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Abstract

We propose a novel method called Long Expressive Memory (LEM) for learning long-term sequential
dependencies. LEM is gradient-based, it can efficiently process sequential tasks with very long-term
dependencies, and it is sufficiently expressive to be able to learn complicated input-output maps. To
derive LEM, we consider a system of multiscale ordinary differential equations, as well as a suitable

time-discretization of this system. For LEM, we derive rigorous bounds to show the mitigation of
the exploding and vanishing gradients problem, a well-known challenge for gradient-based recurrent
sequential learning methods. We also prove that LEM can approximate a large class of dynamical
systems to high accuracy. Our empirical results, ranging from image and time-series classification
through dynamical systems prediction to speech recognition and language modeling, demonstrate
that LEM outperforms state-of-the-art recurrent neural networks, gated recurrent units, and long
short-term memory models.

1 Introduction

Learning tasks with sequential data as inputs (and possibly outputs) arise in a wide variety of contexts,
including computer vision, text and speech recognition, natural language processing, and time series
analysis in the sciences and engineering. While recurrent gradient-based models have been successfully
used in processing sequential data sets, it is well-known that training these models to process (very) long
sequential inputs is extremely challenging on account of the so-called exploding and vanishing gradients
problem [32]. This arises as calculating hidden state gradients entails the computation of an iterative
product of gradients over a large number of steps. Consequently, this (long) product can easily grow or
decay exponentially in the number of recurrent interactions.

Mitigation of the exploding and vanishing gradients problem has received considerable attention in the
literature. A classical approach, used in Long Short-Term Memory (LSTM) [18] and Gated Recurrent
Units (GRUs) [11], relies on gating mechanisms and leverages the resulting additive structure to ensure that
gradients do not vanish. However, gradients might still explode, and learning very long-term dependencies
remains a challenge for these architectures [27]. An alternative approach imposes constraints on the
structure of the hidden weight matrices of the underlying recurrent neural networks (RNNs), for instance
by requiring these matrices to be unitary or orthogonal [16, 1, 40, 21]. However, constraining the structure
of these matrices might lead to significantly reduced expressivity, i.e., the ability of the model to learn
complicated input-output maps. Yet another approach relies on enforcing the hidden weights to lie within
pre-specified bounds, leading to control on gradient norms. Examples include Li et al. [27], based on
independent neurons in each layer, and Rusch and Mishra [36], based on a network of coupled oscillators.
Imposing such restrictions on weights might be difficult to enforce, and weight clipping could reduce
expressivity significantly.

This brief survey highlights the challenge of designing recurrent gradient-based methods for sequence
modeling which can mitigate the exploding and vanishing gradients problem, while at the same time being
sufficiently expressive and possessing the ability to learn complicated input-output maps efficiently. We
seek to address this challenge by proposing a novel gradient-based method.
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The starting point for our method is the observation that realistic sequential data sets often contain
information arranged according to multiple (time, length, etc., depending on the data and task) scales.
Indeed, if there were only one or two scales over which information correlated, then a simple model with a
parameter chosen to correspond to that scale (or, e.g., scale difference) should be able to model the data
well. Thus, it is reasonable to expect that a multiscale model should be considered to process efficiently
such multiscale data. To this end, we propose a novel gradient-based architecture, Long Expressive Memory
(LEM), that is based on a suitable time-discretization of a set of multiscale ordinary differential equations
(ODEs). For this novel gradient-based method (proposed in Section 2):

• we derive bounds on the hidden state gradients to prove that LEM mitigates the exploding and
vanishing gradients problem (Section 4);

• we rigorously prove that LEM can approximate a very large class of (multiscale) dynamical systems
to arbitrary accuracy (Section 4); and

• we provide an extensive empirical evaluation of LEM on a wide variey of data sets, including
image and sequence classification, dynamical systems prediction, speech recognition, and language
modeling, thereby demonstrating that LEM outperforms or is comparable to state-of-the-art RNNs,
GRUs and LSTMs in each task (Section 5).

We also discuss a small portion of the large body of related work (Section 3), and we provide a brief
discussion of our results in a broader context (Section 6). Much of the technical portion of our work is
deferred to Supplementary Materials.

2 Long Expressive Memory

We start with the simplest example of a system of two-scale ODEs,

𝑑y

𝑑𝑡
= 𝜏𝑦

(

𝜎
(

W𝑦z +V𝑦u + b𝑦
)

− y
)

,
𝑑z

𝑑𝑡
= 𝜏𝑧 (𝜎 (W𝑧y +V𝑧u + b𝑧) − z) . (1)

Here, 𝑡 ∈ [0, 𝑇] is the continuous time, 0 < 𝜏𝑦 ≤ 𝜏𝑧 ≤ 1 are the two time scales, y(𝑡) ∈ R
𝑑𝑦 , z(𝑡) ∈ R

𝑑𝑧

are the vectors of slow and fast variables and u = u(𝑡) ∈ R
𝑚 is the input signal. For simplicity, we set

𝑑𝑦 = 𝑑𝑧 = 𝑑. The dynamic interactions between the neurons are modulated by weight matrices W𝑦,𝑧 ,V𝑦,𝑧 ,
bias vectors b𝑦,𝑧 and a nonlinear tanh activation function 𝜎(𝑢) = tanh(𝑢). Note that ⊙ refers to the
componentwise product of vectors.

However, two scales (one fast and one slow), may not suffice in representing a large number of scales
that could be present in realistic sequential data sets. Hence, we need to generalize (1) to a multiscale
version. One such generalization is provided by the following set of ODEs,

𝑑y

𝑑𝑡
= 𝜎̂ (W2y +V2u + b2) ⊙

(

𝜎
(

W𝑦z +V𝑦u + b𝑦
)

− y
)

,

𝑑z

𝑑𝑡
= 𝜎̂ (W1y +V1u + b1) ⊙ (𝜎 (W𝑧y +V𝑧u + b𝑧) − z) .

(2)

In addition to previously defined quantities, we need additional weight matrices W1,2,V1,2, bias vectors b𝑦,𝑧
and sigmoid activation function 𝜎̂(𝑢) = 0.5(1 + tanh(𝑢/2)). As 𝜎̂ is monotone, we can set W1,2 = V1,2 ≡ 0
and (b1) 𝑗 = 𝑏𝑦 , (b2) 𝑗 = 𝑏𝑧 , for all 1 ≤ 𝑗 ≤ 𝑑, with 𝜎̂(𝑏𝑦,𝑧) = 𝜏𝑦,𝑧 to observe that the two-scale system (1)
is a special case of (2). One can readily generalize this construction to obtain many different scales in (2).
Thus, we can interpret

(

𝝉𝑧 (y, 𝑡), 𝝉𝑦 (y, 𝑡)
)

= (𝜎̂ (W1y +V1u + b1) , 𝜎̂ (W2y +V2u + b2)) in (2) as input and
state dependent gating functions, which endow ODE (2) with multiple time scales. These scales can be
learned adaptively (with respect to states) and dynamically (in time). Moreover, it turns out that the
multiscale ODE system (2) is of the same general form (see SM§B) as the well-known Hodgkin-Huxley
equations modeling the dynamics of the action potential for voltage-gated ion-channels in biological
neurons [19].

In order to realize a concrete algorithm for our model, we propose a time-discretization of the multiscale
ODE system (2). As is common with numerical discretizations of ODEs, doing so properly is important
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to preserve desirable properties. To this end, we fix Δ𝑡 > 0, and we discretize (2) with the following
implicit-explicit (IMEX) time-stepping scheme to arrive at LEM, written in compact form as,

∆t𝑛 = Δ𝑡𝜎̂(W1y𝑛−1 +V1u𝑛 + b1),
∆t𝑛 = Δ𝑡𝜎̂(W2y𝑛−1 +V2u𝑛 + b2),
z𝑛 = (1 −∆t𝑛) ⊙ z𝑛−1 +∆t𝑛 ⊙ 𝜎(W𝑧y𝑛−1 +V𝑧u𝑛 + b𝑧),
y𝑛 = (1 −∆t𝑛) ⊙ y𝑛−1 +∆t𝑛 ⊙ 𝜎(W𝑦z𝑛 +V𝑦u𝑛 + b𝑦).

(3)

For steps 1 ≤ 𝑛 ≤ 𝑁, the hidden states in LEM (3) are y𝑛, z𝑛 ∈ R
𝑑, with input state u𝑛 ∈ R

𝑚. The weight
matrices are W1,2,𝑧,𝑦 ∈ R

𝑑×𝑑 and V1,2,𝑧,𝑦 ∈ R
𝑑×𝑚 and the bias vectors are b1,2,𝑧,𝑦 ∈ R

𝑑. We also augment
LEM (3) with a linear output state 𝜔𝑛 ∈ R

𝑜 with 𝜔𝑛 = W𝑦y𝑛, and W𝑦 ∈ R
𝑜×𝑑.

3 Related Work

We start by comparing our proposed model, LEM (3), to the widely used LSTM of Hochreiter and

Schmidhuber [18]. Observe that ∆t𝑛,∆t𝑛 in (3) are similar in form to the input, forget and output gates
in an LSTM (see SM§C), and that LEM (3) has exactly the same number of parameters (weights and
biases) as an LSTM, for the same number of hidden units. Moreover, as detailed in SM§C, we show that

by choosing very specific values of the LSTM gates and the ∆t𝑛,∆t𝑛 terms in LEM (3), the two models
are equivalent. However, this analysis also reveals key differences between LEM (3) and LSTMs, as they
are equivalent only under very stringent assumptions. In general, as the different gates in both LSTM
and LEM (3) are learned from data, one can expect them to behave differently. Moreover in contrast to
LSTM, LEM stems from a discretized ODE system (2), which endows it with (gradient) stable dynamics.

The use of multiscale neural network architectures in machine learning has a long history. An early
example was provided in Hinton and Plaut [17], who proposed a neural network with each connection
having a fast changing weight for temporary memory and a slow changing weight for long-term learning.
More recently, one can view convolutional neural networks as multiscale architectures for processing
multiple spatial scales in data [4].

The use of ODE-based learning architectures has also received considerable attention in recent years
with examples such as continuous-time neural ODEs [9, 34, 33] and their recurrent extensions ODE-RNNs
[35], as well as RNNs based on discretizations of ODEs [7, 12, 10, 28, 36, 37].

4 Rigorous Analysis of LEM

Here, we present our basic theoretical results for LEM.

Bounds on hidden states. The structure of LEM (3) allows us to prove (in SM§D.1) that its hidden
states satisfy the following pointwise bound.

Proposition 4.1. Denote 𝑡𝑛 = 𝑛Δ𝑡 and assume that Δ𝑡 ≤ 1

2
. Further assume that the initial hidden states

are z0 = y0 ≡ 0. Then, the hidden states z𝑛, y𝑛 of LEM (3) are bounded pointwise as,

max
1≤𝑖≤𝑑

max{|z𝑖𝑛 |, |y𝑖𝑛 |} ≤
√︁

𝑡𝑛 (1 + Δ𝑡), ∀1 ≤ 𝑛 ≤ 𝑁. (4)

Upper bounds on hidden state gradients. For any 1 ≤ 𝑛 ≤ 𝑁, let X𝑛 ∈ R
2𝑑 denoted the concatenated

hidden state, given by X𝑛 =
[

z1𝑛, y
1

𝑛, . . . . . . , z
𝑖
𝑛, y

𝑖
𝑛, . . . . . . , z

𝑑
𝑛 , y

𝑑
𝑛

]

. For simplicity of the exposition, we set
output state 𝜔𝑛 = y𝑛 to consider a loss function of the form,

E :=
1

𝑁

𝑁∑︁

𝑛=1

E𝑛, E𝑛 =
1

2

𝑑∑︁

𝑖=1

|y𝑖𝑛 − y𝑖𝑛 |2, (5)
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with X𝑛 =

[

z1𝑛, y
1

𝑛, . . . . . . , . . . , z
𝑑
𝑛 , y

𝑑
𝑛

]

being the underlying ground truth. The training of our proposed

model (3) entails computing gradients of the loss function (5) with respect to its underlying weights and
biases 𝜃 ∈ Θ = [W1,2,y,z,V1,2,y,z, b1,2,y,z], at every step of the gradient descent procedure. In SM§D.2, we
prove the following upper bounds on this gradient.

Proposition 4.2. Let z𝑛, y𝑛 be the hidden states generated by LEM (3). We assume that Δ𝑡 << 1 is
chosen to be sufficiently small. Then, the gradient of the loss function E in (5) with respect to any
parameter 𝜃 ∈ Θ is bounded as

�
�
�
�

𝜕E

𝜕𝜃

�
�
�
�
≤

(

3 +
√
3𝑋

)

(3 + 6𝜂) , 𝜂 = max
{

‖W1‖∞, ‖W2‖∞, ‖W𝑧 ‖∞, ‖W𝑦 ‖∞
}

, (6)

and 𝑋 = max
1≤𝑛≤𝑁

‖X𝑛‖∞.

The upper bound (6) clearly ensures that the hidden state gradient cannot blow up. Thus, the
exploding gradient problem is mitigated for LEM (3).

On the vanishing gradient problem. Following [32], one needs a more precise characterization of

the partial gradient 𝜕E
(𝑘)
𝑛

𝜕𝜃
=
𝜕E𝑛

𝜕X𝑛

𝜕X𝑛

𝜕X𝑘

𝜕+X𝑘

𝜕𝜃
, which measures the contribution to the hidden state gradient

at step 𝑛 arising from step 𝑘 of the model, to show mitigation of the vanishing gradient problem. Here,
𝜕+X𝑘

𝜕𝜃
refers to taking the partial derivative of X𝑘 with respect to the parameter 𝜃, while keeping the other

arguments constant. In SM§D.3, we state and prove proposition D.2, which provides a precise formula for
the asymptotics of the partial gradient. Here, we illustrate this formula in a special case as a corollary,

Proposition 4.3. Let y𝑛, z𝑛 be the hidden states generated by LEM (3). Consistent with the pointwise

bounds (4), we assume that y
𝑗
𝑛, z

𝑗
𝑛 ∼ O(√𝑡𝑛), for all 1 ≤ 𝑗 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑑 and the ground truth

y𝑛 ∼ O(1). Then, for any 𝑘 << 𝑛 (long-term dependencies) we have,

𝜕E
(𝑘)
𝑛

𝜕𝜃
= O

(

Δ𝑡
3

2

)

+ O(Δ𝑡2). (7)

Here, the order notation is defined in SM (38) and the constants in O(Δ𝑡 32 ) depend on only on 𝜂 (6) and
𝜂 = ‖W𝑦 ‖1 and are independent of 𝑛, 𝑘.

This formula (7) shows that although the partial gradient can be small, i.e., O(Δ𝑡 32 ), it is in fact
independent of 𝑘, ensuring that long-term dependencies contribute to gradients at much later steps and
mitigating the vanishing gradient problem.

Universal approximation of general dynamical systems. The above bounds on hidden state
gradients show that the proposed model LEM (3) mitigates the exploding and vanishing gradients problem.
However, this by itself, does not guarantee that it can learn complicated and realistic input-output maps
between sequences. To investigate the expressivity of the proposed LEM, we will show in the following
proposition that it can approximate any dynamical system, mapping an input sequence u𝑛 to an output
sequence o𝑛, of the (very) general form,

𝝓𝑛 = f (𝝓𝑛−1, u𝑛) , o𝑛 = o(𝝓𝑛), ∀ 1 ≤ 𝑛 ≤ 𝑁, (8)

with 𝝓𝑛 ∈ R
𝑑ℎ , o𝑛 ∈ R

𝑑𝑜 denoting the hidden and output states, respectively. The input signal is u𝑛 ∈ R
𝑑𝑢

and maps f : R
𝑑ℎ × R

𝑑𝑢 ↦→ R
𝑑ℎ and o : R

𝑑ℎ ↦→ R
𝑑𝑜 are Lipschitz continuous. For simplicity, we set the

initial state 𝝓0 = 0.

Proposition 4.4. For all 1 ≤ 𝑛 ≤ 𝑁, let 𝝓𝑛, o𝑛 be given by the dynamical system (8) with input signal
u𝑛. Under the assumption that there exists a 𝑅 > 0 such that max{‖𝝓𝑛‖, ‖u𝑛‖} < 𝑅, for all 1 ≤ 𝑛 ≤ 𝑁,
then for any given 𝜖 > 0 there exists a LEM of the form (3), with hidden states y𝑛, z𝑛 ∈ R

𝑑𝑦 and output
state 𝜔𝑛 = W𝑦y𝑛 ∈ R

𝑑𝑜 , for some 𝑑𝑦 such that the following holds,

‖o𝑛 − 𝜔𝑛‖ ≤ 𝜖, ∀1 ≤ 𝑛 ≤ 𝑁. (9)

From this proposition, proved in SM§D.4, we conclude that, in principle, the proposed LEM (3) can
approximate a very large class of dynamical systems.
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Universal approximation of multiscale dynamical systems. While expressing a general form of
input-output maps between sequences, the dynamical system (8) does not explicitly model dynamics
at multiple scales. Instead, here we consider the following two-scale fast-slow dynamical system of the
general form,

𝝓𝑛 = f (𝝓𝑛−1,𝝍𝑛−1, u𝑛), 𝝍𝑛 = 𝜏g(𝝓𝑛,𝝍𝑛−1, u𝑛), o𝑛 = o(𝝍𝑛). (10)

Here, 0 < 𝜏 << 1 and 1 are the slow and fast time scales, respectively. The underlying maps (f , g) :
R
𝑑ℎ×𝑑ℎ×𝑑𝑢 ↦→ R

𝑑ℎ are Lipschitz continuous. In the following proposition, proved in SM§D.5, we show that
LEM (3) can approximate (10) to desired accuracy.

Proposition 4.5. For any 0 < 𝜏 << 1, and for all 1 ≤ 𝑛 ≤ 𝑁, let 𝝓𝑛,𝝍𝑛, o𝑛 be given by the two-scale
dynamical system (10) with input signal u𝑛. Under the assumption that there exists a 𝑅 > 0 such that
max{‖𝝓𝑛‖, ‖𝝍𝑛‖, ‖u𝑛‖} < 𝑅, for all 1 ≤ 𝑛 ≤ 𝑁, then for any given 𝜖 > 0, there exists a LEM of the form
(3), with hidden states y𝑛, z𝑛 ∈ R

𝑑𝑦 and output state 𝜔𝑛 ∈ R
𝑑𝑜 with 𝜔𝑛 = Wy𝑛 such that the following

holds,
‖o𝑛 − 𝜔𝑛‖ ≤ 𝜖, ∀1 ≤ 𝑛 ≤ 𝑁. (11)

Moreover, the weights, biases and size (number of neurons) of the underlying LEM (3) are independent
of the time-scale 𝜏.

This argument can be readily generalized to more than two time scales. Hence, we show that, in
principle, the proposed model LEM (3) can approximate multiscale dynamical systems, with model size
being independent of the underlying timescales. These theoretical results for LEM (3) point to the ability
of this architecture to learn complicated multiscale input-output maps between sequences, while mitigating
the exploding and vanishing gradients problem. Although useful prerequisities, these theoretical properties
are certainly not sufficient to demonstrate that LEM (3) is efficient in practice. To do this, we perform
several benchmark evaluations, and we report the results below.

5 Empirical results

We present a variety of experiments ranging from long-term dependency tasks to real-world applications
as well as tasks which require high expressivity of the model. Details of the training procedure for
each experiment can be found in SM§F. As competing models to LEM, we choose two different types
of architectures—LSTMs and GRUs—as they are known to excel at expressive tasks such as language
modeling and speech recognition, while not performing well on long-term dependency tasks, possibly
due to the exploding and vanishing gradients problem. On the other hand, we choose state-of-the-art
RNNs which are tailor-made to learn tasks with long-term dependencies. Our objective is to evaluate the
performance of LEM and compare it with competing models. Code to replicate the experiments can be
found at https://github.com/tk-rusch/LEM .

Very long adding problem. We start with the well-known adding problem [18], proposed to test
the ability of a model to learn (very) long-term dependencies. The input is a two-dimensional sequence
of length 𝑁, with the first dimension consisting of random numbers drawn from U([0, 1]) and with
two non-zero entries (both set to 1) in the second dimension, chosen at random locations, but one
each in both halves of the sequence. The output is the sum of two numbers of the first dimension at
positions, corresponding to the two 1 entries in the second dimension. We consider three very challenging
cases, namely input sequences with length 𝑁 = 2000, 5000 and 10000. The results of LEM together
with competing models including state-of-the-art RNNs, which are explicitly designed to solve long-term
dependencies, are presented in Fig. 1. We observe in this figure that while LSTM is not able to beat the
baseline mean-square error of 0.167 (the variance of the baseline output 1) in any of the three cases, the
other models can successively learn the task in the case of 𝑁 = 2000. However for 𝑁 = 5000, only LEM
and coRNN, which has been recognized as state-of-the-art (SOTA) on this task so far, are able to beat the
baseline. We note that LEM converges significantly earlier than coRNN in this case. In the extreme case
of 𝑁 = 10000, only LEM is able to beat the baseline and does so rather quickly. In fact, the experiments
suggest that LEM learns the adding problem independently of the length of the underlying sequences by
converging very fast and reaching a very low test MSE in all three cases.
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Figure 1: Results on the very long adding problem for LEM, coRNN, DTRIV∞ [6], FastGRNN [25] and
LSTM based on three very long sequence lengths 𝑁, i.e., 𝑁 = 2000, 𝑁 = 5000 and 𝑁 = 10000.

Sequential image recognition. We consider three experiments based on two widely-used image
recognition data sets, i.e., MNIST [26] and CIFAR-10 [22], where the goal is to predict the correct label
after reading in the whole sequence. The first two tasks are based on MNIST images, which are flattened
along the rows to obtain sequences of length 𝑁 = 784. In sequential MNIST (sMNIST), the sequences
are fed to the model one pixel at a time in streamline order, while in permuted sequential MNIST
(psMNIST), a fixed random permutation is applied to the sequences, resulting in much longer dependency
than for sMNIST. We also consider the more challenging noisy CIFAR-10 (nCIFAR-10) experiment [7],
where CIFAR-10 images are fed to the model row-wise and flattened along RGB channels, resulting in
96-dimensional sequences, each of length 32. Moreover, a random noise padding is applied after the first
32 inputs to produce sequences of length 𝑁 = 1000. Hence, in addition to classifying the underlying image,
a model has to store this result for a long time. In Table 1, we present the results for LEM on the three
tasks together with other SOTA RNNs, which were explicitly designed to solve long-term dependency
tasks, as well as LSTM and GRU baselines. We observe that LEM outperforms all other methods on
sMNIST and nCIFAR-10. Additionally on psMNIST, LEM performs as well as coRNN, which has been
SOTA among single-layer RNNs on this task.

Table 1: Test accuracies on sMNIST, psMNIST and nCIFAR-10, where 𝑀 denotes the total number of
parameters of the corresponding model. Results of other models are taken from the respective original
paper referenced in the main text, except that the results for LSTM are taken from Helfrich et al. [15], for
GRU from Chang et al. [8] and the results indicated by ∗ are added by us.

Model
MNIST CIFAR-10

sMNIST psMNIST # units / 𝑀 nCIFAR-10 # units / 𝑀

GRU 99.1% 94.1% 256 / 201k 43.8%∗ 128 / 88k
LSTM 98.9% 92.9% 256 / 267k 11.6% 128 / 116k
anti.sym. RNN 98.0% 95.8% 128 / 10k 48.3% 256 / 36k
Lipschitz RNN 99.4% 96.3% 128 / 34k 57.4% 128 / 46k
expRNN 98.4% 96.2% 360 / 69k 52.9%∗ 360 / 103k
coRNN 99.3% 96.6% 128/ 34k 59.0% 128 / 46k
LEM 99.5% 96.6% 128 / 68k 60.5% 128 / 116k

EigenWorms: Very long sequences for genomics classification. The goal of this task [2] is to
classify worms as belonging to either the wild-type or four different mutants, based on 259 very long
sequences (length 𝑁 = 17984) measuring the motion of a worm. In addition to the nominal length, it
was empirically shown in Rusch and Mishra [37] that the EigenWorms sequences exhibit actual very
long-term dependencies (i.e., longer than 10k). Following Morrill et al. [31] and [37], we divide the data
into a train, validation and test set according to a 70%, 15%, 15% ratio. In Table 2, we present results for
LEM together with other models as well as different sub-sampling routines. As the validation and test
sets, each consist of only 39 sequences, we report the mean (and standard deviation of) accuracy over 5
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Table 2: Test accuracies on EigenWorms using 5 re-trainings of each best performing network (based on
the validation set), where all other results are taken from Rusch and Mishra [37] except that the NRDE
result is taken from [31].

Model test accuracy # units # params

t-BPTT LSTM 57.9% ± 7.0% 32 5.3k
sub-samp. LSTM 69.2% ± 8.3% 32 5.3k
NRDE 83.8% ± 3.0% 32 35k

expRNN 40.0% ± 10.1% 64 2.8k
IndRNN (2 layers) 49.7% ± 4.8% 32 1.6k
coRNN 86.7% ± 3.0% 32 2.4k
UnICORNN (2 layers) 90.3% ± 3.0% 32 1.5k
LEM 92.3% ± 1.8% 32 5.3k

random initializations to rule out lucky outliers. We observe from this table that LEM outperforms all
other methods, even the 2-layer UnICORNN architecture, which has been SOTA on this task.

Healthcare application: Heart-rate prediction. In this experiment, one predicts the heart rate
from a time-series of measured PPG data, which is part of the TSR archive [38] and has been collected
at the Beth Isreal Deaconess medical center. The data set, consisting of 7949 sequences, each of length
𝑁 = 4000, is divided into a train, validation and test set according to a 70%,15%,15% ratio, [31, 37]. The
results, presented in Table 3, show that LEM outperforms the other competing models by having a test
𝐿2 error of 35% less than the SOTA UnICORNN, while being an order of magnitude better than LSTM.

Table 3: Test 𝐿2 error on heart-rate prediction using PPG data. All results are obtained by running the
same code and using the same fine-tuning protocol.

Model test 𝐿2 error # units # params

LSTM 9.93 128 67k
expRNN 1.63 256 34k
IndRNN (3 layers) 1.94 128 34k
coRNN 1.61 128 34k
UnICORNN (3 layers) 1.31 128 34k
LEM 0.85 128 67k

Multiscale dynamical system prediction. The FitzHugh-Nagumo system [13]

𝑣′ = 𝑣 − 𝑣3

3
− 𝑤 + 𝐼ext, 𝑤′

= 𝜏(𝑣 + 𝑎 − 𝑏𝑤), (12)

is a prototypical model for a two-scale fast-slow nonlinear dynamical system, with fast variable 𝑣 and slow
variable 𝑤 and 𝜏 << 1 determining the fast-time scale. This relaxation-oscillator is an approximation
to the Hodgkin-Huxley model [19] of neuronal action-potentials under an external signal 𝐼ext ≥ 0. With
𝜏 = 0.02, 𝐼ext = 0.5, 𝑎 = 0.7, 𝑏 = 0.8 and initial data (𝑣0, 𝑤0) = (𝑐, 0), with 𝑐 randomly drawn from
U([−1, 1]), we numerically approximate (12) with the explicit Runge-Kutta method of order 5(4) in the
interval [0, 400] and generate 128 training and validation and 1024 test sequences, each of length 𝑁 = 1000,
to complete the data set. The results, presented in Table 4, show that LEM not only outperforms LSTM
by a factor of 6 but also all other methods including coRNN, which is tailormade for oscillatory time-series.
This reinforces our theory by demonstrating efficient approximation of multiscale dynamical systems
with LEM.
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Table 4: Test 𝐿2 error on FitzHugh-Nagumo system prediction. All results are obtained by running the
same code and using the same fine-tuning protocol.

Model error (×10−2) # units # params

LSTM 1.2 16 1k
expRNN 2.3 50 1k
LipschitzRNN 1.8 24 1k
FastGRNN 2.2 34 1k
coRNN 0.4 24 1k
LEM 0.2 16 1k

Speech recognition: Google12 (V2) keyword spotting. The Google Speech Commands data set
V2 is a widely used benchmark for speech recognition [39], consisting of 35 words, sampled at a rate of 16
kHz from 1 second utterances of 2618 speakers. We focus on the 12-label task (Google12) and follow the
pre-defined splitting of the data set into train/validation/test sets and test different sequential models. In
order to ensure comparability of different architectures, we do not use performance-enhancing tools such
as convolutional filtering or multi-head attention. From Table 5, we observe that both LSTM and GRU,
widely used models in this context, perform very well with a test accuracy of 95%. Nevertheless, LEM is
able to outperform both on this task and provides the best performance.

Table 5: Test accuracies on Google12. All results are obtained by running the same code and using the
same fine-tuning protocol.

Model test accuracy # units # params

tanh-RNN 73.4% 128 27k
LSTM 94.9% 128 107k
GRU 95.2% 128 80k
FastGRNN 94.8% 128 27k
expRNN 92.3% 128 19k
coRNN 94.7% 128 44k
LEM 95.7% 128 107k

Language modeling: Penn Tree Bank corpus. Language modeling with the widely used small
scale Penn Treebank (PTB) corpus [29], preprocessed by Mikolov et al. [30], has been identified as an
excellent task for testing the expressivity of recurrent models [21]. To this end, in Table 6, we report the
results of different architectures, with a similar number of hidden units, on the PTB char-level task and
observe that RNNs, designed explicitly for learning long-term dependencies, perform significantly worse
than LSTM and GRU. On the other hand, LEM is able to outperform both LSTM and GRU on this
task by some margin (a test bpc of 1.25 in contrast with approximately a bpc of 1.36). In fact, LEM
provides the smallest test bpc among all reported single-layer recurrent models on this task, to the best of
our knowledge. This superior performance is further illustrated in Table 7, where the test perplexity for
different models on the PTB word-level task is presented. We observe that not only does LEM significantly
outperform (by around 40%) LSTM, but it also provides again the best performance among all single
layer recurrent models, including the recently proposed TARNN [20]. Moreover, the single-layer results
for LEM are better than reported results for multi-layer LSTM models, such as in Gal and Ghahramani
[14] (2-layer LSTM, 1500 units each: 75.2 test perplexity) or Bai et al. [3] (3-layer LSTM, 700 units each:
78.93 test perplexity).

Multiscale behavior of LEM. As LEM (3) has been designed to represent multiple scales, it is natural

to examine if such multiscale behavior is observed in the experiments. To this end, we evaluate ∆t𝑛,∆t𝑛,
which represent effective time scales in (3). In our experiments, we observe that although ∆t𝑛,∆t𝑛 had
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Table 6: Test bits-per-character (bpc) on PTB character-level for single layer LEM and other single layer
RNN architectures. Other results are taken from the papers cited accordingly in the table, while the
results for coRNN are added by us.

Model test bpc # units # params

anti.sym RNN [12] 1.60 1437 1.3M
Lipschitz RNN [12] 1.42 764 1.3M
expRNN [21] 1.51 1437 1.3M
coRNN 1.46 1024 2.3M
nnRNN [21] 1.47 1437 1.3M
LSTM [23] 1.36 1000 5M
GRU [3] 1.37 1024 3M
LEM 1.25 1024 5M

Table 7: Test perplexity on PTB word-level for single layer LEM and other single layer RNN architectures.

Model test perplexity # units # params

Lipschitz RNN [12] 115.4 160 76k
FastRNN [20] 115.9 256 131k
LSTM [20] 116.9 256 524k
SkipLSTM [20] 114.2 256 524k
TARNN [20] 94.6 256 524k
LEM 72.8 256 524k

values at a single scale before training, they spanned a wide range of scales (several orders of magnitude)
after training was completed. See Fig. 2 in SM§A for an example of this phenomenon. Moreover, in
the experiments, the frequency of values of ∆t𝑛,∆t𝑛 is distributed as a power law of their amplitude
(see SM§A for a discussion of this theme.) This power-law behavior indicates that a range of scales are
indeed expressed, albeit at different frequencies, with smaller scales contributing proportionately to the
multiscale dynamics.

6 Discussion

The design of a gradient-based model for processing sequential data that can mitigate the exploding and
vanishing gradients problem to learn tasks with long-term dependencies while retaining the ability to
learn complicated sequential input-output maps is very challenging [21]. In this paper, we have proposed
Long Expressive Memory (LEM), a novel recurrent architecture, based on a suitable time-discretization
of a specific multiscale system of ODEs (2). By a combination of theoretical arguments and extensive
empirical evaluations on a diverse set of learning tasks, we demonstrate that LEM is able to learn long-term
dependencies while retaining sufficient expressivity for efficiently solving realistic learning tasks.

It is natural to ask why LEM performs so well. A part of the answer lies in the mitigation of the
exploding and vanishing gradients problem. Proofs for gradient bounds (6),(7) reveal a key role played by
the smallness of the hyperparameter Δ𝑡. We observe from SM Table 8 that small values of Δ𝑡 might be
needed for problems with long-term dependencies. The smallest values are necessary for the Eigenworms
experiment, with input sequences of length 18K. An ablation study, presented in SM Fig. 4, shows
that Δ𝑡 needs to be quite small for this very long sequence task. On the other hand, no fine tuning of
the hyperparameter Δ𝑡 is necessary for tasks such as language modeling and speech recognition, which
do not necessarily possess long-term dependencies, and a default value of Δ𝑡 = 1 yielded very good
performance. However, mitigation of exploding and vanishing gradients problem alone does not explain
high expressivity of LEM. In this context, we proved that LEMs can approximate a very large class
of multiscale dynamical systems. In fact, as detailed in SM§E, one can show that LEMs can emulate
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the well-known Heterogeneous Multiscale Method (HMMs) (see Kuehn [24] and references therein), for
approximating ODEs with several time-scales. Moreover, we provide experimental evidence in SM§A
to observe that LEM not only expresses a range of scales, as it is designed to do, but also these scales
contribute proportionately to the resulting multiscale dynamics. We believe that this combination of
gradient stable dynamics, specific model structure, and its multiscale resolution can explain the observed
performance of LEM.

We conclude with a comparison of LEM and the widely-used gradient-based LSTM model. In addition
to having exactly the same number of parameters for the same number of hidden units, our experiments
show that LEMs are better than LSTMs on expressive tasks such as speech recognition and language
modeling, while providing significantly better performance on long-term dependencies. This robustness of
the performance of LEM with respect to sequence length paves the way for its application to learning
many different sequential data sets where competing models might not perform satisfactorily.
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Supplementary Material for:
Long Expressive Memory for Sequence Modeling

A Multiscale behavior of LEM

0

50

100

H
id
de
n
ne
ur
on
s

∆t

0 100 200 300 400 500 600 700
Time n

0

50

100

H
id
de
n
ne
ur
on
s

∆t

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9

E
ff
ec
ti
ve

ti
m
e
sc
al
es

Figure 2: Multiscale behavior of LEM after training on sMNIST.

LEM (3) is designed to represent multiple scales. The terms ∆t𝑛,∆t𝑛 are explicitly designed to express

these multiple scales. To see if this holds in practice, we evaluate ∆t𝑛,∆t𝑛, for all 1 ≤ 𝑛 ≤ 𝑁, both
before and after training, in all our experiments. To illustrate our observations, we consider the sMNIST
learning task and plot ∆t𝑛,∆t𝑛 in Fig. 2 after training is completed. We observe from this figure that
∆t𝑛,∆t𝑛 express a very large range of scales that span over approximately 7 orders of magnitude. This
stands in stark contrast to the observation that, before training, ∆t𝑛,∆t𝑛 only assumed values within a
single scale, very close to 0.8. Moreover, this variation in scales (after training) is both with respect to

sequence position 𝑛 and state location 1 ≤ 𝛼 ≤ 𝑑. Thus, we can conclude that ∆t𝑛,∆t𝑛 in LEM learn to
express a range of scales from data, dynamically (in time) and adaptively (with respect to neurons). This
phenomenon was also observed in other experiments.

It is interesting to ask if these range of scales, expressed by ∆t𝑛,∆t𝑛 in LEM, are equally distributed.
To answer this, we plot the empirical histograms of the frequency of each scale with respect to the scale
amplitude, in order to approximate the underlying distribution. The results, plotted in Fig. 3 (in log-log)
show that this frequency of occurrence of different scales for the sMNIST task decays as a power law of
the scale amplitude, with exponents ≈ 0.5 for both ∆t𝑛 and ∆t𝑛.

B Relation between LEM and the Hodgkin-Huxley equations

We observe that the multiscale ODEs (2), on which LEM is based, are a special case of the following ODE
system,

𝑑z

𝑑𝑡
= F𝑧 (y, 𝑡) −G𝑧 (y) ⊙ z,

𝑑y

𝑑𝑡
= F𝑦 (z, 𝑡)H (y, 𝑡) −G𝑦 (y) ⊙ y. (13)

As remarked in the main text, it turns out the well-known Hodgkin-Huxley equations [19], modeling the
the dynamics of the action potential of a biological neuron can also be written down in the abstract form
(13), with 𝑑𝑦 = 1, 𝑑𝑧 = 3 and the variables y = 𝑦 modeling the voltage and z = (𝑧1, 𝑧2, 𝑧3) modeling the
concentration of Potassium activation, Sodium activation and Sodium inactivation channels.
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Figure 3: Log of the frequency (y-axis) vs. Log of the amplitude of ∆t𝑛 (Left) and ∆t𝑛 (Right) for LEM
trained on sMNIST. Note that the frequency is binned over all sequence positions 𝑛 and locations in the
vectors ∆t𝑛 and ∆t𝑛.

The exact form of the different functions in (13) for the Hodgkin-Huxley equations is given by,

F𝑧 (𝑦) = (𝛼1 (𝑦), 𝛼2 (𝑦), 𝛼3 (𝑦)) ,
G𝑧 (𝑦) = (𝛼1 (𝑦) + 𝛽1 (𝑦), 𝛼2 (𝑦) + 𝛽2 (𝑦), 𝛼3 (𝑦) + 𝛽3 (𝑦)) ,

𝛼1 (𝑦) =
0.01(10 + 𝑦 − 𝑦)
𝑒

10+𝑦−𝑦
10 − 1

, 𝛼2 (𝑦) =
0.1(25 + 𝑦 − 𝑦)
𝑒

25+𝑦−𝑦
10 − 1

, 𝛼3 (𝑦) = 0.07𝑒
𝑦−𝑦
20 ,

𝛽1 (𝑦) = 0.125𝑒
𝑦−𝑦
80 , 𝛽2 (𝑦) = 4𝑒

𝑦−𝑦
18 , 𝛽3 (𝑦) =

1

1 + 𝑒1+
𝑦−𝑦
10

,

F𝑦 (𝑧, 𝑡) = 𝑢(𝑡) + 𝑧41 + 𝑧32𝑧3, H(𝑦) = 𝑐1 (𝑦 − 𝑦) + 𝑐2 (𝑦 − 𝑦), G𝑦 (𝑦) = 𝑐3,

(14)

with input current 𝑢 and constants 𝑦, 𝑦, 𝑐1,2,3, whose exact values can be read from [19].
Thus, the multiscale ODEs (2) and the Hodgkin-Huxley equations are special case of the same general

family (13) of ODEs. Moreover, the gating functions G𝑦,𝑧 (y), that model voltage-gated ion channels in

the Hodgkin-Huxley equations, are similar in form to ∆t𝑛,∆t𝑛 in (2).
It is also worth highlighting the differences between our proposed model LEM (and the underlying

ODE system (2)) and the Hodgkin-Huxley ODEs modeling the dynamics of the neuronal action potential.
Given the complicated form of the nonlinearites F𝑦,𝑧 ,G𝑦,𝑧 ,H in the Hodgkin-Huxley equations (14), we
cannot use them in designing any learning model. Instead, building on the abstract form of (13), we
propose bespoke non-linearities in the ODE (2) to yield a tractable learning model, such as LEM (3).
Moreover, it should be emphasized that the Hodgkin-Huxley equations only model the dynamics of a
single neuron (with a scalar voltage and 3 ion channels), whereas the hidden state dimension 𝑑 of (2) can
be arbitrary.

C Relation between LEM and LSTM

The well-known LSTM [18] is given by,

f𝑛 = 𝜎̂(W 𝑓 h𝑛−1 +V 𝑓 u𝑛 + b 𝑓 )
i𝑛 = 𝜎̂(W𝑖h𝑛−1 +V𝑖u𝑛 + b𝑖)
o𝑛 = 𝜎̂(W𝑜h𝑛−1 +V𝑜u𝑛 + b𝑜)
c𝑛 = f𝑛 ⊙ c𝑛−1 + i𝑛 ⊙ 𝜎(Wh𝑛−1 +Vu𝑛 + b)
h𝑛 = o𝑛 ⊙ 𝜎(𝝍𝑛).

(15)
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Here, for any 1 ≤ 𝑛 ≤ 𝑁, h𝑛 ∈ R
𝑑 is the hidden state and c𝑛 ∈ R

𝑑 is the so-called cell state. The vectors
i𝑛, f𝑛, o𝑛 ∈ R

𝑑 are the input, forget and output gates, respectively. u𝑛 ∈ R
𝑚 is the input signal and the

weight matrices and bias vectors are given by W,W 𝑓 ,𝑖,𝑜 ∈ R
𝑑×𝑑 ,V,V 𝑓 ,𝑖,𝑜 ∈ R

𝑚×𝑑 and b, b 𝑓 ,𝑖,𝑜 ∈ R
𝑑,

respectively.
It is straightforward to relate LSTM (15) and LEM (3) by first setting the cell state c𝑛 = z𝑛, for all

1 ≤ 𝑛 ≤ 𝑁 and the hidden state h𝑛 = y𝑛.
We further need to assume that the input state i𝑛 = ∆t𝑛 and the forget state has to be f𝑛 = 1 −∆t𝑛.

Finally, the output state of the LSTM (15) has to be

o𝑛 = ∆t𝑛 = 1, ∀1 ≤ 𝑛 ≤ 𝑁.

Under these assumptions and by setting Δ𝑡 = 1, we can readily observe that the LEM (3) and LSTM (15)
are equivalent.

D Supplement to the rigorous analysis of LEM

In this section, we will provide detailed proofs of the propositions in Section 4 of the main article. We
start with the following simplifying notation for various terms in LEM (3),

A𝑛−1 = W1y𝑛−1 +V1u𝑛 + b1,

B𝑛−1 = W2y𝑛−1 +V2u𝑛 + b2,

C𝑛−1 = W𝑧y𝑛−1 +V𝑧u𝑛 + b𝑧 ,

D𝑛 = W𝑦z𝑛 +V𝑦u𝑛 + b𝑦 .

Note that for all 1 ≤ 𝑛 ≤ 𝑁, A𝑛,B𝑛,C𝑛,D𝑛 ∈ R
𝑑. With the above notation, LEM (3) can be written

componentwise, for each component 1 ≤ 𝑖 ≤ 𝑑 as,

z𝑖𝑛 = z𝑖𝑛−1 + Δ𝑡𝜎̂(A𝑖𝑛−1)𝜎(C𝑖𝑛−1) − Δ𝑡𝜎̂(A𝑖𝑛−1)z𝑖𝑛−1,
y𝑖𝑛 = y𝑖𝑛−1 + Δ𝑡𝜎̂(B𝑖𝑛−1)𝜎(D𝑖𝑛) − Δ𝑡𝜎̂(B𝑖𝑛−1)y𝑖𝑛−1.

(16)

Note that the techniques of proof in this following three sub-sections burrow heavily from those introduced
in Rusch and Mishra [36].

D.1 Proof of Proposition 4.1 of main text.

Proposition 4.1 yields the bound (4) for the hidden states of LEM. We provide the proof below,

Proof. We will use the following elementary identity,

𝑏(𝑎 − 𝑏) = 𝑎2

2
− 𝑏2

2
− 1

2
(𝑎 − 𝑏)2 , (17)

for any 𝑎, 𝑏 ∈ R.
We fix 1 ≤ 𝑖 ≤ 𝑑 and multiply the first equation in (16) with z𝑖𝑛−1 and apply (17) to obtain,
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(z𝑖𝑛)2
2

=
(z𝑖𝑛−1)2

2
+ Δ𝑡𝜎̂(A𝑖𝑛−1)𝜎(C𝑖𝑛−1)z𝑖𝑛−1 − Δ𝑡𝜎̂(A𝑖𝑛−1) (z𝑖𝑛−1)2 +

(z𝑖𝑛 − z𝑖𝑛−1)2

2

=
(z𝑖𝑛−1)2

2
+ Δ𝑡𝜎̂(A𝑖𝑛−1)𝜎(C𝑖𝑛−1)z𝑖𝑛−1 − Δ𝑡𝜎̂(A𝑖𝑛−1) (z𝑖𝑛−1)2

+ Δ𝑡2

2

(

𝜎̂(A𝑖𝑛−1)𝜎(C𝑖𝑛−1) − 𝜎̂(A𝑖𝑛−1)z𝑖𝑛−1
)2
, (from (16))

≤
(z𝑖𝑛−1)2

2
+ Δ𝑡𝜎̂(A𝑖𝑛−1)𝜎(C𝑖𝑛−1)z𝑖𝑛−1 − Δ𝑡𝜎̂(A𝑖𝑛−1) (z𝑖𝑛−1)2

+ Δ𝑡2 (𝜎̂(A𝑖𝑛−1)𝜎(C𝑖𝑛−1)2 + Δ𝑡2 (A𝑖𝑛−1) (z𝑖𝑛−1)2 (as (𝑎 − 𝑏)2 ≤ 2(𝑎2 + 𝑏2))

⇒ (z𝑖𝑛)2
2

≤
(z𝑖𝑛−1)2

2
+ Δ𝑡

2
(𝜎(C𝑖𝑛−1)2 + Δ𝑡2 (𝜎̂(A𝑖𝑛−1))2 (𝜎(C𝑖𝑛−1)2

+
[

Δ𝑡2 (𝜎̂(A𝑖𝑛−1))2 −
Δ𝑡

2
𝜎̂(A𝑖𝑛−1)

]

(z𝑖𝑛−1)2.

Using the fact that 0 ≤ 𝜎̂(𝑥) ≤ 1 for all 𝑥 ∈ R and (𝜎(𝑥))2, (𝜎̂(𝑥))2 and the assumption that Δ𝑡 ≤ 1/2, we
obtain from the last line of the previous equation that,

(z𝑖𝑛)2 ≤ (z𝑖𝑛−1)2 + (Δ𝑡 + 2Δ𝑡2), ∀1 ≤ 𝑛 ≤ 𝑁.

Iterating the above estimate over 𝑛 = 1, . . . , 𝑛, for any 1 ≤ 𝑛 ≤ 𝑁 and setting 𝑛 = 𝑛 yields,

(z𝑖𝑛)2 ≤ (z𝑖
0
)2 + 𝑛

(

Δ𝑡 + 2Δ𝑡2
)

,

⇒ (z𝑖𝑛)2 ≤ 𝑡𝑛 (1 + 2Δ𝑡), as z𝑖
0
= 0, 𝑡𝑛 = 𝑛Δ𝑡.

Taking a square root in the above inequality yields the desired pointwise bound (4) for z𝑖𝑛. The desired
pointwise bound (4) for y𝑖𝑛 follows completely analogously by repeating the steps of the above proof for
the second line of Eqn (16). �

D.2 Proof of Proposition 4.2 of main text.

Proof. We can apply the chain rule repeatedly (for instance as in [32]) to obtain,

𝜕E𝑛

𝜕𝜃
=

∑︁

1≤𝑘≤𝑛

𝜕E𝑛

𝜕X𝑛

𝜕X𝑛

𝜕X𝑘

𝜕+X𝑘
𝜕𝜃

︸               ︷︷               ︸

𝜕E
(𝑘)
𝑛

𝜕𝜃

. (18)

Here, the notation 𝜕+X𝑘

𝜕𝜃
refers to taking the partial derivative of X𝑘 with respect to the parameter 𝜃, while

keeping the other arguments constant.
A straightforward application of the product rule yields,

𝜕X𝑛

𝜕X𝑘
=

∏

𝑘<ℓ≤𝑛

𝜕Xℓ

𝜕Xℓ−1
. (19)

For any 𝑘 < ℓ ≤ 𝑛, a tedious yet straightforward computation yields the following representation formula,

𝜕Xℓ

𝜕Xℓ−1
= I2𝑑×2𝑑 + Δ𝑡Eℓ,ℓ−1 + Δ𝑡2Fℓ,ℓ−1. (20)
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Here Eℓ,ℓ−1 ∈ R
2𝑑×2𝑑 is a matrix whose entries are given below. For any 1 ≤ 𝑖 ≤ 𝑑, we have,

E
ℓ,ℓ−1
2𝑖−1,2 𝑗−1 ≡ 0, 𝑗 ≠ 𝑖

E
ℓ,ℓ−1
2𝑖−1,2𝑖−1 = −𝜎̂(A𝑖ℓ−1),
E
ℓ,ℓ−1
2𝑖−1,2 𝑗 = (W1)𝑖, 𝑗 𝜎̂′(A𝑖ℓ−1)

(

𝜎(C𝑖ℓ−1) − z𝑖ℓ−1
)

+ (W𝑧)𝑖, 𝑗 𝜎̂′(A𝑖ℓ−1)𝜎
′(C𝑖ℓ−1), ∀1 ≤ 𝑗 ≤ 𝑑

E
ℓ,ℓ−1
2𝑖,2 𝑗−1 = (W𝑦)𝑖, 𝑗 𝜎̂(B𝑖ℓ−1)𝜎

′(D𝑖ℓ), ∀1 ≤ 𝑗 ≤ 𝑑

E
ℓ,ℓ−1
2𝑖,2 𝑗

= (W2)𝑖, 𝑗 𝜎̂′(B𝑖ℓ−1)
(

𝜎(D𝑖ℓ) − y𝑖ℓ−1
)

, 𝑗 ≠ 𝑖

E
ℓ,ℓ−1
2𝑖,2𝑖

= −𝜎̂(B𝑖ℓ−1) + (W2)𝑖,𝑖𝜎̂′(B𝑖ℓ−1)
(

𝜎(D𝑖ℓ) − y𝑖ℓ−1
)

.

(21)

Similarly, Fℓ,ℓ−1 ∈ R
2𝑑×2𝑑 is a matrix whose entries are given below. For any 1 ≤ 𝑖 ≤ 𝑑, we have,

F
ℓ,ℓ−1
2𝑖−1, 𝑗 ≡ 0, ∀ 1 ≤ 𝑗 ≤ 2𝑑,

F
ℓ,ℓ−1
2𝑖,2 𝑗−1 = −(W𝑦)𝑖, 𝑗 𝜎̂(A𝑖ℓ−1)𝜎̂(B

𝑖
ℓ−1)𝜎

′(A𝑖ℓ−1), 1 ≤ 𝑗 ≤ 𝑑,

F
ℓ,ℓ−1
2𝑖,2 𝑗

= 𝜎̂(B𝑖ℓ−1)𝜎
′(D𝑖ℓ)

𝑑∑︁

𝜆=1

(W𝑦)𝑖,𝜆
((

𝜎(C𝜆ℓ−1) − z𝜆ℓ−1

)

𝜎̂′(A𝜆ℓ−1) (W1)𝜆, 𝑗 + 𝜎̂(A𝜆ℓ−1)𝜎
′(C𝜆ℓ−1) (W𝑧)𝜆, 𝑗

)

.

(22)
Using the fact that,

sup
𝑥∈R

max {|𝜎(𝑥) |, |𝜎′(𝑥) |, |𝜎̂(𝑥) |, |𝜎̂′(𝑥)} ≤ 1,

the pointwise bounds (4), 𝑡𝑛 < 1, the definition of 𝜂 (6) and the definition of matrix norms, we obtain that,

‖Eℓ,ℓ−1‖∞ ≤ max
{

1 + ‖W𝑧 ‖∞ + 2‖W1‖∞, 1 + ‖W𝑦 ‖∞ + 2‖W2‖∞
}

≤ 1 + 3𝜂. (23)

By similar calculations, we obtain,

‖Fℓ,ℓ−1‖∞ ≤ ‖W𝑦 ‖∞ (1 + 2‖W1‖∞ + ‖W𝑧 ‖∞) ≤ 𝜂 + 3𝜂2. (24)

Applying (23) and (24) in the representation formula (20), we obtain.










𝜕Xℓ

𝜕Xℓ−1









∞
≤ 1 + (1 + 3𝜂)Δ𝑡 + 𝜂(1 + 3𝜂)Δ𝑡2,

≤ 1 + (1 + 3𝜂)Δ𝑡 + ((1 + 3𝜂)Δ𝑡)2
2

.

Denote Δ𝜏 = (1 + 3𝜂)Δ𝑡 and using the expression (19) with the above inequality yields,










𝜕X𝑛

𝜕X𝑘









∞
≤

(

1 + Δ𝜏 + Δ𝜏2

2

)𝑛−𝑘
. (25)

Next, we choose Δ𝑡 small enough such that Δ𝜏 << 1 and the following holds,

(

1 + Δ𝜏 + Δ𝜏2

2

)𝑛−𝑘
≤ 1 + 2(𝑛 − 𝑘)Δ𝜏, (26)

for any 1 ≤ 𝑘 < 𝑛 ≤ 𝑁.
Hence applying (26) in (25), we obtain,










𝜕X𝑛

𝜕X𝑘









∞
≤ 1 + 2(𝑛 − 𝑘)Δ𝜏. (27)
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For the sake of definiteness, we fix any 1 ≤ 𝛼, 𝛽 ≤ 𝑑 and set 𝜃 = (W𝑦)𝛼,𝛽 in the following. The following
bounds for any other choice of 𝜃 ∈ Θ can be derived analogously. Given this, it is straightforward to
calculate from the structure of LEM (3) that entries of the vector 𝜕+X𝑘

𝜕(W𝑧 )𝛼,𝛽 are given by,

(

𝜕+X𝑘
𝜕 (W𝑧)𝛼,𝛽

)

𝑗

≡ 0, ∀ 𝑗 ≠ 2𝛼,

(

𝜕+X𝑘
𝜕 (W𝑧)𝛼,𝛽

)

2𝛼

= Δ𝑡𝜎̂(B𝛼𝑘−1)𝜎
′(D𝛼

𝑘 )z
𝛽

𝑘
.

(28)

Hence, by the pointwise bounds (4), we obtain from (28) that









𝜕+X𝑘
𝜕 (W𝑧)𝛼,𝛽










∞
≤ Δ𝑡

√︃

𝑘 (Δ𝑡 + 2Δ𝑡2) ≤ Δ𝑡
√
3𝑘Δ𝑡. (29)

Finally, it is straightforward to calculate from the loss function (5) that

𝜕E𝑛

𝜕X𝑛
=
[

0, y1𝑛 − ȳ1, . . . . . . , 0, y𝑑𝑛 − ȳ𝑑
]

. (30)

Therefore, using the pointwise bounds (4), we obtain









𝜕E𝑛

𝜕X𝑛









≤ X̂ +

√
3𝑛Δ𝑡. (31)

Applying (27), (29) and (31) in the definition (18) yields,
�
�
�
�
�

𝜕E
(𝑘)
𝑛

𝜕 (W𝑧)𝛼,𝛽

�
�
�
�
�
≤ Δ𝑡

√
3𝑘Δ𝑡 (X̂ +

√
3𝑛Δ𝑡) (1 + 2(𝑛 − 𝑘)Δ𝜏) . (32)

Substituting 𝑡𝑛 = 𝑛Δ𝑡 ≤ 1, 1 ≤ 𝑘 ≤ 𝑛 in (32) yields,
�
�
�
�
�

𝜕E
(𝑘)
𝑛

𝜕 (W𝑧)𝛼,𝛽

�
�
�
�
�
≤ Δ𝑡

√
3𝑘Δ𝑡 (X̂ +

√
3𝑛Δ𝑡) (1 + 2(𝑛 − 𝑘)Δ𝜏) ,

≤ Δ𝑡
√
3𝑛Δ𝑡 (X̂ +

√
3𝑛Δ𝑡) (1 + 2𝑛Δ𝜏)

Δ𝑡
√︁

3𝑡𝑛 (X̂ +
√︁

3𝑡𝑛) (1 + 2𝑛Δ𝜏)

≤
√
3
(√

3 + X̂
)

(Δ𝑡 + 2Δ𝜏).

Recalling that Δ𝜏 = (1 + 3𝜂)Δ𝑡 in the above expression leads to,
�
�
�
�
�

𝜕E
(𝑘)
𝑛

𝜕 (W𝑧)𝛼,𝛽

�
�
�
�
�
≤

(

3 +
√
3X̂

)

(3 + 6𝜂) Δ𝑡, ∀1 ≤ 𝑘 ≤ 𝑛. (33)

Applying (33) in (18) leads to,

�
�
�
�

𝜕E𝑛

𝜕 (W𝑧)𝛼,𝛽

�
�
�
�
≤

𝑛∑︁

𝑘=1

�
�
�
�
�

𝜕E
(𝑘)
𝑛

𝜕 (W𝑧)𝛼,𝛽

�
�
�
�
�

≤
(

3 +
√
3X̂

)

(3 + 6𝜂)
𝑛∑︁

𝑘=1

Δ𝑡,

≤
(

3 +
√
3X̂

)

(3 + 6𝜂) 𝑡𝑛.

(34)

Finally, recalling that 𝑡𝑁 = 𝑁Δ𝑡 ≤ 1, we obtain from (34) that,
�
�
�
�

𝜕E

𝜕 (W𝑧)𝛼,𝛽

�
�
�
�
≤

(

3 +
√
3X̂

)

(3 + 6𝜂) , (35)

which is the desired bound (6) for the scalar parameter 𝜃 = (W𝑦)𝛼,𝛽. �
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Remark D.1. The upper bound (6) holds under the assumption that the time step Δ𝑡 is sufficiently small.
Apart from the assumption that Δ𝑡 ≤ 1

2
, which suffices for the derivation of the pointwise bounds (4), the

derivation of the gradient upper bound (6), used the fact that 𝑇 = 𝑡𝑁 = 𝑛Δ𝑡 = 1. This assumption is simply
a convenient normalization and we can readily relax it leading to a gradient upper bound of the form;

�
�
�
�

𝜕E

𝜕𝜃

�
�
�
�
≤

(

3𝑇 +
√
3𝑇X̂

)

(1 + 2𝑇 (1 + 3𝜂)) 𝑇. (36)

Another source for the smallness requirement on Δ𝑡 stems from the assumption that Δ𝑡 be small enough
such that the bound (26) will hold. One can also relax this smallness assumption on Δ𝑡 by recognizing that

(

1 + Δ𝜏 + Δ𝜏2

2

)𝑛−𝑘
≤

(

𝑒Δ𝜏
)𝑛−𝑘

= 𝑒 (𝑛−𝑘)Δ𝜏 .

Note that the above bound holds for any value of Δ𝑡 > 0. One can apply this bound and repeat all the
calculations from (32)-(35) to conclude that the bound on the gradient (with 𝑡𝑁 = 𝑇 = 1) is,

�
�
�
�

𝜕E

𝜕𝜃

�
�
�
�
≤

(

3 +
√
3X̂

)
(

1 + 𝑒1+3𝜂
)

. (37)

D.3 Proof of Proposition 4.3 of main text.

To mitigate the vanishing gradient problem, we need to obtain a more precise characterization of the

gradient 𝜕E
(𝑘)
𝑛

𝜕𝜃
defined in (18). To this end, we introduce the following order -notation for matrices,

𝛽 = O(𝛼), for 𝛼, 𝛽 ∈ R+ if there exists constants 𝐶,𝐶 such that 𝐶𝛼 ≤ 𝛽 ≤ 𝐶𝛼.
M = O(𝛼), for M ∈ R

𝑑1×𝑑2 , 𝛼 ∈ R+ if there exists constant 𝐶 such that ‖M‖ ≤ 𝐶𝛼.
(38)

For the sake of definiteness, we fix any 1 ≤ 𝛼, 𝛽 ≤ 𝑑 and set 𝜃 = (W𝑦)𝛼,𝛽 in the following. The following
formulas for any other choice of 𝜃 ∈ Θ can be derived analogously. Moreover, for simplicity of notation,
we set the target function X̄𝑛 ≡ 0.

Proposition 4.3 is a straightforward corollary of the following,

Proposition D.2. Let y𝑛, z𝑛 be the hidden states generated by LEM (3), then we have the following
representation formula for the hidden state gradient,

𝜕E
(𝑘)
𝑛

𝜕𝜃
= Δ𝑡𝜎̂(B𝛼𝑘−1)𝜎

′(D𝛼
𝑘 )z

𝛽

𝑘

(

y𝛼𝑛 − ȳ𝛼𝑛
)

+ Δ𝑡2𝜎̂(B𝛼𝑘−1)𝜎
′(D𝛼

𝑘 )z
𝛽

𝑘

[
𝑑∑︁

𝑗=1

(

y𝑛𝑗 − ȳ𝑛𝑗

) 𝑛∑︁

ℓ=𝑘+1
𝜎̂′(B 𝑗

ℓ−1)
(

𝜎(D 𝑗

ℓ
) − y

𝑗

ℓ−1

)

(W2) 𝑗 ,2𝛼

]

+ Δ𝑡2𝜎̂(B𝛼𝑘−1)𝜎
′(D𝛼

𝑘 )z
𝛽

𝑘

[
𝑛∑︁

ℓ=𝑘+1
𝜎̂(B𝛼ℓ−1)

(

y𝑛𝛼 − ȳ𝑛𝛼
)

]

+ O(Δ𝑡3).

(39)

Here, the constants in O could depend on 𝜂 defined in (6) (main text).

Proof. The starting point for deriving an asymptotic formula for the hidden state gradient 𝜕E
(𝑘)
𝑛

𝜕𝜃
is to

observe from the representation formula (20), the bound (24) on matrices Fℓ,ℓ−1 and the order notation
(38) that,

𝜕Xℓ

𝜕Xℓ−1
= I2𝑑×2𝑑 + Δ𝑡Eℓ,ℓ−1 + O(Δ𝑡2), (40)

as long as 𝜂 is independent of Δ𝑡.
By using induction and the bounds (23),(24), it is straightforward to calculate the following represen-

tation formula for the product,

𝜕X𝑛

𝜕X𝑘
=

∏

𝑘<ℓ≤𝑛

𝜕Xℓ

𝜕Xℓ−1
= I2𝑑×2𝑑 + Δ𝑡

𝑛∑︁

ℓ=𝑘+1
Eℓ,ℓ−1 + O(Δ𝑡2). (41)
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Recall that we have set 𝜃 = (W𝑧)𝛼,𝛽. Hence, by the expressions (30) and (28), a direct but tedious
calculation leads to,

𝜕E𝑛

𝜕X𝑛
I2𝑑×2𝑑

𝜕+X𝑘
𝜕𝜃

= Δ𝑡𝜎̂(B𝛼𝑘−1)𝜎
′(D𝛼

𝑘 )z
𝛽

𝑘

(

y𝛼𝑛 − ȳ𝛼𝑛
)

, (42)

𝑛∑︁

ℓ=𝑘+1

𝜕E𝑛

𝜕X𝑛
Eℓ,ℓ−1

𝜕+X𝑘
𝜕𝜃

= (43)

Δ𝑡𝜎̂(B𝛼𝑘−1)𝜎
′(D𝛼

𝑘 )z
𝛽

𝑘

[
𝑑∑︁

𝑗=1

(

y𝑛𝑗 − ȳ𝑛𝑗

) 𝑛∑︁

ℓ=𝑘+1
𝜎̂′(B 𝑗

ℓ−1)
(

𝜎(D 𝑗

ℓ
) − y

𝑗

ℓ−1

)

(W2) 𝑗 ,2𝛼 −
𝑛∑︁

ℓ=𝑘+1
𝜎̂(B𝛼ℓ−1)

(

y𝑛𝛼 − ȳ𝑛𝛼
)

]

.

(44)

Therefore, by substituting the above expression into the representation formula (41) yields the desired
formula (39).

In order to prove the formula (7) (see Proposition 4.3 of main text), we focus our interest on long-term
dependencies i.e., 𝑘 << 𝑛. Then, a closer perusal of the expression in (42), together with the pointwise

bounds (4) which implies that y𝑘−1 ≈ O(
√
Δ𝑡), results in the following,

𝜕E𝑛

𝜕X𝑛
I2𝑑×2𝑑

𝜕+X𝑘
𝜕𝜃

= O
(

Δ𝑡
3

2

)

. (45)

Similarly, we also obtain,

Δ𝑡

𝑛∑︁

ℓ=𝑘+1

𝜕E𝑛

𝜕X𝑛
Eℓ,ℓ−1

𝜕+X𝑘
𝜕𝜃

= O
(

Δ𝑡
3

2

)

. (46)

Combining (45) and (46) results in the desired asymptotic bound (7). �

D.4 Proof of Proposition 4.4

Proof. To prove this proposition, we have to construct hidden states y𝑛, z𝑛, output state 𝜔𝑛, weight
matrices W1,2,𝑦,𝑧 ,W𝑦,𝑧 ,V1,2,𝑦,𝑧 and bias vectors b1,2,𝑦,𝑧 such that LEM (3) with output state 𝜔𝑛 = W𝑦y𝑛
approximates the dynamical system (8).

Let R
∗ > 𝑅 >> 1 and 𝜖∗ < 𝜖 , be parameters to be defined later. By the theorem for universal

approximation of continuous functions with neural networks with the tanh activation function 𝜎 = tanh
[5], given 𝜖∗, there exist weight matrices 𝑊1 ∈ R

𝑑1×𝑑ℎ , 𝑉1 ∈ R
𝑑1×𝑑ℎ ,𝑊2 ∈ R

𝑑ℎ×𝑑1 and bias vector 𝑏1 ∈ R
𝑑1

such that the tanh neural network defined by,

N1 (ℎ, 𝑢) = 𝑊2𝜎 (𝑊1ℎ +𝑉1𝑢 + 𝑏1) , (47)

approximates the underlying function f in the following manner,

max
max( ‖ℎ ‖, ‖𝑢 ‖)<𝑅∗

‖f (ℎ, 𝑢) −N1 (ℎ, 𝑢)‖ ≤ 𝜖∗. (48)

Similarly, one can readily approximate the identity function g(ℎ, 𝑢) = ℎ with a tanh neural network of the
form,

N̄2 (ℎ) = 𝑊̄2𝜎
(

𝑊̄1ℎ
)

, (49)

such that
max

‖ℎ ‖, ‖𝑢 ‖<𝑅∗
‖g(ℎ) −N2 (ℎ)‖ ≤ 𝜖∗. (50)

Next, we define the following dynamical system,

z̄𝑛 = 𝑊2𝜎 (𝑊1ȳ𝑛−1 +𝑉1u𝑛 + 𝑏1) ,
ȳ𝑛 = 𝑊̄2𝜎

(

𝑊̄1z̄𝑛
)

,
(51)

with initial states z̄0 = ȳ0 = 0.
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Using the approximation bound (48), we derive the following bound,

‖𝝓𝑛 − ȳ𝑛‖ = ‖f (𝝓𝑛−1, u𝑛) − z̄𝑛 + z̄𝑛 − ȳ𝑛‖
≤ ‖f (𝝓𝑛−1, u𝑛) −𝑊2𝜎 (𝑊1ȳ𝑛−1 +𝑉1u𝑛 + 𝑏1) ‖ + ‖g(z̄𝑛) − 𝑊̄2𝜎

(

𝑊̄1z̄𝑛
)

‖
≤ ‖f (𝝓𝑛−1, u𝑛) − f (ȳ𝑛−1, u𝑛) ‖ + ‖f (ȳ𝑛−1, u𝑛) −𝑊2𝜎 (𝑊1ȳ𝑛−1 +𝑉1u𝑛 + 𝑏1) ‖
+ ‖g(z̄𝑛) − 𝑊̄2𝜎

(

𝑊̄1z̄𝑛
)

‖
≤ Lip(f )‖𝝓𝑛 − ȳ𝑛‖ + 2𝜖∗ (from (48), (50)).

Here, Lip(f ) is the Lipschitz constant of the function f on the compact set {(ℎ, 𝑢) ∈ R
𝑑ℎ×𝑑𝑢 : ‖ℎ‖, ‖𝑢‖ < R

∗}.
Note that one can readily prove using the fact that ȳ0 = z̄0 = 0, bounds (48), (50) and the assumption
‖𝝓𝑛‖, ‖u𝑛‖ < 𝑅, that ‖z̄𝑛‖, ‖ȳ𝑛‖ < 𝑅∗ = 2𝑅.

Iterating the above inequality over 𝑛 leads to the bound,

‖𝝓𝑛 − ȳ𝑛‖ ≤ 2 (Lip(f ))𝑛 𝜖∗. (52)

Hence, using the Lipschitz continuity of the output function o in (8), one obtains,

‖o𝑛 − o(ȳ𝑛)‖ ≤ 2(Lip(o)) (Lip(f ))𝑛 𝜖∗, (53)

with Lip(o) being the Lipshitz constant of the function o on the compact set {ℎ ∈ R
𝑑ℎ : ‖ℎ‖ < R

∗}.
Next, we can use the universal approximation theorem for neural networks again to conclude that

given a tolerance 𝜖 , there exist weight matrices 𝑊3 ∈ R
𝑑2×𝑑ℎ ,𝑊4 ∈ R

𝑑ℎ×𝑑2 and bias vector 𝑏2 ∈ R
𝑑2 such

that the tanh neural network defined by,

N3 (ℎ) = 𝑊4𝜎 (𝑊3ℎ + 𝑏2) , (54)

approximates the underlying output function o in the following manner,

max
‖ℎ ‖<𝑅∗

‖o(ℎ) −N3 (ℎ)‖ ≤ 𝜖 . (55)

Now defining,
𝜔̄𝑛 = 𝑊4𝜎 (𝑊3ȳ𝑛 + 𝑏2) , (56)

we obtain from (55) and (53) that,

‖o𝑛 − 𝜔̄𝑛‖ ≤ 𝜖 + 2(Lip(o)) (Lip(f ))𝑛 𝜖∗. (57)

Next, we introduce the notation,

z̃𝑛 = 𝜎 (𝑊1ȳ𝑛−1 +𝑉1u𝑛 + 𝑏1) , ỹ𝑛 = 𝜎
(

𝑊̄1z̄𝑛
)

. (58)

From (51), we see that
z̄𝑛 = 𝑊2z̃𝑛, ȳ𝑛 = 𝑊̄2ỹ𝑛 (59)

Thus from (59) and (57), we have

𝜔̄𝑛 = 𝑊4𝜎 (𝑊3𝑊2ỹ𝑛 + 𝑏2) ,
= 𝑊4𝜎

(

𝑊3𝑊2𝜎
(

𝑊̄1𝑊2z̃𝑛
)

+ 𝑏2
)

.
(60)

Define the function R : R
𝑑ℎ × R

𝑑𝑢 ↦→ R
𝑑𝑜 by,

R(𝑧) = 𝑊4𝜎
(

𝑊3𝑊2𝜎
(

𝑊̄1𝑊2𝑧
)

+ 𝑏2
)

. (61)

The function, defined above, is clearly Lipschitz continuous. We can apply the universal approximation
theorem for tanh neural networks to find, for any given tolerance 𝜖 , weight matrices 𝑊5 ∈ R

𝑑3×𝑑4 ,𝑊6 ∈
R
𝑑𝑜×𝑑3 , 𝑉2 ∈ R

𝑑3×𝑑𝑢 and bias vector 𝑏3 ∈ R
𝑑3 such that the following holds,

max
max( ‖𝑧 ‖)<𝑅∗

‖R(𝑧) −𝑊6𝜎(𝑊5𝑧 + 𝑏3)‖ ≤ 𝜖 . (62)
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Denote 𝜔̃𝑛 = 𝑊6𝜎(𝑊5z̃𝑛 + 𝑏3), then from (62) and (60), we obtain that

‖𝜔̄𝑛 − 𝜔̃𝑛‖ ≤ 𝜖 .

Combining this estimate with (57) yields,

‖o𝑛 − 𝜔̃𝑛‖ ≤ 𝜖 + 𝜖 + 2(Lip(o)) (Lip(f ))𝑛 𝜖∗. (63)

Now, we collect all the ingredient to define the LEM that can approximate the dynamical system (8).
To this end, we define hidden states z𝑛, y𝑛 ∈ R

2𝑑ℎ as

z𝑛 = [z̃𝑛, ẑ𝑛] , y𝑛 = [ỹ𝑛, ŷ𝑛] ,

with z̃𝑛, ẑ𝑛, ỹ𝑛, ŷ𝑛 ∈ R
𝑑ℎ . These hidden states are evolved by the dynamical system,

z⊥𝑛 = 𝜎

( [

𝑊1𝑊̄2 0
0 0

]

y⊥𝑛−1 + [𝑉1u𝑛, 0]⊥ + [𝑏1, 0]⊥
)

,

y⊥𝑛 = 𝜎

( [

𝑊̄1𝑊2 0
𝑊5 0

]

z⊥𝑛 + [0, 0]⊥ + [0, 𝑏3]⊥
) (64)

and the output state is calculated by,
𝜔⊥
𝑛 = [0,𝑊6]y⊥𝑛 . (65)

Finally, we can recast the dynamical system (64), (65) as a LEM of the form (3) for the hidden states
y𝑛, z𝑛, defined in (64), with the following parameters, Now, define the hidden states ȳ𝑛, z̄𝑛 ∈ R

𝑑ℎ for all
1 ≤ 𝑛 ≤ 𝑁 by the LEM (3) with the following parameters,

Δ𝑡 = 1, 𝑑𝑦 = 2𝑑ℎ ,

W1 = W2 = V1 = V2 = 0

b1 = b2 = b∞,

W𝑧 =

[

𝑊1𝑊̄2 0
0 0

]

, V𝑧 = [𝑉1, 0], b𝑧 = [𝑏1, 0]

W𝑦 =

[

𝑊̄1𝑊2 0
𝑊5 0

]

, V𝑦 = 0, b𝑧 = [0, 𝑏3] .

W𝑦 = [0,𝑊6] .

(66)

Here, b∞ ∈ R
𝑑ℎ is defined as

b∞ = [𝑏∞, 𝑏∞, . . . , . . . , 𝑏∞],

with 1 << 𝑏∞ is such that
|1 − 𝜎̂(𝑏∞) | ≤ 𝛿. (67)

The nature of the sigmoid function guarantees the existence of such a 𝑏∞ for any 𝛿. As 𝛿 decays
exponentially fast, we set it to 0 in the following for notational simplicity.

It is straightforward to verify that the output state of the LEM (3) with parameters given in (66) is
𝜔𝑛 = 𝜔̃𝑛.

Therefore, from (63) and by setting 𝜖 < 𝜖
3
, 𝜖 < 𝜖

3
and

𝜖∗ <
𝜖

6Lip(g) (Lip(f ))𝑁 ,

we prove the desired bound (9).
�

22



D.5 Proof of Proposition 4.5

Proof. The proof of this proposition is based heavily on the proof of Proposition 4.4. Hence, we will
highlight the main points of difference.

As the steps for approximation of a general Lipschitz continuous output map are identical to the
corresponding steps in the proof of proposition 4.4 (see the steps from Eqns. (53) to (63)), we will only
consider the following linear output map for convenience herein,

o(𝝍𝑛) = W𝑐𝝍𝑛. (68)

Let R
∗ > 𝑅 >> 1 and 𝜖∗ < 𝜖 , be parameters to be defined later. By the theorem for universal approximation

of continuous functions with neural networks with the tanh activation function 𝜎 = tanh, given 𝜖∗, there
exist weight matrices 𝑊

𝑓

1
,𝑊

𝑓

2
∈ R

𝑑1×𝑑ℎ , 𝑉 𝑓
1

∈ R
𝑑1×𝑑𝑢 ,𝑊 𝑓

3
∈ R

𝑑ℎ×𝑑1 and bias vector 𝑏
𝑓

1
∈ R

𝑑1 such that the
tanh neural network defined by,

N 𝑓 (ℎ, 𝑐, 𝑢) = 𝑊 𝑓

3
𝜎
(

𝑊
𝑓

1
ℎ +𝑊 𝑓

2
𝑐 +𝑉 𝑓

1
𝑢 + 𝑏 𝑓

1

)

, (69)

approximates the underlying function f in the following manner,

max
max( ‖ℎ ‖, ‖𝑐 ‖, ‖𝑢 ‖)<𝑅∗

‖f (ℎ, 𝑐, 𝑢) −N 𝑓 (ℎ, 𝑐, 𝑢)‖ ≤ 𝜖∗. (70)

Next, we define the following map,

G(ℎ, 𝑐, 𝑢) = g(ℎ, 𝑐, 𝑢) −
(

1 − 1

𝜏

)

𝑐, (71)

for any 𝜏 > 0.
By the universal approximation theorem, given 𝜖∗, there exist weight matrices 𝑊

𝑔

1
,𝑊

𝑔

2
∈ R

𝑑2×𝑑ℎ , 𝑉 𝑓
2

∈
R
𝑑2×𝑑𝑢 ,𝑊𝑔

3
∈ R

𝑑ℎ×𝑑2 and bias vector 𝑏
𝑔

1
∈ R

𝑑2 such that the tanh neural network defined by,

N𝑔 (ℎ, 𝑐, 𝑢) = 𝑊𝑔

3
𝜎
(

𝑊
𝑔

1
ℎ +𝑊𝑔

2
𝑐 +𝑉𝑔

1
𝑢 + 𝑏𝑔

1

)

, (72)

approximates the function G (71) in the following manner,

max
max( ‖ℎ ‖, ‖𝑐 ‖, ‖𝑢 ‖)<𝑅∗

‖f (ℎ, 𝑐, 𝑢) −N 𝑓 (ℎ, 𝑐, 𝑢)‖ ≤ 𝜖∗. (73)

Note that the sizes of the neural network N𝑔 can be made independent of the small parameter 𝜏 by
simply taking the difference of the neural networks approximating the functions 𝑔 and 𝑔(ℎ, 𝑐, 𝑢) = 𝑐 with
Tanh neural networks. As neither of these functions depend on the small parameter 𝜏, the sizes of the
corresponding neural networks are independent of the small parameter too.

Next, as in the proof of proposition 4.4, one can readily approximate the identity function 𝑓 (ℎ, 𝑐, 𝑢) = ℎ
with a tanh neural network of the form,

N̄ 𝑓 (ℎ) = 𝑊̄2𝜎
(

𝑊̄1ℎ
)

, (74)

such that
max

‖ℎ ‖, ‖𝑐 ‖, ‖𝑢 ‖<𝑅∗
‖ 𝑓 (ℎ, 𝑐, 𝑢) −N 𝑓 (ℎ)‖ ≤ 𝜖∗, (75)

and with the same weights and biases, one can approximate the identity function 𝑔(ℎ, 𝑐, 𝑢) = 𝑐 with the
Tanh neural network,

N̄𝑔 (𝑐) = 𝑊̄2𝜎
(

𝑊̄1𝑐
)

, (76)

such that
max

‖ℎ ‖, ‖𝑐 ‖, ‖𝑢 ‖<𝑅∗
‖𝑔(ℎ, 𝑐, 𝑢) −N𝑔 (𝑐)‖ ≤ 𝜖∗. (77)
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Next, we define the following dynamical system,

ẑ𝑛 = 𝑊
𝑓

3
𝜎
(

𝑊
𝑓

1
ỹ𝑛−1 +𝑊 𝑓

2
ŷ𝑛−1 +𝑉 𝑓1 u𝑛 + 𝑏 𝑓1

)

,

z̃𝑛 = 𝑊̄2𝜎
(

𝑊̄1ŷ𝑛−1
)

,

ŷ𝑛 = (1 − 𝜏)ŷ𝑛−1 + 𝜏𝑊𝑔

3
𝜎
(

𝑊
𝑔

1
ẑ𝑛 +𝑊𝑔

2
z̃𝑛 +𝑉𝑔1 u𝑛 + 𝑏

𝑔

1

)

,

ỹ𝑛 = 𝑊̄2𝜎
(

𝑊̄1ẑ𝑛
)

,

(78)

with hidden states ẑ𝑛, z̃𝑛, ŷ𝑛, ỹ𝑛 ∈ R
𝑑ℎ and with initial states ẑ0 = z̃0 = ŷ0 = ỹ0 = 0.

We derive the following bounds,

‖𝝓𝑛 − ẑ𝑛‖ = ‖f (𝝓𝑛−1,𝝍𝑛−1, u𝑛) −𝑊 𝑓

3
𝜎
(

𝑊
𝑓

1
ỹ𝑛−1 +𝑊 𝑓

2
ŷ𝑛−1 +𝑉 𝑓1 u𝑛 + 𝑏 𝑓1

)

‖

≤ ‖f (𝝓𝑛−1,𝝍𝑛−1, u𝑛) − f (ỹ𝑛−1, ẑ𝑛−1, u𝑛)‖,

+ ‖f (ỹ𝑛−1, ẑ𝑛−1, u𝑛) −𝑊 𝑓

3
𝜎
(

𝑊
𝑓

1
ỹ𝑛−1 +𝑊 𝑓

2
ŷ𝑛−1 +𝑉 𝑓1 u𝑛 + 𝑏 𝑓1

)

‖

≤ Lip(f ) (‖𝝓𝑛−1 − ẑ𝑛−1‖ + ‖ỹ𝑛−1 − ẑ𝑛−1‖ + ‖𝝍𝑛−1 − ȳ𝑛−1‖) + 𝜖∗ (by (73))
≤ Lip(f ) (‖𝝓𝑛−1 − ẑ𝑛−1‖ + ‖𝝍𝑛−1 − ȳ𝑛−1‖) + (1 + Lip(f )) 𝜖∗ (by (75), (78)),

and

‖𝝍𝑛 − ŷ𝑛‖ = ‖(1 − 𝜏) (𝝍𝑛−1 − ȳ𝑛−1) + 𝜏
(

G(𝝓𝑛,𝝍𝑛−1, u𝑛) −𝑊𝑔

3
𝜎
(

𝑊
𝑔

2
z̃𝑛 +𝑊𝑔

1
ẑ𝑛 +𝑉𝑔1 u𝑛 + 𝑏

𝑔

1

) )

‖
≤ ‖(𝝍𝑛−1 − ȳ𝑛−1)‖ + 𝜏‖G(𝝓𝑛,𝝍𝑛−1, u𝑛) −G(z̄𝑛, z̃𝑛, u𝑛)‖
+ 𝜏‖G(z̄𝑛, z̃, u𝑛) −𝑊𝑔

3
𝜎
(

𝑊
𝑔

2
z̃𝑛 +𝑊𝑔

1
ẑ𝑛 +𝑉𝑔1 u𝑛 + 𝑏

𝑔

1

)

‖
≤ ‖𝝍𝑛−1 − ȳ𝑛−1)‖ + 𝜏Lip(G) (‖𝝓𝑛 − ẑ𝑛‖ + ‖z̃𝑛 − ŷ𝑛−1‖ + ‖𝝍𝑛−1 − ŷ𝑛−1‖) + 𝜏𝜖∗,
≤ (1 + 𝜏Lip(G)) (1 + Lip(f ))‖𝝍𝑛−1 − ŷ𝑛−1‖ + 𝜏Lip(G)Lip(f )‖𝝓𝑛−1 − ẑ𝑛−1‖
+ 𝜏(1 + Lip(G) (2 + Lip(f )))𝜖∗,

where the last inequality follows by using the previous inequality together with (78) and (77).
As 𝜏 < 1, it is easy to see from (71) that Lip(G) < Lip(g) + 2

𝜏
. Therefore, the last inequality reduces

to,

‖𝝍𝑛 − ŷ𝑛‖ ≤ (3 + 𝜏Lip(g)) (1 + Lip(f ))‖𝝍𝑛−1 − ŷ𝑛−1‖ + (2 + 𝜏Lip(g))Lip(f )‖𝝓𝑛−1 − ẑ𝑛−1‖
+ (𝜏 + (2 + 𝜏Lip(g)) (2 + Lip(f )) 𝜖∗.

Adding we obtain,

‖𝝓𝑛 − ẑ𝑛‖ + ‖𝝍𝑛 − ŷ𝑛‖ ≤ 𝐶∗ (‖𝝓𝑛−1 − ẑ𝑛−1‖ + ‖𝝍𝑛−1 − ŷ𝑛−1‖) + 𝐷∗𝜖∗, (79)

where,
𝐶∗

= max{(3 + Lip(g))Lip(f ),Lip(f ) (3 + Lip(g)) (1 + Lip(f ))},
𝐷∗

= 1 + Lip(f ) + (1 + Lip(g) (2 + Lip(f ))).
(80)

Iterating over 𝑛 leads to the bound,

‖𝝓𝑛 − ẑ𝑛‖ + ‖𝝍𝑛 − ŷ𝑛‖ ≤ 𝑛(𝐶∗)𝑛𝐷∗𝜖∗. (81)

Here, Lip(f ),Lip(g) are the Lipschitz constants of the functions f , g on the compact set {(ℎ, 𝑐, 𝑢) ∈
R
𝑑ℎ×𝑑ℎ×𝑑𝑢 : ‖ℎ‖, ‖𝑐‖, ‖𝑢‖ < R

∗}. Note that one can readily prove using the zero values of initial states,
the bounds (75), (77) and the assumption ‖𝝓𝑛‖, ‖𝝍𝑛‖, ‖u𝑛‖ < 𝑅, that ‖ẑ𝑛‖, ‖z̃𝑛‖, ‖ŷ𝑛‖, ‖ỹ𝑛‖ < 𝑅∗ = 2𝑅.

Using the definition of the output function (11) and the bound (81) that,

‖o𝑛 − o(ŷ𝑛)‖ ≤ ‖W𝑐 ‖𝑛(𝐶∗)𝑛𝐷∗𝜖∗. (82)
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Defining the dynamical system,

z∗𝑛 = 𝜎
(

𝑊
𝑓

1
𝑊̄2ȳ𝑛−1 +𝑊 𝑓

2
𝑊
𝑔

3
y∗𝑛−1 +𝑉

𝑓

1
u𝑛 + 𝑏 𝑓1

)

z̄𝑛 = 𝜎
(

𝑊̄1𝑊
𝑔

3
y∗𝑛−1

)

y∗𝑛 = (1 − 𝜏)y∗𝑛−1 + 𝜏𝜎
(

𝑊
𝑔

1
𝑊
𝑓

3
z∗𝑛 +𝑊

𝑔

2
𝑊̄2z̄𝑛 +𝑉𝑔1 u𝑛 + 𝑏

𝑔

1

)

,

ȳ𝑛 = 𝜎
(

𝑊̄1𝑊
𝑓

3
z∗𝑛

)

.

(83)

By multiplying suitable matrices to (78), we obtain that,

ẑ𝑛 = 𝑊
𝑓

3
z∗𝑛, z̃𝑛 = 𝑊̄2z̄𝑛, ŷ𝑛 = 𝑊

𝑔

3
y∗𝑛, ỹ𝑛 = 𝑊̄2ȳ𝑛. (84)

Finally, in addition to 𝑏∞ defined in (52), for any given 𝜏 ∈ (0, 1], we introduce 𝑏𝜏 ∈ R defined by

𝜎̂(𝑏𝜏) = 𝜏. (85)

The existence of a unique 𝑏𝜏 follows from the fact that the sigmoid function 𝜎̂ is monotone. Next, we
define the two vectors b∞, b𝜏 ∈ R

2𝑑ℎ as

b𝑖∞ = 𝑏∞, ∀ 1 ≤ 𝑖 ≤ 2𝑑ℎ ,

b𝑖𝜏 = 𝑏𝜏 , ∀ 1 ≤ 𝑖 ≤ 𝑑ℎ ,

b𝑖𝜏 = 𝑏∞, ∀ 𝑑ℎ + 1 ≤ 𝑖 ≤ 2𝑑ℎ .

(86)

We are now in a position to define the LEM of form (3), which will approximate the two-scale dynamical
system (10). To this end, we define the hidden states z𝑛, y𝑛 ∈ R

2𝑑ℎ such that z𝑛 = [z∗𝑛, z̄∗𝑛] and y𝑛 = [y∗𝑛, ȳ∗𝑛].
The parameters for the corresponding LEM of form (3) given by,

Δ𝑡 = 1, 𝑑𝑦 = 2𝑑ℎ

W1 = W2 = V1 = V2 ≡ 0,

b1 = b∞, b2 = b𝜏 ,

W𝑧 =

[

𝑊
𝑓

2
𝑊
𝑔

3
𝑊
𝑓

1
𝑊̄2

𝑊̄1𝑊
𝑔

3
0

]

, V𝑧 = [𝑉 𝑓
1
0], b𝑧 = [𝑏 𝑓

1
, 0],

W𝑦 =

[

𝑊
𝑔

1
𝑊
𝑓

3
𝑊
𝑔

2
𝑊̄2

𝑊̄1𝑊
𝑓

3
0

]

, V𝑧 = [𝑉𝑔
1
0], b𝑧 = [𝑏𝑔

1
, 0],

(87)

and with following parameters defining the output states,

W𝑦 =
[

W𝑐𝑊
𝑔

3
0
]

, (88)

yields an output state 𝜔𝑛 = W𝑦y𝑛.
It is straightforward to observe that 𝜔𝑛 ≡ o(ŷ𝑛). Hence, the desired bound (11) follows from (81) by

choosing,

𝜖∗ =
𝜖

𝑁 (𝐶∗)𝑁𝐷∗ .

�

E LEMs emulate Heterogeneous multiscale methods for ODEs

Following [24], we consider the following prototypical example of a fast-slow system of ordinary differential
equations,

𝝓′(𝑡) = 1

𝜏
( 𝑓 (𝝍) − 𝝓) ,

𝝍 ′(𝑡) = 𝑔(𝝓,𝝍).
(89)
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Here 𝝓,𝝍 ∈ R
𝑚 are the fast and slow variables respectively and 0 < 𝜏 << 1 is a small parameter. Note that

we have rescaled time and are interested in the dynamics of the slow variable 𝝍(𝑡) in the time interval
[0, 𝑇].

A naive time-stepping numerical scheme for (89) requires a time step size 𝛿𝑡 ∼ O(𝜏). Thus, the
computation will entail time updates 𝑁 ∼ O(1/𝜏). Hence, one needs a multiscale ODE solver to
approximate the solutions of the system (89). One such popular ODE solver can be derived by using the
Heterogenous multiscale method (HMM); see Kuehn [24] and references therein. This in turns, requires
using two time stepping schemes, a macro solver for the slow variable, with a time step Δ𝑡 of the form,

𝝍𝑛 = 𝝍𝑛−1 + Δ̃𝑡𝑔(𝝓𝑛,𝝍𝑛−1). (90)

Here, the time step Δ̃𝑡 < 1 is independent of the small parameter 𝜏.
Moreover, the fast variable is updated using a micro solver of the form,

𝝓
(𝑘)
𝑛−1 = 𝝓

(𝑘−1)
𝑛−1 − 𝛿𝑡 ( 𝑓 (𝝍𝑛−1) − 𝝓

(𝑘−1)
𝑛−1 ), 1 ≤ 𝑘 ≤ 𝐾.

𝝓𝑛 = 𝝓𝐾𝑛−1,

𝝓
(0)
𝑛−1 = 𝝓𝑛−1.

(91)

Note that the micro time step size 𝛿𝑡 and the number of micro time steps 𝐾 are assumed to independent
of the small parameter 𝜏.

It is shown in [24] (Chapter 10.8) that for any given small tolerance 𝜖 > 0, one can choose a macro
time step Δ̃𝑡, a micro time step 𝛿𝑡, the number 𝐾 of micro time steps, the number 𝑁 of macro time steps,
independent of 𝜏, such that the discrete states 𝝍𝑛 approximate the slow-variable 𝝍(𝑡𝑛) (with 𝑡𝑛 = 𝑛Δ̃𝑡) of
the fast-slow system (89) to the desired accuracy of 𝜖 .

Our aim is to show that we can construct a LEM of the form (3) such that the states 𝝓𝑛,𝝍𝑛, defined
in (90), (91) can be approximated to arbitrary accuracy. By combining this with the accuracy of HMM,
we will prove that LEMs can approximate the solutions of the fast-slow system (89) to desired accuracy,
independent of the small parameter 𝜏 in (89).

Proposition E.1. Let 𝝓𝑛,𝝍𝑛 ∈ R
𝑚, for 1 ≤ 𝑛 ≤ 𝑁, be the states defined by the HMM dynamical system

(90), (91). For any given 𝜖 > 0, there exists a LEM of the form (3) with hidden states [z𝑛, y𝑛], where
z𝑛, y𝑛 ∈ R

𝑑𝑚 and output states 𝜔ℎ𝑛 , 𝜔
𝑐
𝑛 such that the following holds,

max
{

‖𝝓𝑛 − 𝜔ℎ𝑛 ‖, ‖𝝍𝑛 − 𝜔𝑐𝑛‖
}

≤ 𝜖, ∀1 ≤ 𝑛 ≤ 𝑁. (92)

Proof. We start by using iteration on the micro solver (90) from 𝑘 = 1 to 𝑘 = 𝐾 to derive the following,

𝝓𝑛 = 𝛿𝑡𝝓𝑛−1 + (1 − 𝛿𝑡) 𝑓 (𝝍𝑛−1),
𝛿𝑡 = (1 − 𝛿𝑡)𝐾 .

(93)

As 𝛿𝑡 < 1, we have that 𝛿𝑡 < 1.
By the universal approximation theorem for Tanh neural networks, for any given tolerance 𝜖∗, there

exist weight matrices 𝑊
𝑓

1
∈ R

𝑑1×𝑚,𝑊 𝑓

2
∈ R

𝑚×𝑑1 and bias vector 𝑏
𝑓

1
∈ R

𝑑1 such that the tanh neural
network defined by,

N 𝑓 (𝑐) = 𝑊 𝑓

2
𝜎
(

𝑊
𝑓

1
𝑐 + 𝑏 𝑓

1

)

, (94)

approximates the underlying function f in the following manner,

max
‖𝑐 ‖<𝑅∗

‖f (𝑐) −N 𝑓 (𝑐)‖ ≤ 𝜖∗. (95)

Next, we define the following map,

G(ℎ, 𝑐) = g(ℎ, 𝑐) + 𝑐, (96)

By the universal approximation theorem, given 𝜖∗, there exist weight matrices 𝑊
𝑔

1
,𝑊

𝑔

2
∈ R

𝑑2×𝑚,𝑊𝑔

3
∈

R
𝑚×𝑑2 and bias vector 𝑏

𝑔

1
∈ R

𝑑2 such that the tanh neural network defined by,

N𝑔 (ℎ, 𝑐) = 𝑊𝑔

3
𝜎
(

𝑊
𝑔

1
ℎ +𝑊𝑔

2
𝑐 + 𝑏𝑔

1

)

, (97)
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approximates the function G (96) in the following manner,

max
max( ‖ℎ ‖, ‖𝑐 ‖)<𝑅∗

‖G(ℎ, 𝑐) −N𝑔 (ℎ, 𝑐)‖ ≤ 𝜖∗. (98)

Next, as in the proof of propositions 4.4 4.5, one can readily approximate the identity function
𝑓 (ℎ, 𝑐) = ℎ with a tanh neural network of the form,

N̄ 𝑓 (ℎ) = 𝑊̄2𝜎
(

𝑊̄1ℎ
)

, (99)

such that
max

‖ℎ ‖, ‖𝑐 ‖<𝑅∗
‖ 𝑓 (ℎ, 𝑐) −N 𝑓 (ℎ)‖ ≤ 𝜖∗, (100)

and with the same weights and biases, one can approximate the identity function 𝑔(ℎ, 𝑐) = 𝑐 with the
Tanh neural network,

N̄𝑔 (𝑐) = 𝑊̄2𝜎
(

𝑊̄1𝑐
)

, (101)

such that
max

‖ℎ ‖, ‖𝑐 ‖<𝑅∗
‖𝑔(ℎ, 𝑐) −N𝑔 (𝑐)‖ ≤ 𝜖∗. (102)

Then, we define the following dynamical system,

ẑ𝑛 = 𝛿𝑡ẑ𝑛 + (1 − 𝛿𝑡)𝑊 𝑓

2
𝜎
(

𝑊
𝑓

1
ŷ𝑛−1 + 𝑏 𝑓1

)

,

z̃𝑛 = 𝑊̄2𝜎
(

𝑊̄1ŷ𝑛−1
)

,

ŷ𝑛 = (1 − Δ̃𝑡)ŷ𝑛−1 + Δ̃𝑡𝑊
𝑔

3
𝜎
(

𝑊
𝑔

1
ẑ𝑛 +𝑊𝑔

2
z̃𝑛 + 𝑏𝑔1

)

,

ỹ𝑛 = 𝑊̄2𝜎
(

𝑊̄1ẑ𝑛
)

,

(103)

with hidden states ẑ𝑛, z̃𝑛, ŷ𝑛, ỹ𝑛 ∈ R
𝑚 and with initial states ẑ0 = z̃0 = ŷ0 = ỹ0 = 0.

Completely analogously as in the derivation of (81), we can derive the following bound,

‖𝝓𝑛 − ẑ𝑛‖ + ‖𝝍𝑛 − ŷ𝑛‖ ≤ 𝐶∗𝜖∗, (104)

with constant 𝐶∗ = 𝐶∗ (𝑛,Lip( 𝑓 ),Lip(𝑔)).
Defining the dynamical system,

z∗𝑛 = 𝛿𝑡z
∗
𝑛 + (1 − 𝛿𝑡)𝜎

(

𝑊
𝑓

1
𝑊
𝑔

3
ŷ𝑛−1 + 𝑏 𝑓1

)

z̄𝑛 = 𝜎
(

𝑊̄1𝑊
𝑔

3
y∗𝑛−1

)

y∗𝑛 = (1 − Δ̃𝑡)y∗𝑛−1 + Δ̃𝑡𝜎
(

𝑊
𝑔

1
𝑊
𝑓

3
z∗𝑛 +𝑊

𝑔

2
𝑊̄2z̃𝑛 + 𝑏𝑔1

)

ȳ𝑛 = 𝜎
(

𝑊̄1𝑊
𝑓

2
z∗𝑛

)

.

(105)

By multiplying suitable matrices to (105), we obtain that,

ẑ𝑛 = 𝑊
𝑓

2
z∗𝑛, z̃𝑛 = 𝑊̄2z̄𝑛, ŷ𝑛 = 𝑊

𝑔

3
y∗𝑛, ỹ𝑛 = 𝑊̄2ȳ𝑛. (106)

In addition to 𝑏∞ defined in (52), for 𝛿𝑡 ∈ (0, 1], we introduce 𝑏 𝛿 ∈ R defined by

𝜎̂(𝑏 𝛿) = 𝛿𝑡. (107)

Similarly for Δ̃𝑡 ∈ (0, 1], we introduce 𝑏Δ ∈ R defined by

𝜎̂(𝑏Δ) = 1 − Δ̃𝑡. (108)

The existence of unique 𝑏 𝛿 and 𝑏Δ follows from the fact that the sigmoid function 𝜎̂ is monotone.
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Next, we define the two vectors b∞, b𝛿 , bΔ ∈ R
2𝑚 as

b𝑖𝛿 = 𝑏 𝛿 , ∀ 1 ≤ 𝑖 ≤ 𝑚,
b𝑖𝛿 = 𝑏∞, ∀ 𝑚 + 1 ≤ 𝑖 ≤ 2𝑚,

b𝑖
Δ
= 𝑏Δ, ∀ 1 ≤ 𝑖 ≤ 𝑚,

b𝑖
Δ
= 𝑏∞, ∀ 𝑚 + 1 ≤ 𝑖 ≤ 2𝑚.

(109)

We define the LEM of form (3), which will approximate the HMM (90),(91). To this end, we define the
hidden states z𝑛, y𝑛 ∈ R

2𝑚 such that z𝑛 = [z∗𝑛, z̄∗𝑛] and y𝑛 = [y∗𝑛, ȳ∗𝑛]. The parameters for the corresponding
LEM of form (3) given by,

Δ𝑡 = 1, 𝑑𝑦 = 2𝑚

W1 = W2 = V1 = V2 ≡ 0,

b1 = b𝛿 , b2 = bΔ,

W𝑧 =

[

𝑊
𝑓

1
𝑊
𝑔

3
0

𝑊̄1𝑊
𝑔

3
0

]

, V𝑧 = 0, b𝑧 = [𝑏 𝑓
1
, 0],

W𝑦 =

[

𝑊
𝑔

1
𝑊
𝑓

3
𝑊
𝑔

2
𝑊̄2

𝑊̄1𝑊
𝑓

2
0

]

, V𝑧 = 0, b𝑧 = [𝑏𝑔
1
, 0] .

(110)

The output states are defined by,
𝜔ℎ𝑛 = 𝑊

𝑓

2
z∗𝑛, 𝜔ℎ𝑛 = 𝑊

𝑔

3
y∗𝑛 (111)

It is straightforward to observe that 𝜔ℎ𝑛 = ẑ𝑛, 𝜔
𝑐
𝑛 = ŷ𝑛. Hence, the desired bound (92) follows from

(104) by choosing,

𝜖∗ =
𝜖

𝐶∗ .

�

F Training details

All experiments were run on CPU, namely Intel Xeon Gold 5118 and AMD EPYC 7H12, except for
Google12, PTB character-level and PTB word-level, which were run on a GeForce RTX 2080 Ti GPU. All
weights and biases of LEM (3) are initialized according to U(−1/

√
𝑑, 1/

√
𝑑), where 𝑑 is the number of

hidden units.

Table 8: Rounded hyperparameters of the best performing LEM architecture for each experiment. If no
value is given for Δ𝑡, it means that Δ𝑡 is fixed to 1 and no fine-tuning is performed on this hyperparameter.

experiment learning rate batch size Δ𝑡

Adding (𝑁 = 10000) 2.6 × 10−3 50 2.4 × 10−2

sMNIST 1.8 × 10−3 128 2.1 × 10−1

psMNIST 3.5 × 10−3 128 1.9 × 100

nCIFAR-10 1.8 × 10−3 120 9.5 × 10−1

EigenWorms 2.3 × 10−3 8 1.6 × 10−3

Healthcare 1.6 × 10−3 32 1.9 × 10−1

FitzHugh-Nagumo 9.0 × 10−3 32 /
Google12 8.9 × 10−4 100 /
PTB character-level 6.6 × 10−4 128 /
PTB word-level 6.8 × 10−4 64 /

The hyperparameters are selected based on a random search algorithm, where we present the rounded
hyperparameters for the best performing LEM model (based on a validation set) on each task in Table 8.
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We base the training for the PTB experiments on the following language modelling code:
https://github.com/deepmind/lamb, where we fine-tune, based on a random search algorithm, only the
learning rate, input-, output- and state-dropout, 𝐿2-penalty term and the maximum gradient norm.

We train LEM for 100 epochs on sMNIST, psMNIST and nCIFAR-10, after which we decrease the
learning rate by a factor of 10 and proceed training for 20 epochs. Moreover, we train LEM for 50, 60 as
well as 400 epochs on EigenWorms, Google12 and FitzHugh-Nagumo. We decrease the learning rate by a
factor of 10 after 50 epochs on Google12. On the Healthcare task, we train LEM for 250 epochs, after
which we decrease the learning rate by a factor of 10 and proceed training for 250 epochs.

G Further experimental results
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Figure 4: Ablation study on hyperparameter Δ𝑡 in (3) using the EigenWorms experiment.

On the smallness of Δ𝑡. As mentioned in the main text, the parameter Δ𝑡 in LEM (3) appeared to
play a role in the proofs of Propositions 4.2 and D.2. In particular, one needed Δ𝑡 to be small enough for
the gradients to be bounded in (6). In practice, it turns out that a default value of Δ𝑡 = 1 suffices for
yielding very good empirical performance on many of our experiments, see Table 8. These experiments
were based on data with sequence lengths that are not too long. On the other hand, data sets with
long sequence lengths did require moderately small values of Δ𝑡 ≈ O(0.1). The only exception was the
Eigenworms experiment with a very long sequence length of 17984. In this case, the best performing LEM
corresponded to a Δ𝑡 = 1.6 × 10−3. We further investigate the variation of accuracy in the Eigenworms
experiment with respect to changing Δ𝑡 with an ablation study, whose result is presented in Fig. 4. From
this figure, we do observe that the accuracy of LEM is rather poor when Δ𝑡 ≈ 1. The accuracy improves
considerably as Δ𝑡 is reduced, till it reach a saturation around a Δ𝑡 ≈ 10−2. Thus, we conclude that small
values of Δ𝑡 are needed in both theory and practice if the underlying sequences are very long.
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