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Abstract

We prove the possibility of achieving non-reciprocal wave propagation in space-time mod-
ulated media and give an asymptotic analysis of the non-reciprocity property in terms of the
amplitude of the time-modulation. Such modulation causes a folding of the band structure
of the material, which may induce degenerate points. By breaking time-reversal symmetry,
we show that these degeneracies may open into non-symmetric, unidirectional band gaps.
Finally, we illustrate our results by several numerical simulations.
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1 Introduction

The control and manipulation of wave-matter interactions at subwavelength scales has received
considerable attention over the past decade [24, 27, 28, 45]. Moreover, the potential for using arti-
ficially structured metamaterials has shown considerable promise [2, 21, 29]. Here, subwavelength
means that the length-scale of the system is considerably smaller than the operating wavelength.
Subwavelength metamaterials can be achieved by having a locally resonant microstructure. In
other words, the material is composed of building-blocks which themselves are subwavelength
resonators [8, 40, 46, 47].

As reviewed in [2], high-contrast resonators are a natural choice of resonators when designing
subwavelength metamaterials. Here, the subwavelength nature stems from a high material con-
trast between the constituting materials of the structure. Such structures can be used to achieve
a variety of effects [1, 3–9, 12]. Of particular importance for us are systems of time dependent
high-contrast resonators. In [10], such systems are studied and a mathematical foundation that
explains some effects found in time-modulated systems for waves in the subwavelength frequency
regime is provided.

In the past, significant progress has been achieved in the field of classical waves by making
use of analogies with electronic systems [17, 18]. For instance, the idea of a band gap material,
a system with a spatially varying and periodic material parameters, was motivated by the well-
known physics of electronic Bloch states; the scattering of waves in periodic media presents
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the same formal solutions as those for the scattering of electrons in periodic potentials. More
recently, the field of topological insulators in condensed matter physics has been teeming with
intriguing and very exciting discoveries. Notably, the capacity of guiding currents towards specific
directions according to the spin of the travelling electrons has a great potential for electronic
devices [15, 19].

Several attempts to transpose this phenomenon to classical waves at subwavelength regimes,
unveiling the pseudo-spin locking of guided waves have been made; see, for instance, [20, 30, 31,
35, 36, 41, 42]. In order to replicate spin effects from quantum systems, time-reversal symmetry
should be broken. However, classical (nondissipative) systems are invariant under time rever-
sal because their dynamics are governed by the wave equation, which, unlike the Schrödinger
equation, is second order in time.

Reciprocity is an expression of time-reversal symmetry. It is a fundamental principle in wave
physics, requiring that the response of a transmission channel is symmetric when source and
observation points are interchanged. It is of major significance because it poses fundamental
constraints on the way we process acoustic, elastic and electromagnetic signals [39]. Recent
trends for subwavelength devices and technological advances in the realization of efficient time-
modulated systems have recently brought time-modulated non-reciprocal devices to the spotlight.
Over the past decade, non-reciprocity based on time modulation has gained significant attention
for different physical systems, such as in acoustics, mechanics, and optics [39].

In this paper, we discuss the most fundamental mechanisms of non-reciprocity in metamate-
rials based on time modulation. By using lattices of spatiotemporally modulated subwavelength
resonators where time-reversal symmetry is broken, we prove the unidirectional excitation of
waves guided at subwavelength scales. In the presence of only spatial modulation, the time-
reversal symmetry is not broken and consequently the band functions are symmetric for opposite
directions. Breaking time-reversal symmetry, we show that time-modulation may open degen-
erate points of the folded band structure into non-symmetric band gaps; opposite propagation
directions are subject to distinct band gaps. If the excitation frequency falls inside the band gap
for only one propagation direction, wave transmission is then prohibited in this direction but not
in the opposite one, leading to non-reciprocal transmission properties.

Our results in this paper use the fundamental fact that phase-shifted (“rotation like”) time-
modulations of subwavelength resonators can provide a kind of “artificial spin”. They show
that unidirectional guiding phenomenon is not particular to quantum systems, as conjectured
in the seminal papers [22, 34]. Such artificial spin cannot be achieved in systems of one or two
resonators. In fact, we show that non-reciprocity requires at least three resonators inside one
unit cell of the material.

This paper is organized as follows. In Section 2, we define the problem of reciprocity and dis-
cuss the Floquet-Bloch theory which is essential to solve ordinary differential equations with pe-
riodic coefficients. In Section 3, we discuss conditions in the time-modulation which preserve the
property of reciprocity. Section 4 is devoted to the asymptotic analysis of the non-reciprocity in
terms of the amplitude of the modulation. In Section 5, we numerically simulate non-reciprocity
properties in a variety of structures. The paper ends with some concluding remarks in Section
6.

2 Problem formulation and preliminary theory

In this section, we define the problem of reciprocity. Moreover, we introduce the Floquet-Bloch
theory to apply to the problem. This subsection follows closely the introductory theory provided
in [10].
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2.1 Resonator structure and wave equation

We consider the wave equation in structures with time-modulated materials. Such wave equation
can be used to model acoustic and polarized electromagnetic waves. The time dependent material
parameters are given by ρ(x, t) and κ(x, t). In acoustics, ρ and κ represent the density and
the bulk modulus of the materials. We study the time-dependent wave equation in dimension
d = 2, 3: Ç

∂

∂t

1

κ(x, t)

∂

∂t
−∇ · 1

ρ(x, t)
∇
å
u(x, t) = 0, x ∈ R

d, t ∈ R. (2.1)

Furthermore, we assume a fully periodic resonator structure with a lattice Λ ⊂ R
d and unit cell

Y ⊂ R
d. Each unit cell contains a system of N resonators D ⋐ Y . D is constituted by N

disjoint domains Di for i = 1, . . . , N , each Di being connected and having boundary of Hölder
class ∂Di ∈ C1,s, 0 < s < 1. Denote Ci and C the periodically repeated ith resonators and the
full crystal:

Ci =
⋃

m∈Λ

Di +m, C =
⋃

m∈Λ

D +m.

We let Λ∗ to be the dual lattice and define the (space-) Brillouin zone Y ∗ as the torus Y ∗ :=
R
d/Λ∗.

l1
Y

l2

(a) Unit cell Y containing N = 4 resonators.

· · ·

··· · · ·

···

(b) Infinite, periodic system with unit cell Y and lat-
tice Λ.

Figure 1: Illustrations of the unit cell and the periodic system of resonators.

For the purpose of this paper, we apply time-modulation to the interior of the resonators, while
the surrounding material is constant in t. We let

κ(x, t) =

{

κ0, x ∈ R
d\C

κrκi(t), x ∈ Ci
, ρ(x, t) =

{

ρ0, x ∈ R
d\C

ρrρi(t), x ∈ Ci
, (2.2)

for i = 1, . . . , N . Here, ρ0, κ0, ρr, and κr are positive constants. The functions ρi(t) ∈ C0(R)
and κi(t) ∈ C1(R) describe the modulation inside the ith resonator Ci. We assume that each of
ρi, κi is periodic with period T .

We define the contrast parameter δ as

δ :=
ρr
ρ0
.

In (2.1), we have the transmission conditions at x ∈ ∂Di

δ
∂u

∂ν

∣

∣

∣

∣

∣

+

− 1

ρi(t)

∂u

∂ν

∣

∣

∣

∣

∣

−

= 0, x ∈ ∂Di, t ∈ R,
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where ∂/∂ν is the outward normal derivative at ∂Di and |+,− denote the limits from outside and
inside Di, respectively

In order to achieve subwavelength resonances we assume that δ ≪ 1 and consider the regime
where the modulation frequency

Ω :=
2π

T
= O(δ1/2).

We also assume that dκi/dt = O(δ1/2) for i = 1, . . . , N.
Note that in the static case where there is no modulation of the material parameters (i.e.,

when ρi(t) = κi(t) = 1 for all i), the system of N subwavelength resonators has N subwavelength
frequencies of order of O(δ1/2). We refer the reader to [2] for the details.

2.2 Floquet-Bloch theory

Let A(t) be a T -periodic N ×N complex matrix function and consider the ordinary differential
equation (ODE):

dx

dt
(t) = A(t)x(t). (2.3)

Recall that the fundamental solution matrix of (2.3) is a N ×N matrix with linear independent
column vectors, which solves (2.3). The following theorem is classical.

Theorem 2.1. (Floquet’s theorem) Denote X(t) the matrix-valued fundamental solution with
initial value X(0) = Id, where Id is the identity matrix. There exists a constant matrix F and a
T -periodic matrix function P (t) such that

X(t) = P (t)eFt. (2.4)

For each eigenvalue λ := eiω of eF , there is a Bloch solution x(t) which is ω-quasiperiodic, i.e.,

x(t+ T ) = eiωTx(t).

Observe that ω is defined modulo Ω. Therefore, we define the time-Brillouin zone as Y ∗
t :=

C/(ΩZ).

Remark 2.2. In some literatures, e.g. [43], eiωT is called a characteristic multiplier. We refer
to ω as a quasifrequency, while iω is a Floquet exponent.

If A is time-independent, the solution to (2.3) can be written as x(t) = eAtx(0). The Floquet
exponents are then given by the eigenvalues of A. Since the Floquet exponent is defined modulo
iΩ, we need the following definition.

Definition 2.3 (Folding number). Let ωA be the imaginary part of an eigenvalue of the time
independent matrix A, we can uniquely write ωA = ω0 + mΩ, where ω0 ∈ [−Ω/2,Ω/2). The
integer m is called the folding number.

Applying the Floquet transform to the wave equation (2.1) in x and seeking quasiperiodic
solutions in t, we obtain the differential problem























Ç
∂

∂t

1

κ(x, t)

∂

∂t
−∇ · 1

ρ(x, t)
∇
å
u(x, t) = 0,

u(x, t)e−iα·x is Λ-periodic in x,

u(x, t)e−iωt is T -periodic in t.

(2.5)

For a given α ∈ Y ∗, we seek ω ∈ Y ∗
t such that there is a non-zero solution u to (2.5).
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Definition 2.4. Quasifrequencies as a function of α, i.e., α 7→ ω(α) is called a band function. All
band functions together constitute the band structure, or dispersion relationship, of the material.

The quasiperiodicity (or quasimomentum) α corresponds to the direction of wave propaga-
tion, and we therefore introduce the following definition.

Definition 2.5. Waves propagate reciprocally if for every α ∈ Y ∗, the set of quasifrequencies of
(2.5) at α coincides with the set of quasifrequencies at −α. The reciprocal equation associated
with (2.5) defined with α ∈ Y ∗ is that with −α.

The purpose of this paper is to investigate under which time-modulation conditions the
reciprocity of waves can be broken, and to give an asymptotic analysis of the reciprocity property
in terms of the amplitude of the modulation.

2.3 Layer-potential theory and the capacitance matrix

We first define the α-quasiperiodic Green’s function Gα,k(x, y) as the solution of the following
equation:

∆xG
α,k(x, y) + k2Gα,k(x, y) =

∑

n∈Λ

δ(x− n)eiα·n.

It can be shown that if k 6= |α+ q| for all q ∈ Λ∗, then Gα,k is given by

Gα,k(x, y) =
1

|Y |
∑

q∈Λ∗

ei(α+q)·(x−y)

k2 − |α+ q|2 ,

where |Y | denotes the volume of Y ; see, for instance, [7, 13].

Let D ⊂ R
d be as in Section 2.1. We define the quasiperiodic single layer potential Sα,k

D :
L2(∂D) → H1

loc(R
d) by

Sα,k
D [φ](x) :=

∫

∂D
Gα,k(x, y)φ(y)dσ(y), x ∈ R

d.

Here, the space H1
loc(R

d) consists of functions that are square integrable and with a square
integrable weak first derivative on every compact subset of Rd. Taking the trace on ∂D, it is
well-known that Sα,0

D : L2(∂D) → H1(∂D) is invertible if α 6= 0 [7]. For low frequencies, i.e., as
k → 0, we have the asymptotic expansion (see, for instance, [7])

Sα,k
D = Sα,0

D +O(k2), (2.6)

valid uniformly for |α| > c > 0.

Definition 2.6 (Capacitance matrix). For α 6= 0, the basis functions ψα
i and the capacitance

coefficients Cα
ij are defined as

ψα
i =

Ä
Sα,0
D

ä−1
[χ∂Di

], Cα
ij = −

∫

∂Di

ψα
j dσ, (2.7)

for i, j = 1, . . . , N , where χ∂Di
is the characteristic function of ∂Di. The capacitance matrix Cα

is defined as the matrix Cα =
Ä
Cα
ij

ä
.

As we shall see, the capacitance matrix provides, to leading order, an asymptotic approxi-
mation of the equation (2.5) as δ → 0. The following results hold.

Lemma 2.7 ([2]). The capacitance matrix Cα is Hermitian.

Lemma 2.8. For all α ∈ Y ∗, we have C−α = Cα = (Cα)⊤, where the superscript ⊤ denotes the
transpose.

Proof. The identity follows from the fact that G−α,k = Gα,k.
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2.4 Time-modulated subwavelength resonators

We seek solutions to (2.5) with modulations given by (2.2). Since e−iωtu(x, t) is a T -periodic
function of t, we can write its Fourier series as

u(x, t) = eiωt
∞
∑

n=−∞

vn(x)e
inΩt.

In the frequency domain, we then have from (2.5) the following equation, for n ∈ Z:



























































∆vn +
ρ0(ω + nΩ)2

κ0
vn = 0 in Y \D,

∆v∗i,n +
ρr(ω + nΩ)2

κr
v∗∗i,n = 0 in Di,

vn|+ − vn|− = 0 on ∂D,

δ
∂vn
∂ν

∣

∣

∣

∣

∣

+

−
∂v∗i,n
∂ν

∣

∣

∣

∣

∣

−

= 0 on ∂Di,

vn(x)e
iα·x is Λ-periodic in x.

(2.8)

Here, v∗i,n(x) and v∗∗i,n(x) are defined through the convolutions

v∗i,n(x) =
∞
∑

m=−∞

ri,mvn−m(x), v∗∗i,n(x) =
1

ω + nΩ

∞
∑

m=−∞

ki,m
Ä
ω + (n−m)Ω

ä
vn−m(x),

where ri,m and ki,m are the Fourier series coefficients of 1/ρi and 1/κi, respectively:

1

ρi(t)
=

∞
∑

n=−∞

ri,ne
inΩt,

1

κi(t)
=

∞
∑

n=−∞

ki,ne
inΩt.

We can assume that the solution is normalized as ‖v0‖H1(Y ) = 1. Since u is continuously
differentiable in t, we then have as n→ ∞,

‖vn‖H1(Y ) = o

Å
1

n

ã
. (2.9)

We will consider the case when the modulation of ρ and κ consist of a finite Fourier series with
a large number of nonzero Fourier coefficients:

1

ρi(t)
=

M
∑

n=−M

ri,ne
inΩt,

1

κi(t)
=

M
∑

n=−M

ki,ne
inΩt,

for some M ∈ N satisfying
M = O

Ä
δ−γ/2

ä
,

for some 0 < γ < 1. We seek subwavelength quasifrequencies ω of the wave equation (2.5) in the
sense of the following definition introduced in [10].

Definition 2.9 (Subwavelength quasifrequency). A quasifrequency ω = ω(δ) ∈ Y ∗
t of (2.5)

is said to be a subwavelength quasifrequency if there is a corresponding Bloch solution u(x, t),
depending continuously on δ, which can be written as

u(x, t) = eiωt
∞
∑

n=−∞

vn(x)e
inΩt,
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where
ω → 0 and MΩ → 0 as δ → 0,

for some integer-valued function M =M(δ) such that, as δ → 0, we have

∞
∑

n=−∞

‖vn‖L2(Y ) =
M
∑

n=−M

‖vn‖L2(Y ) + o(1).

In particular, we assume that the subwavelength quasifrequency ω and the frequency of
modulation Ω have the same order:

ω = O
Ä
δ1/2
ä
.

The following is a capacitance matrix characterization of the band structure of time-dependent
periodic systems of subwavelength resonators.

Theorem 2.10 ([10]). As δ → 0, the subwavelength quasifrequencies of the wave equation (2.5)
are, to leading order, given by the quasifrequencies of the system of ODEs:

d2φ

dt2
(t) +Mα(t)φ(t) = 0, (2.10)

where Mα is the matrix defined as

Mα(t) =
δκr
ρr

W1(t)C
αW2(t) +W3(t)

with W1,W2 and W3 being the diagonal matrices with diagonal entries

(W1)ii =

√
κiρi
|Di|

, (W2)ii =

√
κi
ρi

, (W3)ii =

√
κi
2

d

dt

dκi/dt

κ
3/2
i

.

Remark 2.11. Theorem 2.10 provides an asymptotic approximation, namely (2.10), of the
original wave equation (2.5), valid in the high-contrast regime δ → 0. In the following, we shall
only consider reciprocity of the approximating equation (2.10). If we can prove that (2.10) has
broken reciprocity, it follows that equation (2.5) has broken reciprocity for small enough δ.

3 Preservation of the reciprocity property despite time-modulations

In this section, we give some sufficient time-modulation conditions for the preservation of the
reciprocity property.

3.1 Reciprocity preserved when N = 1, 2

We first prove that if the number of resonators in the unit cell is one or two then the reciprocity
of (2.10) is preserved.

Theorem 3.1. If the number of resonators in the unit cell are less than 3 (i.e., N = 1, 2), then
the reciprocity of (2.10) is always preserved.

Proof. For N = 1, Cα = C−α ∈ R. Hence the quasifrequencies are given by exactly the same
equations. For N = 2, we consider the general form of Mα(t) as in (2.10):

Mα(t) = kW1C
αW2 +W3,
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where k is a real number and W1,W2 and W3 are diagonal. In view of Lemma 2.7, we write the
capacitance matrix as

Cα =

Ç
a c
c b

å
,

where a, b ∈ R, and let

S =

(

(c)2

|c|2
0

0 1

)

, S−1 = S∗ =

(

(c)2

|c|2
0

0 1

)

.

From Lemma 2.8, we have

SCα(t)S∗ =

(

(c)2

|c|2
0

0 1

)Ç
a c
c b

å( (c)2

|c|2
0

0 1

)

=

Ç
a c
c b

å
= C−α.

Since diagonal matrices commute with each other, we have SMαS∗ = M−α. As S is time
independent, we obtain that

M−αφ =
dφ

dt
⇐⇒ SMαS∗φ =

dφ

dt
⇐⇒ Mα(S∗φ) =

d(S∗φ)

dt
.

This means that φ is a solution to (2.10) with α ∈ Y ∗ if and only if Sφ is that with −α, having
the same quasifrequency.

3.2 Time-reversal symmetry preserves reciprocity

When there are more than two resonators inside the unit cell, the reciprocity can be broken, as
seen in the next section. Nevertheless, under the condition of time reversal symmetry, one can
prove that the reciprocity is always preserved.

Proposition 3.2. If ν is a quasifrequency to the equation Mα(t)φ(t) + (d2φ/dt2)(t) = 0, then
−ν is a quasifrequency to the equation M−α(t)φ(t) + (d2φ/dt2)(t) = 0. In particular, the real
parts of the quasifrequency of the two equations differ in parity and the imaginary parts are the
same.

Proof. Let ν be a quasifrequency associated with Mα(t)φ(t) + (d2φ/dt2)(t) = 0. This means
that there is a solution φ to this system of ODEs such that φ(t+ T ) = eiνTφ(t). Since Mα(t) =
M−α(t), φ(t) is then a solution to M−α(t)φ(t) + (d2φ/dt2)(t) = 0, having the quasifrequency
eiνT = e−iν̄T .

Remark 3.3. By Proposition 3.2, for the purpose of reciprocity, we should compare the real
parts of the quasifrequencies associated with α and −α.

Theorem 3.4. Let t0 ∈ R denote some initial time. If the time-modulation is time reversal
symmetric, i.e., Mα(t) =Mα(t0−t) for all time t ∈ R, then the reciprocity of (2.10) is preserved.
In particular, without time-modulation, reciprocity of (2.10) is always preserved.

Proof. Pick a solution φ to (2.10) associated to the quasifrequency ν, and define ψ(t) = φ(t0 − t).
Then ψ is ν-quasiperiodic. Moreover, since Mα(t)φ(t)+(d2φ/dt2)(t) = 0 we find that ψ satisfies

Mα(t0 − t)ψ(t) +
d2ψ

dt2
(t) = 0.

Since Mα(t0 − t) = M−α(t), we conclude that ψ solves the reciprocal equation corresponding
to the same quasifrequencies. We conclude that the sets of quasifrequencies at α and at −α
coincide.
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Remark 3.5. The statements and arguments of both Proposition 3.2 and Theorem 3.4 easily
generalize to the wave equation (2.5).

Corollary 3.6. Let R denote the diagonal matrix diag(ρ1, . . . , ρN ). If κi is constant for all i,
while R and Cα commute, then the reciprocity property is preserved.

Proof. Under the above assumption, Mα(t) = KCα, where K is some constant matrix and Cα

is the capacitance matrix. By Theorem 3.4, the reciprocity is preserved.

4 Asymptotic analysis of the non-reciprocity property

When N ≥ 3, reciprocity can be broken with time-modulation in ρ(t) and κ(t). In this section,
in order to describe this non-reciprocity, we study the case of weak time-modulation where Mα

is the sum of a constant matrix and a small periodic perturbation. In other words, we assume
that Mα(t) is an analytic function of ε at ε = 0 and can be written as

Mα(t) =Mα
0 + εMα

1 (t) + . . .+ εnMα
n (t) + . . . ,

where ε > 0 is some small parameter describing the amplitude of the time-modulation and Mα
0

corresponds to the unmodulated case. Moreover, we assume that the above series converges for
|ε| < r0, where r0 is independent of t. This holds true since the modulations in ρ and κ are with
finite Fourier coefficients.

To tackle the problem of non-reciprocity, we will use the asymptotic Floquet analysis devel-
oped in [11], which is a combination of perturbation analysis and Floquet theory; see also [43].
Starting with the second-order ODE (2.10), we can rewrite it into

dy

dt
(t) = ‹A(t)y(t), ‹A =

Ç
0 Id

−Mα(t) 0

å
. (4.1)

We aim to give an asymptotic analysis of the quasifrequencies associated with α and −α in terms
of ε. By Floquet theory as in Section 2.2, we have X(T ) = eFT so that the Floquet exponents are
given by the eigenvalues of F . Our asymptotic analysis amounts to explicitly expand the Floquet
matrix F , and then to apply eigenvalue perturbation theory to compute the quasifrequencies.

As an illustrative example, we will often consider the case where κ is constant and ρ is given
by

ρi(t) =
1

1 + εcos(Ωt+ φi)
, i = 1, . . . , N, (4.2)

where Ω is the frequency of the modulation and φi is a phase shift between the resonators.

4.1 Floquet matrix elements

In this section, we describe the asymptotic Floquet analysis in a general setting. We consider
the perturbed system of linear ODEs:

dy

dt
(t) = Aε(t)y(t), (4.3)

and assume that the T -periodic continuous matrix Aε(t) is an analytic function of ε at ε = 0
and has the following expansion:

Aε(t) = A0 + εA1(t) + ε2A2(t) + . . .+ εnAn(t) + . . . , (4.4)
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as ε→ 0. By Floquet’s theorem (Theorem 2.4), the fundamental solution of (4.3) can be written
as

Xε(t) = Pε(t)e
Fεt, (4.5)

where Pε(t) is T -periodic with Pε(0) = Id and Fε is constant in time. Crucially, we assume that

(i) A0 is constant in time and diagonal;

(ii) F0 has no distinct eigenvalues which are congruent modulo 2πi
T ;

(iii) the series in (4.4) is convergent for |ε| < r0, where r0 is independent of t.

Under these assumptions, it follows from [43] that the matrices Pε and Fε are analytic functions
of ε at ε = 0 and therefore, they can be expanded as follows:

Pε(t) = P0(t) + εP1(t) + ε2P2(t) + . . . and Fε = F0 + εF1 + ε2F2 + . . . . (4.6)

By inserting (4.5) into (4.3), we derive the following systems of ODEs:


















dP0

dt
(t) = A0P0(t)− P0(t)F0,

dPn

dt
(t) = A0Pn(t)− Pn(t)F0 +

n
∑

i=1

(Ai(t)Pn−i(t)− Pn−i(t)Fi) for n ≥ 1,
(4.7)

with the initial conditions P0(0) = Id and Pn(0) = 0 if n ≥ 1.
We remark that both A0 and F0 correspond to the unperturbed band functions (i.e., those

associated with the unmodulated periodic system ε = 0). Nevertheless, in order to satisfy
assumption (ii) above, we choose F0 so that all eigenvalues are inside the first Brillouin zone.
In other words, Im(σ(F0)) ⊂ [−Ω/2,Ω/2), where σ(F0) denotes the set of eigenvalues of F0 (for
further intuition on this folding, we refer to Figure 2). Since F0 is defined modulo 2πi

T , such
choice is always possible, and is described in the following result [11].

Lemma 4.1. A0−F0 takes the diagonal form 2πi
T diag(m1,m2, . . . ,mN ), where mi is the folding

number of (A0)ii as in Definition 2.3.

We now vectorize (4.7) by first vectorizing P0 in the basis {Ekj}{k,j=1,...,N}, where the kj-th
entry Ekj is 1 and 0 otherwise. We denote the vectorized quantity by vect(P0) = p0 with

p0(0) = vect(Id) =
N
∑

k=1

e(k−1)N+k,

where e(k−1)N+k is an N2 × 1 vector with the ((k − 1)N + k)-th entry being 1 and 0 otherwise.
Equation (4.7) reads



















dp0
dt

(t) = (1⊗A0 − F0 ⊗ 1)p0,

dpn
dt

(t) = (1⊗A0 − F0 ⊗ 1)pn +
n
∑

i=1

(1⊗Ai − F⊤
i ⊗ 1)pn−1 for n ≥ 1.

(4.8)

Here, we have used the following tensor notation:

1⊗A =

(A
A

. . .

A

)

, B ⊗ 1 =

(

BNN Id ··· B1N Id

...
. . .

...
BN1 Id ··· BNN Id

)

.

The following result holds.
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Lemma 4.2. We have the following expansion for p0:

p0 =
N
∑

k=1

exp(iΩmkt)e(k−1)N+k. (4.9)

Proof. Firstly, we write

1⊗A0 − F0 ⊗ 1 =

Ñ
A0

A0

. . .

A0

é
−

Ö
(F0)11 Id

(F0)22 Id
. . .

(F0)NN Id

è

.

We have

p0 = exp
Ä
(1⊗A0 − F0 ⊗ 1)t

ä N
∑

k=1

e(k−1)N+k

=
N
∑

k=1

exp((A0 − F0)kkt)e(k−1)N+k

=
N
∑

k=1

exp(iΩmkt)e(k−1)N+k.

Furthermore, from (4.7) for n = 1, it follows that

dp1
dt

(t) = (1⊗A0 − F0 ⊗ 1)p1 + (1⊗A1 − F⊤
1 ⊗ 1)p0

= (1⊗A0 − F0 ⊗ 1)p1 + (1⊗A1 − F⊤
1 ⊗ 1)

N
∑

k=1

exp(iΩmkt)e(k−1)N+k.
(4.10)

We insert the following Fourier series expansions:

p1(t) =
∑

m∈Z

exp(iΩmt)p
(m)
1

and
A1(t) =

∑

m∈Z

exp(iΩmt)A
(m)
1

into (4.10) to obtain that

∑

m∈Z

iΩm exp(iΩmt)p
(m)
1

=
∑

m∈Z

(1⊗A0 − F0 ⊗ 1)exp(iΩmt)p
(m)
1 + (1⊗A1 − F⊤

1 ⊗ 1)
N
∑

k=1

exp(iΩmkt)e(k−1)N+k.

(4.11)

Then, it follows that

∑

m∈Z

(iΩm− (1⊗A0 − F0 ⊗ 1)) exp(iΩmt)p
(m)
1

=

(

∑

m∈Z

exp(iΩmt)1⊗A
(m)
1 − F⊤

1 ⊗ 1

)

N
∑

k=1

exp(iΩmkt)e(k−1)N+k. (4.12)

11



By comparing the coefficients in (4.12), we conclude that for m ∈ Z:

(iΩm− (1⊗A0 − F0 ⊗ 1))p
(m)
1 =

N
∑

k=1

(

1⊗A
(m−mk)
1

)

e(k−1)N+k −
N
∑

k=1

(δmmk
F⊤
1 ⊗ 1)e(k−1)N+k,

(4.13)
where δmmk

is the Kronecker symbol.

Lemma 4.3. For every j = 1, . . . , N , we have (F1)jj = (A
(0)
1 )jj.

Proof. For j = 1, . . . , N , we consider (4.13) with m = mj . The ((j − 1)N + j)-th entry of the
left-hand side is 0. Multiplying by e⊤(j−1)N+j gives us the ((j−1)N+j)-th entry of the right-hand
side as well:

e⊤(j−1)N+j

(

N
∑

k=1

1⊗A
(mj−mk)
1 e(k−1)N+k −

N
∑

k=1

(δmjmk
F⊤
1 ⊗ 1)e(k−1)N+k

)

=
N
∑

k=1

δjk

Å
(

A
(mj−mk)
1

)

jk
− (F⊤

1 )jk

ã
.

This means precisely that (A
(0)
1 )jj = (F1)jj .

Lemma 4.4. If (F0)ll = (F0)jj for some l 6= j, then (F1)jl = (A
(ml−mj)
1 )jl.

Proof. Consider the equation (4.13) with m = ml. If (F0)ll = (F0)jj for some l 6= j, then
the ((l − 1)N + j)-th entry of the left-hand side is 0. Multiplying by e⊤(l−1)N+j gives us the

((l − 1)N + j)-th entry of the right-hand side as well:

e⊤(l−1)N+j

(

N
∑

k=1

1⊗A
(ml−mk)
1 e(k−1)N+k −

N
∑

k=1

(δmlmk
F⊤
1 ⊗ 1)e(k−1)N+k

)

=
N
∑

k=1

δjk
(

A
(ml−mk)
1

)

lk
−

N
∑

k=1

δmlmk
(F⊤

1 )jlδkl

=
(

A
(ml−mj)
1

)

lj
− (F1)lj .

Remark 4.5. Lemma 4.4 does not provide the whole structure of F1; for example, the entry
(F1)lk when (F1)ll 6= (F1)kk is not provided. However, we will see that this is sufficient for
the computation of the eigenvalue perturbation up to linear order in ε. As we will see, this is
sufficient to demonstrate broken reciprocity.

4.2 Asymptotic analysis of quasifrequency perturbations and reciprocity

Assume that F = F0 + εF1 + ε2F2 + . . . and F0 is diagonal with respect to the basis vectors
w1, . . . , wN .

Definition 4.6 (Degenerate point). Suppose that f0 is a multiple eigenvalue of F0 of multiplicity
r ≥ 2. Then f0 is called a degenerate point. If f0 is simple, then we call it a non-degenerate
point.

12



In the remainder of this paper, we will focus on the perturbation of degenerate points. Let f0
be a degenerate point of multiplicity r and let w1, . . . , wr be its associated eigenvectors. Without
loss of generality, we assume that (F0)ii = f0 for i = 1, . . . , r, i.e., the diagonal entries of A0 are
permuted to make the first r diagonal entries of F0 coincide. In this setting, there are standard
expansions for the eigenvalue perturbation of f0, which we outline in Appendix A.

For the purpose of reciprocity, we only need the upper left r × r block of F1, which is given
by Lemmas 4.3 and 4.4, to derive the first order perturbation at degenerate points or eigenvalues
of F0. The following result gives an asymptotic expansion of the quasifrequencies in terms of ε.

Theorem 4.7. Let f0 be a degenerate point with multiplicity r. Then F has associated eigen-
values given by

f0 + εfi +O(ε2),

where fi, for i = 1, . . . , r, are the eigenvalues of the r × r upper-left block of F1, whose entries
are given by

(F1)lk =
(

A
(ml−mk)
1

)

lk
for l, k = 1, . . . , r, (4.14)

where ml and mk denote the folding numbers of the l-th and k-th eigenvalues of A0.

Proof. Formula (4.14) follows from Lemmas 4.3 and 4.4 together with (A.6).

Typically, it is sufficient to consider degenerate points of order r = 2. Moreover, it is natural

to assume that A1 has no constant part; i.e., A
(0)
1 = 0. In this setting, the ε-perturbations are

given by the eigenvalues of the matrix

Ç
0 (F1)12

(F1)21 0

å
. (4.15)

Thus, the eigenvalues f of F associated with f0 are given by

f = f0 ± ε
»
(F1)12(F1)21 +O(ε2). (4.16)

Example 4.8. Consider the same setting as the one in Section 2.4. Let κi be constant and let
N = 3. Define the time-modulation of ρi, for i = 1, 2, 3, by (4.2). Then Mα(t) = Kρ(t)Cαρ−1(t)
and K is a constant matrix. A direct computation shows that Mα(t) = K‹Cα(t), where ‹Cα

ij =

Cα
ijρiρ

−1
j , for i, j = 1, 2, 3. By expanding ‹Cα, we obtain that

‹Cα
ij = Cα

ijρiρ
−1
j = Cα

ij

Ç
1 + ε(−cos(Ωt+ φi) + cos(Ωt+ φj)) +O(ε2)

å
. (4.17)

We see that Mα(t) does not have a constant Fourier coefficient in the first ε-order. Therefore,
non-degenerate points will depend quadratically on ε, whereas degenerate points will depend
linearly on ε.

Example 4.9. Consider the same modulations as before with phase shifts φ1 = 0, φ2 = π/2
and φ3 = π. Suppose that the modulation frequency Ω is chosen such that the static system
has a degenerate point, e.g., as in the case of a one-dimensional lattice with unit cell containing
three resonators. The band structure of such structure is depicted in Figure 2, where we have a
double degenerate point at α = ±2.23 with different folding numbers: m1 = 0 and m2 = 1.
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(a) Unfolded band structure. (b) Folded band structure with Ω = 0.3.

Figure 2: Subwavelength band functions of the one-dimensional lattice of unit cells containing three
resonators in the static (i.e., unmodulated) case. In (b) there is a degenerate point around α = 2.23.

In Figure 3, we demonstrate the subwavelength band functions of Figure 2 as ε increases
from 0. Note that in the absence of time-modulation, the band functions are symmetric for
opposite directions. The time-modulation opens non-symmetric band gaps at degenerate points,
as a consequence of breaking time-reversal symmetry. If the excitation frequency falls inside the
band gap for only one propagation direction, wave transmission is prohibited in this direction
but not in the opposite one.

Using formula (4.16), we now seek to verify the observations made in Example 4.9. For the
purpose of reciprocity, we would like to determine the values of pα := (Fα

1 )12(F
α
1 )21 (where we

have made the α-dependence of F1 explicit) and verify that pα 6= p−α. Recall the system of 2N
linear ODEs given in (4.1):

dy

dt
(t) = ‹A(t)y(t),

with ‹A = ‹A0 + ε‹A1 +O(ε2), where

‹A0 =

Ç
0 Id

−Mα
0 0

å
, ‹A1 =

Ç
0 0

−Mα
1 (t) 0

å
.

We assume that ‹A0 is diagonalizable and the matrices S and S−1 diagonalize ‹A0 to A0:

SA0S
−1 = ‹A0.

Then we define A1 in the same way: A1 = S ‹A1S
−1. Let now ω0 be a 2-fold degenerate point.

By Theorem 4.7, we have

(F1)12 = (A
(m1−m2)
1 )12, (F1)21 = (A

(m2−m1)
1 )21.

This implies the following result.
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Real part

Imaginary part

(a) Static (ε = 0) band structure of the one-
dimensional lattice of resonators, folded with Ω =
0.3.

Real part

Imaginary part

Bandgap

(b) Time-modulated (ε = 0.1) band structure of the
one-dimensional lattice of resonators, folded with
Ω = 0.3.

Real part

Imaginary part

Bandgap

(c) Time-modulated (ε = 0.2) band structure of the
one-dimensional lattice of resonators, folded with
Ω = 0.3.

(d) Ω = 0.3, α = ±2.23 showing perturbations of
degenerate points (depending linearly on ε), and
non-degenerate points (depending quadratically on
ε).

Figure 3: Band structure of one-dimensional trimers (N = 3) of subwavelength resonators with time-
modulation in ρ. As ε increases from 0, the degenerate points open into asymmetric band gaps, indicated
by solid red lines in (b) and (c). Waves with frequencies inside the disjunctive union of these band gaps
can only propagate in one direction.
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Theorem 4.10. Let α ∈ Y ∗, and let ωα
0 be a double degenerate point of ‹A0,α (i.e. with r = 2).

Then the perturbed eigenvalue ωα of ‹Aα satisfies ωα = ωα
0 ± εrα +O(ε2), where rα :=

√
pα and

pα = e⊤1 Sα
‹A(m1−m2)
1,α S−1

α e2e
⊤
2 Sα

‹A(m2−m1)
1,α S−1

α e1, (4.18)

where Sα diagonalizes ‹Aα
0 and e1 and e2 denote the first and second standard basis vectors in

R
N .

In general, if N ≥ 3 we have, rα 6= r−α. Consider a one-dimensional lattice with three
resonators in the unit cell, i.e., the same setting as in the above example. In this setting,
(Mα

1 (t))ij = KCα
ij(cos(Ωt+ φi)− cos(Ωt+ φj)). Here, K is some constant independent of α and

t and Cα is the capacitance matrix. Assume that at α = αdeg we have a double degeneracy with
folding numbers m1 = 0 and m2 = 1. The computation of pα as in (4.18) boils down to the −1
and the 1-st Fourier coefficients of Mα

1 (t). In Table 1, we present results obtained for the rates
of the first order perturbations depending on Ω with phase shifts: φ1 = 0, φ2 = π/2 and φ3 = π,
computed in two different ways. The first method makes use of the asymptotic formula (4.18)
while the second one is an “exact” one and is based on the multipole method developed in [10].
The reciprocity is broken in this setting.

Ω αdeg rα r−α

0.2 −2.35 ±0.0165 ±0.0058

0.3 −2.23 ±0.0271 ±0.0075

0.4 −0.32 ±0.0253 ±0.0228

(a) Values computed using the asymptotic for-
mula (4.18).

Ω αdeg rα r−α

0.2 −2.35 ±0.0165 ±0.0058

0.3 −2.23 ±0.0270 ±0.0074

0.4 −0.32 ±0.0252 ±0.0227

(b) Values computed using the multipole dis-
cretization method.

Table 1: Comparison between the first-order rates rα of the eigenvalue perturbation, computed using the
asymptotic formula (a) and using the multipole discretisation method (b). Here, we simulate the same
system of subwavelength resonators as in Figure 3d.

Remark 4.11. In [11], closed-form formulas for the elements of the matrices F1 and F2 are
derived. Together with the eigenvalue perturbation theory in Appendix A, this allows us to
compute higher-order asymptotic expansions of the quasifrequencies. In particular, we emphasize
that the perturbation will generically scale as O(ε2). Nevertheless, at the degenerate points
(which are the starting points for asymmetric band gap opening) the perturbation scales as
O(ε). The different behaviour between degenerate and non-degenerate points is also apparent in
Figure 3d.

5 Non-reciprocal transmission in other structures

In the previous sections, we have explained the fundamental reasons for the broken reciprocity
and analysed the perturbation of the Floquet exponents asymptotically. In this section, we
provide numerical examples of other structures with broken reciprocity. The following examples
originate from those considered in [10].
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5.1 Square lattice

We begin by considering resonators in a 2-dimensional square lattice defined through the lattice
vectors

l1 =

Ç
1
0

å
, l2 =

Ç
0
1

å
. (5.1)

The lattice and the corresponding Brillouin zone are illustrated in Figure 4. The symmetry
points in Y ∗ are given by Γ = (0, 0), M = (π, π) and X = (π, 0).

· · ·· · ·

··
·

··
·

(a) Circular resonators in square lattice.

M

−M

Γ
X

−X

(b) Brillouin zone and the symmetry points Γ, X and
M.

Figure 4: Illustration of the square lattice and the corresponding Brillouin zone. The red path shows the
points where the band functions are computed.

In Figure 5, we compute the band structure with modulation frequency Ω = 0.2.
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Real part

(a) Static case (ε = 0).

Real part

Bandgap

(b) Modulated case with ε = 0.25.

Real part

Bandgap

(c) Modulated case with ε = 0.5.

Figure 5: Band structure of square lattice with three subwavelength resonators with modulation frequency
Ω = 0.2.

5.2 Honeycomb lattice

First, we consider a honeycomb lattice of resonator trimers as illustrated in Figure 6, where the
unit cell now contains six resonators Di respectively centred at ci, i = 1, .., 6:

c1 = (1, 0) + 3R(1, 0), c2 = (1, 0) + 3R
Ä
cos
Ä
2π
3

ä
, sin

Ä
2π
3

ää
, c3 = (1, 0) + 3R

Ä
cos
Ä
4π
3

ä
, sin

Ä
4π
3

ää
,

c4 = (2, 0) + 3R
(

cos
(π
3

)

, sin
(π
3

))

, c5 = (2, 0)− 3R(1, 0), c6 = (2, 0) + 3R
Ä
cos
Ä
5π
3

ä
, sin

Ä
5π
3

ää
.

We use the modulation given by κi(t) = 1, i = 1, . . . , 6 and

ρ1(t) = ρ4(t) =
1

1 + ε cos(Ωt)
, ρ2(t) = ρ5(t) =

1

1 + ε cos
Ä
Ωt+ 2π

3

ä , ρ3(t) = ρ6(t) =
1

1 + ε cos
Ä
Ωt+ 4π

3

ä ,

for 0 ≤ ε < 1.

18



l2
Y

l1

1
2

3

4
5

6

(a) Hexagonal lattice unit cell Y
containing 6 resonators.

· · ·

··· · · ·

···

(b) Periodic system with trimers in
a honeycomb lattice.

M

Γ

K

−M
−K

(c) Brillouin zone and the symme-
try points Γ, K and M.

Figure 6: Illustration of the honeycomb lattice and corresponding Brillouin zone. The red path shows the
points where the band functions are computed.

Real part

(a) Static case (ε = 0).

Real part

Bandgap

(b) Modulated with ε = 0.25.

Real part

Bandgap

(c) Modulated with ε = 0.5.

Figure 7: Band structure of honeycomb lattice with six subwavelength resonators with modulation fre-
quency Ω = 0.2.

In Figure 7, we compute the band structure with modulation frequency Ω = 0.2. It is worth
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emphasizing that in this case, the numerical computation shows an even stronger occurrence of
non-reciprocity compared with the chain and the square lattice. In fact, the second band gaps
in the band structure of the honeycomb lattice are disjoint. Hence, there is a wave which can
propagate in one path and not in the other and vice versa. This is not amounted to the first
order effect discussed in the previous section. In the first order regime, the band gap opening
resulted from ε-perturbation of α is either contained or contains the −α perturbation.

Furthermore, in the unmodulated case (Figure 7a), the band structure of the honeycomb
lattice shows a Dirac cone at the symmetry points K and −K. By turning on the modulation
(Figures 7b and 7c), the Dirac cones open up to local extrema of the band functions. The local
extrema are called the valleys [19], or valley degrees of freedom. By breaking reciprocity, we
obtain different valleys for K and −K.

6 Concluding remarks

In summary, we have shown both analytically and numerically that time-modulated subwave-
length resonators can lead to the emergence of unidirectional wave guiding properties associated
with the presence of degenerate points in the band structure of the unmodulated periodic system
by breaking time-reversal symmetry. We have also considered honeycomb lattices and illustrated
a stronger occurrence of non-reciprocity compared with the cases of a chain and a square lattice.

Our results in this paper can be of immense importance for the mathematical foundation of
other non-reciprocal guiding phenomena such as the valley Hall effect [16, 23, 25, 26, 32, 48] and
the skin effect [33, 44, 49]. The valley Hall effect may occur in truncated honeycomb lattices of
time-modulated subwavelength resonators by opening non-reciprocal band gaps at Dirac points
[6, 12] while the skin effect may be obtained by opening non-reciprocal band gaps at exceptional
points associated with the unmodulated structure [3, 4, 14]. These two challenging topics will
be the subject of forthcoming publications.

A Eigenvalue perturbation theory and effective Hamiltonian

Assume that F = F0 + εF1 + ε2F2 +O(ε3) and F0 is diagonal with respect to the basis vectors
w1, . . . , wN . We would like to expand the eigenvalues of F in terms of ε. This is a typical problem
in perturbative quantum theory [38]. Similar formulas in quantum mechanical perturbation
theory can be found in textbooks such as [37]. The following derivation is reformulated to suit
our setting.

We will focus on the perturbation of degenerate points. Let f0 be a degenerate point of
multiplicity r and let w1, . . . , wr be its associated eigenvectors. Without loss of generality, we
assume that (F0)ii = f0 for i = 1, . . . , r. We define the projection operator

P :=

Ç
Idr

0

å
and let Q := Id − P.

Here, Idr is the r × r identity matrix.
We remark that F0 commutes with P andQ. Now, we fix an eigenvector v0 ∈ span{w1, . . . , wn}

and expand v and f as follows

v = v0 + εv1 + ε2v2 +O(ε3),

f = f0 + εf1 + ε2f2 +O(ε3).
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We require first that v0 = P (v), due to the normalization of v. From Fv = fv, it follows that
up to O(ε2)

F0v + ε(F1 + εF2)v = fv,

QF0v + εQV v = fQv,

Q(f Id − F0)v = εQV v and

Qv = ε((f Id − F0)
−1Q)V v,

(A.1)

where V := F1 + εF2.
Note that we should treat ((f Id−F0)

−1Q) as 0|Ef0
⊕((f Id−F0)

−1Q)|Ec
f0

, where Ef0 denotes

the eigenspace associated with f0 and Ec
f0

is its complementary. Similarly, we obtain that

PF0v + εPV v = fPv,

and therefore,
f0Pv + εPV v = fPv, (A.2)

where we have used that PF0v = F0Pv = f0Pv. Now, we insert v = Pv + Qv into the second
term of the left-hand side of (A.2) and derive from f0Pv + εPV (Pv +Qv) = fPv the following
two identities:

f0Pv + εPV Pv + εPV Qv = fPv and

f0Pv + εPV Pv + ε2PV
Ä
(f Id − F0)

−1Q
ä
V v = fPv.

(A.3)

For the ε2-term, we evaluate the expression at ε = 0:

PV ((f Id − F0)
−1Q)V v|ε=0 = PF1

Ä
(f0 Id − F0)

−1Q
ä
F1v0 := PF1GF1v0, (A.4)

where G := (f0 Id − F0)
−1Q = diag(0, .., 0, (f0 − λ2)

−1, . . . , (f0 − λk)
−1) if we assume that

F0 = diag(f0, . . . , f0, λ2, . . . , λk). Hence, we can write that

P
Ä
f0 Id + ε(F1 + εF2) + ε2(PF1GF1)

ä
Pv0 = fv0. (A.5)

With the so-called effective Hamiltonian:

H := Pf0P + εPF1P + ε2P (F1GF1 + F2)P, (A.6)

we can obtain r perturbed eigenvalues up to order ε2, if we know the form of F1 and F2.
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