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ANALYSIS OF A MONTE-CARLO NYSTROM METHOD∗1

FLORIAN FEPPON† AND HABIB AMMARI‡2

Abstract. This paper considers a Monte-Carlo Nystrom method for solving integral equa-3
tions of the second kind, whereby the values (z(yi))1≤i≤N of the solution z at a set of N random4
and independent points (yi)1≤i≤N are approximated by the solution (zN,i)1≤i≤N of a discrete, N -5
dimensional linear system obtained by replacing the integral with the empirical average over the6
samples (yi)1≤i≤N . Under the unique assumption that the integral equation admits a unique solu-7
tion z(y), we prove the invertibility of the linear system for sufficiently large N with probability one,8
and the convergence of the solution (zN,i)1≤i≤N towards the point values (z(yi))1≤i≤N in a mean-9

square sense at a rate O(N− 1
2 ). For particular choices of kernels, the discrete linear system arises10

as the Foldy-Lax approximation for the scattered field generated by a system of N sources emitting11
waves at the points (yi)1≤i≤N . In this context, our result can equivalently be considered as a proof12
of the well-posedness of the Foldy-Lax approximation for systems of N point scatterers, and of its13
convergence as N → +∞ in a mean-square sense to the solution of a Lippmann-Schwinger equation14
characterizing the effective medium. The convergence of Monte-Carlo solutions at the rate O(N−1/2)15
is numerically illustrated on 1D examples and for solving a 2D Lippmann-Schwinger equation.16

Key words. Monte-Carlo method, Nystrom method, Foldy-Lax approximation, point scatterers,17
effective medium.18
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1. Introduction. Let Ω ⊂ R
d be a bounded Lipschitz domain of dimension20

d ∈ N. This paper is concerned with the stability and convergence analysis of a21

Monte-Carlo Nystrom method for approximating the solution of integral equations of22

the second kind of the form23

(1.1) z(y) +

∫

Ω

k(y, y′)z(y′)ρ(y′)dy′ = f(y), y ∈ Ω,24

where z ∈ L2(Ω,C) is the unknown, ρ ∈ L∞(Ω,R+) is a probability distribution25

(satisfying ρ ≥ 0 in Ω and
∫
Ω
ρ(y′)dy′ = 1), k ∈ L∞(Ω, L2(Ω,C)) is a square integrable26

kernel and f ∈ L2(Ω,C) is a square integrable right-hand side: more precisely we27

assume28

(1.2) ||k||2L∞(L2(Ω)) := sup
y′∈Ω

∫

Ω

|k(y, y′)|2dy < +∞, ||f ||L2(Ω) :=

∫

Ω

|f(y)|2dy < +∞.29

Let (yi)1≤i≤N be a set of N points drawn independently from the distribution ρ(y′)dy′30

in the domain Ω. We consider the approximation of (1.1) by the N dimensional linear31

system32

(1.3) zN,i +
1

N

∑

j 6=i

k(yi, yj)zN,j = f(yi), 1 ≤ i ≤ N,33

where the integral of (1.1) has been replaced with the empirical average. Assuming34

that (1.1) is well-posed, it is a natural question to ask whether the linear system35
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fellowship of the Institute for Mathematical Research (FIM).
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2 F. FEPPON AND H. AMMARI

(1.3) admits a unique solution, and if there is a sort of convergence of (zN,i)1≤i≤N36

towards the vector (z(yi))1≤i≤N . The goal of this paper is to provide a quantitative37

and positive answer to this problem: our main result is given in Proposition 3.6 below,38

where we prove without further assumption that there exists an event HN0
(specified39

in (3.5) below) satisfying P(HN0
) → 1 as N0 → +∞ such that the linear system (1.3)40

is well-posed for any N ≥ N0 when HN0
is realized. Moreover, we prove that there41

exists a constant C > 0 independent of N such that42

(1.4) E

[
1

N

N∑

i=1

|zN,i − z(yi)|2
∣∣∣HN0

] 1
2

≤ CN− 1
2 .43

We also obtain in the meantime the convergence of the Nystrom interpolant44

(1.5) zN (y) := f(y)− 1

N

N∑

i=1

k(·, yi)zN,i45

towards the function z solution to (1.1) in the following mean-square sense:46

(1.6) E[||zN − z||2L2(Ω)|HN0
]
1
2 ≤ CN− 1

2 .47

If the mean-square error rate of N− 1
2 is to be expected for such Monte-Carlo method,48

the analysis of (1.3) is not completely standard because the variables (zN,i)1≤i≤N49

depend on the joint distribution of the full set of points (yi)1≤i≤N . In particular, these50

are not independent random variables and the correlations E[〈zN,i−z(yi), zN,j−z(yj)〉]51

do not vanish in (1.4) and (1.6).52

The convergence rate O(N− 1
2 ) may not seem competitive when compared to53

standard (deterministic) Nystrom methods for two or three-dimensional domains Ω54

which are known to converge at the same rate as the quadrature rule considered55

for the numerical integration in (1.1); see e.g. [4, 24]. However, if is independent56

of the dimension d, which may prove beneficial if one wish to solve (1.1) in large57

dimensions. We further note that the system (1.3) is rather easy to implement in58

any dimension and does not require a particular treatment of the singularity such as59

product integration in deterministic Nystrom methods (see e.g. section 11.5 in [4]).60

Actually, Esmaeili et al. recently proposed a convergence analysis of a variant of the61

scheme (1.3) involving radial kernel functions [16]. The authors still rely on a Monte-62

Carlo approximation for estimating the integral of (1.1); the main difference with our63

analysis lies in the fact that they assume the kernel k to be continuous, which can be64

limiting for practical applications where k is singular.65

There is further an important physical motivation for studying the convergence66

of the solution of the linear system (1.3) to the one of the integral equation (1.1),67

which arises in its connexion with the Foldy-Lax approximation [18, 27, 29] used to68

understand multiple scattering of waves. For instance, if Ω is a domain containing69

N tiny acoustic obstacles located at the points (yi)1≤i≤N and illuminated with an70

incoming sound wave f , the Foldy-Lax approximation assumes that the scattered71

wave us can be approximated by the contribution of N point sources emitting sound72

waves with intensity zi,N :73

(1.7) us(y) ≃ − 1

N

N∑

i=1

zi,NΓk(y − yi),74
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ANALYSIS OF A MONTE-CARLO NYSTROM METHOD 3

see e.g. [12] for a justification and the references therein. In (1.7), Γk is the fundamen-75

tal solution to the Helmoltz equation with wave number k ∈ R, e.g. Γk(x) = − eik|x|

4π|x|76

in three dimensions, and we choose to normalize the amplitudes (zi,N )1≤i≤N with-77

out loss of generality by the factor − 1
N so as to emphasize the connexion with (1.3).78

The scattered intensity zi,N at the point yi is determined by assuming that it is79

the sum of the intensity of the source wave f received at the location yi and of the80

contributions (zj,NΓk(yi − yj)/N)1≤j 6=i≤N of the waves scattered from the other ob-81

stacles at the points (yj)1≤j 6=i≤N . This yields the linear system (1.3) with the kernel82

k(y, y′) := Γk(y − y′):83

(1.8) zi,N +
1

N

∑

j 6=i

Γk(yi − yj)zj,N = f(yi), 1 ≤ i ≤ N.84

In this context, the result of Proposition 3.6 states that the scattered intensity (zi,N )85

converges to the solution of the Lippmann-Schwinger equation86

(1.9) z(y) +

∫

Ω

Γk(y − y′)z(y′)dy′ = f(y), y ∈ Ω,87

in a mean-square sense at the rate O(N− 1
2 ). Let us note that linear systems analo-88

gous to (1.8) occur in many applications (such as in the classical Nystrom method for89

solving (1.9)) and can be solved efficiently with the Fast Multipole Method (FMM)90

from Greengard and Rohklin [21] or some alternatives such as the Efficient Bessel91

Decomposition [6]. For instance, the FMM was used in [34, 19] to speed up the com-92

putation of matrix-vector products by iterative linear solvers, or by [25] for computing93

the wave scattered by a collection of large number of acoustic obstacles.94

The Foldy-Lax approximation arises in various works concerned with the under-95

standing of heat diffusion or wave propagation in heterogeneous media [17, 23, 3, 30,96

14, 11, 13, 2, 28], where the integral equation (1.9) characterizes the effective medium.97

In [17, 23, 30] the convergence of the intensities (zN,i) of the point scatterers towards98

the continuous field z(y) is obtained under smallness assumptions on the integral99

kernel k(y, y′) which allows to obtain the well-posedness of (1.3) by treating it as a100

perturbation of the equation (zi,N )1≤i≤N = (f(yi))1≤i≤N ). In [3], quantitative con-101

vergence estimates are derived by assuming several strong ergodicity conditions on102

the distribution of points (yi)1≤i≤N which can be difficult to realize with independent103

random samples, e.g. Assumptions 2.3 to 2.5 in this reference; see also [20] for a dis-104

cussion on their limiting aspects. Challa et al. [14, 13] followed Maz’ya et al. [30, 31]105

where the well-posedness of some variants of (1.8) is proved for arbitrary distributions106

(yi)1≤i≤N by assuming the geometric condition cos(k|yi− yj |) ≥ 0 for 1 ≤ i 6= j ≤ N ,107

which is realized if Ω has a small diameter. As one can expect, the proofs depend108

very much on the properties of the kernel k and on very technical assumptions made109

on the distribution of points.110

In this article we justify the well-posedness of (1.3) for a general kernel k and111

the convergence of the sequence (zN )N∈N in the context of random and independent112

distributions of points (yi)1≤i≤N under the minimal condition that the continuous113

limit model (1.1) is well-posed (assumption (H1) below). Our proof adapts arguments114

used in the convergence analysis of classical Nystrom methods [4, 24] and outlines as115

follows. We start by reformulating (1.3) as the finite range functional equation116

(1.10) zN (y) +
1

N

N∑

j=1

k(y, yj)zN (yj) = f(y), ∀y ∈ Ω117

This manuscript is for review purposes only.



4 F. FEPPON AND H. AMMARI

where one sets k(y, y) = 0 on the diagonal. Classically, the invertibility of the problems118

(1.3) and (1.10) are equivalent and it holds zN (yi) = zN,i for 1 ≤ i ≤ N . Equation119

(1.10) can be reformulated as120

(1.11)

(
I +

1

N

N∑

i=1

Ai

)
zN = f,121

where I is the identity operator and (Ai)1≤i≤N are independent realizations of the122

operator valued random variable123

(1.12)
Ai : L2(Ω,C) → L2(Ω,C)

z 7→ k(·, yi)z(yi).
124

Note that despite (1.12) considers point-wise values z(yi) of square integrable func-125

tions z ∈ L2(Ω,C), the random operators (Ai)1≤i≤N are well-defined because (1.12)126

makes sense for almost any yi ∈ Ω ; this subtlety is clarified in section 2 below. We127

then prove in Proposition 2.7 the convergence128

(1.13)
1

N

N∑

i=1

Ai → E[A],129

where E[A] is the expectation of any single instance A ≡ Ai of the random operators130

(Ai)1≤i≤N :131

E[A] : z 7→
∫

Ω

k(·, y)z(y)ρ(y)dy.132

The convergence (1.13) holds in the operator norm. This allows to obtain the invert-133

ibility of (1.3) and the convergence of the resolvent:134

(1.14)

(
λI− 1

N

N∑

i=1

Ai

)−1

→ (λI− E[A])−1
135

for any λ sufficiently close to −1. Finally, (1.14) imposes some control on the spectrum136

of 1
N

∑N
i=1Ai which enables to prove that the linear system (1.3) is well-conditioned137

(Proposition 3.5) and to obtain the point-wise error bound (1.4) (Proposition 3.6).138

The paper is organized in three parts. Section 2 introduces a simple theory139

of bounded random operators of L2(Ω,C) → L2(Ω,C) in which the law of large140

number (1.13) and the convergence (1.14) hold. This framework is then applied to141

the particular case of the operators (1.12) in section 3 in order to prove the well-142

posedness of (1.3) and the error bounds (1.4) and (1.6). The last section 4 illustrates143

the above results and the predicted convergence rate of order O(N− 1
2 ) on numerical144

1D and 2D examples.145

Before we proceed, let us note that the analysis proposed to this paper can be146

extended easily to many variants of (1.1). For instance, the result of Proposition 3.6147

holds true if the domain Ω is replaced with a codimension one surface in (1.1). Similar148

results would also extend for first kind integral equations.149
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2. Bounded random operators L2(Ω,C) → L2(Ω,C). There is a well estab-150

lished literature on random operators on Banach spaces where one can prove variant151

of the law of large numbers (1.13) in very general and abstract settings, with some152

applications in the field of random integral equations [10, 22, 33]. Here, we rather153

consider a simple and generic probability framework which is sufficient for the purpose154

of the convergence analysis of the discrete linear system (1.3) towards the second kind155

integral equation (1.1).156

Definition 2.1. We say that a mapping A : Ω × L2(Ω,C) → L2(Ω,C) is a157

random operator L2(Ω,C) → L2(Ω,C) if:158

(i) φ 7→ A(y, φ) is a linear operator L2(Ω,C) → L2(Ω,C) for almost any y ∈ Ω;159

(ii) (x, y) 7→ A(y, φ(x)) is a measurable function of Ω× Ω for any φ ∈ L2(Ω,C).160

Note that in our context, the arguments of random operators L2(Ω,C) → L2(Ω,C)161

are deterministic square integrable functions φ ∈ L2(Ω,C). For simplicity, we denote162

by Aφ the mapping y 7→ A(y, φ(·)) and we think of Aφ as a random field of L2(Ω,C)163

and of A as an operator valued random operator. With a slight abuse of notation,164

we may write A : L2(Ω,C) → L2(Ω,C), even if A is strictly speaking a mapping165

Ω× L2(Ω,C) → L2(Ω,C).166

If A : L2(Ω,C) → L2(Ω,C) is any continuous linear operator, we denote by |||A|||167

the operator norm168

|||A||| := inf
φ∈L2(Ω,C)

||Aφ||L2(Ω)

||φ||L2(Ω)
.169

In case A is a random operator L2(Ω,C) → L2(Ω,C), the quantity |||A||| is a real170

random variable. For our applications we consider the class of random operators for171

which |||A||| is square integrable, which is a sufficient condition for the existence of172

the expectation E[A] as a deterministic operator L2(Ω,C) → L2(Ω,C).173

Definition 2.2. A random operator A : L2(Ω,C) → L2(Ω,C) is said to be174

bounded if E[|||A|||2] 12 < +∞, or in other words if there exists a constant C > 0 such175

that176

(2.1) ∀φ ∈ L2(Ω,C), E[||Aφ||2L2(Ω)]
1
2 ≤ C||φ||L2(Ω).177

Definition 2.3. Let A : L2(Ω,C) → L2(Ω,C) be a bounded random operator.178

The (deterministic) operator defined for any φ ∈ L2(Ω,C) by the formula:179

(2.2) E[A]φ := E[Aφ]180

determines an operator E[A] : L2(Ω,C) → L2(Ω,C) and is called the expected value181

of A. Furthermore, the following bounds hold true:182

(2.3) |||E[A]||| ≤ E[|||A|||2] 12183
184

(2.4) E[|||A− E[A]|||2] ≤ E[|||A|||2] 12 .185

Proof. It is sufficient to prove (2.3) in order to show that E[A] is an operator of186

L2(Ω,C). For φ ∈ L2(Ω,C), Jensen’s inequality implies187

∫

Ω

|E[Aφ](x)|2dx =

∫

Ω

∣∣∣∣
∫

Ω

[A(y)φ](x)ρ(y)dy

∣∣∣∣
2

dx ≤
∫

Ω

∫

Ω

|[A(y)φ](x)|2ρ(y)dydx

≤
∫

Ω

||A(y)φ||2L2(Ω)ρ(y)dy = E[||Aφ||2] ≤ E[|||A|||2] ||φ||2L2(Ω).

188
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6 F. FEPPON AND H. AMMARI

The bound (2.4) is then obtained by observing that for any φ ∈ L2(Ω,C),189

190

(2.5) E[||(A− E[A])φ||2] = E[||Aφ||2L2(Ω)]− ||E[A]φ||2L2(Ω)191

≤ E[||Aφ||2L2(Ω)] ≤ E[|||A|||2]||φ||2L2(Ω).192
193

In order to prove a law of large numbers result of the type of (1.13), we consider the194

following definition of independent operator valued random variables.195

Definition 2.4. Let (Ai)i∈N be a family of bounded random operators196

Ai : L2(Ω,C) → L2(Ω,C).197

The operators (Ai)i∈N are said to be mutually independent if for any i 6= j and any198

φ, ψ ∈ L2(Ω,C), it holds199

(2.6) E[〈Aiφ,Ajψ〉] = 〈E[Ai]φ,E[Aj ]ψ〉.200

Remark 2.5. This definition of independence is rather weak, but sufficient for our201

purpose. A stronger definition could be to require the identity202

E[〈f(Ai)φ, g(Aj)ψ〉] = 〈E[f(Ai)]φ,E[g(Aj)]ψ〉203

for any functions f and g such that f(Ai) and g(Aj) can be defined by mean of the204

functional Riesz-Dunford’s calculus [9, 26].205

Lemma 2.6. Let (yi)i∈N be a sequence of independent realizations of the distribu-206

tion ρ(x)dx. If A : Ω×L2(Ω,C) → L2(Ω,C) is a random operator, then (A(yi, ·))i∈N207

are independent realizations of the random operator A.208

Proof. The fact that (yi)i∈N is a sequence of independent random real variables209

means strictly speaking that each random variable yi : Ω → Ω is the identity mapping210

and that211

(2.7) E[ψ(yi, yj)] :=

∫

Ω

∫

Ω

ψ(y, y′)ρ(y)ρ(y′)dydy′212

for any i 6= j and any integrable multivariate function ψ : Ω × Ω → C. Then213

Ai ≡ A(yi, ·) is defined as the composition of A with yi; it is of course a realization214

of the random operator A. Then by using (2.7), we obtain the independence (2.6):215

E[〈Aiφ,Ajψ〉] =
∫

Ω

∫

Ω

∫

Ω

Ai(y, φ)(x)Aj(y
′, ψ)(x)ρ(y)ρ(y′)dydy′dx

=

∫

Ω

(∫

Ω

Ai(y, φ)(x)ρ(y)dy

)(∫

Ω

Aj(y
′, ψ)(x)ρ(y′)dy′

)
dx

= 〈E[Ai]φ,E[Aj ]ψ〉.216

We have now all the ingredients for stating a version of the law of large number in217

the present context of bounded random operators.218

Proposition 2.7. Let (Ai)i∈N be a family of independent realizations of a given219

bounded random operator A : L2(Ω,C) → L2(Ω,C). Then as N → +∞,220

1

N

N∑

i=1

Ai −→ E[A],221
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where the convergence holds at the rate O(N− 1
2 ) in the following mean-square sense:222

E



∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
1

N

N∑

i=1

Ai − E[A]

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

2



1
2

≤ E[|||A− E[A]|||2] 12√
N

for any N ∈ N.223

Proof. The independence of the random operators implies that for j 6= i and any224

φ ∈ L2(Ω,C):225

E[〈(Ai − E[A])φ, (Aj − E[A])φ〉] = 0.226

Then, for any φ ∈ L2(Ω),227

E



∣∣∣∣∣

∣∣∣∣∣

(
1

N

N∑

i=1

Ai − E[A]

)
φ

∣∣∣∣∣

∣∣∣∣∣

2

L2(Ω)


 =

1

N2
E



∣∣∣∣∣

∣∣∣∣∣

N∑

i=1

(Ai − E[A])φ

∣∣∣∣∣

∣∣∣∣∣

2

L2(Ω)




=
1

N2

N∑

i=1

E[||(Ai − E[A])φ||2L2(Ω)] =
1

N
E[||(A− E[A])φ||2L2(Ω)].

228

The result follows.229

We conclude this section with a useful convergence result for the resolvent sets of the230

operator 1
N

∑N
i=1Ai. This statement turns out to be essential for establishing the231

point-wise estimate (1.4) in the next section. In what follows we denote by ρ(A),232

σ(A) and Rλ(A) respectively the resolvent set, the spectrum, and the resolvent of a233

bounded linear operator A : L2(Ω) → L2(Ω):234

ρ(A) := {λ ∈ C | (λI−A)−1 : L2(Ω,C) → L2(Ω,C) exists and is bounded},235

236
σ(A) := C\ρ(A).237

238
Rλ(A) := (λI−A)−1, λ ∈ ρ(A).239

If A is a bounded random operator, ρ(A) and σ(A) are random sets and Rλ(A) is a240

bounded random operator.241

The following result shows the convergence of both the resolvent set of 1
N

∑N
i=1Ai242

towards the resolvent set of E[A] and the convergence of the respective resolvent243

operators.244

Proposition 2.8. Let A be a bounded random operator and (Ai)i∈N be a sequence245

of independent realizations of A. Consider ω ⊂ ρ(E(A)) an open subset of the resolvent246

set of E[A]. Then with probability one, ω is a subset of the resolvent set of 1
N

∑N
i=1Ai247

for N large enough:248

(2.8) ∃N0 ∈ N, ∀N ≥ N0, ω ⊂ ρ

(
1

N

N∑

i=1

Ai

)
.249

More precisely, (2.8) is satisfied as soon as the event250

(2.9) HN0
=

{
∀N ≥ N0, sup

λ∈ω
|||Rλ(E[A])(X − E[A]||| < 1

3

}
251

is realized, and it holds P(HN0
) → 1 as N0 → +∞. Moreover, for any λ ∈ ω and252

conditionally to HN0
, the following bound holds true for N large enough:253

254
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(2.10) E



∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣Rλ

(
1

N

N∑

i=1

Ai

)
−Rλ (E[A])

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

2
∣∣∣∣∣∣
HN0




1
2

255

≤ 2N− 1
2 |||Rλ(E[A])|||2E[|||A− E[A]|||2] 12 .256257

Proof. Let λ ∈ ω. Denote X = 1
N

∑N
i=1Ai. One can write258

(2.11) λI−X = λI− E[A] + (E[A]−X) = (λI− E[A])(I +Rλ(E[A])(X − E[A])).259

From Proposition 2.7 we know that260

(2.12) E[|||X − E[A]|||2] 12 ≤ E[|||A− E[A]|||2] 12√
N

→ 0 as N → +∞.261

Since the L2 convergence implies the almost sure convergence, it holds262

|||Rλ(E[A])(X − E[A])||| ≤ sup
λ∈ω

|||Rλ(E[A])||| |||X − E[A]||| N→+∞−−−−−→ 0 a.e.,263

where we recall that the resolvent Rλ(E[A]) is holomorphic in λ for the existence of264

the supremum [9]. This almost sure convergence implies in turn the convergence in265

probability P(HN0
) → 1 as N → +∞.266

The event HN0
entails the invertibility of I + Rλ(E[A])(X − E[A]) and then of267

λI−X due to (2.11); more explicitly the inverse of λI−X is given by268

(λI −X)−1 = (I +Rλ(E[A])(X − E[A]))−1Rλ(E[A]),269

where the prefactor can be expressed as a convergent Neumann series in the space of270

bounded (deterministic) operators L2(Ω,C) → L2(Ω,C):271

(2.13) (I +Rλ(E[A])(X − E[A]))−1 =

+∞∑

p=0

(−1)p[Rλ(E[A])(X − E[A])]p.272

This implies λ ∈ ρ(X). Then (2.13) yields the following estimate whenHN0
is satisfied273

with N ≥ N0:274

|||Rλ(X)−Rλ(E[A])||| =
|||Rλ(E[A])(X − E[A])Rλ(E[A])|||

1− |||Rλ(E[A])(X − E[A])|||

≤ 3

2
|||Rλ(E[A])|||2|||X − E[A]|||.

275

The result of (2.10) follows by applying the expectation and using the upper bound276

E[|||X − E[A]|||2|HN0
]
1
2 =

E[|||X − E[A]|||21HN0
]
1
2

P(HN0
)

≤ 4

3
E[|||X − E[A]|||2] 12277

which holds for N large enough since P(HN0
) → 1. Finally, (2.8) holds with proba-278

bility one because this event has a probability larger than P(∪N0≥NHN0
) = 1.279

3. Convergence analysis of the Monte-Carlo Nystrom method. We now280

apply the results of the previous section to the rank one operators (Ai)1≤i≤N of281

(1.12), in order to prove the convergences (1.4) and (1.6) of the solution of the linear282

system (1.3) to the one of the integral equation (1.1). We start by verifying that these283

operators satisfy the defining axioms of section 2.284
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Lemma 3.1. Let A be the random operator defined by285

(3.1)
A : Ω× L2(Ω,C) → L2(Ω,C)

(y, z) 7→ k(·, y)z(y).
286

Then A is a bounded random operator and287

(3.2) E[|||A|||2] 12 ≤ ||ρ||
1
2

L∞(Ω)||k||L∞(L2(Ω)),288

where we recall (1.2) for the definition of ||k||L∞(L2(Ω)). The expectation of A is the289

integral operator290

(3.3)
E[A] : L2(Ω,C) → L2(Ω,C)

z 7→
∫
Ω
k(·, y)z(y)ρ(y)dy.

291

Proof. It is enough to prove (3.2). For any φ ∈ L2(Ω,C), we have292

E[||Aφ||2L2(Ω)] =

∫

Ω

(∫

Ω

|k(y, y′)|2|φ(y′)|2dy
)
ρ(y′)dy′

≤ sup
y′∈Ω

∫

Ω

|k(y, y′)|2dy||ρ||L∞(Ω)||φ||2L2(Ω).
293

In what follows, we consider independent realizations (Ai)i∈N of the operator A. We294

assume that295

(H1) I + E[A] is an invertible Fredholm operator296

which holds if and only if I + E[A] is injective [32]. In that case, −1 ∈ ρ(E[A]) and297

(1.1) admits a unique solution. Since the resolvent set ρ(E[A]) is an open subset of298

the complex plane, there exists ε > 0 such that299

(3.4) B(−1, ε) ⊂ ρ(E[A]).300

Applying Proposition 2.8 with ω := B(−1, ε) yields immediately the following result.301

Corollary 3.2. Assume (H1). The event302

(3.5) HN0
:=

{
∀N ≥ N0, sup

λ∈B(−1,ε)

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣Rλ(E[A])

(
1

N

N∑

i=1

Ai − E[A]

)∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ <
1

3

}
303

holds with probability P(HN0
) converging to one as N0 → +∞. Furthermore, the304

following properties hold when HN0
is realized:305

1. the ball B(−1, ε) belongs to the resolvent set of 1
N

∑N
i=1Ai for N ≥ N0;306

2. in particular, the linear system (1.3) admits a unique solution (zN,i)1≤i≤N307

for N ≥ N0;308

3. the Nystrom interpolant (1.5) converges to the solution z ∈ L2(Ω,C) of the in-309

tegral equation (1.1) in the following mean-square sense: for N large enough,310

311

(3.6) E[||zN − z||2L2(Ω)|HN0
]
1
2312

≤ 2N− 1
2 ||ρ||

1
2

L∞(Ω)||k||L∞(L2(Ω))|||(I + E[A])−1|||2||f ||L2(Ω).313
314
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Proof. From the equivalence between (1.3) and (1.11), the system (1.11) is invert-315

ible as soon as HN0
is satisfied. Using then the result of Proposition 2.8 with λ = −1316

and (2.4), we obtain the bound317

318

(3.7) E



∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣R−1

(
1

N

N∑

i=1

Ai

)
−R−1(E[A])

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

2
∣∣∣∣∣∣
HN0




1
2

319

≤ 2N− 1
2 |||R−1(E[A])|||2E[|||A− E[A]|||2] 12 ≤ 2N− 1

2 |||R−1(E[A])|||2E[|||A|||2]
1
2320

≤ 2N− 1
2 |||R−1(E[A])|||2||ρ||

1
2

L∞(Ω)||k||L∞(L2(Ω)).321
322

The estimate (3.6) follows since323

zN = R−1

(
1

N

N∑

i=1

Ai

)
f, z = R−1(E[A])f.

324

The remainder of this section establishes point-wise estimates for comparing the solu-325

tion (zN,i)1≤i≤N of the linear system (1.3) to the values (z(yi))1≤i≤N of the integral326

equation (1.1). We state two different convergence results expressed in terms of two327

different weighted quadratic norms. The first one is given in Proposition 3.3 below328

and is simply obtained by expressing directly E[||zN − z||2L2(Ω)|HN0
]
1
2 in terms of the329

values (zN,i)1≤i≤N ; however this yields a mean-square error measured with respect330

to a non-standard Hermitian product. The second result is the bound (1.4) claimed331

in the introduction, which is stated with the standard Hermitian product of CN . Its332

proof requires more subtle arguments and is stated in Proposition 3.6 thereafter.333

Proposition 3.3. Assume (H1). For N large enough and conditionally to the334

event HN0
of (3.5), the following mean-square estimate holds between the solution335

(zN,i)1≤i≤N of the linear system (1.3) and the point values (z(yi))1≤i≤N of the integral336

equation (1.1):337

338

(3.8) E


 1

N2

∑

1≤i,j≤N

Kij(zN,i − z(yi))(zN,j − z(yj))

∣∣∣∣∣∣
HN0




1
2

339

≤ N− 1
2 |||(I + E[A])−1|||(1 + 2|||(I + E[A])−1|||)||ρ||

1
2

L∞(Ω)||k||L∞(L2(Ω))||f ||L2(Ω),340
341

where (Kij)1≤i,j≤N ∈ C
N×N is the non-negative Hermitian matrix defined by342

Kij :=

∫

Ω

k(y, yi)k(y, yj)dy.343

Proof. Denote by rN the random function344

rN :=
1

N

N∑

i=1

Aiz − E[A]z =
1

N

N∑

i=1

k(y, yi)z(yi)−
∫

Ω

k(y, y′)z(y′)dy′.345

The result of Proposition 2.7, (2.4) and (3.2) imply that346

347

(3.9) E[||rN ||2L2(Ω)]
1
2 ≤ N− 1

2E[|||A− E[A]|||2] 12 ||z||L2(Ω)348
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≤ N− 1
2 ||ρ||

1
2

L∞(Ω)||k||L∞(L2(Ω))|||(I + E[A])−1||| ||f ||L2(Ω).349
350

By subtracting (1.1) from (1.11) and using the triangle inequality, we obtain351

E[||z − zN ||2L2(Ω)]
1
2 = E



∣∣∣∣∣

∣∣∣∣∣E[A]z −
1

N

N∑

i=1

AizN

∣∣∣∣∣

∣∣∣∣∣

2

L2(Ω)




1
2

≥ E



∣∣∣∣∣

∣∣∣∣∣
1

N

N∑

i=1

Ai(zN − z)

∣∣∣∣∣

∣∣∣∣∣

2

L2(Ω)




1
2

− E[||rN ||2L2(Ω)]
1
2 .

352

The result follows by using Proposition 3.6 and (3.6), remarking that353

354

(3.10) E



∣∣∣∣∣

∣∣∣∣∣
1

N

N∑

i=1

Ai(zN − z)

∣∣∣∣∣

∣∣∣∣∣

2

 =

1

N2
E




N∑

i,j=1

〈Ai(zN − z), Aj(zN − z)〉


355

=
1

N2
E




N∑

i,j=1

∫

Ω

k(y, yi)(zN (yi)− z(yi))k(y, yj)(zN (yj)− z(yj))dy


356

=
1

N2
E


 ∑

1≤i,j≤N

Kij(zN,i − z(yi))((zN,j − z(yj))


 .357

358

The estimate of Proposition 3.3 is obtained as a rather straightforward consequence of359

(3.6), but the norm associated with the matrix (Kij)1≤i,j≤N is not standard. In what360

follows, we prove the point-wise estimate (1.4) expressed in the standard quadratic361

norm, as well as a bound on the inverse of the matrix associated to the linear system362

(1.3). The proof is based on the following result from Bandtlow [8] which bounds the363

norm of the resolvent of a possibly nonnormal Hilbert-Schmidt operator in terms of364

the distance to the spectrum σ(A). In our context, we apply this result in the space365

of complex matrices A ≡ (Aij)1≤i,j≤N ∈ C
N×N equipped with the spectral norm366

|||A|||2 := sup
z∈CN\{0}

|Az|2
|z|2

with |z|2 :=

(
N∑

i=1

|zi|2
) 1

2

.367

368

Proposition 3.4. Let A ∈ C
N×N . For any λ ∈ ρ(A), the following inequality369

holds:370

(3.11) |||Rλ(A)|||2 ≤ 1

d(λ, σ(A))
exp

(
1

2

(
Tr(ATA)

d(λ, σ(A))
+ 1

))
,371

where d(λ, σ(A)) is the distance of λ to the spectrum of A:372

d(λ, σ(A)) := inf
µ∈σ(A)

|λ− µ|.373

Proof. See Theorem 4.1 in [8].374

This proposition applied to the matrix (I +AN ) associated to the linear system (1.3)375

yields the following result.376
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Proposition 3.5. Assume (H1) and denote by (AN )1≤i,j≤N the random matrix377

defined by378

AN,ij =





1

N
k(yi, yj) if i 6= j,

0 if i = j.
379

Then with probability one, there exists N0 ∈ N such that the matrix I+AN is invertible380

for any N ≥ N0 and381

(3.12) ∀N ≥ N0, |||(I +AN )−1|||2 ≤ C(ε, ρ, k,Ω),382

where the constant C(ε, ρ, k,Ω) independent of N can be chosen as383

C(ε, ρ, k,Ω) :=
1

ε
exp

(
ε−1||ρ||2L∞(Ω)|Ω| ||k||2L∞(L2(Ω)) +

1

2

)
.384

Proof. Clearly, the matrix AN and the operator 1
N

∑
1≤i≤N Ai have the same385

spectrum. According to the point 1. of Corollary 3.2 and with probability one, there386

exists N0 ∈ N such that d(−1, σ(AN )) > ε for any N ≥ N0. Furthermore, we find387

that388

Tr(AT
NAN ) =

1

N2

∑

1≤i 6=j≤N

|k(yi, yj)|2.389

By the strong law of large numbers and the independence of the points (yi)1≤i≤N , we390

have with probability one:391

Tr(AT
NAN ) →

∫

Ω

∫

Ω

|k(y, y′)|2ρ(y)ρ(y′)dydy′ ≤ ||ρ||2L∞(Ω)|Ω|||k||2L∞(L2(Ω)).392

Therefore, for almost any realization (yi)1≤i≤N , there exists N0 ∈ N such that393

∀N ≥ N0, Tr(AT
NAN ) ≤ 2||ρ||2L∞(Ω)|Ω| ||k||2L∞(L2(Ω)).394

The result follows by combining this bound with the resolvent estimate (3.11) with395

λ = −1:396

|||(I +AN )−1|||2 ≤ 1

d(−1, σ(AN ))
exp

(
1

2

Tr(AT
NAN )

d(−1, σ(AN ))
+

1

2

)
.

397

We can now state a point-wise convergence result in the discrete L2 norm.398

Proposition 3.6. Let HN0
be the event of (3.5) which satisfies P(HN0

) → 1 as399

N0 → +∞. When HN0
is realized, (1.3) admits a unique solution (zi,N )1≤i≤N which400

converges to the vector (z(yi))1≤i≤N at the rate O(N− 1
2 ) in the following mean-square401

sense:402

403

(3.13) E

[
1

N

N∑

i=1

|zi,N − z(yi)|2 |HN0

] 1
2

404

≤ N− 1
2C(ε, ρ, k,Ω)||k||L∞(L2(Ω))||ρ||L∞(Ω)|||(I + E[A])−1||| ||f ||L2(Ω).405406
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Proof. Let us denote by rN = (rN,i)1≤i≤N the random vector407

rN,i : =
1

N

∑

1≤j 6=i≤N

k(yi, yj)z(yj)−
∫

Ω

k(yi, y
′)z(y′)ρ(y′)dy′

=
1

N

∑

1≤j 6=i≤N

(Xij − E[Xij |yi]),
408

where Xij := k(yi, yj)z(yj) and E[·|yi] denotes the conditional expectation with re-409

spect to yi. Due to the independence of the variables (yi)1≤i≤N , we have the condi-410

tional mean-square estimate411

E[|rN,i|2|yi] =
1

N
E[|Xij − E[Xij |yi]|2|yi] ≤

1

N
E[|Xij |2|yi].412

This entails that the vector rN satisfies the mean-square estimate413

(3.14)

E

[
1

N
|rN |22

]
=

1

N2

N∑

i=1

E[E[|Xij |2|yi]]

≤ 1

N

∫

Ω

∫

Ω

|k(y, y′)z(y′)|2ρ(y)ρ(y′)dydy′

≤ 1

N
||k||2L∞(L2(Ω))||ρ||2L∞(Ω)||z||2L2(Ω).

414

Observing that415

z(yi) +
1

N

∑

j 6=i

k(yi, yj)z(yj) = f(yi) +
1

N

∑

j 6=i

k(yi, yj)z(yj)−
∫

Ω

k(yi, yj)z(y
′)ρ(y′)dy′416

we find by subtracting (1.3) that the vector vN := (vN,i)1≤i≤N defined by vN,i :=417

zN,i − z(yi) satisfies418

(I +AN )vN = −rN .419

Therefore, we obtain when the event HN0
is satisfied that420

∀N ≥ N0, |vN |2 ≤ |||(I +AN )−1|||2 |rN |2 ≤ C(ε, ρ, k,Ω)|rN |2,421

where C(ε, ρ, k,Ω) is the constant of (3.12). Finally, applying the conditional expec-422

tation and using (3.14) yields423

424

(3.15) E

[
1

N
|vN |22 |HN0

] 1
2

425

≤ N− 1
2C(ε, ρ, k,Ω)||k||L∞(L2(Ω))||ρ||L∞(Ω)|||(I + E[A])−1||| ||f ||L2(Ω).426427

4. Numerical examples. In the next subsections, we illustrate the previous428

results on a few 1D and 2D examples. We solve both the linear system (1.3) and429

the integral equation (1.1) with a standard Nystrom method, and we experimentally430

verify the convergence rate O(N− 1
2 ) claimed in Proposition 3.6.431
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4.1. Numerical 1D examples. We start by illustrating the procedure on the432

one dimensional square integrable kernel433

k(y, y′) := |y − y′|−α
434

with 0 < α < 1
2 . We consider the integral equation (1.1) on the interval Ω = (0, 1):435

(4.1) z(y) +

∫ 1

0

k(y, y′)z(y′)dy′ = f(y), y ∈ (0, 1),436

and its Monte-Carlo approximation by the solution to the linear system (1.3). Of437

course (4.1) has a unique solution because k is a positive kernel.438

4.1.1. Numerical methodology. In order to estimate z(y) accurately, we solve439

(4.1) with the classical Nystrom method [4, 24] on a regular grid with N + 1 points440

(yi)0≤i≤N with yi = i/N and N = 100. We use the integration scheme441

(4.2) zi +
N−1∑

j=0

∫ yj+1

yj

k(yi, y
′)z(y′)dy′ = f(yi),442

where every integral is approximated by the trapezoidal rule off the diagonal, and by443

exact integration of the singularity on the diagonal:444

∫ yj+1

yj

k(yi, y
′)z(y′)dy′ ≃





1

2N
(k(yi, yj+1)zj+1 + k(yi, yj)zj) if j /∈ {i, i− 1},

zi

∫ 1
N

0

|t|−αdt if j = i,

zi

∫ 1
N

0

|t|−αdt if j = i− 1,

445

where an analytical integration yields446

∫ 1
N

0

|t|−αdt =
1

(1− α)N1−α
.447

Substituting these approximations into (4.2) yields a linear system of the form448

N∑

j=0

Kijzj = f(yi), 0 ≤ i ≤ N,449

whose vector solution (zi)0≤i≤N is an accurate estimation of the values (z(yi))0≤i≤N450

of the analytic solution to (4.1).451

We then draw M times a sample of N random points (ypi )1≤i≤N for 1 ≤ p ≤ M452

uniformly and independently in the interval (0, 1), and we solve M times the linear453

system454

(4.3) zpN,i +
1

N

∑

j 6=i

k(ypi , y
p
j )z

p
N,j = f(ypi ), 1 ≤ i ≤ N.455
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We obtain as suchM independent realizations of the random vector (zN,i) solution to456

(1.3). We then estimate the mean-square error of (3.13) by computing an empirical457

average based on the M realizations with M = 100:458

(4.4) MSE := E

[
1

N

N∑

i=1

|zN,i − z(yi)|2
] 1

2

≃

√√√√ 1

MN

M∑

p=1

N∑

i=1

|zpN,i − z(ypi )|2.459

For our numerical applications, we set α = 2/5 = 0.4 and we solve (4.4) for three460

different right-hand sides:461

• Case 1: f(y) = 1462

• Case 2: f(y) = (1− y)y463

• Case 3: f(y) = sin(6πy).464

In each of the three cases, the system is solved for several values of N lying between465

50 and 4,000. We estimate the convergence rate by using a least-squares interpolation466

of the logarithm of the mean-square error log10(MSE) with respect to log10(N).467

We then plot a few realizations of the Monte-Carlo solution (zpN,i)1≤i≤N and of468

the Nystrom interpolant469

(4.5) zpN (y) := f(y)− 1

N

N∑

i=1

k(y, ypi )z
p
N,i470

to allow for the comparison with the solution z(y) to (4.2). Finally, we numerically471

estimate the expectation E[zN ] of the Nystrom interpolants from the empirical average472

(4.6) E[zN ] ≃ 1

M

M∑

p=1

zpN473

and we verify that E[zN ] matches closely the solution z, as it can be expected from474

the result of Corollary 3.2.475

4.1.2. Case 1: constant right-hand side. We apply the previous methodol-476

ogy to the constant right-hand side f(y) = 1. Samples of the Monte-Carlo solution477

(zpN,i) to (4.3) and of the Nystrom interpolant zN of (4.5) are plotted for three different478

values of N and compared to the solution z(y) of (4.1) on Figure 1.479

The mean-square error MSE of (4.4) is then plotted on Figure 2 in logarithm480

scale, which allows to estimate a convergence rate of order O(N−0.42) close to the481

predicted value −1/2 in Proposition 3.6. Finally, the empirical mean E[zN ] of the482

Nystrom interpolant is computed for three values of N on Figure 3, which enables483

one to visually verify the convergence of the Monte-Carlo solution toward the solution484

to the integral equation (4.1).485

For this example, we see that quite a few isolated values of the Monte-Carlo486

solution zpN,i remain distant from the analytical solution z(yi), although one can still487

verify the convergence of the mean-square error as O(N− 1
2 ).488

4.1.3. Case 2: quadratic right-hand side. We now apply the methodology of489

subsection 4.1.1 for solving the equation (4.1) with the right-hand side f(y) = y(y−1).490

We proceed as in the previous case. Sample solutions of the Monte-Carlo solution491

(zpN,i) to (4.3) and of the Nystrom interpolant zN of (4.5) are plotted and compared492

to the solution z(y) of (4.1) on Figure 4.493
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(a) N = 100
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(b) N = 500
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(c) N = 2, 000

Fig. 1: Plots of one realization of the Monte-Carlo solution (zpN,i) to (4.3) (orange crosses)
and of the corresponding Nystrom interpolant zpN (y) of (4.5) (in blue) for the right hand-side
f(y) = 1 of subsection 4.1.2. The red line depicts the solution z(y) to (4.1) solved with the
standard Nystrom method.
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Fig. 2: Plot of the mean-square error MSE of (4.4) estimated for various values of N in
logarithm scale for the case 1 of subsection 4.1.2. Using a least-squares regression, we find a
convergence rate Fit = −0.42.

The mean-square error MSE of (4.4) is plotted on Figure 5 in logarithm scale, which494

allows to estimate a convergence rate of order O(N−0.44). Finally, the empirical mean495

E[zN ] of the Nystrom interpolant is displayed on Figure 6 for three values of N .496

For this example, the convergence seem to be faster than in the previous case since497

Figure 4 presents fewer values of zpN,i lying exceptionally far from their limit z(ypi ).498

In fact, Figure 5 shows that convergence remains of order O(N− 1
2 ) as predicted in499

Proposition 3.6, however with a smaller multiplicative constant.500

4.1.4. Periodic right-hand side. Finally, we consider the periodic right-hand501

side given by f(y) = sin(6πy). Sample solutions of the Monte-Carlo solution (zpN,i)502

to (4.3) and of the Nystrom interpolant zN of (4.5) are plotted and compared to the503

solution z(y) of (4.1) on Figure 7.504

The mean-square error MSE of (4.4) is then plotted on Figure 8 in logarithm scale,505

which allows to estimate a convergence rate of order O(N−0.45). Finally, the empirical506

mean E[zN ] of the Nystrom interpolant is displayed on Figure 9 for three values of N .507

This final example shows that the Monte-Carlo solution (zpN,i) lies close to the508

analytic solution z(ypi ) even for moderate values of N : only a few outliers are visible509

on Figure 7. As in the previous example, Figure 8 shows that convergence remains510

of order O(N− 1
2 ) as predicted in Proposition 3.6, with multiplicative constant similar511
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Fig. 3: Plots of the empirical average (4.6) of the Nystrom interpolant E[zN ] (in blue dotted

line) for the case 1 of subsection 4.1.2, compared to the analytical solution z(t) estimated
by solving (4.1) with the standard Nystrom method (in red).

0.0 0.2 0.4 0.6 0.8 1.00.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100 zN(t)
zN, i
z(t)

(a) N = 100

0.0 0.2 0.4 0.6 0.8 1.00.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

zN(t)
zN, i
z(t)

(b) N = 500

0.0 0.2 0.4 0.6 0.8 1.00.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100 zN(t)
zN, i
z(t)

(c) N = 2, 000

Fig. 4: Plots of one realization of the Monte-Carlo solution (zpN,i) to (4.3) (orange crosses)
and of the corresponding Nystrom interpolant zpN (y) of (4.5) (in blue) for the right hand-side
f(y) = y(1 − y) of subsection 4.1.3. The red line depicts the solution z(y) to (4.1) solved
with the standard Nystrom method.

to the one of the case 1 with constant right-hand side of subsection 4.1.2.512

4.2. Numerical 2D example : a Lippmann-Schwinger equation. We now513

illustrate the results of Proposition 3.6 on a more challenging 2D example. Let Ω ⊂ R
2514

be a smooth bounded two-dimensional domain. We consider the Lippmann-Schwinger515

equation516

(4.7)

{
(∆ + k2nΩ)z = 0 in R

2,

(∂r − ik)(z − uin) = O(|x|−2) as r → +∞,
517

whose solution z is the scattered field produced by an incident wave uin propagating518

through a heterogeneous material with refractive index nΩ(x) given by519

nΩ(x) =

{
m if x ∈ Ω,

1 if x ∈ R
2\Ω,

520

wherem > 0 is the index of the acoustic obstacle Ω. Assuming uin solves the Helmoltz521

equation with wave number k, i.e. (∆ + k2)uin = 0, z can be found as the unique522

solution to the Lippmann-Schwinger equation523

(4.8) z(y) + (m− 1)k2
∫

Ω

Γk(y − y′)z(y′)dy′ = uin(y), y ∈ Ω,524
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Fig. 5: Plot of the mean-square error MSE of (4.4) estimated for various values of N in
logarithm scale for the case 2 of subsection 4.1.3. Using a least-squares regression, we find a
convergence rate Fit = −0.44.
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Fig. 6: Plots of the empirical average (4.6) of the Nystrom interpolant E[zN ] (in blue dotted

line) for the case 2 of subsection 4.1.2, compared to the analytical solution z(t) estimated
by solving (4.1) with the standard Nystrom method (in red).

where Γk is the (outgoing) fundamental solution to the two-dimensional Helmoltz525

equation given by526

Γk(y − y′) = − i

4
H

(1)
0 (k|y − y′|),527

with H
(1)
0 being the first Hankel function of the first kind [32]. It is known that the528

integral equation (4.8) admits a unique solution z ∈ C0(Ω), see e.g. [15, 24]. Once529

the integral equation (4.8) has been solved, the identity (4.8) determines an extension530

y 7→ z(y) on the whole space R
2 and the resulting function is the solution to the531

original the scattering problem (4.7).532

For our numerical application, Ω = {y ∈ R
2 | |y| < 1} is the unit disk and we533

choose uin to be an incident plane wave propagating in the horizontal direction:534

f(y) := eiky1 , y = (y1, y2) ∈ Ω.535

The value of the wave number and of the refractive index in the acoustic medium are536

respectively set to k = 5 and m = 10.537

4.2.1. Accurate evaluation of the scattered field with the Volume Inte-538

gral Equation Method. We first compute an accurate numerical approximation of539

z(y) in order to obtain a reference solution for estimating the numerical error associ-540

ated with Monte-Carlo solutions. We solve (4.8) with the Volume Integral Equation541
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Fig. 7: Plots of one realization of the Monte-Carlo solution (zpN,i) to (4.3) (orange crosses)
and of the corresponding Nystrom interpolant zpN (y) of (4.5) (in blue) for the right hand-side
f(y) = sin(6πy) of subsection 4.1.4. The red line depicts the solution z(y) to (4.1) solved
with the standard Nystrom method.
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Fig. 8: Plot of the mean-square error MSE of (4.4) estimated for various values of N in
logarithm scale for the case 3 of subsection 4.1.4. Using a least-squares regression, we find a
convergence rate Fit = −0.46.

Method by using P1-Lagrange finite elements on a triangular mesh T with Nv = 1084542

vertices (ŷi)1≤i≤Nv
(represented on Figure 10a). Our implementation is written in543

Matlab and relies on the open-source library Gypsilab [1, 5].544

The solution z(y) computed in the disk Ω is displayed on Figure 11a. For visu-545

alisation purposes, we also plot on Figure 11b its extension to a surrounding disk Ω′546

centered at (1, 0) and of radius 3. The domain Ω′ surrounding Ω is represented on547

Figure 10b.548

4.2.2. Monte-Carlo approximations. We drawM times N independent sam-549

ples (ypi )1≤i≤N with 1 ≤ p ≤ M from the uniform distribution in the disk Ω. These550

samples are obtained from their polar coordinates (rpi , θ
p
i )1≤i≤p drawn independently551

from the distributions 2rdr and 1
2πdθ in the cartesian product (0, 1) × (0, 2π). The552

values (rpi ) are themselves obtained as square roots
√
Up
i of random variables Ui553

uniformly and independently distributed in the interval (0, 1).554

We then compute M = 100 Monte-Carlo approximations (zpN,i)1≤i≤N of (4.8) by555

solving the following M linear systems for 1 ≤ p ≤M :556

(4.9) zpN,i +
1

N
|Ω|(m− 1)k2

∑

j 6=i

Γk(ypi − ypj )z
p
N,j = uin(y

p
i ), 1 ≤ i ≤ N.557
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Fig. 9: Plots of the empirical average (4.6) of the Nystrom interpolant E[zN ] (in blue dotted

line) for the case 3 of subsection 4.1.4, compared to the analytical solution z(t) estimated
by solving (4.1) with the standard Nystrom method (in red).

(a) The discretization mesh T considered for
the acoustic obstacle Ω (the unit disk).

(b) The surrounding disk Ω′ (the disk cen-
tered at (1, 0) of radius 4, in green) containing
the accoustic obstacle Ω (in yellow).

Fig. 10: Setting of the exterior acoustic problem (4.7): mesh of the circular acoustic obstacle
Ω and portion of the exterior domain Ω′ for the visualisation of the solution outside Ω.

The numerical solution of the system (4.9) requires a priori to inverse a dense matrix,558

which can be potentially challenging for large values of N with direct methods. In559

order to solve (4.9) in reasonable computational time, we rely on the Efficient Bessel560

Decomposition (EBD) algorithm of Averseng [6]. This algorithm allows to evaluate561

N convolution products562


∑

j 6=i

Γk(ypi − ypj )z
p
N,j




1≤i≤N

563

with a single offline pass of complexity strictly better than O(N2), and online passes564

of quasilinear complexity for each new argument (zpN,i)1≤i≤N . Although this algo-565

rithm is strictly speaking suboptimal compared to the Fast Multipole Method [21], it566

achieves comparable performances in practice and is rather simple to use and to im-567

plement. Our application relies on the open-source EBD toolbox [7] directly available568

in Gypsilab.569
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(a) Plot of the solution z in the interior do-
main Ω.

(b) Plot of the solution z in the exterior do-
main Ω′.

Fig. 11: Numerical estimation of the scattered field z obtained by solving (4.8) with the
Volume Integral Equation Method on the mesh T .

4.2.3. Numerical results. We solve M = 100 times the linear system (4.9) for570

various values of N between 500 and 40,000. Samples of corresponding independent571

distributions of random points (ypi )1≤i≤N in the unit disk are shown for N = 500,572

N = 1, 000 and N = 5, 000 on Figure 12.573

Once the solution (zpi )1≤i≤N to the linear system (4.9) has been computed, inter-574

polated values (ẑpi )1≤i≤Nv
are estimated at the vertices (ŷi)1≤i≤Nv

of the discretiza-575

tion mesh T (Figure 10a) thanks to a Delaunay based piecewise linear interpolation1.576

Monte-Carlo solutions thus obtained are displayed on Figure 13 for several values of577

N . In order to help the reader to better visualize the convergence of the Monte-Carlo578

samples (zpi )1≤i≤N towards the vectors (z(ypi )1≤i≤N , we also represent on Figure 14579

the estimated averaged of the Monte-Carlo solutions at the vertices (ŷi)1≤i≤Nv
:580

(4.10) E[(ẑpi )1≤i≤Nv
] ≃

(
1

M

M∑

p=1

ẑpi

)

1≤i≤Nv

.581

Comparing the plots of Figure 14 to the one of Figure 11a allows to appraise the582

convergence of the average of the Monte-Carlo solutions towards the solution z of the583

Lippmann-Schwinger equation (4.8).584

We then represent individual samples (zpi )1≤i≤N interpolated on the mesh T on585

Figure 13. Qualitatively, the almost-sure convergence of individual samples towards586

their limit z(y) starts to be visible only for N greater or equal to 20,000.587

Finally, the mean-square error MSE is evaluated by using the estimator (4.4) for588

several values of N , where the values of the solution z(ypi ) are estimated at sample589

points (ypi )1≤i≤N from its P1-Lagrange approximation on the triangulated mesh T .590

We plot on Figure 15 the logarithm of the mean-square error as a function of log10(N)591

obtained for N ∈ {5, 000; 7, 500; 15, 000; 20, 000; 40, 000}. Using a least-squares re-592

gression, we observe numerically a convergence rate of order O(N−0.56) which is in593

agreement with the prediction O(N−1/2) of Proposition 3.6.594

1This is achieved by using the function griddata of Matlab.
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(a) N = 500 (b) N = 1, 000 (c) N = 5, 000

Fig. 12: Samples of N random points drawn randomly and independently from the uniform
distribution in the unit disk.

(a) N = 500 (b) N = 1, 000 (c) N = 5, 000

(d) N = 10, 000 (e) N = 20, 000 (f) N = 40, 000

Fig. 13: Plots of Monte-Carlo solutions (zpi )1≤i≤N obtained by solving the linear system
(4.9) for several values of N . The visualisation is obtained by using interpolated values on
the triangle mesh T .
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(a) N = 500 (b) N = 1, 000 (c) N = 5, 000

(d) N = 10, 000 (e) N = 20, 000 (f) N = 40, 000

Fig. 14: Plots of the average E[(ẑpi )] of the Monte-Carlo solutions (zpi )1≤i≤N obtained at
the vertices of the mesh T from the estimator (4.10). This plot allows to appraise the
convergence towards the solution z(t) to the Lippmann-Schwinger equation (4.8) represented
on Figure 11a.
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Fig. 15: Plot of the mean-square error MSE of (4.4) estimated for various values of N in
logarithm scale for the 2D example of subsection 4.2. Using a least-squares regression, we find

a convergence rate Fit = −0.56 in agreement with the prediction O(N− 1
2 ) of Proposition 3.6.
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