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UNDERSTANDING NEURAL NETWORKS
WITH REPRODUCING KERNEL BANACH SPACES

F. BARTOLUCCI, E. DE VITO, L. ROSASCO, AND S. VIGOGNA

ABSTRACT. Characterizing the function spaces corresponding to neural networks can
provide a way to understand their properties. In this paper we discuss how the theory
of reproducing kernel Banach spaces can be used to tackle this challenge. In partic-
ular, we prove a representer theorem for a wide class of reproducing kernel Banach
spaces that admit a suitable integral representation and include one hidden layer neu-
ral networks of possibly infinite width. Further, we show that, for a suitable class of
ReLU activation functions, the norm in the corresponding reproducing kernel Banach
space can be characterized in terms of the inverse Radon transform of a bounded real
measure, with norm given by the total variation norm of the measure. Our analysis
simplifies and extends recent results in [34, 29, 30].

1. INTRODUCTION

Neural networks provide a flexible and effective class of machine learning mod-
els, by recursively composing linear and nonlinear functions. The models thus ob-
tained correspond to nonlinearly parameterized functions, and typically require non
convex optimization procedures [14]. While this does not prevent good empirical per-
formances, it makes understanding neural network properties considerably complex.
Indeed, characterizing what function classes can be well represented/approximated
by neural networks is a clear question, albeit far from being answered [31, 2, 34, 29, 30,
15]. Moreover, networks with large numbers of parameters are often practically suc-
cessful, seemingly contradicting the idea that models should be simple to be learned
from data [48, 6]. This observation raises the question of in what sense the complexity
of the models is explicitly or implicitly controlled. From a functional perspective, the
answer corresponds to understanding what norms can be defined and controlled on
the spaces of functions defined by neural networks.

Among neural networks, there is one model where the above questions become
considerably more amenable to study, namely neural networks with only one hidden
layer of possibly infinite width. In this case, functions can be seen to be parameter-
ized by measures, with networks with finitely many hidden units corresponding to
atomic measures. The remarkable advantage of this framework is that the parameter-
ization in terms of measures is linear, and functional calculus considerably simplifies.
This observation is at the base of the connection between neural networks and Gauss-
ian processes [24], as well as random features [20, 47], which allows to bring to bear
the powerful machinery of reproducing kernel Hilbert spaces [1]. However, starting
at least from [5, 4], it is clear that norms other than Hilbertian can be defined that
might better capture the inductive biases induced by neural networks. For example,
for functions parameterized by absolutely continuous measures, the L1 norm of the
corresponding densities can be considered. More generally, functional norms can be
defined in terms of total variations of the corresponding measures. The study in [2]
provides a clear discussion on this perspective.
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The extension from a Hilbert to a Banach setting opens a number of questions. We
discuss two that are relevant to our study. The first one is related to the characteri-
zation of the solution of empirical minimization problems, the so-called representer
theorem. It is well known that, in a Hilbert setting, minimizers always lie in a finite
dimensional subspace. Each solution is a linear combination of the reproducing ker-
nel associated to the Hilbert space evaluated at the training set points [21, 22, 36]. This
result has immediate computational implications and is at the base of kernel methods
[36]. A natural question is then how these results extend to a Banach space of functions
defined by neural networks. A number of recent results tackles this question [43, 30]. A
main difficulty is that the Banach spaces defined by neural networks are non-reflexive,
and their definition requires some care. In this context, our first contribution is that we
systematically use the machinery of reproducing kernel Banach spaces [49, 25] to sim-
plify and analyze the construction of such spaces. In the Hilbert setting, feature maps
and positive definite kernels can both be equivalently used to define functions spaces
with the reproducing property. For non-reflexive Banach spaces, only feature maps
provide a natural approach. While a reproducing kernel can be defined, it is typically
neither symmetric nor positive definite. Instead, we show that, introducing appropri-
ate feature maps, function spaces defined by neural networks can be seen to define
reproducing kernel Banach spaces of functions admitting a suitable integral represen-
tation. Through this characterization and the application of a recent technical result in
[8], we can immediately derive a representer theorem. This result can be contrasted
to [30], and, as discussed later, allows dealing more directly with some technical is-
sues. We note in passing that representer theorems for neural networks have different
implications than analogous results in the Hilbert setting. Unlike the Hilbert setting,
they do not have immediate computational consequences, but have interesting impli-
cations from the perspective of overparameterization. Indeed, they show that, even
if we had access to infinite wide neural networks, a finite number of units suffices to
solve empirical risk minimization problems. Further, they show that a number of units
at most of the cardinality of the data also suffices, suggesting that the motivation for
overparameterization cannot be found from a variational perspective, but perhaps it
needs to be looked for in statistical or optimization reasoning.

A second line of inquiry regards the characterization of the functions and the norms
corresponding to neural networks. Once again, it is instructive to look at the Hilbert
setting. A main example of reproducing kernel Hilbert spaces are Sobolev spaces with
smoothness sufficiently high for the embedding theorem to hold. In this case, the
norm in the reproducing kernel Hilbert space can be characterized in terms of a suit-
able pseudo-differential operator, with the associated reproducing kernel being the
corresponding Green function [45]. Again, the question is whether similar character-
izations can be derived for reproducing kernel Banach spaces defined by neural net-
works. A recent line of works shows that results in this direction can be derived when
considering the rectified linear activation function (ReLU) in the network units. A first
result in this direction is derived in [34] for univariate functions, and then developed
in [29] for the general multivariate case. In particular, this latter paper shows that the
corresponding Banach semi-norm can be characterized using the Radon transform.
These results are further developed in [30], where semi-norms are defined in terms
of the Radon transform in order to prove a representer theorem for one hidden layer
neural networks with (generalized) ReLU activation function. In particular, the defini-
tion of the semi-norm precedes and is in function of proving the representer theorem.
Here we contribute to this line of work, refining and extending such results, as well as
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providing different derivations. Indeed, we show that an analogous yet finer Radon
characterization holds true for the reproducing kernel Banach spaces corresponding
to neural networks with (generalized) ReLU activation functions. Our construction
shows that the characterization of the Banach space structure is independent of the
representer theorem. Moreover, our approach provides a natural norm regularizer,
thus avoiding semi-norms with resulting topological issues. Using a norm instead of
a semi-norm also prevents the addition of null space elements (i.e. polynomials) to the
neural network minimizers.

The paper is organized as follows. In Section 2 we give a short introduction to re-
producing kernel Banach spaces (RKBS) and their characterization in terms of feature
maps. Then, we introduce a class of integral RKBS’s which can model one hidden layer
neural networks, and establish a representer theorem for such a class in Section 2.3. In
Section 3 we focus on the special case of one hidden layer neural networks with (gen-
eralized) ReLU activation function. In particular, in Section 3.2 we characterize the
corresponding norm by means of the Radon transform. In Section 4 we review the the-
ory of the Radon transform, and we prove extensions of the classical Radon inversion
formulae to Lizorkin distributions. Section 5 contains the proofs of the main results
of Section 3.2. In Sections 3.3, 2.5 and 4.1 we discuss and compare our results with
[30] and with previous work on representer theorems and Radon distributional theory.
Finally, in Appendix A we collect some variational results that we use to prove our
representer theorem.

Notation. If x, y ∈ Rd, x · y denotes their scalar product and |x| denotes the Euclidean
norm. The length of a multi-index m ∈ N

d is denoted by |m| = m1 + . . . + md. Fur-
thermore, if x = (x1, . . . , xd) ∈ R

d and m = (m1, . . . , md) ∈ N
d, we use the notation

xm = xm1
1 · · · x

md
d and ∂m = ∂m

x = ∂m1
x1 . . . ∂

md
xd

. We denote by Sd−1 the unit sphere in
Rd. The dual pairing between a locally convex topological space A and its topological
dual space A′ is denoted by A′〈 · , · 〉A. For simplicity, we also write the pairings with-
out specifying the dual pair A,A′ whenever it is clear from the context. The Fourier
transform F is defined for ϕ ∈ L1(Rd) by

Fϕ(ω) =
1

(2π)d/2

∫

Rd
ϕ(x)e−i x·ωdx, ω ∈ R

d,

and it extends to L2(Rd) in the usual way.
If B is a Banach space, we denote by ‖ · ‖B the corresponding norm. If M and N are

two subspaces of B, we write B = M+N to mean that

B = {m + n : m ∈ M, n ∈ N}, M∩N = {0},

and we denote by PM and PN the corresponding projections

PM, PN : B → B, PM(m + n) = m, PN (m + n) = n,

so that I = PM + PN . If M and N are two Banach spaces, we write B = M⊕N to
mean that product space M×N endowed with the ℓ1-norm

‖m + n‖B = ‖m‖M + ‖n‖N .
3



2. REPRESENTER THEOREMS ON RKBS

In this section, we introduce a class of RKBS’s parametrized by the Banach space of
bounded measures on a parameter space and we prove a representer theorem for such
a class of spaces. We first recall basic definitions and properties of RKBS’s.

2.1. Reproducing kernel Banach spaces. Since [49], several definitions of RKBS have
been proposed. Here, we adopt a fairly minimal definition, and refer to [25] for a
comprehensive overview. Among all possible equivalent definitions of RKHS, there is
one which generalizes seamlessly to the Banach case: a RKHS over a set X is a Hilbert
space of functions on X where point evaluation is continuous. This still makes sense
after simply replacing “Hilbert” with “Banach”.

Definition 2.1. Let X be a set. A reproducing kernel Banach space (RKBS) B over a set X
is a Banach space B of functions f : X → R such that:

(i) as a vector space, B is endowed with the pointwise operations of sum and
multiplication by scalar;

(ii) for all x ∈ X , there is a constant Cx > 0 such that

| f (x)| ≤ Cx‖ f‖B , ∀ f ∈ B. (1)

As for RKHS, the reproducing property (1) is equivalent to the fact that for every
x ∈ X there exists an element evx ∈ B′ such that

f (x) = B′〈evx, f 〉B , ∀ f ∈ B. (2)

For RKHS’s several characterizations and constructions are possible, but perhaps the
most popular in machine learning is the one in terms of feature maps. The basic idea is
that a feature map φ : X → F provides a nonlinear representation of each input point
in some suitable Hilbert space F called feature space. To each RKHS it is possible to
associate a feature map (in fact, infinitely many) such that, for every function in the
RKHS, the following representation holds: f (x) = 〈φ(x), w〉 for some w ∈ F . Then,
functions in the RKHS can be seen as hyperplanes in the feature space. See e.g. [10,
36, 40]. Interestingly, such a construction extends to RKBS’s, as shown in [12, 25]. We
report the proof for sake of completness.

Proposition 2.2. A space B of functions on X is a RKBS if and only if there exist a Banach
space F and a map φ : X → F ′ such that

(i) B = { fµ : µ ∈ F} where fµ(x) = F ′〈φ(x), µ〉F ;

(ii) ‖ f‖B = inf{‖µ‖F : µ ∈ F , f = fµ}.

Proof. Let B be a RKBS of functions on X . Define F = B and the canonical feature
map

φ : B → B′, φ(x) = evx,
where evx is defined by (2), so that fµ = µ for all µ ∈ B. Both claims in the statement
are clear.

Conversely, suppose we have a Banach space F and a map φ : X → F ′, and define
a vector space B of functions on X as in (i). Then, the norm in (ii) makes B a Banach
space. Moreover, in view of (i), for every f ∈ B there exists µ ∈ F such that f = fµ,
and | f (x)| = | fµ(x)| ≤ ‖µ‖F‖φ(x)‖F ′ . Thus, for every x ∈ X ,

| f (x)| ≤ inf
µ∈F , f= fµ

‖µ‖F‖φ(x)‖F ′ = ‖ f‖B‖φ(x)‖F ′ ,

which shows that point evaluation is continuous on B. �
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Some comments are in order. As mentioned above, Proposition 2.2 gives a recipe to
construct RKBS starting from a Banach space F and a map φ : X → F ′. In analogy
to RKHS’s, we call φ a feature map and F ′ a feature space. As in the Hilbert setting, we
note that feature maps are in general not unique. Finally, we add a technical remark.

Remark 2.3. The RKBS B is isometrically isomorphic to the quotient space F/N , where
N is the closed subspace

N = {µ ∈ F : fµ(x) = 0 ∀x ∈ X},

and the isometry is given by

Wφ : F/N → B, Wφ([µ]) = fµ,

where [µ] is the coset of µ. Since the dual of F/N can be identified with the closed
subspace

N⊥ = {ω ∈ F ′ : F ′〈ω, µ〉F = 0 ∀µ ∈ N} ⊆ F ′,

then by duality B′ is isometrically isomorphic to N⊥. In particular,

W ′
φ evx = φ(x), x ∈ X , (3)

where W ′
φ : B′ → N⊥ denotes the dual map.

Next, we describe a class of RKBS’s parametrized by the space of bounded measures,
which is a variant of an example in [2]. This RKBS is the example relevant to discuss
spaces of functions defined by neural networks.

2.2. A class of integral RKBS. We fix a (Hausdorff) locally compact second countable
topological space Θ, that can be seen as a space of parameters. Then, we denote by
M(Θ) the Banach space of bounded measures defined on the Borel σ-algebra of Θ,
and endow M(Θ) with the total variation norm ‖ · ‖TV. Since Θ is second countable,
the elements of M(Θ) are finite Radon measures and Markov-Riesz representation
theorem ensures that M(Θ) can be identify with the dual of C0(Θ), the Banach space
of continuous functions going to zero at infinity endowed with the sup norm ‖ · ‖∞, so
that

‖µ‖TV = sup{〈µ, ψ〉 : ψ ∈ C0(Θ), ‖ψ‖∞ ≤ 1}. (4)

Keys to our construction are a function ρ : X × Θ → R and a measurable function
β : Θ → R satisfying the following conditions:

(i) for all x ∈ X

sup
θ∈Θ

|ρ(x, θ)β(θ)| = Dx < ∞, (5)

for some Dx > 0;
(ii) for all x ∈ X , the function ρ(x, ·) is measurable.

Given the above definition we next define a RKBS a functions with a suitable integral
representation and that can be seen to be parameterized in terms of measure on the
parameter space. As discussed later this yields a direct connection with one hidden
layer neural networks with possibly infinite width. Towards this end, we define the
feature map

φ : X → M(Θ)′ , M(Θ)〈µ, φ(x)〉M(Θ)′ =
∫

Θ
ρ(x, θ)β(θ)dµ(θ),
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which is well defined by (5). Then, by Proposition 2.2 the feature map φ defines a
RKBS B explicitly given by

B = { fµ : µ ∈ M(Θ)}, (6a)

fµ(x) =
∫

Θ
ρ(x, θ)β(θ)dµ(θ), (6b)

‖ f‖B = inf {‖µ‖TV : fµ = f}. (6c)

We add several remarks. First, we comment on the nature of the functions ρ and β.

Remark 2.4 (Reproducing kernel and activation functions). The function ρ is a reproduc-
ing kernel in the sense of [25, Definition 2.1] (see [25, Section 3.4]). We will sometimes
adopt this terminology, albeit this notion of reproducing kernel is quite different from
that for RKHS’s. Clearly, it is always possible to include β in the definition of the ker-
nel ρ. However, we prefer to regard {ρ(·, θ)}θ as a family of elementary generators
and β as a smoothing function needed to ensure that the integral in (6b) converges
for all µ. As we discuss later, in the case of neural networks, the functions ρ will be
defined by an activation function.

As we comment next, the introduction of the smoothing function is crucial.

Remark 2.5 (Smoothing function β). It is known that condition (5) (with the measur-
ability assumption) is necessary and sufficient to ensure that the integral in (6b) con-
verges for all bounded measures µ. In [30] the function β is not introduced, but their
Lemma 21 provides an integral representation only for rapidly decreasing measures µ
and it assumes that this integral representation extends to a bounded operator. Theo-
rem 3 in [44] provides a necessary and sufficient condition imposing a growth condi-
tion on the elements of B. Note that this kind of conditions in general do not ensure
that the extension is an integral operator. For example the Fourier transform, regarded
as an integral operator from L1(R)∩ L2(R) into L2(R), extends to L2(R), but its exten-
sion does not have an intergral representation. Compare also with [44, Theorem 4].

By choosing the measure µ having finite support, i.e.

µ =
K

∑
k=1

ak δθk
, ak ∈ R, θk ∈ Θ,

where δθ is the Dirac measure at point θ. It follows that the elements of the form

fµ =
K

∑
k=1

αkρ(·, θk), αk = akβ(θk) ∈ R, θk ∈ Θ, (7)

belong to B. Note that the smoothing function β is included in the vector coefficient
(α1, . . . , αK), so that it does not affect to the dependence of the function fµ to the in-
put variable x ∈ X . Functions as in (7) are the main ingredient of many learning
algorithms, as for example kernel methods and one hidden layer neural networks,
see Example 2.12 and Example 2.11 below. As observed earlier, Equation (6b) pro-
vides a pointwise integral representation of the elements of B. However, by (7), for
each θ ∈ Θ

fθ = fδθ
= ρ(·, θ)β(θ) ∈ B, ‖ fθ‖B ≤ ‖δθ‖TV = 1, (8)

then
fµ =

∫

Θ
fθ dµ(θ), (9)
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where the integral is in the Bochner sense provided that θ 7→ fθ is measurable as a map
from Θ to B. Finally, observe that (3) reads as

W ′
φ evx = ρ(x, ·)β ∈ M(Θ)′ .

2.3. Representer theorem. We now derive a general representer theorem for the class
of RKBS given by (6). As discussed next, this amounts to providing explicit character-
ization of the solutions to empirical minimization problems in machine learning and
beyond. We recall that in supervised learning the goal is to estimate a function of in-
terest given N samples (xi, yi) ∈ X ×Y , i = 1, . . . , N. A popular approach is provided
by regularized empirical risk minimization (ERM)

inf
f∈B

(
1
N

N

∑
i=1

L(yi, f (xi)) + ‖ f‖B

)
, (10)

where B is a hypothesis space of functions f : X → R, L : Y × R → [0, ∞) a loss func-
tion quantifying the point-wise error of f ∈ B, and ‖ · ‖B is a penalty term. The role
of the penalty term is two folds. On the one hand, it induces a bias towards solutions
such that the penalty term is small. On the other hand, the penalty term can help pre-
venting instability and overfitting. Here, we are interested to consider the case where
the hypothesis space is the RKBS given by (6) and ‖ · ‖B is the corresponding norm.
With this choice, even existence of a solution is non trivial since in general B is non-
reflexive, so that the closed balls are not even weakly compact. In the following we
establish conditions under which minimizers exist, and derive a general representer
theorem.

First, we need a result showing that (10) can be reformulated as a minimization over
the space of measures M(Θ). The key observation is that M(Θ) can be endowed with
the weak∗ topology, with respect to which the closed balls are indeed compact.

Proposition 2.6. Take a kernel ρ : X × Θ → R, a smoothing function β : Θ → R satisfy-
ing (5), and set B as the corresponding RKBS defined in (6). Then

inf
f∈B

(
1
N

N

∑
i=1

L(yi , f (xi)) + ‖ f‖B

)
= inf

µ∈M(Θ)

(
1
N

N

∑
i=1

L(yi, fµ(xi)) + ‖µ‖TV

)
.

Furthermore, if µ∗ is any minimizer of

inf
µ∈M(Θ)

(
1
N

N

∑
i=1

L(yi , fµ(xi)) + ‖µ‖TV

)
, (11)

then f ∗ = fµ∗ is a minimizer of problem (10).
7



Proof. By definition of B, we have

inf
f∈B

(
1
N

N

∑
i=1

L(yi , f (xi)) + ‖ f‖B

)
= inf

µ∈M(Θ)

(
1
N

N

∑
i=1

L(yi , fµ(xi)) + ‖ fµ‖B

)

= inf
µ∈M(Θ)


 1

N

N

∑
i=1

L(yi, fµ(xi)) + inf
ν∈M
fν= fµ

‖ν‖TV




= inf
µ,ν∈M(Θ)

fν= fµ

(
1
N

N

∑
i=1

L(yi , fµ(xi)) + ‖ν‖TV

)

= inf
ν∈M(Θ)

(
1
N

N

∑
i=1

L(yi , fν(xi)) + ‖ν‖TV

)
.

Now let assume that µ∗ is a minimizer of (11). Then, for all ν ∈ M(Θ),
(

1
N

N

∑
i=1

L(yi , fµ∗(xi)) + ‖µ∗‖TV

)
≤

(
1
N

N

∑
i=1

L(yi , fν(xi)) + ‖ν‖TV

)
.

Fix µ ∈ M(Θ) and take the infimum over all ν such that fν = fµ, then
(

1
N

N

∑
i=1

L(yi , fµ∗(xi)) + ‖µ∗‖TV

)
≤

(
1
N

N

∑
i=1

L(yi, fµ(xi)) + ‖ fµ‖B

)
.

With the choice µ = µ∗, we have ‖µ∗‖TV ≤ ‖ fµ∗‖B and, clearly, ‖ fµ∗‖B ≤ ‖µ∗‖TV, so
that (

1
N

N

∑
i=1

L(yi , fµ∗(xi)) + ‖ fµ∗‖B

)
≤

(
1
N

N

∑
i=1

L(yi , fµ(xi)) + ‖ fµ‖B

)
,

which concludes the proof. �

The next corollary shows that the minimization problem (11) can be regarded as
two nested minimization problems where the external one is over a finite-dimensional
vector space. As discussed in the following, this result can be directly compared to the
classic results for RKHS, highlighting similarities but also crucial differences.

Corollary 2.7. With the setting of Proposition 2.6, let

V = {µ ∈ M(Θ) : fµ(xi) = 0 ∀i = 1, . . . , N} = {ρ(x1, ·)β, . . . , ρ(xN , ·)β}⊥, (12)

where the orthogonal ⊥ is taken with respect to the pairing M(Θ)′〈·, ·〉M(Θ). Then V is a

closed subspace of M(Θ), and there exists a finite-dimensional subspace W ⊂ M(Θ) with
dimW ≤ N such that

M(Θ) = W + V ,

and

inf
µ∈M(Θ)

(
1
N

N

∑
i=1

L(yi , fµ(xi)) + ‖µ‖TV

)
= inf

ν∈W

(
1
N

N

∑
i=1

L(yi , fν(xi)) + inf
τ∈V

‖ν + τ‖TV

)
.

(13)
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Proof. Define the map F : M(Θ) → R ,

F(µ) =

(
1
N

N

∑
i=1

L(yi, fµ(xi)) + ‖µ‖TV

)
.

By the reproducing property (6b), the linear maps

µ 7→ fµ(xi), i = 1, . . . , N,

are continuous. Hence, V is a closed subspace of M(Θ) with finite co-dimension no
larger than N, and therefore there is a finite dimensional subspace W , dimW ≤ N,
such that

M(Θ) = W + V .

Moreover, for all µ = ν + τ with ν ∈ W and τ ∈ V , we have

F(µ) =
1
N

N

∑
i=1

L(yi, fν(xi)) + ‖ν + τ‖TV,

whence (13) becomes clear. �

The statement of Corollary 2.7 is closely related to the classical representer theorem
for RKHS, showing that minimizers always belong to the subspace spanned by the
kernel function evaluated at the input data points. However, there are some impor-
tant differences. The existence of the finite-dimensional subspace W strongly depends
on the fact that V has finite co-dimension. Moreover, in general there is not a canoni-
cal choice for the complement W and the total variation norm does not preserve the
decomposition, i.e. in general M(Θ) is isomorphic to W ⊕ V , but the isomorphism is
not an isometry. For a RKHS H, there is a canonical choice W = V⊥ and, for such a
choice, ‖ν + τ‖2

H = ‖ν‖2
H + ‖τ‖2

H, so that the inner minimization problem in (13) has
τ = 0 as solution. Further, since M(Θ) is not reflexive, in general V is only weakly
closed (being convex), and it is not easy to show the existence of a minimizer for the
inner minimization problem.

To overcome this issue, we next strengthen condition (5) by assuming that

ρ(x, ·)β ∈ C0(Θ), ∀x ∈ X , (14)

which clearly implies (5). This assumption is equivalent to assuming that the feature
map

φ : X → C0(Θ) ⊂ M(Θ)′

takes values in the pre-dual of M(Θ) (compare with the assumption in [44, Theorem 1,
item 2]). Moreover, for all x ∈ X ,

W ′
φ evx = ρ(x, ·)β ∈ C0(Θ).

We stress that, in many examples, given a function ρ, it is easy to find a smoothing
function β such that (14) holds true without modifying the form of the solutions (7).
Under condition (14), we provide a representer theorem for the RKBS defined by (6).
More precisely, we show that ERM minimizers always exist, and are of the form (7).
Our proof takes care of some delicate topological issues (see Remark A.4). It is based
on [8, Theorem 3.3], which statement is given in Appendix A for the sake of complete-
ness.
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Theorem 2.8. Assume that (14) holds true and, for every y ∈ R, the function L(y, ·) is convex
and coercive in the second entry. Then, the problem

inf
f∈B

(
1
N

N

∑
i=1

L(yi , f (xi)) + ‖ f‖B

)

admits solutions of the form

f (x) =
K

∑
k=1

αkρ(x, θk), αk ∈ R \ {0}, θk ∈ Θ, (15)

‖ f‖B ≤
K

∑
k=1

|αkβ(θk)
−1|, (16)

with K ≤ N and β(θk) 6= 0 for all k = 1, . . . , K.

Proof. In view of Proposition 2.6 and (7), to establish (15) it is enough to consider the
minimization problem (11) on the space M(Θ), and show that there exists a measure
µ with finite support of cardinality at most N which minimizes (11). To this aim, we
apply Theorem A.3.

We set U = M(Θ) endowed with the weak∗ topology, so that U is a locally convex
topological vector space. We define

A : U → R
N, (Aµ)i = fµ(xi) = M(Θ)′〈φ(xi), µ〉M(Θ) = C0(Θ)′〈µ, φ(xi)〉C0(Θ).

By (14), A is a continuous linear operator from U to RN, regarded as Hilbert space
with respect to the euclidean scalar product. Furthermore, by assumption on L, the
function

F : R
N → (−∞,+∞], F(w) =

1
N

N

∑
i=1

L(yi , wi), w = (w1, . . . , wN) ∈ R
N,

is convex and coercive on RN with domain RN, thus it is continuous and, hence, lower
semi-continuous. We set H = rangeA, which is a Hilbert space since it a closed sub-
space of RN. With slight abuse of notation, we regard F as a map defined on H and
A as a map onto H, so that A becomes surjective. By (4), the total variation norm,
regarded as a seminorm from U into (−∞,+∞], is the superior envelope of lower
semi-continuous functions, hence it is weakly continuous [9, page 11, item 4], its do-
main is U and its kernel is trivial. Furthermore, the Banach-Alaoglu theorem gives
that the balls {ν ∈ M(Θ) : ‖ν‖TV ≤ R} are weakly∗ compact for every R > 0, so that,
according to the definition in [8], the norm ‖ · ‖TV is coercive on U.

By Theorem A.3, the problem (11) has minimizers of the form

µ =
K

∑
k=1

akuk, K ≤ N, ak > 0, ∑
k

ak = ‖µ‖TV, uk ∈ Ext(B),

where B is the unit ball in M(Θ) and Ext(B) is the set of extremal points of B (see Def-
inition A.1). Furthermore, thanks to Lemma A.2,

Ext(B) = {±δθ : θ ∈ Θ},

so that µ is a measure with finite support of cardinality at most N. We thus set f = fµ

and

αk =

{
akβ(θk) uk = δθk

−akβ(θk) uk = −δθk

.
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By (7) we have αk = akβ(θk) 6= 0 if and only if β(θk) 6= 0, so that (16) holds true by
removing the parameters θk such that β(θk) = 0, as a consequence of (6c) and the fact
that ∑k ak = ‖ν‖TV. �

Remark 2.9. While our main motivation is supervised learning, and thus we focus on
minimizing objectives defined by loss functions, it is clear from the working assump-
tions of Theorem A.3 that Theorem 2.8 holds true for more general variational prob-
lems, arising from different choices of sampling A and finite-data constraint F.

Remark 2.10. The above result is close to [44, Theorem 1], [30, Theorem 1], where in
both cases there is an extra polynomial term. It is also close to [8, Theorem 4.2], [43,
Section 4.1], that are stated for M(Θ). For further details and comparisons, see sec-
tions 2.5 and 3.3.

2.4. Neural Network RKBS. We start discussing some examples illustrating how the
above results specialize to neural networks (we further develop this discussion in later
sections).

Example 2.11 (One hidden layer neural networks). Let σ : R → R be a continuous
(nonlinear) activation function. A one hidden layer neural network is a function

f (x) =
K

∑
k=1

αkσ(wk · x − bk), (17)

with wk ∈ R
d and bk ∈ R. Let Θ = R

d+1, ρ(x, θ) = σ(w · x − b) for θ = (w, b), and
pick a β satisfying (14). Applying Theorem 2.8, we obtain solutions of the form (17),
with K ≤ N. Typical examples of activation functions are the sigmoidal, i.e. functions
satisfying limt→−∞ σ(t) = 0 and limt→+∞ σ(t) = 1, and the widely used Rectified
Linear Unit (ReLU) σ(t) = max{0, t}. In Section 3 we will be studying in full detail
the RKBS and corresponding norm associated with one hidden layer neural networks
with (generalized) ReLU activation function.

Example 2.12 (RBF Networks & kernel mean embedding ). Assume that X is a compact
topological space and κ : X × X → R is a continuous semi-positive definite kernel.
For X = Rd, a classic example is the Gaussian kernel κ(x, x′) = e−‖x−x′‖2γ, which
is also an example of Radial Basis Function (RBF) [3]. Let H be the corresponding
reproducing kernel Hilbert space and B be the Banach space given by (6a) with the
choice Θ = X , ρ = κ and β = 1. Equation (8) gives that fx = κ(·, x) = κx for all x ∈ X ,
so that (9) becomes

fµ =
∫

X
κx dµ(x) ∈ H.

It is interesting to note that this is exactly the kernel mean embedding of µ (see [27] and
references therein). Hence B is a subspace of H and, since the kernel mean embedding
is continuous from M(Θ) into H, the norm ‖ · ‖B is stronger than the norm induced by
the scalar product of H. For example, if the kernel κ is characteristic [27], the map µ 7→
fµ is injective, so that B is isometrically isomorphic to M(Θ), which is not separable,
whereas H is separable since X is so. However, Theorem 2.8 states the existence of
solutions of the form

f =
K

∑
i=1

αiKxi

with K ≤ N, as in the classical representer theorem.
11



In the later sections, we will further develop the study of RKBS corresponding to
neural networks defined by generalized ReLU functions. We first discuss the repre-
senter theorem we proved, reviewing classical as well recent related results.

2.5. Discussion: representer theorems in learning, Banach and variational theory.
The representer theorem originates from the work of [21, 22] on interpolation and
smoothing problems in reproducing kernel Hilbert spaces, and plays a key role in
kernel methods [35, 36]. In a simple form, the classical representer theorem asserts
that the solution of the regularized empirical risk minimization on a RKHS is a finite
linear combination of the kernel evaluated at the input data points. This result is both
conceptually and practically remarkable, since it allows to compute the solution of an
infinite-dimensional models solving a finite dimensional problem.

In a broader sense, one may also see the representer theorem as a sparsity result,
stating the existence of solutions which are combinations of at most as many elements
as the number of samples, regardless of how high the dimension of the model is. Spar-
sity is an important property in machine learning (as well as in signal processing), and
can be enforced by constraining the ℓ1 norm of the model parameters [41, 11]. In a
finite-dimensional model, sparsity is essentially a consequence of Carathéodory’s con-
vex hull theorem (see e.g. [33, Section B.1]). Sparse models naturally generalize to
infinite dimensions by replacing the linear coefficients with the integration with re-
spect to a measure, and the ℓ1 with the TV norm. Along these lines, [2, 32] consider
superpositions of infinitely many (and more than countable) features with TV regular-
ization. [32, Theorem 1] can be seen as a representer theorem for bounded features
and positive measures, based on an extension of Carathéodory’s theorem to positive
measures [32, Theorem 2]. Note that these constructions go beyond kernel models,
and in particular in the direction of neural networks as described in previous sections.
On the other hand, they fall outside the setting of RKHS, requiring different tools from
functional analysis.

The approach relevant to our study is given by reproducing kernel Banach spaces.
The paper [49] introduces reflexive RKBS and proves a representer theorem (Theorem
19) for minimal norm interpolation on uniformly convex RKBS (assuming linearly in-
dependent features at the sample points). A different approach is given in [12]. Uni-
form convexity is assumed so that the Riesz representation theorem holds, thus ensur-
ing that continuous linear functionals are semi-inner products. Using bilinear forms
instead of inner products, [39, 38] handle non-reflexive spaces, and study in particular
RKBS with ℓ1 or TV norm. Their construction starts directly from a kernel function, on
which they impose admissibility conditions to obtain representer theorems [39, Theo-
rem 4.8, Corollary 4.9], [38, Theorem 2.4]. Non-reflexive p-norm RKBS are constructed
in [46] via generalized Mercer kernels, although the representer theorems require re-
flexivity. Further definitions of RKBS are reviewed and unified in [25]. While the au-
thors provide a general framework to construct RKBS and kernels by pairs of feature
maps, their representer [25, Theorem 4.4] still assumes reflexivity of the feature space.
We remark that even in the non-reflexive spaces considered in [39, 38] the kernel is a
function on the square of the input space, and therefore the model can not accomodate
typical basis functions parameterized by a different parameter space than the input
space, thus ruling out integral feature models [2, 32] and neural networks.

The full generality of representer theorems beyond reflexive spaces can be found
in optimization and variational theory, where they have come to mean virtually any

12



result establishing the existence of sparse solutions to empirical minimization prob-
lems with convex regularization. This kind of problems has a long history. A notable
example is Radon measure recovery with TV regularization, for which ante litteram
representer theorems (for bounded domains) can be found in [13, 50], stating the exis-
tence of solutions that are finite linear combinations of Dirac deltas. The proof of these
results are crucially based on the Krein–Milman theorem and the characterization of
extremal points. A more general setting has been recently developed in [44]. Here, the
authors start from a pseudo-differential operator L, and consider the inverse problem
over an associated native space ML of functions on R

d with generalized TV seminorm
‖L ·‖TV. Then, they show that the extremal points of such a problem are L-splines, i.e.
functions which are sparsified by L, plus a term in the (finite-dimensional) kernel of
L. This point of view has been picked up by [30] and extended from Rd to Pd with the
notion of ridge spline, of which ReLU neural networks are examples. The papers [7,
8] introduce an extremely general variational framework that extends [44] to inverse
problems on locally convex spaces with abstract convex [7] or seminorm [8] regulariza-
tion. The corresponding representers are established, with [7, Theorem 1] assuming
a priori the existence of minimizers and focusing on the geometry of the solution set,
and with [8, Theorem 3.3] providing sufficient topological conditions for the existence
of minimizers.

In summary, we can roughly identify three lines of representer theorems: represen-
ters for learning models (classically kernel methods, more recently neural networks),
representers for RKBS (generalizing RKHS), and representers in variational theory. Re-
cently, the abstract variational framework has been applied and reconnected to ma-
chine learning. The paper [43] proves a general representer theorem for dual pairs
of Banach spaces, which can be specialized to a wide range of learning problems, in-
cluding sparse regularization on non-reflexive spaces (using [7, Theorem 1]). In [30],
[8, Theorem 4.2] is applied to provide a representer theorem for neural networks with
ReLU (type) activation function. In our paper, we further incorporate and exploit the
ingredient of (non-reflexive) RKBS. While the RKBS structure is implicitly present in
several previous works [33, 2, 30], its role in the explicit construction and character-
ization of neural network models was not completely clear or emphasized. In our
work, we show how such a structure allows to neatly derive representer theorems for
feature models and neural networks from general variational theory. For a detailed
comparison between our results and [30] we refer to Section 3.3.

3. BANACH REPRESENTATION AND RADON REGULARIZATION OF RELU NEURAL
NETWORKS

In this section we discuss the RKBS associated with truncated power activation func-
tions, including the ReLU. This is related to the results in [30], but here we follow a
dual approach and provide a finer characterization. First, we define a model space Bm

as a RKBS parametrized by M(Θ) for a suitable choice of Θ. Then, we characterize
the norm of Bm by means of the Radon transform.

3.1. The model space. Let Sd−1 be the unit sphere in Rd, and let

Ξ = Sd−1 × R

with the product topology, which makes it a locally compact second countable space.
Given µ ∈ M(Ξ), we set µ∨ ∈ M(Ξ) to be the bounded measure defined by

µ∨(E) = µ(−E)
13



for every Borel set E ⊂ Ξ. We define the subspaces of even and odd measures as

M(Ξ)even = {µ ∈ M(Ξ) : µ∨ = µ},

M(Ξ)odd = {µ ∈ M(Ξ) : µ∨ = −µ}.

Furthermore, for every µ ∈ M(Ξ), we define the even and odd part of µ as

µeven =
µ + µ∨

2
∈ M(Ξ)even, µodd =

µ − µ∨

2
∈ M(Ξ)odd.

Every µ ∈ M(Ξ) can be written as the sum µ = µeven + µodd and this factorization is
unique, so that

M(Ξ) = M(Ξ)even +M(Ξ)odd.

Furthermore, for every integer m ≥ 2, we define the truncated power activation
function σm : R → R as

σm(t) =
1

(m − 1)!
max{0, t}m−1, t ∈ R

(see Figure 1), and the corresponding kernel ρm as

ρm : R
d × Ξ → R, ρm(x, n, t) = σm(n · x − t).

Note that, for m = 2, σ2 corresponds to the renowned Rectified Linear Unit (ReLU).

−4 −2 2 4

2

4

6

σ2 (ReLU)
σ3
σ4

FIGURE 1. ReLU-type activation functions: the ReLU σ2, and the trun-
cated power functions σ3 and σ4.

We choose β ∈ C0(Ξ) such that

β(n, t) > 0, ∀(n, t) ∈ Ξ, (18a)

β(−n,−t) = β(n, t), ∀(n, t) ∈ Ξ, (18b)

lim
t→±∞

(|x|+ |t|)m−1 sup
n∈Sd−1

β(n, t) = 0, ∀x ∈ R
d. (18c)

The positivity condition (18a) is posed to characterize the kernel of the RKBS parametriza-
tion µ 7→ fµ (see Lemma 5.8). The symmetry requirement (18b) allows to manage
the parity when dealing with Radon transform and measures (see Lemma 5.6 and
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Remark 5.7). The requirement (18c) ensures that condition (14) holds true (see Re-
mark 2.5), since

sup
n∈Sd−1

ρm(x, n, t) ≤
1

(m − 1)!
(|x|+ |t|)m−1. (19)

An example of β satisfying the above conditions is

β(n, t) =
1

1 + |t|m
.

According to the framework of Section 2.2, with the choice of X = Rd as input
space and Θ = Ξ as parameter space, we define Bm as the RKBS with kernel ρm and
smoothing function β, i.e.

Bm = { fµ : µ ∈ M(Ξ)}, (20a)

fµ(x) =
∫

Ξ
σm(n · x − t)β(n, t) dµ(n, t), (20b)

‖ f‖Bm
= inf{‖µ‖TV : µ ∈ M(Ξ), f = fµ}. (20c)

3.2. The regularization norm. The next theorem provides an alternative characteri-
zation of the norm (20c) by means of the Radon transform. A similar result was first
stated in [30], within a different framework. To state our result, we first need to specify
a few operators. We list them here, and we refer to Section 4 for all the details. The
operator R denotes the Radon transform from the space S ′

0(R
d) of Lizorkin distribu-

tions on Rd onto the space S ′
0(Ξ) of Lizorkin distributions on the space Ξ (Definitions

4.3 and 4.8). The operator Λd−1 is the Fourier multiplier defined by (40) and (44), and
it is at the root of the inversion formulae for the Radon transform (Theorem 4.9 and
Corollary 4.11). The operator ∂t is the distributional derivative acting on the variable t
defined in Proposition 5.2.

Theorem 3.1. Fix an integer m ≥ 2. Set Bm as the reproducing kernel Banach space with
kernel

ρm : R
d × Ξ → R, ρm(x, n, t) =

1
(m − 1)!

max{0, (n · x − t)m−1},

and smoothing function β satisfying (18), and let Qm and Pm be the subspaces defined by

Qm = { fτ ∈ Bm : τ ∈ M(Ξ), τ∨ = (−1)mτ},

Pm = { fν ∈ Bm : ν ∈ M(Ξ), ν∨ = (−1)m+1ν},

Then Qm and Pm are closed subspaces of Bm such that

Bm = Qm + Pm,

and

Pm = {p : R
d → R : p is a polynomial of degree at most m − 1}.

Moreover:

(i) the elements f ∈ Bm are continuous functions satisfying the growth condition

| f (x)| ≤ C f (1 + |x|)m−1, x ∈ R
d, (21)

so that f ∈ S ′
0(R

d);
15



(ii) for all µ ∈ M(Ξ), setting

τ =
µ + (−1)mµ∨

2
, ν =

µ + (−1)m+1µ∨

2
, (22)

we have
PQm

fµ = fτ , PPm
fµ = fν,

and
1

2(2π)d−1β
∂m

t Λd−1R fµ = τ; (23)

(iii) for all f ∈ Bm ,

‖ f‖Bm
≤ ‖PQm

f‖Bm
+ ‖PPm

f‖Bm
≤ 2‖ f‖Bm

, (24)

‖PQm f‖Bm = ‖
1

2(2π)d−1β
∂m

t Λd−1R f‖TV, (25)

‖PPm
f‖Bm

= inf{‖ν‖TV : ν ∈ M(Ξ), ν∨ = (−1)m+1ν, fν = PPm
f}; (26)

(iv) take a tempered distribution T ∈ S ′(Rd) such that

τ =
1

2(2π)d−1β
∂m

t Λd−1RT ∈ M(Ξ), (27)

T − fτ ∈ Pm (28)

then T ∈ Bm and
PQm

T = fτ , PPm
= fν,

for some ν ∈ M(Θ) such that ν∨ = (−1)m+1ν.

The proof of Theorem 3.1 is given in Section 5. Here we add some comments. As-
sume that m is even, in particular m = 2 for the ReLU (for odd m, simply interchange
“even” and “odd” in what follows). The measures τ and ν defined by (22) are the even
and odd parts of µ and Theorem 3.1 states that

Bm ={ fτ : τ ∈ M(Ξ)even}+ { fν : ν ∈ M(Ξ)odd}, (29)

so that any f ∈ Bm admits a unique decomposition f = fτ + fν with τ ∈ M(Ξ)even
and ν ∈ M(Ξ)odd. The even part τ is uniquely determined by the Radon transform
of f by (23), and ‖ fτ‖Bm

= ‖τ‖TV, so that Qm is isometrically isomorphic to M(Ξ)even.
The odd part ν over-parametrizes the finite-dimensional space Pm of polynomials of
degree less than m and, in particular, ‖ fν‖Bm ≤ ‖ν‖TV. Finally, let L = dim(Pm), and
let p1, . . . , pL be an algebraic basis of Pm. Since L is finite-dimensional, there exists a
dual family q1, . . . , qL in B′

m such that

B′
m
〈qℓ, pℓ′〉Bm = δℓ,ℓ′ .

Then, for all f ∈ Bm,

fν =
L

∑
ℓ=1

B′
m
〈qℓ, f 〉Bm

pℓ.

Item (iv) provides an equivalent characterization of Bm as a function subspace of the
space of distributions, as it happens for Besov spaces [42], and it is closely related to
the original approach in [30, 44]. Equation (27) means that there exists a bounded
measure τ ∈ M(Ξ)even such that

1
2(2π)d−1 ∂m

t Λd−1RT = βτ
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in S ′
0(Ξ). Thus, fτ ∈ Qm ⊂ Bm ⊂ S ′(Rd), and (28) is equivalent to assume that the

remainder T − fτ is a polynomial of degree less than m. Without assuming (28) we
have the following result, whose proof is postponed to Section 5.

Corollary 3.2. Take a tempered distribution T ∈ S ′(Rd) such that (27) holds true. Then there
exist a unique f ∈ Qm and a unique polynomial p such that T = f + p.

In [30, 44], the polynomial degree is enforced to be smaller than m by requiring that
T is a distribution satisfying the growth condition (21). Note that Bm satisfies (21) by
construction.

Finally, we note that Theorem 2.8 immediately gives the following representer theo-
rem.

Corollary 3.3. Assume that, for every y ∈ R, the loss function L(y, ·) is convex and coercive
in the second entry, and set Bm as in Theorem 3.1. Then, the problem

inf
f∈Bm

(
1
N

N

∑
i=1

L(yi , f (xi)) + ‖ f‖Bm

)
(30)

always has minimizers of the form

f (x) =
K

∑
k=1

αkσm(nk · x − tk), (31)

where K ≤ N, (nk, tk) ∈ Sd−1 × R, αk ∈ R \ {0} and

‖ f‖Bm ≤
K

∑
k=1

|αk|β(nk , tk)
−1.

In the next section we provide an alternative construction of RKBS for ReLU type
neural networks where the polynomial space Pm is avoided.

3.2.1. An alternative construction. As parameter space Θ, let us take the space P
d of all

hyperplanes in R
d, which is the natural domain of the Radon transform. For every

hyperplane ξ ∈ P
d there exists (n, t) ∈ Ξ such that

x ∈ ξ ⇐⇒ x · n = t.

see Figure 2. The space Ξ is a double cover of Pd with covering map

Ψ : Ξ → P
d, Ψ(n, t) = {x ∈ R

d : x · n = t},

and Ψ(n, t) = Ψ(n′, t′) if and only if (n′, t′) = (−n,−t). Therefore, we can identify Pd

with the quotient space Ξ/ ∼, where ∼ is the equivalence relation on Ξ given by

(n, t) ∼ (n′, t′) ⇐⇒ (n′, t′) = (−n,−t). (32)

We denote by [(n, t)] ∈ Pd the equivalence class of (n, t) ∈ Ξ. Note that ρm is not
well-defined on Pd since ρm(x, n, t) 6= ρm(x,−n,−t). To overcome this problem, we
fix a measurable section

s : P
d → Ξ, s(ξ) = (n(ξ), t(ξ)),

i.e. s is a measurable map satisfying

ξ = [s(ξ)],
17
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FIGURE 2. The hyperplane ξ of equation n · x = t (two-dimensional
case).

for every ξ ∈ Pd. Then, we define the feature map

φ̃m : R
d → C0(P

d) ⊂ M(Pd)′

given, for every x ∈ Rd and ξ ∈ Pd, by

φ̃m(x)(ξ) = σm(n(ξ) · x − t(ξ))β(n(ξ), t(ξ)),

where the smoothing function β satisfies (14) and it is strictly positive. Furthermore,
we suppose β to be an even function if m is even and an odd function if m is odd. This
last assumption ensures that the right-hand side in formula (33) has the right parity
(cf. Remark 5.7). We thus define the RKBS B̃m as the RKBS associated with the feature
map φ̃m. In this setting, one can prove an alternative version of Lemma 5.6.

Lemma 3.4. For every fµ ∈ B̃m,

1
2(2π)d−1 ∂m

t Λd−1R fµ = βµ, (33)

where the equality holds in S ′
0(Ξ).

We skip the proof of Lemma 3.4 since it is the same as the proof of Lemma 5.6. Then,
one can prove the following result.

Corollary 3.5. The problem

inf
f∈B̃m

(
1
N

N

∑
i=1

L(yi , f (xi)) + ‖ f‖B̃m

)

always has minimizers of the form

f (x) =
K

∑
k=1

αkσm(nk · x − tk),
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where K ≤ N, (nk, tk) ∈ Sd−1 × R, αk ∈ R \ {0} and

‖ f‖B̃m
=

K

∑
k=1

|αk|β(nk , tk)
−1.

Furthermore, the map µ 7→ fµ is an isometry from M(Pd) onto B̃m, and

‖ fµ‖B̃m
= ‖µ‖TV =

∥∥∥∥
1
β

∂m
t Λd−1R fµ

∥∥∥∥
TV

, µ ∈ M(Pd).

The last part of the statement follows by showing that the map µ 7→ fµ is injective
and by (20c). The injectivity of the map is a consequence of Lemma 3.4 together with
the fact that βµ = 0 in S ′

0(Ξ) implies µ = 0 in M(Pd), see Lemma 5.4. In other words,
taking the feature map with values in M(Pd)′ avoids the over-parametrization of the
RKBS caused by the odd measures.

Remark 3.6. The introduction of the section s is technically crucial. A quite natural
alternative to make the feature map well defined on Pd is to symmetrize the feature
map, i.e.

φ̃m(x)(ξ) =
σm(n · x − t)β(n, t) + σm(−n · x + t)β(−n,−t)

2
, ξ = [(n, t)].

However, this would result in a representation with symmetrized activation func-
tions. For instance, for m = 2 we would obtain neural networks with absolute value
activation function instead of the ReLU, i.e.

f (x) =
K

∑
k=1

αk|nk · x − tk|,

since
σm(n · x − t) + σm(−n · x + t) = |n · x − t|.

This is roughly the strategy followed in [30], where the authors obtain representations
with symmetrized activation functions, but with an additional polynomial term (see
[30, Definition 5 with Remarks 6 and 7]). Note that

σm(n · x − t)− σm(−n · x + t) = −n · x + t,

which is a polinomial of degree 1 in x. We believe that the use of the section s provides
a more transparent construction.

Remark 3.7. In Corollary 3.5 we obtain the same representation as in Corollary 3.3, but
with a simplified regularization compared to Theorem 3.1. Moreover, the norm of a
solution fµ is equal to (and not only controlled by) the ℓ1 norm of the representation
coefficients.

3.3. Discussion: a comparison with previous results. In [30] the authors build a fam-
ily of function spaces Fm, and seminorms φm : Fm → R+ in terms of the Radon trans-
form, such that the minimization problem

inf
f∈Fm

(
1
N

N

∑
i=1

L(yi, f (xi)) + φm( f )

)
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always has minimizers of the form

f (x) =
K

∑
k=1

αk(σm(nk · x − tk) + (−1)mσm(−nk · x + tk)) + p(x), (34)

where K ≤ N, (nk, tk) ∈ Sd−1 × R, αk ∈ R \ {0} and p is a polynomial of order
less than m. We refer to Theorem 1 in [30] for the precise statement. If we compare
equations (31) and (34), we can highlight our two main contributions. The first one
consists in getting rid of the polynomial term by considering a norm, instead of a
seminorm, as regularization term. A second issue that we are able to overcome with
our approach is to avoid solutions with symmetrized activation functions as in (34).
In particular, we choose the feature map with values either in M(Sd−1 × R)′, or in
M(Pd)′ but with the foresight of pre-composing the feature map with a measurable
section s : Pd → Sd−1 × R (see Section 3.2.1 for full details). In view of Theorem 2.8,
we first define the model space as a RKBS. Then, we show an alternative approach to
rigorously characterize the regularization term, and consequently the model space, in
terms of the Radon transform, which is the content of Theorem 3.1. Conversely, in [30]
the authors start building ad hoc a family of seminorms in terms of the Radon trans-
form, and consequently a family of model spaces. Their construction is motivated by
Lemma 5.6. Then, in a second moment, they show the Banach space structure of the
model spaces. A limitation of the approach in [30] is that from their construction it
is not evident how to identify new model spaces for other types of activation func-
tions. In our approach, the identification of the model space follows straightforwardly
by Theorem 2.8, and it is independent of the relation between the Radon transform
and the truncated power activation functions. Finally, it is worth observing that our
approach provides an integral representation for all the elements of the model space.
This latter result is achieved by introducing the smoothing regularizer β, which en-
sures the convergence of the integral (20b) without modifying the desired form for the
minimizers (31). In previous works, where β is not introduced, the authors need to
require alternative assumptions, as discussed in Remark 2.5.

4. RADON TRANSFORM: REVIEW AND EXTENSION

We start collecting the function spaces which will come into play. Let d ∈ N, d ≥ 1.
We use the notation 〈x〉 = (1 + |x|2)

1
2 . We denote by S(Rd) the Schwartz space of

rapidly decreasing functions. We recall that a function ϕ : Rd → C belongs to S(Rd) if
ϕ ∈ C∞(Rd) and

ρm,α(ϕ) = sup
x∈Rd

〈x〉m|∂αϕ(x)| < +∞, ∀m, α ∈ N
d. (35)

We endow S(Rd) with the topology induced by the family of seminorms {ρm,α}m,α∈Nd ,
which makes S(Rd) a Fréchet space. Its dual space S ′(Rd) is known as the space of
tempered distributions. We use the notation P(Rd) for the space of all polynomials on
Rd and we denote by S0(R

d) the space of functions in S(Rd) which are orthogonal to
all polynomials, i.e.

S0(R
d) =

{
ϕ ∈ S(Rd) :

∫

Rd
ϕ(x)p(x)dx = 0, ∀p ∈ P(Rd)

}
. (36)

The space S0(R
d) is called the Lizorkin test function space. It is a closed subspace of

S(Rd) and we endow it with the relative topology inherited from S(Rd). Its dual
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space S ′
0(R

d) of Lizorkin distributions is topologically isomorphic to the quotient
space S ′(Rd)/P(Rd), see e.g. [19, Chapter 1, Section 25].

Lemma 4.1 ([19, Lemma 6.0.4]). Let ϕ ∈ S(R). Then ϕ ∈ S0(R) if and only if, for every
k ∈ N,

lim
ω→0

Fϕ(ω)

|ω|k
= 0.

As a consequence of Lemma 4.1, the Fourier transform maps S0(R) into the space
Ŝ0(R) of rapidly decreasing functions that vanish in zero together with all of their
partial derivatives, i.e.

Ŝ0(R) = {ϕ ∈ S(R) : ∂mϕ(0) = 0, ∀m ∈ N} .

Recall that Ξ = Sd−1 × R. In analogy with S(Rd), we denote by S(Ξ) the space of
functions in C∞(Ξ) such that

ρk,l,D(ψ) = sup
n∈Sd−1,t∈R

〈t〉k

∣∣∣∣∣
dl

dtl
Dψ(n, t)

∣∣∣∣∣ < +∞,

for every k, l ∈ N and for every differentiable operator D on Sd−1. We endow S(Ξ)
with the topology induced by the family of seminorms ρk,l,D, and we denote by S ′(Ξ)
its topological dual space. In analogy with the Lizorkin test function space, S0(Ξ)
denotes the set of functions ψ ∈ S(Ξ) such that

∫

R

ψ(n, t)p(t)dt = 0, ∀p ∈ P(R), n ∈ Sd−1. (37)

Note that the integrals in (37) are finite since the functions t 7→ tkψ(n, t) belong to
L1(R) for every k ∈ N and n ∈ Sd−1. Then, by Lemma 4.1, condition (37) is equivalent
to requiring that

lim
ω→0

Fψ(n, ω)

|ω|k
= 0, ∀k ∈ N, n ∈ Sd−1,

where F denotes the Fourier transform acting on the second variable. We further refer
to [17] for a complete exposition of the function spaces introduced above.

Remark 4.2. Usually, the Radon transform R f of a function f : Rd → C is defined
on the space Pd of all hyperplanes in Rd. As seen in Section 3.2.1, Ξ is the double
covering of Pd with respect to the equivalence relation (32). Hence, we can iden-
tify functions and distributions on Pd with even functions and even distributions on
Ξ and we can define the distribution Radon transform as a map from S ′

0(R
d) onto

S ′
0(Ξ)even ≃ S ′

0(P
d) and its dual R∗ as a map from S ′

0(Ξ)even ≃ S ′
0(P

d) into S ′
0(R

d).
We adopt this setting since the space S ′

0(P
d) is replaced by S ′

0(Ξ)odd to deal with odd
m, see Theorem 3.1.

We briefly recall the notion of even and odd distributions. For all functions ψ : Ξ →
C, we set

ψ∨ : Ξ → C, ψ∨(n, t) = ψ(−n,−t), (n, t) ∈ Ξ.
It is easy to check that

S0(Ξ) ∋ ψ 7→ ψ∨ ∈ S0(Ξ)

is a well-defined continuous involution and, by duality, it defines an involution on
S ′

0(Ξ)
S ′

0(Ξ) ∋ g 7→ g∨ ∈ S ′
0(Ξ).
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We set

S0(Ξ)even = {ψ ∈ S0(Ξ) : ψ∨ = ψ}, S0(Ξ)odd = {ψ ∈ S0(Ξ) : ψ∨ = −ψ},

S ′
0(Ξ)even = {g ∈ S ′

0(Ξ) : g∨ = g}, S ′
0(Ξ)odd = {g ∈ S ′

0(Ξ) : g∨ = −g},

which are closed subsets of S0(Ξ) and S ′
0(Ξ), respectively. Moreover,

S0(Ξ) = S0(Ξ)even + S0(Ξ)odd, S0(Ξ)even ∩ S0(Ξ)odd = {0},

S ′
0(Ξ) = S ′

0(Ξ)even + S ′
0(Ξ)odd, S ′

0(Ξ)even ∩ S ′
0(Ξ)odd = {0},

where the maps

S0(Ξ)even ×S0(Ξ)odd ∋ (ψeven, ψodd) 7→ ψeven + ψodd ∈ S0(Ξ),

S ′
0(Ξ)even ×S ′

0(Ξ)odd ∋ (geven, godd) 7→ geven + godd ∈ S ′
0(Ξ)

are topological isomorphisms. A simple calculation shows that

S ′
0(Ξ)even ≃ (S0(Ξ)even)

′ ,

S0(Ξ)
′
odd ≃ (S0(Ξ)odd)

′ ,

which implies that S ′
0(Ξ)even ≃ S ′

0(P
d) under the identification S0(Ξ)even = S0(P

d),
as claimed in Remark 4.2.

With this setting, we are able to recall the definition of the Radon transform and its
dual.

Definition 4.3. The Radon transform of ϕ ∈ L1(Rd) is the function Rϕ : Ξ → C de-
fined by

Rϕ(n, t) =
∫

n·x=t
ϕ(x)dm(x), for a.e. (n, t) ∈ Ξ,

where m is the Euclidean measure on the hyperplane of equation n · x = t.

Since the pairs (n, t) and (−n,−t) define the same hyperplane, clearly the Radon
transform is an even function, i.e.

(Rϕ)∨ = Rϕ. (38)

Theorem 4.4 ([16, Corollary 4.2]). The Radon transform is a continuous injective operator

from S0(R
d) onto S0(Ξ)even.

We now introduce the dual Radon transform, also known as back-projection. While
the Radon transform is defined for any pair (n, t) as the integral over the set of points
belonging to the hyperplane of equation n · x = t, the dual Radon transform is defined
for any given point x ∈ R

d as the integral over the set of hyperplanes passing through
x, which corresponds to the set of pairs {(n, n · x) : n ∈ Sd−1} ⊆ Ξ.

Definition 4.5. The dual Radon transform (or back-projection) of ψ ∈ L∞(Ξ) is the L∞

function R∗ψ : Rd → C defined by

R∗ψ(x) =
∫

Sd−1
ψ(n, n · x)dn, x ∈ R

d,

where dn is the spherical measure on Sd−1.

Note that, if ψ is an odd function, clearly R∗ψ = 0 since dn is invariant under
reflection.

Theorem 4.6 ([16, Corollary 4.2]). The dual Radon transform is a continuous injective oper-

ator from S0(Ξ)even onto S0(R
d).
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We refer to [23, Corollary 6.1] for an alternative proof of the continuity of the op-
erators R : S0(R

d) → S0(Ξ)even and R∗ : S0(Ξ)even → S0(R
d) based on the relation

existing between Radon, ridgelet and wavelet transforms.

Proposition 4.7 ([28, Chapter II]). For every ϕ ∈ L1(Rd) and ψ ∈ L∞(Ξ),
∫

Rd
ϕ(x)R∗ψ(x)dx =

∫

Ξ
Rϕ(n, t)ψ(n, t)dndt. (39)

The duality relation (39) can be exploited to extend R and R∗ on distribution spaces
[17, 18, 23].

Definition 4.8. The Radon transform of f ∈ S ′
0(R

d) is the continuous linear functional
R f on S0(Ξ)even defined by

〈R f , ψ〉 = 〈 f ,R∗ψ〉, ψ ∈ S0(Ξ)even.

Analogously, the dual Radon transform of g ∈ S ′
0(Ξ)even is the continuous linear func-

tional on S0(R
d) defined by

〈R∗g, ϕ〉 = 〈g,Rϕ〉, ϕ ∈ S0(R
d).

Note that R : S ′
0(R

d) → S ′
0(Ξ)even and R∗ : S ′

0(Ξ)even → S ′
0(R

d) are well defined
and weakly continuous thanks to Theorem 4.6 and Theorem 4.4, respectively.

We next recall the most commonly used inversion formula for the Radon transform,
known as Filtered Back Projection. To state the formula, we first need to introduce the
positive symmetric operator Λd−1 : S(Ξ) → C∞(Ξ) defined by

Λd−1ψ(n, t) =

{
(−1)

d−1
2 ∂d−1

t ψ(n, t) d odd

(−1)
d−2

2 H ∂d−1
t ψ(n, t) d even

, (40)

where the Hilbert transform H acts only on the second variable. The operator Λd−1 is
also known as ramp filter.

Theorem 4.9 ( [17, Chapter I, Theorems 3.6 and 3.5] ). For every ϕ ∈ S(Rd),

ϕ =
1

2(2π)d−1R
∗Λd−1Rϕ. (41)

For every g ∈ S0(Ξ)even,

g =
1

2(2π)d−1 Λd−1RR∗g. (42)

In [18, Proposition 4.3], the inversion formula (41) has been extended to the space
D′

L1(R
d) of Schwartz integrable distributions [37], which embeds densely in S ′

0(R
d).

We will now provide extensions of (41) and (42) to S ′
0(R

d) and S ′
0(Ξ)even, respectively.

It is worth observing that the Hilbert transform appears in the expression of the
operator Λd−1 only when the dimension d is even. This difference is crucial in the
Radon transform theory. For odd dimension d, Λd−1 is a differential operator and it is
therefore clear that it maps S(Ξ) continuously into itself. This no longer holds if d is
even, because the Hilbert transform maps S(R) into C∞(R), but not into S(R) [26]. A
more satisfactory situation is obtained if we restrict our attention to the smaller space
of functions S0(Ξ).

Lemma 4.10. The Hilbert transform maps S0(R) continuously into itself, and therefore Λd−1

maps S0(Ξ)even continuously into itself for every d ≥ 1.
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Proof. We start showing that H maps S0(R) into S(R). Let ϕ ∈ S0(R). We already
know that H ϕ ∈ C∞(R). Thus, it remains to show that H ϕ is a rapidly decreasing
function, or equivalently that F [H ϕ] ∈ S(R). We recall that H maps S(R) into
L2(R), and for every ϕ ∈ S(R) it satisfies

F [H ϕ](ω) = −i sgn(ω)Fϕ(ω), for a.e. ω ∈ R.

Hence, we have that F [H ϕ] ∈ C∞(R \ {0}), and for every l ∈ N

∂l
ωF [H ϕ](ω) = −i sgn(ω)∂l

ωFϕ(ω), ω 6= 0. (43)

Since ϕ ∈ S0(R), ∂l
ωFϕ(0) = 0 for every l ∈ N, and F [H ϕ] can be extended together

with all its derivatives to continuous functions on R. Therefore, F [H ϕ] ∈ C∞(R) and
hence H ϕ ∈ S(R). In fact, H ϕ ∈ S0(R). Indeed, since ϕ ∈ S0(R), for every k ∈ N

lim
ω→0

F [H ϕ](ω)

ωk
= lim

ω→0

−i sgn(ω)Fϕ(ω)

ωk
= 0,

which implies H ϕ ∈ S0(R) by Lemma 4.1. We now show that H is continuous from
S0(R) into itself. In view of (43), for every ω ∈ R and m, α ∈ N we have

〈ω〉m|∂α
ωFH ϕ(ω)| = 〈ω〉m|∂α

ωFϕ(ω)|.

The claim follows by observing that ρm,α(Fϕ), m, α ∈ N, defines a basis of seminorms
for the topology of S0(R). Therefore, since S0(R) is closed under differentiation and
since H maps S0(R) continuously into itself, it is clear from the definition that Λd−1

maps S0(Ξ) continuously into itself for every d ≥ 1. Furthermore, if g ∈ S(Ξ)even,
then Λd−1g satisfies the symmetry condition (38) [17, Chapter I, Section 3]. Therefore,
Λd−1 maps S0(Ξ)even into itself for every d ≥ 1. �

Thanks to Lemma 4.10, we can define the weakly continuous operator Λd−1 : S ′
0(Ξ)even →

S ′
0(Ξ)even given by

〈Λd−1g, ϕ〉 = 〈g, Λd−1ϕ〉, g ∈ S ′
0(Ξ)even, ϕ ∈ S0(Ξ)even. (44)

We are now able to extend the inversion formulae (41) and (42) to Lizorkin distribu-
tions.

Corollary 4.11. For every f ∈ S ′
0(R

d),

f =
1

2(2π)d−1R
∗Λd−1R f .

For every g ∈ S ′
0(Ξ)even,

g =
1

2(2π)d−1 Λd−1RR∗g.

Proof. The proof follows combining inversion formulas (41) and (42) together with Def-
inition 4.8 and equation (44). �

4.1. Discussion: our contribution in Radon inversion. An important problem in har-
monic analysis is the extension of a linear operator from a Hilbert space to generalized
function spaces. The classical approach is to define the extended operator by trans-
position. A standard example is the definition of the Fourier transform on tempered
distributions [37]. The extension of the Radon transform, and of the related inversion
formulae, is a well-known subject and it is deeply studied in [18, 17, 23]. In particu-
lar, in [18, Proposition 4.3] the author extends the inversion formula (41) to the space
of Schwartz integrable distributions D′

L1(R
d) ⊆ S ′

0(R
d). Our contribution consists in
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showing that the inversion formulae (41) and (42) actually extend to the larger spaces
of Lizorkin distributions S ′

0(R
d) and S ′

0(Ξ)even, a fact which we largely exploit in Sec-
tions 3 and 5. More precisely, Corollary 4.11 follows directly by Lemma 4.10, which
allows to extend the Hilbert transform, and consequently the operator Λd−1, to Li-
zorkin distributions. To the best of our knowledge, Lemma 4.10 does not appear in the
literature and, together with Corollary 4.11, contributes to enrich the distributional
framework for the Radon transform.

5. PROOFS OF SECTION 3.2

We provide a detailed analysis of the main results of Section 3.2. We will make use
of the classical function and distribution spaces listed in Table 2, on the domains listed
in Table 1. In Table 3 we recall the main linear operators involved. For definitions and
properties we refer to Section 4.

TABLE 1. Domains (Sd−1 denotes the unit sphere in Rd).

Rd input space
Ξ = Sd−1 × R parameter space

TABLE 2. Function and distribution spaces (X = Rd, Ξ).
Subscripts (Ξ)even and (Ξ)odd denote the corresponding subspaces of
even and odd measures/functions/distributions, respectively.

M(X) real bounded measures on X

S(X) Schwartz space of rapidly decreasing functions on X

S ′(X) tempered distributions on X

S0(X) Lizorkin test functions on X

S ′
0(X) Lizorkin distributions on X

TABLE 3. Operators.

Radon transform S0(R
d)

R
//

� _

��

S0(Ξ)even
R∗

oo � _

��

S ′
0(R

d)
R

//
S ′

0(Ξ)even
R∗

oo

Ramp filter S0(Ξ)even
Λd−1

//
� _

��

S0(Ξ)even� _

��

S ′
0(Ξ)even

Λd−1
// S ′

0(Ξ)even

The first lemma allows to regard Bm as a subspace of the space of tempered distri-
butions. We denote by H : R → R the Heaviside step function

H(t) =

{
0 t < 0
1 t ≥ 1

,
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regarded as a temperated distribution.

Lemma 5.1. With the above notation,

(i) σm ∈ S ′(R) and

σ
(m−1)
m = H, (45)

where the equality holds true in S ′(R);
(ii) for all (n, t) ∈ Ξ, ρm(·, n, t) ∈ S ′(Rd);

(iii) the elements f ∈ Bm are continuous functions satisfying the polynomial growth condi-
tion

| f (x)| ≤ C f (1 + |x|)m−1; (46)

(iv) Bm ⊂ S ′(Rd) .

Proof. (i) and (ii) are clear. We prove (iii). Let f ∈ Bm. By (20a), there exists µ ∈ Bm

such that
f (x) =

∫

Ξ
σm(n · x − t)β(n, t) dµ(n, t).

Then, for every x ∈ Rd,

| fµ(x)| ≤
1

(m − 1)!

∫

Ξ
|β(n, t)||n · x − t|m−1 dµ(n, t)

≤
1

(m − 1)!

∫

Ξ
(|x|+ |t|)m−1|β(n, t)|dµ(n, t)

=
1

(m − 1)!

m−1

∑
k=0

(
m − 1

k

)
|x|k

∫

Ξ
|t|m−1−k|β(n, t)|dµ(n, t),

where the integrals converge by (18c). The right hand side is a polynomial of degree
less than m, hence we obtain (46). We now prove that f is continuos. Since

f (x0 + h) =
∫

Ξ
σm(n · h + n · x0 − t)β(n, t) dµ(n, t),

it is enough to show that f is continuos at x0 = 0. This is a consequence of the domi-
nated convergence theorem, observing that, for each (n, t) ∈ Ξ, x 7→ σm(n · x− t)β(n, t)
is continuous and, by (19),

sup
|x|≤1

|σm(n · x − t)β(n, t)| ≤ (1 + |t|)m|β(n, t)|,

where the right-hand side is integrable by (18c). Item (iv) is a direct consequence of
(iii). �

The growth condition (46) is one starting point of the construction in [30] (see their
Equation (8)). Note that, in our construction, the smoothing function β allows us to
prove that the elements of Bm are continuous functions.

We need to introduce the following operator, which provides a bounded inverse of
the derivative. It was implicitly introduced in [44].

Proposition 5.2. The operator

∂ : S0(R) → S0(R), ∂ψ(t) = ψ′(y),

is a continuous linear operator and, by duality, it extends to a weakly continuous operator on
S ′

0(R). The operator

A : S0(R) → S0(R), Aψ(t) =
∫ t

−∞
ψ(s)ds
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is a continuous linear operator satisfying

A∂ψ = ∂Aψ = ψ, ψ ∈ S0(R). (47)

By duality, A extends to a weakly continuous operator on S ′
0(R) satisfying

A∂ f = ∂A f = f , f ∈ S ′
0(R). (48)

Proof. The first claim is a consequence of the fact that ∂ is a continuous linear operator
from S(R) to S(R) and that the space of polynomials is stable under differentiation
(see (36)). Recall that 〈x〉 = (1 + |x|2)

1
2 and the family of seminorms on S(R) is given

by (35). For ϕ ∈ S0(R), we have

Aϕ(x) =
∫ x

−∞
ϕ(t)dt = −

∫ +∞

x
ϕ(t)dt.

We show that Aϕ ∈ S0(R). For every m ∈ N and x > 0, we have

〈x〉m|Aϕ(x)| = |
∫ +∞

x
(1 + x2)

m
2 ϕ(t)dt| ≤

∫ +∞

x
(1 + t2)

m
2 |ϕ(t)|dt

≤ ρ2m+4,0(ϕ)
∫ +∞

−∞
(1 + t2)

m
2

1
(1 + t2)m+2 dt < +∞.

Analogously, for every m ∈ N and x < 0, we have

〈x〉m|Aϕ(x)| = |
∫ x

−∞
(1 + x2)

m
2 ϕ(t)dt| ≤

∫ x

−∞
(1 + t2)

m
2 |ϕ(t)|dt

≤ ρ2m+4,0(ϕ)
∫ +∞

−∞
(1 + t2)

m
2

1
(1 + t2)m+2 dt < +∞.

Thus, Aϕ is a well defined function, and for every m ∈ N

sup
x∈R

〈x〉m|Aϕ(x)| ≤ C ρ2m+4,0( f ) < +∞ (49)

for some positive constant C. Furthermore, by definition, ∂Aϕ(x) = f (x), and thus,
for every m ∈ N and α ≥ 1,

sup
x∈R

〈x〉m|∂αAϕ(x)| = sup
x∈R

〈x〉m|∂(α−1) f (x)| < +∞. (50)

Therefore, Aϕ ∈ S(R). Moreover, since f ∈ S0(R), for every n ∈ N we have
∫ +∞

−∞
xnAϕ(x)dx = −

∫ +∞

−∞
xn+1∂Aϕ(x)dx = −

∫ +∞

−∞
xn+1 f (x)dx = 0.

Hence, Aϕ ∈ S0(R). By (49) and (50) we have that, for every m, α ∈ N and some
constant C,

ρm,α(Aϕ) = sup
x∈R

〈x〉m|∂αAϕ(x)| ≤ C ρ2m+4,α−1( f ),

which shows that A : S0(R) → S0(R) is continuous. (47) is a direct consequence of
the fundamental theorem of calculus. Since A is continuos, by duality A extends to a
weakly continuous operator on S ′

0(R) and (48) follows directly from (47). �

Note that the fact that ∂ has a bounded inverse strongly depends on the fact that its
domain is S0(R).

The next proposition is at the root of Theorem 3.1. It was first stated in [30, Lemma
18], by using the Radon transform R. Here we provide an alternative proof based on
the dual Radon transform R∗.
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Proposition 5.3. For every ϕ ∈ S0(R
d) and for every (n, t) ∈ Ξ,

S ′
0(R

d)〈ρm(·, n, t), ϕ〉S0(Rd) = (−1)mβ(n, t)Am(Rϕ)(n, t),

where A is the operator defined by (47) acting on Rϕ as a function of the only second variable.

Proof. Let ϕ ∈ S0(R
d). We can consider the function Tϕ : Ξ → C given by

Tϕ(n, t) =
∫

Rd
σm(x · n − t)ϕ(x) dx.

Reasoning as in the proof of Item (iii) of Lemma 5.1, it is possible to show that Tϕ is a
continuous function. We show that Tϕ ∈ S ′

0(Ξ). For every (n, t) ∈ Ξ,

|Tϕ(n, t)| ≤
∫

Rd
|σm(n · x − t)||ϕ(x)|dx

=
1

(m − 1)!

∫

Rd
|n · x − t|m−1|ϕ(x)|dx

≤
1

(m − 1)!

∫

Rd
(|x|+ |t|)m−1|ϕ(x)|dx

=
1

(m − 1)!

m−1

∑
k=0

(
m − 1

k

)
|t|k

∫

Rd
|x|m−1−k|ϕ(x)|dx,

which is a polynomial of order m − 1 in the t variable. Now, we compute the expres-
sion of the m- th derivative of Tϕ with respect to the variable t. Let ψ ∈ S0(Ξ). Then

〈∂m
t Tϕ, ψ〉 = (−1)m〈Tϕ, ∂m

t ψ〉

= (−1)m
∫

Ξ

(∫

Rd
σm(n · x − t)ϕ(x)dx

)
∂m

t ψ(n, t)dndt

= (−1)m
∫

Rd

(∫

Sd−1

∫

R

σm(n · x − t)∂m
t ψ(n, t)dtdn

)
ϕ(x)dx.

Hence, by (45),

〈∂m
t Tϕ, ψ〉 = (−1)m

∫

Rd

(∫

Sd−1

∫

R

H(n · x − t)∂tψ(n, t)dtdn

)
ϕ(x)dx

= (−1)m
∫

Rd

(∫

Sd−1

∫ n·x

−∞
∂tψ(n, t)dtdn

)
ϕ(x)dx

= (−1)m
∫

Rd

(∫

Sd−1
ψ(n, n · x)dn

)
ϕ(x)dx.

If ψ is an odd function, then
∫

Sd−1 ψ(n, n · x)dn = 0, so that 〈∂m
t Tϕ, ψ〉 = 0. Hence

∂m
t Tϕ is an even distribution, i.e. ∂m

t Tϕ ∈ S ′
0(Ξ)even. If ψ is an even function, i.e. ψ ∈

S0(Ξ)even, Definition 4.5 gives

〈∂m
t Tϕ, ψ〉 = (−1)m

∫

Rd
R∗ψ(x) ϕ(x)dx.

Therefore, (39) gives that, for all ψ ∈ S0(Ξ)even,

〈∂m
t Tϕ, ψ〉 = (−1)m

∫

Ξ
ψ(n, t) Rϕ(n, t)dndt = (−1)m〈Rϕ, ψ〉.

Therefore,
∂m

t Tϕ = (−1)mRϕ in S ′
0(Ξ),

28



and, by (48),
Tϕ = Am∂m

t Tϕ = (−1)mAm(Rϕ) in S ′
0(Ξ).

Thus, there exists p ∈ P(R) such that

Tϕ = (−1)mAm(Rϕ) + p in S ′(Ξ).

Hence,
Tϕ(n, t) = (−1)mAm(Rϕ)(n, t) + p(t)

for almost every (n, t) ∈ Ξ, and therefore for every (n, t) ∈ Ξ by continuity. We now
show that the polynomial p has to vanish everywhere. Indeed, by the dominated
convergence theorem,

lim
t→+∞

|Tϕ(n, t)| ≤ lim
t→+∞

∫

Rd
|σm(n · x − t)||ϕ(x)|dx

= lim
t→+∞

1
(m − 1)!

∫

n·x≥t
(n · x − t)m−1|ϕ(x)|dx

≤ lim
t→+∞

1
(m − 1)!

∫

n·x≥t
|x|m−1|ϕ(x)|dx = 0.

Furthermore, t 7→ Am(Rϕ)(n, t) ∈ S0(R), and thus limt→+∞ Am(Rϕ)(n, t) = 0.
Hence, we can conclude that p = 0 and

Tϕ(n, t) = (−1)mAm(Rϕ)(n, t)

for every (n, t) ∈ Ξ. Observing that

S ′
0(R

d)〈ρm(·, n, t), ϕ〉S0(Rd) = β(n, t)Tϕ(n, t),

the claim follows. �

The space M(Ξ) is clearly a subspace of S ′(Ξ). The following simple lemma shows
that it is a subspace of S ′

0(Ξ).

Lemma 5.4. Let µ, µ′ ∈ M(Ξ) be such that µ = µ′ in S ′
0(Ξ), then µ = µ′ in M(Ξ).

Proof. Since S ′
0(Ξ) ≃ S ′(Ξ)/P(R) (see Section 4), the equality µ = µ′ in S ′

0(Ξ) means
there exists a polynomial p ∈ P(R) such that µ′ = µ + p in S ′(Ξ). But p must be 0
since µ, µ′ are finite measures. Hence, µ′ = µ in S ′(Ξ) and, a fortiori, in M(Ξ). �

The next result shows that ‖ · ‖TV is invariant under symmetrization.

Lemma 5.5. Let µ ∈ M(Ξ). Then

‖µ∨‖TV = ‖µ‖TV.

Proof. Fix µ ∈ M(Ξ). By definition of µ∨ and ψ∨,
∫

Ξ
ψ(n, t) dµ∨(n, t) =

∫

Ξ
ψ∨(n, t) dµ(n, t). (51)

Indeed, using the above equality and ‖ψ∨‖∞ = ‖ψ‖∞ for ψ ∈ C0(Ξ), we have

‖µ∨‖TV = sup{〈µ∨, ψ〉 : ψ ∈ C0(Ξ), ‖ψ‖∞ ≤ 1}

= sup{〈µ, ψ∨〉 : ψ ∈ C0(Ξ), ‖ψ‖∞ ≤ 1}

= sup{〈µ, ψ〉 : ψ ∈ C0(Ξ), ‖ψ‖∞ ≤ 1} = ‖µ‖TV. �
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Equation (20b) shows that the functions f ∈ Bm are parametrized by the measures
µ ∈ M(Ξ). We now show that the even component of µ can by recovered by the
Radon trasform of f . We recall that Λd−1 is the Fourier multiplier defined by (40) and
(44).

Lemma 5.6. For every fµ ∈ Bm,

1
2(2π)d−1 ∂m

t Λd−1R fµ = β
µ + (−1)mµ∨

2
, (52)

where the equality holds in S ′
0(Ξ).

Remark 5.7. Observe that Λd−1R fµ is an even distribution on Ξ. Furthermore, it is easy
to check that

∂m
t S

′
0(Ξ)even ⊆

{
S ′

0(Ξ)even if m is even
S ′

0(Ξ)odd if m is odd
.

By (18b) β is even, so that β (µ + (−1)mµ∨)/2 has the right parity. Without condi-
tion (18b), the statement of Lemma 5.6 holds true provided that the right hand side
of (52) is replaced with (βµ + (−1)mβ∨µ∨)/2, which would make the decomposition
of (29) more involved.

Proof. Assume first that m is even. As observed in Remark 5.7, both sides of (52) are
even distributions. Thus, it is enough to check the equality on ψ ∈ S0(Ξ)even. We have

S ′
0(Ξ)

〈∂m
t Λd−1R fµ, ψ〉S0(Ξ) = (−1)m

S ′
0(R

d)〈 fµ,R∗Λd−1∂m
t ψ〉S0(Rd)

= (−1)m
∫

Rd
fµ(x) R

∗Λd−1∂m
t ψ(x) dx

= (−1)m
∫

Rd

(∫

Ξ
ρm(x, n, t) dµ(n, t)

)
R∗Λd−1∂m

t ψ(x) dx

= (−1)m
∫

Ξ

∫

Rd
ρm(x, n, t) R∗Λd−1∂m

t ψ(x) dx dµ(n, t)

= (−1)m
∫

Ξ
〈ρm(·, n, t),R∗Λd−1∂m

t ψ〉 dµ(n, t).

Proposition 5.3, the inversion formula (42) and (47) give that, for every (n, t) ∈ Ξ,

〈ρm(·, n, t),R∗Λd−1∂m
t ψ〉 = (−1)mβ(n, t)AmRR∗Λd−1∂m

t ψ

= (−1)m2(2π)d−1β(n, t)Am∂m
t ψ

= (−1)m2(2π)d−1β(n, t)ψ(n, t).

Thus, taking into account that both β (see (18b)) and ψ are even functions, we obtain

S ′
0(Ξ)

〈∂m
t Λd−1R fµ, ψ〉S0(Ξ) = 2(2π)d−1

∫

Ξ
β(n, t)ψ(n, t) dµ(n, t)

= 2(2π)d−1
∫

Ξ
β(n, t)ψ(n, t) dµeven(n, t)

= 2(2π)d−1
S ′

0(Ξ)
〈β µeven, ψ〉S0(Ξ),

which proves (52) for even m. If m is odd, the proof is very similar, observing that both
sides of (52) are odd distributions, and thus checking the equality on ψ ∈ S0(Ξ)odd.
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Furthermore, ∂m
t ψ is an even function, so that ∂m

t ψ ∈ S0(P
d), and βψ is an odd func-

tion, so that
∫

Ξ
β(n, t)ψ(n, t) dµ(n, t) =

∫

Ξ
β(n, t)ψ(n, t) dµodd(n, t). �

The map µ 7→ fµ is not injective and next result characterizes its kernel.

Lemma 5.8. Let µ ∈ M(Ξ). Then:

(i) if fµ = 0, then

µ∨ = (−1)m+1µ ⇐⇒ µ ∈

{
S ′

0(Ξ)odd if m is even

S ′
0(Ξ)even if m is odd

;

(ii) if µ∨ = (−1)m+1µ, then fµ is a polynomial of degree less than m.

Furthermore,

Pm = {p : R
d → R : p is a polynomial of degree at most m − 1},

where Pm is the space defined in Theorem 3.1.

Proof. Let τ = (µ + (−1)mµ∨)/2. If fµ = 0, then (52) implies that βτ = 0 in S ′
0(Ξ) and,

by (18a), τ = 0 in S ′
0(Ξ) and, by Lemma 5.4, τ = 0 in M(Ξ).

Assume that τ = 0. Then (52) gives that

∂m
t Λd−1R fµ = 0

in S ′
0(Ξ). Equation (48) implies that ∂m

t is injective, so that Λd−1R fµ = 0 in S ′
0(Ξ). By

construction Λd−1R fµ ∈ S ′
0(Ξ)even. Then, by Corollary 4.11, we have that

fµ =
1

2(2π)d−1R
∗Λd−1R fµ = 0 in S ′

0(R
d),

or equivalently, there exists p ∈ P(R) such that fµ = p in S ′(Rd). Hence,

fµ(x) = p(x)

for almost every x ∈ Rd, and thus for every x ∈ Rd by continuity. But since the
elements of Bm are functions of at most m − 1 polynomial growth (see (46)), we obtain
that fµ is a polynomial of degree less than m. We now prove the last claim.

By item (ii), Pm is a subspace of the finite-dimensional vector space of polynomials
of degree smaller than m. Now, let ν = (δ(n,t) + (−1)m+1δ(−n,−t))/2 with (n, t) ∈ Ξ.
Then, by (20b) and (18b),

fν(x) =
∫

Ξ
σm(n

′ · x − t′)β(n′ , t′) dν(n′ , t′) = β(n, t)
(n · x − t)m−1

2(m − 1)!
,

where in the last equality we used

max{0, t}m−1 + (−1)m+1 max{0,−t}m−1 = tm−1.

Then
span{(n · x − t)m−1 : (n, t) ∈ Ξ} ⊆ Pm.

However, it is known that the left hand side of the above inequality is the space of
polynomials of degree less or equal m − 1, so that the claim is proved. �

We are now ready to prove Theorem 3.1 and Corollary 3.2.
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Proof of Theorem 3.1. We prove the statements for an even m (if m is odd the proof is
similar). We regard Qm and Pm as reproducing kernel Banach spaces with the norms

‖ f‖Qm
= inf{‖µ‖TV : µ ∈ M(Ξ), µ∨ = (−1)mµ, f = fµ}, (53a)

‖ f‖Pm
= inf{‖µ‖TV : µ ∈ M(Ξ), µ∨ = (−1)m+1µ, f = fµ}. (53b)

Note that in principle these norms induce respectively on Qm and Pm a finer topology
than the one induced by the norm ‖ · ‖Bm

. Fix f ∈ Bm. By (20a), there exists µ ∈ M(Ξ)
such that f = fµ. Define

τ =
µ + µ∨

2
∈ M(Ξ)even, ν =

µ − µ∨

2
∈ M(Ξ)odd,

and compare with (22) taking into account that m is even. By linearity of the represen-
tation (20b),

f = fτ + fν,

whereas item (i) of Lemma 5.8 gives

Qm ∩ Pm = {0}, (54)

so that
Bm = Qm + Pm,

and
fτ = PQm

f , fν = PPm
f , (55)

which shows item (ii). The fact that Pm is the space of polynomials of degree less or
equal m − 1 is is the content of item (ii) of Lemma 5.8, whereas item (i) is the content
of item (iii) of Lemma 5.1. Since τ is the even part of µ, (52) gives

1
2(2π)d−1β

∂m
t Λd−1R f =

µ + µ∨

2
= τ,

hence (23) holds true.
If f = fµ′ for another µ′ ∈ M(Ξ), by Lemma 5.8 we have

µ′ = τ + ν′, τ =
µ′ + (µ′)∨

2
, fν′ = fν,

for some odd measure ν′. Taking into account the above equalities, (20c) gives

‖ f‖Bm = inf{‖τ + ν′‖TV : ν′ ∈ M(Ξ)odd, fν′ = fν}

≤ inf{‖τ‖TV + ‖ν′‖TV : ν′ ∈ M(Ξ)odd, fν′ = fν}

= ‖τ‖TV + inf{‖ν′‖TV : ν′ ∈ M(Ξ)odd, fν′ = fν}

= ‖ fτ‖Qm
+ ‖ fν‖Pm

, (56)

where the second inequality is a consequence of the triangular inequality, the third one
is due to the fact that τ is even and ν′ is odd, and the last equality is a consequence
of (53a) and (53b) observing that τ is the unique even measure such that fτ = PQm

f ,
so that

‖ fτ‖Qm = ‖τ‖TV. (57)

Furthermore, by Lemma 5.5 we have that

‖ fτ‖Qm
≤ ‖

µ′ + (µ′)∨

2
‖TV ≤ ‖µ′‖TV, ‖ fν‖Pm

≤ ‖
µ′ − (µ′)∨

2
‖TV ≤ ‖µ′‖TV.
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Therefore, taking the infimum over all measures µ′ such that fµ′ = f , we get

‖ fτ‖Qm
≤ ‖ f‖Bm

, ‖ fν‖Pm
≤ ‖ f‖Bm

, (58)

which, together with (56), gives

‖ f‖Bm
≤ ‖ fτ‖Qm

+ ‖ fν‖Pm
≤ 2‖ f‖Bm

. (59)

If f ∈ Qm, then f = fτ and by equations (59) and (58) we have that

‖ f‖Bm
≤ ‖ f‖Qm

≤ ‖ f‖Bm
.

So that, by (57)
‖ f‖Bm = ‖ f‖Qm = ‖τ‖TV,

which proves (25). If f ∈ Pm, then τ = 0 and, as above,

‖ f‖Bm
= ‖ f‖Pm

= inf{‖ν‖TV : ν ∈ M(Ξ)odd, fν = f},

which is (26). Finally, (25) and (26) together with (59) give equation (24). This also
implies that Qm and Pm are closed subspaces of Bm.

We finally prove item (iv). Fix a distribution T as in the statement. By assump-
tion (27) and Lemma 5.4, there exists a unique even measure τ such that

τ =
1

2(2π)d−1β
∂m

t Λd−1RT,

hence fτ ∈ Qm. Equation (28) ensures that there exists ν ∈ M(Ξ)odd such that T −
fτ = fν. Setting µ = τ + ν, we get

T − fµ = (T − fτ)− fν = 0,

which proves (iv). �

Proof of Corollary 3.2. Reasoning as in the last part of the previous proof, and again
assuming that m is even, (52) implies that

∂m
t Λd−1R(T − fτ) = 0

in S ′
0(Ξ)even. The injectivity of the operator ∂m

t Λd−1R gives that (T − fτ) = 0 in
S ′

0(R
d), i.e. there exists a polynomial p such that T − fτ = p in S ′(Rd). �

APPENDIX A. SPARSE SOLUTIONS IN VARIATIONAL PROBLEMS

In this section we collect some results from [8] that we use in our paper. We start
recalling the definition of extremal point.

Definition A.1. Let Q be a convex subset of a locally convex space. A point q ∈ Q
is called extremal if Q \ {q} is convex. We denote the set of extremal points of Q by
Ext(Q).

While extremal points are difficult to characterize in general, the following result is
fairly standard (see [8, Proposition 4.1]). We report the proof for the reader’s conve-
nience.

Lemma A.2. Let Θ be a (Hausdorff) locally compact second countable topological space, and
let

B = {µ ∈ M(Θ) : ‖µ‖TV ≤ 1}
be the unit ball in M(Θ) associated with the total variation norm. Then

Ext(B) = {±δθ : θ ∈ Θ}.
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Proof. We start showing that {±δθ : θ ∈ Θ} ⊆ Ext(B). Let θ ∈ Θ and α ∈ {−1, 1}. We
suppose that there exist t ∈ (0, 1), µ1, µ2 ∈ B such that

αδθ = tµ1 + (1 − t)µ2, (60)

and we want to show that necessarily αδθ = µ1 = µ2. We observe that the total
variation measures |µ1|, |µ2| are probability measures. Indeed, if we suppose on the
contrary that ‖µ1‖TV, ‖µ2‖TV < 1, then

‖αδθ‖TV ≤ t‖µ1‖TV + (1 − t)‖µ2‖TV < 1,

which yields a contradiction. Furthermore,

δθ = t|µ1|+ (1 − t)|µ2|.

Indeed, we first observe that (t|µ1|+ (1 − t)|µ2|)(Θ) = 1 and

δθ = |δθ| ≤ t|µ1|+ (1 − t)|µ2|.

Then, for every Borel set E ⊆ Θ, if θ ∈ E

1 = δθ(E) ≤ (t|µ1|+ (1 − t)|µ2|)(E) ≤ 1,

and if θ ∈ Θ \ E

(t|µ1|+ (1 − t)|µ2|)(E) = (t|µ1|+ (1 − t)|µ2|)(Θ) − (t|µ1|+ (1 − t)|µ2|)(Θ \ E) = 0.

Therefore, |µ1| = |µ2| = δθ, which implies µ1 = α1δθ and µ2 = α2δθ with |α1| = |α2| =
1, and equation (60) becomes

αδθ = (tα1 + (1 − t)α2)δθ. (61)

Since α, α1, α2 ∈ {−1, 1}, equation (61) is satisfied if and only if α = α1 = α2. So that,
αδθ = µ1 = µ2, and then αδθ ∈ Ext(B). It remains to prove the opposite inclusion
Ext(B) ⊆ {±δθ : θ ∈ Θ}. We suppose that there exists µ ∈ M(Θ) such that µ /∈ {±δθ :
θ ∈ Θ} but µ ∈ Ext(B). Then, ‖µ‖TV = 1. We denote by χE the indicator function on
a subset E ⊆ Θ. For every Borelian set E such that |µ|(E) ∈ (0, 1), we can rewrite µ as
the linear combination

µ = µ · χE + µ · χΘ\E = t
µ · χE

|µ|(E)
+ (1 − t)

µ · χΘ\E

|µ|(Θ \ E)
,

where t = |µ|(E) ∈ (0, 1). Since µ /∈ {±δθ : θ ∈ Θ}, then it is possible to find a
Borelian set E such that µ 6= |µ|(E)−1µ · χE and µ 6= |µ|(Θ \ E)−1µ · χΘ\E. This shows
that there exist t ∈ (0, 1), µ1, µ2 ∈ B such that µ = tµ1 + (1 − t)µ2, which yields a
contradiction. Therefore, we have shown that Ext(BTV(1)) ⊆ {±δθ : θ ∈ Θ}, which
concludes the proof. �

To establish our representer theorem we recall the following known result.

Theorem A.3 ([8, Theorem 3.3]). Consider the problem

inf
u∈U

F(Au) + G(u), (62)

where U is a locally convex topological vector space, A : U → H is a continuous, surjective
linear map with values in a finite-dimensional Hilbert space H, F : H → (−∞,+∞] is
proper, convex, coercive and lower semi-continuous, and G : U → [0,+∞) is a coercive and

lower semi-continuous norm. Then (62) has solutions of the form ∑
K
i=1 γiui with K ≤ dim H,

γi > 0, ∑
K
i=1 γi = G(u), and ui ∈ Ext({u ∈ U : G(u) ≤ 1}).
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Theorem A.3 is a simplified version of [8, Theorem 3.3], where G is only assumed to
be a seminorm. In such a case, the statement needs to take care of the kernel of G. A
seminorm G is called coercive if, for all R > 0, the set

{[u] ∈ U/N : G(u) ≤ R}

is compact in U/N , where N is the kernel of G (see Assumption [H1] in [8]).

Remark A.4. In Theorem A.3, the space U is endowed with a topology weaker than the
topology induced by the norm G in order to ensure that the closed balls are compact.
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