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Abstract. We prove weighted analytic regularity of Leray-Hopf variational solutions for the stationary, incompressible Navier-
6 Stokes Equations (NSE) in plane polygons , subject to analytic body forces. We admit mixed boundary conditions which may
change type at each corner. The weighted analytic regularity results are established in scales of corner-weighted Kondrat’ev spaces
of finite order. The proofs rely on a priori estimates for the corresponding linearized boundary value problem in sectors in corner-

9  weighted Sobolev spaces and on an induction argument for the weighted norm estimates on the quadratic nonlinear term in the
10 NSE, in a polar frame.

a1

@

11 1. Introduction. The regularity properties of the solutions of the incompressible Navier-Stokes Equa-j
12 tions (NSE) have attracted considerable attention since their introduction. We mention only the intense
13 research in recent years around the Onsager conjecture and on the boundedness of the velocity field of
14 Leray solutions in three space dimensions.

15 Regularity results for the weak, Leray-Hopf solutions to the NSE in scales of Sobolev and Besov
16 spaces are crucial for the numerical analysis of the NSE. The stationary NSE is, for large values of the
17 viscosity parameter, a perturbation of its linearization, the Stokes Equation. Therefore, it is an elliptic
18 system in the sense of Agmon-Douglis-Nirenberg, and hence it affords analytic regularity at the interior
19 points of domains for analytic forcing [25, Chap. 6.7], see also [21]. This local analyticity of the velocity
20 and the pressure extends to analytic parts of the boundary.

21 However, it is also classical that in the vicinity of corner points (in space dimension d = 2) and near
22 edges and corners (for polyhedra in space dimension d = 3), regularity is lost, even if all other data
23 of the stationary NSE are regular. See in particular [22, Chap. 10, 11] and, e.g., [5, 6, 9, 24, 27] and the
24 references there. The reason is the appearance of corner singularities (in space dimension d = 2) and of
25 corner- and edge-singularities (in polyhedra in space dimension d = 3). While singular solutions of the
26 Stokes equation are well known to encode physically relevant effects (see, e.g., [23,24]), they do obstruct
27 large elliptic regularity shifts in standard (Besov or Triebel-Lizorkin) scales of function spaces and, con-
28 sequently, high convergence rates of numerical discretizations. This failure of elliptic regularity shifts
29 motivated the investigation of regularity of solutions in the presence of non smooth boundaries. For the
30 mixed boundary conditions of interest here, some results on the regularity of velocity and pressure of
31 Leray solutions in non-weighted Sobolev spaces with a possibly small range of smoothness have been
32 obtained in [7]. It has been known for some time that, for smooth data, the velocity fields of stationary
33 solutions for the incompressible NSE in plane, polygonal domains allow higher regularity in so-called
34 corner-weighted Sobolev spaces. Here, weight functions which vanish in the corners of the polygon to a suit-
35 able power compensate for the loss of regularity in the vicinity of the corner. The corresponding Mellin
36 calculus for the study of regularity shifts in corner-weighted Sobolev spaces originated in [16]. See, e.g.,
37 [9, 27] and the references there. In [22], an authoritative account of these results, also for the NSE in
38 polyhedra, has been given. The results in [22, Chapter 11] establish regularity shifts for Leray-Hopf vari-
39 ational solutions of the NSE in edge- and corner-weighted Sobolev and Holder spaces of finite order. The
40 purpose of the present paper is to prove corner-weighted, analytic regularity for the velocity field v and
41  the pressure field p of Leray-Hopf solutions to the stationary, incompressible NSE in a bounded polygon
42 P C R?. Specifically, we consider the analytic regularity of solutions of the viscous, incompressible NSE
43 in P C R? whose boundary 9P consists of a finite number n of straight sides. Extending and revisiting
44 our work [20] which addressed homogeneous Dirichlet (“no-slip”) boundary conditions, we consider
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2 HE AND MARCATI AND SCHWAB

here the stationary and incompressible NSE in IP with mixed boundary conditions, where now also slip and
so-called “open” boundary parts are admitted. These conditions arise in numerous configurations in en-
gineering and the sciences. Furthermore, our present proof of the weighted analytic regularity requires
a proof technique which differs from the approach used in [20]. As the corresponding analysis for plane,
linearized elasticity in [12], it is based on regularity results for the linearization (the Stokes problem) in a
sector built on the Agranovich-Vishik theory of complex-parametric operator pencils which was already
used in [12] and [13] to obtain a priori estimates and shift theorems in corner-weighted spaces. See also
[18] for a general exposition of the role of operator pencils for elliptic systems in conical domains.

The present paper provides a proof of weighted analytic regularity for the velocity u and the pres-
sure field p of the stationary, incompressible Navier-Stokes equations in a polygon PP, subject to possibly
mixed boundary conditions on the sides of IP. The details of the proof are distinct from the argument in
our previous work [20] even for pure Dirichlet boundary conditions. In [20], a bootstrapping argument
based on local, Caccioppoli estimates on balls contained in [P and scaling was proposed. Furthermore,
the proof proposed in [20] was incomplete; the gap is closed by the argument in the present paper, which
provides in particular in the case of homogeneous Dirichlet (so-called “no-slip”) boundary conditions,
the weighted analytic regularity result in [20]. This was used in [28] to prove exponential rates of con-
vergence of a certain hp-DGFEM discretization of the stationary NSE in polygons.

Analytic regularity results for solutions in corner-weighted Kondrat’ev-Sobolev spaces imply, as is
well-known, exponential convergence rate bounds for numerical approximations by so-called hp-Finite El-
ement Methods and also by model order reduction methods. We refer to [28] and to the references
there for recent results on exponential convergence for the Navier-Stokes equations, for discontinuous
Galerkin discretizations, and also to the discussion in [20, Section 2.2] for exponential rates for certain
model order reduction approaches to the NSE in P.

1.1. Contributions. We establish weighted, analytic regularity results for Leray-Hopf solutions of
the NSE in a bounded, connected polygonal domain P C R? with finitely many, straight sides. We
generalize the analytic regularity results stated in [20] from the pure Dirichlet (also referred to as “no-
slip”) boundary conditions as studied in [20] to the case of mixed boundary conditions at any two sides
of P which meet at one common corner of 9P. As in [20] we work under a small data hypothesis, ensuring
in particular the uniqueness of weak solutions. We also develop the regularity theory based on a priori
estimates of solutions for a linearization, the Stokes problem, in weighted, Hilbertian Sobolev spaces in
a sector. The result contains the analytic regularity result in [20] as a special case, and its proof proceeds
in a way that is fundamentally different from [20]. As mentioned, it is based on a regularity analysis in
corner-weighted spaces and a novel bootstrapping argument in the quadratic nonlinearity in weighted
Kondrat’ev spaces. As in [12, 13], the weighted a priori estimates for the velocity field and the bounds
on the quadratic nonlinearity near corners ¢ are obtained for the projection of the velocity components
in a polar frame centered at ¢, rather than for their Cartesian components.

The main result of the present paper is stated in Theorem 2.13. Specifically, under the small data
hypothesis and the stated assumptions on the boundary conditions (see Assumption 1 for details), we
show that there exist A > 0 and x > 0 (that depends on the forcing term and on 2) such that for all
v € (max(l — k,0), 1) the Leray-Hopf solutions (u, p) to the NSE satisfy, for all j, k € Ng = {0,1,2,...}
such that for j + k > 2,

SAj+k+1(j+k)!’
L2(P)

(H g —cﬂ'*’“*”) 04,0, u

ced

and for all j, k € Ny,

< ATTRFL(G 4 )L
L2(P)

(H ! —c|j+k+“> o 3

ced
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ANALYTICITY FOR NS IN POLYGONS WITH MIXED BC 3

Here, for any two points a1, as € P, |a; — az| denotes the Euclidean distance between a; and as.

1.2. Layout. As is well-known (e.g. [18] and the references there) the analysis of point singulari-
ties near corners of solutions of elliptic PDEs is based on polar coordinates centered at the corner. For
elliptic systems of PDEs such as those of interest here, as in [12, 13] in addition we employ projections of
Cartesian components of the velocity field to a polar frame. In Section 1.3, we collect the corresponding
notation for partial derivatives and solution fields. Section 2.4 presents the variational formulation, and a
(classical) existence and uniqueness result. Section 2 presents strong formulations of the boundary value
problems under consideration, detailing in particular also the boundary operators. Also, weak formu-
lations are recapitulated, with statements on existence and, under small data hypothesis, uniqueness of
solutions.

The corner-weighted, Kondrat'ev spaces that appear in the statement of the analytic regularity shifts
are also introduced. Section 2.6 then presents a key technical step for the subsequent analytic regularity
proof: a priori estimates in corner-weighted Sobolev norms in a sector for the linearized Stokes boundary
value problem are recapitulated, from [13]. Importantly, they hold for several combinations of boundary
conditions on the sides of the sector, and for the velocity field in a polar coordinate frame. With this
in hand, Section 3 addresses the proof of the principal analytic regularity result for the NSE, Theorem
2.13, which is also the main result of the present paper. The key novel step in its proof is an inductive
bootstrap argument for the quadratic nonlinear term in the NSE, in corner-weighted spaces and for the
velocity field in a polar frame at each corner of P. This is developed in Section 3.1. Conclusions and a
short discussion of the results, with some consequences and possible generalizations, are presented in
Section 4. An appendix contains several lengthy calculations that appear in several of the proofs.

1.3. Notation. We define N = {1,2,...} as the set of positive natural numbers and write Ny =
{0} UN. We refer to tuples a = (a1, ap) € N3 as multi-indices and we write |a| = a; + az. For k € Ny,
we write

2= D

la|<k  a€eNZ:|a|<k

Given Cartesian coordinates (z1,z2) and polar coordinates (r,9), whose origin will be clear from the
context, we denote Cartesian partial derivatives as 0% = 051052 and polar derivatives as D = 01 9>,
In the following, we shall always use roman letters to denote function spaces defined in terms of Cartesian
derivatives and calligraphic letters to denote function spaces defined in terms of polar derivatives, see
Section 2.5.

For any vector field w with components in Cartesian coordinates

U= <u1) ,
(%)
we denote its polar coordinate frame projection as

(1.1) U — (“r) —Au, A= ( cos v sim9>

Uy —sing cosV

where A shall be referred to as “transformation matrix”. Here and throughout, vector-valued quantities
such as wu shall be understood as column vectors, with w " denoting the transpose vector, which accord-
ingly denotes a row vector. The symbol Lg; shall denote the Stokes operator, with various super- and
subscripts indicating Cartesian or polar coordinates and frame, i.e. we write Lg; for its projection onto
polar coordinates acting on the corresponding velocity components.

We observe that the projection (1.1) of the velocity field into a polar frame renders certain boundary
conditions particularly simple: for example, the homogeneous slip boundary condition in a sector () will
amount to requiring the angular component vy to vanish on sides of Q.
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4 HE AND MARCATI AND SCHWAB

All quantities which occur in this paper are real-valued. The overline symbol which will indicate
polar-coordinate representation of vectors is therefore non-ambiguous.

We denote with an underline n-dimensional tuples 5 = (51,...,0,) € R™ and suppose arithmetic
operations and inequalities such asy < ( are understoodzomponent-wise: eg., B+k=(01+k,...,0Bn+
k) for all k € N; furthermore, we indicate, e.g., 3 > 0if 3; > 0 foralli € {1,...,n}.

Finally, for a € R, we denote its nonnegative real part as [a] . = max(0, a).

For summability index 1 < ¢ < oo, the usual Lebesgue spaces in P shall be denoted by L?(IP). Norms
of vector-valued functions v, ¥ are understood component-wise, e.g., for v : P — R?, ||v\|qu(P) = [p vl
where || - ||¢a is the £2 norm for vectors. We denote the usual Sobolev spaces of differentiation order s > 0
by W*4(P); we write H*(P) in the Hilbertian case ¢ = 2.

2. The Navier-Stokes equations, functional setting, and main result. Following the introduction
of the polygonal domain in Section 2.1, in Section 2.2 we state the strong form of the boundary value
problems, and of the boundary operators, in Cartesian coordinates. Section 2.3 is devoted to the saddle
point variational form of the boundary value problems of interest. Section 2.4 reviews statements on
existence and uniqueness of weak solutions, under the small data hypothesis. In Section 2.5 we introduce
the corner-weighted spaces on which the weighted analytic regularity results will be based. Finally, we
state in Section 2.7 our main result.

2.1. Geometry of the domain. Throughout, P denotes a polygon with n > 3 straight, open sides
I'; and n corners € = {cy,...,c,} with interior opening angles w; € (0,27), i = 1,2, ...,n (enumerated
in counterclockwise order, and modulo n, i.e. we identify I';, with Iy and I',,4; with I'y, etc.), so that
¢; = [;NT;11. Let T'p, Iy, and I'; be a disjoint partition of the boundary I' = 9P of P comprising
each of np > 1, ny > 0 and neg > 0 many sides of P, respectively, with n = np + ny + ng. We
denote by n : I' — R? the exterior unit normal vector to P, defined almost everywhere on I', which
belongs to L>°(I';R?), and by t € L>°(T'; R?) correspondingly the unit tangent vector to I, pointing in
counterclockwise tangential direction.

2.2. The Navier-Stokes boundary value problems. We assume that a kinematic viscosity v > 0 is
given, which is constant throughout P. For a velocity field u : P — R? and a scalar p : P — R, define

e(u) = % (Vu+Vu'), o(u,p) = 2ve(u) — pldy,

where Id, is the 2 x 2 identity matrix, and Vu denotes the 2 x 2 matrix of the Cartesian partial derivatives
of the components of u.
With this notation, we consider the stationary, incompressible Navier-Stokes equations in P

—V.o(u,p)+ (v -Vi)u=f inP
V-u=0 inP
(2.1) u=0 onlp
o(u,p)n=0 only
(oc(u,p)yn)-t=0andu-n=0 onTg.
Here, I' p, I' v, and I'; correspond to so-called no-slip, open, and slip boundary conditions, respec-
tively.
Remark 2.1. We allow interior opening angles to take values in (0, 2m). With this setting, (2.1) in-
cludes the case of boundary conditions changing along edges of the domain P.
Remark 2.2. From the identity

(2.2) 2V -e(u) = Au+ V(V - u),

This manuscript is for review purposes only.
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ANALYTICITY FOR NS IN POLYGONS WITH MIXED BC 5

the boundary value problem (2.1) is equivalent to

—vAu+ (u-Viu+Vp=7F inP

V-u=0 inP
(2.3) u=0 onlp
o(u,p)n =0 onTy
(oc(u,p)n)-t=0andu-n=0 onTg.

2.3. Variational Formulation. Weak solutions of the NSE (2.1) in the sense of Leray-Hopf satisfy
the NSE (2.1) in variational form. To state it, we introduce standard Sobolev spaces in P. Throughout the
remainder of this article, we shall work under

Assumption 1. The boundary value problems (2.1), (2.3) satisfy the following conditions.
1. Pis a bounded, connected polygon with a finite number n of straight sides, denoted by I';, i =
1,...,n, and with Lipschitz boundary I" = JP.
2. n D Z 1.

Assumption 1 implies that the Dirichlet case considered in [20] is a special case of the present setting. It
also implies that all interior opening angles w; at corners ¢; of P are in (0, 27). In particular, slit domains
which correspond to the opening angle 27 are excluded. Remark also that Assumption 1, item 2. implies
that we always have |[I'p| > 0; as a consequence, the case I' = I' y UT'¢; is excluded from our analysis. Fur-
thermore, Item 2 ensures that the linearization of the Navier-Stokes equations, i.e., the Stokes problem,
admits unique variational velocity field solutions u, possibly with pressure p unique up to constants if
I =Tp.

We denote henceforth the space of velocity fields of variational solutions to the Navier-Stokes equa-
tions (2.1) as

(2.4) W={veH'(P)?:v=00onTp,v-n=00nTg}.

We denote by W* its dual, with identification of L?(P)? ~ [L?*(P)?]*. We also define Q = L*(P) if
ITp| < || (i.e., if not the entire boundary is a Dirichlet boundary) and set @ = L3(P) := L*(P)/R in the
case that' =T'p.

We are interested in variational solutions (u, p) of (2.1). To state the corresponding variational for-
mulation, we introduce the usual bi- and trilinear forms:

aw.v) =2 [ 3 ) do

(2.5) b(u,p) := — /pV cudex
P
t(w;u,v) := /P((w -Vu) -vde .

With these forms, we state the variational formulation of (2.1): find (u,p) € W x @ such that

a(u,v) + t(u;u,v) + b(v,p) :/f~'vd:n,
P

b(u,q) =0,

(2.6)

forallv € Wandall ¢ € Q.

This manuscript is for review purposes only.
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6 HE AND MARCATI AND SCHWAB

2.4. Existence and uniqueness of solutions. We recapitulate results on existence and uniqueness of
variational solutions of the NSE (2.6). As is well-known, uniqueness of such solutions in the stationary
case requires a small data hypothesis. To state it, we introduce the coercivity constant of the viscous
(diffusion) term

Cheoer = vig‘fv 2 Z [e(v)]ijle(v)]ij de

H"’H;ﬂ(]p)zl

and the continuity constant for the trilinear transport term

C’cont = sup ((’U/ . V)’U) cwdx .
u, v, weW
HuHHl(]P):”v”Hl(P):HwHHl(]P’)zl

The following existence and uniqueness result is then classical, see e.g. [27, Theorem 3.2]. It is valid
under a small data hypothesis. To state it, we introduce

CcoerV
M = eWw: < ——7 .
{v HUHHI(P) o 2C(cont}

2
Ccoer

2
TueoreM 2.3. Suppose that Assumption 1 holds and assume that || f|lw- < 5% Vt . There exists a solution

(u,p) € W x L*(P) to (2.1) with right hand side f. The velocity field w is unique in M.

As we assumed above np > 1, there is always at least one side of P where homogeneous Dirichlet (“no-
slip”) BCs are imposed.

2.5. Functional setting. For x € Pand fori € {1,...,n},letr;(z) = dist(z, ¢;). We define the corner
weight function

n

Pp(x) = Hrz& (x).

i=1

We next introduce the corner-weighted function spaces to be used for the regularity analysis. As the
notation used in the literature dealing with weighted Sobolev spaces is not always uniform, we present
here several definitions of corner-weighted spaces and discuss how they relate for the range of weight
exponents that is relevant to the present work.

2.5.1. Corner-weighted function spaces of finite order in P. In the polygon P, for j, £ € Ny and
v € R", we introduce homogeneous corner-weighted seminorms and associated norms given by

k
(2.7) |v|§(%(p) = Z ||¢\Oé|716av”%2(]}”)7 ”’UH%ﬁj(P) = Z ‘Uﬁ(]\;([?)'
2 e o ¥

lee|=4

Furthermore, we also require non-homogeneous, corner-weighted Sobolev norms. They are, for £ € Ny,
k € Nwith k > ¢, and 3 € R" given by

(28) oy = ol + D [1gsial-0%0lagey
= ¢<|al<k

with the convention that the first term is omitted when ¢ = 0. We therefore define the homogeneous,
corner-weighted Sobolev spaces K (P) and the non-homogeneous, corner-weighted Sobolev spaces H g,e (IP’)I

as the spaces of, respectively, weakly differentiable functions with bounded K*(P) and HS’Z(IP’) norms.

This manuscript is for review purposes only.
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2.5.2. Corner-weighted analytic classes Bj(P) and K7 (P). With the weighted, Kondrat'ev-type

spaces at hand, we now introduce weighted analytic classes which will quantify the loss of analyticity of
velocity and pressure in a vicinity of the corner points. Let

(29) Bj(P) = {v e (Hy (P):3C,A> 0s.t.
2 e

195+ 10100l 2y < CAIE(Ja] = )L, Vla| = 6},
and

(210) KT (P):= {v € () K5(P):3C,A>0s.t. Ya € NG i [[Bja 00| 2(p) < CAlal|a|!} :
keNy

The spaces Hg[(IP’) and the analytic classes Bj(P) are based on non-homogeneous weighted Sobolev

norms, while the spaces K7 (IP) and the classes K% are based on homogeneous weighted Sobolev norms.
For a discussion of the relation between homogeneous and non-homogeneous weighted Sobolev spaces,
see [4]. Some facts from [4] required here are listed in Section 2.5.4 below. In the definitions (2.9), (2.10)
of the weighted, analytic classes, the constant C' > 0 quantifies the size of a function in terms of linear
scaling of norms, whereas the constant A > 0 relates to the size of the domain of analyticity.

2.5.3. Corner-weighted spaces in polar coordinates and trace spaces in sectors. To recall regularity
shifts near corners, we introduce corner-weighted function spaces in plane sectors Qs (¢) of opening
w € (0,27), radius § € (0, 0o] and with corner ¢ € R?. They are defined using a polar coordinate system
as

Qow(c) = {z € R? :r(x,¢) := |z — ¢| € (0,6), ¥(z) € (0,w)}.

We do not indicate the dependence on the vertex ¢ when this is clear from the context.
Corner-weighted spaces which are defined in polar coordinates are denoted with caligraphic letters:
recall that D* = §2195? denotes the partial derivative of order o € N7 in polar coordinates.
Forall k¥ € Ny and 8 € R, we introduce the (homogeneous) corner-weighted, Hilbertian Kondrat'ev
space V5 (Qs,.,) of functions v in Q; ., (¢) with bounded norm given by

(2.11) 1013550y = D 1775 D0l Eaq, .
o<k

We write Lg = Vg. Norms of vector-functions v, ¥ are taken component-wise.
LetI'g C 0Q)s,., be either one straight edge or the union of two straight edges of Qs.,. We define, for

allk e Nand 8 € (0,1), V;fé (Tq) as the trace spaces of V5 (Qj;.,) and equip them with the norms

(2.12) Hg“vg’%(rQ) = G&I;:g”GHV’B“(QW'
For k,¢ € Ny with k > ¢ and for 8 € R, Hg’l (Qs..) denotes the space of functions with finite norm

a1+,37EDoz

o5 ey .y = I0llEre-2(s0) + > i VlZ2(Qs.0)

t<lal<k

where the first term is dropped if £ = 0.

This manuscript is for review purposes only.
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8 HE AND MARCATI AND SCHWAB

With the corner-weighted spaces of finite order at hand, for ¢/ € Ny and 5 € R, the corner-weighted
analytic classes Bg in Qs ., with weak derivatives in polar coordinates, are defined by
(2.13)

Bi(Qsw) = v € [ H5 (Qsw) : 3C, A > 05t |[r D% | 2, ) < CAYI(Ja] = 0)), V]a| > e} .
k=0

The definition of the spaces Hg’Z(Qg’w(C)) and B/‘;(Q&w (c)) follows from (2.9) by replacing ®p ||
in (2.8) and (2.9) with r(-, ¢)#*1I=*_ Similarly, the corner-weighted spaces K*(Q;.(c)) and K% (Qs (<))
can be defined by replacing ®,|, in (2.7) and (2.10) with r(-, ¢)lel=7,

2.5.4. Relation between corner-weighted spaces. In this section we collect results on embeddings
between some of the corner-weighted spaces we introduced. They are of independent interest, and will
be required at various stages in the ensuing proof of the analytic regularity shifts.

The following relations between polar frame velocity @ in (1.1) and Cartesian frame velocity com-
ponents u hold and shall be used in the sequel. For ease of reading, we either cite or postpone all proofs
to Appendix A.

Lemma 2.4, Forall 0 <6 <1,w € (0,27), c € R?, £ € {0,1,2}, and 3 € (0,1), if u € B5(Qs.(c))? and
u(c) = 0 when £ = 2, then u € B§(Qs.,)>.

The reverse implication, in the case ¢ = 0, is treated in the following statement.

Lemma 2.5. Forall 0 < § < 1,w € (0,27), ¢ € R?, and 8 € (0,1), if v € BY(Qs.(c))? then v €
Bg(@é,w(c))Q‘

The corner-weighted spaces in Cartesian and polar frames are equivalent: the following lemmas on
equivalence and embedding between weighted spaces state this formally.

Lemma 2.6. Let 0 < § < 1, w € (0,27), B € (0,1), ¢ € R% Then the following equivalence relations hold
forany ¢ € {0,1,2} and Ny > k > ¢:

L v € H5 (Qs(0) == v € Hy Qs (0)):
2. ve B%(lQé’W(c)) = v € Bj(Qs..(c)).
3. v € Hy' (Qs5.(c)) <= v € VE(Qs.0(c)).
Lemma 2.7. Let 0 < 6 <1, w € (0,27), B € (0,1), c € R Then the following embeddings are continuous:
L V3(@Qs(0) = H*(Q50(0)) = CO(Q5.(0))-
2. Ifve H§’2(Q5,w(c)) andv(c) =0, thenv € VE(Q&‘U(C)).

For the proof of Lemma 2.6, see [2, Theorem 1.1, Theorem 2.1, Lemma A.2]. For the proof of Lemma
2.7, see [2, Lemma 1.1, Lemma A.1, Lemma A.2] and [3, Section 2]. The following lemma asserts that
functions that belong to corner-weighted Kondrat’ev spaces with non-homogeneous weights for a certain
range of orders and weight exponents, with the additional requirement of the function vanishing at the
corner for second order spaces, also belong to the corresponding spaces with homogeneous weights. We
refer to [17, Chapter 7] for an in-depth presentation.

Lemma 2.8. Let 0 < 6 < 1, w € (0,27), B € (0,1), ¢ € R%, k € {1,2}, and v € HY"(Qsu(c)). Let
furthermore v(c) = 0 when k = 2. Then, v € K}_5(Qs.(c)).

2.6. The Stokes system in a sector. A central role in our proof of analytic regularity of the solution
(u,p) of the Navier-Stokes equation in corner-weighted analytic classes is taken by a regularity shift
for the linear principal part of the Navier-Stokes equation, the Stokes boundary value problem. We

recapitulate these (known) results here, from [13, 27, 12] and [5, Sec.2] and [10, Chap.6].
Consider, for ¢ € R?, § € (0,00) and w € (0,27), the sector Qs (¢c). Denote by

Ty—o = {z € R?:r(x,¢) € (0,6), ¥(x) =0}, Ty_y, = {z €R?:r(x,c)c (0,6), dz)=w}

This manuscript is for review purposes only.
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the two edges meeting at ¢. Letalso I's = Ty UT,, and let '3, '3, TS, € {@, T, T} be pairwise disjoint
and such that T'$ UTS, UTE = I's. As all the results in this section are independent of ¢, we omit the
dependence of the sector in the notation and write Q5., = Qs (c) whenever the dependence on ¢ is not
essential.

We may now formally introduce the Stokes operator Lg; acting on a (sufficiently regular) velocity-
pressure pair (v, ¢) via

. -V . o(v,

(214) o) = (Vg )
and the associated boundary operator B(v, ¢), on the sides T', for ¢ € {0,w}, via

v ifI', = F% ,

o(v,q)n ifT, =T% ,
(2.15) [B(v,q)], = ((U(v ) N

( 4 ) ifT, =T5 .

v-n

Our proof of the analytic regularity in corner weighted spaces is based, as in the work for the Stokes
equations [11], on a basic regularity shift in corner-weighted spaces for the Stokes Operator. Such reg-
ularity shifts are by now well-known and are obtained, following the seminal work of V.A. Kondrat’ev
[16], by Mellin transformation techniques in Sectors (see, e.g., the monographs [17]). For reference in
the ensuing analysis of the quadratic nonlinearity « - Vu in Section 3 ahead, we state the following result
which is used subsequently.

TueoreM 2.9. Let w € (0,27) and 8 € (1 — x,1) N (0,1) where k > 0 is defined in (2.19) below. Then,

for any § > 0, there exists a constant Csee = Csec(,8) > 0 such that for all (u,p) € [H(Qsw)]* X L*(Qs.w)

satisfying, for some f € [Ls(Qs.)]? and for some § € [Vg/z(F[S\,)F,

(2.16) u=0 onlyp

o(w,p)n=g onl3

(217) |l —a(o)llvz(@s).) + 18Ivi@s,0.0)

< Cuoe (1Flcs@s) + 181 (@5.0\@ 20 + 15]22(@5 0@ ) + ||5||v;/2(rg)) :

Here, the corner-weighted norms are as in (2.11), (2.12).

A proof of this result proceeds along the lines of the proof of [13, Theorem 5.2], i.e. by multiplying @
and p by a C*° cutoff function which is supported in Q5 ., and which equals one in Q52 ., and by writing a
Stokes problem in the infinite sector Q. It is detailed in [ 14, Lemma 5.1.1] for all boundary conditions
presently considered. There,

(2.14) is converted to polar frame via (1.1). Subsequently, the change of variables t = log(r) fol-
lowed by an application of the Fourier transform in ¢ results in an operator pencil {A(X) : A € C} of
parametrized differential operators L(\) acting on ¢ € I = (0,w), and corresponding boundary opera-
tors B(\) at 9 € {0,w} i.e.

(218) AN : H*(I)> x H'(I) — L*(I)? x HY(I) x C2 x C? : (B, q) — [L(\)(T,q), BOA)(T,q)] .

This manuscript is for review purposes only.
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The operator pencil A(X) : H2(I)? x H(I) — L*(1)*> x H'(I) x C? x C? in (2.18) depends polynomially
on \. We refer to Appendix B for the explicit representation of L()) and of B(A), and to [18] for the
general theory of such pencils in connection with elliptic boundary value problems in conical domains. In
particular, [18, Chap. 5.1] addresses the presently considered Stokes pencil, with homogeneous Dirichlet
boundary conditions.

It is known (e.g., [18]) and verified (for the Stokes pencil and the boundary conditions considered
here) in [14, Chapter 4.7] and [12, Section 4.5] that A~ () is an operator-valued, meromorphic function
of A with countably many, isolated poles in C of finite multiplicity. For precise information on the distri-
butions of these poles regarding different combinations of boundary conditions, see [27] or [12, Lemma
4.1], which studies the elasticity problem with Dirichlet/Neumann boundary conditions. The results
from [12] are applicable to the Stokes problem if formally the value 0.5 of the Poisson ratio is inserted in
the corresponding transcendental equations in [12]. We refer to [10, Sec. 6.2] for a justification. Define,
for A(X) asin (2.18),

(2.19) # = min{Im(p)|p is a nonzero eigenvalue of A()) with positive imaginary part}.

As the parametric operator pencil A — A(\) defined in (2.18) is Fredholm for all A € C [14, Chapter 4.7],
ithas a discrete spectrum in C [18, Theorem 1.1.1]. For all combinations of boundary conditions, if 4 is an
eigenvalue of A(\), then so are fi, —u, and —fi. Moreover, eigenvalues p of A — A(\) accumulate only at
infinity, so that x in (2.19) is well-defined. The quantity  in (2.19) determines the range of corner-weight
exponents in which the regularity shift (2.17) holds in corner-weighted Sobolev spaces.

Remark 2.10. Theorem 2.9 corresponds to the incompressible limiting case of corner-weighted reg-
ularity shift for the equations of linear elasticity obtained in [12, Thm. 5.1, Coro. 5.2], see [10, Sec. 6.2].
Unique solvability of the Stokes problem in corner-weighted spaces in the infinite sector for the indi-
cated range of the corner-weight parameter 8 > 1 — 4 is shown in [12, Coro. 4.2] and [13, Thm. 5.2].
The corner-weighted a-priori estimate (2.17) can also be derived using [26, Theorem 5.1] or [18, Chap-
ter 5.1] if only homogeneous Dirichlet (so-called “no-slip”) boundary conditions are considered. For a
detailed development, we refer to [13, Sec. 4] and also to [14, Lemma 5.1.1].

Remark 2.11. In Theorem 2.9, we restrict the corner-weight exponents /5 to the interval (0, 1). In some
specific combinations of w and boundary conditions, regularity shifts like (2.17) for 8 belonging to in-
tervals larger than (0,1) could be established. For example, when w < 7 and both sides are equipped
with Dirichlet boundary conditions, £ > 1 and thus 3 could be negative, see e.g. [13, Remark 5.6].
Nonetheless, in the present paper, we restrict corner-weight exponents to (0, 1) to ensure that our anal-
ysis covers all combinations of boundary operators, and that the embedding results in Lemma 2.7 hold.
Observe also that the case w = 7 corresponds to changing boundary conditions along a straight side of
the polygon; imposing 5 > 0 includes this case in our analysis. Finally, the exponents 5 € (0, 1) are suf-
ficient for establishing the corner-weighted, analytic regularity results, and for the proof of exponential
convergence rates of numerical discretization methods, such as, e.g., hp-DGFEM (see [28]).

Remark 2.12. By relation (2.2), if (u,p) € [HZ’Q(Q(;M)]2 X Hé’l(ngw) and V - u = 0, we have

—vAu+V o
(2.20) LSAt(u,p) = ( V-u P> = L§ (u,p).

Estimate (2.17) therefore also holds with L§; in place of Lg,.

2.7. Statement of the main result. We are ready to state our main result on the weighted analytic
regularity of Leray-Hopf solutions to Navier-Stokes boundary value problem (2.1). We recall that the ex-
plicit form of the operator pencil A(\) in (2.18) which arises for the presently considered Stokes problem
and its boundary conditions (2.20) is detailed in Appendix B.

This manuscript is for review purposes only.
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Tueorem 2.13. Let 8 = (B1,...,Bn) € (0,1)" be such that around each corner ¢; fori = 1,...,n, f; €
(1 — K4, 1) N (0,1) where k; is defined as in (2.19) with respect to the corner ¢;, in the interval I = (0,w;),
cf. Sec. 2.1 and to the operator pencil A;(\) for the linearized (Stokes) boundary value problem as defined in

(2.18). Let further f € [BJ(P)]> N W* be such that || f||w- < (1’12570”? Suppose in addition that Assumption 1

holds and let (u,p) € W x Q be the weak solution to (2.6) with right hand side f.
Then

(u,p) € [BE(P)]* x Bj(P).

Remark 2.14. It can be shown, using the equivalence of the classes Bf; implied by [5, Remark 4.3],
that, under the hypothesis of Theorem 2.13,

(u,p) € [ngf2+m(P)]2 X BgflJrn(P)

for any m € N and any n € Ny.

The remainder of the paper is devoted to the proof of Theorem 2.13. It is based on inductive bootstrapping
elliptic regularity for the linearized boundary value problem in corner-weighted Sobolev spaces of finite
order, of Kondrat'ev type. Such estimates are in principle known (e.g. [26, 22, 27, 13]). They were
recapitulated for the readers’ convenience in the form required in Section 2.6. The weighted a priori
estimates are then combined with novel analytic estimates of the quadratic nonlinearity in polar frame
in corner-weighted spaces that will be developed in Section 3.

3. Proof of the main result. We prove Theorem 2.13, which, as our main result, ensures analytic
regularity in scales of weighted spaces of Leray-Hopf solutions to the Navier-Stokes equations (2.1) mod-
elling stationary, viscous and incompressible flow in a polygon P. We will devote our attention to analytic
estimates in scales of corner-weighted Sobolev spaces for the nonlinear transport term, as treating this
term is the main difference in comparison to the weighted analytic regularity proof for the linear Stokes
problem in P in [13].

3.1. Estimate of the nonlinear term. We start by rewriting the quadratic nonlinearity (v - V)u in
polar coordinates and projecting its Cartesian components into the polar frame as in (1.1). We note here
that the gradient operator in Cartesian coordinates is projected to a polar frame by (cf. the definition of
Ain (1.1))

(3.1) V=aAt <T_8{aﬁ) .

Lemma 3.1. For any constant vector field c taking value (c1, c2) " € R?, it holds that

_ (ur + ¢ )Orur + %((U + ¢9)Ogur — (uy + cy)uy)
(3:2) (w+c)-V)(u+c)= <(ur + ¢ )Oruy + %((uz + ci)azw + (Ui + CZ)ui)) :

This manuscript is for review purposes only.
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12 HE AND MARCATI AND SCHWAB

Proof. We calculate

(wto) Vuto
S CEORYD

=A (((u+c) S(ATTAT! <ralra§))) A_lu)
a((@ra-(,%,)) 4 a)

cos H(uy + ¢ )Optuy — sind(uy + ¢, )Oruiy
sin 9 (u, + ¢)0puy + cos ¥ (uy + ¢;)0rtiy

1 fcos ¥ (uy + co)Opur — sind(uy + cp)u, — sind(uy + cy)Opuy — cos ¥ (uy + cg)uy
r \sin ¥ (uy + cg)dpu, + cos Huy + cy)u, + cos ¥ (uy + c9)dyuy — sin Huy + cy)uy

(e + e)0ruy 4+ 2 ((ug + c9)Ogur — (ug + co)uy)
= \(ur + )0y + L((ug + co)dgus + (ug + co)ur) )

In order to treat the individual nonlinear terms arising from the polar representation of the transport
term of the Navier-Stokes equation obtained above, we need a technical result on weighted interpolation
estimates in plane sectors. The following statement is a variant of [20, Lemma 1.10] in polar coordinates.

Lemma 3.2. Let §,w € Rsuchthat 0 < 0 < 1and w € (0,2m). Forall 51, By € R such that 32 > B + 1/2,
there exists a constant Ciyy = Cing (8, w, B1, B2) > 0 such that, for all o € N3 and all functions ¢ such that

max ||T51+a1+nlpa+n

ln]<1 ollr2(Qs..) < 00,

the following bound holds:

1/2

[P+ D ) a0y < ChallrP D12,

3 1/2 1/2 B 1/2
| 2 I g, + e Dl
[n|<1

Proof. We set 6 = 1. Consider the dyadic partition of Q; ., given by the sets
ST={re@Q:277  <r(z) <277},  jEN,

and denote the linear maps ¥; : S7 — S°. Denote §; == ¢ o \I/j_l : 59 — R and write D* for derivation
with respect to polar coordinates (r, ) in S°. Then, by scaling, for any ¢ € [1, c0),

(3.3) ||T52+QIDQQD||L4(SJ) _ 27j(ﬂ2+2/q)||7’ﬂ2+°‘113°‘$j||m(50).

Furthermore, the following interpolation inequality holds in S°: there exists Cy > 0 such that
(3.4) o]l s (soy < Collvllzisoy o]l ot so,

holds for all v € H*(S?). In addition, by (3.1), for all v € H'(S°),

(35) ols sy < 16 (103250 + 10r0l32 50y + 1900 33(sm))

This manuscript is for review purposes only.
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Combining (3.4) and (3.5) and choosing v = ro DG @, gives

||7‘QIDQ@||L4(SO)
1/4
SNa~ (11/2 SNa~

< 2C0[[r DG g0y | D 1D D3)) (50

[n|<1
1/4
~ 1/2 S ~ —1ANo A~

<ACo[[r DG g0y | D I D353 g0 + 2 1Ir T D513 50

[n]<1

Therefore, using the bound 2-lal < r(x)* < 2lal valid forallz € S® and all a € R,

||7“Bz+a173a@j||L4(50) < 2\5’2|+\31\+1/2400Hr,81+alpaA ||1L/22SO

% Z ||Tﬁ1+a1+mﬁa+7]@j||2L2(So) +a?||rﬁl+alﬁa¢j||%2(so)
In|<1

We denote C; := 2/%21+1311+1/24Cy . Using this last inequality and (3.3) twice,

2+a1D0z

I llza(ss
<92 ](ﬁ2+1/2)||rﬂ2+alpa¢ ||L4(SO)
< 2_](52+1/2)C1H7“51+0‘1'D°‘A ||1L/22(SO)
1/4
x| D0 e Do g gy + 0kl DG )
Inl<1
<0279 (B2—B1—1/2) ||T51+a1Da<p”1L/22SJ
1/4
x [ Y riertmpetg), o) 4 ad|lrfrtaDeg)2, )
[n|<1
Since ,82 - 51 —1/2 > 0, we can conclude that
Z ||7"ﬂ2+alpa%0||i4(31) < Oil Z ||Tﬁl+a1DQ‘P||QL2(sJ‘)
J€No Jj€No
x| ST ST prretmetngl2, o) 4 a? Y [P D)3 )
In|<1j€No J€No

1/4

13

Taking the fourth root of both sides of the inequality above concludes the proof for the case § = 1. The
general case § € (0, 1] follows by scaling (with constant Cj,,; depending on ¢).

0

Using the interpolation result obtained above, we can estimate, under a regularity assumption on u, the
individual terms appearing in (3.2). This is done in the following Lemma 3.3 and Corollary 3.4.

Lemma 3.3. Let B € (0,1),0 < § <1, w € (0,2m). Then, there exists a constant Cq = Cq(8, 6,w) > 0such
that, for all u € V3(Qjs ) with ||u||V§(QM) < 1 such that there exist constants A,,, E,, > 1, and k € N satisfying

(3.6)

[Pt =2D% | 2 g, ) < ARIT2ES2 (la] = 2)!, VaeNE:2< |af < k+1,

This manuscript is for review purposes only.
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it holds, for all av,n € NZ such that |n| < 1and |a| < k — |n|, that

(37)

[P9/2= 1D (0 D) | g, ) < Calla] + 1)V 21372 Bt /2 o) 4yl — 2],1

Proof. We start by proving the theorem in the case || = 0. Applying Lemma 3.2 with Ba=p/2—-1
and 1 = 8 — 2 (note that 5 € (0, 1) implies 53 > 1 + 1/2), for all |a| < k,

(3.8)

[P/ DO g, ) < Ciatllr? 2 D2,

x| D ey el A D,
[n|<1

When |a| > 2, using (3.6), we have

[T D g

< O AR B 2(2(0) = DIV 4 (L4 oy ) (o] = 2)12) (o] - 212
< O AR PEEH 22 (0] = D)V 4+ 1+ 01 (o] - 2)
< G A2 B2 712400 (ja] - 2).

If |a] < 1, instead, it follows from ||“Hv§(c;)5,w) < 1and (3.8) that

||Tﬂ/2_1+a1DauHL4(Qéw) < Cint(3 + Oé}/z) < 40y

This proves (3.7) for |n| = 0, i.e., that for all |a| <k,

(3.9)

”rﬁ/271+a1rDau”L4(Qa’w) < 4CintA1[l\Oé|*3/2]+E32+1/2(|a| + 1)1/2“0[‘ _ 2}4_[

Consider now the case || = 1. We have

||T/3/271+alpa(rn1pnu)||L4(Q§,w) < ||7n,6’/271+a1+mpa+nu||L4(QM) + 041771HTWQ*HMDQUHLAI(QM).

For all |a| < k — 1, we can apply (3.9) to the two terms in the right hand side above:

and

a PP D | 1 g,y < AC ALY AT BTV (o] + 1) aq [laf - 24!
< ACu ALY Byt 2 (o] 4 1)122 o] — 1)1

u

||Tﬁ/271+al+mDO&”“”LHQ&M) < 4CintAHa|*1/2]+E32+T]2+1/2(|a‘ + 2)1/2“04 — 1]

< ACu ATV Bt 2o (o] + 1)1 la] — 14

Hence, for all |o| < k—1landall |n| =1,

[P/ DY (D) | L, ) < 16Cin ALV BRI (o] + 1) [|af - 1)1,

which concludes the proof, with Cq = 16Ciys.

CororLary 3.4. Let € (0,1),0 <0 < 1, w € (0,2n), and let u € V3(Qs.) satisfy ||U|\vg(Q5,w) <1
Suppose that there exist A, E,, > 1 and k € N such that

[P+ 2D o, ) < AIRI2E2 (] —2)!, Va €NZ:2< o] <k+1.

Then, for all o € NE such that |a| < k,

(3.10)

||T5/271+0‘1Da(7"u)||L4(Q5,w) < 4C4(|a] + 1)1/2A£\La|*3/2]+E;¥2+1/2Ha| — 24N

his manuscript is for review purposes only.
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Proof. We start from the bound
PP 210D (rw) | sy ) < PP D U Lo, ) + cr [P 2THFI DI Ty Ly,
where the second term is absent if &; = 0. From Lemma 3.3, it follows that
272400 Do 4, ) < 6Ca(|a] + 1)Y2 AU/ g1/ ja] 9]
and that (when a; > 1)

B/2=1+aiplen—1,az)

< Soy|a'/? Alle1=5/2 Boati/2]ja] — 3],
-3/2
< max J / (|a| + 1)1/2A[|a\—3/2]+Ea2+1/2Ha‘ _ 2]+!
~ jeN \ (j+ 1)Y2max(j —2,1) v v
< 2VB(Jal + )2 ALl B 2] — 2],

Equation (3.10) follows from the above, bounding 1 + %\/3 < 4 for ease of notation. 0

We are now in position to estimate the weighted norms of the nonlinear term in the sector Qs ., (c), under
the assumptions of analytic bounds on the weighted norms of w. Initially, we do this under the assump-
tion that @ € V3(Qs..(¢))* (which implies that u vanishes at the vertex of the sector) in Lemma 3.5.

Lemma 3.5 (Weighted analytic estimates for the quadratic nonlinearity in polar frame).
Assume that § € (0,1),0 < § <1, w € (0,27) and cmax > 0 are given fixed.

Then, there exists Cy = Cy(8, 6,w, cmax ) > 0 such that for all constant vector fields c taking value (c1, )’ €
R? such that |c1] + |c2| < cmax and all w : Qs., — R? with [@llvs(q,..) < 1 such that there exist k € N and

constants Ay, E,, > 1 satisfying

7“0‘1+6_2Dawr < A‘a|_2ECK2 o —2'
{|| l2(@s) < Aw'"EG* (la] = 2) forall2 < |a| <k+1,

I P2 D%y || 2, ) < Al 2B (Jol - 2)1,

the following inequality holds:

(3.11) [[r 2D (2 (w + ) - V) (w + ©))) || 12(@s.) < CLAITEL2a)l,  VaeN3:1<|a| <k

Proof. By Lemma 2.7, there exists a constant Cepp, = Cempb(S,6,w) > 0 such that HEHVZ(Q&@ =
implies w € [C°(Qs,,)]? and

(312) ”EHLW(Q&“}) < Coemb-

Next, we recall from Lemma 3.1 that

2 (W + ) Orwr 4+ 7 ((wy + c9)Dgwy — (wy + co)wy)
(3.13) r“((w+c)-V)(w+c)= <r2(wr + ¢,) 0wy + r((wi + ci)aiwﬂ + (wi + Ci)wi)> '

We will estimate the individual terms.

This manuscript is for review purposes only.
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528 Estimate of rw?% and rw,wy. Let v € {w,,wy}. From (3.10), Lemma 3.3 and Corollary 3.4 it follows
529 that for any « as in (3.11)

530 ||r°‘1+’3‘2Da(rwﬁv))HLQ(QM)
||
o - a1 — — a—
531 <> > ( )r’““” D) | s (s oy 7 2D 0y L
J=0|n|=j,n<a
[
522 <22 <a)4C§(In|+1)”2A£L"'3/2}+EZ2+1/2[I77—2}+!
320 In|=jm<a N
x (|a] = ] + 1)/2 Alle=Inl=8/21+ goa—nat1/2[|q| _ || — 2],
533 < 4032 Allel=3/21+ poa+l
|| . .
3 % (e UL o] g 1) .
2 2.y max(j(j — 1), 1) max((Ja] — j)(Ja] —j — 1), 1)
534 J=0|n|=j,n<a

535 Here we have used [|n] — 3/2]+ + [|a] — | — 3/2]+ < [Ja|] — 3/2]+ foralln < .
536 Now, for all j € Ny,
G+ (j +1)"/* max(j,1)"/? 1 1

537 = < V6 .
’ max(j(j — 1),1) max(j —1,1)  max(j,1)32 = max(j,1)3/2

538 Inaddition (see, e.g., [15, Proposition 2.1])

5. 0-6)

Inl=jn<a
540 Therefore,
541 I 072D (rwyv)) [ 22(Qs.0.)
||
1 «Q
542 < A4CTAPITEERTY 7 ji(|a] — )l —— : ( )
2 G el =507 2
||
1
543 < 24032 Al =3/ paatl g :
= ate REDY max(J, 1)3/2 max(ja| — j, 1)3/2
544 J=0
545  We have, by the Cauchy-Schwarz inequality,
| 1 | 1 5
546 < <1 3) < —.
jz:;) max(j, 1)3/2 max(|a| — 7,1)3/2 — jz::() max(j,1)3 — B =< 2

547 We conclude that for any « as in (3.11),

518 (3.14) 7 82D (rwd)) || L2 < 60C3 Al =3/3+ B2 FL a1
549 and
550 (3.15) [P 82D (rwgw, ) || L2 (s ) < 60CF A3/ BaatliqL,

This manuscript is for review purposes only.
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551 Estimate of r? ¢, 0,v, regOgv and regv for v € {w,,wy }. Let€ € N2 such that [¢] < landlety € {c¢,,cy}.
552 Note that ¢ depends on the angle ¥J, but it is independent of r, since

553 ¢, = ¢1 o8t + cosind, cy = —c1sind + co cos V.

554 We have

555
556 ||r‘“+6—2’l)“(7"1+El SDD&U)HLZ(QM)
(&%) j _ _

<X ()l D D
557 n:(O,j),jG{Owu,OQ}
joJe

< Comax > <a2> e tB=2Dan (P L DEYY || L2, .
558 1=(0,5),5€{0,...,a2} J
559  If ay = 0, then

_ « _ _
||7“O‘1+’8 2Da(r1+§1ﬁpD5v)HLz(Q&w) < Cmax Z (l .|)||7‘51+1+’6 2Da ntD&U”H(Q&w)

n=(0,5),5€{0,...,a2}

la
< Cmax Z (|a.|)A'[ul;a_j_1]+Eg2_j+£2[a| - ] - 1]+'
560 =0 J

| | 4
S Cmax Z TAELCX|—J—1]+E$2—]+§2
=0 7

561 since leaz‘o o < 5% G=elfa >0,

_ (65) _ _
HTm-&-B QD(X(T1+§1<P’D£U)||L2(Q5,W) < Crax § : (] ) <||ra1+§1+1+5 2por nD&UHH(QJ,w)
n=(0,7),5€{0,...,c2}

+(1+ él)al||7,a1+§1+372D04777*(1,0)D£U”L2(Q57w)

P g)e M@=l

< Cmax Z (Oé?) <A£|j1E$2j+£2(|a| 1)

n=(0.4)JE(0,. a2} 7

ra1+,32Doz77(2>0)D51)”L2(Q5,w)>

s62 + (1+ E)aa Allr=i=20s Eg=i+&ja] - j - 2],
+(1+ gl)glwAual—j%hEga—ﬂ-&Ha| — - 3]+!>
< @2 4 glal—i-1 gpas—j+1 — i
= Cmax ] w w (|OZ| ])
7€{0,...,as}
o
|a! la|—1 fpas+£2
S 4Cmax Z TAU} Ew
j=0

< decmax AT B2 o1,
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563 In the second to last line above, we have used the inequality

!

564 <a.2> (o] =) < @, Va = (a1, a9) € N2, Vj € Ny such that j < as.

J J:
565 which follows directly from (032) < (“;‘l).
566 In conclusion, we have that for any ¢ € {c,, ¢y}, any v € {w,, wy} and any £ € NZ with [¢| <1,
57 (3.16) [re FB2D (P DY) [ 1205 1) < deCmax ASTTIES T ofl,  Va eNE:1< ol < k.
568 Estimate of the remaining terms. Let v, w € {w,,wy} and let ¢ € N2 such that |¢| = 1. We have, for any
569 |af >0,

||ra1+ﬂ*2’Do‘ (r1+§1 ngU)) ||L2(Q6,w)
laf

a — a1 — — a—
<> > ()r”ﬁﬂ”’ 1D (rw) | s @y )y ™ 2D (1 D) | s,

570 (3.17) i=1 |n|=jn<a
+ [[r P WD (r 4 D) || 2.

= (I)+ (1I).
571  We bound the sum in term (/) by similar techniques as above, using Lemma 3.3 and Corollary 3.4:

[
@] _
» o<y Y (:)Mﬁ(m+1f”4W:W”E$“”Wﬂﬂﬂ
J=1|nl=jn<a
< (Jof — In] -+ 1)/ Al =1l =172 pas—ma &t 172 ) — | — 11,1

||

] sl — G D20l =+ )12
57e < 402 Allal=3/2]14 paz+1+€ @) ) (J
oo sicari a2 (o) GG 0. D max(lal =)

)

574 i=linl=jn<a
575 where we have used that

576 Il =372+ +{lel = In[ = 1/2]4 < [la] =3/2)4,  Vp<a:|ng>1.
577 By the elementary inequality

G+DV2_ G+ 1 1 .
578 = <V2— Vj € No,
’ max(j,1)  max(j,1)Y/2 max(j,1)/2 — \fmax(j, 1)1/2 JE=T0

579 we obtain using Holder’s inequality

||

(1) < 8CFAlI=3/2l poatetliqy

1
max(j — 1,1) max(j, 1)/2 max(|a| — j,1)1/2

]

1
< 8C2A£La\*3/2]+Egz+€z+1|a|1 : :
50 (3.18) ! ;mm—mwmmmﬂmw
la|—1 3/4 a1 1/4
SgchgLa‘*3/2]+Egz+§2+1|a|! 1+ Z j72 1+ Z j72
j=1 j=1

< 2403 AlleI=3/2+ poattatliq )
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where we have used 1 + ((2) < 3.
We now estimate term (1) in (3.17). Remark that

(3.19) (I1) < |Jrw] oo (@) 1P TP 72D (K4 DE0) || 12 () -
In addition, [rwl|z~(q,.) < 0 and

[P P2 D (r 4 D) || L2 5.
< [t EEEEDA Y| Lo 5 ) + &t [Ir I TEDY0 L2
< AITTES Y (Jo] — D!+ &l Al T ES? (o] - 2]
< Al gt (| — 1)1,

Hence, from (3.12) and (3.19), for any « as in (3.11),
(3.20) (IT) < 36Cemp Al =T E2H82 (|0 — 1)1,

It follows from (3.17), (3.18), and (3.20) that, for any v,w € {w,,wy} and any multi-index & such that
€l=1,

(3.21) [rer B2 D (P DR ) | L2y ) < (2403 + BClmp) AT T B2 TS o |1,

The combination of the formula (3.13) and of the bounds (3.14), (3.15), (3.16), and (3.21) concludes
the proof, with
0
Cy = 6 max (60C3 + 4eCmax , 24CF + 3Cemp + 4eCmax ) -

3.2. Analytic regularity in the polygon P. We can now prove the main result of this paper. With
analyticity in the interior and up to edges of P being classical, we concentrate on the sectors near the
corners ¢; of the domain IP. We define for ¢ € (0, 1),

(3.22) Si = Qs (1), i=1,...,n

We prepare the bootstrapping argument required for establishing analytic regularity by proving that the
solution (u, p) as is given in Theorem 2.3 satisfies that (u — u(c;),p) € [Vg (S9)]? x Vé (S%).

Lemma 3.6. Let B = (Bi1,...,5B,) € (0,1)" be such that B; € (1 — ;,1) N (0,1) fori = 1,...,n. Here
ki is defined as in (2.19) with respect to the operator pencil A;(\) defined as in (2.18) with opening angle w;
and boundary operators corresponding to the boundary conditions on the two edges meeting at ¢;. Let further
F € [Lg(P)]?2 N W* be such that || f||w~ < 0408%' Suppose that Assumption 1 holds. Let (u, p) be the solution
to (2.1) with right hand side f.

Then, the following results hold:

1. Forall 0 < 6 < 1with§ < Ymin, j [¢; — ¢,

(u— (), p) € V3 (Siy)l? x VA (Siy). Vi€ {1,....n}.

2. For any corner ¢; which touches a complete sideT' C T'¢ UT' p, u(c;) - n = 0 where n is the unit outer
normal vector to T".

Proof. We start by showing the first assertion. For all s € (1,2) and for ¢t = (1/s — 1/2)71,

I1£]

Lo@) < [1P—pllee) 12 fllL2e).-
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20 HE AND MARCATI AND SCHWAB

Therefore f € [L(PP)]* implies

2
s 2
(3.23) Fell*(P), Vse [1, 1+max,3)'
In addition, u € [H'(P)]? implies by Sobolev embedding u € [L!(P)]? for all t € [1,00). By Holder’s
inequality, choosing ¢ € [1,00) and s = (1/2 + 1/t)~!

[(w- V)ullps @) < [Jullpee | Vul 2@ < oo
which implies
(3.24) (u-V)u € [L*(P)]?, Vs € [1,2).

It follows from [27, Corollary 4.2], (3.23), and (3.24) that there exists ¢ > 1 such that (u,p) € [W%4(P)]? x
Wh4(P). This implies in turn, by Sobolev embedding, u € [L>°(P)]?. Hence (u - V)u € [L*(P)]?. We
conclude by applying Theorem 2.9 to each corner sector to obtain that there exists a constant Cye. such
that for each i € {1,...,n},

y + ||pHv1 (si,) < Csec<||f||£3i (siy +[[(w- V)“Hcﬁi (si) + llwllmr ey + ||p|L2(IP’)>-

I~ w3, s '

5/2
Now, since f € [L3(P)]? and (u - V)u € [L*(P))?, it holds that f € [£s,(S%)]? and (u - V)u € [Lg, (SE)]%
hence, the right hand side of the inequality above is bounded. Using [12, Corollary 4.2] to bound the
norm of the Cartesian version of the flux concludes the proof of the regularity result.

To show the second point, we fix i € {1,...,n} and assume thatI' C I'¢ UT'p abuts ¢,. Then, for any
point € I' we have, due to the boundary condition, u(z) - n = 0, where n is the outer normal vector to
I'. In addition, Lemma 2.7 implies that u € C°(S})? since u —u(c;) € V3 (S5,,)* € C%(Sj ,)*. Therefore,
by letting  — ¢; along I', we have u(c;) - n = limg_,, u(z) - n = 0. 0

We prove weighted analytic estimates for Leray-Hopf weak solutions in each corner sector.

Lemma 3.7. Let 8 = (B1,...,8n) € (0,1)™ be such that ; € (1 — k;,1) N (0,1) fori = 1,...,n. Here
K; is defined as in (2.19), with respect to the operator pencil A;(\), defined as in (2.18) with openzng angle w;
and boundary operators corresponding to the boundary conditions on the two edges meeting at ¢;. Let further
f € [BY(P)>NW* such that || f||w~ < 4°c°:) —. Suppose that Assumption 1 holds and let (w, p) be the solution
to (2.1) with right hand side f.

Then there exists dp € (0, 1] such that for all i € {1,2,...,n}, (u,p) € [B (S5, 5)]> x Bj, (S5, /o)

Remark 3.8. Lemma 3.7 implies in particular that if u(c;) = 0 (this happens when at least one straight
edge of S} is a zero Dirichlet edge or both edges are equipped with homogeneous slip boundary con-

dition and w; # ), then u € [Bﬁ( 527 C [H22( 5,27 and p € B (S5, ) C Hil( 5, /2) im-
plies by Lemma 2.8 that u € [K3_ g (Sj, ,)]> and that p € K1_ 5,(S5, o). Furthermore, by definition

(st]p/2) N Kf_ﬂ (S;Wz) = Kf_éi(SgP/Q). Therefore, u € [K;’_Bi(sgm/z)]? andp € K77 5 (SgP/Q) in this
case

Proof. Fix 0 < dp < 1 such that dp < imini,j |c; — ¢;| and such that
(3.25) [ —ulelvs sy <L ol sy, <L Vie (L.},

Note that this condition is meaningful thanks to Lemma 3.6. The proof proceeds by induction, in each
of the corner sectors. Fix i € {1,...,n}. We write r(z) := r;(z) = |z — ¢;| for compactness.
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Let w = u — u(¢;). In order to set up the inductive bootstrap argument, we rewrite the NSE with u
in polar coordinates and rearrange the equations in the sector S§, as

(3.26a) I8 () - (A[f —((u+ u(c%) V) (u+ u(ci))]> in i |

(3.26b) B(w,p) =0 ondS;, NOP.

The set of equations (3.26a) has the following component-wise form:

1 v((ro,)? + 93 — 1) —200y Ty 100 &
(3.27) T2 ( 200y V((T8T)2 + (9129 _ 1) o) + -\ ay p=f in 5511»7

1 ~ ~ i
(3.28) - ((ror +1)u, + O9ug) =0 in Sg,.

Here f = f — (@ + u(c;)) - V) (@ + u(c;)). The boundary conditions (3.26b) read

(3.29) u=0 ondS; NIp,
(V(T_laﬁﬂr + Oyt — T_lﬁﬁ

(3.30) —p + 2vr Y (Oytiy + U,))

Uy
(3.31) <y(ara19 + 1947, ;ﬁﬁ))

See Appendix C for details of the derivation.

) =0 onc‘)SgP Ny,

0 ondSj NTe.

The analyticity of w and pin P \ (U?zl Sy /2> and the analyticity assumption on f, i.e., f € [B}(P)]?
(whence f € [Bgi (55,)]* by Lemma 2.5), imply that there exists A; > 0 such that, for all [o| > 1,

(332&) ||T5i+a172D0¢(r2f)||L2(S§HD) < A|1a||o[|',
(3.32b) =20 (2 u(e)) V) (@) agsy v, < ALl
(332C) ||T’6"+°”_IDO‘QDHLZ(S};P\S};WQ) < A|10¢|*1(‘a| — 1)',

and, forall k € N,

(3.32d) \|r’“afi||H1(S§P\Si ) < AfkL

sp/2)

For the ensuing induction argument, we define the constants

1 3/2
(3.33a) E, = max (2,8 <1 + U) , (8v)% 2) :

and
4 1
(3.33b) A, = max <22056CA1, 2C;ec (Cy + 9)E2, ;Al, 4 <V(Ct +2) + 4> EY3,
4A1,4(Cy + 1+ 3v)E,,, 2).

We now formulate our induction assumption.
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Induction assumption. We say that H ko holds for k € N and ky € N with ks < &, if

(3.34a) I D R sy, S ASTERET ol =2 (o<l <E
34a acNy:¢ — 7
[|rPiten= ZDaaﬂHLz(y o< Alel=2 plaz=4/3l+ (|| — 2)1, ay <k +1,
and
» 1<|o| <k
Bit+ai—1mya ; < la| =1 oo - | 2 . — = R,
(3.34b) |Ir Dpllrasy ) < AT ER(lal 1), VaeNp: {a2 o

where A, and E, are the constants in (3.33b) and (3.33a).
Strategy of the proof. We start the induction by noting that H; ; holds due to Lemma 3.6 and to (3.25).
The induction proof of the statement will be composed of two main steps. In the first step, we show

(335) Vk € N, Hk,k — Hk-i—l,l-
Then, in the following step, we will show that, for all £ € N and all j € N such that j <k,

(336) I‘IkJC and Hk+1,j - Hk+1,j+1-
Combining (3.35) and (3.36), we obtain that
(3.37) Hyr = Hi+1,k41,

We infer from (3.37) that Hy j, is verified for all k¥ € N. This will conclude the proof.
Step 1: proof of (3.35). We fix k € N and suppose that Hj, ; holds. Define

(3.38) U= rkﬁfﬁ, q = rkafp.
Then, for all || <2,

(3.39) DG = r*oF (rm D)
and

Orq = Tk72af(r23rp) — krkfla,’fp —k(k — 1)rk728f71p,
3.40 1
(340) ;81961 = P72k (rogp) — krk =20 1ogp.

Furthermore, multiplying (3.28) by r and differentiating by 9* we obtain
(10, + (k +1))0%, + 0¥ty = 0,
hence
1
(3.41) 0=7r*"1(ro, + (k +1))0Fu, + ¥~ 10y0% 0y = - ((ro, 4 1)v, + Ogvy) .

From (3.39), (3.40), and (3.41), it follows that the pair (v, ¢) as defined in (3.38) formally satisfies, with

L& and B in polar frame and acting on the velocity field u in polar frame as defined in (3.26a) and
(3.26b) the Stokes boundary value problem

LSAt (v,q) (‘f) mS(;]P,

B(®,q) = g , on (0S5, NT'p) x (885, NT'n) x (0S5, NT¢),.
0

(3.42)
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710 Here, f and (assuming that 0S5, NT'y # @) g are defined by

F=rt20r A (F — (@ ule)) - V)@ + ule) - k2 (Ta% = Uaﬁ_lp) :

0{?—1&9;0
~ 0
g = ka—lapr .

712 Using (3.32), Lemma 3.5 with w = w, the inductive hypothesis Hj, ;,, and the fact that for all v € L2(S§P)

711 (3.43)

713 ||U||L2(Sgp) < ||UHL2(S;'P/2) + ”UHL2(S§P\S§P/2)7

714 we find from (3.43)

||f||£gi(5§]?) < IITﬂ”’H&’f(rQ?)I\sz;P) + [P0 (2 (u + () - V) (@ + u(e)) sz )
+ k||Tﬁi+kflafp||L2(sgP) + k(k — 1)Hrﬁﬁkfzafflpﬂp(sgy)
+ k”f,ﬁiJrkaaf*laﬁp”L2(5§P)
< AFKl 4+ (CLAETTE2 + AR) R + k(AR + A7) (k= 1)
+h(k—1)(AE2 4 AF72) (k—2)' + k (AL B, + AF7Y)
< (5AF + (Cy +3) AL E2) k.

77

6 Furthermore,
~ k—1ak—
[y 05 oy < HIF10E Bl s

< k<||7“k_2+ﬁaf_1p||m(sg?) + ||7”k_2+’85f_1319p||m(sgw) + ||7“k_1+B5fP||L2(sgP)

717
= D20 sy

<4k (A 4+ AEIE,) (k- 1)
=4 (A7 + AR, R

718 It follows from (3.42), Theorem 2.9, (3.32d), (3.32c), and the two inequalities above that

v — U(Ci)\\vgi(sgw) + ||Q\\v;i(sgw2)
7o (344 < Cuae (W Flla sy + 10lirs vy o + Nl s, + Wscosg e )

< Cuee (11AY + (Ce + )AL E2) R,

720 We claim that v(¢;) = 0. This means that this term in (3.44) could be omitted. To prove the claim, we
721 observe that the validity of Hy, ; implies that HrkJrﬂi’Q@?’fﬁHLz(sg ;) < Fooand thus € Lp,—2(S5, /5)%.
P

722 This is equivalent to v € Lg,—2(Sj, ,)?. Using (3.44), [12, Corollary 4.2] and Lemma 2.7 we have that
725 v € C°(S;, ,)* Then the condition v € Lg,_2(Sj, ,) forces v (and ) to vanish at ¢; since otherwise

724 r2(%=2)y? would not be integrable on Sj_,.
725 Now, for all || = 2,

726 D" = r*OF D + i krrOFTT T M + [y — 1)1 k(k — 1)rF 20k,
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Therefore, for all || = 2,

||7”5i+k+m_23fpnﬁ||Lz(sgw)
< lvz si ) + mkHTﬁ#kﬂlfsaﬁmflafﬁﬂL2(sgw2) + k(k — 1)Hrﬁﬁkfzafiﬂm(sng)
< Coee (11AY + (Co + DAETTE2) K 4+ 2k AR (K — 1)1 + k(k — 1) AE2(k — 2)!
< Cyec (11AY + (Cy + 9)AE EZ) KL

Forall |n| =1,
D'g = rROFDg + i krh 10k,
hence

it —1 ak , A k1 Ak
[Pt 15TD”P||L2(S;§P/2) < ||Q|\v,gi(sgw2) + k[Pt 13rp||L2(sgP/2)

< Coee (11LAF + (Cy + TV AETLE2) kY 4 kAR (B — 1)!
< Cyeo (11AY + (Cy + 8)AETTE2) K.

From (3.33b) it follows that for every k € N

ikt —2 gk Nz _ k i+ ktm —1 ok _ k
max ||r-Pithtm 0, D"l 2gi  y < Ayk!, max ||rPithAm 0. D'pllp2(si ) < Aukl,
In|=2 op/2 In|=1 op/2

i.e., that Hy41 1 holds. We have shown implication (3.35).
Step 2: proof of (3.36). We now fix j € {1,..., k} and we assume that Hy, , and Hj1 ; hold true.

Multiply (3.28) by r and differentiate by 8578’ to obtain
TBerl,jaljé-&-lﬂr + (k‘ 41— j)af*jalj;i-lﬂr + 8f*j8§+2ﬂ19 =0.
Therefore, using Hy.11 ;,

Ak—j—2 gk—j 542~
||7ﬂz+ J 287‘ 361]9 qu”Lz(S;WQ)

T R a1~ T R Al ~
< ||,r,ﬁl+k J 1a7lf+1 735; u Bit+k—j 267{6 361]94-

rllzasy ) + Kl urllzasy )
(345) < AREITY3 4 kAR RISV (K — 1))
<24k EI=1/3)

< AFEIt2/3E1

This proves the estimate for .

To prove the bound on @,, multiply the first equation in (3.27) by 2 and differentiate by 85~78’, to
obtain

voF 10 %0, = —v (1?02 + (2(k — j) + 1)rd, + (k — j)* — 1) 857903, — 2v0F 7 9) 4y
+ (r20] + 2(k — )rdy + (k — ) (k — j — 1))k~ 9p
—0F70] (TQ(? — (u+u(e)) - V)(u + u(u)))r) :
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Therefore,

TS A2~
||7"Bl+k / 235 Jaf;r Ur||L2(sgw2)

< (Agk! + 2k A, (k — D) 4 k(k — 2)(k — 2)!) ART2EL=4/3le 4 9 AR=1RI=1/3 () — 1)1

+ = (Ajjk! +2k — DAY E D)+ (k—1)(k—2)AF2(k - 2)!) EJ
(3.46) v

1 1 ,
+ —A¥E! 4+ —C AR EI T2
14 14
1 1 . 1 . 1 )
< (A’f + (1 + ) AREI 4 ((Ct +2) + 4) AR=1pit2 4 (1 + ) Aﬁ_2E7{> k!
14 14 14 14
< Ak Ei+2/3f)

This provides the estimate for .. A
Last, consider the second equation of (3.27): multiplying by 72 and differentiating by 9%~79), we
obtain

rdf 195 p = v (1202 + (2(k — §) + V)rdy + (k — §)? — 14+ 93) 9F 9%,
+ 200 T, — (k- §)oF 1o p
+ k=10 (r*(F = (@ + u(e)) - V)(@+ ule)s) -

Hence,
||Tﬂi+k_j_laf_j5§ﬂp||m(Sng)
< V(Aik! + 2k Ay (k — D! 4 k(k — 2)(k — 2)!) Ak=2pli—4/3l+
(3.47) + VAR EITYBE 4 2p ARTYEITYS (| — 1) 4 (k — 1) AF2EIF (K — 2)!

+ Akl + C AR I 2
< (A’f + AR EITY3 4 (O 41+ 30) AR EIT2 A’;—2E5+1) k!
< ARpItlg)

Then, the estimates in (3.45), (3.46), and (3.47) imply that H ;11 holds true. By the strategy outlined

above, this shows implication (3.37) and thus verifies Hy, x forall k € N. Therefore (u,p) € [B3, (S, /5)]* X
B}, (S5, /), which leads to (@, p) € [B3, (S5, 5)]* x Bj, (S, /) due to u(c;) = 0 and Lemma 2.4. The proof
is concluded by noting that w — w is a constant vector field. O

Combining the estimates in each sector with classical results on the analyticity of the solution in the
interior of the domain and on regular parts of the boundary, this implies the weighted analytic regularity
in P of solutions to the stationary, incompressible Navier-Stokes equations, stated in Theorem 2.13.

Proof of Theorem 2.13. The analyticity of weak solutions (u, p) in the interior and up to analytic parts
of the boundary is classical, see, e.g., [25, Chap. 6.7] and [21, 8]. Furthermore, for any 6 > 0 and any
B € R™ there exists a constant A > 0 such that the weight functions @ s satisfy

Vk € Ny Vo € {z € P:dist(z,€) > 6} 1 |Ppypla)| < AV

This implies weighted analyticity of the solutions in subsets of the domain that are bounded away from
corners. The weighted analytic regularity in {z € P’ : dist(z, &) < ¢} for 0 < 6 < dp/5 is proved in Lemma
3.7. 0
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Remark 3.9. Suppose that for each corner ¢ € €, either
e at least one of the two sides of P meeting in ¢ is a Dirichlet side with no-slip BCs, or
e both sides of P meeting in ¢ are equipped with homogeneous slip boundary condition and the
angle is different from .
The, by repeating the argument in Remark 3.8 near each corner and using again the analyticity of (u, p)
in the interior and up to analytic parts of the boundary, one can establish that

(u,p) € [KF ()2 x KT_4(P).

4. Conclusion and Discussion. We have shown analytic regularity of Leray-Hopf solutions of the
stationary, viscous and incompressible Navier-Stokes equations in polygonal domains P, subject to suf-
ficiently small and analytic in P forcing. We proved analytic regularity of the velocity and pressure in
scales of corner-weighted, Kondrat’ev spaces. The present setting of mixed BCs covers most examples of
interest in applications, such as, e.g., channel flow with homogeneous Neumann condition at the outflow
boundary. With the argument in [20] containing a gap, in the particular case of homogeneous Dirichlet
(“no-slip”) boundary conditions on all of 9P the present result implies that the result in [28] stands un-
der the assumptions stated in [28]. The analytic regularity in homogeneous weighted spaces implies, as
explained in the discussion in [28, Section 5], corresponding bounds on n-widths of solution sets which,
in turn, imply exponential convergence of reduced basis and of Model Order Reduction methods. Corre-
sponding remarks apply also in the present, more general situation, and we do not spell them out here.
The present results also imply, along the lines of [28] (where only the case of no-slip BCs on all of 9P was
considered), exponential rates of convergence of hp-approximations. Details on the exponential conver-
gence rate bounds for further discretizations in the case of the presently considered mixed boundary
conditions shall be elaborated elsewhere.

Acknowledgements. The authors are grateful to the referees for their thorough and constructive
comments which have contributed to the improvement of the paper.

Appendix A. Proofs of Section 2.5.4.

Proof of Lemma 2.4. The third item of Lemma 2.6 and the second item of Lemma 2.7 give that for any
¢ € {0, 1,2} there exists a constant Ay > 1 such that for any o € N3,

o +1
15+ =D L2, (o) < AT |l
Then we have

I~ ull 2@y 0y < Al Tl 2205 0 (1)

and for all |a| > 1,

a2

1— a2 j 1—¢ 1922—]
[P D% || L2y () < (j>||53900819||m<c25,w<c>>7‘““ L0005 u || L2y o (o))
=0

s
Qo ] . a1 — e o —J
+ <j)|3fs811“9||L°°(Q§,w<c>>||7“ﬁ+ O 05w L2 Qs 0)
=0

Qa2
<245 a3 Ay (O;Z) < 2(240) L.
j=0

A similar estimate holds for u,. By the above results and using the third item of Lemma 2.6 and the first
item of Lemma 2.7 we have u € [B5(Qs.(c))]?, which, by the second item of Lemma 2.6, is equivalent to

u € [B§(Qs.0(0))]*. U
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Proof of Lemma 2.5. From v € [BR(Qs..(¢))]? it follows that v € [B3(Qs..(c))]* by [2, Theorem 1.1].

Then, there exists Ag > 1 such that, for all || > 1,

[r D, || 12 (@50 () < Z <] ) 185 cos 9 Loe (@0 (en 17 P05 052 01| L2 (5 )
7=0

+Z< > 109 5in 9| o (@ (e I P07 057 02 L2 (0))

< 24! ZAgj (O;2> < 2(240) 1.

Jj=0

The estimate for vy follows by the same argument. 0

Proof of Lemma 2.8. Lemma 2.7 implies that v € VE (Qs.w(¢)). Elementary calculus yields

sin 9

Oy, = cos Y0, — Oy,
19

By, = sinvd, + 2V 9y,
02, = cos® V02 + 2COSI92811119 s+ sin2198r _ 2cos¥sind 5+ sin 19819,

T r T
92, = sin® 002 — 2(:05192811119819 N cos2198T N 2(:0319311119am9 L cos 19619,

T T T
0,,0,, — cos ) sin D02 + sin? 9 _2COS219819 . cos? ¥ — sinzﬂamg B slnﬁcosﬁar B sinﬁ;osﬁagl

r T T T

Therefore there exists C' > 0 (C = 7 when k = 2 and C = 2 when k = 1 will suffice) such that for any
a € N2 with |o] <k,

1/2
P 0% Lo p e S C | D PP TFH DT, o)) = Cllollve(@s. o)
la| <k
By definition, it follows that v € K} 5(Qs.(c)). O

Appendix B. Parametric Operator Pencil for Stokes-Problem. In this appendix, we give details

about the parametrized system (2.18). Recall that r € (0,00) and ¥ € (0,w) are polar coordinates in the

sector Qso - Set D = —i0y. The parametric differential operator L()) in (2.18) reads in components
(B.1)
o ((vD2 42142 w(B+iNiD  —(1+iN) [ (o
LN (w.q) = (( V(B —iNiD 2D+ (1 + %) iD v (L=ix D) (") )-
We define the parametric boundary operator B()) in (2.18) as
~ Uy Uy
(52) BO)@.0) = (400 {00 | 400 [0 ] ):
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Here, for ¥ € {0,w}, the parametric boundary operator A;()) is defined in components as

1 _
0 (1) 8) , if { = ¥} corresponds to a Dirichlet edge,
D —u(1+i) .
(B.3) As(\) = v v Jr i) 0 , if {¢¥ = ¥} corresponds to a Neumann edge,
2v 2viD -1
0 ! 0 if {1} = ¥} corresponds to a Slip edge
iD —(1+4i\) 0)’ B p p edge.

For the derivation of this parametric system, see [14, Chapter 4.2].

Appendix C. Stokes operator in polar coordinates. In this appendix we provide the elementary cal-
culations to verify (3.27)-(3.31), which describe the NSE with boundary conditions in polar coordinates
and polar components. We recall the representation of the NSE in the Cartesian reference frame

(C.1) L5 (u,p) = (f - (‘6' V)“) in S,
(C2) B(u,p) =0 onTs.

Using u = u — u(c;) we rewrite this set of equations as

(C3) L§ (@, p) = (f — (s “(Ci)é' V)(u+ u(cm) in S,
(C4) B(u,p) = —B(u(c;),0) =0 onTs.

(C.3) follows directly from (C.1). We justify that the right-hand side of (C.4) is a zero vector. To this
end, we note firstly that due to Lemma 3.6, u —u(c;) € V3 (S5)* C C°(S5})? and thus u € C°(S})?, which
implies the continuity of u|g, along I's. On a Dirichlet side, we use the homogeneous Dirichlet boundary
condition and the continuity of u to derive u(¢;) = 0, which implies B(u(c;),0) = 0 on this side. On
a Neumann side, B(u(c;),0) = 0 as all entries of e(u(c;)) equal zero. For a side equipped with slip
boundary condition, Lemma 3.6 shows that the first component of B(u(c;),0) equals 0 and the second
component also vanishes with the same reasoning as in the case of a Neumann side. The right-hand
sides of (3.29), (3.30) and (3.31) are thus verified.
The vector Laplacian in a polar reference frame reads [1, Equation (3.151) ]

= 1 (7”5”2 + 8129 -1 7287_9 =
Av=1 < 20y (rop)? +03-1) "

and [19, Equation (I1.4.C3)]

The divergence of &, which equals to V - u, is [19, Equation (IL4.C5)] V - u = £ ((rd, + 1) Uy + dyliy),
whence (3.27) and (3.28).

Regarding the boundary conditions (C.4), we start from the expression of the stress tensor in polar
coordinates and polar frame, see [19, Equation (I11.4.C9)],

— Oty L0, + r~ YDy, — Tiy))
(€5) e(u) = (;(a,:ﬁﬁ +r Y (Dg Ty — Ty)) ;9*1(5191719 i i) ’ )

This manuscript is for review purposes only.



876

879

880

881

882

®
o))
[O¥]

884

885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918

ANALYTICITY FOR NS IN POLYGONS WITH MIXED BC 29

hence the stress tensor in a polar reference frame reads

= . = . 20, U, Ortly + r*l(&gﬂr — ﬁg)
(C.6) o(u,p) =2ve(u) — pldy = v (@519 + Dyt — ig) 2= (Dytiy + Ty —plds.

aes(l). =+ ().

where the sign depends on the side of the sector being considered. Then, by matrix-vector multiplication,

We have furthermore

—= Optly + T_l(aﬁﬂr - ﬂﬁ)
ot p)n == ( 2= (Byiiy +Tiy) —

and consequently

(0@, p)n) - t = o (@ p)m - E = —Oyiiy — %(aﬂm ).

Also, it follows from the definition that & - n = u - 7@ = 4y, thus verifying (3.29), (3.30), and (3.31).
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