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Abstract. As a continuation of the previous works [13, 4, 15], this paper provides several contributions to the
mathematical analysis of subwavelength resonances in a high-contrast medium containing N acoustic obstacles.
Our approach is based on an exact decomposition formula which reduces the solution of the sound scattering
problem to that of a N dimensional linear system, and characterizes resonant frequencies as the solutions
to a N -dimensional nonlinear eigenvalue problem. Under a simplicity assumptions on the eigenvalues of the
capacitance matrix, we prove the analyticity of the scattering resonances with respect to the square root of the
contrast parameter, and we provide a deterministic algorithm allowing to compute all terms of the corresponding
Puiseux series. We then establish a nonlinear modal decomposition formula for the scattered field as well
as point scatterer approximations for the far field pattern of the sound wave scattered by N bodies. As a

prerequisite to our analysis, a first part of the work establishes various novel results about the capacitance
matrix, since qualitative properties of the resonances, such as the leading order of the scattering frequencies or

of the corresponding far field pattern are closely related to its spectral decomposition.
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1. Introduction

There has been a growing interest in the past few years for subwavelength resonant systems [63, 60, 64, 47,
73, 38, 42, 31, 55], which have the remarkable property of strongly amplifying incident electromagnetic, elastic
or acoustic waves through the scattering with objects of size much smaller than the wavelength. In acoustics,
an instance of subwavelength resonant system was first evidenced by Minnaert who studied the interaction of
acoustic waves with air bubbles in water [69]. In electromagnetics, such systems encompass plasmonic particles
and high contrast dielectric particles [33, 18, 27, 28, 29, 22, 20, 62]. In linear elasticity, an example of a
subwavelength resonator consists in a solid core material with relatively high density and a coating of elastically
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soft material [63]. In general, the resonant property at subwavelength scales is the consequence of a large
contrast between physical parameters of the medium, for instance between the air density and the density
of water in the case of Minnaert bubbles, or between the width of the opening and the size of a Helmholtz
resonators [74]. Subwavelength resonances offer promising potentialities for the design of wave systems in a
large variety of interesting applications such as superresolution [32, 24, 25, 19], sensing [79, 7], focusing [58, 12],
the design of negative refractive index metamaterials [49, 15], meta-surfaces [11, 1] and cloaking [61].

The contribution of this paper is to enhance the mathematical analysis of subwavelength resonances in
acoustic high-contrast media which has already been initiated in the previous articles [13, 1, 2, 37, 5, 8, 6].
More precisely, we consider an acoustic medium D ⊂ R

3 constituted of N smooth connected components Bi

(the “bubbles” or acoustic resonators):

D =

N⋃

i=1

Bi.

We refer to Figure 1 for an illustration of the setting. The background medium R
3\D is a homogeneous

B1

B2

B3

B4

B5 D = ∪N
i=1Bi

κb, ρb

R
3\D
κ, ρ

uin

us

Figure 1. Distribution of acoustic obstacles in the three-dimensional space R
3. An incident

wave uin is propagating with frequency ω and generates a total wave field utot.

acoustic material characterized by a homogeneous density ρ and bulk modulus κ. The “bubbles” are acoustic
heterogeneities with homogeneous density ρb and bulk modulus κb. We are interested in the scattering of an
incoming wave uin propagating through the bulk material with frequency ω. We denote by

v =

√
κ

ρ
, vb =

√
κb
ρb
, k =

ω

v
, kb =

ω

vb

the sound velocities v and vb and the wave numbers k and kb in respectively the background medium and the
acoustic obstacles. We consider the high-contrast regime whereby the quantity

δ :=
ρb
ρ

is asymptotically small: δ → 0. The incoming sound wave uin is the solution to the Helmholtz equation in the
free space R

3; it satisfies

∇ ·
(
1

ρ
∇uin

)
+
ω2

κ
uin = 0 in R

3\D.

The wave uin generates a scattered field us, which is such that the total field utot := uin + us is the solution to
the following scattering problem:




∇ ·
(

1

ρb
∇utot

)
+
ω2

κb
utot = 0 in D,

∇ ·
(
1

ρ
∇utot

)
+
ω2

κ
utot = 0 in R

3\D,

utot,+ − utot,− = 0 on ∂D,

1

ρb

∂utot
∂n

∣∣∣∣
−

=
1

ρ

∂utot
∂n

∣∣∣∣
+

on ∂D,

(
∂

∂|x| − ik

)
(utot − uin) = O

(
1

|x|2
)

as |x| → +∞,

(1.1)

where utot,+ and utot,− denote the trace of utot on respectively the outer and the inner boundaries of the
obstacles ∂D, and ∂utot/∂n|− and ∂utot/∂n|+ the inner and outer normal derivatives with the normal vector n
pointing outward D. The last equation is the outgoing Sommerfeld radiation condition for the scattered field
us.
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As it is reviewed in [8], there exist N pairs of subwavelength resonances (ω±
i (δ))1≤i≤N which are mathe-

matically defined as complex values of ω for which the problem (1.1) admits non-trivial solutions. These have

negative imaginary part and are positive with respect to the imaginary axis: ω+
i (δ) = −ω−

i (δ). Physically,
the scattered field us = utot − uin is greatly enhanced as the (physical) real frequency ω > 0 becomes close to
one of the N complex resonances (ω+

i (δ))1≤i≤N . These resonances are called “subwavelength” because they
occur in the low frequency regime: one can indeed prove that ω±

i (δ) → 0 as δ → 0. As we shall see below, the
quantities ω±

i (δ) are the poles of the resolvent operator associated to (1.1); they are therefore a particular case
of scattering resonances, which also occur in quantum physics or general relativity [80].

The main contributions of this article is to provide a thorough mathematical analysis of the subwavelength
(Minnaert) resonant properties of the system (1.1). The main fundamental novelties, which are missing in the
previous works [13, 15, 8, 6], can be summarized in the following contributions.

1. Capacitance matrix: one of the most enlightening concepts for understanding the qualitative prop-
erties of the subwavelength resonant problem (1.1) is the capacitance matrix C ≡ (Cij)1≤i,j≤N . In
the context where resonators are replaced with electric conductors with same shapes (Bi)1≤i≤N , the
entry Cij is the charge that is accumulated by Bi when applying the unit potential (δij)1≤j≤N on the
boundaries of the resonators/conductors (Bj)1≤j≤N . As it has been fruitfully exploited in [5, 3, 9, 8],
the spectral decomposition of the capacitance matrix enables to predict the values of the scattering
frequencies and the resulting scattered field.

Section 2 is dedicated to the main properties of the capacitance matrix and establishes novel results
such as a Perron-Frobenius type theorem, new spectral bounds and properties on the coefficients in
the case of symmetries. We obtain that the vector of ones 1 = (1)1≤i≤N , which plays a particularly
important roles in the analysis of the scattering resonances, is an eigenvector of the capacitance matrix
when the system of resonators admits enough symmetries. However, we also prove that this situation
is in general exceptional in the sense that this property is lost (at least when N ≥ 3) after small
perturbations of the shape of the resonators.

2. Asymptotic analysis of the resonances: Section 3 extends the analysis and the methods of [24, 13]
to obtain a fully explicit representation formula for the total field utot. Using integral operator theory,
we prove that utot can be decomposed as

utot =
N∑

i=1

xivi(ω, δ) + w(ω, δ), (1.2)

where the variables vi(ω, δ) and w(ω, δ) are holomorphic fields in ω and δ (hence uniformly bounded)
and vi(ω, δ) is independent of uin. (1.2) is a decomposition of utot into a resonant part featuring
amplitude coefficients xi which blow up at the resonances, and the non-resonant field w(ω, δ). The
complex coefficients x ≡ (xi)1≤i≤N ≡ (xi(ω, δ))1≤i≤N are indeed N meromorphic functions of ω whose
poles are the 2N Minnaert resonances (ω±

i (δ))1≤i≤N . The vector x is characterized as the solution to
an N ×N linear system

A(ω, δ)x = F (ω, δ),

for explicit N × N holomorphic matrix A(ω, δ) ∈ C
N×N and right-hand side F (ω, δ) ∈ C

N , while the
scattering resonances (ω±

i (δ)) solve the following nonlinear eigenvalue problem:

find x 6= 0 such that A(ω±
i (δ), δ)x = 0. (1.3)

With the help of the implicit function theorem applied to (1.3), we prove the holomorphic dependence

of the scattering frequencies (ω±
i (δ))1≤i≤N with respect to the quantity δ

1
2 by assuming a simplicity

assumption of the eigenvalues of the capacitance matrix (which is a stronger result than the existence
theorem provided by Gohberg–Sigal theory [41, 17] as in [13, 8]). Furthermore, we provide a systematic
algorithm which allows, in principle, to compute all the coefficients (ω±

i,p)p≥1 of the Puiseux expansion

ω±
i (δ) =

+∞∑

p=1

ω±
i,pδ

1
2 . (1.4)

3. Modal decompositions: we then provide, in Section 4, a pole decomposition of the meromorphic
coefficients (xi)1≤i≤N of (1.2), which allow us to establish a modal decomposition for the solution utot.
More precisely, we prove the existence of N generalized eigenmodes (ui(ω, δ))1≤i≤N and of N linear
forms Ei(ω, δ) : L

2(∂D) × L2(∂D) → C satisfying Ei(ω, δ) = O(1), independent on the incident field
3



uin, such that the solution utot to the scattering problem (1.1) reads:

utot(ω, δ)(x) =

N∑

i=1

δEi(ω, δ)


 uin

∂uin

∂n




ω2 − |ω±
i (δ)|2 − 2iωℑ(ω±

i (δ))
ui(ω, δ)(x) + w(ω, δ). (1.5)

The main originality of (1.5) lies in the fact that it does not resort to any approximation; in particu-
lar, it is visible that utot(ω, δ) blows up exactly when ω coincides with one of the resonant frequencies
(ω±

i (δ))1≤i≤N . In contrast, the modal decomposition obtained in [4] (Lemma 2.11) involved only ap-
proximate denominators which might be very inaccurate for complex values of ω close to the actual
resonances, since these vanish at approximate frequencies different to ω±

i (δ). Moreover, (1.5) highlights
that the (negative) imaginary part ℑ(ω±

i (δ)) of the scattering frequency ω±
i (δ) explicitly controls the

damping of the resonance at physical, positive frequencies ω > 0.
4. Point scatterer approximations: Finally, we derive in Section 5 a point scatterer approximation

for the scattered field us(x) propagating through the medium with N general resonators by computing
the far field expansion of the functions (ui(ω, δ))1≤i≤N and w(ω, δ). We improve and generalize thus
previous results established in [13, 15] for the particular cases where D is a single bubble (N = 1)
or a dimer (constituted of N = 2 identical spherical resonators). We find that in the general case,
the group of resonators D behaves in the far field as a monopole scatterer (a point source) at all
resonant frequencies. Dipole or multipole modes may occur only under exceptional circumstances such
as enough symmetries of the distribution D of acoustic obstacles, and more precisely when the vector
of ones 1 = (1)1≤i≤N is an eigenvector of the capacitance matrix C.

We stress that the analysis of this paper is not exhaustive: several interesting questions related to the Minnaert
resonances remain to be explored. Notably, most of our conclusions strongly rely on the simplicity assumption
of the eigenvalues of the capacitance matrix. In the general case, multiple eigenvalues could occur, for instance
when the system of resonators D has many symmetries. The modal decomposition (1.5) could then potentially
feature resonant denominators elevated to higher order exponents (see the discussion in Remark 3.4 below), and
one would need to characterize differently the Puiseux expansion of the frequencies ω±

i (δ) which would not need

to be analytic in δ
1
2 . This issue would require to analyse the splitting of multiple eigenvalues and exceptional

points of the nonlinear system (1.3), which is known to be particularly delicate, see e.g. [23, 68, 7, 48] for some
treatments in various contexts.

Finally, we mention that our work is a preamble to a subsequent paper concerned with the derivation of an
effective medium theory for a system D ≡ ∪1≤i≤N (yi+sBi) constituted of a growing number of small resonators,
namely the present setting with N → +∞ and where each resonator centered at yi ∈ R

3 is rescaled by a small
parameter s → 0 [40]. This question has been examined previously in the case where D is made of identical
resonators in [26, 1, 2], or identical dimers (using formal arguments) in [15]. Relying on the exact formula (1.2),
our subsequent work [40] establishes a quantitative homogenization theory for a system constituted of a large
number of tiny clusters of identical packets of N resonators distributed randomly in a bounded domain.

Notation conventions. In all what follows, vectors are written in bold face notation. (ei)1≤i≤N is the
canonical basis of RN . The purely imaginary number is denoted by (a straight) i.

Sk
D and Kk∗

D denote respectively the single layer potential and the adjoint of the Neumann-Poincaré operator
on D: for any φ ∈ L2(∂D),

σσ(y), x ∈ R
3, (1.6)

Kk∗
D [φ](x) :=

∫

∂D

∇xΓ
k(x− y) · n(x)φ(y) dσ(y), x ∈ ∂D, (1.7)

where Γk(x) := −eik|x|/4π|x| is the fundamental solution to the Helmholtz equation and dσ is the surface

measure of ∂D. We use the notations Skb

D and Kkb∗
D for the same operator with k replaced with kb, and we

use the short-hand notation Γ := Γ0, SD := S0
D and K∗

D := K0∗
D for the fundamental solution of the Laplace

operator, its associated single layer potential and Neumann-Poincaré operator. We recall that Sk
D is an invertible

operator from L2(∂D) to H1(∂D), whose inverse is denoted by (Sk
D)−1 : H1(∂D) → L2(∂D), and that Kk∗

D is
a compact operator on L2(∂D) [17].

Finally, a few notation conventions related to tensors (which follow [39]) are used in Sections 4 and 5 and
are now detailed. For a given integer p ∈ N, we denote by X p ≡ (X p

i1...ip
)1≤i1...ip≤3 the p-th order scalar tensor

with p derivative indices 1 ≤ i1 . . . ip ≤ 3. We also consider vector tensors Mp ≡ (Mp
i1...ip,l

)1≤i1...ip≤3 with p

derivative indices 1 ≤ i1 . . . ip ≤ 3 and one spatial index 1 ≤ l ≤ 3, and we denote by M
p
i1...ip

the vector-valued

components of Mp. For any function f , we denote by yp and ∇pf(x) the p-th order tensors

yp = (ypi1...ip)1≤i1...ip≤3, ∇pf(x) := (∂pxi1
...xip

f(x))1≤i1...ip≤3, x ∈ R
3,
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and by X p · ∇pf(x) and Mp · ∇pf(x) the contractions

X p · ∇pf(x) =
∑

1≤i1...ip≤3

X p
i1...ip

∂pxi1
...xip

f(x), Mp · ∇pf(x) =
∑

1≤i1...ip≤3

M
p
i1...ip

∂pxi1
...xip

f(x).

Note that X p · ∇pf(x) is a scalar function while Mp · ∇pf(x) is a rank-one vector field. For 1 ≤ j ≤ 3, ej
denotes the first order scalar tensor whose components are given by ej,i1 = δji1 where δ is the Kronecker symbol.
Finally, X p ⊗ ej denotes the tensor product between the p-th order tensor X p and ej ; it is a scalar tensor of
order p+ 1 whose components are

(X p ⊗ ej)i1...ip+1
= X p

i1...ip
δjip+1

, 1 ≤ i1 . . . ip+1 ≤ 3.

2. Properties of the capacitance matrix

A recurrent property exploited in the analysis of high-contrast media [4, 9, 8] is the fact that subwavelength
resonances of the system (1.1) can be predicted by the eigenvalues of the capacitance matrix associated to the
N connected components (Bi)1≤i≤N . The capacitance matrix C ≡ (Cij)1≤i,j≤N is defined by

Cij := −
∫

∂Bj

∂ui
∂n

dσ, ∀1 ≤ i, j ≤ N, (2.1)

where n is the outward normal to D and ui is the solution to the exterior problem




−∆ui = 0 in R
3\∂D,

ui = δij on ∂Bj for any 1 ≤ j 6= i ≤ N,

ui(x) = O(|x|−1) as |x| → +∞.

(2.2)

The capacitance matrix is usually considered in the physical context where the resonators (Bi)1≤i≤N are replaced
with perfect electric conductors (Bi)1≤i≤N with same shapes, e.g. [44]. Then the variable ui is the electric
potential in the free space R

3 satisfying ui = 1 uniformly inside the conductor Bi, and ui = 0 inside the other
conductors (Bj)1≤j 6=i≤N . The coefficient Cij is the electric charge stored at equilibrium on the boundary of
the conductor Bi induced by the potential ui. In the setting of (1.1) whereby Bi are acoustic obstacles, ui
can be interpreted as an acoustic pressure and Cij is the jump of the normal velocity through the obstacle in
the perfectly reflecting regime (corresponding to δ = 0). Note that the solution to (2.2) can also be explicitly
written as the single layer potential ui = SD[(SD)−1[1∂Bi

]].

Let V be the (positive definite) diagonal matrix whose entries are the volumes of the resonators (Bi)1≤i≤N :

V := diag((|Bi|)1≤i≤N ). (2.3)

This section dedicated on the capacitance matrix is motivated by the importance of the following generalized
eigenvalue problem in the analysis of (1.1):

Cai = λiV ai. (2.4)

Notably, the eigenvalues (λi)1≤i≤N enable to predict the frequencies of the subwavelength resonances thanks to

the asymptotic ω±
i (δ) ∼ ±vbλ

1
2

i δ
1
2 as δ → 0 (Corollary 3.1 below). Note that the eigenvalues (λi)1≤i≤N are also

the eigenvalues of the “weighted capacitance matrix” V −1C, which was rather considered in [4, 8].

The section outlines as follows. Section 2.1 recalls well-known positivity and symmetry properties of the
matrix C which imply the existence of N positive eigenvalues λ1 > λ2 ≥ λ3 ≥ . . . ≥ λN > 0. An important
consequence is a Perron-Frobenius type theorem for (2.4), which to the best of our knowledge, had not been
stated in previous works. The next Section 2.2 establishes spectral bounds for the eigenvalues. Then, Section 2.3
examines the structure of the matrix C in case of symmetries of the system of resonators D = ∪1≤i≤NBi. We
obtain in particular that when D has enough symmetries, the first eigenvector a1 coincides with the vector of
ones, 1 := (1)1≤i≤N . This fact implies exceptional properties for the resonant system (1.1), such as dipole or
multipole far field patterns at the resonance. The structure of the capacitance matrix for several particular
cases such as the dimer, trimer, and quadrimer, is explicitly derived. Finally, Section 2.4 establishes that the
vector of ones 1 = (1)1≤i≤N is, at least for N ≥ 3 acoustic obstacles, in general not an eigenvector of the
capacitance matrix. Indeed, we prove thanks to differential shape calculus that almost any shape perturbations
of the resonators (up to a finite dimensional subset) suffices to cancel this property.

In the next parts of this section, we make use of the function u solution to the problem




−∆u = 0 in R
3\∂D,

u = 1 on ∂Bi for any 1 ≤ i ≤ N,

u(x) = O(|x|−1) as |x| → +∞,

(2.5)
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which is related to the capacity cap(D) of the set D, defined by the formula

cap(D) := −
∫

∂D

∂u

∂n
dσ =

∫

R3

|∇u|2 dx. (2.6)

Substituting u =
∑N

i=1 ui in (2.6), we note that the quantity cap(D) satisfies the identity

cap(D) =
∑

1≤i,j≤N

Cij = 1TC1.

2.1. A Perron-Frobenius type theorem for the capacitance matrix

Let us start by recalling that the physical definition (2.1) makes sense because the system (2.2) is well-posed
in the homogeneous space D1,2(R3\D) = {v | ∇v ∈ L2(R3\D)}; each function ui satisfies the variational equality

∀v ∈ D1,2(R3\D),

∫

R3\D

∇ui · ∇v dx = −
∫

∂D

∂ui
∂n

v dσ, (2.7)

see e.g. [71]. Using (2.1), (2.2) and (2.7), it is immediate to see that Cij could be equivalently defined by the
following formulas:

Cij := −
∫

∂D

uj
∂uj
∂n

dσ =

∫

R3

∇ui · ∇uj dx, (2.8)

Cij = −
∫

∂Bi

ψ∗
j dσ where ψ∗

i := S−1
D [1∂Bi

] =
∂ui
∂n

∣∣∣∣
+

on ∂D, (2.9)

where, throughout the paper, 1∂Bi
∈ L2(∂D) denotes the characteristic function of the bubble ∂Bi on the

boundary ∂D:

1∂Bi
:=

{
1 on ∂Bi

0 on ∂Bj for 1 ≤ j 6= i ≤ N.
(2.10)

The following lemma states symmetry and positivity properties of the capacitance matrix which are rather
classical, however not often stated in the literature; we are only aware of similar statements in [44] which
considers a slightly different setting in which the radiation condition of (2.2) is replaced with a zero Dirichlet
condition on a boundary enclosing the conductors of D. We give a proof for the case of conductors in the free
space R

3.

Lemma 2.1. The capacitance matrix Cij defined by (2.8) satisfies the following properties:

(i) C is symmetric, i.e. Cij = Cji for any 1 ≤ i, j ≤ N , and positive definite;
(ii) the diagonal entries of C are positive: Cii > 0 for any 1 ≤ i ≤ N ;
(iii) the extra-diagonal entries of C are negative: Cij < 0 for any 1 ≤ i 6= j ≤ N ;
(iv) C is diagonally dominant:

Cii >
∑

j 6=i

|Cij |, for any 1 ≤ i ≤ N.

Proof. (i) and (ii) are obvious from the definition (2.8). The positive definiteness comes from the fact that if

there exists x ∈ R
N such that xTCx = 0, then the function u :=

∑N
i=1 xiui satisfies ∇u = 0. The Poincaré

inequality in D1,2(R3\D) implies u = 0 in R
3\D, and then xi = 0 for any 1 ≤ i ≤ N because it holds xi = u(y)

for any y ∈ ∂Bi.
(iii) The maximum principle implies the inequality 0 ≤ ui(x) ≤ 1. Hence, it is necessary that ∇ui · n > 0 on
∂Bj with j 6= i and ∇ui · n < 0 on ∂Bi. The result follows from (2.9).
(iv) The solution u to the problem (2.5) is given by u =

∑
1≤i≤N ui. By the maximum principle, it holds

0 ≤ u(x) ≤ 1 in R
3\D, which implies ∇u · n < 0 on ∂D. Therefore the following inequality holds for any

1 ≤ i ≤ N :

0 < −
∫

∂Bi

∂u

∂n
dσ = −

N∑

j=1

∫

∂Bi

∂uj
∂n

dσ =
N∑

j=1

Cij = Cii −
∑

j 6=i

|Cij |.

�

The positivity and symmetry properties of both matrices C and V imply the existence of eigenvalues
(λi)1≤i≤N and eigenvectors (ai)1≤i≤N solving (2.4). More precisely, we recall the following classical result
[77, 78] about generalized eigenvalue problems, whose proof is given for the convenience of the reader.

Proposition 2.1. Let C and V be two n × n symmetric matrix with V definite positive. There exists a basis
of generalized eigenvectors (ai)1≤i≤N and real eigenvalues (λi)1≤i≤N such that:

(i) (ai)1≤i≤N is orthogonal for the inner product of V :

aT
i V aj = δij , 1 ≤ i, j ≤ N,

where T denotes the transpose.
6



(ii) Cai = λiV ai for any 1 ≤ i ≤ N .

Equivalently, let P be the transition matrix

P :=
[
a1 a2 . . . aN

]
,

and Λ := diag((λi)1≤i≤N ). Then the following identities hold:

PTV P = I, PPT = V −1, CP = V PΛ.

Proof. Introduce V 1/2 the unique positive definite matrix satisfying (V 1/2)2 = V . Let (vi)1≤i≤N and (λi)1≤i≤N

be respectively an orthonormal basis of eigenvectors and the associated eigenvalues of the symmetric matrix
V −1/2CV −1/2. Then the family (ai)1≤i≤N defined by

ai = V −1/2vi

satisfies the desired properties. Indeed,

aT
i V aj = vT

i V
−1/2V V 1/2vj = vT

i vj = δij ,

and

Cai = CV −1/2vi = V 1/2(λivi) = λiV ai.

�

The diagonally dominant property (iv) of Lemma 2.1 and the previous proposition imply the following
Perron-Frobenius type theorem:

Proposition 2.2. The lowest eigenvalue λ1 of C of the problem (2.4) is of multiplicity one and is associated
to an eigenvector a1 ≡ (a1,i)1≤i≤N which can be selected with positive coefficients a1,i > 0 for any 1 ≤ i ≤ N .
Furthermore, the following lower bound holds:

λ1 ≥
min

1≤i≤N
Cii

max
1≤i≤N

|Bi|


1− sup

1≤i≤N

∑

j 6=i

|Cij |
Cii


 . (2.11)

Proof. It is classical that the inverse of a diagonally dominant matrix has positive coefficients and hence implies
the Perron-Frobenius theorem [45]. We give a full proof for the convenience of the reader. Consider the triple
norm ||| · ||| defined on matrices A ≡ (aij)1≤i,j≤N by

|||A||| = sup
1≤i≤N

N∑

j=1

|aij |.

||| · ||| is a triple norm because ||Au||∞ ≤ |||A||| ||u||∞ where ||u||∞ := max1≤i≤N |ui|. Let us write C = A− B
with A := diag(Cii)1≤i≤N being the diagonal entries of C and B := A − C. From Lemma 2.1, A is positive
definite, and B is a nonnegative symmetric matrix. Furthermore, the diagonally dominant property implies
|||A−1B||| < 1. Therefore the Neumann series converges and it holds

(A−B)−1 = (I −A−1B)−1A−1 =
+∞∑

i=0

(A−1B)iA−1. (2.12)

Then (2.12) implies that C−1 = (A − B)−1 has positive coefficients. Since the matrix V 1/2C−1V 1/2 satisfies
the assumptions of the Perron-Frobenius theorem, one can find a positive eigenvector v1 associated with the
maximum eigenvalue of V 1/2C−1V 1/2, i.e. λ−1

1 , which is of multiplicity one (this result can be obtained by

considering the method of power iterations to (2.12)). Then a1 := V −1/2v1 has positive coefficients and satisfies
Ca1 = λ1V a1. The bound on λ1 comes from

λ−1
1 ≤ |||V 1/2C−1V 1/2||| ≤ |||V 1/2|||2|||(A−B)−1||| = max

1≤i≤N
|Bi|

|||A−1|||
1− |||A−1B||| .

�

We are unaware of previous works mentioning the result of Proposition 2.2 for the capacitance matrix C.
For our applications, we shall retain the following important consequences:

(1) the lowest eigenvalue λ1 of C is always associated to a fully positive or fully negative distribution of
charges (a1,i)1≤i≤N on the resonators (Bi)1≤i≤N ; we say a1 is a monopole mode.

(2) If the vector of ones 1 = (1)1≤i≤N is an eigenvector, then it is necessarily associated to the lowest
eigenvalue λ1 (or in other words, a1 is proportional to 1).

7



2.2. Spectral bounds for the lowest eigenvalue of the capacitance matrix

The purpose of this section is to relate the discrete eigenvalue problem (2.4) to a natural functional Riesz
minimization problem. The main result of this part is the inequality

1

µ1
≤ λ1 ≤ cap(D)

|D| , (2.13)

where µ1 is the leading eigenvalue of the Newton potential (see [50] for further related results on the spectrum
of the Newton potential). The upper and lower bounds are proved in Propositions 2.4 and 2.5 respectively.

Proposition 2.3. Let us denote by V the subspace

V = {u ∈ D1,2(R3) | ∇u = 0 in D}.
The smallest eigenvalue λ1 of C satisfies the Riesz minimization property

λ1 = min
u∈V

∫
R3 |∇u|2 dx∫
D
|u|2 dx . (2.14)

Proof. Let us denote by λ the minimal value of (2.14) and u an associated minimizer. The existence of u
minimizing (2.14) is a consequence of the strong convexity of the functional J(u) =

∫
R3 |∇u|2 dx on the convex

set {u ∈ V |
∫
D
|u|2 dx ≤ 1}. Furthermore λ satisfies that for any v ∈ V,

∫

R3

∇u · ∇v dx =

∫

R3\D

∇u · ∇v dx = λ

∫

D

uv dx. (2.15)

This implies −∆u = 0 in R
3\D. Then denoting xi := u|Bi

, we obtain the identity

u(x) =

N∑

i=1

xiui(x), x ∈ R
3.

Therefore, considering v =
∑N

i=1 yiui(x) for an arbitrary y = (yi)1≤i≤N , (2.15) rewrites as

yTCx = λyTV x for any y ∈ R
N ,

which yields that λ is an eigenvalue of C and x an associated eigenvector, with λ ≥ λ1. Reciprocally, the first
eigenvalue λ1 of (2.4) is the solution to the Riesz minimization problem

λ1 = min
x∈RN

xTCx

xTV x
= min

x∈RN

∫
R3

∣∣∣∇
(∑N

i=1 xiui

)∣∣∣
2

dx

∫
D

∣∣∣
∑N

i=1 xiui

∣∣∣
2

dx
≥ min

u∈V

∫
R3 |∇u|2 dx∫
D
|u|2 dx = λ.

This shows that λ = λ1 and the proof is complete. �

Proposition 2.4. For any set of resonators D the following inequality holds

λ1 ≤ cap(D)

|D| =

∑
1≤i,j≤N

Cij

N∑
i=1

|Bi|
,

where the equality is attained if and only if 1 = (1)1≤i≤N is an eigenvector of (2.4).

Proof. It suffices to remark that

λ1 ≤ 1TC1

1TV 1
=

∫
R3\D

|∇u|2 dx
∫
D
|u|2 dx ,

where u is the function defined by (2.5). The result follows from the definition (2.6) of the capacity. �

We now use (2.14) to obtain a lower bound on λ1 different from (2.11).

Proposition 2.5. Let µ1 > 0 be the greatest eigenvalue of the Newtonian potential T : L2(D) → L2(D) defined
by

Tφ :=

∫

D

Γ(· − y)φ(y) dσ(y), φ ∈ L2(D). (2.16)

Then the minimum eigenvalue λ1 of (2.4) satisfies

λ1 ≥ 1

µ1
. (2.17)

8



Proof. It is obvious from (2.14) and V ⊂ D1,2(R3) that λ1 ≥ β where β is the minimizer to the Riesz problem

β := min
v∈D1,2(R3)

∫
R3 |∇v|2 dx∫
D
|v|2 dx . (2.18)

It remains to show that β ≥ 1/µ1. The Euler-Lagrange equation for the minimizer w of (2.18) reads in the
following variational form:

∀v ∈ D1,2(R3),

∫

R3

∇w · ∇v dx = β

∫

D

wv dx. (2.19)

Hence such a minimizer w is solution to the exterior problem




∆w = βw in D,

∆w = 0 in R
3\D,

w+ = w− on ∂D,

∂w

∂n

∣∣∣∣
+

=
∂w

∂n

∣∣∣∣
−

on ∂D,

w(x) = O(|x|−1) as |x| → +∞.

(2.20)

The function w̃ := βTw satisfies then ∆w̃ = βw in D and all the other properties of (2.20). Hence (2.19) and
another integration by parts yield

∫
R3 |∇(w − w̃)|2 dx = 0. Remembering that w and w̃ belong to the space

D1,2(R3) (they vanish at infinity), we obtain w̃ = w = βTw. Consequently, the quantity 1/β is an eigenvalue
of the Newtonian potential T , and it must hold 1/β ≤ µ1. �

2.3. Properties of the capacitance matrix in case of symmetries

We now examine how particular circumstances of symmetries on the distribution of resonatorsD = ∪1≤i≤NBi

reflect on the structure of the capacitance matrix C and on its spectral decomposition. General results are stated
for arbitrary distributions of resonators in Section 2.3.1, and for a rotationally invariant chain of resonators in
Section 2.3.2. These are applied in the next Sections 2.3.3 to 2.3.6 to characterize conveniently the effective
coefficients of the associated capacitance matrix for a dimer constituted of two symmetrical resonators, a trimer
constituted of three symmetrical resonators, and for acoustic obstacles arranged at the vertices of a square or
of a regular tetrahedron.

Throughout this part, SN denotes the group of permutations of the set {1, 2, . . . , N}.

2.3.1. Invariance properties with respect to arbitrary group of symmetries

Our first proposition establishes that any symmetry of the distribution of resonators D implies the commu-
tation of the capacitance matrix with a related permutation matrix.

Proposition 2.6. Assume that there exists an isometry S such that SD = D. Then:

(i) there exists a permutation σ ∈ SN such that

SBi = Bσ(i).

(ii) For any 1 ≤ i ≤ N , the solution ui to (2.2) satisfies

uσ(i) ◦ S = ui.

(iii) The coefficients of the capacitance matrix and of the volume matrix V satisfy

Cσ(i)σ(j) = Cij , Vσ(i)σ(j) = Vij , ∀1 ≤ i, j ≤ N.

In other words, C and V commutes with the permutation matrix Pσ := (δσ(i)j)1≤i,j≤N :

PσC = CPσ, PσV = V Pσ.

Proof. (i) An isometry preserves connected components so such a permutation must exist.
(ii) uσ(i) ◦ S satisfies −∆(uσ(i) ◦ S) = 0 and uσ(i) ◦ S = δσ(i)σ(j) = δij on ∂Bj , hence uσ(i) ◦ S = ui.
(iii) By using a change of variables, we obtain

Cσ(i)σ(j) =

∫

R3\D

∇uσ(i) · ∇uσ(j) dσ =

∫

R3\D

∇ui · ∇uj dσ = Cij .

For the matrix V , it is enough to remark that

Vσ(i)σ(j) = δσ(i)σ(j)|Bσ(i)| = δij |Bi| = Vij .

�

The commutation of C with the permutation matrix Pσ has several consequences on its coefficients and its
spectrum, which can be characterized thanks to the following result from Stuart and Weaver [76].
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Proposition 2.7 (Stuart and Weaver [76]). Let

σ = (i11i12 . . . i1h1
)(i21i22 . . . i2h2

) . . . (im1im2 . . . imhm
) (2.21)

be the decomposition of σ into products of m ≥ 1 disjoint cycles. For 1 ≤ p ≤ m, let Up be the N × hp selection
matrix

Up =
[
eip1 . . . eiphp

]
,

where (ei)1≤i≤N is the canonical basis of RN . Since PσC = CPσ:

(i) For any 1 ≤ p ≤ m, UT
p CUp is a hp × hp circulant matrix of the form

UT
p CUp =




a0 a1 a2 . . . . . . ahp−1

ahp−1 a0 a1 . . . . . . ahp−2

...
...

...
...

a1 a2 a3 . . . ahp−1 a0



.

(ii) For any 1 ≤ p, q ≤ m with p 6= q, let g = gcd(hp, hq). U
T
p CUq is a hp × hq matrix of the form

UT
p CUq =




b0 b1 b2 . . . . . . . . . bg−1 b0 b1 . . .

bg−1 b0 b1 . . . . . . . . . bg−2 bg−1 b0
...

...
...

...
...

. . .

b2 b1 b2

b1 b2 . . . . . . bg−1 b0 b1

b0 b1 b2 . . . . . . . . . bg−1
. . .

...
. . .




,

where the main block is a g × g circulant matrix copied hp/g × hq/g times.
(iii) Since C = CT , it additionally holds, for each block:

ai = ahp−i for any 1 ≤ i ≤ hp, and UT
q CUp = (UT

p CUq)
T for p 6= q.

Let us recall that the eigenvalues of Pσ are the hp roots of the unity

sp(Pσ) =
⋃

1≤j≤m

{1, ωhj
, . . . , ω

hj−1
hj

},

where ωhj
:= e

2iπ
hj . The associated eigenvectors are

Uj




1

ωp
hj

...

ω
p(hj−1)
hj



UT
j for 0 ≤ p ≤ hj − 1, 1 ≤ j ≤ m.

We emphasize that Pσ may admit multiple eigenvalues as recalled in the following remark.

Remark 2.1. (i) The integer 1 is always an eigenvalue of Pσ with multiplicity the number of cycles m occuring
in the decomposition (2.21): a basis of eigenvectors is (Uj1U

T
j )1≤j≤m where 1 = (1)1≤i≤hm

.

(ii) An eigenvalue ωp
hj

with 0 < p ≤ hj − 1 and 1 ≤ j ≤ m is multiple if and only if there exists another cycle

such that gcd(hm, hl) 6= 1 and p = nhm/ gcd(hm, hl) for an integer 1 ≤ n < gcd(hm, hl).

It is well-known that matrices which commute share the same invariant subspaces [56, 77]. The identity
PσC = CPσ implies the following constraints for the spectral decomposition of C.

Proposition 2.8. (i) Denote by α1, . . . , αm the distinct eigenvalues of Pσ with multiplicities n1, . . . , nm and
E1 ⊕ · · · ⊕Em the associated eigenspace decomposition. There exists a basis adapted to this decomposition
in which C is block diagonal on each space Ei, 1 ≤ i ≤ m.

(ii) If ai is an eigenvector of (2.4) for 1 ≤ i ≤ N , then the vector Pσai is also an eigenvector of (2.4) associated
to the same eigenvalue λi.

(iii) In particular, the first eigenvector a1 associated to the simple eigenvalue λ1 satisfies Pσa1 = a1.
10



Proof. (i) is a direct consequence of the commutation property PσC = CPσ.
(ii) If Cai = λiai, then CPσai = PσCai = λiPσai.
(iii) is obtained by using (ii) and the fact that the first eigenvalue λ1 is simple. �

Remark 2.2. The same result holds for the generalized eigenvalue problem (2.4).

The previous result yields a simple sufficient condition to obtain that the vector of ones is an eigenvector
of C.

Corollary 2.1. If for any resonator Bi with 1 ≤ i ≤ N , there is an isometry S such that SD = D and
SB1 = Bi, then the eigenvector a1 associated to the smallest eigenvalue λ1 is proportional to the vector of ones
1 = (1)1≤i≤N .

Proof. The assumption implies that for any 1 ≤ i ≤ N , one can find a permutation σ such that σ(1) = i and
PσC = CPσ. The previous proposition states that Pσa1 = a1, which implies

a1,1 = a1,σ(1) = a1,i.

Consequently, a1 = a1,11 and the result is obtained. �

The next subsections apply the above results to characterize the spectral decomposition of the capacitance
matrix for particular systems of resonators.

2.3.2. A general chain of N resonators with rotational symmetry

In what follows, we examine the case where D = ∪N
i=1R

iB is invariant by the rotation R of angle 2π/N
around the one-dimensional axis e3, which yields the invariance by the permutation group generated by the N
cycle

σ =
(
0 . . . N − 1

)
.

An occurence of such set of resonator D is illustrated on the schematic of Figure 2.

12

3

4 5

6

(a) N = 6

1
2

3

4

5
6

7

(b) N = 7

e1

e2

e3

Figure 2. Chains of respectively (three-dimensional) 6 and 7 spherical resonators rotationally
invariant around the axis e3. The rotational symmetry entails the invariance of the geometry by

the permutation group generated by the N -cycle σ =
(
0 . . . N − 1

)
. The alternate colors

visible on Figure 2a with N = 6 illustrates the fact that the sign changing vector ((−1)i)1≤i≤N

is an eigenvector of the capacitance matrix C when N is even.

Propositions 2.7 and 2.8 together imply the following result.

Proposition 2.9. Assume that the set of resonator is rotationally invariant, in the sense that Proposition 2.6
holds with the cyclic permutation σ given by

σ =
(
0 . . . N − 1

)
.

Then:

(i) C is a N ×N circulant matrix of the form

C =




a0 a1 a2 . . . . . . aN−1

aN−1 a0 a1 . . . . . . ahp−2

...
...

...
...

a1 a2 a3 . . . aN−1 a0



,

with ai = aN−i for any 0 ≤ i < N .
11



(ii) The spectrum of C is given by

sp(C) =





⋃

0≤p≤N−1

N−1∑

i=0

aiω
pi



 ,

where ω = exp(2iπ/N) with respective eigenvectors (ωpi)1≤i≤N for 0 ≤ p ≤ N − 1.

Moreover, if N is even, this can be rewritten as the following set of real eigenvalues

sp(C) =

{
N−1∑

i=0

ai

}
∪
{

N−1∑

i=0

(−1)iai

}
∪



a0 + (−1)paN/2 +

N/2−1∑

i=1

2 cos

(
2ipπ

N

)
ai, 0 < p <

N

2



 ,

with respective eigenvectors

1 = (1)1≤i≤N , ((−1)i)1≤i≤N ,

{
(cos(2ipπ/N))1≤i≤N , (sin(2ipπ/N))1≤i≤N 0 < p <

N

2

}
,

while if N is odd, the spectrum of C reads instead

sp(C) =

{
N−1∑

i=0

ai

}
∪



a0 +

(N−1)/2∑

i=1

2 cos

(
2ipπ

N

)
ai, 1 ≤ p ≤ N − 1

2



 ,

with respective eigenvectors

1 = (1)1≤i≤N ,

{(
cos

(
2ipπ

N

))

1≤i≤N

,

(
sin

(
2ipπ

N

))

1≤i≤N

1 ≤ p ≤ N − 1

2

}
.

Proof. See [76]. The rewriting for N even is obtained by using ai = aN−i for 0 ≤ i ≤ N . �

Corollary 2.2. In particular, for any set D of N resonators having a rotational invariance symmetry, the
vector 1 = (1)1≤i≤N is an eigenvector for the general eigenvalue problem (2.4) associated with the eigenvalue
λ1 = cap(D)/|D|.

The next Sections 2.3.3 to 2.3.5 apply this result explicitly for the particular cases N = 2, 3, 4.

2.3.3. Example 1: the dimer

1 2

Figure 3. A dimer made of two symmetrical resonators. The alternate color emphasize the

occurrence of the dipole mode
[
−1 1

]T
.

The structure of the capacitance matrix for a dimer made of two identical spheres (Figure 3) has already
been obtained in [59]. Proposition 2.9 enables to retrieve very quickly this result even in the case where the
resonators are not necessary spherical but only symmetrical. It states that the matrix C has the form

C =


 a −b
−b a


 , (2.22)

for two positive constants a > b > 0. The distinct eigenvalues of C are

a− b, a+ b, (2.23)

with associated eigenvectors

1
1


 ,


 1

−1


 , (2.24)

corresponding respectively to monopole and dipole modes.
12



1

2

3
e1

e2

e3

Figure 4. A trimer made of three resonators rotationally invariant around the axis e3.

2.3.4. Example 2: the trimer

If D is a trimer constituted of three rotationally invarariant, not necessary spherical resonators (illustrated
on Figure 4), the result of Proposition 2.9 states that there exists a, b > 0 such that C has the form

C =




a −b −b
−b a −b
−b −b a


 .

The eigenvalues are

a− 2b, a+ b,

with respective multiplicities 1 and 2, and associated eigenvectors



1

1

1


 ,




1

− 1
2

− 1
2


 ,




0

1

−1


 .

2.3.5. Example 3: the quadrimer

1

2

3

4
e1

e2

e3

Figure 5. A quadrimer constituted of four resonators rotationally invariant around the axis

e3. The alternate colors emphasize the existence of the mode
[
1 −1 1 −1

]T
.

If D is a quadrimer, i.e. four resonators rotationally invariant located at the vertices of a square (illustrated
on Figure 5), not necessary with spherical shapes, the result of Proposition 2.9 states that there exist three
effective coefficients a, b, c > 0 such that C has the form

C =




a −b −c −b
−b a −b −c
−c −b a −b
−b −c −b a



. (2.25)

The eigenvalues are

a− 2b− c, a+ 2b− c, a+ c,

where the last one is double, with respective eigenvectors



1

1

1

1



,




1

−1

1

−1



,




1

0

−1

0



,




0

1

0

−1



. (2.26)
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2.3.6. Example 4: identical spheres arranged at the vertices of a regular tetrahedron

We finally consider the case where D is made of four identical spheres arranged at the vertices of a regular
thetrahedron (illustrated on Figure 6). The symmetries on the middle axes entail the invariance by any trans-

1

2

3

4

Figure 6. A set of four identical resonators arranged at the vertices of a regular tetrahedron.

position, hence C commutes with the matrix Pσ for any permutation σ ∈ S4. This implies the existence of two
effective coefficients a, b > 0 such that C has the form

C =




a −b −b −b
−b a −b −b
−b −b a −b
−b −b −b a



. (2.27)

The eigenvalues are

a− 3b, a+ b,

where a+ b is a triple eigenvalue, with the same respective eigenvectors given by (2.26).

2.4. The vector of ones is generically not an eigenvector

We finally close this section devoted to the capacitance matrix by establishing a result which shows that, for
generic domains, the vector of ones 1 = (1)1≤i≤N is in general not an eigenvector for the problem (2.4), at least
for a set of N ≥ 3 resonators. As we shall see in the next sections, this has several consequences for the resonant
system (1.1), one of them being that a system of N resonators behaves in general as a monopole scatterer in
the far field near any of the resonant frequencies (ω±

i (δ))1≤i≤N (see Proposition 5.3 below). We conjecture that
the result remains true for N = 2, although our arguments are not sufficient to be conclusive in this case.

Our result is precisely formulated in Proposition 2.11 below; it states that if N ≥ 3 and if the vector of ones
1 = (1)1≤i≤N is an eigenvector of (2.4), then most of the deformation (I+θ)D of the shape of the resonators D
by a small vector field θ ∈ W 1,∞(R3,R3) do not satisfy this property. Throughout this section, W 1,∞(R3,R3)
is the Sobolev space

W 1,∞(R3,R3) := {θ |θ ∈ L∞(R3,R3) and ∇θ ∈ L∞(R3,R3×3)}.

We assume throughout this section that D is a smooth domain of class at least C2 which is such that 1 is an
eigenvector of (2.4). For any small vector field θ ∈W 1,∞(R3,R3), we consider (Bi,θ)1≤i≤N := ((I+θ)Bi)1≤i≤N

the deformed acoustic obstacles and Dθ := (I + θ)D the deformed domain obtained by moving the points
of ∂D according to the vector field θ. We denote by C(θ) and V (θ) the associated capacitance and volume
matrices (obtained by substituting D with Dθ in the definitions (2.1) to (2.3)), and we consider the generalized
eigenvalue problem of finding (ai(θ))1≤i≤N and 0 < λ1(θ) < λ2(θ) ≤ . . . ≤ λN (θ) such that

C(θ)ai(θ) = λi(θ)V (θ)ai(θ), 1 ≤ i ≤ N. (2.28)

Since the first eigenvalue λ1 is simple and θ 7→ C(θ) and θ 7→ V (θ) are continuous, it is possible to choose
a1(θ) such that the function θ 7→ a1(θ) is continuous (in fact, smooth) and a1(0) = a1 [57]. Assuming a1 is
proportional to the vector of ones, i.e.

a1 ≡ a1(0) = |D|−1/21 and λ1 ≡ λ1(0) = cap(D)/|D|, (2.29)

our strategy is to compute the Fréchet derivative a′
1 : W 1,∞(R3,R3) → R

N at θ = 0 and to characterize
the vector fields θ ∈ W 1,∞(R3,R3) for which a′

1(θ) 6= 0. Since the first variation of a1(θ) is not zero while
a1(0) = 1, this is enough to obtain that the vector of ones 1 is not an eigenvector of (2.28) associated to the
perturbed set of resonators Dθ.

Our analysis heavily relies on shape differential calculus; the reader is referred to the textbooks [43, 75, 36]
for a detailed introduction to this topic.
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Proposition 2.10. The first order asymptotics of λ1(θ) and a1(θ) as θ → 0 are given by

λ1(θ) =
cap(D)

|D| +
1

|D|

∫

∂D

[∣∣∣∣
∂u

∂n

∣∣∣∣
2

− cap(D)

|D|

]
θ · n dσ + o(θ)W 1,∞(R3,R3), (2.30)

a1(θ) = a1 +
∑

i>1

N∑

j=1

1

λ1 − λi

aT
i ej

|D| 12

[∫

∂D

[
∂uj
∂n

∂u

∂n
− cap(D)

|D| 1∂Bj

]
θ · n dσ

]
ai + o(θ)W 1,∞(R3,R3), (2.31)

where we recall the definitions (2.2) and (2.5) of the functions (ui)1≤i≤N and u.

Proof. We may assume without loss of generality that a1(θ) is a unit vector with respect to the inner product V :

a1(θ)
TV (θ)a1(θ) = 1. (2.32)

Using standard shape differential calculus, see e.g. [43, 36], we find that the matrix V (θ) is differentiable and
that the Fréchet derivative of its coefficients at θ = 0 is given by:

V ′
ij(θ) = δij

∫

∂Bi

θ · n dσ.

We then sketch the computation of the Fréchet derivative of the capacitance coefficients (C ′
ij(θ))1≤i,j≤N . Dif-

ferentiating the identity Cij =
∫
R3\D

∇ui · ∇uj dx (eqn. (2.8)), we find

C ′
ij(θ) =

∫

R3\D

(div(θ)I −∇θ −∇θT )∇ui · ∇uj dx+

∫

R3\D

(∇u′i(θ) · ∇uj +∇ui · ∇u′j(θ)) dx,

where u′i(θ) and u
′
j(θ) are the Lagrangian shape derivatives of ui and uj . Since these derivatives satisfy u

′
i(θ) = 0

and u′j(θ) = 0 on ∂D, (2.7) implies that the second integral vanishes, and we obtain after an integration by
parts:

C ′
ij(θ) = −

∫

∂D

(
∇ui · ∇uj − 2

∂ui
∂n

∂uj
∂n

)
θ · n dσ =

∫

∂D

∂ui
∂n

∂uj
∂n

θ · n dσ.

Differentiating now (2.28) and (2.32) with respect to θ, we obtain

(C − λ1V )a′
1(θ) = λ′1(θ)V a1 − (C ′(θ)− λ1V

′(θ))a1

2a′
1(θ)

TV a1 = −aT
1 V

′(θ)a1.
(2.33)

We compute λ′1(θ): differentiating the identity λ1(θ) = a1(θ)
TC(θ)a1(θ), we find

λ′1(θ) = 2a′
1(θ)

TCa1 + aT
1 C

′(θ)a1 = 2λ1a
′
1(θ)

TV a1 + aT
1 C

′(θ)a1

= aT
1 (C

′(θ)− λ1V
′(θ))a1.

. (2.34)

Then, inverting (2.33) yields

a′
1(θ) =

∑

i>1

1

λ1 − λi
[aT

i (I − V a1a
T
1 )(C

′ − λ1V
′)a1]ai

=
∑

i>1

1

λ1 − λi
[aT

i (C
′ − λ1V

′)a1]ai.

(2.35)

The identities (2.30) and (2.31) follow by substituting the values of C ′
ij(θ) and V

′
ij(θ) into (2.34) and (2.35). �

We deduce the existence of a dense set of shape perturbations which cancel the property of 1 being an
eigenvector of (2.4).

Proposition 2.11. (i) If a1 = |D|−1/21 is an eigenvector of (2.4), then a′
1(θ) = 0 if and only if

∫

∂D

(f1 − fi)θ · n dσ = 0 for any 1 < i ≤ N, (2.36)

where (fi)1≤i≤N are the functions defined by

fi :=
∂ui
∂n

∂u

∂n
− λ11∂Bi

.

(ii) If N > 2, then none of the functions f1 − fi vanishes identically on ∂D and the set of deformations θ

which do not fulfill the condition (2.36) form a dense subset of W 1,∞(R3,R3).

Proof. 1. Let v(θ) = (vi(θ))1≤i≤N be the vector defined by

vi(θ) :=

∫

∂D

fiθ · n dσ, 1 ≤ i ≤ N.

From (2.35) and the fact that the vectors (ai)1≤i≤N form an orthonormal basis, a′
1(θ) = 0 is equivalent to

aT
i v(θ) = 0 for any 1 < i ≤ N,
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i.e. v(θ) must be proportional to the vector a1 = |D|−1/21. Therefore, a′
1(θ) = 0 if and only if v1(θ)−vi(θ) = 0

for any 1 < i ≤ N which is equivalent to (2.36).
(ii) It is sufficient to prove that at least one of the linear forms of (2.36) is not zero to obtain that all deformations
θ do not fulfill (2.36) up to a finite-dimensional subset. We prove that it is not possible that f1 − fi = 0 on ∂D
for any 1 < i ≤ N . If it is the case and assuming N > 2, then it must hold

∂(u1 − ui)

∂n

∂u

∂n
= 0 on ∂Bl.

for any l /∈ {1, i}. Since ∂u
∂n < 0 on ∂Bl, the function w := u1 − ui satisfies the overdetermined relations ∂w

∂n = 0
on ∂Bl and w = 0 in ∂Bl. However, recalling that w can be expressed as a single layer potential:

w = SD[φ] with φ = (S−1
D )[1∂B1

− 1∂Bi
], (2.37)

the jump relation for the normal derivative of SD[φ] yields

φ =

s

∂w

∂n

{

:=
∂w

∂n

∣∣∣∣
+

− ∂w

∂n

∣∣∣∣
−

= 0 on ∂Bl.

Therefore the representation (2.37) of w as a single layer potential implies that w is smooth in the vicinity of
∂Bl. Consequently, w is harmonic in R

3\(B1 ∪ Bi) and satisfies w = 0 on Bl. By the unique continuation
principle (see e.g. [35, 54]), we obtain that w vanishes identically in R

3\(B1 ∪Bi), which contradicts w = 1 on
∂B1. �

Remark 2.3. The above proof does not allow to obtain a version of this result for the case N = 2. However, we
may conjecture that the equality f1 = f2 occurs only for exceptional shapes even if N = 2, which would lead to
the same conclusions.

3. Asymptotic analysis of the scattering resonances

We now turn to the analysis of the subwavelength resonances of the scattering problem (1.1). Following
[13, 8], the solution utot can be represented as single layer potentials in D and R

3\D:

utot(x) =

{
Skb

D [φ](x) if x ∈ D,

uin(x) + Sk
D[ψ](x) if x ∈ R

3\D,
(3.1)

where the functions (φ, ψ) ∈ L2(∂D)× L2(∂D) solve the integral equation

A(ω, δ)


φ
ψ


 =


 uin

δ ∂uin

∂n


 , (3.2)

with the operator A(ω, δ) being given by

A(ω, δ) =


 Skb

D −Sk
D

− 1
2I +Kkb∗

D −δ
(
1
2I +Kk∗

D

)


 .

Due to the Sommerfeld radiation condition, the problem (3.2) can be shown to admit a unique solution for any
real frequency provided the wave number k = ω/v is not a Dirichlet eigenvalue of the domain D [14]. This
assumption is naturally satisfied in the regime ω → 0.

In this section, we solve explicitly the integral formulation (3.2) by computing the inverse of the holomorphic
operator A(ω, δ). This allows us to characterize the Minnaert resonances (ω±

i (δ))1≤i≤N as the poles of the
meromorphic operator ω 7→ A(ω, δ)−1, and to compute full asymptotic expansions as δ → 0. Our analysis
outlines as follows. We show in Section 3.1 that the invertibility of A(ω, δ) reduces to the one of a complex
N ×N Schur complement matrix A(ω, δ), which is holomorphic in ω and δ. We provide an explicit formula for
the inverse of A(ω, δ) and we obtain the decomposition (1.2). The scattering resonances ω±

i (δ) can consequently
also be characterized as the solutions to the nonlinear eigenvalue problem

A(ω, δ)x = 0. (3.3)

After computing the asymptotic expansion of A(ω, δ) at the order O((ω2 + δ)2) in Section 3.2, we find that
the nonlinear eigenvalue problem (3.3) is a perturbation of the generalized, linear eigenvalue problem (2.4).
Finally, Section 3.3 applies the implicit function theorem to (3.3), which yields the Puiseux expansion (1.4) of
the resonance (ω±

i (δ)) under a simplicity assumption on the eigenvalues of the capacitance matrix C.
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3.1. Explicit inversion of the scattering operator

In order to compute the inverse of A(ω, δ), we solve the following linear system (3.2) which reads explicitly




Skb

D [φ]− Sk
D[ψ] = uin,(

−1

2
I +Kkb∗

D

)
[φ]− δ

(
1

2
I +Kk∗

D

)
[ψ] = δ

∂uin
∂n

.
(3.4)

Reducing (3.4) to a single equation by using the invertibility of Sk
D (as in [4, 8]), we are left with





ψ = (Sk
D)−1Skb

D [φ]− (Sk
D)−1[uin],(

−1

2
I +Kkb∗

D − δ

(
1

2
I +Kk∗

D

)
(Sk

D)−1Skb

D

)
[φ] = δ

∂uin
∂n

− δ

(
1

2
I +Kk∗

D

)
(Sk

D)−1[uin].
(3.5)

So the invertibility of A(ω, δ) is equivalent to that of the operator

L(ω, δ) := −1

2
I +Kkb∗

D − δ

(
1

2
I +Kk∗

D

)
(Sk

D)−1Skb

D . (3.6)

The operator L(ω, δ) is holomorphic in the variables ω and δ. Indeed, we recall the following classical expansions
of the potential (see e.g. [15, 14]).

Proposition 3.1. The following expansions hold for the single layer potential and the Neumann-Poincaré
operator as k = ω/v → 0:

Sk
D =

+∞∑

p=0

kpSD,p = SD + kSD,1 + k2SD,2 + . . . , (3.7)

Kk∗
D =

+∞∑

p=0

kpK∗
D,p = K∗

D + k2K∗
D,2 + k3K∗

D,3 + . . . , (3.8)

where the series converges in operator norms, and where the operators SD,p and K∗
D,p are defined by

SD,p[φ] := − ip

4πp!

∫

∂D

|x− y|p−1φ(y) dσ(y), φ ∈ L2(∂D), p ∈ N, (3.9)

K∗
D,p[φ] := − ip

4πp!

∫

∂D

n(x) · ∇x|x− y|p−1φ(y) dσ(y), φ ∈ L2(∂D), p ∈ N. (3.10)

Furthermore, we have the identities

(i) ∆SD,0[φ] = ∆SD,1[φ] = 0 and ∆SD,p[φ] = −SD,p−2[φ] for any p ≥ 2,
(ii) KD,p[φ](x) = n(x) · ∇xSD,p[φ] for p ≥ 1, and

∫

∂Bi

K∗
D[φ] dσ =

1

2

∫

∂Bi

φ dσ and

∫

∂Bi

K∗
D,p[φ] dσ = −

∫

Bi

SD,p−2[φ] dσ for p ≥ 2.

In view of (3.8) we find that (3.6) can be rewritten as

L(ω, δ) = −1

2
I +K∗

D + ω2B1(ω) + δB2(ω), (3.11)

where B1(ω) and B2(ω) are the holomorphic and compact operators defined by

B1(ω) :=

+∞∑

p=0

ωp

vp+2
b

K∗
D,p, B2(ω) :=

(
1

2
I +Kk∗

D

)
(Sk

D)−1Skb

D . (3.12)

The operator L(ω, δ) is a compact perturbation of the Fredholm operator − 1
2I +K∗

D, which has a finite dimen-
sional kernel, as recalled in the following proposition (see e.g. [71, 65, 14]):

Proposition 3.2. The kernel of the operator − 1
2I +K∗

D is the N -dimensional space

Ker

(
−1

2
I +K∗

D

)
= span((ψ∗

i )1≤i≤N ),

where (ψ∗
i )1≤i≤N are the functions defined by

ψ∗
i = S−1

D [1∂Bi
], 1 ≤ i ≤ N.

The range of the operator − 1
2I +K∗

D is the space of zero average square integrable functions L2
0(∂D):

Ran

(
−1

2
I +K∗

D

)
= L2

0(∂D),
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where L2
0(∂D) :=

{
φ ∈ L2(∂D)

∣∣∣
∫
∂Bi

φ dσ = 0 for any 1 ≤ i ≤ N
}
. Furthermore, we have the direct sum de-

composition

L2(∂D) = L2
0(∂D)⊕Ker

(
−1

2
I +K∗

D

)
,

and − 1
2I +K∗

D is invertible as an operator L2
0(∂D) → L2

0(∂D).

Classically, the computation of the inverse of the holomorphic Fredholm operator L(ω, δ) reduces to that of
a finite dimensional holomorphic Schur complement matrix after introducing suitable projections on the kernel
and coimage [66, 67]. In our context, we compute L(ω, δ)−1 by using a method inspired from [24] (also used in
the proof of Theorem 2.1 of [13] in the case N = 1 of a single bubble), which consists in introducing a constant
finite-range operator H making the operator − 1

2I +K∗
D +H invertible.

In order to introduce the operator H, we introduce a new basis of functions (φ∗i )1≤i≤N of Ker(− 1
2I+K∗) defined

by

φ∗i := −
N∑

j=1

(C−1)ijψ
∗
j , 1 ≤ i ≤ N, (3.13)

where C is the capacitance matrix of (2.9). The definition (3.13) ensures the property
∫

∂Bi

φ∗j dσ = δij for any 1 ≤ i, j ≤ N. (3.14)

Definition 3.1. We denote by H : L2(∂D) → L2(∂D) the unique projection operator satisfying Ker(H) =
L2
0(∂D) and Ran(H) = Ker(− 1

2I +K∗
D). For any φ ∈ L2(∂D), the value of H[φ] reads explicitly

H[φ] =

N∑

i=1

(∫

∂Bi

φ dσ

)
φ∗i . (3.15)

Proposition 3.3. The operator L(ω, δ) defined in (3.6) can be decomposed as

L(ω, δ) = L0 −H+ ω2B1(ω) + δB2(ω), (3.16)

where L0 := − 1
2I +K∗

D +H is an invertible Fredholm operator. The inverse of L0 reads explicitly:

L−1
0 [φ] =

(
−1

2
I +K∗

D

)−1
(
φ−

N∑

i=1

(∫

∂Bi

φ dσ

)
φ∗i

)
+

N∑

i=1

(∫

∂Bi

φ dσ

)
φ∗i , φ ∈ L2(∂D), (3.17)

where (− 1
2I+K∗

D)−1 is the inverse of the operator − 1
2I+K∗

D : L2
0(∂D) → L2

0(∂D). Furthermore, the following
properties hold true:

• H[φ∗i ] = L0[φ
∗
i ] = φ∗i for any 1 ≤ i ≤ N .

•
∫
∂Bi

L−1
0 [φ] dσ =

∫
∂Bi

φ dσ for any 1 ≤ i ≤ N and φ ∈ L2(∂Bi).

• φ = (φ−H[φ]) +H[φ] is the direct sum decomposition of φ ∈ L2(∂D) on L2
0(∂D)⊕Ker(− 1

2I +K∗
D).

The decomposition (3.16) reads

L(ω, δ) = G(ω, δ)−H, (3.18)

where G(ω, δ) is the operator

G(ω, δ) := L0 + ω2B1(ω) + δB2(ω).

Since L0 is invertible, G(ω, δ) is a holomorphic invertible Fredholm operator, whose inverse can be easily com-
puted thanks to a Neumann series.

Lemma 3.1. The operator G(ω, δ) is invertible for sufficiently small ω and δ: more explicitly, the inverse reads

(G(ω, δ))−1 = L−1
0 − C(ω, δ), (3.19)

where C(ω, δ) is the compact operator of order O(ω2 + δ) defined by the following Neumann series:

C(ω, δ) :=
+∞∑

p=1

(−1)p+1L−1
0 ((ω2B1(ω) + δB2(ω))L−1

0 )p. (3.20)

Equation (3.18) is analogous to the “pole-pencil decomposition” considered in [24, 19], in the sense that
L(ω, δ) is the sum of a holomorphic operator easily invertible and a constant finite-rank operator. This feature
together with the previous Lemma 3.1 allow to solve conveniently the problem (3.4).
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Proposition 3.4. The operator A(ω, δ) is invertible if and only if the N×N matrix A(ω, δ) ≡ (A(ω, δ)ij)1≤i,j≤N

defined by

A(ω, δ)ij :=

∫

∂Bi

C(ω, δ)[φ∗j ] dy, 1 ≤ i, j ≤ N, (3.21)

is invertible. When it is the case, the solution (φ, ψ) to the problem (3.4) reads




φ =

N∑

i=1

xiG−1(ω, δ)[φ∗i ] + G−1(ω, δ)[f ],

ψ =

N∑

i=1

xi(Sk
D)−1Skb

D G−1(ω, δ)φ∗i + (Sk
D)−1Skb

D G−1(ω, δ)[f ]− (Sk
D)−1[uin],

(3.22)

where f ∈ L2(∂D) is the function

f := δ
∂uin
∂n

− δ

(
1

2
I +Kk∗

D

)
(Sk

D)−1[uin], (3.23)

and where the coefficients x := (xi)1≤i≤N are the solutions to the finite dimensional problem

A(ω, δ)x = F with F :=

(∫

∂Bi

G−1(ω, δ)[f ] dσ

)

1≤i≤N

. (3.24)

Proof. The second line of equation (3.5) reads

G(ω, δ)[φ]−H[φ] = f (3.25)

with f given by (3.23). This equation is equivalent to

φ− G−1(ω, δ)H[φ] = G−1(ω, δ)[f ]. (3.26)

Observing that G−1(ω, δ)H is a finite-rank operator, we decompose φ =
∑n

i=1 xiφ
∗
i + φ̃ on span(H) ⊕ Ker(H).

Then integrating (3.26) over each resonator ∂Bi (namely, projecting on span(H)), we find that the coefficients
x := (xi)1≤i≤N must solve the finite dimensional system

∫

∂Bi

G−1(ω, δ)[f ] dσ =

(
δij −

∫

∂Bi

G−1(ω, δ)H[φ∗j ] dσ

)
xj =

(
δij −

∫

∂Bi

G−1(ω, δ)[φ∗j ] dσ

)
xj

=

(
δij −

∫

∂Bi

(L−1
0 [φ∗j ]− C(ω, δ)[φ∗j ]) dσ

)
xj

=

(∫

∂Bi

C(ω, δ)[φ∗j ] dσ
)
xj .

.

Therefore it is necessary that the linear system (3.24) be invertible for (3.25) being invertible. Reciprocally, this
condition is sufficient because if x = (xi)1≤i≤N is the solution to (3.24), then one obtains from (3.26) that φ
given by the first line of (3.22) is solution to (3.4). Then the formula for ψ follows from the first line of (3.5). �

Remark 3.1. Inserting (3.22) into the integral representation formula (3.1) yields the decomposition (1.2) for
the total field utot with

vi(ω, δ)(x) =

{
Skb

D [G−1(ω, δ)φ∗i ](x) if x ∈ D,

Sk
D[(Sk

D)−1Skb

D G−1(ω, δ)φ∗i ](x) if x ∈ R
3\D,

w(ω, δ)(x) =

{
Skb

D [G−1(ω, δ)f ](x) if x ∈ D,

Sk
D[(Sk

D)−1Skb

D G−1(ω, δ)f ](x)− Sk
D[(Sk

D)−1[uin]](x) if x ∈ R
3\D.

Remark 3.2. We shall see below in Section 4 that (3.22) can be interpreted as a modal expansion of φ, where
the modes are linear combinations of the functions vi(ω, δ)φ

∗
i and the functions xi ≡ xi(ω, δ, f) are scattering

amplitudes with poles being the resonant frequencies (ω±
i (δ))1≤i≤N .

Remark 3.3. There exist as many possibilities for the choice of operator H enabling to compute L(ω, δ)−1 as
there are invertible operators from Ker((− 1

2I + K∗
D)) to a complement subspace of Ran((− 1

2I + K∗
D)). Since

Ker((− 1
2I + K∗

D)) is itself a complement subspace of Ran((− 1
2I + K∗

D)), the definition (3.15) is natural and
leads to several simplifications in the computations performed below.

The previous proposition yields a convenient definition and characterization of the scattering resonances
(ω±

i (δ))1≤i≤N .
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Proposition 3.5. There exists 2N complex frequencies (ω±
i (δ))1≤i≤N which are defined as the characteristic

values of the operator A(ω, δ), i.e. the values for which A(ω±
i (δ), δ) has a non-trivial kernel. Equivalently,

these are also the characteristic values of the N ×N matrix A(ω, δ) of (3.21), i.e. eigenvalues of the non-linear
eigenvalue problem (1.3).

Proof. Proposition 3.6 below reveals that A(ω, 0) ∼ ω2V C−1 with V C−1 invertible. Hence the generalized
Rouché theorem [41, 14] implies that A(ω, δ) has exactly 2N characteristic values (ω±

i )1≤i≤N in a neighborhood
of zero for δ sufficiently small (see also [8]. �

3.2. Asymptotic expansion of the Schur complement A(ω, δ)

Scattering resonances (ω±
i (δ))1≤i≤N are the characteristic values of the operator A(ω, δ), i.e. values of ω for

which A(ω, δ) has a non-trivial kernel. The previous Proposition 3.4 obtained that they are equivalently the
characteristic values of the holomorphic matrix A(ω, δ). The first terms of the asymptotic of A(ω, δ) as ω → 0
and δ → 0 are explicited in the next proposition, which is consistent with a similar computation performed in
[4, Theorem 2.7].

Proposition 3.6. The following asymptotic holds true as ω → 0 and δ → 0:

A(ω, δ) =
ω2

v2b
V C−1 − δI +

iω3

4πv3b
V 11T − iδω

4π

(
1

vb
− 1

v

)
C11T +O(ω2 + δ)2, (3.27)

where C is the capacitance matrix given by (2.1), V is the volume matrix (2.3) and 1 = (1)1≤i≤N is the vector
of ones.

Proof. By the definition (3.12), the fourth-order asymptotic expansion of ω2B(ω) reads

ω2B1(ω) =
ω2

v2b
K∗

D,2 +
ω3

v3b
K∗

D,3 +O(ω4), (3.28)

and a computation yields

δB2(ω) = −δ
(
1

2
I +Kk∗

D

)
(Sk

D)−1Skb

D

= −δ
(
1

2
I +K∗

D +O(ω2)

)(
SD +

ω

v
SD,1 +O(ω2)

)−1
(
SD +

ω

vb
SD,1 +O(ω2)

)

= −δ
(
1

2
I +K∗

D

)(
S−1
D − ω

v
S−1
D SD,1S−1

D

)(
SD +

ω

vb
SD,1

)
+O(ω2δ)

= −δ
(
1

2
I +K∗

D

)
+ δω

(
1

v
− 1

vb

)(
1

2
I +K∗

D

)
S−1
D SD,1 +O(ω2δ).

(3.29)

Then equations (3.20) and (3.21) allow to obtain

A(ω, δ)ij =

∫

∂Bi

C(ω, δ)[φ∗j ] dσ =

∫

∂Bi

L−1
0 (ω2B1(ω) + δB2(ω))[φ

∗
j ] dσ +O(ω2 + δ)2

=

∫

∂Bi

(ω2B1(ω) + δB2(ω))[φ
∗
j ] dσ +O(ω2 + δ)2,

where the third equality is a consequence of (3.17). From the expansions (3.28) and (3.29), we obtain

∫

∂Bi

ω2B1(ω)[φ
∗
j ] =

ω2

v2b

∫

∂Bi

K∗
D,2[φ

∗
j ] dσ +

ω3

v3b

∫

∂Bi

K∗
D,3[φ

∗
j ] dσ +O(ω4)

= −ω
2

v2b

∫

Bi

SD[φ∗j ] dσ +
iω3

v3b

|Bi|
4π

∫

∂D

φ∗j dσ +O(ω4)

=
ω2

v2b
|Bi|C−1

ji +
iω3

v3b

|Bi|
4π

+O(ω4).

.

For the computation of δB2(ω), we remark that SD,1[φ
∗
j ] = −i/(4π)1∂D and S−1

D [1∂D] =
∑

i ψ
∗
i , which implies

∫

∂Bi

S−1
D SD,1[φ

∗
j ] dσ =

i

4π

N∑

l=1

Cil.
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Substituting into (3.29) yields then
∫

∂Bi

δB2(ω)[φ
∗
j ] dσ = −δ

∫

∂Bi

(
1

2
I +K∗

D

)
[φ∗j ] dσ + δω

(
1

v
− 1

vb

)∫

∂Bi

(
1

2
I +K∗

D

)
S−1
D SD,1[φ

∗
j ] dσ +O(ω2δ)

= −δδij + δω

(
1

v
− 1

vb

)∫

∂Bi

S−1
D SD,1[φ

∗
j ] dσ +O(ω2δ)

= −δδij −
iδω

4π

(
1

vb
− 1

v

) N∑

l=1

Cil +O(ω2δ).

.

Hence the asymptotic of A(ω, δ)ij reads

A(ω, δ)ij =
ω2

v2b
|Bi|C−1

ji − δδij +
iω3

v3b

|Bi|
4π

− iδω

4π

(
1

vb
− 1

v

) N∑

l=1

Cil +O(ω2 + δ)2 (3.30)

which is the result to obtain. �

Remark 3.4. With symbolic computations, we find that the term of the asymptotic expansion of A(ω, δ)ij of
order O(ω2 + δ)2 is

ω2δ

16π2v

(
1

v
− 1

vb

)
1TC1

N∑

l=1

Cil +
ω2δ

v2b
|Bi|C−1

ij δij + ω2δ|Bi|
(

1

v2b
− 1

v2

)
C−1

ij

+ ω2δ

(
1

v2b
− 1

v2

) N∑

l=1

Cil

∫

∂D

φ∗l SD,2[φ
∗
j ] dσ − δ2δij +

ω4

v4b

∫

Bi

[SDL−1
0 K∗

D,2 − SD,2][φ
∗
j ] dσ. (3.31)

It is worth mentioning that the terms involving K∗
D,2 and S∗

D,2 are non-Hermitian, making an explicit analysis
at higher orders in ω and δ delicate.

Right multiplying (3.27) by C, we obtain that the nonlinear eigenvalue problem (3.3) reads at first order

−
(
C − ω2

v2bδ
V

)
x+O(ω) = 0.

The nonlinear eigenvalue problem (3.3) is therefore a perturbation of the generalized eigenvalue problem (2.4),
and the i-th resonance reads at first order ω2

i = λiv
2
bδ, for λi a generalized eigenvalue. This result was already

obtained in [13, 4, 8], is rigorously justified by mean of the implicit function theorem in the next subsection.

3.3. Full asymptotic expansions of the resonances

We now propose a procedure which enables in principle to compute full asymptotic expansions of the resonant
frequencies ω±

i (δ) when the eigenvalues (λi)1≤i≤N of the capacitance matrix C are simple. In contrast with
[4, 8], our procedure does not require to assume the existence of a formal ansatz; it relies on a change of variables
and on the implicit function theorem to derive the Puiseux expansion (1.4), which is inspired from [17, 24] and
which can be related to Newton diagrams [30, 48]. In particular, we prove the analyticity of ω±

i (δ) with respect

to δ1/2, a result that was implicitly assumed in the aforementioned works.

From there and in the next sections, we assume that the eigenvalues (λi)1≤i≤N of the generalized eigenvalue
problem (2.4) are simple:

0 < λ1 < λ2 < · · · < λN . (3.32)

We discuss shortly in Remark 3.4 what could happen in the case of multiple eigenvalues.

We start by rewriting (3.27) as an explicit perturbation of the linear eigenvalue problem (2.4). Introducing the
variable λ = ω2/(v2bδ) and recalling the definitions (3.20) and (3.21), the coefficients A(ω, δ)ij for 1 ≤ i, j ≤ N
can be rewritten in terms of λ and ω as

A(ω, δ)ij =

+∞∑

p=1

∫

∂Bi

(L−1
0 (ω2B1(ω) + δB2(ω)))

p[φ∗j ] dσ

=
+∞∑

p=1

v2pb δ
p

∫

∂Bi

(
L−1
0

(
ω2

v2bδ
B1(ω) + v−2

b B2(ω)

))p

[φ∗j ] dσ

=

+∞∑

p=1

ω2p

λp

∫

∂Bi

(
L−1
0 (λB1(ω) + v−2

b B2(ω))
)p

[φ∗j ] dσ.

.
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We define Ã(λ, ω) to be the N ×N complex matrix holomorphic in ω given by the following power series with
ω = o(1) and λ = O(1):

Ã(λ, ω) :=
v2bλ

ω2
A

(
ω,

ω2

v2bλ

)
C =

(
N∑

l=1

+∞∑

p=0

v2bω
2p

λp

∫

∂Bi

(
L−1
0 (λB1(ω) + v−2

b B2(ω))
)p+1

Clj [φ
∗
l ] dσ

)

1≤i,j≤N

.

(3.33)

Equation (3.27) implies that Ã(λ, ω) reads more explicitly at second order

Ã(λ, ω) = λV − C +
iωλ

4πvb
V 11TC − iω

4π

(
1

vb
− 1

v

)
C11TC +O(ω2). (3.34)

From the definition (3.33), it is straightforward to observe that ω is a characteristic value of A(ω, δ) if and

only if λ = ω2/(v2bδ) is a characteristic value of λ 7→ Ã(λ, ω). The interest of introducing Ã(λ, ω) lies in the
fact that under the simplicity assumption (3.32), there exist N characteristic functions (λi(ω))1≤i≤N which
are holomorphic in ω. This enables to solve the splitting of the scattering frequencies ω±

i (δ), by inverting the
relation ω±

i (δ)
2 = δv2bλi(ω) for 1 ≤ i ≤ N .

The existence of N holomorphic characteristic functions (λi(ω))1≤i≤N is guaranteed by the analytic implicit
function theorem (see e.g. Chapter 0 of [52]).

Proposition 3.7. Assume (3.32). There exist N generalized eigenfunctions (λi(ω))1≤i≤N and N associated
eigenvectors (ai(ω))1≤i≤N which are holomorphic in an open neighborhood V of ω = 0 and which satisfy, for
any 1 ≤ i ≤ N and ω ∈ V:
(i) Ã(λi(ω), ω)ai(ω) = 0,
(ii) ai(ω)

TV ai(ω) = 1,
(iii) λi(0) = λi and ai(0) = ai.

Proof. (i) and (ii) are equivalent to find holomorphic functions λi(ω) and ai(ω) such that F ((λi(ω),ai(ω)), ω) =
0 for any ω ∈ V, where F : (C× C

N )× C → C
N × C is the functional

F ((λ,x), ω) := (Ã(λ, ω)x,xTV x− 1), λ ∈ C, x ∈ C
N . (3.35)

Since (3.34) is equivalent to F ((λi,ai), 0) = 0, the result follows from the implicit function theorem whose
hypotheses are satisfied as soon as we prove that the differential of (λ,x) 7→ F ((λ,x), 0) is invertible at (λ,x) =
(λi,ai). A straightforward computation yields

DF ((λi,ai), 0)(λ
′,x′) = (λ′V ai + (λiV − C)x′, 2aT

i V x′).

Assuming (3.32), we find that DF ((λi,ai), 0) is indeed invertible, with the inverse given by

[DF ((λi,ai), 0)]
−1(α, β) =


aT

i α,
β

2
ai +

∑

j 6=i

aT
j α

λi − λj
aj


 , (α, β) ∈ C

N × C. (3.36)

�

Since the functions (λi(ω))1≤i≤N and (ai(ω))1≤i≤N are holomorphic, they can be written as

λi(ω) = λi,0 +
+∞∑

p=1

λi,pω
p, ai(ω) = ai,0 +

+∞∑

p=1

ai,pω
p, 1 ≤ i ≤ N. (3.37)

The coefficients (λi,p)p≥0, (ai,p)p≥0 can be computed explicitly by solving a triangular system obtained by
differentiating p times the equation F ((λi(ω),ai(ω)), ω) = 0 with respect to ω at ω = 0 [53]. Furthermore, the
coefficients satisfy the following properties:

Proposition 3.8. The coefficients λi,p and ai,p are real and imaginary for respectively even and odd values
of p:

∀1 ≤ i ≤ N, ∀p ∈ N, λi,2p ∈ R and λi,2p+1 ∈ iR, (3.38)

∀1 ≤ i ≤ N, ∀p ∈ N, ai,2p ∈ R
N and ai,2p+1 ∈ iRN . (3.39)

Proof. It is straightforward to verify that A(ω, δ) = A(−ω, δ). This implies in turn Ã(λ, ω) = Ã(λ,−ω), which
can be shown to entail λi(ω) = λi(−ω) and ai(ω) = ai(−ω). These properties reflect on the coefficients of the
expansion (3.37) in the identities (3.38) and (3.39). �

The next and final step is to invert the equation ω2 = δv2bλi(ω) for 1 ≤ i ≤ N , which can be achieved as
follows.
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Proposition 3.9. For δ > 0 sufficiently small, the matrix A(ω, δ) has 2N characteristic values (ω±
i (δ))1≤i≤N

which are the implicit solutions to the equations

ω+
i (δ) = δ

1
2 vb

√
λi(ω

+
i (δ)) and ω

−
i (δ) = −δ 1

2 vb

√
λi(ω

+
i (δ)),

where z 7→ √
z denotes the analytic continuation of the square root to C\R−. The functions ω±

i (δ) are analytic

in δ
1
2 , i.e. there exists coefficients (ω±

i,p)p≥2 such that

ω±
i (δ) = ±vbλ

1
2

i δ
1
2 +

+∞∑

p=2

ω±
i,pδ

p

2 . (3.40)

Furthermore:

(i) the coefficients ω±
i,p are real and imaginary for respectively even and odd values of p:

ω±
i,2p ∈ R and ω±

i,2p+1 ∈ iR, ∀1 ≤ i ≤ N, ∀p ≥ 2;

(ii) ω−
i (δ) = −ω+

i (δ), i.e. ω
+
i (δ) and ω−

i (δ) are symmetrical with respect to the imaginary axis, or in other
words

ω+
i,2p = −ω−

i,2p and ω+
i,2p+1 = ω−

i,2p+1, ∀1 ≤ i ≤ N, ∀p ≥ 2.

Proof. We apply once again the analytic implicit function theorem to the functions F±
i defined by

F±
i (ω, z) := ω ∓ zvb

√
λi(ω).

Obviously F±
i (0, 0) = 0 and ∂ωF

±
i (0, 0) = 1 6= 0 so the hypotheses of the implicit function theorem are satisfied

and there exists a unique local solution z 7→ ω±
i (z) to F

±
i (ω±

i (z), z) = 0 which is analytic for z belonging to a
neighborhood of 0. Then by definition of the scattering resonance ω±

i (δ), it holds

A(ω±
i (δ), δ)ai(ω

±
i (δ)) = 0 with ai(ω

±
i (δ))

TV ai(ω
±
i (δ)) = 1,

which shows that (ω±
i (δ))1≤i≤N are 2N characteristic values of A(ω, δ). Formula (3.40) determines then all

characteristic values of A(ω, δ). Then, noticing that F+
i (ω, z) = −F−

i (−ω, z) and F+
i (ω,−z) = F−

i (ω, z), we

obtain respectively −ω+
i (z) = ω−

i (z) and ω+
i (−z) = ω−

i (z), which easily imply both properties (i) and (ii) on
the coefficients (ωi,p)p≥2. �

Remark 3.5. If D is such that one of the eigenvalues (λi(ω))1≤i≤N of (2.4) is of multiplicity m > 1, (for instance
if N > 1 and if there are enough symmetries as in the examples of Section 2.3), then a much more subtle
analysis is required, because this eigenvalue λi(ω) split a priori into m distinct eigenvalues; see e.g. [30, 51]
about the characterization of the splitting of linear eigenvalues and [46, 57, 72, 66, 48] in the nonlinear case.

Then the frequency ω±
i (δ) := ±vbλi(ω)

1
2 δ

1
2 would not need to be holomorphic in δ

1
2 and a different Puiseux

series than (1.4) would need to be computed. Notably, the present analysis could be affected by the occurence
of poles (ω2 − δλi(ω))

p of order p > 1 in the modal expansion (4.1) below.

Let us finally retrieve the leading terms of the asymptotic expansion of ω±
i (δ) based on the previous propo-

sitions.

Proposition 3.10. The asymptotic expansions of the eigenvalue λi(ω) and of its associated eigenvector ai(ω)
read at first order:

λi(ω) = λi −
iωλ2i
4πv

(aT
i V 1)2 +O(ω2), 1 ≤ i ≤ N,

ai(ω) = ai −
∑

j 6=i

iωλi
4π(λi − λj)

(
λi
vb

− λj

(
1

vb
− 1

v

))
(aT

j V 1)(aT
i V 1)aj +O(ω2).

Proof. With the notation of Proposition 3.7, we have from (3.27)

DF ((λi,ai), 0)(λi,1,ai,1) = −DωF ((λi,ai), 0) = −
((

iλi
4πvb

V 11TC − i

4π

(
1

vb
− 1

v

)
C11TC

)
ai, 0

)
.

From (3.36), the inversion of the above equation yields

λi,1 = − iλi
4π

(
λi
vb

aT
i V 11TV ai −

(
1

vb
− 1

v

)
aT
i C11

TV ai

)

= − iλ2i
4πv

aT
i V 11TV ai,

(3.41)

ai,1 = −
∑

j 6=i

iλi
4π(λi − λj)

(
λi
vb

− λj

(
1

vb
− 1

v

))
(aT

j V 11TV ai)aj .

�
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Inserting these values in (3.40) we eventually retrieve the asymptotic claimed in [8]:

Corollary 3.1. Assume that the eigenvalues of the (weighted) capacitance matrix are simple (hypothesis (3.32)).
The subwavelength resonances ω±

k (δ) admit the following asymptotic expansions:

ω±
i (δ) = ±δ 1

2 vbλ
1
2

i − iv2bλ
2
i

8πv
(aT

i V 1)2δ +O(δ
3
2 ). (3.42)

Proof. (3.42) is obtained by writing

ω±
i (δ) = ±δ 1

2 vb

√
λi + λi,1ω

±
i (δ) +O(ω±

i (δ)) = ±δ 1
2 vb
√
λi

√
1± λi,1

λi
λ

1
2

i vbδ
1
2 +O(δ)

= ±δ 1
2 vb
√
λi +

1

2
δv2bλi,1 +O(δ

3
2 ),

(3.43)

which yields the result. �

Remark 3.6. IfD is a single resonatorD ≡ B (N = 1), we have C = cap(B) and V = |B| hence λ1 = cap(B)/|B|
and a1 = |B|−1/2. Then (3.42) reads more explicitly as

ω±
1 (δ) = ±δ 1

2 vb

√
cap(B)

|B| − iv2b cap(B)2

8πv|B| δ +O(δ
3
2 ), (3.44)

which is the result obtained in [13].

Remark 3.7. From (3.42), we see that when the vector of ones 1 = (1)1≤i≤N is an eigenvector of the weighted
capacitance matrix (e.g. when there are enough symmetries as in the cases considered in Section 2.3), then

aT
i V 1 = 0 for i > 1 and the first order varation of the resonant frequency vanishes: ω±

i (δ) = ±δ 1
2 vbλ

1
2

i +O(δ
3
2 ),

i.e. the corresponding frequencies ω±
i (δ) are quite robust to the variations of δ.

4. Modal decomposition

This section takes advantage of the explicit formula (3.22) in order to establish a (nonlinear) modal decom-
position of the form of (1.5) for the solution utot to the scattering problem (1.1). This is achieved in two steps:
we start by computing in Section 4.1 a pole expansion of the meromorphic coefficients x = (xi)1≤i≤N solutions
to the finite-dimensional problem (3.24). In Section 4.2, we substitute this expansion into (3.22) to obtain the
modal decomposition (1.5) for the scattered field utot. Finally, Section 4.3 states a few remarks regarding the
estimation of the magnitude of the resonances when considering physical, real frequencies ω > 0.

4.1. Pole expansion of the resonant amplitudes (xi)1≤i≤N

We first establish a pole decomposition of the meromorphic solution x to the finite-dimensional problem
(3.24), whose leading order expansion can be expressed in terms of the generalized eigenvalues and eigenvectors
(λj(ω))1≤j≤N and (aj(ω))1≤j≤N of Proposition 3.7.

Proposition 4.1. The following modal decomposition holds for the solution x(ω, δ) to (3.24):

x(ω, δ) =

N∑

i=1

v2b
ω2 − δv2bλi(ω)

(aT
i F − iωbTi F +O(ω2 + δ)TF )Cai(ω), (4.1)

where the mode ai(ω) is given by Proposition 3.7, bi is the vector defined by

bi :=
λi

4πvb
(aT

i V 1)2ai +
1

4πv

N∑

j 6=i

λiλj
(λi − λj)

(aT
i V 1)(aT

j V 1)aj , (4.2)

and where O(ω2 + δ) is a holomorphic vector field in ω and δ which can be written fully explicitly.

Proof. Using the quantity λ = ω2/(vbδ), (3.24) rewrites Ã(λ, ω)y = 1
δF with y = C−1x. By continuity of

the determinant, (ai(ω))1≤i≤N is a basis of CN for ω sufficiently small. Let us consider the decomposition of
y ≡ y(ω, δ) onto this basis with coefficients (yi(ω, δ))1≤i≤N :

y(ω, δ) =
N∑

i=1

yi(ω, δ)ai(ω). (4.3)

By Proposition 3.7, it holds Ã(λi(ω), ω)ai(ω) = 0 for any 1 ≤ j ≤ N . Therefore

Ã(λ, ω)y =

N∑

j=1

(Ã(λ, ω)− Ã(λj(ω), ω))aj(ω)yj(λ, ω). (4.4)
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We factorize (λ−λj(ω)) in this expression. From (3.33), there exist coefficients (Ap,l,m)p,m≥0,0≤l≤p+1 such that

Ã(ω, λ) can be expanded as

Ã(λ, ω) =
∑

p,l,m≥0
0≤l≤p+1

Ap,l,m
ω2p

λp
ωmλl.

Let us then write a fully explicit expansion of the difference Ã(λ, ω)− Ã(λj(ω), ω):

Ã(λ, ω)− Ã(λj(ω), ω) =
∑

p,l,m≥0
0≤l≤p+1

Ap,l,mω
2p+m(λl−p − λj(ω)

l−p)

=
∑

p,m≥0

Ap,p+1,mω
2p+m(λ− λj(ω)) +

∑

p≥1
l,m≥0

0≤l≤p−1

Ap,l,mω
2p+m

(
1

λp−l
− 1

λj(ω)p−l

)

= (λ− λj(ω))




∑

p,m≥0

Ap,p+1,mω
2p+m −

∑

p≥1
l,m≥0

0≤l≤p−1

Ap,l,mω
2p+m

p−l−1∑

q=0

1

λq+1λj(ω)p−l−q



,

(4.5)

where the third equality is a consequence of the identity

1

ap+1
− 1

bp+1
= −(a− b)

p∑

q=0

1

aq+1bp−q+1
, ∀a, b ∈ C, ∀p ∈ N.

Substituting λ = ω2/(v2bδ) reveals that the second term of (4.5) is a holomorphic function of ω and δ,

ω2p+m

p−l−1∑

q=0

v
2(q+1)
b δq+1

ω2(q+1)λj(ω)p−l−q
=

p−l−1∑

q=0

v
2(q+1)
b

λj(ω)p−l−q
δq+1ω2(p−q−1)+m,

which is also smaller than O(δ). Therefore the only term of (4.5) which is bigger than O(ω2+δ) is A0,1,0+A0,1,1ω
with A0,1,0 = V and A0,1,1ω = iω/(4πvb)V 11TC according to (3.34). Hence (4.5) reads with λ = ω2/(v2bδ):

Ã(λ, ω)− Ã(λj(ω), ω) = (λ− λj(ω))

(
V +

iω

4πvb
V 11TC +O(ω2 + δ)

)
.

Coming back to (4.4), we obtain

Ã(λ, ω)y =

N∑

j=1

(λ− λj(ω))

(
V +

iω

4πvb
V 11TC +O(ω2 + δ)

)
yj(ω, δ)aj(ω)

=

N∑

j=1

(λ− λj(ω))yj(ω, δ)

(
V aj(ω) + iω

λj
4πvb

V 11TV aj +O(ω2 + δ)

)
.

Left multiplying (4.4) by aT
i and using Proposition 3.10, we find that the vector z(ω, δ) given by

z(ω, δ) := ((λ− λj(ω))yj(ω, δ))1≤j≤N

is the solution to the linear system

(I + iωG+O(ω2 + δ))z(ω, δ) =
1

v2bδ
F̃ , (4.6)

where F̃ := (aT
i F )1≤i≤N and G is the matrix

G := (Gij)1≤i,j≤N :=

([
λj
4πvb

− λjδi 6=j

4π(λj − λi)

(
λj
vb

− λi

(
1

vb
− 1

v

))]
(aT

i V 1)(aT
j V 1)

)

1≤i,j≤N

=

((
λjδij
4πvb

+
δi 6=j

4πv

λiλj
(λi − λj)

)
(aT

i V 1)(aT
j V 1)

)

1≤i,j≤N

.

By using a Neumann series to invert (4.6), we arrive at

z =
1

δ
(I − iωG+O(ω2 + δ))F̃

and then, since yi(ω, δ) = eTi z(ω, δ)/(λ− λi(ω)), we finally obtain

yi(ω, δ) =
1

δ

1

λ− λi(ω)
(aT

i F − iωeTi GF̃ +O(ω2 + δ)TF ), 1 ≤ i ≤ N. (4.7)
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The result follows from λ = ω2/(v2bδ) and by substituting the value of G and F̃ in bi =
∑N

j=1Gijaj . �

Remark 4.1. If D is constituted of a single resonator, i.e. N = 1 and D ≡ B, the vector b1 of (4.2) reads:

b1 =
cap(B)

4πvb|B| 12
.

Remark 4.2. It is interesting to note that the modes (ai(ω))1≤i≤N featured in the decomposition (4.1) are
not the modes (ai(ω

±
i (δ))) that can be built from the resonant frequencies (ω±

i (δ))1≤i≤N , as one could have
expected.

Remark 4.3. The interest of the formula (4.1) lies in that there is no approximation made in the denominators,
which vanish exactly at the “true” resonant frequencies ω±

i (δ))1≤i≤N . (4.1) is more explicit than a Laurent
series expansion of A[δ, ω]−1 in the neighborhood of only one of these poles.

Remark 4.4. It is clear from the proof that (4.1) is a nonlinear continuation of the more standard modal
decomposition

x̂ =

N∑

j=1

1

λ− λj
(aT

j F )Caj ,

which is the solution of the linear problem

Ã(λ, 0)C−1x̂ = F with Ã(λ, 0) = λV − C.

We now factorize the denominators of (4.1) in order to make the poles (ω±
i (δ))1≤i≤N appear more explicitly

in (4.1).

Proposition 4.2. We can write the following factorization for the poles of (4.1) in the regime ω, δ → 0:

ω2 − δv2bλi(ω) = (1 +O(δ))(ω − ω+
i (δ))(ω − ω−

i (δ)), (4.8)

where the remainder O(δ) is a holomorphic function of ω and δ
1
2 , which can be written fully explicitly, and

where ω+
j (δ) and ω

−
j (δ) are the resonant frequencies characterized by Proposition 3.9.

Proof. It is clear that

ω2 − δv2bλi(ω) =
(
ω − vbδ

1
2

√
λi(ω)

)(
ω + vbδ

1
2

√
λi(ω)

)

=

[
ω − ω+

i (δ)− vbδ
1
2

(√
λi(ω)−

√
λi(ω

+
i (δ))

)][
ω − ω−

i (δ) + vbδ
1
2

(√
λi(ω)−

√
λi(ω

−
i (δ))

)]
.

Let us consider the holomorphic function gi(ω) :=
√
λi(ω) and denote by (gi,p)p∈N the coefficients of its Taylor

expansion at ω = 0:

gi(ω) =

+∞∑

p=0

gi,pω
p.

We consider the function hi(ω, δ) defined as follows:

1 + hi(ω, δ) :=
ω2 − δλi(ω)

(ω − ω+
i (δ))(ω − ω−

i (δ))
=

[
1− vbδ

1
2
gi(ω)− gi(ω

+
i (δ))

ω − ω+
i (δ)

] [
1 + vbδ

1
2
gi(ω)− gi(ω

−
i (δ))

ω − ω−
i (δ)

]
. (4.9)

Then the result (4.8) is proved if we show that hi(ω, δ) is holomorphic in ω and δ
1
2 with hi(ω, δ) = O(δ). By

using the identity ap − bp = (a− b)(ap−1 + ap−2b+ · · ·+ bp−2a+ bp−1) valid for any a, b ∈ C and p ∈ N, we can
write the full asymptotic expansion of (4.9):

gi(ω)− gi(ω
+
i (δ))

ω − ω+
i (δ)

=

+∞∑

p=1

p−1∑

l=0

gi,pω
+
i (δ)

p−1−lωl =

+∞∑

l=0

+∞∑

p=l+1

gi,pω
+
i (δ)

p−1−lωl

=

+∞∑

p=0

(
+∞∑

l=0

gi,l+p+1ω
+
i (δ)

l

)
ωp = gi,1 +O(δ

1
2 ), (4.10)

and similarly

gi(ω)− gi(ω
−
i (δ))

ω − ω−
i (δ)

=

+∞∑

p=0

(
+∞∑

l=0

gi,l+p+1ω
−
i (δ)

l

)
ωp = gi,1 +O(δ

1
2 ). (4.11)

Hence, coming back to (4.9), we see that the function hi is holomorphic in ω and δ
1
2 , and we obtain

1 + hi(ω, δ) = (1− vbδ
1
2 gi,1 +O(δ))(1 + vbδ

1
2 gi,1 +O(δ)) = 1 +O(δ).

�
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For any p ∈ N, we define the p-th order vector-valued tensor Mp by the formula

Mp :=

(∫

∂D

ypφ∗i dσ

)

1≤i≤N

. (4.12)

We recall that Mp is a vector tensor in the sense that for any p derivative indices 1 ≤ i1, . . . , ip ≤ 3, Mp
i1...ip

is

the vector

M
p
i1...ip

=

(∫

∂D

ypi1...ipφ
∗
i dσ

)

1≤i≤N

.

Mp is analogous to a polarization or moment tensor [16]; it appears in the asymptotic expansion of the right
hand-side F of (3.24). By the property (3.14), it holds M0 = 1.

Lemma 4.1. The following expansion holds for the vector F of (3.24):

F = δuin(0)

(
1− iω

4πv
cap(D)

)
C1+ δCM1 · ∇uin(0) +O((ω2 + δ)δ), (4.13)

where we recall M1 · ∇uin(0) :=
∑

1≤i1≤N M1
i1
∂i1uin(0).

Proof. We have the following expansion for the right-hand side f of (3.23):

f = δ
∂uin
∂n

− δ

(
1

2
I +Kk∗

D

)
(Sk

D)−1[uin]

= δ∇uin(0) · n− δ

(
1

2
I +K∗

D

)(
(SD)−1 − ω

v
(SD)−1SD,1(SD)−1

)
[uin] +O(ω2δ),

where we use the fact that uin satisfies (∆+k2)uin in R
3, which implies (e.g. by using the Fourier transform) that

∇puin is of order ωp on any bounded set and any p ∈ N. From (3.19) and (3.20), we obtain G−1(ω, δ)f = O(δ)
and hence the point (i) of the proposition.
Then for any 1 ≤ i ≤ N , we have∫

∂Bi

G−1(δ, ω)[f ] dσ

= −
∫

∂Bi

δL−1
0

(
1

2
I +K∗

D

)(
(SD)−1 − ω

v
(SD)−1SD,1(SD)−1

)
[uin] dσ +

∫

∂Bi

δ∇uin(0) · n dσ +O((ω2 + δ)δ)

= −δ
∫

∂Bi

(
(SD)−1 − ω

v
(SD)−1SD,1(SD)−1

)
[uin] dσ +O((ω2 + δ)δ)

= −δ
∫

∂D

uinψ
∗
i dσ + δ

ω

v
uin(0)

∫

∂D

ψ∗
i dσ

(
− i

4π

)∫

∂D

N∑

j=1

ψ∗
j dσ +O((ω2 + δ)δ)

= δuin(0)

N∑

j=1

Cij + δ∇uin(0) ·
∫

∂D

y1
N∑

j=1

Cijφ
∗
j dσ − δ

iω

4πv

N∑

j=1

Cij

∑

1≤j,l≤N

Cjluin(0) +O((ω2 + δ)δ).

Hence the right-hand side F =
(∫

∂Bi
G−1(δ, ω)[f ] dσ

)
1≤i≤N

of (3.24) is given by (4.13). �

Remark 4.5. The point 0 at which the Taylor expansion of uin is computed in (4.13) does not matter, it can be
replaced by any other fixed given point x0 ∈ R

3. However, as implicitly used in [26, 15], it needs to be replaced
by the center of the resonator in the dilute setting where its size shrinks to zero [40].

Remark 4.6. More generally, higher order terms in (4.13) depend on the tensors Mp as well as the operators
SD,p and K∗

D,p for larger values of p ∈ N.

Inserting (4.8) and (4.13) into (4.1), we obtain the following result.

Corollary 4.1. The following pole expansion holds as δ → 0 and ω → 0 for the solution x(ω, δ) of (3.24):

x(ω, δ) =

N∑

i=1

δg0i (ω)uin(0) + δg1i (ω) · ∇uin(0) +O((ω2 + δ)δ)

(ω − ω+
i (δ))(ω − ω−

i (δ))
Cai(ω), (4.14)

where g0i and g1i are the zero-th and first order scalar tensors

g0i (ω) := v2b

(
1− iω

4πv
cap(D)

)
(aT

i − iωbTi )C1, g1i (ω) := v2ba
T
i CM

1, 1 ≤ i ≤ N, (4.15)

for ai(ω) and bi defined in Proposition 3.7 and (4.2). Furthermore, the remainder O(ω2 + δ) is a holomorphic

function in ω and δ
1
2 which can be fully explicited.

Remark 4.7. The result of Corollary 4.1 is true without assuming ω = O(δ
1
2 ).
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4.2. Modal decomposition of the scattered field

We now use the result of Corollary 4.1 in order to obtain a modal decomposition for the field utot, solution to
(1.1). We start by defining “resonant states” as root functions to the integral problem (3.4), or to the scattering
problem (1.1). Since A(ω, δ)Cai(ω) = 0 when ω = ω±

i (δ) for any 1 ≤ i ≤ N (Proposition 3.7), these are
obtained by substituting (xi)1≤i≤N with the coordinates of the vector ai(ω) = (ai(ω)

TCej)1≤j≤N in (3.22)
with uin = 0:

Definition 4.1. For 1 ≤ i ≤ N , We define “resonant states” φ∗i (ω, δ), ψ
∗
i (ω, δ) ∈ L2(∂D) associated to the

eigenvector ai(ω) by the formulas

φ∗i (ω, δ) :=

N∑

j=1

(eTj Cai(ω))G−1(ω, δ)[φ∗j ], ψ∗
i (ω, δ) := (Sk

D)−1Skb

D [φ∗i (ω, δ)], 1 ≤ i ≤ N. (4.16)

We then define the “physical” resonant mode ui(ω, δ) as a function of R3 by

ui(ω, δ)(x) =

{
Skb

D [φ∗i (ω, δ)](x) if x ∈ D,

Sk
D[ψ∗

i (ω, δ)](x) if x ∈ R
3\D.

(4.17)

Remark 4.8. By definition, the mode (φ∗i (ω, δ), ψ
∗
i (ω, δ)) is a root function of the scattering problem (1.1), and

ui(ω
±
i (δ), δ) is a non-trivial solution to (1.1) with uin = 0.

Remark 4.9. The resonant states φ∗i (ω, δ) and ψ
∗
i (ω, δ) with 1 ≤ i ≤ N are to the first order linear combinations

of the potentials (φ∗i )1≤i≤N (definition (3.13)). More precisely, it holds, due to (3.19):

φ∗i (ω, δ) =
N∑

j=1

(eTj Cai(ω))φ
∗
j +O(ω2 + δ), (4.18)

ψ∗
i (ω, δ) =

N∑

j=1

(
eTj Cai(ω) +

iω

4π

(
1

vb
− 1

v

)
1TCai

N∑

l=1

Clj

)
φ∗j +O(ω2 + δ), (4.19)

where the second identity is a consequence of

(Sk
D)−1Skb

D [φ∗j ] = φ∗j −
iω

4π

(
1

vb
− 1

v

) N∑

l=1

ψ∗
l with ψ∗

l = −
N∑

j=1

Cljφ
∗
j . (4.20)

The resonant states enable to write a modal decomposition of the solution to (3.4). It is obtained by reading
first a modal decomposition for the potential φ and ψ of (3.22):

Corollary 4.2. The solution (φ, ψ) to the scattering problem (3.2) admits the following modal decomposition
as ω → 0 and δ → 0:

φ = G−1(ω, δ)[f ] +

N∑

i=1

δg0i (ω)uin(0) + δg1i (ω) · ∇uin(0) +O((ω2 + δ)δ)

(ω − ω+
i (δ))(ω − ω−

i (δ))
φ∗i (ω, δ), (4.21)

ψ = (Sk
D)−1Skb

D G−1(ω, δ)[f ]−(Sk
D)−1[uin]+

N∑

i=1

δg0i (ω)uin(0) + δg1i (ω) · ∇uin(0) +O((ω2 + δ)δ)

(ω − ω+
i (δ))(ω − ω−

i (δ))
ψ∗
i (ω, δ), (4.22)

where G−1(ω, δ)[f ] = O(δ); g0i and g1i are given by (4.15) and O((ω2 + δ)δ) is a holomorphic function of ω
and δ1/2.

Proof. Using (3.22) and (4.3) with x(ω, δ) = Cy(ω, δ), the potential φ reads

φ = G−1(ω, δ)[f ] +

N∑

j=1

eTj x(ω, δ)G−1(ω, δ)[φ∗j ] = G−1(ω, δ)[f ] +

N∑

j=1

N∑

i=1

yi(ω, δ)e
T
j Cai(ω)G−1(ω, δ)[φ∗j ]

= G−1(ω, δ)[f ] +

N∑

i=1

yi(ω, δ)φ
∗
i (ω, δ).

(4.23)

The result (4.21) follows from the expression (4.15) determining the value of yi(ω, δ). Then (4.22) is obtained
by inserting (4.21) into the first line of (3.5). �

Remark 4.10. The identity (4.21) improves the result of [13, 8] in the fact that it clearly highlights the structure
of the inverse of the operator A(ω, δ) in terms of the resonant poles ω±

i (δ) and modes φ∗i (ω, δ). Furthermore

the scattering amplitude is known up to the order O(ω2 + δ) instead of O(ω + δ
1
2 ).
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In order to propagate asymptotic expansions from the boundary potentials ψ and φ to the fields Sk
D[ψ] and

Skb

D [φ], we need to bound Sk
D[φ] as a function on R

3 in terms of φ. Following [71], we consider the space

H =

{
u | u

(1 + r2)1/2
∈ L2(R3),

∇u
(1 + r2)1/2

∈ L2(R3),
∂u

∂r
− iku ∈ L2(R3)

}
.

Let R > 0 be a sufficiently large positive number such that D is contained in the ball of radius R: D ⊂ B(0, R).
We recall the following facts (see [71, Theorem 2.6.6]).

Proposition 4.3. (i) Let u ∈ H1
loc(R

3) be a function solving the homogeneous Helmholtz equation on the
exterior domain R

3\B(0, R):




−∆u− k2u = 0 in R
3\B(0, R),

(
∂u

∂|x| − iku

)
(x) = o(|x|−1) as |x| → +∞.

(4.24)

Then u ∈ H and there exists constants α, α′ > 0 depending only on R such that

||u||H ≤ α||u||
H−

1
2 (∂B(0,R))

≤ α′||u||H1(B(0,R)).

(ii) In particular, Sk
D[φ] ∈ H for any φ ∈ L2(∂D) and there exists a constant α > 0 depending only on R > 0

such that

||Sk
D[φ]||H ≤ α||φ||L2(∂D).

Proof. The point (i) is obtained in Theorem 2.6.3 of [71]. Point (ii) is obtained by writing that u = Sk
D[φ]

satisfies 



−∆u− k2u = 0 in B(0, R),
s

∂u

∂n

{

= φ on ∂D,

∂u

∂n
− TRu = 0 on ∂B(0, R),

where TR : H
1
2 (∂B(0, R)) → H− 1

2 (∂B(0, R)) is the capacity operator. The variational formulation of this
Fredholm problem reads :

find u ∈ H1(B(0, R)) such that for any v ∈ H1(B(0, R)),
∫

B(0,R)

∇u · ∇v dx−
∫

∂B(0,R)

TRuv dσ =

∫

∂D

φv dσ, (4.25)

where v is the complex conjugate of the test function v. The bilinear form associated to (4.25) is injective and
independent of ∂D. Hence, setting v = u and using the Banach-Nečas-Babuška theorem [65], we can obtain the
existence of a constant C independent of ∂D such that

||u||H1(B(0,R)) ≤ α||φ||L2(∂D),

from where the result is derived. �

Since ω−
i (δ) = −ω+

i (δ), the denominators of (4.21) and (4.22) read:

(ω − ω+
i (δ))(ω − ω−

i (δ)) = (ω2 − |ω±
i (δ)|2)− 2iωℑ(ω±

i (δ)). (4.26)

Gathering (3.1), (4.21) and (4.22) yields the following result:

Corollary 4.3. The solution utot to the scattering problem (1.1) admits the following modal decomposition as
ω → 0 and δ → 0:

utot =

N∑

i=1

δg0i (ω)uin(0) + δg1i (ω) · ∇uin(0) +O(δ(δ + ω2))

ω2 − |ω±
i (δ)|2 − 2iωℑ(ω±

i (δ))
ui(ω, δ)+(uin−Sk

D[(Sk
D)−1[uin]])1R3\D+O(δ), (4.27)

where O(δ) is a function holomorphic in ω and δ such that ||O(δ)||H/δ → 0 as ω, δ → 0, and g0i and g1i are
given by (4.15).

Remark 4.11. Considering only real and positive values of ω, we see that −2ℑ(ω±
i (δ))/|ω±

i (δ)| plays the role of
a damping constant.

Remark 4.12. Corollary 4.3 is a clarification of Lemma 2.11 in [4], whereby the resonant denominator of (4.27)
vanishes exactly at the scattering frequency ω±

i (δ), and the norm (as well as the space H) measuring the
smallness of O(δ) is specified.
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Remark 4.13. Using (3.22) and (4.1) without approximating the vector F by using the result of Lemma 4.1,
one obtains the existence of N linear forms Ei(ω, δ) : L2(∂D)× L2(∂D) → R, for 1 ≤ i ≤ N , such that

δg0i (ω)uin(0) + δg1i (ω) · ∇uin(0) +O(δ(δ + ω2)) = Ei(ω, δ)


 uin

∂uin

∂n


 .

Inserting this expression into (4.27) yields the modal decomposition (1.5) claimed in the introduction. Fur-

thermore, the previous analysis shows that Ei(ω, δ) is holomorphic as a function of ω and δ
1
2 and verifies

Ei(ω, δ) = O(1) in the operator norm.

Remark 4.14. Applying the inverse Fourier transform to the resonant part of (4.27), it is possible to rewrite
(4.27) in the form of a modal decomposition in the time domain, see e.g. [4, 3, 21, 8].

4.3. Estimation of the magnitude of the resonances for real frequencies

Physically, the parameter ω is real, hence the resonant part of utot in (4.27) featuring resonant poles

δ

(ω − ω+
i (δ))(ω − ω−

i (δ))
=

δ

ω2 − |ω±
i (δ)|2 − 2iωℑ(ω±

i (δ))
(4.28)

has a bounded magnitude for these frequencies (despite it blows up for ω = ω±
i (δ)). Furthermore, the resonant

frequencies ω±
i (δ) are replaced by approximations in the scattering amplitude (4.28) [26, 13, 15, 8], and it is

important to estimate the induced error as ω is real (this error being unbounded for complex frequencies). In
this part, we gather a few results which allow to estimate the magnitude of the resonant poles of utot at real
frequencies, and to estimate the error induced by replacing resonant denominators with approximate ones.

Lemma 4.2. Let a, b ∈ R satisfying |a| > |b|. The following inequality holds:

∀ω ∈ R, |ω2 − a2 + 2ibω| ≥ 2|b|
√
a2 − b2. (4.29)

Proof. We consider the real function f defined by

f(ω) := |ω2 − a2 + 2ibω|2 = (ω2 − a2)2 + 4ω2b2,

whose derivative reads

f ′(ω) = 4ω(ω2 − a2) + 8b2ω = 4ω(ω2 − a2 + 2b2).

Consequently, f reaches therefore its minimum when ω2 = a2 − 2b2 and we obtain

∀ω ∈ R, f(ω) ≥ 4b4 + 4b2(a2 − 2b2) = 4b2(a2 − b2).

�

The bound (4.29) enables to estimate the amplitude of the resonances in (4.27).

Corollary 4.4. For real frequencies ω ∈ R, the resonant amplitudes of (4.27) are of order:

δ

ω2 − |ω±
i (δ)|2 − 2iωℑ(ω±

i (δ))
= O

(
δ

1
2

ℑ(ω±
i (δ))

)
. (4.30)

Remark 4.15. The enhancement coefficient of the resonance is therefore determined by the imaginary part of
ω±
i (δ). In most situations, ℑ(ω±

i (δ)) = O(δ) inducing an enhancement is of order O(δ−
1
2 ). However, ℑ(ω±

i (δ))
may be of order smaller or equal toO(δ2) when aT

i V 1 = 0 (eqn. (3.42)), e.g. in case of symmetries. Furthermore,
the modal decomposition (4.27) reveals that this amplification can be reduced by a factor ω in the situation
where g0i (ω) = 0.

Remark 4.16. The reader may retain that the magnitude of the resonance of (4.30) is obtained by setting
ω = |ω±

i (δ)| in (4.28).

We conclude this part by a remark on the error committed by the approximation of a resonant ratio (con-
sidered at real frequencies ω > 0) by a different one.

Lemma 4.3. Let a, b ∈ R satisfying |b| ≪ |a| and ∆a,∆b ∈ R such that |∆a| ≪ |a| and |∆b| ≪ |b|. If further

|∆a| ≪ |b|, (4.31)

then the following approximations hold as ω = O(|a|):
1

ω2 − (a+∆a)2 + 2i(b+∆b)ω
=

1

ω2 − a2 + 2ibω

(
1 +O

(
max(|∆a|, |∆b|)

|b|

))
. (4.32)
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Proof. We write, by using (4.29) and the assumptions of the lemma:

1

ω2 − (a+∆a)2 + 2i(b+∆b)ω
=

1

ω2 − a2 + 2ibω

1

1 +O
(∣∣∆a

b

∣∣+
∣∣∆b

b

∣∣ ω
|a|

)

=
1

ω2 − a2 + 2ibω

(
1 +O

(∣∣∣∣
∆a

b

∣∣∣∣+
∣∣∣∣
∆b

b

∣∣∣∣
ω

|a|

))
,

(4.33)

from where the result follows. �

Remark 4.17. The condition (4.31) is very important for the approximation (4.32) to be valid. Recalling the
expansion (3.42) of ω±

i (δ), we find that in the generic case where aT
i V 1 6= 0 (i.e. corresponding to i = 1 or

when the vector of ones 1 = (1)1≤i≤N is not an eigenvector of (2.4)), then ℑ(ω±
i (δ)) = O(δ) and

δ

ω2 − |ω±
i (δ)|2 − 2iωℑ(ω±

i (δ))
= O

(
δ−

1
2

)
.

Furthermore, we have the approximation

δ

ω2 − |ω±
i (δ)|2 − 2iωℑ(ω±

i (δ))
=

δ

ω2 − v2bλiδ +
iωδ
4πv v

2
bλ

2
i (a

T
i V 1)2

(
1 +O(δ

1
2 )
)
.

Remark 4.18. For the dimer considered in Section 2.3.3, the vector of ones 1 is an eigenvector of (2.4), hence
aT
2 C1 = 0 and the second resonant frequency (see also [15]) ω±

2 (δ) has the form

ω±
2 (δ) = ±vbλ

1
2

2 δ
1
2 ± η1δ

3/2 − η2iδ
2 +O(δ

5
2 ), (4.34)

for coefficients η1, η2 a priori positive. The resonant amplitude (4.30) is therefore of order O(δ−
3
2 ). Therefore,

the coefficient η1 needs to be kept in the denominator if one desires to approximate the amplitude with vanishing
errors: for ω real,

1

ω2 − |ω±
2 (δ)|2 − 2iωℑ(ω±

2 (δ))
=

1

ω2 − |
√
λ2δ +±η1δ3/2)|2 − 2iωη2δ2

(1 +O(δ
1
2 )),

however if we do not keep η1, we arrive instead at

1

ω2 − |ω±
2 (δ)|2 − 2iωℑ(ω±

2 (δ))
=

1

ω2 − |
√
λ2δ|2 − 2iωη2δ2

(1 +O(δ−
1
2 )).

5. Point scatterer approximations

In this final section, we compute the leading asymptotics of the far field pattern for the field scattered by the
resonant medium D in the subwavelength regime. The case of N resonators is treated in Section 5.1, where the
far field of the scattered field is computed in Proposition 5.3. We find that in this generic situation, the group
of N resonators behaves in the far field as a monopole scatterer (a point source) as the frequency ω gets close
to any of the resonant frequencies ω±

i (δ): utot(x) is approximately proportional to the fundamental solution
Γk(x) as |x| → +∞. Multipole behaviors, i.e. a far field pattern proportional to ∇pΓk(x) with p ≥ 1, can be
obtained under sufficient symmetry of the system of resonators D, requiring among other 1 to be an eigenvector
of the eigenvalue problem (2.4). Then, the result obtained for N bodies is applied to the case N = 1 with a
single resonator in Section 5.2, and finally to a dimer of N = 2 spherical identical resonators in Section 5.3. In
both cases N = 1 and N = 2 we retrieve and propose simplifications to the corresponding formulas obtained
in [13, 15]. We still assume the simplicity (3.32) of the eigenvalues of the (weighted) capacitance matrix. We
emphasize the connexion with generalized moment tensors [16] and we retrieve some results from [13, 15, 10].

5.1. Point scatterer approximation for a system with N resonators

The far field expansions of the solution utot to the scattering problem (1.1) is obtained by expanding the
kernel Γk(x− y) involved in the single layer potential Sk

D[ψ](x) in the representation (3.1). The general formula
for the expansion of Γk(x−y) as |x| → +∞ and y remains in a bounded set is provided by the addition formula
[34], which involves spherical Bessel functions. Here, we rather rely on a different multipole expansion of the
fundamental solution, which yields a simpler formula in the regime ω → 0. In order to establish this expansion,
we use the following result.

Lemma 5.1. For any p ∈ N, there exists a constant α > 0 such that

∀x ∈ R
3, ∇p+1Γk(x) ≤ α|x|−1(|x|−p + kp). (5.1)

Proof. The p-th derivative of Γk can be obtained by differentiating this function p+ 1 times using Leibniz and
Faa Di Bruno formula [70], from where the estimate (5.1) can then be explicitly derived. We provide below a
more constructive proof based on tensorial calculus.
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Let us introduced the family of p-th order tensor (fpj (x))0≤j≤p defined by induction on p by





fp+1
j (x) =

3∑

l=1

(
∂lf

p
j−1(x) + i

xl
|x|f

p
j (x)

)
⊗ el with 0 ≤ j ≤ p+ 1,

f00 (x) =
1

|x| ,

with the convention fpp+1(x) = fp−1(x) = 0. By induction, we can prove that fpj is homogeneous of degree −1−j
and that the p-th derivative of Γk reads

∇pΓk(x) = − 1

4π

p∑

j=0

kp−jfpj (x)e
ik|x|, x ∈ R

3.

Since fpj (x) is homogeneous of degree −1− j and does not depend on the wave number k for 0 ≤ j ≤ p, there
exists an independent constant α > 0 such that

∀x ∈ R
3, |fpj (x)| < α|x|−1−j for any 0 ≤ j ≤ p.

Hence we obtain the bound

|∇pΓk(x)| ≤ α

4π

p∑

j=0

kp−j |x|−1−j ≤ α

4π
|x|−1kp(p+ 1)max(1, k−p|x|−p)

≤ α(p+ 1)

4π
|x|−1(kp + |x|−p).

�

Proposition 5.1. The following multipole expansion holds for the kernel Γk(x− y) as ω → 0, |x| → +∞ and
|y| = O(1): for any p ∈ N,

Γk(x− y) =

p∑

l=0

(−1)l

l!
∇lΓk(x) · yl +O

(
1

|x|p+2

)
+O

(
ωp+1

|x|

)
. (5.2)

Proof. The Taylor-Lagrange formula reads

Γk(x− y) =

p∑

l=0

(−1)l

l!
∇lΓk(x) · yl + (−1)p+1

p!

∫ 1

0

(1− t)p∇p+1Γk(x− ty) · yp+1 dt.

Therefore, as |x| → +∞ and |y| remains bounded, the remainder of the Taylor sum truncated at order p is of
order O

(
∇p+1Γk(x)

)
which is of order O(|x|−1(ωp+1 + |x|−p+1) according to Lemma 5.1. �

The far field of the resonant modes ui(ω, δ) of (4.17) can be expressed in terms of polarization tensors
Mp(ω, δ) which generalize the tensors Mp defined by (4.12), in the sense that Mp(0, 0) = Mp.

Definition 5.1. We denote by Mp(ω, δ) the vector valued tensor

Mp(ω, δ) :=

(∫

∂D

yp(Sk
D)−1Skb

D G−1(ω, δ)[φ∗i ](y) dσ(y)

)

1≤i≤N

. (5.3)

Proposition 5.2. The resonant mode ui(ω, δ)(x) of (4.17) admits the following multipole expansion as |x| →
+∞ and ω → 0:

ui(ω, δ)(x) =

p∑

l=1

(−1)l

l!
ai(ω)

TCM l(ω, δ) · ∇lΓk(x) +O

(
1

|x|p+2

)
+O

(
ωp+1

|x|

)
. (5.4)

Proof. Denote φ̂∗i (ω, δ) := (Sk
D)−1Skb

D G−1(ω, δ)[φ∗i ]. By using (5.2), we can develop the single layer potential

Sk
D[φ̂∗i ] as |x| → +∞:

Sk
D[φ̂∗i ] =

∫

∂D

Γk(x− y)φ̂∗i (y) dσ(y) =

p∑

l=0

(−1)l

l!
∇lΓk(x) ·M l

i (ω, δ) +O(|x|−1(|x|−p−1 + ωp+1)).
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Then (4.16) and (4.17) yield

ui(ω, δ)(x) = Sk
D[ψ∗

i (ω, δ)](x) =
N∑

j=1

(eTj Cai(ω))Sk
D[φ̂∗j ](x)

=

p∑

l=0

(−1)l

l!
∇lΓk(x) ·

N∑

j=1

(eTj Cai(ω))M
l
j(ω, δ) +O(|x|−1(|x|−p−1 + ωp+1))

=

p∑

l=0

(−1)l

l!
∇lΓk(x) · ai(ω)

TCM l(ω, δ) +O(|x|−1(|x|−p−1 + ωp+1)).

�

We need to introduce a last tensor appearing in the point scatterer approximation of the scattered field
utot − uin.

Definition 5.2. We denote by K2 the second order scalar tensor defined by

K2 :=

∫

∂D

y1 ⊗ (Sk
D)−1[y1](y) dσ(y). (5.5)

Proposition 5.3. The following multipole expansion holds for the scattered field as |x| → +∞, ω → 0 and
δ → 0:

utot(x)− uin(x)

=
N∑

i=1

δg0i (ω)uin(0) + δg1i (ω) · ∇uin(0)
ω2 − |ω±

i (δ)|2 − 2iωℑ(ω±
i (δ))

ai(ω)
TC

[
M0(ω, δ)Γk(x)−M1 · ∇Γk(x) +|x|−1O(|x|−2 + ω2 + δ)

]

+

[(
1− iω

4πv
cap(D)

)
cap(D)uin(0) + 1TCM1 · ∇uin(0)

]
Γk(x)

− uin(0)1
TCM1 · ∇Γk(x) +∇uin(0) ·K2 · ∇Γk(x)

+ |x|−1O(ω2 + |x|−2) +O(δ),

(5.6)
where

∇uin(0) ·K2 · ∇Γk(x) :=
∑

1≤i1,i2≤3

K2
i1i2∂yi1

uin(0)∂yi2
Γk(x)

and where g0i (ω) and g
1
i (ω) are given by (4.15).

Proof. The point scatterer approximation of the resonant part is obtained by inserting (5.4) with p = 1 into
the modal decomposition (3.26), where we further note that

M1(ω, δ) · ∇Γ(x) = M1 · ∇Γ(x) +O((ω + δ)(|x|−1(ω + |x|−1))) = M1 · ∇Γ(x) +O(|x|−1(ω2 + δ + |x|−2)).

It remains to expand the non-resonant term −Sk
D[(Sk

D)−1[uin]](x) of (4.27). Observe first that

(Sk
D)−1[uin] = (SD)−1[uin]−

ω

v
(SD)−1SD,1(SD)−1[uin] +O(ω2)

= uin(0)(SD)−1[1∂D] +∇uin(0) · (SD)−1[y1]− uin(0)
ω

v
(SD)−1SD,1(SD)−1[1∂D] +O(ω2).

Then, (SD)−1[1∂D] =
∑N

i=1 ψ
∗
i and (3.9) entail

(SD)−1SD,1(SD)−1[1∂D] = − i

4π

N∑

i=1

(∫

∂D

ψ∗
i

) N∑

l=1

ψ∗
l =

i

4π
cap(D)

N∑

l=1

ψ∗
l .

Therefore, we arrive at

(Sk
D)−1[uin] = uin(0)

(
1− iω

4πv
cap(D)

) N∑

l=1

ψ∗
l +∇uin(0) · (SD)−1[y1] +O(ω2).
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Computing the far field of the single layer potential Sk
D[(Sk

D)−1[uin]], we find that

−Sk
D[(Sk

D)−1[uin]](x) = −Γ(x)

∫

∂D

(Sk
D)−1[uin] dσ +∇Γ(x) ·

∫

∂D

y1(Sk
D)−1[uin](y) dσ(y) +O(|x|−1(ω2 + |x|−2))

=

(
uin(0)

(
1− iω

4πv
cap(D)

)
cap(D)−

N∑

i=1

∫

∂D

ψ∗
i (y)y

1 dσ(y) · ∇uin(0)
)
Γk(x)

+

(
uin(0)

N∑

i=1

∫

∂D

ψ∗
i (y)y

1 dσ(y) +∇uin(0) ·
∫

∂D

y1 ⊗ (Sk
D)−1[y1](y) dσ(y)

)
· ∇Γk(x)

+O(|x|−1(ω2 + |x|−2)).

The result follows from the identity

N∑

i=1

∫

∂D

ψ∗
i (y)y

1 dσ(y) = −
N∑

i=1

N∑

j=1

∫

∂D

Cijφ
∗
j (y)y

1 dσ(y) = −1CM1,

where we recall the definition (4.12) of the tensor M1. �

Remark 5.1. From (3.19) and (4.20), we have the following expansion for (Sk
D)−1Skb

D G−1(ω, δ)[φ∗i ]:

(Sk
D)−1Skb

D G−1(ω, δ)[φ∗i ] = φ∗i +
iω

4π

(
1

vb
− 1

v

) ∑

1≤l,j≤N

Cljφ
∗
j +O(ω2 + δ).

Recalling M0 = 1 and Section 5.2, the tensor M0(ω, δ) occurring in the result of Proposition 5.3: has the
following asymptotic expansion:

M0(ω, δ) =

(
1 + iω

1

4π

(
1

vb
− 1

v

)
cap(D)

)
1+O(ω2 + δ). (5.7)

Remark 5.2. These expansions further highlight the fact that the vector of ones 1 = (1)1≤i≤N plays a particular
role if it turns to be an eigenvector of the capacitance matrix, as it occurs in case of many symmetries.

Remark 5.3. The multipole expansion (5.6) is in general of monopole type (utot(x)− uin(x) is proportional to
Γk(x) at leading order). A far field pattern of dipole type (proportional to ∇Γk(x)) can be observed if aT

i C1 = 0
as ω becomes close to the resonance ω±

i (δ). Generating systems with higher order far field patterns (proportional
to ∇pΓk(x) with p ≥ 2) does not seem trivial and would require to compute asymptotic expansions of utot at
higher orders.

5.2. Point scatterer approximation for a single resonator

We now specialize the result of Proposition 5.3 to the case N = 1, where D ≡ B is constituted of a single
resonator. Using our accurate multipole expansion (5.6), we are able to retrieve and to clarify the results
obtained for this context in [13, 8]. We also find a simplification of the damping constant of the complex
scattering coefficient, which we find directly related to the imaginary part of the resonance.

Proposition 5.4. Assume N = 1 and D ≡ B. The following monopole source behavior holds for the solution
utot to the scattering problem as |x| → +∞, ω → 0 and δ → 0.

utot(x)−uin(x) =
(

δv2b |B|−1 cap(B)

ω2 − |ω±
1 (δ)|2 − 2iωℑ(ω±

1 (δ))
+ 1

)
cap(B)uin(0)(1+O(ω+ δ+ |x|−1))Γk(x)+O(δ). (5.8)

Proof. In this context where N = 1, let us recall that a1 = |B|−1/2 and C = cap(B). Neglecting the contribu-
tions in O(ω) in (4.15), we find

g01(ω) = v2ba
T
1 C1+O(ω) = v2b |B|− 1

2 cap(B) +O(ω).

The result follows from (5.6). �

Remark 5.4. We see from (5.8) that the scattering coefficient contains the contribution of the constant 1 and
of a resonant coefficient which blows up exactly at the resonant frequency ω±

1 (δ).

We now simplify the expression of the scattering coefficient in (5.8) in the case where ω ∈ R is a physical,
real frequency. Following [13], let us denote by

ωM := ω±
1,1δ

1
2 = vb

√
cap(B)

|B| δ
1
2 (5.9)

the leading order of the resonant frequency ω±
1 (δ).
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Proposition 5.5. Assuming that ω is real, (5.8) reduces to the following point-wise behavior for the solution
utot to the scattering problem (1.1) as |x| → +∞, ω → 0 and δ → 0:

utot(x)− uin(x) =


 1

ω2

ω2
M

− 1 + iω cap(B)
4πv


 (1 +O(ω) +O(δ

1
2 ) +O(|x|−1)) cap(B)uin(0)Γ

k(x) +O(δ). (5.10)

Proof. We approximate the resonant denominator by using (4.32) and (3.44):

δv2b |B|−1 cap(B)

ω2 − |ω±
1 (δ)|2 − 2iωℑ(ω±

1 (δ))
=

ω2
M

ω2 − ω2
M +O(δ

3
2 ) + iω

(
δ
v2
b
cap(B)2

4πv|B| +O(δ2)
) =

1 +O(δ
1
2 )

ω2

ω2
M

− 1 + iω cap(B)
4πv

.

Then, (4.30) highlights that the above quantity is of order O(δ−
1
2 ), hence the constant 1 of (5.8) is of the same

order as the error of the approximation:

δv2b |B|−1 cap(B)

ω2 − |ω±
1 (δ)|2 − 2iωℑ(ω±

1 (δ))
+ 1 =

1
ω2

ω2
M

− 1 + iω cap(B)
4πv

+O(1) =,
1

ω2

ω2
M

− 1 + iω cap(B)
4πv

(1 +O(δ
1
2 )),

from where the result follows. �

Remark 5.5. The expression (5.10) is somewhat simpler as the result of the original paper [13] (Theorem 3.1).
The difference lies in the error term. First, the constant 1 of (5.8) was kept in [13], which does not change the
approximation error. Keeping the constant 1 yields the scattering coefficient

1
ω2

ω2
M

− 1 + iω cap(B)
4πv

(1 +O(δ
1
2 )) =


 1

ω2

ω2
M

− 1 + iω cap(B)
4πv

+ 1


 (1 +O(δ

1
2 ))

=
1

1− ω2
M

ω2 + i
v2
b
cap(B)2

4πv|B|
δ
ω

(1 +O(δ
1
2 )).

(5.11)

Then, referring to the formula (2.28) for the damping constant in [8], one can verify that

1− v2b cap(B)

|B|
δ

ω2
+ i

(
(v + vb) cap(B)

8πvvb
ω − v − vb

v

vb cap(B)2

8π|B|
δ

ω

)

=

(
1− v2b cap(B)

|B|
δ

ω2
+ i

v2b cap(B)2

4πv|B|
δ

ω

)(
1 + i

(v + vb) cap(B)

8πvvb
ω +O(ω2)

)

=

(
1− v2b cap(B)

|B|
δ

ω2
+ i

v2b cap(B)2

4πv|B|
δ

ω

)
(1 +O(ω)) .

(5.12)

Hence, using (5.11) and (5.12), we obtain

1
ω2

ω2
M

− 1 + iω cap(B)
4πv

=
1 +O(δ

1
2 )

1− ω2
M

ω2 + i
(

(v+vb) cap(B)
8πvvb

ω − v−vb

v
vb cap(B)2

8π|B|
δ
ω

) , (5.13)

which shows that the damping constant of (5.10) and the one of [8, equation (2.28)] are equivalent for an

approximation of the scattered field of the order O(δ
1
2 ). However, let us remark than our formula (5.10) is more

enlightening because it clearly shows that the damping coefficient can be taken to be positive and equal (at first
order) to twice the opposite of the imaginary part of the complex resonant frequency ω±

1 (δ).

5.3. Point scatterer approximation for a dimer

We now consider a dimer made of two identical spheres B1 and B2 of volume |B1| = |B2| = |D|/2, following
the setting of Section 2.3.3. Without loss of generality, we assume that the axis of the dimer is aligned with
the direction e1, and that the origin O = (0, 0, 0) is the middle of the segment joining the two centers of
B1 and B2. The setting is illustrated on Figure 7. In this final part, we retrieve and improve the results of

B1

e1

e2

e3

B2 D = B1 ∪B2

O

Figure 7. Setting of the dimer D constituted of two identical spheres.

[15] concerned with the derivation of point scatterer approximations for the field scattered by the dimer. Our
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analysis emphasizes the fact that the “dipole” behavior of the resonance associated to the second scattering
frequency ω±

2 (δ) is closely related to the symmetry of the system and cannot be expected for arbitrary system
of N resonators, where all resonances are in general of “monopole” type.

We recall that in the present context, the capacitance matrix C and the volume matrix V read

C =


 a −b
−b a


 , V =

|D|
2
I, (5.14)

for two positive constants a > b > 0 (Section 2.3.3). The solutions to the generalized eigenvalue problem (2.4)
are given by

λ1 =
2

|D| (a− b) =
cap(D)

|D| , λ2 =
2

|D| (a+ b), (5.15)

with respective eigenvectors a1 and a2 normalized such that aT
i V aj = δij for 1 ≤ i, j ≤ 2:

a1 = |D|− 1
2


1

1


 = |D|− 1

21, a2 = |D|− 1
2


 1

−1


 . (5.16)

Note that (5.14) to (5.16) hold as soon as the dimer is symmetric with respect to the median plane orthogonal
to e1. However, we consider spherical resonators because the rotational invariance along the axis of the dimer
is essential to obtain a far field of dipole type for ω close to the resonance ω+

2 (δ).

In what follows, we denote by ω1 and ω2 the first order approximations of the real part of the resonant
frequencies (ω+

i (δ))1≤i≤2 (equation (3.42)):

ω1 := δ
1
2 vb

√
2

|D| (a− b), ω2 := δ
1
2 vb

√
2

|D| (a+ b).

The multipole expansion (5.6) involves M0 = 1 and M1. As we obtain below, the simplifications which entail
the dipole behavior of the second resonance are induced by the algebraic symmetry properties of the tensor
M0 and M1. The latter are the object of the next proposition, which examines more generally the symmetry
properties of the polarization tensors Mp defined by (4.12) for an arbitrary p ∈ N.

Lemma 5.2. The polarization tensor Mp of (4.12) associated to the system of two identical spherical resonators
has the following symmetries for any p ∈ N:

(i) there exists a scalar tensor X p of order p such that for any indices 1 ≤ i1 . . . ip ≤ 3,

M
p
i1...ip

= X p
i1...ip


1

1


 if p is even,

M
p
i1...ip

= X p
i1...ip


 1

−1


 if p is odd.

(ii) X p
i1...ip

= 0 if 2 or 3 occurs an odd number of times in the indices (i1, . . . , ip). More precisely,

X p
i1...ip

= (−1)δi1j+···+δipjX p
i1...ip

for j = 2, 3.

(iii) The numbers 2 and 3 can be permuted in the indices (i1, . . . , ip). More precisely, if σ ∈ S3 is the permu-
tation defined by σ(1) = 1, σ(2) = 3, σ(3) = 2, then

X p
σ(i1)...σ(ip)

= X p
i1...ip

.

Proof. We consider the planar symmetries S1, S2, S3 defined by

Siei = −ei and Siej = ej for j 6= i with 1 ≤ i, j ≤ 3,

and the symmetry S23 satisfying

S23e1 = e1, S23e2 = e3 and S23e3 = e2.

Due to the symmetries of D, the potential ψ∗
l = S−1

D [1∂Bl
] with l = 1, 2 satisfies

ψ∗
1 ◦ S1 = ψ∗

2 , ψ∗
2 ◦ S1 = ψ∗

1 ,

ψ∗
l ◦ Si = ψ∗

l for l = 1, 2 and i = 2, 3.

Let us consider the p-th order vector tensors M̃p ≡ (M̃p
i )1≤i≤3 defined by

M̃p
i :=

∫

∂D

ψ∗
i y

p dσ, 1 ≤ i ≤ 3. (5.17)
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By considering the change of variables y = Si(y
′) with 1 ≤ i ≤ 3 in (5.17), we obtain respectively

M̃p
1,i1...ip

= (−1)δi11+···+δip1Mp
2,i1...ip

, (5.18)

M̃p
l,i1...ip

= (−1)δi1j+···+δipjM̃p
l,i1...ip

for l = 1, 2 and j = 2, 3. (5.19)

Furthermore, the change of variables y = S23(y
′) in (5.17) yields

M̃p
l,i1...ip

= M̃p
l,σ(i1)...σ(ip)

. (5.20)

Property (5.18) implies that M̃p
i1...ip

is proportional to
(
1 1

)T
if there is an even number of 1 in (i1, . . . , ip),

and to
(
1 −1

)T
otherwise. The identity (5.19) states that M̃p

i1...ip
= 0 if there is an odd number of 2 or 3 in

(i1, . . . , ip). Finally, (5.20) implies that we can permute the numbers 2 and 3 in (i1, . . . , ip), so properties (i),

(ii) and (iii) hold for M̃p instead of Mp. Since Mp = −C−1M̃p and
(
1 1

)T
and

(
1 −1

)T
are eigenvectors

of C, these results also hold for Mp. �

Corollary 5.1. The moment tensor M1 defined by (4.12) can be written

M1 =M1
1,1e1


 1

−1


 ,

for an effective constant M1
1,1 ∈ C.

Remark 5.6. Let us further illustrate the result of Lemma 5.2 on the higher order tensors M2 and M3: using
the properties (i), (ii) and (iii), we find that M2 and M3 depend respectively on only three effective coefficients:

M2 = (M2
1,11e1 ⊗ e1 +M2

1,22e2 ⊗ e2 +M2
1,33e3 ⊗ e3)


1

1


 ,

M3 = (M3
1,111e1 ⊗ e1 ⊗ e1 +M3

1,122e1 ⊗ e2 ⊗ e2 +M3
1,122e1 ⊗ e3 ⊗ e3)


 1

−1


 .

We also need to determine the symmetry properties of the second order tensor K2 of (5.5). We find that K2

is a diagonal tensor.

Lemma 5.3. The second order scalar tensor K2 defined by (5.5) can be written

K2 = K2
11e1 ⊗ e1 +K2

22(e2 ⊗ e2 + e3 ⊗ e3), (5.21)

for two effective coefficients K2
11,K

2
22 ≡ K2

33 ∈ C.

Proof. Due to the symmetry of the dimer, the potential ζi := (Sk
D)−1[yi] with 1 ≤ i ≤ 3 satisfies

ζi ◦ Sj = (Sk
D)−1[yi ◦ Sj ] for 1 ≤ j ≤ 3.

Consequently, we find by using the change of variables y′ = Siy with i = 1, 2, 3:

K2
i1i2 = (−1)δi1 i(−1)δi2 iK2

i1i2 ,

which implies K2
i1i2

= 0 as soon as i1 6= i2. Then the change of variables y′ = S23 yields

K2
i2i2 = K2

σ(i2)σ(i3)
,

from where we obtain K2
22 = K2

33. �

Proposition 5.6. The following multipole expansion holds for the field utot(x) scattered through a dimer D
constituted of two identical spherical resonators, as |x| → +∞ and ω, δ → 0:

utot(x)− uin(x)

=

[
ω2
1(1− iωτv)

ω2 − |ω±
1 (δ)|2 − 2iωℑ(ω±

1 (δ))
+ 1

]
cap(D)(1− iωτv)uin(0)(1 +O(ω2) +O(|x|−2))Γk(x)

+
2(a+ b)(M1

1,1)
2ω2

2

ω2 − |ω±
2 (δ)|2 − 2iωℑ(ω±

2 (δ))
∂y1

uin(0)∂y1
Γk(x)(1 +O(ω) +O(|x|−1))

+K2
11∂y1

uin(0)∂y1
Γk(x) +

3∑

i=1

K2
ii∂yi

uin(0)∂yi
Γk(x) +O(|x|−1(ω2 + |x|−2)) +O(δ),

(5.22)

where τv := cap(D)/(2πv) and (K2
ii)1≤i≤3 are the coefficients of the diagonal tensor K2 of (5.21).
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Proof. According to (4.2) and using the orthogonality aT
2 V 1 = 0, we find

b1 =
cap(D)

4πvb
a1, b2 = 0.

This allows to compute the coefficients g0i (ω) and g
1
i (ω) of (4.15):




g01(ω) = v2b

(
1− iω

4πv
cap(D)

)(
1− iω

4πvb
cap(D)

)
a1C1

= v2b

(
1− iω

4π
cap(D)

(
1

v
+

1

vb

))
|D|− 1

2 cap(D) +O(ω2),

g11(ω) = v2ba
T
1 CM

1 = 0,

g02(ω) = 0,

g12(ω) = v2ba
T
2 CM

1 = v2b |D| 12λ2M1
1,1e1 = 2v2b |D|− 1

2 (a+ b)M1
1,1e1.

(5.23)

Furthermore, Proposition 3.10 imply that the first order perturbation of the eigenvectors are zero:

ai(ω) = ai +O(ω2). (5.24)

Therefore, with the help of (5.7), we find

a1(ω)
TCM0(ω, δ)(M0(ω, δ)Γk(x)−M1 · ∇Γk(x)) =

(
1 +

iω

4π

(
1

vb
− 1

v

)
cap(D)

)
|D|− 1

2 cap(D)Γk(x),

a2(ω)
TCM0(ω, δ)(M0(ω, δ)Γk(x)−M1 · ∇Γk(x)) = |D| 12λ2M1

1,1∂y1
Γk(x) = 2|D|− 1

2 (a+ b)M1
1,1∂y1

Γk(x).

This together with (5.23) yields the expressions of the resonant scattering amplitudes in (5.22). The result
follows from (5.6) by using 1TCM1 = 0. �

Proposition 5.6 yields a higher order asymptotic for the far field expansion of utot than [15, Theorem 4.2].
To conclude this section, we specialize (5.22) to the case where ω is real, using the approximation result of
Lemma 4.3. We recall the definition (4.34) of the constants η1, η2 > 0 involved in the higher order expansion of
the scattering frequency ω±

2 (δ).

Proposition 5.7. Assuming that ω is real, (5.22) reduces to the following multipole expansion for the solution
utot to the scattering problem (1.1) as |x| → +∞, ω → 0 and δ → 0:

utot(x)− uin(x)

=

[
1

ω2

ω2
1

− 1 + iω
4πv cap(D)

]
cap(D)uin(0)(1 +O(ω) +O(δ

1
2 ) +O(|x|−2))Γk(x)

+
2(a+ b)(M1

1,1)
2

ω2

ω2
2

− 1− 2 η1

ω2
δ

3
2 + 2iη2δ2

ω
ω2

2

∂y1
uin(0)∂y1

Γk(x)(1 +O(ω) +O(|x|−1)).

Remark 5.7. For real frequencies, the scattering coefficient for the dipole resonance is of order

ω2
2

ω2 − |ω±
2 (δ)|2 − 2iℑ(ω±

2 (δ))ω
= O(δ−

3
2 ),

which is greater than the amplitude coefficient of order O(δ−
1
2 ) for the monopole mode. However, this magnitude

is tempered by the derivative ∂y1
uin(0) which is of order O(ω), and by the faster decay of ∂y1

Γk(x) as O(|x|−1(ω+

|x|−1)). Therefore, for ω > 0 close to ω+
2 (δ) (and so ω = O(δ

1
2 )), we find that the scattered field utot(x) is of

order
O(δ−

3
2 δ

1
2 |x|−1(δ

1
2 + |x|−1)) = O(δ−

1
2 |x|−1 + δ−1|x|−2).

Hence, the amplitude of the monopole and dipole modes are similar (of order O(1)) at the distance |x| = O(δ−
1
2 ).

However, the amplitude of the dipole mode is larger than the one of the monopole resonance for |x| → +∞
with |x| ≪ δ−

1
2 .

Remark 5.8. The result of Proposition 5.7 coincides with the one of [15, Theorem 4.2] up to some rewriting of
the denominators and by observing that the constant P of equation (4.3) of this reference is given by

P =

∫

∂D

y1(ψ
∗
1 − ψ∗

2) dy = −


 1

−1




T

CM1
1 = 2(a+ b)M1

1,1.

Remark 5.9. The non-resonant term ∇uin(0) · K2 · ∇Γk(x) appearing in (5.6) brings a contribution of order

O(1), which is smaller compared to the error of order O(ωδ−
3
2 ) = O(δ−1) committed on the resonant amplitude

when considering real frequencies ω ∈ R and truncating at order O(ω) +O(|x|−1)).
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