X.

Another way to specify the CTMC is via Kurtz’s random time change representation
(see Chapter 6 in [22])

X(t) = X(0) +

K∑

k=1

Rk(t)ζk, (5)

where Rk(t) is a counting process that counts the number of firings of reaction k in the
time-period [0, t]. As is customary in trajectory-simulation (e.g. [3, 19]) which will also
be required by us for DNN training, we express it in terms of an independent unit rate
Poisson process Yk as e.g. [21]

Rk(t) = Yk

(∫ t

0

λk(X(s))ds

)

. (6)

With this representation in place, we consider the CTMC (X(t))t≥0 on the canonical
probability space generated by the independent unit Poisson processes Y1, . . . , YK .

2.2 Kolmogorov’s forward and backward equations

Let (X(t))t≥0 be the CTMC representing reaction dynamics with some initial state
X(0) ∈ X. For any state x ∈ X ⊂ N

n
0 , let

p(t, x) = P (X(t) = x) (7)

be the probability that the CTMC is in state x at time t. These probabilities evolve
deterministically in time according to Kolmogorov’s forward equation, more widely
known as the Chemical Master Equation (CME) [3, 4]. The CME is the following
system of deterministic linear ODEs

dp(t, x)

dt
=

K∑

k=1

p(t, x− ζk)λk(x− ζk)− p(t, x)
K∑

k=1

λk(x), (8)
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for each x ∈ X. Note that the number of ODEs in this CME system is equal to #(X),
the number of elements in X, which is typically exorbitantly large or even infinite.

Consider an output function g : X → R such that

E(|g(X(T ))|) <∞ (9)

for some finite time horizon T > 0. The Kolmogorov’s backward equation [32] describes
the evolution of the martingale (w.r.t. the filtration generated by (X(t))t≥0)

Vg(t, x) = E(g(X(T ))|X(t) = x) (10)

in the time interval [0, T ], and it is given by

∂

∂t
Vg(t, x) = −AVg(t, x) = −

K∑

k=1

λk(x)(Vg(t, x+ ζk)− Vg(t, x)), (11)

with the terminal condition Vg(T, x) = g(x), x ∈ X. The backward equation (10) will
play a key role in our development of a deep learning approach for estimating quantities
of the form E(g(X(T ))).

In the case where the state-space X is finite, i.e. #(X) = m <∞, we can enumerate
it as X = {x(1), . . . , x(m)}. Then the CTMC generator A in (11) can be expressed as the
m×m transition rate matrix Q = [Qij ] given by†

Qij =







−
∑K

k=1 λk(x
(i)) if i = j

λk(x
(i)) if x(j) = x(i) + ζk for some k

0 otherwise.

Viewing p(t) as the vector p(t) = (p(t, x(1)), . . . , p(t, x(m))) ∈ [0, 1]#(X), we can express
the CME (8) as

dp

dt
= Q⊤p(t), t ≥ 0 . (12)

Here, Q⊤
ij := Qji, i, j ∈ 1 : m. CME (12) admits the closed-form solution

p(t) = exp(tQ⊤)p(0) for any t ≥ 0. (13)

Similarly, viewing Vg(t) as the vector (Vg(t, x
(1)), . . . , Vg(t, x

(m))) ∈ R
#(X), the

backward equation (11) can be solved as

Vg(t) = exp(−Q(T − t))g for any t ∈ [0, T ] (14)

where g denotes the vector g = (g(x(1)), . . . , g(x(m))) ∈ R
#X. We are interested in

networks where m = #(X) is extremely large or infinite. Then, numerically computing
the matrix exponential in (13) or in (14) is not an option.

2.3 Parametric sensitivity analysis

Now consider the situation where the propensity functions depend on a scalar
parameter θ (like reaction rate constant for mass-action kinetics, temperature etc.).
Denoting the θ-dependent CTMC as (Xθ(t))t≥0, it is often of interest to compute the
parametric sensitivity

Sθ(g, T ) =
∂

∂θ
E (g(Xθ(T ))) , (15)

†We assume for convenience that all stoichiometry vectors (ζk-s) are distinct.
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of the observed output E (g(Xθ(T ))) at time T . Such sensitivity values are important
for many applications and their direct calculation is generally impossible but a number
of simulation-based approaches have recently been developed to provide efficient
numerical estimation of these sensitivity values; we mention only [23–31].

Theorem 3.3 in [29] proves that

Sθ(g, T ) =

K∑

k=1

E

(
∫ T

0

∂λk(Xθ(t), θ)

∂θ
(Vg(t,Xθ(t) + ζk)− Vg(t,Xθ(t))) dt

)

, (16)

where Vg(t, x) is defined by (10) with X(·) replaced by Xθ(·). The main difficulty in
using this formula for computing sensitivities is that the function

∆kVg(t, x) := Vg(t, x+ ζk)− Vg(t, x) (17)

is unknown and hence it must be estimated “on the fly” by numerically generating
auxiliary paths [29]. In the method we develop in this paper we shall “learn” (i.e.,
emulate by ML techniques) this function using deep neural networks. This would
provide a simple direct way to estimate the parameter sensitivity via formula (16). This
approach would in fact yield sensitivities w.r.t. to all the model parameters in one shot,
unlike what is afforded by existing sensitivity estimation approaches. In other words
once the function x 7→ ∆kVg(t, x) is available for each k ∈ 1 : K, we can use a common
set of simulated trajectories to evaluate Monte Carlo estimators for sensitivities w.r.t.
all parameters, based on expression (16), without any extra simulation effort. This is
unlike most simulation-based approaches where estimation of each parameter sensitivity
requires an additional set of distinct trajectories.

3 Main Results

In this section we state and prove the key result on which our deep learning approach
depends. Recall that our goal is to estimate E(g(X(t))) (see (1)) which is the same as
Vg(0, x0) (see (10)) if the initial state of the CTMC is X(0) = x0. Also recall the
random time-change representation (5) and the definition of the reaction counting
process Rk from (6). Henceforth we shall denote the centred version of this process as

R̃k(t) := Yk

(∫ t

0

λk(X(s))ds

)

−

∫ t

0

λk(X(s))ds , k = 1, . . . ,K. (18)

This centred process is a local martingale w.r.t. the filtration FX(t) generated by
(X(t))t≥0 (see Chapter 1 in [33]).

We now state an assumption that we require for our approach.

Assumption 3.1 (Non-explosivity of the CTMC) Let (X(t))t≥0 be the CTMC
given by (5) with deterministic initial condition X(0) = x0. Let X ⊂ N

n
0 denote the

state-space of this CTMC and let FX(t) be the filtration it generates. If τM is the
FX(t)-stopping time defined by

τM = inf{t ≥ 0 : ‖X(t)‖ ≥M},

then τM → ∞ almost surely as M → ∞.

Remark 3.2 There are a number of works in the literature that provide sufficient
conditions for this non-explosivity condition to hold, subject to the form of the
propensity functions (see for example in [34–36] and the references therein). Under the
no-explosion assumption a probability distribution p(t) satisfying the CME exists
uniquely (see e.g. Lemma 1.23 in [33]).
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We next present the main result on which our deep learning approach is based.

Theorem 3.3 (Expected output and policy map characterization) Suppose
Assumption 3.1 holds for the CTMC (X(t))t≥0 and the output function g : X → R

satisfies (9). Let Y be a real number and let V(t, x) = (V1(t, x), . . . ,VK(t, x)) be a
measurable R

K-valued function on [0, T ]× X such that the following relation holds
almost surely

g(X(T )) = Y +

K∑

k=1

∫ T

0

Vk(t,X(t))dR̃k(t). (19)

Then Y and V(t, x) exist uniquely and they can be identified as

Y = E(g(X(T ))) and V(t, x) = (∆1Vg(t, x), . . . ,∆KVg(t, x)) (20)

where Vg(t, x) is given by (10) and the difference operator ∆k is as in (17).

Remark 3.4 (Connection to our deep learning approach) Before we prove this
theorem, we briefly describe how this result translates into our deep learning approach
details of which will be provided in Section 4. We can view x 7→ V(t, x) as the “policy
map” (in the parlance of reinforcement learning) that decides actions based on the
current time-state pair (t, x), and depending on these actions the constant initial value
Y is evolved in the time-interval [0, T ] according to the r.h.s. of (19) for any CTMC
trajectory (X(t))t≥0. Theorem 3.3 shows that the only way the final outcome of this
evolution matches g(X(T )) at time T , is when Y is exactly the expected output
E (g(X(T ))), and the policy map V(t, x) is exactly (∆1Vg(t, x), . . . ,∆KVg(t, x)) where
∆kVg(t, x) is the difference in the expected output E (g(X(T ))) at time T , due to a
single firing of reaction k at time t with system’s state at x = X(t).

Using the modified next reaction method [6], one can easily generate trajectories of
the CTMC (X(t))t≥0 along with the associated centred reaction counting processes

(R̃1(t), . . . , R̃K(t))t≥0. For each such trajectory, relation (19) can be interpreted in
terms of known and unknown quantities as

g(X(T ))
︸ ︷︷ ︸

known

= Y
︸︷︷︸

unknown

+

K∑

k=1

∫ T

0

Vk(t,X(t))
︸ ︷︷ ︸

unknown

dR̃k(t)
︸ ︷︷ ︸

known

. (21)

We represent the unknown map (t, x) 7→ V(t, x) by a deep neural network (DNN) and
consider unknown Y as an optimisation variable. Then by minimising a “loss” function
L(Y,V) that measures the discrepancy in relation (21) we try to recover the optimal
values of Y and V that are given by (20). This allows us to estimate the output of
interest E(g(X(T ))) (as Y) and also its parametric sensitivities by substituting Vk(t, x)
for ∆kVg(t, x) in (16).

Observe that in traditional simulation-based estimation approaches, each simulated
trajectory contributes with a small weight (viz. reciprocal of the sample size) to the
Monte Carlo estimator for the output or one of its parameter sensitivities. This is quite
unlike the proposed deep learning approach where each trajectory specifies an almost sure
relationship between the unknown quantities that determine both the output and all its
parameter sensitivities. Hence the deep learning approach is able to extract more
information out of a small number of simulated trajectories as our examples in Section 5
illustrate.

Proof.[Proof of Theorem 3.3] We prove this result in two steps. We first show that Y
and V(t, x) given by (20) satisfy (19) almost surely. Then, we prove that if another such
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pair (Ŷ, V̂(t, x)) satisfying (19) exists then we must necessarily have Ŷ = Y and
V̂(t, x) = V(t, x).

Applying Ito’s formula for jump Markov processes to Vg(t,X(t)) we obtain

Vg(T,X(T )) = Vg(0, x0) +

∫ T

0

∂

∂t
Vg(t,X(t))dt+

K∑

k=1

∫ T

0

∆kVg(t,X(t))dRk(t).

Using Kolmogorov’s backward equation (11) and simplifying we get

Vg(T,X(T )) = Vg(0, X(0)) +
K∑

k=1

∫ T

0

∆kVg(t,X(t))dR̃k(t). (22)

Noting that Vg(T,X(T )) = g(X(T )) and Vg(0, X(0)) = E(g(X(T ))) we see that (19)
holds with Y and V(t, x) given by (20).

Now let (Ŷ, V̂(t, x)) be another pair satisfying (19), i.e.

g(X(T )) = Ŷ +

K∑

k=1

∫ T

0

V̂k(t,X(t))dR̃k(t).

We subtract (22) from this equation to obtain

∆Ŷ +

K∑

k=1

∫ T

0

∆V̂k(t,X(t))dR̃k(t) = 0 (23)

where

∆Ŷ = Ŷ − E(g(X(T ))) and ∆V̂k(t,X(t)) = V̂k(t,X(t))−∆kVg(t,X(t)).

Note that

m(t) := ∆Ŷ +

K∑

k=1

∫ t

0

∆V̂k(s,X(s))dR̃k(s)

is a local martingale w.r.t. the filtration FX(t) generated by (X(t))t≥0 as it is defined
as a sum of stochastic integrals whose integrands are adapted to FX(t) and whose
integrators are local martingales w.r.t. FX(t) (see Appendix A.3 in [33]).

If τM is the stopping time defined in Assumption 3.1, then the stopped process
m(t ∧ τM ) is a martingale, where a ∧ b := min {a, b}. Applying Doob’s maximal
inequality [22] on the submartingale |m(t ∧ τM )| we obtain

E

[(

sup
0≤t≤T∧τM

|m(t)|

)2
]

≤ 4E(m(T ∧ τM )2). (24)

Note that terms on both sides of the inequality are monotonically increasing in M . This
monotonicity is obvious for the term on the l.h.s. and for the term on the r.h.s. it
follows from the conditional Jensen’s inequality and from the martingale property

E(m(T ∧ τM+1)
2) = E

[
E
(
m(T ∧ τM+1)

2|FX(T ∧ τM )
)]

≥ E

[

(E (m(T ∧ τM+1)|FX(T ∧ τM )))
2
]

= E(m(T ∧ τM )2).
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Letting M → ∞ and using the monotone convergence theorem on both sides of (24) we
obtain

E

[(

sup
0≤t≤T

|m(t)|

)2
]

≤ 4E(m(T )2)

where we have used the fact that τM → ∞ as M → ∞ due to Assumption 3.1. Relation
(23) informs us that m(T ) = 0 almost surely and hence

E

[(

sup
0≤t≤T

|m(t)|

)2
]

= 0.

This is sufficient to conclude that ∆Ŷ = 0 and ∆V̂k(t,X(t)) = 0 for any t ∈ [0, T ].
As this holds for any CTMC trajectory (X(t))t≥0, we must have ∆V̂k(t, x) = 0 for

any (t, x) ∈ [0, T ]× X. This completes the proof of this theorem. �

4 DeepCME: Deep Learning Formulation for CME

In this section we detail our deep learning method for solving CME, referred to as
DeepCME. We have computationally implemented this method using the machine
learning library TensorFlow [37]. Our source code for generating the ensuing numerical
experiments is available at GitHub: https://github.com/ankitgupta83/DeepCME.

As outlined in Remark 3.4, our approach is based on the almost sure relationship
established in Theorem 3.3. Even though this result was presented for a single output
function g(x), it can be easily extended for a vector-valued function
g(x) = (g1(x), . . . , gR(x)) by considering the unknown variable Y as a R-dimensional
vector and the unknown map V(t, x) that takes a time-state pair (t, x) as input and
produces an output in the space of R×K matrices. Such an extension is useful because
in most applications one is interested in estimating multiple statistical properties (like
means, variances, covariances etc.) of the CME solution p(T, ·).

We now define the “loss” function L(Y,V) that measures the discrepancies in the R
almost sure relations given by (21). Let L : RR → [0,∞) be the following continuously
differentiable function

L(x1, . . . , xR) =

R∑

i=1

φ

(
xi
∆i

)

where ∆ = (∆1, . . . ,∆R) is a vector of positive threshold values and

φ(x) =

{
x2 if |x| < 1

2|x| − 1 otherwise.

We define the loss function as

L(Y,V) = E

[

L

(

g(X(T ))− Y −
K∑

k=1

∫ T

0

Vk(t,X(t))dR̃k(t)

)]

, (25)

where the expectation is estimated by computing the sample mean over a finite batch of
“training” trajectories. During the training process this loss function is minimised in
order to learn the optimal Y, which estimates our expectations of interest

E(g(X(T ))) = (E(g1(X(T ))), . . . ,E(gR(X(T )))),
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and the optimal matrix-valued policy map V(t, x) (see Remark 3.4). This policy map
will enable us to estimate sensitivities of the quantities of interest w.r.t. all the model
parameters as discussed in Section 2.3. The threshold values ∆ = (∆1, . . . ,∆R) help in
neutralising the disparities in the relative magnitudes of the estimated quantities and
the discrepancies in the corresponding almost sure relations. The loss function
minimisation is performed with the stochastic gradient descent (SGD) algorithm that
makes use of the automatic differentiation routines that are built in TensorFlow.
Differentiability properties of the function L which defines the loss function are
important for convergence of the SGD iterations. Our choice of φ(x) makes
L(x1, . . . , xR) a differentiable combination of L1 norm (for components with absolute
values greater than 1) and L2 norm squared (for components with absolute values
strictly less than 1). Having such a combination makes the training more robust and
promotes sparsity.

In DeepCME we first encode the matrix-valued policy map (t, x) 7→ V(t, x) by a
deep neural network (DNN) and we include Y as a vector of trainable variables. Then a
batch of training trajectories is generated, and based on Y and the DNN-encoded policy
map V(t, x), the loss function is evaluated for this training data by measuring the
discrepancy (according to (25)) in the almost sure relationship presented in Theorem
3.3. Keeping the training data fixed, this loss function is then minimised by adjusting Y
and the DNN with SGD for a given number of iterations. Once these iterations are
complete, Y provides estimates for the expectations of interest and their parametric
sensitivities can be estimated by evaluating Monte Carlo estimators based on expression
(16), using the DNN-encoded policy map and the training trajectories.

In the next two subsections we elaborate more on the DNN encoding of the policy
map and the loss function computation based on simulated trajectories.

4.1 DNN encoding of the policy map

Recall from Section 2.2 that if the state-space is finite then Vg(t, x) can in principle be
found by exponentiating the transition rate matrix Q multiplied with (T − t) (see (14)).
Hence, if λ = λ1 + iλ2 is an eigenvalue of Q, then on the associated eigenspace we would
expect that the dependence of Vg(t, x) on time t is given by
eλ(T−t) = eλ1(T−t)(cos(λ2(T − t)) + i sin(λ2(T − t))). Motivated by this rationale,
rather than passing the time-values t directly as inputs to the DNN that encodes
V(t, x), we shall pass temporal features of the form

T (t) = (eλ11(T−t), . . . , eλr1(T−t), sin(λ12(T − t) + ψ1), . . . , sin(λr2(T − t) + ψr)), (26)

where λ11, . . . , λr1, λ12, . . . , λr2 are 2r trainable variables that represent the r dominant
eigenvalues of the generator of the CTMC. Additionally, r trainable variables ψ1, . . . , ψr

are included to represent ‘phase shifts’. Problem-specific temporal features, like the
ones we consider, have been successfully employed in existing deep learning methods for
ODE-based reaction network models (see, e.g., [38] and the references therein). Note
that the mapping between time t and the temporal features T (t) is one-to-one and
hence no information is lost by substituting time inputs with temporal features.

We encode the policy map (t, x) 7→ V(t, x) as a fully connected feedforward deep
neural network whose architecture is schematically shown in Fig 1. This neural network
consists of an input layer, L hidden layers and an output layer. Mathematically, DNNs
Φ considered here are determined by a tuple

Φ =
(

(T̂1, ρ1), ..., (T̂L+1, ρL+1)
)

, (27)

where in layer ℓ = 1, ..., L+ 1, the map T̂ℓ : R
Nℓ−1 → R

Nℓ is an affine transformation i.e.
T̂ℓ(x) =Wℓx+ bℓ, with weight matrix Wℓ ∈ R

Nℓ×Nℓ−1 , and bias vector bℓ ∈ R
Nℓ . As

11
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eλr1(T−t)

sin(λ12(T − t) + ψ1)

sin(λr2(T − t) + ψr)

Fig 1. Architecture of the neural network. DNN architecture to encode the
matrix-valued map (t, x) 7→ V(t, x). The inputs (t, x) are passed to an input layer,
which leaves the state values x unchanged but activates a dictionary of temporal features
(26). The resulting output is propagated through a DNN with L fully connected hidden
layers, and an additional output layer with each layer having NH nodes. For simplicity,
we assume no sparsity in the weight matrices and the bias vectors of these layers. In the
final step, the output from the output layer is cast into the policy-map matrix V(t, x)
corresponding to inputs (t, x). In Section 4.2 we describe how the loss function can be
computed using this matrix-valued map for a batch of stochastic trajectories.

mentioned, in the presently considered DNNs, the input layer takes the temporal
features T (t) and the state vector x = (x1, . . . , xn).

The nonlinearities ρℓ : R
Nℓ → R

Nℓ in (27) act on vectors in R
Nℓ component-wise,

with possibly different activations at each layer. The number L+ 1 denotes the number
of layers (sometimes referred to as depth) of the DNN Φ, and L denotes the number of
hidden layers of DNN Φ.

With the DNN Φ, we associate a realization, i.e., a map

R(Φ) : RN0 → R
NL+1 , where R(Φ) := ρL+1 ◦ T̂L+1 ◦ .... ◦ ρ1 ◦ T̂1 .

The relation between the DNN parameters Φ and its realisation R(Φ) : RN0 → R
NL+1

as a map is not one-to-one: for several choices of Φ, realizations R(Φ) may give rise to
the same map R(Φ) : RN0 → R

NL+1 . This over-parametrization of DNNs is well-known
to cause multiple minima in loss functions of DNN parameters, and to obstruct use of
efficient optimization algorithms in numerical DNN training.

The goal of DNN approximations is to provide a parsimonious surrogate map R(Φ)
for many-parametric, input-output maps which are not explicitly know and accessible
computationally only through possibly noisy evaluations.

The input layer transforms the time-value t into temporal features (26) but leaves
the state vector x = (x1, . . . , xn) unchanged. For the layers, we assume fixed width, i.e.,
that each layer consists of NH nodes (including the output layer). We also assume that
no activation is applied at the output layer, i.e. ρL+1 is the identity function, and all
activations in the hidden layers are equal, i.e. for ℓ = 1, ..., L and for i = 1, . . . , NH ,
̺ = (ρℓ)i : R → R. In the ensuing numerical examples, we employ the so-called
ReLU-activation for the hidden layers, which is given by

̺(x) := ReLU(x) = max{x, 0}, x ∈ R . (28)

Remark 4.1 More generally, for k ∈ N, we may choose the activations ̺k(x),
observing that increasing the value of k increases differentiability of realizations of the
DNN Φ. This may be of relevance in cases where the diffusion limits for large copy
number counts of particular species imply higher smoothness of the map x 7→ p(T, x).
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4.2 Loss function computation based on the training data

To numerically evaluate the loss function, we require simulated training trajectories of
the form (X(t), R̃(t))t≥0 where X denotes the CTMC and each R̃ = (R̃1, . . . , R̃K) is the
vector of centred reaction counting processes defined by (18). Such trajectories can be
easily generated with Anderson’s modified next reaction (mNRM) method [6]. We
discretise the time-interval [0, T ] as

0 = t0 < t1 < · · · < tJ = T .

Based on this partition, each simulated trajectory can be viewed as a finite collection of
J triplets

(

tj , X(tj), R̃(tj)
)

, j = 0, . . . , J.

For each j we pass the time-state pair (tj , X(tj)) as input to the DNN-encoded matrix
valued policy map to obtain V(tj , X(tj)). This allows us to compute Yj iteratively as

Yj = Yj−1 + V(tj−1, X(tj−1))(R̃(tj)− R̃(tj−1)) for j = 1, . . . , J,

with Y0 = Y. Here each Yj is a R× 1 vector, V(tj−1, X(tj−1)) is a R×K matrix and

(R̃(tj)− R̃(tj−1) is a K × 1 vector. Following this scheme we can compute Y
(q)
J for the

q-th simulated trajectory (X(q)(t), R̃(q)(t))t≥0. With M i.i.d. such trajectories, the loss
function (25) can be estimated as

L̂(Y,V) :=
1

M

M∑

q=1

L

(

g(X(q)(T ))− Y
(q)
J

)

. (29)

Here, we made use of (23).

Remark 4.2 In the loss function (25) and its MC estimate (29), one could add a
sparsity-promoting regularization term, in which case (25) would become

L̂(Y,V) :=
1

M

M∑

q=1

L

(

g(X(q)(T ))− Y
(q)
J

)

+ µP(Φ) . (30)

Here, µ ≥ 0 is a penalty parameter and P(Φ) promotes sparsity in weights Wℓ and biases
bℓ comprising Φ. In the numerical experiments we report we did not use this device.

Remark 4.3 When the time-interval [0, T ] is large, instead of using a single DNN to
approximate the policy map (t, x) 7→ V(t, x), it may beneficial to employ multiple
temporal DNNs that are uniformly distributed in the time-interval [0, T ]. All these
DNNs have the same structure, as shown in Fig 1. If NT such DNNs are employed,
then we use the m-th DNN to represent the policy map (t, x) 7→ V(t, x) for
t ∈ [(m− 1)δ,mδ) where m = 1, . . . , NT and δ = T/NT . Distributing DNNs across time
would reduce the complexity of the policy map (as a function of time t) that is needed to
be learned. This is helpful in scenarios where the stochastic dynamics has intricate
temporal features, such as oscillations.

5 Examples

We now present four examples to illustrate our DeepCME method. All these examples
are reaction networks with n species, denoted by X1, . . . ,Xn, and 2n reactions. By
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varying n, we shall investigate how the DeepCME method performs as the network gets
larger and compare its performance with simulation based methods.

In all the examples, we assume that all the species have zero copy-numbers initially,
and we consider two output functions g1(x) = xn and g2(x) = x2n whose expectation is
to be estimated under the probability distribution given by the CME solution at time
T = 1. In other words, we shall use DeepCME to estimate the first two moments of the
copy-number of species Xn at time T , viz.

E(g1(X(T ))) = E(Xn(T )) and E(g2(X(T ))) = E(X2
n(T )). (31)

We shall compare these estimates to those obtained by simulating 1000 CTMC
trajectories with mNRM [6]. Our method DeepCME also yields estimates of the
sensitivities of the estimated moments (31) w.r.t. all model parameters. We plot these
estimates and compare them with the estimates obtained via the simulation-based
Bernoulli Path Algorithm (BPA) [29]. These latter estimates are based on a sample of
size 1000 and for each sample BPA requires generation of a certain number of auxiliary
paths (see Section 2.3) which we set to be 10 in our examples.

In all the examples, we encode the policy map (t, x) 7→ V(t, x) as a DNN with L = 2
hidden layers and NH = 4 nodes per layer (see Fig 1), irrespective of the number of
species n. The activation function for all hidden layer nodes is ReLU(x) (see (28)) and
we choose r = 1 for the temporal features (26) to transform the time-values. For loss
function computation, we partition the time-interval [0, T ] into J = 50 equal size
time-increments.

The neural network is trained with a training batch of M = 100 trajectories
generated a priori with mNRM (see Section 4), and another such batch of M = 100
trajectories is used for validation. We display the loss function for the validation
trajectories to track the training process. To facilitate comparison across network sizes,
we normalise all the loss function trajectories to be one at the start of training. Note
that the definition of our loss function (25) depends on certain threshold values
∆ = (∆1,∆2). We choose these values as

∆j = 1 + |µ̂j |+ 2σ̂j

where µ̂j (resp. σ̂j) denotes the sample mean (resp. standard deviation) of the values of
the output function gj for the trajectories in the training batch. Finally, to gauge the
computational efficiency of DeepCME we compare the total central processing unit
(CPU) time it requires (including the time to generate training and validation
trajectories) to the total CPU time required by simulation-based approaches (mNRM
and BPA) to estimate the expectations (31) and all its parameter sensitivities‡.

5.1 Independent birth death network

As our first example (see Fig 2(A)), we consider a network of n species that are all
undergoing independent birth-death reactions

∅
k

−→ Xj
γ

−→ ∅ for j = 1, . . . , n.

We set k = 10 and γ = 1. The propensity functions obey mass-action kinetics and are
hence affine functions of the state variable x.

For n = 5, 10, 20 many species, we apply DeepCME to this reaction network by
training the neural network for 10′000 SGD iterations. Based on the trained neural
network, we compute estimates of the first two moments (31) and their sensitivities to

‡All the computations were performed on the Euler computing cluster of ETH Zurich [39]
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Fig 2. Independent birth death network. (A) Depicts the network with n species
and 2n reactions with mass-action kinetics. (B) The CPU times are shown for training
the DNN for different values of n (denoted as # species), and for comparison the time
needed by simulation based methods (mNRM for function estimates and BPA for
parameter sensitivities) with 1000 trajectories is also indicated. (C) Plots the validation
loss function w.r.t. training steps for various n values. Panels (D-F) show estimates for
the function values (E(Xn(T )) and E(X2

n(T ))) at T=1 and the parameter sensitivities.
The estimates with simulation based methods are shown as 95% confidence intervals
with 1000 samples.

both the model parameters k and γ. We also estimate these quantities with
simulation-based methods (mNRM and BPA) with 1000 samples, and since the
propensity functions are linear we can compute these quantities exactly as well. In plots
shown in Fig 2(D-F), we compare the estimates from all these approaches for various
values of n. Observe that DeepCME is in general quite accurate in estimating both the
moments and their parametric sensitivities, but there are a few cases where the error is
significant (e.g. sensitivity w.r.t. γ for E(X2

n(T )) and n = 20). These errors can in
principle be reduced by employing a different neural network to encode the policy map.
In our experience, these errors were also reduced in some cases by including a sparsity
promoting term in the loss function (see Remark 4.2) but the result was highly sensitive
to the relative weight (i.e. parameter µ in (30)) of this term.

The CPU time required by DeepCME and simulation-based methods for obtaining
moment and sensitivity estimates are plotted in Fig 2(B). Note that the CPU time for
simulation-based methods grows linearly with the network size n, but for DeepCME this
growth is sub-linear owing to the fixed structure of the underlying neural network.
Despite this fixed structure, the validation loss function trajectories for DeepCME are
similar for all n (see Fig 2(C)), indicating that the training process has low dependence
on the number of species, probably because the species are evolving independently.

5.2 Linear signalling cascade

Our second example is a linear cascade with n-species (see Fig 3(A)), where species Xi

catalyses the production of species Xi+1. The 2n reactions are given by

∅
β0
−→ X1, Xi

k
−→ Xi+1 for i = 1, . . . , n− 1 and Xj

γ
−→ ∅ for j = 1, . . . , n.
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Fig 3. Linear signalling cascade. (A) Depicts the network with n species and 2n
reactions with mass-action kinetics. (B) The CPU times are shown for DeepCME for
different values of n (denoted as # species), and for comparison the time needed by
simulation based methods (mNRM for function estimates and BPA for parameter
sensitivities) with 1000 trajectories is also indicated. (C) Plots the validation loss
function w.r.t. training steps for various n values. Panels (D-F) show estimates for the
function values (E(Xn(T )) and E(X2

n(T ))) at T=1 and the parameter sensitivities. The
estimates with simulation based methods are shown as 95% confidence intervals with
1000 samples.

We set β0 = 10, k = 5 and γ = 1. As in the previous example, all the propensity
functions obey mass-action kinetics and are hence affine functions of the state.

For number of species n = 2, 5, 10, we apply DeepCME to this reaction network by
training the neural network for 10′000 SGD iterations. Then we compute the moment
estimates (31) and their sensitivities to all the model parameters. These quantities are
also estimated with simulation-based methods (mNRM and BPA) with 1000 samples,
and as with the previous example, the linearity of the propensity functions enables us to
compute these quantities exactly as well. In the plots shown in Fig 3(D-F), we compare
the estimates from all these approaches for various values of n. Observe that DeepCME
is accurate in estimating the moments but some of the parameter sensitivity estimates
are not very accurate (e.g. sensitivity w.r.t. k for E(X2

n(T )) and n = 10). This is
because the training process is not successful, as indicated by the validation loss
function trajectories shown in Fig 3(C). The CPU times for DeepCME and
simulation-based methods are plotted in Fig 3(B), and as expected they show sub-linear
growth w.r.t. n for the former but linear growth for the latter.

It is natural to ask if the accuracy of the estimates provided by DeepCME for n = 10
can be improved by making the DNN “deeper” (by increasing the number of hidden
layers L) or “wider” (by increasing the number of nodes per layer NH). We tested this
by doubling each of these shape parameters, while keeping the other the same, and
rerunning the DeepCME training procedure. As results in Figure 4(A-B) indicate,
changing the DNN shape parameters did not improve the accuracy of the estimates.
However we found that when we increase the number of training trajectories, the
accuracy of the estimates does improve and this improvement is quite substantial in
some cases (e.g. sensitivity w.r.t. γ for E(Xn(T )) and n = 10).
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Fig 4. Linear signalling cascade (continued). In panels (A) and (B) we illustrate
that the accuracy of the DeepCME estimates remains unaltered when the DNN shape
parameters - NH (number of nodes per layer) and L (number of hidden layers) - are
doubled from their default values of NH = 4 and L = 2. In panel (C) we illustrate that
the accuracy of these estimates improves when the number of training trajectories is
increased from M = 100 to M = 500

5.3 Nonlinear signalling cascade

We now consider a variant of the network in the previous example where the catalytic
production of species Xi+1 by species Xi is non-linear (see Fig 5(A)) and is given by a
activating Hill propensity with a basal rate

H(x) = b+
kmx

H
i

k0 + xHi
(32)

where b = 1, km = 100, k0 = 10 and H = 1. Other reactions have mass-action kinetics
as in the previous example, with the same rate constants β0 = 10 and γ = 1.

For number of species n = 2, 5, 10, we apply DeepCME to this reaction network by
training the neural network for 10′000 SGD iterations. Then we compute the moment
estimates (31) and their sensitivities to all the model parameters. These quantities are
also estimated with simulation-based methods (mNRM and BPA) with 1000 samples,
and unlike previous examples we cannot compute these quantities exactly due to
nonlinear propensities. In the plots shown in Fig 5(D-F), we compare the estimates
from DeepCME and simulation-based approaches for various values of n. Observe that
DeepCME is reasonably accurate in estimating the moments and their parametric
sensitivities for all values of n. The success of the training process is shown by the
validation loss function profiles in Fig 5(C). Note that these loss functions increase
monotonically with n and this is consistent with the observation that errors in
DeepCME-estimated quantities increase with n (see Fig 5(D-F)). The CPU times for
DeepCME and simulation-based methods are displayed in Fig 5(B), and as in previous
examples they show sub-linear growth w.r.t. n for the former but linear growth for the
latter.
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Fig 5. Nonlinear signalling cascade: (A) Depicts the network with n species and
2n reactions. The reactions shown with red dashed-arrow have propensities given by a
nonlinear activating Hill function (32). Other reactions have mass-action kinetics. (B)
The CPU times are shown for DeepCME for different values of n (denoted as # species),
and for comparison the time needed by simulation based methods (mNRM for function
estimates and BPA for parameter sensitivities) with 1000 trajectories is also indicated.
(C) Plots the validation loss function w.r.t. training steps for various n values. Panels
(D-F) show estimates for the function values (E(Xn(T )) and E(X2

n(T ))) at T=1 and the
parameter sensitivities (only the significant sensitivities are shown). The estimates with
simulation based methods are shown as 95% confidence intervals with 1000 samples.

5.4 Linear signalling cascade with feedback

Lastly we consider another variant of the network in the second example where there is
negative feedback in the production of X1 from species Xn (see Fig 6(A)) which is
given by a repressing Hill function with a basal rate

H(x) = b+
km

k0 + xH
n

, (33)

where b = 1, km = 100, k0 = 10 and H = 1. Other reactions have mass-action kinetics
as in the second example, with the same rate constants k = 5 and γ = 1. Due to the
presence of feedback, oscillations can arise in the dynamics and to better represent this
temporal dependence of the policy map we encode it with NT = 5 identical DNNs (see
Remark 4.3).

For number of species n = 2, 5, 10, we apply DeepCME to this reaction network by
training the neural network for 10′000 SGD iterations. Then we compute the moment
estimates (31) and their sensitivities to all the model parameters, and we also estimate
these quantities with simulation-based methods (mNRM and BPA) using 1000 samples.
In the plots shown in Fig 6(D-F), we compare the estimates from both these approaches
for various values of n. Observe that DeepCME is quite accurate in estimating the
moments for n = 2, 5 and the parametric sensitivities for only n = 2. For n = 5, 10 only
the sensitivities for E(Xn(T )) are accurate but the sensitivities for E(X2

n(T )) are not
accurate with our neural network architecture. The validation loss function trajectories
are shown in Fig 6(C). The CPU times for DeepCME and simulation-based methods are
plotted in Fig 6(B), and they show a similar growth pattern as our earlier examples.
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Fig 6. Linear signalling cascade with feedback. (A) Depicts the network with n

species and 2n reactions. The reaction shown with red dashed-arrow has propensity
given by a nonlinear repressing Hill function (33). All other reactions have mass-action
kinetics. (B) The CPU times are shown for DeepCME for different values of n (denoted
as # species), and for comparison the time needed by simulation based methods
(mNRM for function estimates and BPA for parameter sensitivities) with 1000
trajectories is also indicated. (C) Plots the validation loss function w.r.t. training steps
for various n values. Panels (D-F) show estimates for the function values (E(Xn(T ))
and E(X2

n(T ))) at T=1 and the parameter sensitivities (only the significant sensitivities
are shown). The estimates with simulation based methods are shown as 95% confidence
intervals with 1000 samples.

6 Conclusion

Over the past couple of decades, stochastic reaction network models have become
increasingly popular as a modelling paradigm for noisy intracellular processes. Many
consequential biological studies have experimentally highlighted the random dynamical
fluctuations within living cells, and have employed such stochastic models to quantify
the effects of this randomness in shaping the phenotype at both the population and the
single-cell levels [40]. As experimental technologies continue to improve at a rapid pace,
it is urgent to develop computational tools that are able to bring larger and more
realistic systems within the scope of stochastic modelling and analysis.

The central object of interest in stochastic reaction network models is a
high-dimensional system of linear ODEs, called the Chemical Master Equation (CME).
Numerical solutions to the CME are difficult to obtain and commonly used
simulation-based schemes to estimate the solutions often require an inordinate amount
of computational time, even for moderately-sized networks. Inspired by the recent
success of machine learning approaches in solving high-dimensional PDEs [13], our goal
in this paper is to devise a similar strategy, based on deep reinforcement learning to
numerically estimate solutions to CMEs. We develop such a method, called DeepCME,
and we illustrate it with a number of examples. The neural network we train in
DeepCME provides estimates for expectations based on the CME solution and in
principle it also provides estimates for the sensitivities of these expectations w.r.t. all
the model parameters without any extra effort. Such parametric sensitivities are
important for many applications, such as evaluating a network’s robustness
properties [41] or identifying its critical components [42], but they are even more
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difficult to estimate than solutions to the CME [23–31].
Our work opens up several directions for future research. The machine-learning

based computational framework and the mathematical formulation which we provide
allows one to deploy and transfer strong ML methodologies to the quantitative analysis
and to data assimilation into complex CRNs. The present, basic approach can be
improved/extended in a number of ways.

Firstly, it needs to be investigated how the architecture of the neural network can be
optimally selected, for improved convergence of the training process, based on the CRN
model. Overparametrized neural network architectures may be regularized by adding
suitable weight-bias penalties in the loss-function. The resulting improved convergence
will increase the accuracy of the estimates provided by DeepCME, especially for the
parameter sensitivities, and reduce the number of trajectories used in the neural
network training.

Secondly, although the presently proposed framework requires relatively few ‘exact’
stochastic simulations of the dynamics, it could nevertheless be computationally
prohibitive for many large biological networks, especially if they are multiscale in
nature [43, 44]. It might be possible to improve efficiency by replacing exact simulations
with τ -leaping simulations [20], multi-level schemes [21] or with simulations based on
reduced models for multiscale networks [16, 43–45]. Incorporating such approaches for
generating training trajectories would make our approach computationally feasible for
much larger networks than those considered here. In particular, multi-level simulation
schemes which are based on coupling techniques [21] would allow one to construct a
lower variance estimator for the loss function (29). This could in turn benefit the
accuracy and the convergence of the training process (see, e.g. [46] for the development
of multilevel DNN training algorithms, albeit in another class of applications). In the
context of multiscale networks, identifying the appropriate copy-number scalings that
give rise to reduced models with simpler dynamics is a highly specialised task requiring
careful theoretical analysis [16]. However our approach can be extended to “learn” these
scaling factors during the training process by including them as trainable subnetworks
into the ML feature space and employing them to scale the state-vectors in the input
layer of the DNNs (see Fig 1). It is quite possible that incorporating these scaling
factors would enhance the expressivity of the DNN.

Thirdly, the parameter sensitivities that we compute in our method could be
employed in an ‘outer’ gradient descent method with the purpose of inferring model
parameters by matching the computed statistics of CME solution with experimental
data [47].

On the theoretical front, greater mathematical effort is required to understand how
deep reinforcement-learning approaches can help in circumventing the curse of
dimensionality inherent to CMEs. Alternative training approaches, such as GANs (see,
e.g., [48]), may also be suitable for acceleration of the training process.

Finally, the architecture of the DNNs may include feature spaces comprising
parametric dictionaries of motifs, which are adjusted during training to the reaction
rates and to the kinetics of the CRN under consideration.

Acknowledgments

This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme grant
agreement no. 743269 (CyberGenetics project). ChS benefited from stimulating
exchanges at the Isaac Newton Institute during the Programme Mathematics of Deep
Learning (MDL) from 1 July 2021 to 17 December 2021

20



References

1. Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic Gene Expression in a
Single Cell. Science. 2002;297(5584):1183–1186.

2. McAdams HH, Arkin A. Stochastic mechanisms in gene expression. Proc Natl
Acad Sci, Biochemistry. 1997;94:814–819.

3. Anderson DA, Kurtz TG. Continuous time Markov chain models for chemical
reaction networks. In: Koeppl H, Setti G, di Bernardo M, Densmore D, editors.
Design and Analysis of Biomolecular Circuits. Springer-Verlag; 2011.

4. van Kampen NG. A power series expansion of the master equation. Canadian
Journal of Physics. 1961;39(4):551–567. doi:10.1139/p61-056.

5. Gillespie DT. Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry. 1977;81(25):2340–2361.

6. Anderson DF. A modified next reaction method for simulating chemical systems
with time dependent propensities and delays. The Journal of chemical physics.
2007;127(21):214107.

7. Altı ntan D, Koeppl H. Hybrid master equation for jump-diffusion approximation
of biomolecular reaction networks. BIT. 2020;60(2):261–294.
doi:10.1007/s10543-019-00781-4.

8. Hornung F, Jentzen A, Salimova D. Space-time deep neural network
approximations for high-dimensional partial differential equations. Switzerland:
Seminar for Applied Mathematics, ETH Zürich; 2020. 2020-35. Available from:
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