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ON THE VANISHING VISCOSITY LIMIT OF STATISTICAL

SOLUTIONS OF THE INCOMPRESSIBLE NAVIER–STOKES

EQUATIONS

ULRIK SKRE FJORDHOLM, SIDDHARTHA MISHRA, AND FRANZISKA WEBER

Abstract. We study statistical solutions of the incompressible Navier–Stokes equation
and their vanishing viscosity limit. We show that a formulation using correlation mea-
sures, which are probability measures accounting for spatial correlations, and moment

equations is equivalent to statistical solutions in the Foiaş–Prodi sense. Under the as-
sumption of weak scaling, a weaker version of Kolmogorov’s self-similarity at small scales

hypothesis that allows for intermittency corrections, we show that the limit is a statis-
tical solution of the incompressible Euler equations. To pass to the limit, we derive a
Kármán–Howarth–Monin relation for statistical solutions and combine it with the weak
scaling assumption and a compactness theorem for correlation measures.

1. Introduction

The motion of an incompressible viscous fluid can be described by the Navier–Stokes
equations

∂tu+ div
(
u⊗ u

)
+∇p = ε∆u

div u = 0

u
∣∣
t=0

= u0,

(1.1)

where u : D → U := R
d is the fluid velocity and p : D → R, the pressure, acting as a

Lagrange multiplier to enforce the divergence constraint div u = 0, and u0 is the initial
condition. Here, we take the spatial domain D to be the d-dimensional torus D := T

d, and

we denote the phase space by U := R
d. The divergence is defined as div u :=

∑d
i=1 ∂xi

ui and
∇p := (∂x1

p, . . . , ∂xd
p)⊤ is the spatial gradient. The parameter ε > 0 denotes the viscosity

and is proportional to the reciprocal of the Reynolds number. It is well-known that many
flows of interest are characterized by high to very-high Reynolds numbers. Hence, one is
interested in studying what happens when viscosity ε equal to zero. In this formal limit
ε → 0, one obtains the incompressible Euler equations, which are the prototypical models
for an ideal fluid.

The question of whether the ε → 0 limit is a good approximation of (1.1) is of great
practical relevance and has received considerable attention, both from a physical as well
as mathematical point of view. Furthermore, it plays an essential role in computational
fluid dynamics, as many numerical methods for the Euler equations, as well as large eddy
simulations (LES) for Navier-Stokes equations, can be viewed as discretizations of (1.1) with
ε of the order of the discretization parameter.

While in two spatial dimension, the convergence of a sequence of solutions {uε}ε>0 of (1.1)
to a solution of the Euler equations has been proved rigorously for many settings, see e.g., [14,
51, 13, 15], it turns out to be very challenging in 3D. Leray [46] proved in 1934 the existence
of “Leray–Hopf solutions” of (1.1), which are weak solutions of (1.1), i.e., they satisfy (1.1)
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in the sense of distributions and in addition an energy inequality of the form

(1.2)

ˆ

D

|u(t, x)|2dx+ ε

ˆ t

0

ˆ

D

|∇u(s, x)|2dxds 6

ˆ

D

|u0(x)|
2dx, t > 0.

(Here and in the remainder, we suppress the dependence of uε on ε for convenience and
write just u.) Hence, if the initial data u0 lies in L2

div(D;U), such solutions satisfy u ∈
L∞
(
[0, T ];L2

div(D;Rd)
)
∩ L2

(
[0, T ];H1

div(D;Rd)
)
. (Here, L2

div and H1
div are the weakly di-

vergence free functions in L2 and H1, respectively.) However, as ε → 0, the L2-bound on
the gradient of u, that stems from the energy inequality (1.2), no longer suffices for deriving
sufficient compactness of the sequence {u}ε>0 in L2—which would be needed to pass to the
limit in the nonlinear terms. It appears that, at least as far as global solutions are concerned,
there is currently no means of gaining sufficient compactness through other conserved quan-
tities or bootstrapping; in fact, it is unclear if global solutions of higher regularity than the
one given by (1.2) exist in 3D. Closely related to this issue is the lack of stability estimates,
i.e., well-posedness of Leray-Hopf solutions [21, 44]. The main obstruction to better regu-
larity or stability estimates is caused by the nonlinear convective term (u · ∇)u. The role of
the nonlinear term and possible instabilities in the Leray-Hopf solutions are often related to
the issue of turbulence in fluid flows.

The theory of mathematical turbulence was initiated in the 1930s and 1940s by Taylor,
Richardson, Kolmogorov and others, see [31] and references therein, and has since influenced
fluid mechanics, as well as atmospheric sciences and plasma physics heavily. In his sequence
of three papers [41, 40, 42], nowadays referred to as K41, Kolmogorov took a probabilistic
approach to turbulence and formulated basic hypotheses about fluid flow at high Reynolds
numbers and derived predictions based on these. Many of these have later been confirmed
by experiments. The idea of studying equations (1.1) in a probabilistic setting has since
been taken up again in many works, in different frameworks, by adding stochastic forcing
terms to (1.1), see e.g. [25, 48, 10], or taking uncertain or measure-valued initial data,
e.g. [17]. In the latter case, the solution of (1.1) may not be a function any more but
instead a time-parametrized probability measure on the phase space. Global existence of
such measure-valued solutions for incompressible flows has been shown in 3D, and even the
passage to the limit ε→ 0 can be made rigorous in this case [17]. However, measure-valued
solutions are generally not unique, which can be shown by counterexample even in the case
of Burgers’ equation [22]. Hence, measure-valued solutions are too broad a solution concept
to resolve the problem of non-uniqueness, and more information or constraints need to be
added.

To overcome this, in [23], it was suggested to take into account the (time) evolution of
all possible multi-point spatial correlations. Instead of a single probability measure on the
phase space U , such a statistical solution is a family of probability measures on the phase
space and products of the phase space Uk, for k ∈ N, corresponding to the multi-point
correlations. Hence, one can interpret the solution as a measure-valued solution augmented
with information about higher order spatial correlations. From a practical point of view, this
approach is very natural, as often only averaged quantities of interest of the fluid flow can
be observed. Moreover, it is also in line with Kolmogorov’s turbulence theory, as this theory
studies statistical properties of the fluid and makes predictions about these. The system of
equations that arises for the higher order correlations is also known as the Friedman–Keller
infinite chain of moment equations [38, 57] and finite closure relation for this infinite family
of equations have been studied for small and large Reynolds numbers in [33, 35, 34, 36].

An alternative point of view in this context, is to consider instead probability measures
on a space of suitable initial conditions; in the case of (1.1) this would be L2

div(D;U). Equa-
tion (1.1) is then interpreted as a Liouville equation on an infinite dimensional function space
and the solution is a mapping assigning to each time t a probability measure on L2

div(D;U).
This setting was first considered by Prodi [52] and later on extensively studied by Foiaş and
collaborators [26, 27, 29, 28], see also [37]. A closely related notion of statistical solutions
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was studied by Vishik and Fursikov [57]. Foiaş and his collaborators proved existence of
such solutions in 2D and 3D, uniqueness in 2D, and further properties related to turbu-
lence [28]. The relations between the Foiaş and Prodi notion of statistical solutions and the
Vishik-Fursikov version were explored in [30, 8, 9]. The latter work etends the notion of
statistical solutions to other relevant PDEs in fluid mechanics.

Given this plurality of definitions of statistical solutions, it is natural to examine, if and
under what conditions, these solution concepts are equivalent. The first goal of this paper
is to prove that both these concepts of statistical solutions of the incompressible Navier-
Stokes equations (1.1) are equivalent as long as a statistical version of the of the energy
inequality (1.2) holds.

The second and main goal of this paper is to investigate the vanishing viscosity limit of
the statistical solutions of incompressible Navier-Stokes equations. Under an weak scaling
assumption on the Navier-Stokes statistical solutions, we will use compactness criteria, pre-
sented recently in [24], to prove that vanishing viscosity limits of the statistical solutions of
Navier-Stokes equations are statistical solutions of the incompressible Euler equations.

Our weak scaling assumption is a significantly weaker version of the scaling hypothesis of
Kolmogorov’s 1941 theory and allows for intermittent corrections. Our main technical tool
is a statisical version of the well-known Kármán–Howarth–Monin relation [31, 16, 47], that
relates the evolution of 2-point correlations to the longitudinal structure function S3

‖ , which

is, roughly speaking, defined as

S3
‖(|ℓ|) :=

〈(
(u(x+ ℓ)− u(x)) · ℓ̂

)3〉
, ℓ̂ :=

ℓ

|ℓ|
.

Here 〈·〉 is a suitable average of the flow.
Thus, by characterizing this vanishing viscosity limit, we establish a rigorous relation-

ship between the incompressible Navier-Stokes and Euler equations, while accommodating
physically observed facts about turbulent flows in this description.

The remainder of this article is organized as follows: In Section 2, we introduce the
concept of correlation measures and in Section 3 we show the equivalence of statistical
solutions as introduced by Foiaş and Prodi with families of correlation measures satisfying
the Friedman–Keller chain of moment equations. Then in Section 4, we consider the passage
to the limit ε→ 0 and conclude with an appendix with technical results.

2. Correlation measures

In this section, we recall the definition of correlation measures and some important prop-
erties of them from [23, 24]. We start by introducing the necessary notation.

2.1. Notation. For k ∈ N, k > 1, we denote the tensor products

Dk = D × · · · ×D︸ ︷︷ ︸
k times

, Uk = U ⊗ · · · ⊗ U︸ ︷︷ ︸
k times

.

If X is a topological space then we let B(X) denote the Borel σ-algebra on X, we let M (X)
denote the set of signed Radon measures on (X,B(X)), and we let P(X) ⊂ M (X) denote
the set of all probability measures on (X,B(X)), i.e. all 0 6 µ ∈ M (X) with µ(X) = 1
(see e.g. [3, 7, 39]). For k ∈ N and a multiindex α ∈ {0, 1}k we write |α| = α1 + · · · + αk

and ᾱ = ✶ − α = (1 − α1, . . . , 1 − αk), and we let xα be the vector of length |α| consisting
of the elements xi of x for which αi is non-zero. For a vector x = (x1, . . . , xk) we write
x̂i = (x1, . . . , xi−1, xi+1, . . . , xk). For a vector ξ = (ξ1, . . . , ξk) we write |ξ

α| = |ξ1|
α1 · · · |ξk|

αk

with the convention 00 = 1.

2.1.1. Carathéodory functions. If E and V are Euclidean spaces then a measurable function
g : E × V → R is called a Carathéodory function if ξ 7→ g(x, ξ) is continuous for a.e. y ∈ E
and y 7→ g(y, ξ) is measurable for every ξ ∈ V (see e.g. [1, Section 4.10]). Given k ∈ N and a
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Carathéodory function g = g(x, ξ) : Dk×Uk → R we define the functional Lg : L
p(D;U) → R

by

(2.1) Lg(u) :=

ˆ

Dk

g(x1, . . . , xk, u(x1), . . . , u(xk)) dx.

(It is not obvious that Lg is continuous, or even well-defined; see [23].) We denote the set
of Carathéodory functions depending on space and time by H

k
0([0, T ), D;U) := L1([0, T )×

Dk;C0(U
k)) and its dual space byH

k∗
0 ([0, T ), D;U) := L∞

w ([0, T )×Dk;M (Uk)) (see e.g. [5]).
In the following, we will focus on a specific type of Carathéodory functions. In particular,

for p > 1 we let H
k,p([0, T ], D;U) denote the space of Carathéodory functions g : [0, T ] ×

Dk × Uk → R satisfying

(2.2) |g(t, x, ξ)| 6
∑

α∈{0,1}k

ϕ|ᾱ|(t, xᾱ)|ξ
α|p ∀ x ∈ Dk, ξ ∈ Uk

for nonnegative functions ϕi ∈ L∞([0, T ];L1(Di)), i = 0, 1, . . . , k. We letHk,p
1 ([0, T ], D;U) ⊂

H
k,p([0, T ], D;U) denote the subspace of functions g satisfying the local Lipschitz condition

∣∣g(t, x, ζ)− g(t, y, ξ)
∣∣ 6 ψ(t)

k∑

i=1

|ζi − ξi|max
(
|ξi|, |ζi|

)p−1
h(t, x̂i, ξ̂i)

+O(|x− y|)h̃(t, x, ξ)

(2.3)

for every x ∈ Dk, y ∈ Br(x) for some r > 0, for some nonnegative h ∈ H
k−1,p([0, T ], D;U)

and 0 6 ψ(t) ∈ L∞([0, T ]) and some h̃ ∈ H
k,p([0, T ], D;U). (Note that the term h̃ was not

present in [24, Definition 2.2], but one can generalize the results of that paper to include
such a term.)

We also denote for a parametrized probability measure νk ∈ L∞
w ([0, T ) × Dk;M (Uk))

and a Carathéodory function g the pairing

〈
νk, g

〉
Hk =

ˆ

Dk

〈
νkt,x, g(t, x)

〉
dx

(where
〈
νkx , g(t, x)

〉
=
´

Uk g(t, x, ξ) dν
k
t,x(ξ) is the usual duality pairing between Radon mea-

sures M (Uk) and continuous functions C0(U
k)).

2.2. Definitions. We are now in a position to define time-dependent correlation measures.

Definition 2.1. A time-dependent correlation measure is a collection ν = (ν1, ν2, . . . ) of
functions νk ∈ H

k∗
0 ([0, T ), D;U) such that

(i) νkt,x ∈ P(Uk) for a.e. (t, x) ∈ [0, T ]×Dk, and the map x 7→
〈
νkt,x, f

〉
is measurable for

every f ∈ Cb(U
k) and almost every t ∈ [0, T ]. (In other words, νkt is a Young measure

from Dk to Uk.)
(ii) Lp integrability:

(2.4) ess sup
t∈[0,T )

(
ˆ

D

〈
ν1t,x, |ξ|

p
〉
dx

)1/p

6 c < +∞

(iii) Diagonal continuity (DC):

(2.5)

ˆ T ′

0

ωp
r

(
ν2t
)
dt→ 0 as r → 0 for all T ′ ∈ (0, T ),

where

ωp
r (ν

2
t ) :=

ˆ

D

−

ˆ

Br(x)

〈
ν2t,x,y, |ξ1 − ξ2|

p
〉
dy dx

is called the modulus of continuity of ν.

We denote the set of all time-dependent correlation measures by L
p([0, T ), D;U).
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In [24] (and see [23] for a time-independent version), the following equivalence between
time-dependent correlation measures and parametrized probability measures on Lp(D) was
proved:

Theorem 2.2. For every time-dependent correlation measure ν ∈ L
p([0, T ), D;U) there is

a unique (up to subsets of [0, T ) of Lebesgue measure 0) map µ : [0, T ) → P(Lp(D;U)) such
that

(i) the map

(2.6) t 7→
〈
µt, Lg

〉
=

ˆ

Lp

ˆ

Dk

g(x, u(x)) dx dµt(u)

is measurable for all g ∈ H
k
0(D;U),

(ii) µ is Lp-bounded:

(2.7) ess sup
t∈[0,T )

ˆ

Lp

‖u‖pLp dµt(u) 6 cp <∞

(iii) µ is dual to ν: the identity

(2.8)

ˆ

Dk

〈
νkt , g(x)

〉
dx =

ˆ

Lp

ˆ

Dk

g(x, u(x)) dx dµt(u)

holds for a.e. t ∈ [0, T ), every g ∈ H
k
0(D;U) and all k ∈ N.

Conversely, for every µ : [0, T ) → P(Lp(D;U)) satisfying (i) and (ii), there is a unique
correlation measure ν ∈ L

p([0, T ), D;U) satisfying (iii).

We also have the following “Compactness” Theorem for time-dependent correlation mea-
sures [24, Theorem 2.21]

Theorem 2.3. Let νn ∈ L
p([0, T ), D;U) for n = 1, 2, . . . be a sequence of correlation

measures such that

sup
n∈N

ess sup
t∈[0,T )

(
ˆ

D

〈
ν1n;t,x, |ξ|

p
〉
dx

)1/p

6 c < +∞(2.9)

lim
r→0

lim sup
n→∞

ˆ T ′

0

ωp
r

(
ν2n,t
)
dt = 0(2.10)

for some c > 0 and all T ′ ∈ [0, T ). Then there exists a subsequence (nj)
∞
j=1 and some

ν ∈ L
p([0, T ), D;U) such that

(i) νnj

∗
⇀ ν as j → ∞, that is,

〈
νknj

, g
〉
Hk →

〈
νk, g

〉
Hk for every g ∈ H

k
0([0, T ), D;U)

and every k ∈ N

(ii)
〈
ν1t , |ξ|

p
〉
H1 6 cp for a.e. t ∈ [0, T )

(iii)
´ T ′

0
ωp
r

(
ν2t
)
dt 6 lim infn→∞

´ T ′

0
ωp
r

(
ν2n,t
)
dt for every r > 0 and T ′ ∈ [0, T )

(iv) for k ∈ N, let ϕ ∈ L1
loc

([0, T )×Dk) and κ ∈ C(Uk) be nonnegative, and let g(t, x, ξ) :=
ϕ(t, x)κ(ξ). Then

(2.11)
〈
νk, g

〉
Hk 6 lim inf

j→∞

〈
νknj

, g
〉
Hk .

(v) Assume moreover that D ⊂ R
d is compact, T <∞ and that νn have uniformly bounded

support, in the sense that

(2.12) ‖u‖Lp 6 R for µn
t -a.e. u ∈ Lp(D;U) for every n ∈ N, a.e t ∈ (0, T ),

with µn
t ∈ PT (L

p(D;U)) being dual to νn, then the following observables converge
strongly:

(2.13) lim
j→∞

ˆ

Dk

∣∣∣∣∣

ˆ T

0

(〈
νknj ;t,x, g(t, x)

〉
−
〈
νkt,x, g(t, x)

〉)
dt

∣∣∣∣∣ dx = 0
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for every g ∈ H
k,p
1 ([0, T ], D;U).

3. Statistical solutions

The goal of this section is to show that the statistical solutions of Navier–Stokes as
introduced by Foiaş and Prodi [26, 27, 28, 29, 52] are equivalent to families of correlation
measures as introduced in [23] that satisfy the Friedman–Keller system of moment equations.
For the sake of simplicity we will assume that the support of the initial measure µ0 lies in
a bounded set B ⊂ L2(D;U), that is,

(3.1) supp(µ0) ⊂ B ⊂ L2(D;U).

3.1. The Leray projector. We recall first that the Helmholtz–Leray projector, or simply
Leray projector, is the linear map P : L2(D;U) → L2

div(D;U) := {v ∈ L2(D;U) : div v =
0,
´

vdx = 0} that projects a vector field f ∈ L2(D;U) to its divergence free component,
that is f = Pf +∇ψf with div(Pf) = 0 and Pf,∇ψf ∈ L2(D;U). One can show that ∇ψf

is orthogonal in L2(D;U) to any function u ∈ L2
div(D;U),

ˆ

D

u · ∇ψf dx = 0.

For functions in the tensor product space L2(Dk;Uk) we let Pxi
denote the Leray projector in

the ith component, i.e., ϕ = Pxi
ϕ+∇xi

ψϕ,i where divxi
(Pxi

ϕ) = 0, and ψϕ,i ∈ L2(Dk;Uk−1)
with ∇xi

ψϕ,i ∈ L2(Dk;Uk).

3.2. Definitions. We will start by recalling the different definitions of statistical solutions
introduced in [28, 30, 23].

Definition 3.1 (Definition 3.2 in [23]). Let ε > 0. The Friedman–Keller system of mo-
ment equations, defined for time-dependent correlation measures ν ∈ L

2([0, T ), D;U), is the
hierarchy of equations

ˆ T

0

ˆ

Dk

ˆ

Uk

(ξ1 ⊗ · · · ⊗ ξk) :
∂ϕ

∂t
(t, x) dνkt,x(ξ) dx dt

+

ˆ

Dk

ˆ

Uk

(ξ1 ⊗ · · · ⊗ ξk) : ϕ(0, x) dν
k
0,x(ξ) dx

+

k∑

i=1

ˆ T

0

ˆ

Dk

ˆ

Uk

(ξ1 ⊗ · · · ⊗ (ξi ⊗ ξi)⊗ · · · ξk) : ∇xi
ϕ(t, x) dνkt,x(ξ) dx dt

= − ε
k∑

i=1

ˆ T

0

ˆ

Dk

ˆ

Uk

(ξ1 ⊗ · · · ⊗ ξk) : ∆xi
ϕ(t, x) dνkt,x(ξ) dx dt

(3.2)

for all k ∈ N, for all ϕ ∈ C2
c ([0, T )×D

k;Uk) with divxi
ϕ = 0 for all i = 1, . . . , k, along with

the divergence constraint

(3.3)

ˆ

Dk

ˆ

Uk

ξ1 ⊗ · · · ⊗ ξℓ ⊗ αℓ+1(ξℓ+1)⊗ · · · ⊗ αk(ξk) dν
k
t,x(ξ) · ∇x1,...,xℓ

ϕ(x) dx = 0,

where ∇x1,...,xℓ
= (∇x1

, . . . ,∇xℓ
)⊤, 1 6 ℓ 6 k ∈ N, for all ϕ ∈ H1(Dk;Uk−ℓ), αj ∈ C(U ;U),

with αj(v) 6 C(1 + |v|2) for all j = 1, . . . , k.
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If ν solves the Friedman–Keller system of moments equations and in addition satisfies
the energy inequality
(3.4)

K∑

k=0

ak

ˆ

Dk

ˆ

Uk

|ξ1|
2 . . . |ξk|

2 dνkt,x(ξ) dx

+ 2ε

K∑

k=0

ak

k∑

i=1

d∑

j=1

lim
h→0

1

h2

ˆ t

0

ˆ

Dk

ˆ

Uk+1

|ξ1|
2 . . . |ξi − ξk+1|

2 . . . |ξk|
2 dνk+1

t,(x,xi+hej)
(ξ, ξk+1) dx ds

6

K∑

k=0

ak

ˆ

Dk

ˆ

Uk

|ξ1|
2 . . . |ξk|

2 dνk0,x(ξ) dx

for all K ∈ N and ak ∈ R, k = 0, . . . ,K such that pK(s) =
∑K

k=0 aks
k is a nonnegative,

nondecreasing polynomial for s ∈ [0, R] for R sufficiently large related to the support of the
correlation measure (see (2.12)), then we call ν a Friedman–Keller statistical solution of the
Navier–Stokes (when ε > 0) or Euler (when ε = 0) equations.

Remark 3.2. Friedman–Keller statistical solutions are analogous to the definition of sta-
tistical solutions for hyperbolic systems of conservation laws as introduced in [23, 24] for
compressible flows.

Remark 3.3. By a standard argument for weak solutions to continuity equations, the map
t 7→ 〈νkt,·, ξ1 ⊗ · · · ⊗ ξk〉 is weakly continuous for every k ∈ N; see e.g. [2, Remark 2.2].

Remark 3.4 (Formulation of (3.2) with non-divergence free test functions). Denoting Pk :=
Px1

. . .Pxk
(cf. Section 3.1), we can replace the divergence-free test function ϕ ∈ C2

c ([0, T ]×
Dk;Uk) in (3.2) by Pkϕ for an arbitrary ϕ ∈ C2

c ([0, T ] ×Dk;Uk). Using the fact that the
Leray projection is self-adjoint and that, by (3.3),

divxi

ˆ

Uk

(ξ1 ⊗ · · · ⊗ ξk) dν
k
t,x(ξ) = 0 ∀ i = 1, . . . , k, a.e. (t, x) ∈ [0, T ]×Dk

we observe that

Pk

ˆ

Uk

(ξ1 ⊗ · · · ⊗ ξk) dν
k
t,x(ξ) =

ˆ

Uk

(ξ1 ⊗ · · · ⊗ ξk) dν
k
t,x(ξ), a.e. t ∈ [0, T ], x ∈ Dk.

Therefore,
ˆ T

0

ˆ

Dk

ˆ

Uk

(ξ1 ⊗ · · · ⊗ ξk) :
∂Pkϕ

∂t
(t, x) dνkt,x(ξ) dx dt

=

ˆ T

0

ˆ

Dk

Pk

(
ˆ

Uk

(ξ1 ⊗ · · · ⊗ ξk) dν
k
t,x(ξ)

)
:
∂ϕ

∂t
(t, x) dx dt

=

ˆ T

0

ˆ

Dk

ˆ

Uk

(ξ1 ⊗ · · · ⊗ ξk) dν
k
t,x(ξ) :

∂ϕ

∂t
(t, x) dx dt.

Similarly,
ˆ

Dk

ˆ

Uk

(ξ1 ⊗ · · · ⊗ ξk) : Pkϕ(0, x) dν
k
0,x(ξ) dx =

ˆ

Dk

ˆ

Uk

(ξ1 ⊗ · · · ⊗ ξk) : ϕ(0, x) dν
k
0,x(ξ) dx,

and
k∑

i=1

ˆ T

0

ˆ

Dk

ˆ

Uk

(ξ1 ⊗ · · · ⊗ ξk) : ∆xi
Pkϕ(t, x) dν

k
t,x(ξ) dx dt

=

k∑

i=1

ˆ T

0

ˆ

Dk

ˆ

Uk

(ξ1 ⊗ · · · ⊗ ξk) : ∆xi
ϕ(t, x) dνkt,x(ξ) dx dt,
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the last one being true due to the fact that the Laplacian and the Leray projection commute
on the torus. Hence, the weak formulation (3.2) can be rewritten as

ˆ T

0

ˆ

Dk

ˆ

Uk

(ξ1 ⊗ · · · ⊗ ξk) :
∂ϕ

∂t
(t, x) dνkt,x(ξ) dx dt+

ˆ

Dk

ˆ

Uk

(ξ1 ⊗ · · · ⊗ ξk) : ϕ(0, x) dν
k
0,x(ξ) dx

+
k∑

i=1

ˆ T

0

ˆ

Dk

ˆ

Uk

(ξ1 ⊗ · · · ⊗ (ξi ⊗ ξi)⊗ · · · ξk) : ∇xi
ϕ(t, x) dνkt,x(ξ) dx dt

=− ε

k∑

i=1

ˆ T

0

ˆ

Dk

ˆ

Uk

(ξ1 ⊗ · · · ⊗ ξk) : ∆xi
ϕ(t, x) dνkt,x(ξ) dx dt

+

k∑

i=1

ˆ T

0

ˆ

Dk

ˆ

Uk

(ξ1 ⊗ · · · ⊗ (ξi ⊗ ξi)⊗ · · · ξk) : ∇xi
∇xi

ψϕ,i(t, x) dν
k
t,x(ξ) dx dt

(3.5)

where ϕ ∈ C2
c ([0, T ]×Dk;Uk). The terms

(3.6)

k∑

i=1

ˆ T

0

ˆ

Dk

ˆ

Uk

(ξ1 ⊗ · · · ⊗ (ξi ⊗ ξi)⊗ · · · ξk) : ∇xi
∇xi

ψϕ,i(t, x) dν
k
t,x(ξ) dx dt

correspond to the pressure in the deterministic setting.

To define statistical solutions in the sense of Foiaş and Prodi, we need to introduce some
notation. We denote by L2

div(D;U) the space of divergence free L2(D;U)-vector fields and
by H1

div(D;U) the space of divergence free functions in H1(D;U) (these can be obtained
as the closures of C∞(D;U) ∩ {div u = 0} in L2(D;U) and H1(D;U), respectively, with
suitable integral conditions:

L2
div(D;U) =

{
u ∈ L2(Td) : div u = 0,

ˆ

Td

u(x) dx = 0

}
,

H1
div(D;U) =

{
u ∈ H1(Td) : div u = 0,

ˆ

Td

u(x) dx = 0

}
,

for periodic boundary conditions. We denote the L2-inner product by

(u, v) =

ˆ

D

u(x)v(x) dx,

and for ε > 0 the H1-inner product by

a(u, v) = ε

d∑

i=1

ˆ

D

∂u

∂xi
·
∂u

∂xi
dx,

Define the Stokes operator A by

Au = −P∆u, for all u ∈ D(A) = H1
div(D;U) ∩H2(D;U),

ε(Au, v) = a(u, v), for all u, v ∈ D(A1/2),

where P is the Leray projector, and the skew-symmetric trilinear form b by

b(u, v, w) :=

ˆ

D

(u · ∇)v · w dx = (B(u, v), w), u, v, w ∈ D(A1/2)

B(u) := B(u, u).

(3.7)

We can then write the Navier–Stokes equations in the functional formulation: Let T > 0,
u0 ∈ L2

div(D;U), find u ∈ L∞([0, T ];L2
div(D;U)) ∩ L2([0, T ];H1

div(D;U)) with u′ := d
dtu ∈

L1([0, T ];D(A−1/2)) such that

(3.8) u′ + εAu+B(u) = 0
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and u(0) = u0 in a suitable sense. This corresponds to the weak formulation

(3.9)
d

dt
(u, v) + a(u, v) + b(u, u, v) = 0 for all v ∈ H1

div(D;U).

If we denote

(3.10) F (t, u) := −εAu−B(u),

the functional formulation becomes

(3.11) u′(t) = F (t, u(t)).

We need the following class of test functions:

Notation 3.5. [28] Let Tcyl denote the class of cylindrical test functions consisting of the
real-valued functionals Φ = Φ(u) that depend on a finite number k ∈ N of components of u,
that is,

Φ(u) = ϕ
(
(u, g1), . . . , (u, gk)

)
,

where ϕ ∈ C1
c (R

k) and g1, . . . , gk ∈ H1(D;U). Let T 0
cyl denote the subset of such functions

which satisfy g1, . . . , gk ∈ H1
div(D;U). We denote by Φ′ the differential of Φ in L2

div(D;U),
which can be expressed as

Φ′(u) =

k∑

j=1

∂jϕ
(
(u, g1), . . . , (u, gk)

)
gj ,

where ∂jϕ is the derivative of ϕ with respect to its jth component.

We can now define statistical solutions in the sense of Foiaş and Prodi. We will use the
definition as it stated in their newer work [30, Def. 3.2]:

Definition 3.6 (Foiaş–Prodi [28, 26, 29, 30]). A family of probability measures (µt)06t6T on
L2
div(D;U) is a Foiaş–Prodi statistical solution of the Navier–Stokes equations on L2

div(D;U)
with initial data µ0 if

(a) The function

(3.12) t 7→

ˆ

L2
div

ϕ(u) dµt(u),

is measurable on [0, T ] for every ϕ ∈ Cb(L
2
div(D;U));

(b) µ satisfies the weak formulation

(3.13)

ˆ

L2
div

Φ(u) dµt(u) =

ˆ

L2
div

Φ(u) dµ0(u) +

ˆ t

0

ˆ

L2
div

(F (s, u),Φ′(u)) dµs(u) ds

for all t ∈ [0, T ] and all cylindrical test functions Φ ∈ T 0
cyl, where F is given in (3.10).

(c) µ satisfies the strengthened mean energy inequality: For any ψ ∈ C1(R,R) nonnegative,
nondecreasing with bounded derivative and t ∈ [0, T ], the inequality

(3.14)

ˆ

L2
div

ψ(‖u‖2L2(D)) dµt(u) + 2ε

ˆ t

0

ˆ

L2
div

ψ′(‖u‖2L2(D))|u|
2
H1(D) dµs(u)

6

ˆ

L2
div

ψ(‖u‖2L2(D)) dµ0(u)

holds.
(d) The function

(3.15) t 7→

ˆ

L2
div

ψ(‖u‖
2
L2(D)) dµt(u)

is continuous at t = 0 from the right, for any function ψ ∈ C1(R,R) nonnegative,
nondecreasing with bounded derivative.
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Remark 3.7. Note that, as a consequence of the energy inequality (3.14) for ψ(s) = s, the
function

t 7→

ˆ

L2
div

‖u‖2L2(D) dµt(u),

belongs to L∞([0, T ]) and the function

(3.16) t 7→

ˆ

L2
div

|u|2H1(D) dµt(u),

belongs to L1([0, T ]). Notice also that (3.13) implies that

t 7→

ˆ

L2
div

Φ(u)dµt(u)

for Φ(u) a cylindrical test function, is continuous since
ˆ

L2
div

(F (s, u),Φ′(u)) dµt(u)

is locally integrable. Combining this fact with condition (c), conditionn (d) follows directly.

3.3. Equivalence between the solution concepts. Next, we show that the Friedman–
Keller statistical solutions in Definition 3.1 and the Foiaş–Prodi statistical solutions in Def-
inition 3.6 are in fact the same.

Theorem 3.8 (Foiaş–Temam statistical solutions satisfy the Friedman–Keller system). Let
µ be a Foiaş–Prodi statistical solution such that the initial condition µ0 has bounded support,

supp(µ0) ⊂ B ⊂ L2
div(D;U), B ⊂

{
u ∈ L2(D;U) : ‖u‖L2(D) 6 R

}

for some R > 0. Then µ corresponds (cf. Theorem 2.2) to a correlation measure νt =
(ν1, ν2, . . . ) that is a statistical solution in the Friedman–Keller sense (cf. Definition 3.1).

Conversely, we have:

Theorem 3.9 (Friedman–Keller solutions are Foiaş–Prodi statistical solutions). Let ν =
(νt)06t6T be a Friedman–Keller statistical solution of Navier–Stokes (cf. Definition 3.1)
with bounded support, i.e.,

(3.17)

ˆ

Dk

ˆ

Uk

|ξ1|
2 . . . |ξk|

2 dνkt,x(ξ) dx 6 Rk <∞,

for some 0 < R < ∞, every k ∈ N, and almost every t ∈ [0, T ]. Then ν corresponds to a
probability measure µ = (µt)06t6T on a bounded set of L2

div(D;U) which is a Foiaş–Prodi
statistical solution of the Navier–Stokes equations (cf. Definition 3.6).

The proofs of these two results are given in Appendix A.
Foiaş et al. have shown existence of Foiaş–Prodi statistical solutions for the (forced)

Navier–Stokes equations, see e.g. [26, 27, 28]. Using these equivalence theorems, this implies
existence of statistical solutions via correlation measures as in Definition 3.1.

Remark 3.10. The equivalence theorems 3.8 and 3.9 are restricted to probability measures
with bounded support. It should be possible to extend these results to probability measures
having sufficiently fast decay near infinity; however, the proofs would become significantly
more technical. We have therefore decided to restrict ourselves to probability measures with
bounded support.
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4. Vanishing viscosity limit of statistical solutions of Navier–Stokes

The goal of this section is to pass to the inviscid limit ε → 0 under the assumption of
weak statistical scaling (c.f. Section 4.3, Assumption 1). We will first prove a rigorous result
on the longitudinal third order structure function

(4.1) S3
‖(τ, r) :=

ˆ τ

0

ˆ

L2
div

 

S2

ˆ

D

(
(u(x+ rn)− u(x)) · n

)3
dxdS(n) dµt(u) dt,

and then relate it to the similarly defined second order structure function using the weak
scaling assumption. Together with weak statistical anisotropy, this yields diagonal continuity
of the correlation measures νε that is needed to apply the compactness theorem 2.3 and pass
to the limit. The proof of the scaling estimate for the third order structure function (4.1)
in Lemma 4.2 and 4.3 largely follows the proof of a similar result for martingale solutions
of stochastic Navier–Stokes equations in [6]. To simplify notation, we will omit writing the
dependence of ν and µ on ε in the following sections.

4.1. Kármán–Howarth–Monin relation. The key to deriving an estimate on the be-
havior of the third order structure function (4.1) is the so-called Kármán–Howarth–Monin
(KHM) relation [16] that describes the evolution of the second correlation marginal. Similar
relations have been derived before for various settings (stochastic, forced, etc.), see [31, 49,
16, 47, 6, 20, 18]. For statistical solutions we derive:

Proposition 4.1. Let ν be a Friedman–Keller statistical solution of the Navier–Stokes
equations. Then the second correlation marginal ν2 satisfies the Kármán–Howarth–Monin
relation for correlation measures:

∑

ij

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
j
2 dν

2
τ,x,x+h(ξ) dx σ

ij(h) dh−
∑

ij

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
j
2 dν

2
0,x,x+h(ξ) dx σ

ij(h) dh

+
1

2

∑

ijk

ˆ τ

0

ˆ

D

ˆ

D

ˆ

U2

(ξi2 − ξi1)(ξ
j
2 − ξj1)(ξ

k
2 − ξk1 ) dν

2
t,x,x+h(ξ) dx ∂hkσij(h) dh dt

= −ε
∑

ij

ˆ τ

0

ˆ

D

ˆ

D

ˆ

U2

(ξi1 − ξi2)(ξ
j
1 − ξj2) dν

2
t,x,x+h(ξ) dx∆hσ

ij(h) dh dt.

(4.2)

for any τ > 0, where σ = (σij)
3
i,j=1 is any smooth, compactly supported, isotropic rank 2

tensor – that is, any σ ∈ C2
c (R

d,Rd×d) of the form

(4.3) σ(h) =
(
ω1(|h|)I+ ω2(|h|)ĥ⊗ ĥ

)
where ĥ =

{
h/|h| h 6= 0

0 h = 0

for ω1, ω2 ∈ C2
c (R).
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Proof. We consider equation (3.5) for k = 2 with the test function ϕ(t, x, y) = η(t, y − x)
(for simplicity replacing x1 and x2 by x and y and writing in component form η = (ηij)ij),

∑

ij

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
j
2

∂ηij

∂t
(t, y − x) dν2t,x,y(ξ) dx dy dt

+
∑

ij

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
j
2η

ij(0, y − x) dν20,x,y(ξ) dx dy

+
∑

ijk

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
k
1 ξ

j
2∂xkηij(t, y − x) dν2t,x,y(ξ) dx dy dt

+
∑

ijk

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
j
2ξ

k
2∂ykηij(t, y − x) dν2t,x,y(ξ) dx dy dt

= −ε
∑

ij

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
j
2(∆x +∆y)η

ij(t, y − x) dν2t,x,y(ξ) dx dy dt

+
∑

ijk

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
k
1 ξ

j
2∂xk∂xiψj

η,1(t, y − x) dν2t,x,y(ξ) dx dy dt

+
∑

ijk

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
j
2ξ

k
2∂yk∂yjψi

η,2(t, y − x) dν2t,x,y(ξ) dx dy dt

(4.4)

Since ψη,1 solves ∆xψη,1 = divx η and ψη,2 solves ∆yψη,2 = divy η = − divx η, we have
ψη,1 = (∆x)

−1 divx η and ψη,2 = −(∆y)
−1 divx η = −(∆x)

−1 divx η and so ψη := ψη,1 =
−ψη,2 (up to additive constants). Using this and changing the integration variables to x
and h := y − x, we obtain

∑

ij

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
j
2

∂ηij

∂t
(t, h) dν2t,x,x+h(ξ) dx dh dt

+
∑

ij

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
j
2η

ij(0, h) dν20,x,x+h(ξ) dx dh

−
∑

ijk

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
k
1 ξ

j
2∂hkηij(t, h) dν2t,x,x+h(ξ) dx dh dt

+
∑

ijk

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
j
2ξ

k
2∂hkηij(t, h) dν2t,x,x+h(ξ) dx dh dt

= −2ε
∑

ij

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
j
2∆hη

ij(t, h) dν2t,x,x+h(ξ) dx dh dt

+
∑

ijk

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
k
1 ξ

j
2∂hk∂hiψj

η(t, h) dν
2
t,x,x+h(ξ) dx dh dt

−
∑

ijk

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
j
2ξ

k
2∂hk∂hjψi

η(t, h) dν
2
t,x,x+h(ξ) dx dh dt

(4.5)
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where ψη = ψη,1. The cubic terms can be rewritten using the following simple fact (which
can also be found in Frisch [31, equation (6.13)], and in a similar, weak form in [6]):

− 2
∑

ijk

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
j
2(ξ

k
1 − ξk2 )∂hkηij(t, h) dν2t,x,x+h(ξ) dx dh dt

=
∑

ijk

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

(ξi1 − ξi2)(ξ
j
1 − ξj2)(ξ

k
1 − ξk2 )∂hkηij(t, h) dν2t,x,x+h(ξ) dx dh dt.

(4.6)

The proof of this is postponed to the end of this proof. Using this, we can rewrite (4.5) as

∑

ij

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
j
2

∂ηij

∂t
(t, h) dν2t,x,x+h(ξ) dx dh dt

+
∑

ij

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
j
2η

ij(0, h) dν20,x,x+h(ξ) dx dh

−
1

2

∑

ijk

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

(ξi1 − ξi2)(ξ
j
1 − ξj2)(ξ

k
1 − ξk2 )∂hkηij(t, h) dν2t,x,x+h(ξ) dx dh dt

= −2ε
∑

ij

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
j
2∆hη

ij(t, h) dν2t,x,x+h(ξ) dx dh dt

+
∑

ijk

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
k
1 ξ

j
2∂hk∂hiψj

η(t, h) dν
2
t,x,x+h(ξ) dx dh dt

−
∑

ijk

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
j
2ξ

k
2∂hk∂hjψi

η(t, h) dν
2
t,x,x+h(ξ) dx dh dt.

(4.7)

Since

∑

ij

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
j
1∆hη

ij(t, h) dν2t,x,x+h(ξ) dx dh dt

=
∑

ij

ˆ T

0

ˆ

D

ˆ

U

ξi1ξ
j
1 dν

1
t,x(ξ) dx

ˆ

D

∆hη
ij(t, h) dh dt = 0,

we can rewrite

− 2ε
∑

ij

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
j
2∆hη

ij(t, h) dν2t,x,x+h(ξ) dx dh dt

= ε
∑

ij

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

(ξi1 − ξi2)(ξ
j
1 − ξj2)∆hη

ij(t, h) dν2t,x,x+h(ξ) dx dh dt.

Moreover, we have for symmetric, smooth and compactly supported rank 2 tensors η of the
form

(4.8) η(t, h) = ω1(t, |h|)I+ ω2(t, |h|)ĥ⊗ ĥ,

with ψi
η = −(∆h)

−1 divh η
i,·,

∑

ijk

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
k
1 ξ

j
2∂hk∂hiψj

η(t, h) dν
2
t,x,x+h(ξ) dx dh dt = 0,

∑

ijk

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
j
2ξ

k
2∂hk∂hjψi

η(t, h) dν
2
t,x,x+h(ξ) dx dh dt = 0,

(4.9)
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whose proof is postponed to the end of this proof. Using this, (4.7) becomes

∑

ij

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
j
2

∂ηij

∂t
(t, h) dν2t,x,x+h(ξ) dx dh dt

+
∑

ij

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
j
2η

ij(0, h) dν20,x,x+h(ξ) dx dh

−
1

2

∑

ijk

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

(ξi1 − ξi2)(ξ
j
1 − ξj2)(ξ

k
1 − ξk2 )∂hkηij(t, h) dν2t,x,x+h(ξ) dx dh dt

= ε
∑

ij

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

(ξi1 − ξi2)(ξ
j
1 − ξj2)∆hη

ij(t, h) dν2t,x,x+h(ξ) dx dh dt.

(4.10)

Let θδ be a sequence of smooth, uniformly bounded functions with the property that θδ →
1(0,τ ](t) for every t as δ → 0. If we now use a test function

(4.11) η(t, h) = σ(h)θδ(t),

where σ is of the form (4.3), then we can use the weak continuity in time of the moments
´

Uk ξ1 ⊗ · · · ⊗ ξk dν
k
t,x(ξ) to obtain for any τ > 0, as δ → 0,

−
∑

ij

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
j
2 dν

2
τ,x,x+h(ξ) dxσ

ij(h) dh+
∑

ij

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
j
2 dν

2
0,x,x+h(ξ) dxσ

ij(h) dh

−
1

2

∑

ijk

ˆ τ

0

ˆ

D

ˆ

D

ˆ

U2

(ξi1 − ξi2)(ξ
j
1 − ξj2)(ξ

k
1 − ξk2 ) dν

2
t,x,x+h(ξ) dx∂hkσij(h) dh dt

= ε
∑

ij

ˆ τ

0

ˆ

D

ˆ

D

ˆ

U2

(ξi1 − ξi2)(ξ
j
1 − ξj2) dν

2
t,x,x+h(ξ) dx∆hσ

ij(h) dh dt.

�

Proof of (4.6). We expand the right hand side:

∑

ijk

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

(ξi1 − ξi2)(ξ
j
1 − ξj2)(ξ

k
1 − ξk2 )∂hkηij(t, h) dν2t,x,x+h(ξ) dx dh dt

=
∑

ijk

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

(ξi1ξ
j
1ξ

k
1 − ξi2ξ

j
2ξ

k
2 ) dν

2
t,x,x+h(ξ) dx ∂hkηij(t, h) dh dt

+
∑

ijk

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

(ξi2ξ
j
2ξ

k
1 − ξi1ξ

j
1ξ

k
2 )∂hkηij(t, h) dν2t,x,x+h(ξ) dx dh dt

−
∑

ijk

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

(ξi1ξ
j
2ξ

k
1 − ξi2ξ

j
1ξ

k
2 )∂hkηij(t, h) dν2t,x,x+h(ξ) dx dh dt

−
∑

ijk

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

(ξi2ξ
j
1ξ

k
1 − ξi1ξ

j
2ξ

k
2 )∂hkηij(t, h) dν2t,x,x+h(ξ) dx dh dt.

The first term on the right hand side is zero since η is compactly supported (after changing
the integration variable from x to x− h in one of the terms). The second term on the right
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hand side vanishes using the divergence constraint (3.3). Using that η and ν are symmetric,
the last two terms are identical and so

∑

ijk

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

(ξi1 − ξi2)(ξ
j
1 − ξj2)(ξ

k
1 − ξk2 )∂hkηij(t, h) dν2t,x,x+h(ξ) dx dh dt

= −2
∑

ijk

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

(ξi2ξ
j
1ξ

k
1 − ξi1ξ

j
2ξ

k
2 )∂hkηij(t, h) dν2t,x,x+h(ξ) dx dh dt,

which proves the claim. �

Proof of (4.9). We consider the second expression, assume η is of the form

(4.12) η(t, h) = ω1(t, |h|)I+ ω2(t, |h|)ĥ⊗ ĥ,

where ωi, i = 1, 2 are compactly supported in the torus. Then using that ψi
η = −(∆h)

−1 divh η
i,·

(the first term is treated in a similar way)

E := −
∑

ijk

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
j
2ξ

k
2∂hk∂hjψi

η(t, h) dν
2
t,x,x+h(ξ) dx dh dt

=
∑

ijkℓ

ˆ T

0

ˆ

D

ˆ

D

ˆ

U2

ξi1ξ
j
2ξ

k
2 dν

2
t,x,x+h(ξ) dx ∂hk∂hj∆−1

(
∂hℓηiℓ(t, h)

)
dh dt

=
∑

ijkℓ

ˆ T

0

ˆ

D

∂hk∂hj∆−1

(
ˆ

D

ˆ

U2

ξi1ξ
j
2ξ

k
2 dν

2
t,x,x+h(ξ) dx

)
∂hℓηiℓ(t, h)dh dt.

We note that since ωi have compact support, we can write in polar coordinates

∑

ℓ

∂hℓηiℓ(t, h) =

(
ω′
1(t, |h|) + ω′

2(t, |h|) + 2
ω2(t, |h|)

|h|︸ ︷︷ ︸
=:G(t,|h|)

)
ĥi

and so

E =
∑

ijkℓ

ˆ T

0

ˆ

D

∂hk∂hj∆−1

(
ˆ

D

ˆ

U2

ξi1ξ
j
2ξ

k
2 dν

2
t,x,x+h(ξ)∂hℓηiℓ(t, h) dx

)
dh dt

=
∑

ijk

ˆ T

0

ˆ

D

∂hk∂hj∆−1

(
ˆ

D

ˆ

U2

ξi1ξ
j
2ξ

k
2 dν

2
t,x,x+h(ξ) dx

)
G(t, |h|)ĥi dh dt

=
∑

jk

ˆ T

0

ˆ ∞

0

ˆ

|h|=r

∂hk∂hj∆−1

(
ˆ

D

ˆ

U2

ξi1ξ
j
2ξ

k
2 dν

2
t,x,x+h(ξ) dx

)
ĥidS(h)G(t, r) dr dt

=
∑

ijk

ˆ T

0

ˆ ∞

0

ˆ

|h|6r

∂hi∂hk∂hj∆−1

(
ˆ

D

ˆ

U2

ξi1ξ
j
2ξ

k
2 dν

2
t,x,x+h(ξ) dx

)
dhG(t, r) dr dt

=
∑

jk

ˆ T

0

ˆ ∞

0

ˆ

|h|6r

∂hk∂hj∆−1 divh

(
ˆ

D

ˆ

U2

ξ1ξ
j
2ξ

k
2 dν

2
t,x,x+h(ξ) dx

)
dhG(t, r) dr dt = 0,

where we used the divergence theorem in the second to last identity and the divergence
constraint (3.3) for the last identity. �

4.2. Scaling of third order structure functions. Next, we use the KHM-relation (4.2)
to derive a scaling relation for the averaged third order structure function in terms of the
measure µt,

(4.13) S3
0(τ, r) =

ˆ τ

0

ˆ

L2
div

 

S2

ˆ

D

∣∣u(x)−u(x+rn)
∣∣2(u(x+rn)−u(x)

)
·ndx dS(n) dµt(u) dt,
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which will be more convenient to work with for this purpose. We have:

Lemma 4.2. Let µt be a Foiaş–Prodi statistical solution of the Navier–Stokes equations (cf.
Definition 3.6). Then

(4.14)

∣∣∣∣
S3
0(τ, r)

r

∣∣∣∣ 6 2E0,

where E0 is the initial energy,

(4.15) E0 :=

ˆ

L2
div(D;U)

‖u(x)‖
2
L2(D) dµ0(u).

Proof. We take a test function of the form σ(h) = ω(|h|)I in the KHM-relation (4.2) with

ω having compact support in [0, 0.5). A little bit of algebra yields (denoting ĥk = hk/|h|)

∂hkω(|h|) = ω′(|h|)ĥk,

and so (4.2) for this particular test function reads

ˆ

D

ˆ

D

ˆ

U2

ξ1 · ξ2 dν
2
τ,x,x+h(ξ) dxω(|h|) dh−

ˆ

D

ˆ

D

ˆ

U2

ξ1 · ξ2 dν
2
0,x,x+h(ξ) dxω(|h|) dh

+
1

2

ˆ τ

0

ˆ

D

ˆ

D

ˆ

U2

|ξ1 − ξ2|
2(ξ2 − ξ1) · ĥ dν

2
t,x,x+h(ξ) dxω

′(|h|) dh dt

=− ε

ˆ τ

0

ˆ

D

ˆ

D

ˆ

U2

|ξ1 − ξ2|
2 dν2t,x,x+h(ξ) dx∆hω(|h|) dh dt.

(4.16)

In terms of the statistical solution (µt)t>0 this is

ˆ

L2
div

ˆ

D

ˆ

D

u(x) · u(x+ h) dxω(|h|) dh dµτ (u)−

ˆ

L2
div

ˆ

D

ˆ

D

u(x)u(x+ h) dxω(|h|) dh dµ0(u)

+
1

2

ˆ τ

0

ˆ

L2
div

ˆ

D

ˆ

D

|u(x)− u(x+ h)|2(u(x+ h)− u(x)) · ĥ dxω′(|h|) dh dµt(u) dt

= −ε

ˆ τ

0

ˆ

L2
div

ˆ

D

ˆ

D

|u(x)− u(x+ h)|2 dx∆hω(|h|) dh dµt(u) dt.

(4.17)

The last term can also be written as

ε

ˆ τ

0

ˆ

L2
div

ˆ

D

ˆ

D

|u(x)− u(x+ h)|2 dx∆hω(|h|) dh dµt(u) dt

= 2ε

ˆ τ

0

ˆ

L2
div

ˆ

D

ˆ

D

∇hu(x+ h) · (u(x)− u(x+ h)) dx∇hω(|h|) dh dµt(u) dt

= 2ε

ˆ τ

0

ˆ

L2
div

ˆ

D

ˆ

D

∇xu(x+ h) · (u(x)− u(x+ h)) dx∇hω(|h|) dh dµt(u) dt

= 2ε

ˆ τ

0

ˆ

L2
div

ˆ

D

ˆ

D

∇xu(x) · (u(x− h)− u(x)) dx∇hω(|h|) dh dµt(u) dt

= −2ε

ˆ τ

0

ˆ

L2
div

ˆ

D

ˆ

D

∇xu(x) : ∇hu(x− h) dxω(|h|) dh dµt(u) dt

= 2ε

ˆ τ

0

ˆ

L2
div

ˆ

D

ˆ

D

∇xu(x+ h) : ∇xu(x) dxω(|h|) dh dµt(u) dt

(4.18)
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Changing to spherical coordinates and using the definition of S3
0 , (4.13), we obtain

1

2

ˆ ∞

0

S3
0(τ, r)r

2ω′(r)dr

= −2ε

ˆ ∞

0

ˆ τ

0

ˆ

L2
div

 

S2

ˆ

D

∇xu(x) : ∇xu(x+ rn) dxdS(n) dµt(u) dtr
2ω(r)dr

−

ˆ ∞

0

ˆ

L2
div

 

S2

ˆ

D

u(x) · u(x+ rn) dxdS(n) dµτ (u)r
2ω(r)dr

+

ˆ ∞

0

ˆ

L2
div

 

S2

ˆ

D

u(x) · u(x+ rn) dxdS(n) dµ0(u)r
2ω(r)dr.

We denote

m2(τ, r) :=

ˆ

L2
div

 

S2

ˆ

D

u(x) · u(x+ rn) dxdS(n) dµτ (u)

v(τ, r) :=

ˆ τ

0

ˆ

L2
div

 

S2

ˆ

D

∇xu(x) : ∇xu(x+ rn) dxdS(n) dµt(u) dt.

Since (µt)t>0 is supported on functions in L∞([0,∞);L2
div(D;U)) ∩ L2([0,∞);H1

div(D;U)),
S3
0 is a continuous function. Moreover, notice that due to the a priori bounds following

from the energy inequality (3.14), both m2 and v are uniformly bounded and continuous in
r and τ (for the continuity in τ of the first quantity, one needs weak time continuity of the
moments which follows the fact that they satisfy the equations (4.2) where all the terms are
integrable). We obtain

1

2

ˆ ∞

0

S3
0(τ, r)r

2ω′(r)dr = −2ε

ˆ ∞

0

v(τ, r)r2ω(r)dr

−

ˆ ∞

0

m2(τ, r)r
2ω(r)dr +

ˆ ∞

0

m2(0, r)r
2ω(r)dr,

which is an ODE in the sense of distributions for S3
0(τ, ·), and because the right hand side

is uniformly bounded and continuous, we can consider it in the strong sense (note that
boundary terms when integrating the S3

0 term by parts vanish):

1

r2
∂r(r

2S3
0(r)) = 4εv(τ, r) + 2m2(τ, r)− 2m2(0, r),

or
S3
0(r)

r
=

2

r3

ˆ r

0

s2
(
2εv(τ, s) +m2(τ, s)−m2(0, s)

)
ds.

The energy inequality (3.14) and the Cauchy–Schwarz inequality imply that 2εv(τ, s) and
m2(τ, s) are both bounded by E0 (defined in (4.15)), uniformly in τ, s. Hence,

(4.19)

∣∣∣∣
S3
0(r)

r

∣∣∣∣ 6
2

r

ˆ r

0

(s
r

)2 (
2ε|v(τ, s)|+ |m2(τ, s)|+ |m2(0, s)|

)
ds 6 2E0.

(See also [6, Proposition 1.9] for a related result.) �

Using this lemma, we can derive a scaling relation for the averaged longitudinal structure
function S3

‖ , where

(4.20) Sp
‖(τ, r) =

ˆ τ

0

ˆ

L2
div

 

S2

ˆ

D

(
(u(x+ rn)− u(x)) · n

)p
dxdS(n) dµt(u) dt.

Lemma 4.3. Let µt be a Foiaş–Prodi statistical solution of the Navier–Stokes equations (cf.
Definition 3.6). Then

(4.21)

∣∣∣∣∣
S3
‖(τ, r)

r

∣∣∣∣∣ 6 2E0,
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where C > 0 is some constant independent of ε and E0 is the initial energy,

(4.22) E0 :=

ˆ

L2
div(D;U)

‖u(x)‖
2
L2(D) dµ0(u)

Proof. Again, we start with the KHM relation (4.2). This time we use the test function

σ(h) = ω(|h|)ĥ⊗ ĥ where ω ∈ C∞
c (R) is an even function. We have

∂hk(ω(|h|)ĥiĥj) = ω′(|h|)ĥiĥj ĥk +
1

|h|

(
δikĥ

j + δjkĥ
i − 2ĥiĥj ĥk

)
ω(|h|)

=

(
ω′(|h|)− 2

ω(|h|)

|h|

)
ĥiĥj ĥk +

1

|h|

(
δikĥ

j + δjkĥ
i
)
ω(|h|)

Therefore, (4.2) becomes

−

ˆ

D

ˆ

D

ˆ

U2

ξ1 · ĥ ξ2 · ĥ dν
2
τ,x,x+h(ξ) dxω(|h|) dh

+

ˆ

D

ˆ

D

ˆ

U2

ξ1 · ĥ ξ2 · ĥ dν
2
0,x,x+h(ξ) dxω(|h|) dh

−
1

2

ˆ τ

0

ˆ

D

ˆ

D

ˆ

U2

(
(ξ2 − ξ1) · ĥ

)3
dν2t,x,x+h(ξ) dx

(
ω′(|h|)− 2|h|−1ω(|h|)

)
dh dt

+

ˆ τ

0

ˆ

D

ˆ

D

ˆ

U2

|ξ1 − ξ2|
2(ξ1 − ξ2) · ĥ dν

2
t,x,x+h(ξ) dx|h|

−1ω(|h|) dh dt

= ε
∑

ij

ˆ τ

0

ˆ

D

ˆ

D

ˆ

U2

(ξi1 − ξi2)(ξ
j
1 − ξj2) dν

2
t,x,x+h(ξ) dx∆hσ

ij(h) dh dt.

(4.23)

Again, in terms of (µt)t>0, this means

−

ˆ

L2
div

ˆ

D

ˆ

D

u(x) · ĥ u(x+ h) · ĥ dxω(|h|) dh dµτ (u)

+

ˆ

L2
div

ˆ

D

ˆ

D

u(x) · ĥ u(x+ h) · ĥ dxω(|h|) dh dµ0(u)

−
1

2

ˆ τ

0

ˆ

D

ˆ

L2
div

ˆ

D

(
(u(x+ h)− u(x)) · ĥ

)3
dx dµt(u)

(
ω′(|h|)− 2|h|−1ω(|h|)

)
dh dt

+

ˆ τ

0

ˆ

D

ˆ

L2
div

ˆ

D

|u(x)− u(x+ h)|2
(
u(x)− u(x+ h)

)
· ĥ dx dµt(u)|h|

−1ω(|h|) dh dt

= ε
∑

ij

ˆ τ

0

ˆ

D

ˆ

L2
div

ˆ

D

(
ui(x)− ui(x+ h)

)(
uj(x)− uj(x+ h)

)
dx dµt(u)∆hσ

ij(h) dh dt.

(4.24)

Similar to the computation in (4.18), we have

ε
∑

ij

ˆ τ

0

ˆ

D

ˆ

L2
div

ˆ

D

(
ui(x)− ui(x+ h)

)(
uj(x)− uj(x+ h)

)
dx dµt(u)∆hσ

ij(h) dh dt

= 2ε
∑

ij

ˆ τ

0

ˆ

D

ˆ

L2
div

ˆ

D

∇xu
i(x+ h)∇xu

j(x) dx dµt(u)σ
ij(h) dh dt

= 2ε

ˆ τ

0

ˆ

D

ˆ

L2
div

ˆ

D

(
∇xu(x+ h) · ĥ

)
·
(
∇xu(x) · ĥ

)
dx dµt(u)ω(|h|) dh dt,
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so equation (4.24) becomes (after switching to polar coordinates)

−

ˆ ∞

0

ˆ

L2
div

 

S2

ˆ

D

u(x) · nu(x+ rn) · n dx dS(n) dµτ (u)r
2ω(r) dr

+

ˆ ∞

0

ˆ

L2
div

 

S2

ˆ

D

u(x) · nu(x+ rn) · ndx dS(n) dµ0(u)r
2ω(r) dr

−
1

2

ˆ ∞

0

ˆ τ

0

ˆ

L2
div

 

S2

ˆ

D

((
u(x+ rn)− u(x)

)
· n
)3
dx dS(n) dµt(u) dt

(
r2ω′(r)− 2rω(r)

)
dr

+

ˆ ∞

0

ˆ τ

0

ˆ

L2
div

 

S2

ˆ

D

|u(x)− u(x+ rn)|2
(
u(x)− u(x+ rn)

)
· ndx dS(n) dµt(u) dtrω(r) dr

= 2ε

ˆ ∞

0

ˆ τ

0

ˆ

L2
div

 

S2

ˆ

D

(
∇xu(x+ rn) · n

)
·
(
∇xu(x) · n

)
dx dS(n) dµt(u) dtr

2ω(r) dr

(4.25)

Denote

m̃2(τ, r) :=

ˆ

L2
div

 

S2

ˆ

D

u(x) · nu(x+ rn) · n dx dS(n) dµτ (u)

ṽ(τ, r) :=

ˆ τ

0

ˆ

L2
div

 

S2

ˆ

D

(
∇xu(x+ rn) · n

)
·
(
∇xu(x) · n

)
dx dS(n) dµt(u) dt.

Writing ω′(r)− 2r−1ω(r) = r2 d
dr

(
ω(r)r−2

)
, (4.25) becomes

1

2

ˆ ∞

0

r4S3
‖(τ, r)∂r

(
r−2ω(r)

)
dr +

ˆ ∞

0

S3
0(τ, r)rω(r) dr

= −

ˆ ∞

0

m̃2(τ, r)r
2ω(r) dr +

ˆ ∞

0

m̃2(0, r)r
2ω(r) dr − 2ε

ˆ ∞

0

ṽ(τ, r)r2ω(r) dr.

Again, we note that due to the estimates from the energy inequality (3.14), S3
‖ , m̃ and ṽ

are continuous and bounded quantities in τ and r. And so we can consider this ODE in the
sense of distributions as an ODE in the strong sense,

∂r
(
r4S3

‖(τ, r)
)
= 2r4

(
S3
0(τ, r)

r
+ m̃2(τ, r)− m̃2(0, r) + 2εṽ(τ, r)

)
,

or

(4.26) S3
‖(τ, r) = 2

ˆ r

0

s4

r4

(
S3
0(τ, s)

s
+ m̃2(τ, s)− m̃2(0, s) + 2εṽ(τ, s)

)
ds.

By the energy bound and Cauchy–Schwarz inequality, m̃2 and εṽ are uniformly bounded in
ε for all s, τ > 0. Moreover from Lemma 4.2, we have that s−1S3

0(s, τ) is uniformly bounded
in ε by 2E0. Hence,

(4.27)

∣∣∣∣∣
S3
‖(τ, r)

r

∣∣∣∣∣ 6 2E0

for some C > 0 independent of ε. �

Remark 4.4. Combining (4.19) and (4.27), we also obtain a uniform bound on r−1S3
⊥(τ, r),

where S3
⊥ is the transversal structure function

(4.28)

S3
⊥(τ, r) :=

ˆ τ

0

ˆ

L2
div

 

S2

ˆ

D

|δ⊥rnu(x)|
2δrnu(x) · ndx dS(n) dµt(u) dt = S3

0(τ, r)− S3
‖(τ, r),

where

(4.29) δhu(x) = u(x+ h)− u(x), δ⊥h u = (I− ĥ⊗ ĥ)δhu, ĥ :=
h

|h|
.
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None of these quantities has a sign and therefore the previously derived bounds do not imply
compactness without further assumptions.

4.3. Scaling assumption. In order to pass to the limit ε → 0, we need to an additional
assumption about the behavior of structure functions. Specifically, we need

Assumption 1 (Weak statistical scaling). For any ε > 0, let µε be a Foiaş–Prodi statistical
solution of the incompressible Navier–Stokes equations. We assume that for r ≪ 1, the
second and third order longitudinal structure functions (4.20) are related by

(4.30)
∣∣∣S2

‖(τ, r)
∣∣∣ 6 C

∣∣∣S3
‖(τ, r)

∣∣∣
α

,

where C is a constant independent of ε and α > 0.

Remark 4.5 (Weak statistical scaling). Assumption 1 is inspired by the following stronger
scaling assumption often encountered in turbulence theory: For any p, q with q > p > 1, the
p-th and q-th order longitudinal structure functions (4.20) are related by

(4.31)
∣∣∣Sp

‖(τ, r)
∣∣∣ 6 C

∣∣∣Sq
‖(τ, r)

∣∣∣
λ(p)
λ(q)

,

where C is a constant independent of ε and λ(p) > 0 for p 6 p0 where 3 6 p0 ∈ R ∪ {∞}.
In Kolmogorov’s 1941 (“K41”) theory [41, 40, 42], λ(p) = p. However, this cannot be
confirmed with physical experiments [4, 53]. Various physicists therefore suggested inter-
mittency corrections to account for the deviation from Kolmogorov’s original theory, among
others, Kolmogorov himself in 1962 [43] in his refined theory of turbulence, Frisch et al. the
β-model [32], as well as Novikov and Stewart [50]. Assumption (4.31) can also accommodate
the frequently used model by She and Leveque [54] who suggested

(4.32) λ(p) =
p

9
+ 2

(
1−

(
2

3

)p/3
)
.

Remark 4.6. Combining the bound on the third order structure function in Lemma 4.3
with Assumption 1, we obtain ∣∣∣S2

‖(τ, r)
∣∣∣ 6 Crα.

We will combine Assumption 1 with the following lemma, whose proof is given in Appen-
dix C:

Lemma 4.7 (Weak anisotropy). Let µt be a statistical solution of the Navier–Stokes equa-
tion. Then µ satisfies

3

ˆ T

0

ˆ

D

ˆ

L2
div(D;U)

 

∂Br(0)

(δrnu · n)2dS(n) dx dµt(u) dt

=

ˆ T

0

ˆ

D

ˆ

L2
div(D;U)

 

Br(0)

|δℓu(x)|
2dℓ dx dµt(u) dt.

(4.33)

Under Assumption 1, we obtain

(4.34)

ˆ T

0

ˆ

D

ˆ

L2
div(D;U)

 

Br(0)

|δℓu(x)|
2dℓ dx dµt(u) dt 6 Crα.

Using the equivalence theorem 2.2, we can write this as

(4.35)

ˆ T

0

ˆ

D

 

Br(0)

ˆ

U2

|ξ1 − ξ2|
2 dν2x,x+y(ξ) dy dx dt 6 Crα.

and since this is uniform with respect to the viscosity coefficient ε (by the weak scaling
assumption), it implies uniform diagonal continuity of the sequence {ν}ε>0.
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4.4. Passage to the limit ε→ 0. Now we are in a position to prove our main result. We
will keep track of the superscript ε again in order to distinguish between the approximating
sequence {νε}ε>0 and the limiting measure ν for ε = 0.

Theorem 4.8. Let {νε}ε>0 be a sequence of (either Foiaş–Temam or Friedman–Keller)
statistical solutions to the Navier–Stokes equations with initial data µ0 with bounded support
(cf. (3.1)). Assume that νε all satisfy Assumption 1. Then, as ε → 0, νε converges (along
a subsequence) to a correlation measure ν on L2 with bounded support (cf. (3.17))

(4.36)

ˆ

Dk

ˆ

Uk

|ξ1|
2 . . . |ξk|

2 dνkt,x(ξ) dx 6 Rk <∞,

for some 0 < R <∞, any k ∈ N and that satisfies the “inviscid Friedman–Keller system”:

(4.37)
ˆ T

0

ˆ

Dk

ˆ

Uk

(ξ1⊗· · ·⊗ξk) :
∂ϕ

∂t
(t, x) dνkt,x(ξ) dx dt+

ˆ

Dk

ˆ

Uk

(ξ1⊗· · ·⊗ξk) : ϕ(0, x) dν
k
0,x(ξ) dx

+

k∑

i=1

ˆ T

0

ˆ

Dk

ˆ

Uk

(ξ1 ⊗ · · · ⊗ (ξi ⊗ ξi)⊗ · · · ξk) : ∇xi
ϕ(t, x) dνkt,x(ξ) dx dt = 0

for all k ∈ N, for all ϕ ∈ C2
c ([0, T ] × Dk;Uk) with divxi

ϕ(x) = 0, a.e. x ∈ Dk for all
i = 1, . . . , k and (corresponding to the divergence constraint)

(4.38)

ˆ

Dk

ˆ

Uk

ξ1 ⊗ · · · ⊗ ξℓ ⊗ αℓ+1(ξℓ+1)⊗ · · · ⊗ αk(ξk) dν
k
t,x(ξ) · ∇x1,...,xℓ

ψ(x) dx = 0,

where ∇x1,...,xℓ
= (∇x1 , . . . ,∇xℓ

)⊤, 1 6 ℓ 6 k ∈ N, for all ψ ∈ H1(Dk;Uk−ℓ), αj ∈ C(U ;U),
αj(v) 6 C(1 + |v|2) and j = 1, . . . , k.

Proof. From the condition on the initially bounded support (3.1) and the energy inequal-
ity (3.4), we obtain that the sequence ν

ε satisfies (2.9) for p = 2 uniformly in ε > 0. The
reasoning of Subsection 4.1, 4.2 and 4.3 resulting in (4.35) imply that ν

ε is uniformly di-
agonal continuous as in (2.10). Hence, using Theorem 2.3, we obtain, up to subsequence,
the existence of a limiting correlation measure ν ∈ L

2([0, T ), D;U). So it remains to check
whether ν satisfies the equations (4.37) and (4.38). We note that the functions

g1(t, x, ξ) := (ξ1 ⊗ · · · ⊗ ξk) :
∂ϕ

∂t
(t, x),

g2(t, x, ξ) :=

k∑

i=1

(ξ1 ⊗ · · · ⊗ ξk) : ∆xi
ϕ(t, x),

g3(t, x, ξ) :=
k∑

i=1

(ξ1 ⊗ · · · ⊗ (ξi ⊗ ξi)⊗ · · · ξk) : ∇xi
ϕ(t, x)

(4.39)

for ϕ ∈ C2
c ([0, T ] ×Dk;Uk), 1 6 ℓ 6 k ∈ N, are all functions in H

k,p
1 ([0, T ], D;U). Hence,

we can pass to the limit in all the terms in the Friedman–Keller system (3.2). The term
that is multiplied by ε vanishes because it is a uniformly bounded in ε > 0 quantity that is
multiplied by ε. For the divergence constraint (4.38), we note that the function

g4(t, x, ξ) := θ(t)ξ1 ⊗ · · · ⊗ ξℓ ⊗ αℓ+1(ξℓ+1)⊗ · · · ⊗ αk(ξk) · ∇x1,...,xℓ
ψ(x),

lies in H
k,p
1 ([0, T ], D;U) for any θ ∈ C∞

c ((0, T )), and ψ ∈ H1(Dk;Uk−ℓ), and αj ∈ C(U ;U)
with |αj(v)| 6 C(1 + |v|2). Passing ε → 0 in 〈νε,k, g4〉 and using that νε,k satisfy the
divergence constraint (3.3), we can conclude, by the arbitrariness of θ, that (4.38) holds for
a.e. t ∈ [0, T ]. �
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Remark 4.9. By the equivalence theorem 2.2, we know that the limiting correlation mea-
sure ν corresponds to a parametrized measure µ = (µt)t>0 : [0, T ) → P(L2

div(D;U)) that
satisfies
(4.40)
ˆ

L2(D)

Φ(u) dµt(u) =

ˆ

L2(D)

Φ(u) dµ0(u)+

ˆ t

0

ˆ

L2(D)

ˆ

D

(u(x)⊗u(x)) : ∇xΦ
′(u)(x) dx dµs(u) ds

for all cylindrical test functions Φ ∈ T 0
cyl that satisfy gj ∈ C2(D), and the energy inequality

(4.41)

ˆ

L2(D)

‖u‖2L2(D) dµt(u) 6

ˆ

L2(D)

‖u‖2L2(D) dµ0(u), for all t ∈ [0, T ].

The proof of this fact follows along the lines of the proof of Theorem 3.9 while ignoring the
terms involving ε and not attempting to recover B(u) as it may be unbounded.

5. Discussion

It is well-known that many incompressible fluid flows of interest are characterized by very-
high Reynolds number. Hence, a precise characterization of the vanishing viscosity (ε→ 0)
limit of the Navier-Stokes equations (1.1) is of great interest. Formally, one would expect
that the vanishing viscosity limit of Navier-Stokes equations is related to the incompressible
Euler equations. However as mentioned in the introduction, rigorous results in this direction
are only available in two space dimensions, even in the case of periodic boundary conditions.
The key aim of this article was to investigate the vanishing viscosity limit of the Navier-
Stokes equations, including in three space dimensions.

It is well known that fluid flows at high Reynolds numbers are characterized by turbulence,
loosely speaking, marked by the presence of energy containing eddies at smaller and smaller
scales. This phenomenon is clearly linked to the lack of compactness in the Leray-Hopf
Navier-Stokes solutions as well as their possible instabilities/non-uniqueness.

Hence, one needs to make further assumptions on the Leray-Hopf solutions that can yield
additional information and facilitate passage to the limit. One avenue for making such
assumptions, which are realistic and possibly observed in experiments, comes from physi-
cal theories of turbulence. In particular, Kolmogorov’s well-known K41 theory is based on
several verifiable assumptions on the underlying fluid flow and results in a precise charac-
terization of quantities such as structure functions and energy spectra.

In [12], Chen and Glimm relate the K41 energy spectra to compactness results on the
Leray-Hopf solutions, in appropriate Sobolev and Hölder spaces. Consequently, under the
assumption of the K41 energy spectrum, the authors prove that the underlying Leray-
Hopf solutions converge to weak solutions of the incompressible Euler equations as ε → 0.
However, Kolmogorov’s derivation of the decay of energy spectra is based on a probabilistic
charectization of the underlying fluid flow. In particular, assumptions such as (statistical)
homogeneity, isotropy and scaling, which form the foundation of Kolmogorov’s theory, are
too stringent if imposed at the deterministic level, as done in [12]. Moreover, it is now well-
established that the strong scaling assumptions of Kolmogorov might not hold in real fluid
flows and intermittent corrections are necessary. Hence, the applicability of the assumptions
and results of [12] can be questioned from this perspective.

Nevertheless, the connection with Kolmogorov’s theories of turbulence and their variants
forms the basis of our work. We start with the realization that a probabilistic description of
the solutions of Navier-Stokes equations is necessary to relate physical theories of turbulence
to rigorous mathematical statements. To this end, we focus on statistical solutions of Navier-
Stokes equations. Two possible frameworks of such statistical solutions are available, namely
the Foiaş-Prodi statistical solutions (see Definition 3.6) and the Friedman-Keller statistical
solutions (see Definition 3.1), which is based on the concept of correlation measures of [23].
We prove that both these solution concepts are equivalent as long as a statistical version of
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the energy inequality holds. This also allows us to prove the existence of Friedmann-Keller
statistical solutions of the incompressible Navier-Stokes equations.

Then, we investigated the vanishing viscosity limit of the statistical solutions of the
incompressible Navier-Stokes equations. To this end, we derived a suitable statistical version
of the well-known Kármán-Howarth-Monin relation and used it to prove precise rates for the
asymptotic decay of a averaged third-order structure function in Lemma 4.2. However, these
estimates do not suffice to pass to the ε→ 0 limit. To this end, we assumed a weak statistical
scaling of the Navier-Stokes statistical solutions (see Assumption 1). This assumption is
a weaker version of Kolmogorov’s scaling assumptions in his K41 theory. Moreover, it
is consistent with and incorporates different variants of scaling that are proposed in the
physics literature to explain intermittent corrections to Kolmogorov’s theory. Under this
assumption, we proved a weak anisotropy result and invoked compactness results of [24] to
rigorously prove that the statistical solutions of the Navier-Stokes equations converge, in a
suitable sense, to a statistical solution of the incompressible Euler equations. Thus, we were
able to characterize the vanishing viscosity limit of the Navier-Stokes equations in a relevant
regime.

At this juncture, it is essential to point that that no assumption, other than weak sta-
tistical scaling, is made in our results and all other estimates are derived rigorously. This
should be contrasted with the results of [12] where the authors directly assume a decay of
the energy spectrum for the weak solutions of the Navier-Stokes equations. It is currently
unclear if one can relax the weak statistical scaling assumption or even if it holds for all
incompressible fluid flows. Experimental evidence strongly supports that this assumption is
verified in practice, see e.g., [4, 54, 53].

To the best of our knowledge, the only rigorous study of the vanishing viscosity limit of
the (Foiaş-Prodi) statistical solutions was carried out by Chae in [11] where he proved that
these statistical solutions converge to a measure-valued solution of the incompressible Euler
equations. In contrast, we prove convergence to statistical solutions of the incompressible
Euler equations and recall that statistical solutions are much more informative than measure-
valued solutions as they also incorporate knowledge of all multi-point correlations.

Finally, our characterization of the vanishing viscosity limit can be viewed in connection
to recent results in [45] where the authors proved convergence of numerical spectral viscosity
approximations to the statistical solutions of the Euler equations under very similar weak
scaling assumptions.

Appendix A. Equivalence of different definitions of statistical solutions
for the incompressible Navier–Stokes equations

This appendix is devoted to the proof of Theorems 3.8 and 3.9. For convenience, we
restate the result:

Theorem A.1 (Foiaş–Prodi statistical solutions are Friedman–Keller solutions). Let µ be
a Foiaş–Prodi statistical solution such that the initial condition µ0 has bounded support,
supp(µ0) ⊂ B ⊂ L2

div(D;U), B = {u ∈ L2(D;U) : ‖u‖L2(D) 6 R} for some 0 < R ∈ R

large enough. Then µ is a Friedmann–Keller statistical solution (cf. Definition 3.1).

Proof. It is shown in [26, Theorem 2, Section 3] that Foiaş–Prodi statistical solutions
with initial measure µ0 having bounded support in BL2

div(D;U)(R) := {u ∈ L2
div(D;U) :

‖u‖L2(D) 6 R} have bounded support for all times, i.e., supp(µt) ⊂ BL2
div(D;U)(R). There-

fore, we can assume that µt has uniformly bounded support. This implies in particular that
µt have bounded moments:

(A.1)

ˆ

L2
div(D;U)

‖u‖2kL2(D) dµt(u) 6 R2k for a.e. t ∈ [0, T ].
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Moreover, by [26, Lemma 5, Section 3], we have that statistical solutions of Navier–Stokes
satisfy

(A.2)

ˆ T

0

ˆ

L2
div(D;U)

[−∂tΦ(t, u) + a(u, ∂uΦ(t, u)) + b(u, u, ∂uΦ(t, u))] dµt(u) dt

=

ˆ

L2
div(D;U)

Φ(0, u) dµ0(u)

for any test function Φ(t, u) that is Fréchet differentiable on [0, T ]×L2
div(D;U) with Φ(t, ·) =

0 near t = T and |∂uΦ(t, u)| 6 C and |∂tΦ(t, u)| 6 C1+C2‖u‖L2(D) for all u and t and some
constants C,C1, C2 (equation (3.13I) and condition (3.8) in [26]). Therefore, we can choose
test functions

Φ(u) = q((u, ϕ1), . . . , (u, ϕk))θ(t)

for q a polynomial on R
k and ϕj ∈ H1

div(D;U) ∩ C2
c (D,U) and θ ∈ C1

c ([0, T )), j = 1, . . . , k
in (A.2), so that we get

ˆ T

0

ˆ

L2
div(D;U)

−θ′(t)q((u, ϕ1), . . . , (u, ϕk))dµt(u)dt

+

ˆ T

0

ˆ

L2
div(D;U)

[
θ(t)

k∑

i=1

∂iq((u, ϕ1), . . . , (u, ϕk)) [a(u, ϕi) + b(u, u, ϕi)]
]
dµt(u) dt

=

ˆ

L2
div(D;U)

θ(0)q((u, ϕ1), . . . , (u, ϕk)) dµ0(u),

Note that we can integrate by parts in the terms involving a(u, ϕi) and b(u, u, ϕi), i =
1, . . . , k, so that all the derivatives are on the test functions ϕi, i = 1, . . . , k and θ:

0 =

ˆ T

0

ˆ

L2
div(D;U)

θ′(t)q((u, ϕ1), . . . , (u, ϕk)) dµt(u) dt+

ˆ

L2
div(D;U)

θ(0)q((u, ϕ1), . . . , (u, ϕk)) dµ0(u)

+

k∑

i=1

ˆ T

0

ˆ

L2
div(D;U)

θ(t)∂iq((u, ϕ1), . . . , (u, ϕk))

×

ˆ

D

[εu(xi)∆xi
ϕi(xi) + (u(xi)⊗ u(xi)) : ∇xi

ϕi(xi)] dxi dµt(u) dt

Now take q(s1, . . . , sk) = s1 · · · sk, so that the last identity becomes (denote dx = dx1 . . . dxk)

0 =

ˆ T

0

ˆ

L2
div(D;U)

ˆ

Dk

θ′(t)u(x1) · ϕ1(x1) · · ·u(xk) · ϕk(xk) dx dµt(u) dt

+

k∑

i=1

ˆ T

0

ˆ

L2
div(D;U)

ˆ

Dk

θ(t)
(
u(x1)·ϕ1(x1) · · · εu(xi)·∆xi

ϕi(xi) · · ·u(xk)·ϕk(xk)
)
dx dµt(u) dt

+

k∑

i=1

ˆ T

0

ˆ

L2
div(D;U)

ˆ

Dk

θ(t)
(
u(x1)·ϕ1(x1) · · · (u(xi)⊗u(xi)) : ∇xi

ϕi(xi) · · ·u(xk)·ϕk(xk)
)
dx dµt(u) dt

+

ˆ

L2
div(D;U)

ˆ

Dk

θ(0)u(x1) · ϕ1(x1) · · ·u(xk) · ϕk(xk) dx dµ0(u),
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which is, denoting x = (x1, . . . , xk) and ϕ(t, x) := θ(t)ϕ1(x1)⊗ · · · ⊗ ϕk(xk), equivalent to

0 =

ˆ T

0

ˆ

L2
div(D;U)

ˆ

Dk

(u(x1)⊗ · · · ⊗ u(xk)) : ∂tϕ(t, x) dx dµt(u) dt

+ ε

k∑

i=1

ˆ T

0

ˆ

L2
div(D;U)

ˆ

Dk

(u(x1)⊗ · · · ⊗ u(xk)) : ∆xi
ϕ(t, x) dx dµt(u) dt

+

k∑

i=1

ˆ T

0

ˆ

L2
div(D;U)

ˆ

Dk

(u(x1)⊗ · · · ⊗ (u(xi)⊗ u(xi))⊗ · · · ⊗ u(xk)) : ∇xi
ϕ(t, x) dx dµt(u) dt

+

ˆ

L2
div(D;U)

ˆ

Dk

(u(x1)⊗ · · · ⊗ u(xk)) : ϕ(0, x) dx dµ0(u),

Since we assume that the support of µ0 is bounded (and therefore also the support of
µt for almost all t ∈ [0, T ]), we can use a density argument to conclude that the above
identity holds for all ϕ ∈ L2([0, T ]; (H1

div(D;U))k) ∩ C2
c ([0, T ] × Dk;Uk), that is, all ϕ ∈

C2
c ([0, T ]×Dk;Uk) with divxi

ϕ = 0 for all i = 1, . . . , k. Observe next that all the terms in
the above identity have the form required to apply Theorem 2.2 (recall that µt has bounded
support). Therefore, by the same theorem, there exists a unique correlation measure ν =
(νt)06t6T =

(
(ν1t , ν

2
t , . . . )

)
06t6T

corresponding to {µt} satisfying

0 =

ˆ T

0

ˆ

Dk

ˆ

Uk

(ξ1 ⊗ · · · ⊗ ξk) : ∂tϕ(t, x) dν
k
t,x(ξ) dx dt

+ ε

k∑

i=1

ˆ T

0

ˆ

Dk

ˆ

Uk

(ξ1 ⊗ · · · ⊗ ξk) : ∆xi
ϕ(t, x) dνkt,x(ξ) dx dt

+

k∑

i=1

ˆ T

0

ˆ

Dk

ˆ

Uk

(ξ1 ⊗ · · · ⊗ (ξi ⊗ ξi)⊗ · · · ⊗ ξk) : ∇xi
ϕ(t, x) dνkt,x(ξ) dx dt

+

ˆ

Dk

ˆ

Uk

(ξ1 ⊗ · · · ⊗ ξk) : ϕ(0, x) dν
k
0,x(ξ) dx,

which is (3.2). By previous arguments, each measure µt has bounded support (and in
particular bounded moments), so we can take any nonnegative, nondecreasing polynomial
ψ(s) = pK(s), of degree K, for K ∈ N in the strengthened energy inequality (3.14), so that
we get

(A.3)

ˆ

L2(D)

pK(‖u‖2L2(D)) dµt(u) + 2ε

ˆ t

0

ˆ

L2(D)

p′K(‖u‖2L2(D))|u|
2
H1(D) dµs(u) ds

6

ˆ

L2(D)

pK(‖u‖2L2(D)) dµ0(u) for a.e. t ∈ [0, T ].

Thanks to the bounded support of µt, all the moment terms have the form required to apply
Theorem 2.2, moreover, with Lemma B.3, we can rewrite the gradient term such that we
obtain for a.e. t ∈ [0, T ], the energy inequality (3.4). Indeed, we have with Theorem 2.2

ˆ

L2(D)

pK(‖u‖2L2(D)) dµt(u) =

K∑

k=0

ak

ˆ

L2(D)

‖u‖2kL2(D) dµt(u)

=

K∑

k=0

ak

ˆ

L2(D)

ˆ

Dk

|u(x1)|
2 . . . |u(xk)|

2dx dµt(u)

=

K∑

k=0

ak

ˆ

Dk

ˆ

Uk

|ξ1|
2 . . . |ξk|

2dνkt,x(ξ)dx.
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Similarly, with Lemma B.3, (via Lemma B.1)
ˆ t

0

ˆ

L2(D)

p′K
(
‖u‖2L2(D)

)
|u|2H1(D) dµs(u) ds

=

K∑

k=0

akk

ˆ t

0

ˆ

L2(D)

‖u‖
2(k−1)
L2(D) |u|

2
H1(D) dµs(u) ds

=

K∑

k=0

akk

ˆ t

0

ˆ

L2(D)

ˆ

Dk

|u(x1)|
2 . . . |u(xk−1)|

2|∇u(xk)|
2dx dµs(u) ds

=

K∑

k=0

ak

k∑

i=1

ˆ t

0

ˆ

L2(D)

ˆ

Dk

|u(x1)|
2 . . . |∇u(xi)|

2 . . . |u(xk)|
2dx dµs(u) ds

=
K∑

k=0

ak

k∑

i=1

d∑

j=1

lim
h→0

1

h2

ˆ t

0

ˆ

Dk

ˆ

Uk+1

|ξ1|
2 . . . |ξi − ξk+1|

2 . . . |ξk|2dνk+1
t,(x,xi+hej)

(ξ, ξk+1)dx ds

and a similar computation for the term involving µ0 yields (3.4). The bounded support of
µ0 implies, using the equivalence theorem [23, Theorem 2.7],

ˆ

Dk

ˆ

Uk

|ξ1|
2 . . . |ξk|

2 dνk0,x(ξ) dx <∞

for any k ∈ N and thus the boundedness of all terms in (3.4). It remains to show that each νk

satisfies (3.3). We let ϕ ∈ C1
c (D

k;Uk), 1 6 ℓ 6 k, αj ∈ C(U ;U), with αj(v) 6 C(1 + |v|2),
j = ℓ, . . . , k and compute using the equivalence theorem 2.2,

ˆ

Dk

ˆ

Uk

ξ1 ⊗ · · · ⊗ ξℓ ⊗ αℓ+1(ξℓ+1)⊗ · · · ⊗ αk(ξk) dν
k
t,x(ξ) · ∇x1,...,xℓ

ϕ(x) dx

=

ˆ

L2(D)

ˆ

Dk

u(x1)⊗ · · · ⊗ u(xℓ)⊗ αℓ+1(u(xℓ+1))⊗ · · · ⊗ αk(u(xk))

· ∇x1,...,xℓ
ϕ(x) dx dµt(u)

= 0,

since µt is supported on divergence free functions. This concludes the proof. �

Let us show the reverse direction now, that is, that any correlation measure that solves
the Friedman–Keller system and satisfies in addition an energy inequality, is a statistical
solution of the Navier–Stokes equations in the sense of Foiaş–Prodi.

Theorem A.2 (Friedman–Keller solutions are Foiaş–Prodi solutions). Let ν = (νt)06t6T

be a Friedman–Keller statistical solution of Navier–Stokes (cf. Definition 3.1) with bounded
support, i.e.,

(A.4)

ˆ

Dk

ˆ

Uk

|ξ1|
2 . . . |ξk|

2 dνkt,x(ξ) dx 6 Rk <∞,

for some 0 < R < ∞, every k ∈ N, and almost every t ∈ [0, T ]. Then ν corresponds to a
probability measure µ = (µt)06t6T on a bounded set of L2

div(D;U) which is a Foiaş–Prodi
statistical solution of the Navier–Stokes equations (cf. Definition 3.6).

Proof. From the equivalence theorem 2.2, we obtain that (νt)06t≤T corresponds to a family
of measures (µt)06t6T ⊂ P(L2(D;U)) with bounded support, that is supp(µt) ⊂ {u ∈
L2(D;U) : ‖u‖L2(D;U) 6 R} for almost every t ∈ [0, T ]. Property (a) of Definition 3.6 – the

fact that (3.12) is measurable for all ϕ ∈ Cb(L
2) – follows from a monotone class argument,

which we include here. By property (i) of Theorem 2.2, the function

t 7→

ˆ

L2(D;U)

Lf (u) dµt(u) =

ˆ

L2(D;U)

ˆ

D

f(x, u(x)) dx dµt(u)
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is measurable for every f ∈ L1(Dk, C0(U
k)). Let M be the collection of sets

M =

{
E ∈ B(L2(D;U)) such that t 7→

ˆ

L2(D;U)

✶E(u) dµt(u) is measurable

}
.

By the monotone convergence theorem, M is a monotone class, that is, it is closed under
(countable) unions of increasing sequences of sets and intersections of decreasing sequences
of sets. By the same argument as in the proof of [23, Proposition 2.12], M contains the
collection of cylinder sets Cyl(L2) = {all cylinder sets on L2(D;U)}, that is, all sets of the
form E =

{
u ∈ L2 : (〈ϕ1, u〉, . . . , 〈ϕn, u〉) ∈ F

}
for some n ∈ N, a Borel set F ⊂ R

n

and ϕ1, . . . , ϕn ∈ L2(D;U). Since Cyl(L2) is an algebra which generates B(L2) (cf. e.g. [23,
Appendix]), it follows from the monotone class lemma that M = σ(Cyl(L2)) = B(L2).
Approximating an arbitrary ϕ ∈ Cb(L

2(D;U)) by simple functions now gives the desired
conclusion.

We claim that µt is supported on L2
div(D;U). This follows from Lemma B.5: Since µ has

bounded support on L2(D) we may take ϕ(ξ) = |ξ|2 in that lemma, which is continuous and
bounded on any compact subset of R and satisfies ϕ(0) = 0. Then by the lemma, for any
g ∈ H1(D),

ˆ

L2(D)

∣∣∣∣
ˆ

D

u · ∇g dx

∣∣∣∣
2

dµt(u) = 0.

Hence, by Chebychev’s inequality,

µt

({
u ∈ L2(D) :

ˆ

D

u · ∇g dx 6= 0

})
= 0.

Since g ∈ H1(D;U) was arbitrary and H1(D;U) is separable, this implies that µt is sup-
ported on L2-functions that are weakly divergence free, which is exactly the space L2

div(D;U)
(see e.g. [56, Section 1, Chapter 1]).

Next we claim that µ satisfies condition (c) in Definition 3.6. As ν is assumed to
satisfy (3.4), we can apply [23, Theorem 2.7] combined with Lemma B.4 to each of the
terms and obtain that µt satisfies (A.3) for any nonnegative and nondecreasing polynomial

pK(s) =
∑K

k=0 aks
k on [0, R]. This implies in particular that µt is supported on H1(D;U),

for a.e. t ∈ [0, T ), and (3.16). Now any differentiable nondecreasing function ψ on a bounded
interval can be approximated by nondecreasing polynomials [55], from which (3.14) follows
after passing to the limit in a suitable polynomial approximation. Specifically, for a given ψ,
let {pKn

}n∈N be a sequence of nonnegative, nondecreasing polynomials (Kn → ∞) satisfying

‖pKn
− ψ‖C1([0,R]) 6

1

n
.

Then, for t > 0, by the compact support property of µ on B,
∣∣∣∣∣

ˆ

L2(D)

ψ(‖u‖
2
L2(D))dµt(u)−

ˆ

L2(D)

pKn
(‖u‖

2
L2(D))dµt(u)

∣∣∣∣∣ 6 ‖pKn
− ψ‖C1([0,R]) 6

1

n
,

and∣∣∣∣∣

ˆ t

0

ˆ

L2(D)

ψ′(‖u‖
2
L2(D))|u|

2
H1(D)dµt(u)ds−

ˆ t

0

ˆ

L2(D)

p′Kn
(‖u‖

2
L2(D))|u|

2
H1(D)dµt(u)ds

∣∣∣∣∣

6

ˆ t

0

ˆ

L2(D)

∣∣∣ψ′(‖u‖
2
L2(D))− p′Kn

(‖u‖
2
L2(D))

∣∣∣ |u|2H1(D)dµt(u)ds

6 ‖pKn
− ψ‖C1([0,R])

ˆ t

0

ˆ

L2(D)

|u|2H1(D)dµt(u)ds

6
C

n
,
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where the last inequality follows from (3.16).
It remains to show that the correlation measures satisfy the evolution equation (3.13)

for all Φ ∈ T 0
cyl. From this also part (d) of the definition will follow (see Remark 3.7).

Let Φ(u) = ϕ((u, g1), . . . , (u, gk)) be an arbitrary function in T 0
cyl with gj ∈ H1(D;U)

and let R̃ = max16j6k(‖gj‖L2). Since ϕ is continuously differentiable and bounded on

B := [−RR̃− 1, RR̃+ 1]k, we can approximate it arbitrarily well by polynomials thanks to
the Weierstrass approximation theorem. Let

pn(ζ) :=

Nn∑

|j|=0

βjζ
j1
1 . . . ζjkk , ji > 0, j = (j1, . . . , jk), |j| := j1 + · · ·+ jk,

for some Nn ∈ N large enough, be approximations of ϕ that satisfy

‖ϕ− pn‖C1(B) 6
1

n
, n ∈ N.

Let θ ∈ C1
c ((0, T )) be an arbitrary compactly supported test function. Since by the equiva-

lence theorem, for any j = (j1, . . . , jk), ji > 0, |j| = j1 + · · ·+ jk,
ˆ T

0

θ′(t)

ˆ

D|j|

(
ˆ

U |j|
ξ1 ⊗ · · · ⊗ ξ|j| dν

|j|

t,x(ξ)

)

:
(
g1(x1)⊗ · · · ⊗ g1(xj1)⊗ · · · ⊗ gk(x|j|−jk+1)⊗ · · · ⊗ gk(x|j|)

)
dx dt

=

ˆ T

0

θ′(t)

ˆ

L2(D)

(u, g1)
j1 . . . (u, gk)

jk dµt(u) dt,

and if j̃ = j1 + · · ·+ ji−1, then

j̃+ji∑

ℓ=j̃+1

ˆ T

0

θ(t)

ˆ

D|j|

(
ˆ

U |j|
ξ1 ⊗ · · · ⊗ ξ|j| dν

|j|

t,x(ξ)

)

:
(
g1(x1)⊗ · · · ⊗ gi(xj̃+1)⊗ · · · ⊗∆xℓ

gi(xℓ)⊗ · · · ⊗ gi(xj̃+ji
)⊗ · · · ⊗ gk(x|j|)

)
dx dt

= ji

ˆ T

0

θ(t)

ˆ

L2(D;U)

(u, g1)
j1 · · · (u, gi)

ji−1(u,∆gi) · · · (u, gk)
jk dµt(u) dt

= ji

ˆ T

0

θ(t)

ˆ

L2(D;U)

(u, g1)
j1 · · · (u, gi)

ji−1(Au, gi) · · · (u, gk)
jk dµt(u) dt,

where the last equality follows because gi is divergence free because µt is supported on
H1(D;U)-functions by the energy inequality (3.14). Furthermore, we have

j̃+ji∑

ℓ=j̃+1

ˆ T

0

θ(t)

ˆ

D|j|

(
ˆ

U |j|
ξ1 ⊗ · · · ⊗ ξj̃+1 ⊗ · · · ⊗ (ξℓ ⊗ ξℓ)⊗ · · · ⊗ ξj̃+ji

⊗ · · · ⊗ ξ|j| dν
|j|

t,x(ξ)

)

:
(
g1(x1)⊗ · · · ⊗ ∇xℓ

gi(xℓ)⊗ · · · ⊗ gk(x|j|)
)
dx dt

= ji

ˆ T

0

θ(t)

ˆ

L2(D)

(u, g1)
j1 · · · (u, gi)

ji−1(u⊗ u,∇gi) · · · (u, gk)
jk dµt(u) dt

= − ji

ˆ T

0

θ(t)

ˆ

L2(D)

(u, g1)
j1 · · · (u, gi)

ji−1(B(u), gi) · · · (u, gk)
jk dµt(u) dt,

again, the last equality following because gi is divergence free and µt is supported on
H1(D;U)-functions for almost every t ∈ [0, T ]. We obtain, by combining the terms to
the Friedman–Keller system, that if

Φn(u) := pn
(
(u, g1), . . . , (u, gk)

)
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then µ satisfies the equation

(A.5)

ˆ T

0

ˆ

L2(D)

θ′(s)Φn(u) dµs(u) ds+

ˆ T

0

θ(s)

ˆ

L2(D)

(F (s, u), ∂uΦn(u)) dµs(u) ds = 0

for every test function θ ∈ C1
c ((0, T )). Next, note that

∣∣∣∣∣

ˆ

L2(D)

Φn(u) dµt(u)−

ˆ

L2(D)

Φ(u) dµt(u)

∣∣∣∣∣ =
∣∣∣∣∣

ˆ

L2(D)

(Φn(u)− Φ(u)) dµt(u)

∣∣∣∣∣

6

ˆ

L2(D)

∣∣pn
(
(u, g1), . . . , (u, gk)

)
− ϕ

(
(u, g1), . . . , (u, gk)

)∣∣ dµt(u)

6

ˆ

L2(D)

sup
ζ∈B

|pn(ζ)− ϕ(ζ)| dµt(u)

= ‖ϕ− pn‖C0(B) 6
1

n
,

(A.6)

because µt has support on {u ∈ L2(D) : ‖u‖L2(D) 6 R}. Moreover,

∣∣∣∣∣

ˆ T

0

θ(s)

ˆ

L2(D)

(
∂uΦn(u), F (s, u)

)
dµs(u) ds−

ˆ T

0

θ(s)

ˆ

L2(D)

(
∂uΦ(u), F (s, u)

)
dµs(u) ds

∣∣∣∣∣

6 ‖θ‖L∞

ˆ T

0

ˆ

L2(D)

∣∣(∂u(Φ(u)− Φn(u)), F (s, u)
)∣∣ dµs(u) ds

6 ‖θ‖L∞

k∑

j=1

ˆ T

0

ˆ

L2(D)

∣∣∂jϕ
(
(u, g1), . . . , (u, gk)

)
− ∂jpn

(
(u, g1), . . . , (u, gk)

)∣∣∣∣(gj , F (s, u))
∣∣ dµs(u) ds

6 ‖θ‖L∞

k∑

j=1

sup
B

|∂j(ϕ− pn)|

ˆ T

0

ˆ

L2(D)

∣∣(gj , F (s, u))
∣∣ dµs(u) ds

6 ‖θ‖L∞ ‖ϕ− pn‖C1(B)

k∑

j=1

ˆ T

0

ˆ

L2(D)

∣∣(gj , F (s, u))
∣∣ dµs(u) ds

6
1

2n
‖θ‖L∞

k∑

j=1

(
‖gj‖

2
H1(D) +

ˆ T

0

ˆ

L2(D)

‖∇u‖
2
L2(D) dµs(u) ds

)

(A.7)

where we used Young’s inequality for the last inequality. Thanks to (A.6) and (A.7), we can
pass to the limit n→ ∞ in (A.5) and obtain

(A.8)

ˆ T

0

θ′(s)

ˆ

L2(D)

Φ(u) dµs(u) ds+

ˆ T

0

θ(s)

ˆ

L2(D)

(F (s, u), ∂uΦ(u)) dµs(u) ds = 0

for every θ ∈ C1
c ((0, T )). It follows that the distributional derivative of ϕ(s) :=

´

L2(D)
Φ(u) dµs(u)

is

d

ds
ϕ(s) =

ˆ

L2(D)

(F (s, u), ∂uΦ(s, u)) dµs(u),

and since the right-hand side lies in L1((0, T )) we see that ϕ is absolutely continuous.
Consequently, we can (through a standard approximation procedure) insert θ = ✶(0,t) in
(A.8) and conclude that (3.13) is true.

�
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Appendix B. Auxiliary lemmata

Lemma B.1 (Representation of the gradient). Let (µt)06t6T be a measure on L2(D) sat-
isfying

(B.1)

ˆ T

0

ˆ

L2(D)

‖∇u‖
2
L2(D) dµt(u) dt 6 C <∞.

Define for h ∈ R the finite difference gradient ∇h by

∇hf(x) =
(
Dh

1 f(x), . . . , D
h
df(x)

)
, Dh

j f(x) =
f(x+ hej)− f(x)

h
,

where ej ∈ R
d is the jth unit vector. Then we have for any V ⊂⊂ D (or in the case that D

is the torus also for V = D)

(B.2)

ˆ T

0

ˆ

L2(D)

‖∇u‖
2
L2(V ) dµt(u) dt = lim

h→0

ˆ T

0

ˆ

L2(D)

‖∇hu‖
2
L2(V ) dµt(u) dt.

Proof. Consider a compact V ⊂⊂ D and a smooth u ∈ C∞(D). Then, since we can write

(B.3) Dh
j u(x) =

ˆ 1

0

∂xju(x+ thej) dt,

and hence

(B.4) |∇hu(x)| 6

d∑

j=1

ˆ 1

0

|∂xju(x+ thej)| dt 6
d∑

j=1

‖∂xju‖L∞(V ) 6 C ‖∇u‖L∞(V ) ,

for all x ∈ V and
´

V
C ‖∇u‖L∞(V ) dx <∞, we can use the dominated convergence theorem

to obtain that
ˆ

V

|∇u|2 dx = lim
h→0

ˆ

V

|∇hu|
2 dx.

Moreover, by [19, Theorem 3, Section 5.8.2], we have for any u ∈ H1(D),

(B.5) ‖∇hu‖L2(V ) 6 CV ‖∇u‖L2(D) ,

for some constants 0 6 cV , CV <∞ and any V ⊂⊂ D. Since C∞(D) is dense in H1(D), we
can find a sequence of functions (un)n∈N ⊂ C∞(D) such that

lim
n→∞

‖un − u‖H1(V ) = 0,

for any V ⊂ D bounded. So fix V ⊂⊂ D and an arbitrary ε > 0 and pick Nε ∈ N large
enough such that for all n > Nε,

‖u− un‖H1(V ) 6
1

2

1

1 + CV
ε,

where CV is the constant in (B.5). Then for n > Nε

‖∇u−∇hu‖L2(V ) 6 ‖∇(u− un)‖L2(V ) + ‖∇un −∇hu
n‖L2(V ) + ‖∇h(u

n − u)‖L2(V )

6 ‖∇(u− un)‖L2(V ) + ‖∇un −∇hu
n‖L2(V ) + CV ‖∇(un − u)‖L2(V )

6
ε

2
+ ‖∇un −∇hu

n‖L2(V ) .

Now pick h0 with |h0| small enough that

‖∇un −∇hu
n‖L2(V ) 6

ε

2

for all h with |h| 6 |h0|. Then

‖∇u−∇hu‖L2(V ) 6 ε
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for all h with |h| 6 |h0|. Since ε > 0 was arbitrary, we obtain

(B.6) lim
h→0

ˆ

V

|∇hu|
2 dx =

ˆ

V

|∇u|2 dx.

Combining (B.5) with (B.1), we can apply the dominated convergence theorem and use
(B.6) to pass to the limit:

ˆ T

0

ˆ

L2(D)

‖∇u‖
2
L2(V ) dµt(u) dt =

ˆ T

0

ˆ

L2(D)

lim
h→0

‖∇hu‖
2
L2(V ) dµt(u) dt

= lim
h→0

ˆ T

0

ˆ

L2(D)

‖∇hu‖
2
L2(V ) dµt(u) dt.

�

Corollary B.2. Let (µt)06t6T be a measure on Lq(D). If µt satisfies

ˆ T

0

ˆ

Lq(D)

‖∇u‖
q
Lq(D) dµt(u) dt 6 C <∞,

then for any V ⊂⊂ D (or if D is the torus also for V = D)

ˆ T

0

ˆ

Lq(D)

‖∇u‖
q
Lq(V ) dµt(u) dt = lim

h→0

ˆ T

0

ˆ

Lq(D)

‖∇hu‖
q
Lq(V ) dµt(u) dt.

Lemma B.3 (More representation of gradients). Let (µt)06t6T be a measure on Lq(D),
where D is the d-dimensional torus satisfying

(B.7)

ˆ T

0

ˆ

Lq(D)

‖∇u‖
q
Lq(D) dµt(u) dt 6 C <∞.

Then we can represent the integral of the gradient in terms of correlation measures as
(B.8)

ˆ T

0

ˆ

Lq(D)

‖∇u‖
q
Lq(D) dµt(u) dt = lim

h→0

1

hq

ˆ T

0

ˆ

D

d∑

j=1

ˆ

U2

|ξ1 − ξ2|
q dν2x,x+hej

(ξ) dx dt.

Proof. From Lemma B.1, we know that we can represent the left hand side of (B.8) as the
limit as h goes to zero of

1

hq

ˆ T

0

ˆ

Lq(D)

ˆ

D

|u(x+ h)− u(x)|q dx dµt(u) dt.

Note that for arbitrary nonnegative functions ϕ ∈ L1(D) with ϕε(x) := ε−dϕ(x/ε), we
have that

ˆ

D

ˆ

D

|f(x)− f(x− y)|qϕε(y) dy dx
ε→0
−→ 0,

for any f ∈ Lq(D), since shifts are continuous in Lp for Lp-functions. In particular, choosing
ϕ(x) = 1

|B1(0)|
✶B1(0)(x) this yields

(B.9)

ˆ

D

−

ˆ

Bε(x)

|f(x)− f(y)|q dy dx
ε→0
−→ 0,

and
ˆ

D

−

ˆ

Bε(x+hej)

|f(x)− f(y)|q dy dx
ε→0
−→

ˆ

D

|f(x)− f(x+ hej)|
q dx,
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for any fixed h > 0 and ej is the jth unit vector. We have for any ε > 0,

∣∣∣∣∣
1

h

(
ˆ T

0

ˆ

Lq(D)

ˆ

D

|u(x)− u(x+ hej)|
q dx dµt(u) dt

)1/q

(B.10)

−
1

h

(
ˆ T

0

ˆ

Lq(D)

ˆ

D

−

ˆ

Bε(x+hej)

|u(x)− u(y)|q dy dx dµt(u) dt

)1/q∣∣∣∣∣(B.11)

6

(
1

hq

ˆ T

0

ˆ

Lq(D)

ˆ

D

−

ˆ

Bε(x+hej)

|u(x+ hej)− u(y)|q dy dx dµt(u) dt

)1/q

(B.12)

=

(
1

hq

ˆ T

0

ˆ

Lq(D)

ˆ

D

−

ˆ

Bε(x)

|u(x)− u(y)|q dy dx dµt(u) dt

)1/q

ε→0
−→ 0,(B.13)

by (B.9) and Lebesgue dominated convergence theorem. Hence

(B.14)
1

hq

ˆ T

0

ˆ

Lq(D)

ˆ

D

|u(x)− u(x+ hej)|
q dx dµt(u) dt

=
1

hq
lim
ε→0

ˆ T

0

ˆ

Lq(D)

ˆ

D

−

ˆ

Bε(x+hej)

|u(x)− u(y)|q dy dx dµt(u) dt.

Now we can apply [23, Theorem 2.7] to rewrite the last expression in terms of the unique
correlation measure νt to which µt corresponds:

1

hq
lim
ε→0

ˆ T

0

ˆ

Lq(D)

ˆ

D

−

ˆ

Bε(x+hej)

|u(x)− u(y)|q dy dx dµt(u) dt

=
1

hq
lim
ε→0

ˆ T

0

ˆ

D

−

ˆ

Bε(x+hej)

ˆ

U2

|ξ1 − ξ2|
q dν2x,y(ξ) dy dx dt

Because of the equivalence theorem [23, Theorem 2.7] and assumption (B.7) combined with
Corollary B.2, we have

lim
ε→0

1

hq

ˆ T

0

ˆ

D

−

ˆ

Bε(x+hej)

ˆ

U2

|ξ1 − ξ2|
q dν2x,y(ξ) dy dx dt <∞,

uniformly in 0 < h < h0 for a small enough h0. Since
ˆ

D

−

ˆ

Bε(x+hej)

ˆ

U2

|ξ1 − ξ2|
q dν2x,y(ξ) dy dx

6 C

ˆ

D

−

ˆ

Bε(x+hej)

ˆ

U2

(|ξ1|
q + |ξ2|

q) dν2x,y(ξ) dy dx

consistency
= 2C

ˆ

D

ˆ

U

|ξ1|
q dν1x(ξ1) dx 6 C <∞ for almost every t,

we can apply the dominated convergence theorem and pass the limit in ε inside:

(B.15) lim
ε→0

1

hq

ˆ T

0

ˆ

D

−

ˆ

Bε(x+hej)

ˆ

U2

|ξ1 − ξ2|
q dν2x,y(ξ) dy dx dt

=
1

hq

ˆ T

0

lim
ε→0

ˆ

D

−

ˆ

Bε(x+hej)

ˆ

U2

|ξ1 − ξ2|
q dν2x,y(ξ) dy dx dt
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Now fix ε > 0, a ‘good’ t ∈ [0, T ], and note that for almost every x ∈ D,

∣∣∣∣∣∣

(
ˆ

D

−

ˆ

Bε(x+hej)

ˆ

U2

|ξ1 − ξ2|
q dν2x,y(ξ) dy dx

)1/q

−

(
ˆ

D

ˆ

U2

|ξ1 − ξ2|
q dν2x,x+hej

(ξ) dx

)1/q
∣∣∣∣∣∣

consistency
=

∣∣∣∣∣

(
ˆ

D

−

ˆ

Bε(x+hej)

ˆ

U3

|ξ1 − ξ2|
q dν3x,y,x+hej

(ξ) dy dx

)1/q

−

(
ˆ

D

−

ˆ

Bε(x+hej)

ˆ

U3

|ξ1 − ξ3|
q dν3x,y,x+hej

(ξ) dy dx

)1/q∣∣∣∣∣

∆-ineq.

6

(
ˆ

D

−

ˆ

Bε(x+hej)

ˆ

U3

|ξ3 − ξ2|
q dν3x,y,x+hej

(ξ) dy dx

)1/q

consistency
=

(
ˆ

D

−

ˆ

Bε(x+hej)

ˆ

U2

|ξ2 − ξ1|
q dν2y,x+hej

(ξ) dy dx

)1/q

The last term goes to zero by the diagonal continuity property of ν (c.f. [23, Definition 2.5]).
Hence, for almost every t ∈ [0, T ],

(B.16) lim
ε→0

ˆ

D

−

ˆ

Bε(x+hej)

ˆ

U2

|ξ1 − ξ2|
q dν2x,y(ξ) dy dx =

ˆ

D

ˆ

U2

|ξ1 − ξ2|
q dν2x,x+hej

(ξ) dx.

Thus, combining (B.16) and (B.15),

ˆ T

0

ˆ

Lq(D)

ˆ

D

|u(x)− u(x+ hej)|
q

hq
dx dµt(u) dt

= lim
ε→0

1

hq

ˆ T

0

ˆ

Lq(D)

ˆ

D

−

ˆ

Bε(x+hej)

|u(x)− u(y)|q dy dx dµt(u) dt

= lim
ε→0

1

hq

ˆ T

0

ˆ

D

−

ˆ

Bε(x+hej)

ˆ

U2

|ξ1 − ξ2|
q dν2x,y(ξ) dy dx dt

=
1

hq

ˆ T

0

ˆ

D

ˆ

U2

|ξ1 − ξ2|
q dν2x,x+hej

(ξ) dx dt.

Since this last identity holds for any h > 0, and the limit is bounded by assumption (B.7),
we can pass to the limit h→ 0 and obtain, using Lemma B.1,

ˆ T

0

ˆ

Lq(D)

ˆ

D

|∂ju|
q dx dµt(u) dt = lim

h→0

ˆ T

0

ˆ

Lq(D)

ˆ

D

|u(x)− u(x+ hej)|
q

hq
dx dµt(u) dt

= lim
h→0

1

hq

ˆ T

0

ˆ

D

ˆ

U2

|ξ1 − ξ2|
q dν2x,x+hej

(ξ) dx dt.

Summing over j = 1, . . . , d, we obtain the claim. �

Lemma B.4 (Reverse direction of Lemma B.3). Let ν = (νt)06t6T = ((ν1t , ν
2
t . . . ))06t6T

be a correlation measure as in [23, Definition 2.5] that satisfies

(B.17) lim
h→0

1

hq

ˆ T

0

ˆ

D

d∑

j=1

ˆ

U2

|ξ1 − ξ2|
q dν2x,x+hej

(ξ) dx dt 6 C <∞.
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Let D be the d-dimensional torus. Then ν corresponds to a family of probability measures
µ = (µt)06t6T on Lq(D) that satisfy
(B.18)
ˆ T

0

ˆ

Lq(D)

‖∇u‖
q
Lq(D) dµt(u) dt = lim

h→0

1

hq

ˆ T

0

ˆ

D

d∑

j=1

ˆ

U2

|ξ1 − ξ2|
q dν2x,x+hej

(ξ) dx dt 6 ∞.

Proof. The proof follows from the proof of Lemma B.3 by going in the reverse direction and
checking that all the steps are equivalences. �

Lemma B.5. Let Φ : H1(D) → R be a function of the form

Φ(u) = ϕ ((u,∇g1), . . . , (u,∇gk)) ,

where ϕ : Rk → R is bounded and continuous with ϕ(0) = 0 and gi ∈ H1(D). Then
ˆ

L2(D)

Φ(u) dµt(u) = 0,

for any µ supported on a bounded set of L2(D) corresponding to a family of correlation
measures ν = (ν1, ν2, . . . ) satisfying (3.3), i.e.,

ˆ

Dk

ˆ

Uk

ξ1 ⊗ · · · ⊗ ξℓ ⊗ αℓ+1(ξℓ+1)⊗ · · · ⊗ αk(ξk) dν
k
t,x(ξ) · ∇x1,...,xℓ

ϕ(x) dx = 0,

where ∇x1,...,xℓ
= (∇x1

, . . . ,∇xℓ
)⊤, 1 6 ℓ 6 k ∈ N, for all ϕ ∈ H1(Dk;Uk−ℓ), αj ∈ C(U ;U),

with αj(v) 6 C(1 + |v|2) for all j = 1, . . . , k.

Proof. Since ϕ is bounded and continuous, we can approximate it on every compact subset
B ⊂ R

k by polynomials pn such that

‖ϕ− pn‖C(B) 6
1

n
,

n ∈ N. Since ϕ(0) = 0, we may assume that pn(0) = 0 and hence the constant term of the
polynomial is zero. It is therefore of the form

pn(ζ) =

Nn∑

|j|=1

βjζ
j1
1 . . . ζjkk ,

where Nn ∈ N large enough, ζ = (ζ1, . . . , ζk), j = (j1, . . . , jk), ji > 0, and |j| = j1 + · · ·+ jk.
Hence
ˆ

L2(D)

pn((u,∇g1), . . . , (u,∇gk)) dµt(u) =

Nn∑

|j|=1

βj

ˆ

L2(D)

(u,∇g1)
j1 · · · (u,∇gk)

jk dµt(u).

Consider one of the terms in the sum:
ˆ

L2(D)

(u,∇g1)
j1 · · · (u,∇gk)

jk dµt(u)

=

ˆ

L2(D)

ˆ

D

u(x1) · ∇x1
g1(x1) dx1 · · ·

ˆ

D

u(xj1) · ∇xj1
g1(xj1) dxj1

·

ˆ

D

u(xj1+1) · ∇xj1+1
g2(xj1+1) dxj1+1 · · ·

ˆ

D

u(x|j|) · ∇x|j|
gk(x|j|)dx|j| dµt(u)

=

ˆ

D|j|

ˆ

(RN )|j|
ξ1 ⊗ · · · ⊗ ξ|j| dν

|j|
x (ξ)∇x1

g1(x1) . . .∇x|j|
gk(x|j|) dx = 0,

where the last equality follows from (3.3). Hence
ˆ

L2(D)

pn((u,∇g1), . . . , (u,∇gk)) dµt(u) = 0.
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By the approximation property of the pn, after passing n → ∞, we obtain the result for
arbitrary continuous ϕ. �

Appendix C. An identity by T. Drivas for second order structure functions

We prove the following lemma discovered by Theo Drivas (Lemma 4.7):

Lemma C.1 (Weak anisotropy). Let µt be a statistical solution of the Navier–Stokes equa-
tion. Then µ satisfies

3

ˆ T

0

ˆ

D

ˆ

L2
div(D;U)

 

∂Br(0)

(δrnu · n)2dS(n) dx dµt(u) dt

=

ˆ T

0

ˆ

D

ˆ

L2
div(D;U)

 

Br(0)

|δℓu(x)|
2dℓ dx dµt(u) dt.

(C.1)

Proof. We let ω ∈ C∞
c (Rd), ω > 0, compactly supported in B1(0) and ωη(y) := η−dω(y/η)

for η > 0 its rescaled version. For some fixed ℓ ∈ R
3 and x ∈ D, we let ϕ(t, y) = ℓωη(x− y).

We use this as a test function in (3.5) for k = 1. Using the Einstein summation convention
we then have

ˆ T

0

ˆ

L2
div(D;U)

ˆ

D

u(y) · ℓωη(x− y)θ′(t) dy dµt(u) dt

−

ˆ T

0

ˆ

L2
div(D;U)

ˆ

D

ui(y)uj(y)ℓj∂yiωη(x− y)θ(t) dy dµt(u) dt

+ ε

ˆ T

0

ˆ

L2
div(D;U)

ˆ

D

ui(y)ℓi∆yωη(x− y)θ(t) dy dµt(u) dt

+

ˆ T

0

ˆ

L2
div(D;U)

ˆ

D

ui(y)uj(y)∂yi∂yjψω(x− y)θ(t) dy dµt(u) dt = 0.

(C.2)

where the last term comes from the fact that the test function is not divergence free, c.f.
Remark 3.4. We define uη(x) :=

´

D
u(y)ωη(x− y) dy and rewrite the above in terms of uη,

ˆ T

0

ˆ

L2
div(D;U)

uη(x) · ℓθ
′(t) dµt(u) dt+

ˆ T

0

ˆ

L2
div(D;U)

uiη(x)∂xiujη(x)ℓ
j dµt(u)θ(t) dt

+ ε

ˆ T

0

ˆ

L2
div(D;U)

∆xu
i
η(x)ℓ

iθ(t) dµt(u) dt

=−

ˆ T

0

ˆ

L2
div(D;U)

ˆ

D

ui(y)uj(y)∂yi∂yjψω(x− y)θ(t) dy dµt(u) dt

+

ˆ T

0

ˆ

L2
div(D;U)

[uiη(x)∂xiujη(x)− ∂xi((uiuj)η(x))]ℓ
j dµt(u)θ(t) dt.

(C.3)
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We subtract this identity from the same identity at x + ℓ (and use the notation δℓu =
u(x+ ℓ)− u(x)):

ˆ T

0

ˆ

L2
div(D;U)

δℓuη(x) · ℓθ
′(t) dµt(u) dt

+

ˆ T

0

ˆ

L2
div(D;U)

[uiη(x+ ℓ)∂xiujη(x+ ℓ)− uiη(x)∂xiujη(x)]ℓ
j dµt(u)θ(t) dt

+ ε

ˆ T

0

ˆ

L2
div(D;U)

∆xδℓu
i
η(x)ℓ

iθ(t) dµt(u) dt

=−

ˆ T

0

ˆ

L2
div(D;U)

ˆ

D

ui(y)uj(y)∂yi∂yjψω(x+ ℓ− y)θ(t) dy dµt(u) dt

+

ˆ T

0

ˆ

L2
div(D;U)

ˆ

D

ui(y)uj(y)∂yi∂yjψω(x− y)θ(t) dy dµt(u) dt

+

ˆ T

0

ˆ

L2
div(D;U)

[uiη(x+ ℓ)∂xiujη(x+ ℓ)− ∂xi((uiuj)η(x+ ℓ))]ℓj dµt(u)θ(t) dt

−

ˆ T

0

ˆ

L2
div(D;U)

[uiη(x)∂xiujη(x)− ∂xi((uiuj)η(x))]ℓ
j dµt(u)θ(t) dt.

(C.4)

Denote the above terms as E1, E2, . . . , E7, which are all functions of x. We now inte-
grate (C.4) over x ∈ D and consider each term separately. As we will see, all of the terms
in (C.4) vanish. We obtain

(C.5)

ˆ

D

E1 dx =

ˆ T

0

ˆ

L2
div(D;U)

ˆ

D

δℓuη(x) · ℓ dxθ
′(t) dµt(u) dt = 0,

after changing the integration from x to x+ ℓ in one of the integrals. Next,

(C.6)

ˆ

D

E3 dx = ε

ˆ T

0

ˆ

L2
div(D;U)

ˆ

D

∆xu
i
η(x)ℓ

i dxθ(t) dµt(u) dt = 0,

again because of periodic boundary conditions. We also get

ˆ

D

E4 dx =

ˆ T

0

ˆ

L2
div(D;U)

¨

D2

ui(y)uj(y)∂yi∂yjψω(x+ ℓ− y)θ(t) dy dx dµt(u) dt

=

ˆ T

0

ˆ

L2
div(D;U)

¨

D2

ui(y)uj(y)∂xi∂xjψω(x+ ℓ− y)θ(t) dy dx dµt(u) dt

=

ˆ T

0

ˆ

L2
div(D;U)

ˆ

D

ui(y)uj(y)

ˆ

D

∂xi∂xjψω(x+ ℓ− y) dxθ(t) dy dµt(u) dt = 0,

(C.7)

and similarly,
´

D
E5 dx = 0. We also have

ˆ

D

E6 dx =

ˆ T

0

ˆ

L2
div(D;U)

ˆ

D

[uiη(x+ ℓ)∂xiujη(x+ ℓ)− ∂xi(uiuj)η(x+ ℓ)]ℓj dx dµt(u)θ(t) dt

=

ˆ T

0

ˆ

L2
div(D;U)

ˆ

D

∂xi

[(
uiη(x+ ℓ)ujη(x+ ℓ)

)
− (uiuj)η(x+ ℓ)

]
ℓj dx dµt(u)θ(t) dt

= 0

(C.8)

from the fact that u is divergence free and the identity
´

D
∂xiv dx = 0 for every v ∈ C1(D),

which follows from the periodic boundary conditions. In the same manner we obtain
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´

D
E7 dx = 0. Since E2 is the only remaining term in (C.4), we obtain also

(C.9)

ˆ

D

E2 dx = 0.

We next rewrite E2 as

E2 =

ˆ T

0

ˆ

L2
div(D;U)

[
uiη(x+ ℓ)∂xiujη(x+ ℓ)− uiη(x)∂xiujη(x)

]
ℓj dµt(u)θ(t) dt

=

ˆ T

0

ˆ

L2
div(D;U)

[
uiη(x)∂xiδℓu

j
η(x) + δℓu

i
η(x)∂xiujη(x+ ℓ)

]
ℓj dµt(u)θ(t) dt

=

ˆ T

0

ˆ

L2
div(D;U)

[
uiη(x)∂xiδℓu

j
η(x) + δℓu

i
η(x)∂ℓiu

j
η(x+ ℓ)

]
ℓj dµt(u)θ(t) dt

=

ˆ T

0

ˆ

L2
div(D;U)

[
uiη(x)∂xiδℓu

j
η(x) + δℓu

i
η(x)∂ℓiδℓu

j
η(x)

]
ℓj dµt(u)θ(t) dt

=

ˆ T

0

ˆ

L2
div(D;U)

[
uiη(x)∂xiδℓu

j
η(x)ℓ

j + δℓu
i
η(x)∂ℓi

(
δℓu

j
η(x)ℓ

j
)
− δℓu

i
η(x)δℓu

j
η(x)∂ℓiℓ

j
]
dµt(u)θ(t) dt

=

ˆ T

0

ˆ

L2
div(D;U)

[
uiη(x)∂xiδℓu

j
η(x)ℓ

j + δℓu
i
η(x)∂ℓi

(
δℓu

j
η(x)ℓ

j
)
−
∣∣δℓuη(x)

∣∣2] dµt(u)θ(t) dt

= E2,1 + E2,2 + E2,3.

(C.10)

Integrating these terms, we have
ˆ

D

E2,1 dx =

ˆ T

0

ˆ

L2
div(D;U)

ˆ

D

uiη(x)∂xiδℓu
j
η(x)ℓ

j dx dµt(u)θ(t) dt

=

ˆ T

0

ˆ

L2
div(D;U)

ˆ

D

∂xi

(
uiη(x)δℓu

j
η(x)ℓ

j
)
dx dµt(u)θ(t) dt = 0,

(C.11)

where the first equation follows because µ is supported on divergence free functions. Again
using the divergence free property we can write

(C.12)

ˆ

D

E2,2 dx =

ˆ T

0

ˆ

D

ˆ

L2
div(D;U)

∂ℓi
(
δℓu

i
η(x)δℓu

j
η(x)ℓ

j
)
dµt(u)θ(t) dx dt.

Now we integrate in ℓ over a ball of radius r, take θ(t) ≡ 1, and use Gauss’ divergence
theorem:

 

Br(0)

E2,2 dℓ =

ˆ T

0

ˆ

D

ˆ

L2
div(D;U)

 

Br(0)

∂ℓi
(
δℓu

i
η(x)δℓu

j
η(x)ℓ

j
)
dℓ dµt(u) dxθ(t) dt

= 3

ˆ T

0

ˆ

L2
div(D;U)

ˆ

D

 

∂Br(0)

δrnu
i
η(x)n

iδrnu
j
η(x)n

jdS(n) dx dµt(u) dt

= 3

ˆ T

0

ˆ

L2
div(D;U)

ˆ

D

 

∂Br(0)

(
δrnuη · n

)2
dS(n) dx dµt(u) dt,

(C.13)

the factor 3 coming from the relation |Br(0)| = 3−1r|∂Br(0)|. Since µ has bounded support
in L2, we can let η → 0 in (C.9) and obtain

3

ˆ T

0

ˆ

D

ˆ

L2
div(D;U)

 

∂Br(0)

(δrnu · n)2dS(n) dx dµt(u) dt

=

ˆ T

0

ˆ

D

ˆ

L2
div(D;U)

 

Br(0)

|δℓu(x)|
2dℓ dx dµt(u) dt,

(C.14)
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which is (C.1). �
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