
Analytic regularity of solutions to the

Navier-Stokes equations with mixed

boundary conditions in polygons

Y. He and C. Marcati and Ch. Schwab

Research Report No. 2021-29

September 2021

Latest revision: May 2023

Seminar für Angewandte Mathematik

Eidgenössische Technische Hochschule

CH-8092 Zürich

Switzerland

____________________________________________________________________________________________________



ANALYTIC REGULARITY OF SOLUTIONS TO THE NAVIER-STOKES EQUATIONS WITH1

MIXED BOUNDARY CONDITIONS IN POLYGONS2

YANCHEN HE∗, CARLO MARCATI†, AND CHRISTOPH SCHWAB∗3

May 5, 20234

Abstract. We prove weighted analytic regularity of Leray-Hopf variational solutions for the stationary, incompressible Navier-5
Stokes Equations (NSE) in plane polygons , subject to analytic body forces. We admit mixed boundary conditions which may6
change type at each corner. The weighted analytic regularity results are established in scales of corner-weighted Kondrat’ev spaces7
of finite order. The proofs rely on a priori estimates for the corresponding linearized boundary value problem in sectors in corner-8
weighted Sobolev spaces and on an induction argument for the weighted norm estimates on the quadratic nonlinear term in the9
NSE, in a polar frame.10

1. Introduction. The regularity properties of the solutions of the incompressibleNavier-Stokes Equa-11

tions (NSE) have attracted considerable attention since their introduction. We mention only the intense12

research in recent years around the Onsager conjecture and on the boundedness of the velocity field of13

Leray solutions in three space dimensions.14

Regularity results for the weak, Leray-Hopf solutions to the NSE in scales of Sobolev and Besov15

spaces are crucial for the numerical analysis of the NSE. The stationary NSE is, for large values of the16

viscosity parameter, a perturbation of its linearization, the Stokes Equation. Therefore, it is an elliptic17

system in the sense of Agmon-Douglis-Nirenberg, and hence it affords analytic regularity at the interior18

points of domains for analytic forcing [25, Chap. 6.7], see also [21]. This local analyticity of the velocity19

and the pressure extends to analytic parts of the boundary.20

However, it is also classical that in the vicinity of corner points (in space dimension d = 2) and near21

edges and corners (for polyhedra in space dimension d = 3), regularity is lost, even if all other data22

of the stationary NSE are regular. See in particular [22, Chap. 10, 11] and, e.g., [5, 6, 9, 24, 27] and the23

references there. The reason is the appearance of corner singularities (in space dimension d = 2) and of24

corner- and edge-singularities (in polyhedra in space dimension d = 3). While singular solutions of the25

Stokes equation are well known to encode physically relevant effects (see, e.g., [23, 24]), they do obstruct26

large elliptic regularity shifts in standard (Besov or Triebel-Lizorkin) scales of function spaces and, con-27

sequently, high convergence rates of numerical discretizations. This failure of elliptic regularity shifts28

motivated the investigation of regularity of solutions in the presence of non smooth boundaries. For the29

mixed boundary conditions of interest here, some results on the regularity of velocity and pressure of30

Leray solutions in non-weighted Sobolev spaces with a possibly small range of smoothness have been31

obtained in [7]. It has been known for some time that, for smooth data, the velocity fields of stationary32

solutions for the incompressible NSE in plane, polygonal domains allow higher regularity in so-called33

corner-weighted Sobolev spaces. Here, weight functionswhich vanish in the corners of the polygon to a suit-34

able power compensate for the loss of regularity in the vicinity of the corner. The corresponding Mellin35

calculus for the study of regularity shifts in corner-weighted Sobolev spaces originated in [16]. See, e.g.,36

[9, 27] and the references there. In [22], an authoritative account of these results, also for the NSE in37

polyhedra, has been given. The results in [22, Chapter 11] establish regularity shifts for Leray-Hopf vari-38

ational solutions of the NSE in edge- and corner-weighted Sobolev and Hölder spaces of finite order. The39

purpose of the present paper is to prove corner-weighted, analytic regularity for the velocity field u and40

the pressure field p of Leray-Hopf solutions to the stationary, incompressible NSE in a bounded polygon41

P ⊂ R
2. Specifically, we consider the analytic regularity of solutions of the viscous, incompressible NSE42

in P ⊂ R
2 whose boundary ∂P consists of a finite number n of straight sides. Extending and revisiting43

our work [20] which addressed homogeneous Dirichlet (“no-slip”) boundary conditions, we consider44
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2 HE ANDMARCATI AND SCHWAB

here the stationary and incompressible NSE in Pwithmixed boundary conditions, where now also slip and45

so-called “open” boundary parts are admitted. These conditions arise in numerous configurations in en-46

gineering and the sciences. Furthermore, our present proof of the weighted analytic regularity requires47

a proof technique which differs from the approach used in [20]. As the corresponding analysis for plane,48

linearized elasticity in [12], it is based on regularity results for the linearization (the Stokes problem) in a49

sector built on the Agranovich-Vishik theory of complex-parametric operator pencils which was already50

used in [12] and [13] to obtain a priori estimates and shift theorems in corner-weighted spaces. See also51

[18] for a general exposition of the role of operator pencils for elliptic systems in conical domains.52

The present paper provides a proof of weighted analytic regularity for the velocity u and the pres-53

sure field p of the stationary, incompressible Navier-Stokes equations in a polygon P, subject to possibly54

mixed boundary conditions on the sides of P. The details of the proof are distinct from the argument in55

our previous work [20] even for pure Dirichlet boundary conditions. In [20], a bootstrapping argument56

based on local, Caccioppoli estimates on balls contained in P and scaling was proposed. Furthermore,57

the proof proposed in [20]was incomplete; the gap is closed by the argument in the present paper, which58

provides in particular in the case of homogeneous Dirichlet (so-called “no-slip”) boundary conditions,59

the weighted analytic regularity result in [20]. This was used in [28] to prove exponential rates of con-60

vergence of a certain hp-DGFEM discretization of the stationary NSE in polygons.61

Analytic regularity results for solutions in corner-weighted Kondrat’ev-Sobolev spaces imply, as is62

well-known, exponential convergence rate bounds for numerical approximations by so-called hp-Finite El-63

ement Methods and also by model order reduction methods. We refer to [28] and to the references64

there for recent results on exponential convergence for the Navier-Stokes equations, for discontinuous65

Galerkin discretizations, and also to the discussion in [20, Section 2.2] for exponential rates for certain66

model order reduction approaches to the NSE in P.67

1.1. Contributions. We establish weighted, analytic regularity results for Leray-Hopf solutions of68

the NSE in a bounded, connected polygonal domain P ⊂ R
2 with finitely many, straight sides. We69

generalize the analytic regularity results stated in [20] from the pure Dirichlet (also referred to as “no-70

slip”) boundary conditions as studied in [20] to the case of mixed boundary conditions at any two sides71

ofPwhichmeet at one common corner of ∂P. As in [20]wework under a small data hypothesis, ensuring72

in particular the uniqueness of weak solutions. We also develop the regularity theory based on a priori73

estimates of solutions for a linearization, the Stokes problem, in weighted, Hilbertian Sobolev spaces in74

a sector. The result contains the analytic regularity result in [20] as a special case, and its proof proceeds75

in a way that is fundamentally different from [20]. As mentioned, it is based on a regularity analysis in76

corner-weighted spaces and a novel bootstrapping argument in the quadratic nonlinearity in weighted77

Kondrat’ev spaces. As in [12, 13], the weighted a priori estimates for the velocity field and the bounds78

on the quadratic nonlinearity near corners c are obtained for the projection of the velocity components79

in a polar frame centered at c, rather than for their Cartesian components.80

The main result of the present paper is stated in Theorem 2.13. Specifically, under the small data81

hypothesis and the stated assumptions on the boundary conditions (see Assumption 1 for details), we82

show that there exist A > 0 and κ > 0 (that depends on the forcing term and on Ω) such that for all83

γ ∈ (max(1 − κ, 0), 1) the Leray-Hopf solutions (u, p) to the NSE satisfy, for all j, k ∈ N0 = {0, 1, 2, . . . }84

such that for j + k ≥ 2,85

∥∥∥∥∥

(
∏

c∈C

| · −c|j+k+γ−2

)
∂j
x1
∂k
x2
u

∥∥∥∥∥
L2(P)

≤ Aj+k+1(j + k)!,86

and for all j, k ∈ N0,87

∥∥∥∥∥

(
∏

c∈C

| · −c|j+k+γ−1

)
∂j
x1
∂k
x2
p

∥∥∥∥∥
L2(P)

≤ Aj+k+1(j + k)!.88
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ANALYTICITY FOR NS IN POLYGONS WITH MIXED BC 3

Here, for any two points a1, a2 ∈ P, |a1 − a2| denotes the Euclidean distance between a1 and a2.89

1.2. Layout. As is well-known (e.g. [18] and the references there) the analysis of point singulari-90

ties near corners of solutions of elliptic PDEs is based on polar coordinates centered at the corner. For91

elliptic systems of PDEs such as those of interest here, as in [12, 13] in addition we employ projections of92

Cartesian components of the velocity field to a polar frame. In Section 1.3, we collect the corresponding93

notation for partial derivatives and solution fields. Section 2.4 presents the variational formulation, and a94

(classical) existence and uniqueness result. Section 2 presents strong formulations of the boundary value95

problems under consideration, detailing in particular also the boundary operators. Also, weak formu-96

lations are recapitulated, with statements on existence and, under small data hypothesis, uniqueness of97

solutions.98

The corner-weighted, Kondrat’ev spaces that appear in the statement of the analytic regularity shifts99

are also introduced. Section 2.6 then presents a key technical step for the subsequent analytic regularity100

proof: a priori estimates in corner-weighted Sobolev norms in a sector for the linearized Stokes boundary101

value problem are recapitulated, from [13]. Importantly, they hold for several combinations of boundary102

conditions on the sides of the sector, and for the velocity field in a polar coordinate frame. With this103

in hand, Section 3 addresses the proof of the principal analytic regularity result for the NSE, Theorem104

2.13, which is also the main result of the present paper. The key novel step in its proof is an inductive105

bootstrap argument for the quadratic nonlinear term in the NSE, in corner-weighted spaces and for the106

velocity field in a polar frame at each corner of P. This is developed in Section 3.1. Conclusions and a107

short discussion of the results, with some consequences and possible generalizations, are presented in108

Section 4. An appendix contains several lengthy calculations that appear in several of the proofs.109

1.3. Notation. We define N = {1, 2, . . . } as the set of positive natural numbers and write N0 =110

{0} ∪ N. We refer to tuples α = (α1, α2) ∈ N
2
0 as multi-indices and we write |α| = α1 + α2. For k ∈ N0,111

we write112

∑

|α|≤k

=
∑

α∈N2
0:|α|≤k

.113

Given Cartesian coordinates (x1, x2) and polar coordinates (r, ϑ), whose origin will be clear from the114

context, we denote Cartesian partial derivatives as ∂α = ∂α1
x1

∂α2
x2

and polar derivatives as Dα = ∂α1
r ∂α2

ϑ .115

In the following, we shall always use roman letters to denote function spaces defined in terms ofCartesian116

derivatives and calligraphic letters to denote function spaces defined in terms of polar derivatives, see117

Section 2.5.118

For any vector field u with components in Cartesian coordinates119

u =

(
u1

u2

)
,120

we denote its polar coordinate frame projection as121

(1.1) u :=

(
ur

uϑ

)
= Au , A :=

(
cosϑ sinϑ
− sinϑ cosϑ

)
122

where A shall be referred to as “transformation matrix”. Here and throughout, vector-valued quantities123

such as u shall be understood as column vectors, with u⊤ denoting the transpose vector, which accord-124

ingly denotes a row vector. The symbol LSt shall denote the Stokes operator, with various super- and125

subscripts indicating Cartesian or polar coordinates and frame, i.e. we write LSt for its projection onto126

polar coordinates acting on the corresponding velocity components.127

We observe that the projection (1.1) of the velocity field into a polar frame renders certain boundary128

conditions particularly simple: for example, the homogeneous slip boundary condition in a sectorQwill129

amount to requiring the angular component uϑ to vanish on sides of Q.130
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4 HE ANDMARCATI AND SCHWAB

All quantities which occur in this paper are real-valued. The overline symbol which will indicate131

polar-coordinate representation of vectors is therefore non-ambiguous.132

We denote with an underline n-dimensional tuples β = (β1, . . . , βn) ∈ R
n and suppose arithmetic133

operations and inequalities such as γ < β are understood component-wise: e.g., β+k = (β1+k, . . . , βn+134

k) for all k ∈ N; furthermore, we indicate, e.g., β > 0 if βi > 0 for all i ∈ {1, . . . , n}.135

Finally, for a ∈ R, we denote its nonnegative real part as [a]+ = max(0, a).136

For summability index 1 ≤ q ≤ ∞, the usual Lebesgue spaces in P shall be denoted by Lq(P). Norms137

of vector-valued functions v, v are understood component-wise, e.g., for v : P → R
2, ‖v‖qLq(P) =

∫
P
‖v‖qℓq138

where ‖ · ‖ℓq is the ℓq norm for vectors. We denote the usual Sobolev spaces of differentiation order s > 0139

byW s,q(P); we write Hs(P) in the Hilbertian case q = 2.140

2. The Navier-Stokes equations, functional setting, and main result. Following the introduction141

of the polygonal domain in Section 2.1, in Section 2.2 we state the strong form of the boundary value142

problems, and of the boundary operators, in Cartesian coordinates. Section 2.3 is devoted to the saddle143

point variational form of the boundary value problems of interest. Section 2.4 reviews statements on144

existence and uniqueness of weak solutions, under the small data hypothesis. In Section 2.5 we introduce145

the corner-weighted spaces on which the weighted analytic regularity results will be based. Finally, we146

state in Section 2.7 our main result.147

2.1. Geometry of the domain. Throughout, P denotes a polygon with n ≥ 3 straight, open sides148

Γi and n corners C = {c1, . . . , cn} with interior opening angles ωi ∈ (0, 2π), i = 1, 2, ..., n (enumerated149

in counterclockwise order, and modulo n, i.e. we identify Γn with Γ0 and Γn+1 with Γ1, etc.), so that150

ci = Γi ∩ Γi+1. Let ΓD, ΓN , and ΓG be a disjoint partition of the boundary Γ = ∂P of P comprising151

each of nD ≥ 1, nN ≥ 0 and nG ≥ 0 many sides of P, respectively, with n = nD + nN + nG. We152

denote by n : Γ → R
2 the exterior unit normal vector to P, defined almost everywhere on Γ, which153

belongs to L∞(Γ;R2), and by t ∈ L∞(Γ;R2) correspondingly the unit tangent vector to Γ, pointing in154

counterclockwise tangential direction.155

2.2. The Navier-Stokes boundary value problems. We assume that a kinematic viscosity ν > 0 is156

given, which is constant throughout P. For a velocity field u : P → R
2 and a scalar p : P → R, define157

ε(u) :=
1

2

(
∇u+∇u⊤

)
, σ(u, p) := 2νε(u)− p Id2,158

where Id2 is the 2×2 identity matrix, and∇u denotes the 2×2matrix of the Cartesian partial derivatives159

of the components of u.160

With this notation, we consider the stationary, incompressible Navier-Stokes equations in P161

(2.1)

−∇ · σ(u, p) + (u · ∇)u = f in P

∇ · u = 0 in P

u = 0 on ΓD

σ(u, p)n = 0 on ΓN

(σ(u, p)n) · t = 0 and u · n = 0 on ΓG.

162

Here, ΓD, ΓN , and ΓG correspond to so-called no-slip, open, and slip boundary conditions, respec-163

tively.164

Remark 2.1. We allow interior opening angles to take values in (0, 2π). With this setting, (2.1) in-165

cludes the case of boundary conditions changing along edges of the domain P.166

Remark 2.2. From the identity167

(2.2) 2∇ · ε(u) = ∆u+∇(∇ · u),168
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the boundary value problem (2.1) is equivalent to169

(2.3)

−ν∆u+ (u · ∇)u+∇p = f in P

∇ · u = 0 in P

u = 0 on ΓD

σ(u, p)n = 0 on ΓN

(σ(u, p)n) · t = 0 and u · n = 0 on ΓG.

170

2.3. Variational Formulation. Weak solutions of the NSE (2.1) in the sense of Leray-Hopf satisfy171

the NSE (2.1) in variational form. To state it, we introduce standard Sobolev spaces in P. Throughout the172

remainder of this article, we shall work under173

Assumption 1. The boundary value problems (2.1), (2.3) satisfy the following conditions.174

1. P is a bounded, connected polygon with a finite number n of straight sides, denoted by Γi, i =175

1, ..., n, and with Lipschitz boundary Γ = ∂P.176

2. nD ≥ 1.177

Assumption 1 implies that the Dirichlet case considered in [20] is a special case of the present setting. It178

also implies that all interior opening angles ωi at corners ci of P are in (0, 2π). In particular, slit domains179

which correspond to the opening angle 2π are excluded. Remark also that Assumption 1, item 2. implies180

that we always have |ΓD| > 0; as a consequence, the case Γ = ΓN ∪ΓG is excluded from our analysis. Fur-181

thermore, Item 2 ensures that the linearization of the Navier-Stokes equations, i.e., the Stokes problem,182

admits unique variational velocity field solutions u, possibly with pressure p unique up to constants if183

Γ = ΓD.184

We denote henceforth the space of velocity fields of variational solutions to the Navier-Stokes equa-185

tions (2.1) as186

(2.4) W =
{
v ∈ [H1(P)]2 : v = 0 on ΓD, v · n = 0 on ΓG

}
.187

We denote by W ∗ its dual, with identification of L2(P)2 ≃ [L2(P)2]∗. We also define Q = L2(P) if188

|ΓD| < |Γ| (i.e., if not the entire boundary is a Dirichlet boundary) and set Q = L2
0(P) := L2(P)/R in the189

case that Γ = ΓD.190

We are interested in variational solutions (u, p) of (2.1). To state the corresponding variational for-191

mulation, we introduce the usual bi- and trilinear forms:192

(2.5)

a(u,v) := 2ν

∫

P

2∑

i,j=1

[ε(u)]ij [ε(v)]ij dx ,

b(u, p) := −
∫

P

p∇ · u dx ,

t(w;u,v) :=

∫

P

((w · ∇)u) · v dx .

193

With these forms, we state the variational formulation of (2.1): find (u, p) ∈ W ×Q such that194

(2.6)
a(u,v) + t(u;u,v) + b(v, p) =

∫

P

f · v dx ,

b(u, q) = 0 ,

195

for all v ∈ W and all q ∈ Q.196
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6 HE ANDMARCATI AND SCHWAB

2.4. Existence and uniqueness of solutions. We recapitulate results on existence and uniqueness of197

variational solutions of the NSE (2.6). As is well-known, uniqueness of such solutions in the stationary198

case requires a small data hypothesis. To state it, we introduce the coercivity constant of the viscous199

(diffusion) term200

Ccoer := inf
v∈W

‖v‖H1(P)=1

2

∫

P

2∑

i,j=1

[ε(v)]ij [ε(v)]ij dx201

and the continuity constant for the trilinear transport term202

Ccont := sup
u,v,w∈W

‖u‖H1(P)=‖v‖H1(P)=‖w‖H1(P)=1

∫

P

((u · ∇)v) ·w dx .203

The following existence and uniqueness result is then classical, see e.g. [27, Theorem 3.2]. It is valid204

under a small data hypothesis. To state it, we introduce205

M :=

{
v ∈ W : ‖v‖H1(P) ≤

Ccoerν

2Ccont

}
.206

207

Theorem 2.3. Suppose that Assumption 1 holds and assume that ‖f‖W ∗ ≤ C2
coerν

2

4Ccont
. There exists a solution208

(u, p) ∈ W × L2(P) to (2.1) with right hand side f . The velocity field u is unique in M.209

As we assumed above nD ≥ 1, there is always at least one side of Pwhere homogeneous Dirichlet (“no-210

slip”) BCs are imposed.211

2.5. Functional setting. For x ∈ P and for i ∈ {1, . . . , n}, let ri(x) := dist(x, ci). We define the corner212

weight function213

Φβ(x) :=

n∏

i=1

rβi

i (x).214

We next introduce the corner-weighted function spaces to be used for the regularity analysis. As the215

notation used in the literature dealing with weighted Sobolev spaces is not always uniform, we present216

here several definitions of corner-weighted spaces and discuss how they relate for the range of weight217

exponents that is relevant to the present work.218

2.5.1. Corner-weighted function spaces of finite order in P. In the polygon P, for j, k ∈ N0 and219

γ ∈ R
n, we introduce homogeneous corner-weighted seminorms and associated norms given by220

(2.7) |v|2
Kj

γ(P)
:=
∑

|α|=j

‖Φ|α|−γ∂
αv‖2L2(P), ‖v‖2Kk

γ (P)
:=

k∑

j=0

|v|2
Kj

γ(P)
.221

Furthermore, we also require non-homogeneous, corner-weighted Sobolev norms. They are, for ℓ ∈ N0,222

k ∈ N with k > ℓ, and β ∈ R
n given by223

(2.8) ‖v‖2
Hk,ℓ

β (P)
:= ‖v‖2Hℓ−1(P) +

∑

ℓ≤|α|≤k

‖Φβ+|α|−ℓ∂
αv‖2L2(P),224

with the convention that the first term is omitted when ℓ = 0. We therefore define the homogeneous,225

corner-weighted Sobolev spacesKk
γ (P) and the non-homogeneous, corner-weighted Sobolev spacesHk,ℓ

β (P)226

as the spaces of, respectively, weakly differentiable functions with bounded Kk
γ (P) and Hk,ℓ

β (P) norms.227
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2.5.2. Corner-weighted analytic classes Bℓ
β(P) and K̟

γ (P). With the weighted, Kondrat’ev-type228

spaces at hand, we now introduce weighted analytic classes which will quantify the loss of analyticity of229

velocity and pressure in a vicinity of the corner points. Let230

231

(2.9) Bℓ
β(P) :=

{
v ∈

⋂

k≥ℓ

Hk,ℓ
β (P) : ∃C,A > 0 s. t.232

‖Φβ+|α|−ℓ∂
αv‖L2(P) ≤ CA|α|−ℓ(|α| − ℓ)!, ∀|α| ≥ ℓ

}
,233

234

and235

(2.10) K̟
γ (P) :=

{
v ∈

⋂

k∈N0

Kk
γ (P) : ∃C,A > 0 s. t. ∀α ∈ N

2
0 : ‖Φ|α|−γ∂

αv‖L2(P) ≤ CA|α||α|!
}
.236

The spaces Hk,ℓ
β (P) and the analytic classes Bℓ

β(P) are based on non-homogeneous weighted Sobolev237

norms, while the spacesKj
γ(P) and the classesK̟

γ are based on homogeneous weighted Sobolev norms.238

For a discussion of the relation between homogeneous and non-homogeneous weighted Sobolev spaces,239

see [4]. Some facts from [4] required here are listed in Section 2.5.4 below. In the definitions (2.9), (2.10)240

of the weighted, analytic classes, the constant C > 0 quantifies the size of a function in terms of linear241

scaling of norms, whereas the constant A > 0 relates to the size of the domain of analyticity.242

2.5.3. Corner-weighted spaces in polar coordinates and trace spaces in sectors. To recall regularity243

shifts near corners, we introduce corner-weighted function spaces in plane sectors Qδ,ω(c) of opening244

ω ∈ (0, 2π), radius δ ∈ (0,∞] and with corner c ∈ R
2. They are defined using a polar coordinate system245

as246

Qδ,ω(c) =
{
x ∈ R

2 : r(x, c) := |x− c| ∈ (0, δ), ϑ(x) ∈ (0, ω)
}
.247

We do not indicate the dependence on the vertex c when this is clear from the context.248

Corner-weighted spaces which are defined in polar coordinates are denoted with caligraphic letters:249

recall that Dα = ∂α1
r ∂α2

ϑ denotes the partial derivative of order α ∈ N
2
0 in polar coordinates.250

For all k ∈ N0 and β ∈ R, we introduce the (homogeneous) corner-weighted, Hilbertian Kondrat’ev251

space Vk
β (Qδ,ω) of functions v in Qδ,ω(c) with bounded norm given by252

(2.11) ‖v‖2Vk
β (Qδ,ω) =

∑

|α|≤k

‖rβ−k+α1Dαv‖2L2(Qδ,ω).253

We write Lβ = V0
β . Norms of vector-functions v, v are taken component-wise.254

Let ΓQ ⊂ ∂Qδ,ω be either one straight edge or the union of two straight edges ofQδ,ω . We define, for255

all k ∈ N and β ∈ (0, 1), Vk− 1
2

β (ΓQ) as the trace spaces of Vk
β (Qδ,ω) and equip them with the norms256

(2.12) ‖g‖
V

k−
1
2

β (ΓQ)
= inf

G|ΓQ
=g

‖G‖Vk
β (Qδ,ω).257

For k, ℓ ∈ N0 with k ≥ ℓ and for β ∈ R,Hk,l
β (Qδ,ω) denotes the space of functions with finite norm258

‖v‖2
Hk,ℓ

β (Qδ,ω)
:= ‖v‖2Hℓ−1(Qδ,ω) +

∑

ℓ≤|α|≤k

‖rα1+β−ℓDαv‖2L2(Qδ,ω),259

where the first term is dropped if ℓ = 0.260
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With the corner-weighted spaces of finite order at hand, for ℓ ∈ N0 and β ∈ R, the corner-weighted261

analytic classes Bℓ
β in Qδ,ω , with weak derivatives in polar coordinates, are defined by262

(2.13)

Bℓ
β(Qδ,ω) =

{
v ∈

∞⋂

k=ℓ

Hk,ℓ
β (Qδ,ω) : ∃C,A > 0 s. t. ‖rα1+β−ℓDαv‖L2(Qδ,ω) ≤ CA|α|−ℓ(|α| − ℓ)!, ∀|α| ≥ ℓ

}
.263

The definition of the spacesHk,ℓ
β (Qδ,ω(c)) and Bℓ

β(Qδ,ω(c)) follows from (2.9) by replacing Φβ+|α|−ℓ264

in (2.8) and (2.9) with r(·, c)β+|α|−ℓ. Similarly, the corner-weighted spacesKk
γ (Qδ,ω(c)) andK̟

γ (Qδ,ω(c))265

can be defined by replacing Φ|α|−γ in (2.7) and (2.10) with r(·, c)|α|−γ .266

2.5.4. Relation between corner-weighted spaces. In this section we collect results on embeddings267

between some of the corner-weighted spaces we introduced. They are of independent interest, and will268

be required at various stages in the ensuing proof of the analytic regularity shifts.269

The following relations between polar frame velocity u in (1.1) and Cartesian frame velocity com-270

ponents u hold and shall be used in the sequel. For ease of reading, we either cite or postpone all proofs271

to Appendix A.272

Lemma 2.4. For all 0 < δ ≤ 1, ω ∈ (0, 2π), c ∈ R
2, ℓ ∈ {0, 1, 2}, and β ∈ (0, 1), if u ∈ Bℓ

β(Qδ,ω(c))
2 and273

u(c) = 0 when ℓ = 2, then u ∈ Bℓ
β(Qδ,ω)

2.274

The reverse implication, in the case ℓ = 0, is treated in the following statement.275

Lemma 2.5. For all 0 < δ ≤ 1, ω ∈ (0, 2π), c ∈ R
2, and β ∈ (0, 1), if v ∈ B0

β(Qδ,ω(c))
2 then v ∈276

B0
β(Qδ,ω(c))

2.277

The corner-weighted spaces in Cartesian and polar frames are equivalent: the following lemmas on278

equivalence and embedding between weighted spaces state this formally.279

Lemma 2.6. Let 0 < δ ≤ 1, ω ∈ (0, 2π), β ∈ (0, 1), c ∈ R
2. Then the following equivalence relations hold280

for any ℓ ∈ {0, 1, 2} and N0 ∋ k ≥ ℓ:281

1. v ∈ Hk,ℓ
β (Qδ,ω(c)) ⇐⇒ v ∈ Hk,ℓ

β (Qδ,ω(c)).282

2. v ∈ Bℓ
β(Qδ,ω(c)) ⇐⇒ v ∈ Bℓ

β(Qδ,ω(c)).283

3. v ∈ H1,1
β (Qδ,ω(c)) ⇐⇒ v ∈ V1

β(Qδ,ω(c)).284

Lemma 2.7. Let 0 < δ ≤ 1, ω ∈ (0, 2π), β ∈ (0, 1), c ∈ R
2. Then the following embeddings are continuous:285

1. V2
β(Qδ,ω(c)) →֒ H2,2

β (Qδ,ω(c)) →֒ C0(Qδ,ω(c)).286

2. If v ∈ H2,2
β (Qδ,ω(c)) and v(c) = 0, then v ∈ V2

β(Qδ,ω(c)).287

For the proof of Lemma 2.6, see [2, Theorem 1.1, Theorem 2.1, Lemma A.2]. For the proof of Lemma288

2.7, see [2, Lemma 1.1, Lemma A.1, Lemma A.2] and [3, Section 2]. The following lemma asserts that289

functions that belong to corner-weightedKondrat’ev spaceswith non-homogeneousweights for a certain290

range of orders and weight exponents, with the additional requirement of the function vanishing at the291

corner for second order spaces, also belong to the corresponding spaces with homogeneous weights. We292

refer to [17, Chapter 7] for an in-depth presentation.293

Lemma 2.8. Let 0 < δ ≤ 1, ω ∈ (0, 2π), β ∈ (0, 1), c ∈ R
2, k ∈ {1, 2}, and v ∈ Hk,k

β (Qδ,ω(c)). Let294

furthermore v(c) = 0 when k = 2. Then, v ∈ Kk
k−β(Qδ,ω(c)).295

2.6. The Stokes system in a sector. A central role in our proof of analytic regularity of the solution296

(u, p) of the Navier-Stokes equation in corner-weighted analytic classes is taken by a regularity shift297

for the linear principal part of the Navier-Stokes equation, the Stokes boundary value problem. We298

recapitulate these (known) results here, from [13, 27, 12] and [5, Sec.2] and [10, Chap.6].299

Consider, for c ∈ R
2, δ ∈ (0,∞) and ω ∈ (0, 2π), the sector Qδ,ω(c). Denote by300

Γϑ=0 := {x ∈ R
2 : r(x, c) ∈ (0, δ), ϑ(x) = 0} , Γϑ=ω := {x ∈ R

2 : r(x, c) ∈ (0, δ), ϑ(x) = ω}301
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the two edges meeting at c. Let also Γ̆δ = Γ0 ∪ Γω and let ΓS
D,ΓS

N ,ΓS
G ∈ {∅,Γ0,Γω} be pairwise disjoint302

and such that ΓS
D ∪ ΓS

N ∪ ΓS
G = Γ̆δ . As all the results in this section are independent of c, we omit the303

dependence of the sector in the notation and write Qδ,ω = Qδ,ω(c) whenever the dependence on c is not304

essential.305

We may now formally introduce the Stokes operator LSt acting on a (sufficiently regular) velocity-306

pressure pair (v, q) via307

(2.14) Lσ
St(v, q) =

(
−∇ · σ(v, q)

∇ · v

)
308

and the associated boundary operator B(v, q), on the sides Γι for ι ∈ {0, ω}, via309

(2.15) [B(v, q)]ι =





v if Γι = ΓS
D ,

σ(v, q)n if Γι = ΓS
N ,(

(σ(v, q)n) · t
v · n

)
if Γι = ΓS

G .

310

Our proof of the analytic regularity in corner weighted spaces is based, as in the work for the Stokes311

equations [11], on a basic regularity shift in corner-weighted spaces for the Stokes Operator. Such reg-312

ularity shifts are by now well-known and are obtained, following the seminal work of V.A. Kondrat’ev313

[16], by Mellin transformation techniques in Sectors (see, e.g., the monographs [17]). For reference in314

the ensuing analysis of the quadratic nonlinearity u ·∇u in Section 3 ahead, we state the following result315

which is used subsequently.316

Theorem 2.9. Let ω ∈ (0, 2π) and β ∈ (1 − κ, 1) ∩ (0, 1) where κ > 0 is defined in (2.19) below. Then,317

for any δ > 0, there exists a constant Csec = Csec(β, δ) > 0 such that for all (ŭ, p̆) ∈ [H1(Qδ,ω)]
2 × L2(Qδ,ω)318

satisfying, for some f̆ ∈ [Lβ(Qδ,ω)]
2 and for some ğ ∈ [V1/2

β (ΓS
N )]2,319

(2.16)

Lσ
St(ŭ, p̆) =

(
f̆

0

)
in Qδ,ω

ŭ = 0 on ΓS
D

σ(ŭ, p̆)n = ğ on ΓS
N

(σ(ŭ, p̆)n) · t = 0 and ŭ · n = 0 on ΓS
G,

320

then (ŭ, p̆) ∈ [H2,2
β (Qδ,ω)]

2 ×H1,1
β (Qδ,ω) and the following estimate holds:321

322

(2.17) ‖ŭ− ŭ(c)‖V2
β(Qδ/2,ω) + ‖p̆‖V1

β(Qδ/2,ω)323

≤ Csec

(
‖f̆‖Lβ(Qδ,ω) + ‖ŭ‖H1(Qδ,ω\Qδ/2,ω) + ‖p̆‖L2(Qδ,ω\Qδ/2,ω) + ‖ğ‖

V
1/2
β (ΓS

N )

)
.324

325

Here, the corner-weighted norms are as in (2.11), (2.12).326

A proof of this result proceeds along the lines of the proof of [13, Theorem 5.2], i.e. by multiplying ŭ327

and p̆ by aC∞ cutoff functionwhich is supported inQδ,ω andwhich equals one inQδ/2,ω and bywriting a328

Stokes problem in the infinite sectorQ∞,ω . It is detailed in [14, Lemma 5.1.1] for all boundary conditions329

presently considered. There,330

(2.14) is converted to polar frame via (1.1). Subsequently, the change of variables t = log(r) fol-331

lowed by an application of the Fourier transform in t results in an operator pencil {A(λ) : λ ∈ C} of332

parametrized differential operators L̂(λ) acting on ϑ ∈ I = (0, ω), and corresponding boundary opera-333

tors B̂(λ) at ϑ ∈ {0, ω} i.e.334

(2.18) A(λ) : H2(I)2 ×H1(I) → L2(I)2 ×H1(I)× C
2 × C

2 : (v, q) 7→ [L̂(λ)(v, q), B̂(λ)(v, q)] .335
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10 HE ANDMARCATI AND SCHWAB

The operator pencilA(λ) : H2(I)2 ×H1(I) → L2(I)2 ×H1(I)×C
2 ×C

2 in (2.18) depends polynomially336

on λ. We refer to Appendix B for the explicit representation of L̂(λ) and of B̂(λ), and to [18] for the337

general theory of such pencils in connectionwith elliptic boundary value problems in conical domains. In338

particular, [18, Chap. 5.1] addresses the presently considered Stokes pencil, with homogeneous Dirichlet339

boundary conditions.340

It is known (e.g., [18]) and verified (for the Stokes pencil and the boundary conditions considered341

here) in [14, Chapter 4.7] and [12, Section 4.5] thatA−1(λ) is an operator-valued, meromorphic function342

of λwith countably many, isolated poles in C of finite multiplicity. For precise information on the distri-343

butions of these poles regarding different combinations of boundary conditions, see [27] or [12, Lemma344

4.1], which studies the elasticity problem with Dirichlet/Neumann boundary conditions. The results345

from [12] are applicable to the Stokes problem if formally the value 0.5 of the Poisson ratio is inserted in346

the corresponding transcendental equations in [12]. We refer to [10, Sec. 6.2] for a justification. Define,347

for A(λ) as in (2.18),348

(2.19) κ = min{Im(µ)|µ is a nonzero eigenvalue of A(λ) with positive imaginary part}.349

As the parametric operator pencil λ 7→ A(λ) defined in (2.18) is Fredholm for all λ ∈ C [14, Chapter 4.7],350

it has a discrete spectrum inC [18, Theorem 1.1.1]. For all combinations of boundary conditions, if µ is an351

eigenvalue ofA(λ), then so are µ̄, −µ, and −µ̄. Moreover, eigenvalues µ of λ 7→ A(λ) accumulate only at352

infinity, so that κ in (2.19) is well-defined. The quantity κ in (2.19) determines the range of corner-weight353

exponents in which the regularity shift (2.17) holds in corner-weighted Sobolev spaces.354

Remark 2.10. Theorem 2.9 corresponds to the incompressible limiting case of corner-weighted reg-355

ularity shift for the equations of linear elasticity obtained in [12, Thm. 5.1, Coro. 5.2], see [10, Sec. 6.2].356

Unique solvability of the Stokes problem in corner-weighted spaces in the infinite sector for the indi-357

cated range of the corner-weight parameter β > 1 − κ1 is shown in [12, Coro. 4.2] and [13, Thm. 5.2].358

The corner-weighted a-priori estimate (2.17) can also be derived using [26, Theorem 5.1] or [18, Chap-359

ter 5.1] if only homogeneous Dirichlet (so-called ”no-slip”) boundary conditions are considered. For a360

detailed development, we refer to [13, Sec. 4] and also to [14, Lemma 5.1.1].361

Remark 2.11. In Theorem 2.9, we restrict the corner-weight exponents β to the interval (0, 1). In some362

specific combinations of ω and boundary conditions, regularity shifts like (2.17) for β belonging to in-363

tervals larger than (0, 1) could be established. For example, when ω < π and both sides are equipped364

with Dirichlet boundary conditions, κ > 1 and thus β could be negative, see e.g. [13, Remark 5.6].365

Nonetheless, in the present paper, we restrict corner-weight exponents to (0, 1) to ensure that our anal-366

ysis covers all combinations of boundary operators, and that the embedding results in Lemma 2.7 hold.367

Observe also that the case ω = π corresponds to changing boundary conditions along a straight side of368

the polygon; imposing β > 0 includes this case in our analysis. Finally, the exponents β ∈ (0, 1) are suf-369

ficient for establishing the corner-weighted, analytic regularity results, and for the proof of exponential370

convergence rates of numerical discretization methods, such as, e.g., hp-DGFEM (see [28]).371

Remark 2.12. By relation (2.2), if (u, p) ∈ [H2,2
β (Qδ,ω)]

2 ×H1,1
β (Qδ,ω) and ∇ · u = 0, we have372

(2.20) L∆
St(u, p) :=

(
−ν∆u+∇p

∇ · u

)
= Lσ

St(u, p).373

Estimate (2.17) therefore also holds with L∆
St in place of Lσ

St.374

2.7. Statement of the main result. We are ready to state our main result on the weighted analytic375

regularity of Leray-Hopf solutions to Navier-Stokes boundary value problem (2.1). We recall that the ex-376

plicit form of the operator pencilA(λ) in (2.18) which arises for the presently considered Stokes problem377

and its boundary conditions (2.20) is detailed in Appendix B.378
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Theorem 2.13. Let β = (β1, . . . , βn) ∈ (0, 1)n be such that around each corner ci for i = 1, ..., n, βi ∈379

(1 − κi, 1) ∩ (0, 1) where κi is defined as in (2.19) with respect to the corner ci, in the interval I = (0, ωi),380

cf. Sec. 2.1 and to the operator pencil Ai(λ) for the linearized (Stokes) boundary value problem as defined in381

(2.18). Let further f ∈ [B0
β(P)]

2 ∩W ∗ be such that ‖f‖W ∗ ≤ C2
coerν

2

4Ccont
. Suppose in addition that Assumption 1382

holds and let (u, p) ∈ W ×Q be the weak solution to (2.6) with right hand side f .383

Then384

(u, p) ∈ [B2
β(P)]

2 ×B1
β(P).385

Remark 2.14. It can be shown, using the equivalence of the classes Bℓ
β implied by [5, Remark 4.3],386

that, under the hypothesis of Theorem 2.13,387

(u, p) ∈ [Bm
β−2+m(P)]2 ×Bn

β−1+n(P)388

for anym ∈ N and any n ∈ N0.389

The remainder of the paper is devoted to the proof of Theorem2.13. It is based on inductive bootstrapping390

elliptic regularity for the linearized boundary value problem in corner-weighted Sobolev spaces of finite391

order, of Kondrat’ev type. Such estimates are in principle known (e.g. [26, 22, 27, 13]). They were392

recapitulated for the readers’ convenience in the form required in Section 2.6. The weighted a priori393

estimates are then combined with novel analytic estimates of the quadratic nonlinearity in polar frame394

in corner-weighted spaces that will be developed in Section 3.395

3. Proof of the main result. We prove Theorem 2.13, which, as our main result, ensures analytic396

regularity in scales of weighted spaces of Leray-Hopf solutions to theNavier-Stokes equations (2.1)mod-397

elling stationary, viscous and incompressible flow in a polygon P. Wewill devote our attention to analytic398

estimates in scales of corner-weighted Sobolev spaces for the nonlinear transport term, as treating this399

term is the main difference in comparison to the weighted analytic regularity proof for the linear Stokes400

problem in P in [13].401

3.1. Estimate of the nonlinear term. We start by rewriting the quadratic nonlinearity (u · ∇)u in402

polar coordinates and projecting its Cartesian components into the polar frame as in (1.1). We note here403

that the gradient operator in Cartesian coordinates is projected to a polar frame by (cf. the definition of404

A in (1.1))405

(3.1) ∇ = A−1

(
∂r

r−1∂ϑ

)
.406

407

Lemma 3.1. For any constant vector field c taking value (c1, c2)
⊤ ∈ R

2, it holds that408

(3.2) ((u+ c) · ∇)(u+ c) =

(
(ur + cr)∂rur +

1
r ((uϑ + cϑ)∂ϑur − (uϑ + cϑ)uϑ)

(ur + cr)∂ruϑ + 1
r ((uϑ + cϑ)∂ϑuϑ + (uϑ + cϑ)ur)

)
.409
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Proof. We calculate410

((u+ c) · ∇)(u+ c)411

= ((u+ c) · ∇)u412

= A

((
(u+ c) · (A−⊤A−1

(
∂r

r−1∂ϑ

)
)

)
A−1u

)
413

= A

((
(u+ c) ·

(
∂r

r−1∂ϑ

))
A−1u

)
414

= A

[(
cosϑ(ur + cr)∂rur − sinϑ(ur + cr)∂ruϑ

sinϑ(ur + cr)∂rur + cosϑ(ur + cr)∂ruϑ

)
415

+
1

r

(
cosϑ(uϑ + cϑ)∂ϑur − sinϑ(uϑ + cϑ)ur − sinϑ(uϑ + cϑ)∂ϑuϑ − cosϑ(uϑ + cϑ)uϑ

sinϑ(uϑ + cϑ)∂ϑur + cosϑ(uϑ + cϑ)ur + cosϑ(uϑ + cϑ)∂ϑuϑ − sinϑ(uϑ + cϑ)uϑ

)]
416

=

(
(ur + cr)∂rur +

1
r ((uϑ + cϑ)∂ϑur − (uϑ + cϑ)uϑ)

(ur + cr)∂ruϑ + 1
r ((uϑ + cϑ)∂ϑuϑ + (uϑ + cϑ)ur)

)
.417

418

In order to treat the individual nonlinear terms arising from the polar representation of the transport419

term of the Navier-Stokes equation obtained above, we need a technical result on weighted interpolation420

estimates in plane sectors. The following statement is a variant of [20, Lemma 1.10] in polar coordinates.421

Lemma 3.2. Let δ, ω ∈ R such that 0 < δ ≤ 1 and ω ∈ (0, 2π). For all β̃1, β̃2 ∈ R such that β̃2 > β̃1 + 1/2,422

there exists a constant Cint = Cint(δ, ω, β̃1, β̃2) > 0 such that, for all α ∈ N
2
0 and all functions ϕ such that423

max
|η|≤1

‖rβ̃1+α1+η1Dα+ηϕ‖L2(Qδ,ω) < ∞,424

the following bound holds:425

426

‖rβ̃2+α1Dαϕ‖L4(Qδ,ω) ≤ Cint‖rβ̃1+α1Dαϕ‖1/2L2(Qδ,ω)427

×


∑

|η|≤1

‖rβ̃1+α1+η1Dα+ηϕ‖1/2L2(Qδ,ω) + α
1/2
1 ‖rβ̃1+α1Dαϕ‖1/2L2(Qδ,ω)


 .428

429

Proof. We set δ = 1. Consider the dyadic partition of Q1,ω given by the sets430

Sj :=
{
x ∈ Q1,ω : 2−j−1 < r(x) < 2−j

}
, j ∈ N0,431

and denote the linear maps Ψj : Sj → S0. Denote ϕ̂j := ϕ ◦ Ψ−1
j : S0 → R and write D̂α for derivation432

with respect to polar coordinates (r, ϑ) in S0. Then, by scaling, for any q ∈ [1,∞),433

(3.3) ‖rβ̃2+α1Dαϕ‖Lq(Sj) = 2−j(β̃2+2/q)‖rβ̃2+α1D̂αϕ̂j‖Lq(S0).434

Furthermore, the following interpolation inequality holds in S0: there exists C0 > 0 such that435

(3.4) ‖v‖L4(S0) ≤ C0‖v‖1/2H1(S0)‖v‖
1/2
L2(S0)436

holds for all v ∈ H1(S0). In addition, by (3.1), for all v ∈ H1(S0),437

(3.5) ‖v‖2H1(S0) ≤ 16
(
‖v‖2L2(S0) + ‖∂rv‖2L2(S0) + ‖∂ϑv‖2L2(S0)

)
.438
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Combining (3.4) and (3.5) and choosing v = rα1D̂αϕ̂j gives439

‖rα1D̂αϕ̂j‖L4(S0)440

≤ 2C0‖rα1D̂αϕ̂j‖1/2L2(S0)


∑

|η|≤1

‖Dη(rα1D̂αϕ̂j)‖2L2(S0)




1/4

441

≤ 4C0‖rα1D̂αϕ̂j‖1/2L2(S0)


∑

|η|≤1

‖rα1D̂α+ηϕ̂j‖2L2(S0) + α2
1‖rα1−1D̂αϕ̂j‖2L2(S0)




1/4

.442

443

Therefore, using the bound 2−|a| ≤ r(x)a ≤ 2|a| valid for all x ∈ S0 and all a ∈ R,444

‖rβ̃2+α1D̂αϕ̂j‖L4(S0) ≤ 2|β̃2|+|β̃1|+1/24C0‖rβ̃1+α1D̂αϕ̂j‖1/2L2(S0)445

×


∑

|η|≤1

‖rβ̃1+α1+η1D̂α+ηϕ̂j‖2L2(S0) + α2
1‖rβ̃1+α1D̂αϕ̂j‖2L2(S0)




1/4

.446

447

We denote C1 := 2|β̃2|+|β̃1|+1/24C0. Using this last inequality and (3.3) twice,448

‖rβ̃2+α1Dαϕ‖L4(Sj)449

≤ 2−j(β̃2+1/2)‖rβ̃2+α1D̂αϕ̂j‖L4(S0)450

≤ 2−j(β̃2+1/2)C1‖rβ̃1+α1D̂αϕ̂j‖1/2L2(S0)451

×


∑

|η|≤1

‖rβ̃1+α1+η1D̂α+ηϕ̂j‖2L2(S0) + α2
1‖rβ̃1+α1D̂αϕ̂j‖2L2(S0)




1/4

452

≤ C12
−j(β̃2−β̃1−1/2)‖rβ̃1+α1Dαϕ‖1/2L2(Sj)453

×


∑

|η|≤1

‖rβ̃1+α1+η1Dα+ηϕ‖2L2(Sj) + α2
1‖rβ̃1+α1Dαϕ‖2L2(Sj)




1/4

.454

455

Since β̃2 − β̃1 − 1/2 > 0, we can conclude that456

∑

j∈N0

‖rβ̃2+α1Dαϕ‖4L4(Sj) ≤ C4
1


∑

j∈N0

‖rβ̃1+α1Dαϕ‖2L2(Sj)


457

×


∑

|η|≤1

∑

j∈N0

‖rβ̃1+α1+η1Dα+ηϕ‖2L2(Sj) + α2
1

∑

j∈N0

‖rβ̃1+α1Dαϕ‖2L2(Sj)


 .458

459

Taking the fourth root of both sides of the inequality above concludes the proof for the case δ = 1. The460

general case δ ∈ (0, 1] follows by scaling (with constant Cint depending on δ).461

Using the interpolation result obtained above, we can estimate, under a regularity assumption on u, the462

individual terms appearing in (3.2). This is done in the following Lemma 3.3 and Corollary 3.4.463

Lemma 3.3. Let β ∈ (0, 1), 0 < δ ≤ 1, ω ∈ (0, 2π). Then, there exists a constant Cd = Cd(β, δ, ω) > 0 such464

that, for all u ∈ V2
β(Qδ,ω) with ‖u‖V2

β(Qδ,ω) ≤ 1 such that there exist constants Au, Eu > 1, and k ∈ N satisfying465

(3.6) ‖rβ+α1−2Dαu‖L2(Qδ,ω) ≤ A|α|−2
u Eα2

u (|α| − 2)!, ∀α ∈ N
2
0 : 2 ≤ |α| ≤ k + 1,466
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it holds, for all α, η ∈ N
2
0 such that |η| ≤ 1 and |α| ≤ k − |η|, that467

(3.7) ‖rβ/2−1+α1Dα(rη1Dηu)‖L4(Qδ,ω) ≤ Cd(|α|+ 1)1/2A[|α|+|η|−3/2]+
u Eα2+η2+1/2

u [|α|+ |η| − 2]+!.468

Proof. We start by proving the theorem in the case |η| = 0. Applying Lemma 3.2 with β̃2 = β/2− 1469

and β̃1 = β − 2 (note that β ∈ (0, 1) implies β̃2 > β̃1 + 1/2), for all |α| ≤ k,470

(3.8)

‖rβ/2−1+α1Dαu‖L4(Qδ,ω) ≤ Cint‖rβ−2+α1Dαu‖1/2L2(Qδ,ω)

×


∑

|η|≤1

‖rβ−2+α1+η1Dα+ηu‖1/2L2(Qδ,ω) + α
1/2
1 ‖rβ−2+α1Dαu‖1/2L2(Qδ,ω)


 .

471

When |α| ≥ 2, using (3.6), we have472

‖rβ/2−1+α1Dαu‖L4(Qδ,ω)473

≤ CintA
|α|−3/2
u Eα2+1/2

u (2(|α| − 1)!1/2 + (1 + α
1/2
1 )(|α| − 2)!1/2)(|α| − 2)!1/2474

≤ CintA
|α|−3/2
u Eα2+1/2

u (2(|α| − 1)1/2 + 1 + α
1/2
1 )(|α| − 2)!475

≤ CintA
|α|−3/2
u Eα2+1/2

u 4|α|1/2(|α| − 2)!.476477

If |α| ≤ 1, instead, it follows from ‖u‖V2
β(Qδ,ω) ≤ 1 and (3.8) that478

‖rβ/2−1+α1Dαu‖L4(Qδ,ω) ≤ Cint(3 + α
1/2
1 ) ≤ 4Cint.479

This proves (3.7) for |η| = 0, i.e., that for all |α| ≤ k,480

(3.9) ‖rβ/2−1+α1Dαu‖L4(Qδ,ω) ≤ 4CintA
[|α|−3/2]+
u Eα2+1/2

u (|α|+ 1)1/2[|α| − 2]+!.481

Consider now the case |η| = 1. We have482

‖rβ/2−1+α1Dα(rη1Dηu)‖L4(Qδ,ω) ≤ ‖rβ/2−1+α1+η1Dα+ηu‖L4(Qδ,ω) + α1η1‖rβ/2−1+α1Dαu‖L4(Qδ,ω).483

For all |α| ≤ k − 1, we can apply (3.9) to the two terms in the right hand side above:484

α1‖rβ/2−1+α1Dαu‖L4(Qδ,ω) ≤ 4CintA
[|α|−3/2]+
u Eα2+1/2

u (|α|+ 1)1/2α1[|α| − 2]+!485

≤ 4CintA
[|α|−1/2]+
u Eα2+η2+1/2

u (|α|+ 1)1/22[|α| − 1]+!,486487

and488

‖rβ/2−1+α1+η1Dα+ηu‖L4(Qδ,ω) ≤ 4CintA
[|α|−1/2]+
u Eα2+η2+1/2

u (|α|+ 2)1/2[|α| − 1]+!.489

≤ 4CintA
[|α|−1/2]+
u Eα2+η2+1/2

u 2(|α|+ 1)1/2[|α| − 1]+!.490491

Hence, for all |α| ≤ k − 1 and all |η| = 1,492

‖rβ/2−1+α1Dα(rη1Dηu)‖L4(Qδ,ω) ≤ 16CintA
[|α|−1/2]+
u Eα2+η2+1/2

u (|α|+ 1)1/2[|α| − 1]+!,493

which concludes the proof, with Cd = 16Cint.494

Corollary 3.4. Let β ∈ (0, 1), 0 < δ ≤ 1, ω ∈ (0, 2π), and let u ∈ V2
β(Qδ,ω) satisfy ‖u‖V2

β(Qδ,ω) ≤ 1.495

Suppose that there exist Au, Eu > 1 and k ∈ N such that496

‖rβ+α1−2Dαu‖L2(Qδ,ω) ≤ A|α|−2
u Eα2

u (|α| − 2)!, ∀α ∈ N
2
0 : 2 ≤ |α| ≤ k + 1.497

Then, for all α ∈ N
2
0 such that |α| ≤ k,498

(3.10) ‖rβ/2−1+α1Dα(ru)‖L4(Qδ,ω) ≤ 4Cd(|α|+ 1)1/2A[|α|−3/2]+
u Eα2+1/2

u [|α| − 2]+!.499
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Proof. We start from the bound500

‖rβ/2−1+α1Dα(ru)‖L4(Qδ,ω) ≤ ‖rβ/2+α1Dαu‖L4(Qδ,ω) + α1‖rβ/2−1+α1D(α1−1,α2)u‖L4(Qδ,ω),501

where the second term is absent if α1 = 0. From Lemma 3.3, it follows that502

‖rβ/2+α1Dαu‖L4(Qδ,ω) ≤ δCd(|α|+ 1)1/2A[|α|−3/2]+
u Eα2+1/2

u [|α| − 2]+!503

and that (when α1 ≥ 1)504

α1‖rβ/2−1+α1D(α1−1,α2)u‖L4(Qδ,ω)505

≤ δα1|α|1/2A[|α|−5/2]+
u Eα2+1/2

u [|α| − 3]+!506

≤ max
j∈N

(
j3/2

(j + 1)1/2 max(j − 2, 1)

)
(|α|+ 1)1/2A[|α|−3/2]+

u Eα2+1/2
u [|α| − 2]+!507

≤ 3

2

√
3(|α|+ 1)1/2A[|α|−3/2]+

u Eα2+1/2
u [|α| − 2]+!508

509

Equation (3.10) follows from the above, bounding 1 + 3
2

√
3 ≤ 4 for ease of notation.510

We are now in position to estimate the weighted norms of the nonlinear term in the sectorQδ,ω(c), under511

the assumptions of analytic bounds on the weighted norms of u. Initially, we do this under the assump-512

tion that u ∈ V2
β(Qδ,ω(c))

2 (which implies that u vanishes at the vertex of the sector) in Lemma 3.5.513

Lemma 3.5 (Weighted analytic estimates for the quadratic nonlinearity in polar frame).514

Assume that β ∈ (0, 1), 0 < δ ≤ 1, ω ∈ (0, 2π) and cmax > 0 are given fixed.515

Then, there existsCt = Ct(β, δ, ω, cmax ) > 0 such that for all constant vector fields c taking value (c1, c2)
⊤ ∈516

R
2 such that |c1| + |c2| < cmax and all w : Qδ,ω → R

2 with ‖w‖V2
β(Qδ,ω) ≤ 1 such that there exist k ∈ N and517

constants Aw, Ew ≥ 1 satisfying518

{
‖rα1+β−2Dαwr‖L2(Qδ,ω) ≤ A|α|−2

w Eα2
w (|α| − 2)!

‖rα1+β−2Dαwϑ‖L2(Qδ,ω) ≤ A|α|−2
w Eα2

w (|α| − 2)!,
for all 2 ≤ |α| ≤ k + 1,519

the following inequality holds:520

(3.11) ‖rα1+β−2Dα(r2((w + c) · ∇)(w + c)))‖L2(Qδ,ω) ≤ CtA
|α|−1
w Eα2+2

w |α|!, ∀α ∈ N
2
0 : 1 ≤ |α| ≤ k.521

Proof. By Lemma 2.7, there exists a constant Cemb = Cemb(β, δ, ω) > 0 such that ‖w‖V2
β(Qδ,ω) ≤ 1522

implies w ∈ [C0(Qδ,ω)]
2 and523

(3.12) ‖w‖L∞(Qδ,ω) ≤ Cemb.524

Next, we recall from Lemma 3.1 that525

(3.13) r2((w + c) · ∇)(w + c) =

(
r2(wr + cr)∂rwr + r((wϑ + cϑ)∂ϑwr − (wϑ + cϑ)wϑ)
r2(wr + cr)∂rwϑ + r((wϑ + cϑ)∂ϑwϑ + (wϑ + cϑ)wr)

)
.526

We will estimate the individual terms.527
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16 HE ANDMARCATI AND SCHWAB

Estimate of rw2
ϑ and rwrwϑ. Let v ∈ {wr, wϑ}. From (3.10), Lemma 3.3 and Corollary 3.4 it follows528

that for any α as in (3.11)529

‖rα1+β−2Dα(rwϑv))‖L2(Qδ,ω)530

≤
|α|∑

j=0

∑

|η|=j,η≤α

(
α

η

)
‖rη1+β/2−1Dη(rv)‖L4(Qδ,ω)‖rα1−η1+β/2−1Dα−ηwϑ‖L4(Qδ,ω)531

≤
|α|∑

j=0

∑

|η|=j,η≤α

(
α

η

)
4C2

d(|η|+ 1)1/2A[|η|−3/2]+
w Eη2+1/2

w [|η| − 2]+!

× (|α| − |η|+ 1)1/2A[|α|−|η|−3/2]+
w Eα2−η2+1/2

w [|α| − |η| − 2]+!

532

≤ 4C2
dA

[|α|−3/2]+
w Eα2+1

w

×
|α|∑

j=0

∑

|η|=j,η≤α

(
α

η

)
j!(|α| − j)!

(j + 1)1/2(|α| − j + 1)1/2

max(j(j − 1), 1)max((|α| − j)(|α| − j − 1), 1)
.

533

534

Here we have used [|η| − 3/2]+ + [|α| − |η| − 3/2]+ ≤ [|α| − 3/2]+ for all η ≤ α.535

Now, for all j ∈ N0,536

(j + 1)1/2

max(j(j − 1), 1)
=

(j + 1)1/2 max(j, 1)1/2

max(j − 1, 1)

1

max(j, 1)3/2
≤

√
6

1

max(j, 1)3/2
.537

In addition (see, e.g., [15, Proposition 2.1])538

∑

|η|=j,η≤α

(
α

η

)
=

(|α|
j

)
.539

Therefore,540

‖rα1+β−2Dα(rwϑv))‖L2(Qδ,ω)541

≤ 24C2
dA

[|α|−3/2]+
w Eα2+1

w

|α|∑

j=0

j!(|α| − j)!
1

max(j, 1)3/2 max(|α| − j, 1)3/2

∑

|η|=j,η≤α

(
α

η

)
.542

≤ 24C2
dA

[|α|−3/2]+
w Eα2+1

w |α|!
|α|∑

j=0

1

max(j, 1)3/2 max(|α| − j, 1)3/2
.543

544

We have, by the Cauchy-Schwarz inequality,545

|α|∑

j=0

1

max(j, 1)3/2 max(|α| − j, 1)3/2
≤

|α|∑

j=0

1

max(j, 1)3
≤ 1 + ζ(3) ≤ 5

2
.546

We conclude that for any α as in (3.11),547

(3.14) ‖rα1+β−2Dα(rw2
ϑ))‖L2(Qδ,ω) ≤ 60C2

dA
[|α|−3/2]+
w Eα2+1

w |α|!548

and549

(3.15) ‖rα1+β−2Dα(rwϑwr))‖L2(Qδ,ω) ≤ 60C2
dA

[|α|−3/2]+
w Eα2+1

w |α|!.550
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Estimate of r2cr∂rv, rcϑ∂ϑv and rcϑv for v ∈ {wr, wϑ}. Let ξ ∈ N
2
0 such that |ξ| ≤ 1 and let ϕ ∈ {cr, cϑ}.551

Note that ϕ depends on the angle ϑ, but it is independent of r, since552

cr = c1 cosϑ+ c2 sinϑ, cϑ = −c1 sinϑ+ c2 cosϑ.553

We have554

555

‖rα1+β−2Dα(r1+ξ1ϕDξv)‖L2(Qδ,ω)556

≤
∑

η=(0,j),j∈{0,...,α2}

(
α2

j

)
‖∂j

ϑϕ‖L∞(Qδ,ω)‖rα1+β−2Dα−η(r1+ξ1Dξv)‖L2(Qδ,ω)

≤ cmax

∑

η=(0,j),j∈{0,...,α2}

(
α2

j

)
‖rα1+β−2Dα−η(r1+ξ1Dξv)‖L2(Qδ,ω).

557

558

If α1 = 0, then559

‖rα1+β−2Dα(r1+ξ1ϕDξv)‖L2(Qδ,ω) ≤ cmax

∑

η=(0,j),j∈{0,...,α2}

(|α|
j

)
‖rξ1+1+β−2Dα−ηDξv‖L2(Qδ,ω)

≤ cmax

|α|∑

j=0

(|α|
j

)
A[|α|−j−1]+

w Eα2−j+ξ2
w [|α| − j − 1]+!

≤ cmax

|α|∑

j=0

|α|!
j!

A[|α|−j−1]+
w Eα2−j+ξ2

w

≤ ecmaxA
|α|−1
w Eα2+1

w |α|!

560

since
∑|α|

j=0
1
j! ≤

∑+∞
j=0

1
j! = e. If α1 > 0,561

‖rα1+β−2Dα(r1+ξ1ϕDξv)‖L2(Qδ,ω) ≤ cmax

∑

η=(0,j),j∈{0,...,α2}

(
α2

j

)(
‖rα1+ξ1+1+β−2Dα−ηDξv‖L2(Qδ,ω)

+ (1 + ξ1)α1‖rα1+ξ1+β−2Dα−η−(1,0)Dξv‖L2(Qδ,ω)

+ (1 + ξ1)ξ1
α1(α1 − 1)

2
‖rα1+β−2Dα−η−(2,0)Dξv‖L2(Qδ,ω)

)

≤ cmax

∑

η=(0,j),j∈{0,...,α2}

(
α2

j

)(
A|α|−j−1

w Eα2−j+ξ2
w (|α| − j − 1)!

+ (1 + ξ1)α1A
[|α|−j−2]+
w Eα2−j+ξ2

w [|α| − j − 2]+!

+ (1 + ξ1)ξ1
α1(α1 − 1)

2
A[|α|−j−3]+

w Eα2−j+ξ2
w [|α| − j − 3]+!

)

≤ cmax

∑

j∈{0,...,α2}

(
α2

j

)
4A|α|−j−1

w Eα2−j+1
w (|α| − j)!

≤ 4cmax

|α|∑

j=0

|α|!
j!

A|α|−1
w Eα2+ξ2

w

≤ 4ecmaxA
|α|−1
w Eα2+ξ2

w |α|!.

562
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In the second to last line above, we have used the inequality563

(
α2

j

)
· (|α| − j)! ≤ |α|!

j!
, ∀α = (α1, α2) ∈ N

2
0, ∀j ∈ N0 such that j ≤ α2.564

which follows directly from
(
α2

j

)
≤
(
|α|
j

)
.565

In conclusion, we have that for any ϕ ∈ {cr, cϑ}, any v ∈ {wr, wϑ} and any ξ ∈ N
2
0 with |ξ| ≤ 1,566

(3.16) ‖rα1+β−2Dα(r1+ξ1ϕDξv)‖L2(Qδ,ω) ≤ 4ecmaxA
|α|−1
w Eα2+1

w |α|!, ∀α ∈ N
2
0 : 1 ≤ |α| ≤ k.567

Estimate of the remaining terms. Let v, w ∈ {wr, wϑ} and let ξ ∈ N
2
0 such that |ξ| = 1. We have, for any568

|α| > 0,569

(3.17)

‖rα1+β−2Dα(r1+ξ1wDξv))‖L2(Qδ,ω)

≤
|α|∑

j=1

∑

|η|=j,η≤α

(
α

η

)
‖rη1+β/2−1Dη(rw)‖L4(Qδ,ω)‖rα1−η1+β/2−1Dα−η(rξ1Dξv)‖L4(Qδ,ω)

+ ‖rα1+β−1wDα(rξ1Dξv)‖L2(Qδ,ω)

= (I) + (II).

570

We bound the sum in term (I) by similar techniques as above, using Lemma 3.3 and Corollary 3.4:571

(I) ≤
|α|∑

j=1

∑

|η|=j,η≤α

(
α

η

)
4C2

d(|η|+ 1)1/2A[|η|−3/2]+
w Eη2+1/2

w [|η| − 2]+!

× (|α| − |η|+ 1)1/2A[|α|−|η|−1/2]+
w Eα2−η2+ξ2+1/2

w [|α| − |η| − 1]+!

572

≤ 4C2
dA

[|α|−3/2]+
w Eα2+1+ξ2

w

|α|∑

j=1

∑

|η|=j,η≤α

(
α

η

)
j!(|α| − j)!

(j + 1)1/2(|α| − j + 1)1/2

max(j(j − 1), 1)max(|α| − j, 1)
,573

574

where we have used that575

[|η| − 3/2]+ + [|α| − |η| − 1/2]+ ≤ [|α| − 3/2]+, ∀η ≤ α : |η| ≥ 1.576

By the elementary inequality577

(j + 1)1/2

max(j, 1)
=

(j + 1)1/2

max(j, 1)1/2
1

max(j, 1)1/2
≤

√
2

1

max(j, 1)1/2
, ∀j ∈ N0,578

we obtain using Hölder’s inequality579

(3.18)

(I) ≤ 8C2
dA

[|α|−3/2]+
w Eα2+ξ2+1

w |α|!
|α|∑

j=1

1

max(j − 1, 1)max(j, 1)1/2 max(|α| − j, 1)1/2

≤ 8C2
dA

[|α|−3/2]+
w Eα2+ξ2+1

w |α|!
|α|∑

j=1

1

max(j − 1, 1)3/2 max(|α| − j, 1)1/2

≤ 8C2
dA

[|α|−3/2]+
w Eα2+ξ2+1

w |α|!


1 +

|α|−1∑

j=1

j−2




3/4
1 +

|α|−1∑

j=1

j−2




1/4

≤ 24C2
dA

[|α|−3/2]+
w Eα2+ξ2+1

w |α|!,

580
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where we have used 1 + ζ(2) ≤ 3.581

We now estimate term (II) in (3.17). Remark that582

(3.19) (II) ≤ ‖rw‖L∞(Qδ,ω)‖rα1+β−2Dα(rξ1Dξv)‖L2(Qδ,ω).583

In addition, ‖rw‖L∞(Qδ,ω) ≤ δ and584

‖rα1+β−2Dα(rξ1Dξv)‖L2(Qδ,ω)585

≤ ‖rα1+ξ1+β−2Dα+ξv‖L2(Qδ,ω) + α1ξ1‖rα1+β−2Dαv‖L2(Qδ,ω)586

≤ A|α|−1
w Eα2+ξ2

w (|α| − 1)! + ξ1|α|A|α|−1
w Eα2

w [|α| − 2]+!587

≤ 3A|α|−1
w Eα2+ξ2

w (|α| − 1)!.588589

Hence, from (3.12) and (3.19), for any α as in (3.11),590

(3.20) (II) ≤ 3δCembA
|α|−1
w Eα2+ξ2

w (|α| − 1)!.591

It follows from (3.17), (3.18), and (3.20) that, for any v, w ∈ {wr, wϑ} and any multi-index ξ such that592

|ξ| = 1,593

(3.21) ‖rα1+β−2Dα(r1+ξ1wDξv))‖L2(Qδ,ω) ≤ (24C2
d + 3Cemb)A

|α|−1
w Eα2+1+ξ2

w |α|!.594

The combination of the formula (3.13) and of the bounds (3.14), (3.15), (3.16), and (3.21) concludes595

the proof, with596

Ct = 6max
(
60C2

d + 4ecmax , 24C
2
d + 3Cemb + 4ecmax

)
.597

3.2. Analytic regularity in the polygon P. We can now prove the main result of this paper. With598

analyticity in the interior and up to edges of P being classical, we concentrate on the sectors near the599

corners ci of the domain P. We define for δ ∈ (0, 1),600

(3.22) Si
δ := Qδ,ωi

(ci), i = 1, . . . , n.601

We prepare the bootstrapping argument required for establishing analytic regularity by proving that the602

solution (u, p) as is given in Theorem 2.3 satisfies that (u− u(ci), p) ∈ [V2
βi
(Si

δ)]
2 × V1

βi
(Si

δ).603

Lemma 3.6. Let β = (β1, . . . , βn) ∈ (0, 1)n be such that βi ∈ (1 − κi, 1) ∩ (0, 1) for i = 1, ..., n. Here604

κi is defined as in (2.19) with respect to the operator pencil Ai(λ) defined as in (2.18) with opening angle ωi605

and boundary operators corresponding to the boundary conditions on the two edges meeting at ci. Let further606

f ∈ [Lβ(P)]
2 ∩W ∗ be such that ‖f‖W ∗ ≤ C2

coerν
2

4Ccont
. Suppose that Assumption 1 holds. Let (u, p) be the solution607

to (2.1) with right hand side f .608

Then, the following results hold:609

1. For all 0 < δ ≤ 1 with δ < 1
4 mini,j |cj − ci|,610

(u− u(ci), p) ∈ [V2
βi
(Si

δ/2)]
2 × V1

βi
(Si

δ/2), ∀i ∈ {1, . . . , n}.611

2. For any corner ci which touches a complete side Γ ⊂ ΓG ∪ ΓD, u(ci) · n = 0 where n is the unit outer612

normal vector to Γ.613

Proof. We start by showing the first assertion. For all s ∈ (1, 2) and for t = (1/s− 1/2)−1,614

‖f‖Ls(P) ≤ ‖Φ−β‖Lt(P)‖Φβf‖L2(P).615
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Therefore f ∈ [Lβ(P)]
2 implies616

(3.23) f ∈ [Ls(P)]2, ∀s ∈
[
1,

2

1 + maxβ

)
.617

In addition, u ∈ [H1(P)]2 implies by Sobolev embedding u ∈ [Lt(P)]2 for all t ∈ [1,∞). By Hölder’s618

inequality, choosing t ∈ [1,∞) and s = (1/2 + 1/t)−1,619

‖(u · ∇)u‖Ls(P) ≤ ‖u‖Lt(P)‖∇u‖L2(P) < ∞620

which implies621

(3.24) (u · ∇)u ∈ [Ls(P)]2, ∀s ∈ [1, 2).622

It follows from [27, Corollary 4.2], (3.23), and (3.24) that there exists q > 1 such that (u, p) ∈ [W 2,q(P)]2×623

W 1,q(P). This implies in turn, by Sobolev embedding, u ∈ [L∞(P)]2. Hence (u · ∇)u ∈ [L2(P)]2. We624

conclude by applying Theorem 2.9 to each corner sector to obtain that there exists a constant Csec such625

that for each i ∈ {1, . . . , n},626

‖u− u(c)‖V2
βi

(Si
δ/2

) + ‖p‖V1
βi

(Si
δ/2

) ≤ Csec

(
‖f‖Lβi

(Si
δ)
+ ‖(u · ∇)u‖Lβi

(Si
δ)
+ ‖u‖H1(P) + ‖p‖L2(P)

)
.627

Now, since f ∈ [Lβ(P)]
2 and (u · ∇)u ∈ [L2(P)]2, it holds that f ∈ [Lβi(S

i
δ)]

2 and (u · ∇)u ∈ [Lβi(S
i
δ)]

2;628

hence, the right hand side of the inequality above is bounded. Using [12, Corollary 4.2] to bound the629

norm of the Cartesian version of the flux concludes the proof of the regularity result.630

To show the second point, we fix i ∈ {1, . . . , n} and assume that Γ ⊂ ΓG ∪ΓD abuts ci. Then, for any631

point x ∈ Γwe have, due to the boundary condition, u(x) ·n = 0, where n is the outer normal vector to632

Γ. In addition, Lemma 2.7 implies that u ∈ C0(Si
δ)

2 since u−u(ci) ∈ V2
βi
(Si

δ/2)
2 ⊂ C0(Si

δ/2)
2. Therefore,633

by letting x → ci along Γ, we have u(ci) · n = limx→ci u(x) · n = 0.634

We prove weighted analytic estimates for Leray-Hopf weak solutions in each corner sector.635

Lemma 3.7. Let β = (β1, . . . , βn) ∈ (0, 1)n be such that βi ∈ (1 − κi, 1) ∩ (0, 1) for i = 1, ..., n. Here636

κi is defined as in (2.19), with respect to the operator pencil Ai(λ), defined as in (2.18) with opening angle ωi637

and boundary operators corresponding to the boundary conditions on the two edges meeting at ci. Let further638

f ∈ [B0
β(P)]

2 ∩W ∗ such that ‖f‖W ∗ ≤ C2
coerν

2

4Ccont
. Suppose that Assumption 1 holds and let (u, p) be the solution639

to (2.1) with right hand side f .640

Then there exists δP ∈ (0, 1] such that for all i ∈ {1, 2, . . . , n}, (u, p) ∈ [B2
βi
(Si

δP/2
)]2 ×B1

βi
(Si

δP/2
).641

Remark 3.8. Lemma 3.7 implies in particular that ifu(ci) = 0 (this happenswhen at least one straight642

edge of Si
δP

is a zero Dirichlet edge or both edges are equipped with homogeneous slip boundary con-643

dition and ωi 6= π), then u ∈ [B2
βi
(Si

δP/2
)]2 ⊂ [H2,2

β (Si
δP/2

)]2 and p ∈ B1
βi
(Si

δP/2
) ⊂ H1,1

β (Si
δP/2

) im-644

plies by Lemma 2.8 that u ∈ [K2
2−βi

(Si
δP/2

)]2 and that p ∈ K1
1−βi

(Si
δP/2

). Furthermore, by definition645

Bℓ
βi
(Si

δP/2
) ∩ Kℓ

ℓ−βi
(Si

δP/2
) = K̟

ℓ−β
i

(Si
δP/2

). Therefore, u ∈ [K̟
2−βi

(Si
δP/2

)]2 and p ∈ K̟
1−βi

(Si
δP/2

) in this646

case.647

Proof. Fix 0 < δP ≤ 1 such that δP < 1
4 mini,j |cj − ci| and such that648

(3.25) ‖u− u(ci)‖V2
βi

(Si
δ
P
) ≤ 1, ‖p‖V1

βi
(Si

δ
P
) ≤ 1, ∀i ∈ {1, . . . , n}.649

Note that this condition is meaningful thanks to Lemma 3.6. The proof proceeds by induction, in each650

of the corner sectors. Fix i ∈ {1, . . . , n}. We write r(x) := ri(x) = |x− ci| for compactness.651
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Let ũ = u − u(ci). In order to set up the inductive bootstrap argument, we rewrite the NSE with ũ652

in polar coordinates and rearrange the equations in the sector Si
δP

as653

L∆
St(ũ, p) =

(
A
[
f −

(
(ũ+ u(ci)) · ∇

)(
ũ+ u(ci)

)]

0

)
in Si

δP
,(3.26a)654

B(ũ, p) = 0 on ∂Si
δP
∩ ∂P.(3.26b)655656

The set of equations (3.26a) has the following component-wise form:657

− 1

r2

(
ν((r∂r)

2 + ∂2
ϑ − 1) −2ν∂ϑ

2ν∂ϑ ν((r∂r)
2 + ∂2

ϑ − 1)

)(
ũr

ũϑ

)
+

1

r

(
r∂r
∂ϑ

)
p = f̂ in Si

δP
,(3.27)658

1

r
((r∂r + 1) ũr + ∂ϑũϑ) = 0 in Si

δP
.(3.28)659

660

Here f̂ = f − (ũ+ u(ci)) · ∇)(ũ+ u(ci)). The boundary conditions (3.26b) read661

ũ = 0 on ∂Si
δP
∩ ΓD,(3.29)662

(
ν(r−1∂ϑũr + ∂rũϑ − r−1ũϑ

−p+ 2νr−1(∂ϑũϑ + ũr))

)
= 0 on ∂Si

δP
∩ ΓN ,(3.30)663

(
ũϑ

ν(∂rũϑ + 1
r∂ϑũr − 1

r ũϑ)

)
= 0 on ∂Si

δP
∩ ΓG.(3.31)664

665

See Appendix C for details of the derivation.666

The analyticity of u and p in P \
(⋃n

i=1 S
i
δP/2

)
and the analyticity assumption on f , i.e., f ∈ [B0

β(P)]
2667

(whence f ∈ [B0
βi
(Si

δP
)]2 by Lemma 2.5), imply that there exists A1 > 0 such that, for all |α| ≥ 1,668

‖rβi+α1−2Dα(r2f)‖L2(Si
δ
P
) ≤ A

|α|
1 |α|!,(3.32a)669

‖rβi+α1−2Dα(r2((ũ+ u(ci)) · ∇)(ũ+ u(ci)))‖L2(Si
δ
P
\Si

δ
P
/2

) ≤ A
|α|
1 |α|!,(3.32b)670

‖rβi+α1−1Dαp‖L2(Si
δ
P
\Si

δ
P
/2

) ≤ A
|α|−1
1 (|α| − 1)!,(3.32c)671

672

and, for all k ∈ N,673

(3.32d) ‖rk∂k
r ũ‖H1(Si

δ
P
\Si

δ
P
/2

) ≤ Ak
1k!.674

For the ensuing induction argument, we define the constants675

(3.33a) Eu = max

(
2, 8

(
1 +

1

ν

)3/2

, (8ν)3/2

)
,676

and677
678

(3.33b) Au = max

(
22CsecA1, 2Csec(Ct + 9)E2

u,
4

ν
A1, 4

(
1

ν
(Ct + 2) + 4

)
E4/3

u ,679

4A1, 4(Ct + 1 + 3ν)Eu, 2

)
.680

681

We now formulate our induction assumption.682
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Induction assumption. We say that Hk̂,k2
holds for k̂ ∈ N and k2 ∈ N with k2 ≤ k̂, if683

(3.34a)
‖rβi+α1−2Dαũr‖L2(Si

δ
P
/2

) ≤ A|α|−2
u E[α2−4/3]+

u (|α| − 2)!,

‖rβi+α1−2Dαũϑ‖L2(Si
δ
P
/2

) ≤ A|α|−2
u E[α2−4/3]+

u (|α| − 2)!,
∀α ∈ N

2
0 :

{
2 ≤ |α| ≤ k̂ + 1,

α2 ≤ k2 + 1,
684

and685

(3.34b) ‖rβi+α1−1Dαp‖L2(Si
δ
P
/2

) ≤ A|α|−1
u Eα2

u (|α| − 1)!, ∀α ∈ N
2
0 :

{
1 ≤ |α| ≤ k̂,

α2 ≤ k2,
686

where Au and Eu are the constants in (3.33b) and (3.33a).687

Strategy of the proof. We start the induction by noting thatH1,1 holds due to Lemma 3.6 and to (3.25).688

The induction proof of the statement will be composed of two main steps. In the first step, we show689

(3.35) ∀k ∈ N, Hk,k =⇒ Hk+1,1.690

Then, in the following step, we will show that, for all k ∈ N and all j ∈ N such that j ≤ k,691

(3.36) Hk,k and Hk+1,j =⇒ Hk+1,j+1.692

Combining (3.35) and (3.36), we obtain that693

(3.37) Hk,k =⇒ Hk+1,k+1,694

We infer from (3.37) that Hk,k is verified for all k ∈ N. This will conclude the proof.695

Step 1: proof of (3.35). We fix k ∈ N and suppose that Hk,k holds. Define696

(3.38) v := rk∂k
r ũ, q := rk∂k

r p.697

Then, for all |η| ≤ 2,698

(3.39) rη1Dηv = rk∂k
r (r

η1Dηũ)699

and700

(3.40)
∂rq = rk−2∂k

r (r
2∂rp)− krk−1∂k

r p− k(k − 1)rk−2∂k−1
r p,

1

r
∂ϑq = rk−2∂k

r (r∂ϑp)− krk−2∂k−1
r ∂ϑp.

701

Furthermore, multiplying (3.28) by r and differentiating by ∂k
r we obtain702

(r∂r + (k + 1))∂k
r ũr + ∂k

r ∂ϑũϑ = 0,703

hence704

(3.41) 0 = rk−1(r∂r + (k + 1))∂k
r ũr + rk−1∂ϑ∂

k
r ũϑ =

1

r
((r∂r + 1)vr + ∂ϑvϑ) .705

From (3.39), (3.40), and (3.41), it follows that the pair (v, q) as defined in (3.38) formally satisfies, with706

L∆
St and B in polar frame and acting on the velocity field ũ in polar frame as defined in (3.26a) and707

(3.26b) the Stokes boundary value problem708

(3.42)

L∆
St(v, q) =

(
f̃

0

)
, in Si

δP
,

B(v, q) =




0

g̃

0


 , on (∂Si

δP
∩ ΓD)× (∂Si

δP
∩ ΓN )× (∂Si

δP
∩ ΓG), .

709
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Here, f̃ and (assuming that ∂Si
δP
∩ ΓN 6= ∅) g̃ are defined by710

f̃ = rk−2∂k
r (r

2(f − ((ũ+ u(ci)) · ∇)(ũ+ u(ci))))− krk−2

(
r∂k

r p+ (k − 1)∂k−1
r p

∂k−1
r ∂ϑp

)
,

g̃ =

(
0

krk−1∂k−1
r p

)
.

(3.43)711

Using (3.32), Lemma 3.5 withw = u, the inductive hypothesisHk,k, and the fact that for all v ∈ L2(Si
δP
)712

‖v‖L2(Si
δ
P
) ≤ ‖v‖L2(Si

δ
P
/2

) + ‖v‖L2(Si
δ
P
\Si

δ
P
/2

),713

we find from (3.43)714

‖f̃‖Lβi
(Si

δ
P
) ≤ ‖rβi+k−2∂k

r (r
2f)‖L2(Si

δ
P
) + ‖rβi+k−2∂k

r (r
2((ũ+ u(ci)) · ∇)(ũ+ u(ci)))‖L2(Si

δ
P
)

+ k‖rβi+k−1∂k
r p‖L2(Si

δ
P
) + k(k − 1)‖rβi+k−2∂k−1

r p‖L2(Si
δ
P
)

+ k‖rβi+k−2∂k−1
r ∂ϑp‖L2(Si

δ
P
)

≤ Ak
1k! +

(
CtA

k−1
u E2

u +Ak
1

)
k! + k

(
Ak−1

u +Ak−1
1

)
(k − 1)!

+ k(k − 1)
(
Ak−2

u +Ak−2
1

)
(k − 2)! + k

(
Ak−1

u Eu +Ak−1
1

)

≤
(
5Ak

1 + (Ct + 3)Ak−1
u E2

u

)
k!.

715

Furthermore,716

‖g̃‖
V

1/2
βi

(∂Si
δ
P
∩ΓN )

≤ k‖rk−1∂k−1
r p‖V1

βi
(Si

δ
P
)

≤ k

(
‖rk−2+β∂k−1

r p‖L2(Si
δ
P
) + ‖rk−2+β∂k−1

r ∂ϑp‖L2(Si
δ
P
) + ‖rk−1+β∂k

r p‖L2(Si
δ
P
)

+ (k − 1)‖rk−2+β∂k−1
r p‖L2(Si

δ
P
)

)

≤ 4k
(
Ak−1

1 +Ak−1
u Eu

)
(k − 1)!

= 4
(
Ak−1

1 +Ak−1
u Eu

)
k!.

717

It follows from (3.42), Theorem 2.9, (3.32d), (3.32c), and the two inequalities above that718

(3.44)

‖v − v(ci)‖V2
βi

(Si
δ
P
/2

) + ‖q‖V1
βi

(Si
δ
P
/2

)

≤ Csec

(
‖f̃‖Lβi

(Si
δ
P
) + ‖v‖H1(Si

δ
P
\Si

δ
P
/2

) + ‖q‖L2(Si
δ
P
\Si

δ
P
/2

) + ‖g̃‖
V

1/2
βi

(∂Si
δ
P
∩ΓN )

)

≤ Csec

(
11Ak

1 + (Ct + 7)Ak−1
u E2

u

)
k!.

719

We claim that v(ci) = 0. This means that this term in (3.44) could be omitted. To prove the claim, we720

observe that the validity of Hk,k implies that ‖rk+βi−2∂k
r ũ‖L2(Si

δ
P
/2

) < +∞ and thus v ∈ Lβi−2(S
i
δP/2

)2.721

This is equivalent to v ∈ Lβi−2(S
i
δP/2

)2. Using (3.44), [12, Corollary 4.2] and Lemma 2.7 we have that722

v ∈ C0(Si
δP/2

)2. Then the condition v ∈ Lβi−2(S
i
δP/2

)2 forces v (and v) to vanish at ci since otherwise723

r2(βi−2)v2i would not be integrable on Si
δP/2

.724

Now, for all |η| = 2,725

Dηv = rk∂k
rDηũ+ η1kr

k−1∂k+η1−1
r ∂η2

ϑ ũ+ [η1 − 1]+k(k − 1)rk−2∂k
r ũ.726
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Therefore, for all |η| = 2,727

‖rβi+k+η1−2∂k
rDηũ‖L2(Si

δ
P
/2

)728

≤ ‖v‖V2
βi

(Si
δ
P
/2

) + η1k‖rβi+k+η1−3∂k+η1−1
r ∂η2

ϑ ũ‖L2(Si
δ
P
/2

) + k(k − 1)‖rβi+k−2∂k
r ũ‖L2(Si

δ
P
/2

)729

≤ Csec

(
11Ak

1 + (Ct + 7)Ak−1
u E2

u

)
k! + 2kAk−1

u (k − 1)! + k(k − 1)Ak−2
u (k − 2)!730

≤ Csec

(
11Ak

1 + (Ct + 9)Ak−1
u E2

u

)
k!.731732

For all |η| = 1,733

Dηq = rk∂k
rDηq + η1kr

k−1∂k
r p,734

hence735

‖rβi+k+η1−1∂k
rDηp‖L2(Si

δ
P
/2

) ≤ ‖q‖V1
βi

(Si
δ
P
/2

) + k‖rβi+k−1∂k
r p‖L2(Si

δ
P
/2

)736

≤ Csec

(
11Ak

1 + (Ct + 7)Ak−1
u E2

u

)
k! + kAk−1

u (k − 1)!737

≤ Csec

(
11Ak

1 + (Ct + 8)Ak−1
u E2

u

)
k!.738739

From (3.33b) it follows that for every k ∈ N740

max
|η|=2

‖rβi+k+η1−2∂k
rDηũ‖L2(Si

δ
P
/2

) ≤ Ak
uk!, max

|η|=1
‖rβi+k+η1−1∂k

rDηp‖L2(Si
δ
P
/2

) ≤ Ak
uk!,741

i.e., that Hk+1,1 holds. We have shown implication (3.35).742

Step 2: proof of (3.36). We now fix j ∈ {1, . . . , k} and we assume that Hk,k and Hk+1,j hold true.743

Multiply (3.28) by r and differentiate by ∂k−j
r ∂j+1

ϑ to obtain744

r∂k+1−j
r ∂j+1

ϑ ũr + (k + 1− j)∂k−j
r ∂j+1

ϑ ũr + ∂k−j
r ∂j+2

ϑ ũϑ = 0.745

Therefore, using Hk+1,j ,746

(3.45)

‖rβi+k−j−2∂k−j
r ∂j+2

ϑ ũϑ‖L2(Si
δ
P
/2

)

≤ ‖rβi+k−j−1∂k+1−j
r ∂j+1

ϑ ũr‖L2(Si
δ
P
/2

) + k‖rβi+k−j−2∂k−j
r ∂j+1

ϑ ũr‖L2(Si
δ
P
/2

)

≤ Ak
uE

j−1/3
u k! + kAk−1

u Ej−1/3
u (k − 1)!

≤ 2Ak
uE

j−1/3
u k!

≤ Ak
uE

j+2/3
u k!.

747

This proves the estimate for ũϑ.748

To prove the bound on ũr, multiply the first equation in (3.27) by r2 and differentiate by ∂k−j
r ∂j

ϑ, to749

obtain750

ν∂k−j
r ∂j+2

ϑ ũr = −ν
(
r2∂2

r + (2(k − j) + 1)r∂r + (k − j)2 − 1
)
∂k−j
r ∂j

ϑũr − 2ν∂k−j
r ∂j+1

ϑ ũϑ751

+ (r2∂2
r + 2(k − j)r∂r + (k − j)(k − j − 1))∂k−j−1

r ∂j
ϑp752

− ∂k−j
r ∂j

ϑ

(
r2(f − ((ũ+ u(ci)) · ∇)(ũ+ u(ci)))r

)
.753

754
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Therefore,755

(3.46)

‖rβi+k−j−2∂k−j
r ∂j+2

ϑ ũr‖L2(Si
δ
P
/2

)

≤
(
A2

uk! + 2kAu(k − 1)! + k(k − 2)(k − 2)!

)
Ak−2

u E[j−4/3]+
u + 2Ak−1

u Ej−1/3
u (k − 1)!

+
1

ν

(
Ak

uk! + 2(k − 1)Ak−1
u (k − 1)! + (k − 1)(k − 2)Ak−2

u (k − 2)!

)
Ej

u

+
1

ν
Ak

1k! +
1

ν
CtA

k−1
u Ej+2

u k!

≤
(
1

ν
Ak

1 +

(
1 +

1

ν

)
Ak

uE
j
u +

(
1

ν
(Ct + 2) + 4

)
Ak−1

u Ej+2
u +

(
1 +

1

ν

)
Ak−2

u Ej
u

)
k!.

≤ Ak
uE

j+2/3
u k!

756

This provides the estimate for ũr.757

Last, consider the second equation of (3.27): multiplying by r2 and differentiating by ∂k−j
r ∂j

ϑ we758

obtain759

r∂k−j
r ∂j+1

ϑ p = ν
(
r2∂2

r + (2(k − j) + 1)r∂r + (k − j)2 − 1 + ∂2
ϑ

)
∂k−j
r ∂j

ϑũϑ760

+ 2ν∂k−j
r ∂j+1

ϑ ũr − (k − j)∂k−j−1
r ∂j+1

ϑ p761

+ ∂k−j
r ∂j

ϑ

(
r2(f − ((ũ+ u(ci)) · ∇)(ũ+ u(ci)))ϑ

)
.762

763

Hence,764

(3.47)

‖rβi+k−j−1∂k−j
r ∂j+1

ϑ p‖L2(Si
δ
P
/2

)

≤ ν

(
A2

uk! + 2kAu(k − 1)! + k(k − 2)(k − 2)!

)
Ak−2

u E[j−4/3]+
u

+ νAk
uE

j+1/3
u k! + 2νAk−1

u Ej−1/3
u (k − 1)! + (k − 1)Ak−2

u Ej+1
u (k − 2)!

+Ak
1k! + CtA

k−1
u Ej+2

u k!

≤
(
Ak

1 + 2νAk
uE

j+1/3
u + (Ct + 1 + 3ν)Ak−1

u Ej+2
u +Ak−2

u Ej+1
u

)
k!

≤ Ak
uE

j+1
u k!.

765

Then, the estimates in (3.45), (3.46), and (3.47) imply thatHk+1,j+1 holds true. By the strategy outlined766

above, this shows implication (3.37) and thus verifiesHk,k for all k ∈ N. Therefore (ũ, p) ∈ [B2
βi
(Si

δP/2
)]2×767

B1
βi
(Si

δP/2
), which leads to (ũ, p) ∈ [B2

βi
(Si

δP/2
)]2×B1

βi
(Si

δP/2
) due to ũ(ci) = 0 and Lemma 2.4. The proof768

is concluded by noting that u− ũ is a constant vector field.769

Combining the estimates in each sector with classical results on the analyticity of the solution in the770

interior of the domain and on regular parts of the boundary, this implies the weighted analytic regularity771

in P of solutions to the stationary, incompressible Navier-Stokes equations, stated in Theorem 2.13.772

Proof of Theorem 2.13. The analyticity of weak solutions (u, p) in the interior and up to analytic parts773

of the boundary is classical, see, e.g., [25, Chap. 6.7] and [21, 8]. Furthermore, for any δ > 0 and any774

β ∈ R
n there exists a constant Ã > 0 such that the weight functions Φk+β satisfy775

∀k ∈ N0 ∀x ∈ {z ∈ P : dist(z,C) > δ} : |Φk+β(x)| ≤ Ãk+1.776

This implies weighted analyticity of the solutions in subsets of the domain that are bounded away from777

corners. The weighted analytic regularity in {z ∈ P : dist(z,C) ≤ δ} for 0 < δ < δP/2 is proved in Lemma778

3.7.779
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Remark 3.9. Suppose that for each corner c ∈ C, either780

• at least one of the two sides of P meeting in c is a Dirichlet side with no-slip BCs, or781

• both sides of P meeting in c are equipped with homogeneous slip boundary condition and the782

angle is different from π.783

The, by repeating the argument in Remark 3.8 near each corner and using again the analyticity of (u, p)784

in the interior and up to analytic parts of the boundary, one can establish that785

(u, p) ∈ [K̟
2−β(P)]

2 ×K̟
1−β(P).786

4. Conclusion and Discussion. We have shown analytic regularity of Leray-Hopf solutions of the787

stationary, viscous and incompressible Navier-Stokes equations in polygonal domains P, subject to suf-788

ficiently small and analytic in P forcing. We proved analytic regularity of the velocity and pressure in789

scales of corner-weighted, Kondrat’ev spaces. The present setting of mixed BCs covers most examples of790

interest in applications, such as, e.g., channel flowwith homogeneousNeumann condition at the outflow791

boundary. With the argument in [20] containing a gap, in the particular case of homogeneous Dirichlet792

(“no-slip”) boundary conditions on all of ∂P the present result implies that the result in [28] stands un-793

der the assumptions stated in [28]. The analytic regularity in homogeneous weighted spaces implies, as794

explained in the discussion in [28, Section 5], corresponding bounds on n-widths of solution sets which,795

in turn, imply exponential convergence of reduced basis and ofModel Order Reductionmethods. Corre-796

sponding remarks apply also in the present, more general situation, and we do not spell them out here.797

The present results also imply, along the lines of [28] (where only the case of no-slip BCs on all of ∂Pwas798

considered), exponential rates of convergence of hp-approximations. Details on the exponential conver-799

gence rate bounds for further discretizations in the case of the presently considered mixed boundary800

conditions shall be elaborated elsewhere.801

Acknowledgements. The authors are grateful to the referees for their thorough and constructive802

comments which have contributed to the improvement of the paper.803

Appendix A. Proofs of Section 2.5.4.804

Proof of Lemma 2.4. The third item of Lemma 2.6 and the second item of Lemma 2.7 give that for any805

ℓ ∈ {0, 1, 2} there exists a constant A0 > 1 such that for any α ∈ N
2
0,806

‖rβ+α1−ℓDαu‖L2(Qδ,ω(c)) ≤ A
|α|+1
0 |α|!.807808

Then we have809

‖rβ−ℓu‖L2(Qδ,ω(c)) ≤ 4‖rβ−ℓu‖L2(Qδ,ω(c)),810811

and for all |α| ≥ 1,812

‖rβ+α1−ℓDαu1‖L2(Qδ,ω(c)) ≤
α2∑

j=0

(
α2

j

)
‖∂j

ϑ cosϑ‖L∞(Qδ,ω(c))‖rβ+α1−ℓ∂α1
r ∂α2−j

ϑ ur‖L2(Qδ,ω(c))813

+

α2∑

j=0

(
α2

j

)
‖∂j

ϑ sinϑ‖L∞(Qδ,ω(c))‖rβ+α1−ℓ∂α1
r ∂α2−j

ϑ uϑ‖L2(Qδ,ω(c))814

≤ 2A
|α|+1
0 |α|!

α2∑

j=0

A−j
0

(
α2

j

)
≤ 2(2A0)

|α|+1|α|!.815

816

A similar estimate holds for u2. By the above results and using the third item of Lemma 2.6 and the first817

item of Lemma 2.7 we have u ∈ [Bℓ
β(Qδ,ω(c))]

2, which, by the second item of Lemma 2.6, is equivalent to818

u ∈ [Bℓ
β(Qδ,ω(c))]

2.819
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Proof of Lemma 2.5. From v ∈ [B0
β(Qδ,ω(c))]

2 it follows that v ∈ [B0
β(Qδ,ω(c))]

2 by [2, Theorem 1.1].820

Then, there exists A0 > 1 such that, for all |α| ≥ 1,821

‖rα1+βDαvr‖L2(Qδ,ω(c)) ≤
α2∑

j=0

(
α2

j

)
‖∂j

ϑ cosϑ‖L∞(Qδ,ω(c))‖rα1+β∂α1
r ∂α2−j

ϑ v1‖L2(Qδ,ω(c))822

+

α2∑

j=0

(
α2

j

)
‖∂j

ϑ sinϑ‖L∞(Qδ,ω(c))‖rα1+β∂α1
r ∂α2−j

ϑ v2‖L2(Qδ,ω(c))823

≤ 2A
|α|
0 |α|!

α2∑

j=0

A−j
0

(
α2

j

)
≤ 2(2A0)

|α||α|!.824

825

The estimate for vϑ follows by the same argument.826

Proof of Lemma 2.8. Lemma 2.7 implies that v ∈ Vk
β (Qδ,ω(c)). Elementary calculus yields827

∂x1 = cosϑ∂r −
sinϑ

r
∂ϑ,828

∂x2
= sinϑ∂r +

cosϑ

r
∂ϑ,829

∂2
x1

= cos2 ϑ∂2
r +

2 cosϑ sinϑ

r2
∂ϑ +

sin2 ϑ

r
∂r −

2 cosϑ sinϑ

r
∂rϑ +

sin2 ϑ

r2
∂2
ϑ,830

∂2
x2

= sin2 ϑ∂2
r − 2 cosϑ sinϑ

r2
∂ϑ +

cos2 ϑ

r
∂r +

2 cosϑ sinϑ

r
∂rϑ +

cos2 ϑ

r2
∂2
ϑ,831

∂x1∂x2 = cosϑ sinϑ∂2
r +

sin2 ϑ− cos2 ϑ

r2
∂ϑ +

cos2 ϑ− sin2 ϑ

r
∂rϑ − sinϑ cosϑ

r
∂r −

sinϑ cosϑ

r2
∂2
ϑ.832

833

Therefore there exists C > 0 (C = 7 when k = 2 and C = 2 when k = 1 will suffice) such that for any834

α ∈ N
2
0 with |α| ≤ k,835

‖rβ−k+|α|∂αv‖L2(Qδ,ω(c)) ≤ C


∑

|α|≤k

‖rβ−k+α1Dαv‖2L2(Qδ,ω(c))




1/2

= C‖v‖Vk
β (Qδ,ω(c)).836

837

By definition, it follows that v ∈ Kk
k−β(Qδ,ω(c)).838

Appendix B. Parametric Operator Pencil for Stokes-Problem. In this appendix, we give details839

about the parametrized system (2.18). Recall that r ∈ (0,∞) and ϑ ∈ (0, ω) are polar coordinates in the840

sector Q∞,ω . Set D = −i∂ϑ. The parametric differential operator L̂(λ) in (2.18) reads in components841

(B.1)

L̂(λ)(v, q) =

((
νD2 + 2ν(1 + λ2) ν(3 + iλ)iD −(1 + iλ)
−ν(3− iλ)iD ν2D2 + ν(1 + λ2) iD

)

vr
vϑ
q


 ,

(
1− iλ iD

)(vr
vϑ

))
.842

We define the parametric boundary operator B̂(λ) in (2.18) as843

(B.2) B̂(λ)(v, q) =

(
A0(λ)



vr
vϑ
q


 , Aω(λ)



vr
vϑ
q



)
.844
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Here, for ϑ̄ ∈ {0, ω}, the parametric boundary operator Aϑ̄(λ) is defined in components as845

(B.3) Aϑ̄(λ) =





(
1 0 0

0 1 0

)
, if {ϑ = ϑ̄} corresponds to a Dirichlet edge,

(
νiD −ν(1 + iλ) 0

2ν 2νiD −1

)
, if {ϑ = ϑ̄} corresponds to a Neumann edge,

(
0 1 0

iD −(1 + iλ) 0

)
, if {ϑ = ϑ̄} corresponds to a Slip edge.

846

For the derivation of this parametric system, see [14, Chapter 4.2].847

Appendix C. Stokes operator in polar coordinates. In this appendixwe provide the elementary cal-848

culations to verify (3.27)-(3.31), which describe the NSE with boundary conditions in polar coordinates849

and polar components. We recall the representation of the NSE in the Cartesian reference frame850

L∆
St(u, p) =

(
f − (u · ∇)u

0

)
in Si

δP
,(C.1)851

B(u, p) = 0 on Γδ.(C.2)852853

Using ũ = u− u(ci) we rewrite this set of equations as854

L∆
St(ũ, p) =

(
f − ((ũ+ u(ci)) · ∇)(ũ+ u(ci))

0

)
in Si

δP
,(C.3)855

B(ũ, p) = −B(u(ci), 0) = 0 on Γδ.(C.4)856857

(C.3) follows directly from (C.1). We justify that the right-hand side of (C.4) is a zero vector. To this858

end, we note firstly that due to Lemma 3.6, u−u(ci) ∈ V2
βi
(Si

δ)
2 ⊂ C0(Si

δ)
2 and thus u ∈ C0(Si

δ)
2, which859

implies the continuity ofu|Γδ
along Γδ . On a Dirichlet side, we use the homogeneous Dirichlet boundary860

condition and the continuity of u to derive u(ci) = 0, which implies B(u(ci), 0) = 0 on this side. On861

a Neumann side, B(u(ci), 0) = 0 as all entries of ε(u(ci)) equal zero. For a side equipped with slip862

boundary condition, Lemma 3.6 shows that the first component of B(u(ci), 0) equals 0 and the second863

component also vanishes with the same reasoning as in the case of a Neumann side. The right-hand864

sides of (3.29), (3.30) and (3.31) are thus verified.865

The vector Laplacian in a polar reference frame reads [1, Equation (3.151)]866

∆ũ =
1

r2

(
(r∂r)

2 + ∂2
ϑ − 1 −2∂ϑ

2∂ϑ (r∂r)
2 + ∂2

ϑ − 1

)
ũ867

and [19, Equation (II.4.C3)]868

∇p =

(
∂rp

r−1∂ϑp

)
.869

The divergence of ũ, which equals to ∇ · u, is [19, Equation (II.4.C5)] ∇ · ũ = 1
r ((r∂r + 1) ũr + ∂ϑũϑ),870

whence (3.27) and (3.28).871

Regarding the boundary conditions (C.4), we start from the expression of the stress tensor in polar872

coordinates and polar frame, see [19, Equation (II.4.C9)],873

(C.5) ε(ũ) =

(
∂rur

1
2 (∂rũϑ + r−1(∂ϑũr − ũϑ))

1
2 (∂rũϑ + r−1(∂ϑũr − ũϑ)) r−1(∂ϑũϑ + ũr)

)
874
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hence the stress tensor in a polar reference frame reads875

(C.6) σ(ũ, p) = 2νε(ũ)− p Id2 = ν

(
2∂rũr ∂rũϑ + r−1(∂ϑũr − ũϑ)

∂rũϑ + r−1(∂ϑũr − ũϑ) 2r−1(∂ϑũϑ + ũr)

)
− p Id2 .876

We have furthermore877

n = ±
(
0
1

)
, t = ∓

(
1
0

)
,878

where the sign depends on the side of the sector being considered. Then, bymatrix-vectormultiplication,879

σ(ũ, p)n = ±ν

(
∂rũϑ + r−1(∂ϑũr − ũϑ)
2r−1(∂ϑũϑ + ũr)− p

)
880

and consequently881

(σ(ũ, p)n) · t = σ(ũ, p)n · t = −∂rũϑ − 1

r
(∂ϑũr − ũϑ).882

Also, it follows from the definition that ũ · n = ũ · n = ±ũϑ, thus verifying (3.29), (3.30), and (3.31).883
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