
Error analysis for physics informed neural

networks (PINNs) approximating

Kolmogorov PDEs

T. De Ryck and S. Mishra

Research Report No. 2021-17
June 2021

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

__

ERROR ANALYSIS FOR PHYSICS INFORMED NEURAL NETWORKS

(PINNS) APPROXIMATING KOLMOGOROV PDES

T. DE RYCK AND S. MISHRA

Abstract. Physics informed neural networks approximate solutions of PDEs by minimizing pointwise

residuals. We derive rigorous bounds on the error, incurred by PINNs in approximating the solutions
of a large class of linear parabolic PDEs, namely Kolmogorov equations that include the heat equation
and Black-Scholes equation of option pricing, as examples. We construct neural networks, whose PINN
residual (generalization error) can be made as small as desired. We also prove that the total L2-error
can be bounded by the generalization error, which in turn is bounded in terms of the training error,
provided that a sufficient number of randomly chosen training (collocation) points is used. Moreover, we
prove that the size of the PINNs and the number of training samples only grow polynomially with the

underlying dimension, enabling PINNs to overcome the curse of dimensionality in this context. These
results enable us to provide a comprehensive error analysis for PINNs in approximating Kolmogorov

PDEs.

1. Introduction

Background and context. Partial differential equations (PDEs) are ubiquitous as mathematical
models in the sciences and engineering. Explicit solution formulas for PDEs are not available except in
very rare cases. Hence, numerical methods, such as finite difference, finite element and finite volume
methods, are key tools in approximating solutions of PDEs. In spite of their well-documented successes, it
is clear that these methods are inadequate for a variety of problems involving PDEs. In particular, these
methods are not suitable for efficiently approximating PDEs with high-dimensional state or parameter
spaces. Such problems arise in different contexts ranging from PDEs such as the Boltzmann, Radiative
transfer, Schrödinger and Black-Scholes type equations with very high number of spatial dimensions,
to many-query problems, as in uncertainty quantification (UQ), optimal design and inverse problems,
which are modelled by PDEs with very high parametric dimensions.

Given this pressing need for efficient algorithms to approximate the afore-mentioned problems, ma-
chine learning methods are being increasingly deployed in the context of scientific computing. In particu-
lar, deep neural networks (DNNs) i.e., multiple compositions of affine functions and scalar nonlinearities,
are being widely used. Given the universality of DNNs in being able to approximate any continuous
(measurable) function to desired accuracy, they can serve as ansatz spaces for solutions of PDEs, as
for high-dimensional semi-linear parabolic PDEs [7], linear elliptic PDEs [35, 15] and nonlinear hyper-
bolic PDEs [23, 24] and references therein. More recently, DNN-inspired architectures such as DeepOnets
[4, 21, 18] and Fourier Neural operators [20] have been shown to even learn infinite-dimensional operators,
associated with underlying PDEs, efficiently.

A large part of the literature on the use of deep learning for approximating PDEs relies on the super-
vised learning paradigm, where the DNN has to be trained on possibly large amounts of labelled data.
However in practice, such data is acquired from either measurements or computer simulations. Such
simulations might be very computationally expensive [23] or even infeasible in many contexts, impeding
the efficiency of the supervised learning algorithms. Hence, it would be very desirable to find a class
of machine learning algorithms that can approximate PDEs, either without any explicit need for data
or with very small amounts of data. Physics informed neural networks (PINNs) provide exactly such a
framework.

Physics Informed Neural Networks (PINNs). PINNs were first proposed in the 90s [6, 17, 16] as
a machine learning framework for approximating solutions of differential equations. However, they were
resurrected recently in [32, 33] as a practical and computationally efficient paradigm for solving both
forward and inverse problems for PDEs. Since then, there has been an explosive growth in designing

(T. De Ryck and S. Mishra) Seminar for Applied Mathematics, ETH Zürich, Rämistrasse 101, 8092 Zürich,

Switzerland

E-mail addresses: tim.deryck@sam.math.ethz.ch, siddhartha.mishra@sam.math.ethz.ch.

1

2 ERROR ANALYSIS FOR PINNS APPROXIMATING KOLMOGOROV PDES

and applying PINNs for a variety of applications involving PDEs. A very incomplete list of references
includes [34, 22, 25, 31, 39, 12, 13, 26, 27, 28, 1] and references therein.

We briefly illustrate the idea behind PINNs by considering the following general form of a PDE:

(1.1) D[u](x, t) = 0, Bu(y, t) = ψ(y, t), u(x, 0) = ϕ(x), for x ∈ D, y ∈ ∂D, t ∈ [0, T],

Here, D ⊂ R
d is compact and D,B are the differential and boundary operators, u : D×[0, T]→ R

m is the
solution of the PDE, ψ : ∂D × [0, T]→ R

m specifies the (spatial) boundary condition and ϕ : D → R
m

is the initial condition.
We seek deep neural networks uθ : D × [0, T] → R

m (see (2.6) for a definition), parameterized by
θ ∈ Θ, constituting the weights and biases, that approximate the solution u of (1.1). To this end, the
key idea behind PINNs is to consider pointwise residuals, defined for any sufficiently smooth function
f : D × [0, T]→ R

m as,

(1.2) Ri[f](x, t) = D[f](x, t), Rs[f](t, y) = Bf(t, y)− ψ(t, y), Rt[f](x) = f(0, x)− ϕ(x)
for x ∈ D, y ∈ ∂D, t ∈ [0, T]. Using these residuals, one measures how well a function f satisfies resp.
the PDE, the boundary condition and the initial condition of (1.1). Note that for the exact solution
Ri[u] = Rs[u] = Rt[u] = 0.

Hence, within the PINNs algorithm, one seeks to find a neural network uθ, for which all residuals are
simultaneously minimized, e.g. by minimizing the quantity,

(1.3) EG(θ)2 =

ˆ

D×[0,T]

∣∣Ri[uθ](x, t)
∣∣2dxdt+

ˆ

∂D×[0,T]

∣∣Rs[uθ](x, t)
∣∣2ds(x)dt+

ˆ

D

∣∣Rt[uθ](x)
∣∣2dx.

However, the quantity EG(θ), often referred to as the population risk or generalization error [26] of the
neural network uθ involves integrals and can therefore not be directly minimized in practice. Instead,
the integrals in (1.3) are approximated by a numerical quadrature, resulting in,
(1.4)

E iT (θ,Si)2 =

Ni∑

n=1

wn
i

∣∣Ri[uθ](t
n
i , x

n
i)
∣∣2, EsT (θ,Ss)2 =

Ns∑

n=1

wn
s

∣∣Rs[uθ](t
n
s , x

n
s)
∣∣2, EtT (θ,St)2 =

Nt∑

n=1

wn
t

∣∣Rt[uθ](x
t
i)
∣∣2.

Here, one samples quadrature points in space-time to construct data sets Si = {(tni , xni)}Ni
n , Ss =

{(tns , xns)}Ns
n and St = {xnt }Nt

n , and wn
q are suitable quadrature weights for q = i, t, s. Thus, the general-

ization error EG(θ) is approximated by the so-called training loss or training error [26],

(1.5) ET (θ,S)2 = E iT (θ,Si)2 + EsT (θ,Ss)2 + EtT (θ,St)2,
where S = (Si,Ss,St), and a stochastic gradient descent algorithm is to used to approximate the non-
convex optimization problem,

(1.6) θ∗ = argmin
θ∈Θ
ET (θ,S)2,

and u∗ = uθ∗ is the trained PINN that approximates the solution u of the PDE (1.1).

Theory for PINNs. Given this succinct description of the PINNs algorithm, the following fundamental
theoretical questions arise immediately,

Q1. Given a tolerance ε > 0, does there exist a PINN û = uθ̂, parametrized by a θ̂ ∈ Θ such that the

corresponding generalization error (population risk) EG(θ̂) (1.3) is small i.e., EG(θ̂) < ε?
Q2. Given a PINN û with small generalization error, is the corresponding total error ‖u− û‖ small,

i.e., is ‖u − û‖ < δ(ε), for some δ(ε) ∼ O(ε), for some suitable norm ‖.‖, and with u being the
solution of the PDE (1.1)?

The above questions are of fundamental importance as affirmative answers to them certify that, in

principle, there exists a PINN, corresponding to the parameter θ̂, such that the resulting PDE residual
(1.2) is small, and consequently also the overall error in approximating the solution of the PDE (1.1).

Moreover, the smallness of the generalization error EG(θ̂) can imply that the training error ET (θ̂) (1.5),
which is an approximation of the generalization error, is also small. Hence, in principle, the (global)
minimization of the optimization problem (1.6) should result in a proportionately small training error.

However, the optimization problem (1.6) involves the minimization of a non-convex, very-high dimen-
sional objective function. Hence, it is unclear if a global minimum is attained by a gradient-descent
algorithm. In practice, one can evaluate the training error ET (θ∗) for the (local) minimizer θ∗ of (1.6).
Thus, it is natural to ask if,

ERROR ANALYSIS FOR PINNS APPROXIMATING KOLMOGOROV PDES 3

Q3. Given a small training error ET (θ∗) and a sufficiently large training set S, is the corresponding
generalization error EG(θ∗) also proportionately small?

An affirmative answer to question Q3, together with question Q2, will imply that the trained PINN
uθ∗ is an accurate approximation of the solution u of the underlying PDE (1.1). Thus, answering the
above three questions affirmatively will constitute a comprehensive theoretical investigation of PINNs
and provide a rationale for their very successful empirical performance.

Given the very large number of papers exploring PINNs empirically, the rigorous theoretical study of
PINNs is in a relative state of infancy. In [36], the authors prove a consistency result for PINNs, for
linear elliptic and parabolic PDEs, where they show that if ET (θm)→ 0 for a sequence of neural networks
{uθm}m∈N, then ‖uθm − u‖L∞ → 0, under the assumption that one adds a specific Ck,α-regularization
term to the loss function, thus partially addressing question Q3 for these PDEs. However, this result does
not provide quantitative estimates on the underlying errors. A similar result, with more quantitative
estimates for advection equations is provided in [37].

In [26, 27], the authors provide a strategy for answering questions Q2 and Q3 above. They leverage
the stability of solutions of the underlying PDE (1.1) to bound the total error in terms of the generaliza-
tion error (question Q2). Similarly, they use accuracy of quadrature rules to bound the generalization
error in terms of the training error (question Q3). This approach is implemented for Forward problem
corresponding to a variety of PDEs such as the semi-linear and quasi-linear parabolic equations and the
incompressible Euler (Navier-Stokes) equations [26], radiative transfer equations [28], nonlinear disper-
sive PDEs such as the KdV equations [1] and for the unique continuation (data assimilation) inverse
problem for many linear elliptic, parabolic and hyperbolic PDEs [27]. However, these works suffer from
two essential limitations: first, question Q1 on the smallness of generalization error is not addressed and
second, the assumptions on the quadrature rules in [26, 27] are rather stringent and in particular, the
analysis does not include the common choice of using random sampling points in S, unless an additional
validation set is chosen. Thus, the theoretical analysis presented in [26, 27] is incomplete and this sets
the stage for the current paper.

Aims and scope of this paper. Given the above discussion, our main aims in this paper are to address
the fundamental questions Q1, Q2 and Q3 and to establish a solid foundation and rigorous rationale for
PINNs in approximating PDEs.

To this end, we choose to focus on a specific class of PDEs, the so-called Kolmogorov equations [30] in
this paper. These equations are a class of linear, parabolic PDEs which describe the space-time evolution
of the density for a large set of stochastic processes. Prototypical examples include the heat (diffusion)
equation and Black-Scholes type PDEs that arise in option pricing. A key feature of Kolmogorov PDEs
is the fact that the equations are set in very high dimensions. For instance, the spatial dimension in a
Black-Scholes PDE is given by the number of underlying assets (stocks), upon which the basket option
is contingent, and can range up to hundreds of dimensions.

Our motivation for illustrating our analysis on Kolmogorov PDEs is two-fold. First, they offer a large
class of PDEs with many applications, while still being linear. Second, it has already been shown empir-
ically in [26, 38, 29] that PINNs can approximate very high-dimensional Kolmogorov PDEs efficiently.

Thus in this paper,

• We show that there exist PINNs, approximating a class of Kolmogorov PDEs, such that the re-
sulting generalization error (1.3), and the total error, can be made as small as possible. Moreover
under suitable hypothesis on the initial data and the underlying exact solutions, we will show
that the size of these PINNs does not grow exponentially with respect to the spatial dimension
of the underlying PDE. This is done by explicitly constructing PINNs using a representation
formula, the so-called Dynkin’s formula, that relates the solutions of the Kolmogorov PDE to
the generator and sample paths for the underlying stochastic process.

• We leverage the stability of Kolmogorov PDEs to bound the error, incurred by PINNs in L2-norm
in approximating solutions of Kolmogorov PDEs, by the underlying generalization error.

• We provide rigorous bounds for the generalization error of the PINN approximating Kolmogorov
PDEs in terms of the underlying training error (1.5), provided that the number of randomly
chosen training points is sufficiently large. Furthermore, the number of random training points
does not grow exponentially with the dimension of the underlying PDE. We use a novel error
decomposition and standard Hoeffding’s inequality type covering number estimates to derive
these bounds.

4 ERROR ANALYSIS FOR PINNS APPROXIMATING KOLMOGOROV PDES

Thus, we provide affirmative answers to questions Q1, Q2 and Q3 for this large class of PDEs. Moreover,
we also show that PINNs can overcome the curse of dimensionality in approximating these PDEs. Hence,
our results will place PINNs for these PDEs on solid theoretical foundations.

The rest of the paper is organized as follows: In section 2, we present preliminary material on linear
Kolmogorov equations and describe the PINNs algorithm to approximate them. The generalization error
and total error (questions Q1 and Q2) are considered in section 3 and the generalization error is bounded
in terms of training error (question Q3) in section 4.

2. PINNs for Linear Kolmogorov Equations

2.1. Linear Kolmogorov PDEs. In this paper, we will consider the following general form of linear
time-dependent partial differential equations,

(2.1)





ut(t, x) =
1
2Trace(σ(x)σ(x)

THx[u](t, x)) + µ(x)T · ∇x[u](t, x) for all (t, x) ∈ [0, T]×D,
u(0, x) = ϕ(x) for all x ∈ D,
u(t, x) = ψ(x, t) for all (t, x) ∈ [0, T]× ∂D.

where σ : R
d → R

d×d and µ : R
d → R

d are affine functions, ∇x denotes the gradient and Hx the
Hessian (both with respect to the space coordinates). For definiteness, we set D = (0, 1)d. PDEs of the
form (2.1) are referred to as Kolmogorov equations and arise in a large number of models in science and
engineering. Prototypical examples of Kolmogorov PDEs include,

1. Heat Equation: Let µ = 0 and σ =
√
κId, where κ > 0 is the thermal diffusivity of the

medium and Id is the d-dimensional identity matrix. This results in the following PDE for the
temperature u,

(2.2) ut(t, x) = κ

d∑

j=1

uxjxj
(t, x), u(0, x) = ϕ(x).

Here, ϕ describes the initial heat distribution. Dirichlet or Neumann boundary data complete
the problem.

2. Black-Scholes equation: If both µ and σ in (2.1) are linear functions, we obtain the Black-
Scholes equation, which models the evolution in time t of the price of an option u that is based
on d underlying stocks xi. Up to a straightforward change of variables, the corresponding PDE
is given by (see e.g. [30]),

(2.3) ut(t, x) =

d∑

i,j=1

βiβjρijxixjuxixj
(t, x) +

d∑

j=1

µxjuxj
(t, x), u(0, x) = ϕ(x).

Here, the βi are stock volatilities, the coefficients ρij model the correlation between the different
stock prices, µ is an interest rate and the initial condition ϕ is interpreted as a payoff function.
Prototypical examples of such payoff functions are ϕ(x) = max{∑i aixi − K, 0} (basket call
option), ϕ(x) = max{maxi aixi −K, 0} (call on max) and analogously for put options.

Our goal in this paper is to approximate the classical solution u of Kolmogorov equations with PINNs.
We start with a brief recapitulation of neural networks below.

2.2. Neural Networks. We denote by σ : R→ R be an (at least) twice continuously differentiable acti-
vation function, like tanh or sigmoid. For any n ∈ N, we write for z ∈ R

n that σ(z) := (σ(z1), . . . , σ(zn)).
We formally define a neural network below,

Definition 2.1. Let R ∈ (0,∞], L,W ∈ N and l0, . . . , lL ∈ N. Let σ : R → R be a twice differentiable
function and define

(2.4) Θ = ΘL,W,R :=
⋃

L′∈N,L′≤L

⋃

l0,...,lL∈{1,...,W}

L′

×
k=1

(
[−R,R]lk×lk−1 × [−R,R]lk

)
.

For θ ∈ ΘL,W,R, we define (Wk, bk) := θk and Aθ
k : Rlk−1 → R

lk : z 7→ Wkz + bk for 1 ≤ k ≤ L and we
define fθk : Rlk−1 → R

lk by

(2.5) fθk (z) =

{
Aθ

L(z) k = L,

(σ ◦ Aθ
k)(z) 1 ≤ k < L.

ERROR ANALYSIS FOR PINNS APPROXIMATING KOLMOGOROV PDES 5

We denote by uθ : Rl0 → R
lL the function that satisfies for all z ∈ R

l0 that

(2.6) uθ(z) =
(
fθL ◦ fθL−1 ◦ · · · ◦ fθ1

)
(z),

where in the setting of approximating Kolmogorov PDEs (2.1) we set l0 = d+ 1 and z = (x, t).
We refer to uθ as the realization of the neural network associated to the parameter θ with L layers

with widths (l0, l1, . . . , lL), of which the middle L− 1 layers are called hidden layers. For 1 ≤ k ≤ L, we
say that layer k has width lk and we refer to Wk and bk as the weights and biases corresponding to layer
k. If L ≥ 3, we say that uθ is a deep neural network (DNN).

2.3. PINNs. As already mentioned in the introduction, the key idea behind PINNs is to minimize
pointwise residuals associated with the Kolmogorov PDE (2.1). To this end, we define the differential
operator associated with (2.1),

(2.7) L [v] (x) =
d∑

i=1

µi(x)(∂iv)(x, t) +
1

2

d∑

i,j,k=1

σik(x)σkj(x)(∂
2
ijv)(x),

for any v ∈ C2(Rd). Next, we define the following residuals associated with (2.1),

(2.8)

Ri[v](x, t) = ∂tv(x, t)− L [v] (x, t), (x, t) ∈ D × [0, T],

Rs[v](y, t) = v(y, t)− ψ(y, t), (y, t) ∈ ∂D × [0, T],

Rt[v](x) = v(0, x)− ϕ(x), ∀x ∈ D.
The generalization error for a neural network of the form (2.6), approximating the Kolmogorov PDE is
then given by the formula (1.3), but with the residuals defined in (2.8).

Given the possibly very high-dimensional domain D of (2.1), it is natural to use random sampling
points to define the loss function for PINNs θ 7→ ET (θ,S)2 as follows,

(2.9)

E iT (θ,Si)2 =
1

Ni

Ni∑

n=1

∣∣Ri[uθ](t
n
i , x

n
i)
∣∣2,

EsT (θ,Ss)2 =
1

Ns

Ns∑

n=1

∣∣Rs[uθ](t
n
s , x

n
s)
∣∣2, EtT (θ,St)2 =

1

Nt

Nt∑

n=1

∣∣Rt[uθ](x
t
i)
∣∣2,

ET (θ,S)2 = E iT (θ,Si)2 + EsT (θ,Ss)2 + EtT (θ,St)2,
where the training data sets, Si = {(tni , xni)}Ni

n , Ss = {(tns , xns)}Ns
n and St = {xnt }Nt

n , are chosen randomly,
independently with respect to the corresponding Lebesgue measures and the residuals Ri,s,t are defined
in (2.8).

A trained PINN u∗ = uθ∗ is then defined as a (local) minimum of the optimization problem (1.6),
with loss function (2.9) (possibly with additional data and weight regularization terms), found by a
(stochastic) gradient descent algorithm such as ADAM or L-BFGS.

3. Bounds on the approximation error for PINNs

In this section, we will first answer the question Q1 for the PINNs approximating linear Kolmogorov
equations (2.1) i.e., our aim will be to construct a deep neural network (2.6) for approximating (2.1),
such that the corresponding generalization error EG (1.3) is as small as desired.

Recalling that the Kolmogorov PDE is a linear parabolic equation with smooth coefficients, one can
use standard parabolic theory to conclude that there exists a unique classical solution u of (2.1) and it
is sufficiently regular, for instance u ∈W s,∞((0, T)×D) for some s > 2. As u is a classical solution, the
residuals (2.8), evaluated at u, vanish i.e.,

(3.1) Ri[u](x, t) = 0, Rs[u](y, t) = 0, Rt[u](x, 0) = 0,

for all x ∈ D, y ∈ ∂D.
Moreover, one can use recent results in approximation theory, such as those presented in [9, 10, 5] and

references therein, to infer that one can find a deep neural network (2.6) that approximates the solution
u in the W 2,∞-norm, and therefore yields an approximation for which the PINN residual is small. For
instance, one appeals to the following theorem (more details, including exact constants and bounds on
the network weights, can be derived from the results in [5]).

Theorem 3.1. Let T > 0, γ, d, s ∈ N with s ≥ 2+ γ and let u ∈W s,∞([0, T]× [0, 1]d) be the solution of
a linear Kolmogorov PDE (2.1). Then for every ε > 0 there exists a tanh neural network ûε = uθ̂ε with

two hidden layers of width at most O(ε−d/(s−2−γ)) such that EG(θ̂ε) ≤ ε.

6 ERROR ANALYSIS FOR PINNS APPROXIMATING KOLMOGOROV PDES

Proof. It follows from [5, Theorem 5.1] that there exists a tanh neural network ûε with two hidden layers
of width at most O(ε−d/(s−2−γ)) such that

(3.2) ‖u− ûε‖W 2,∞([0,T]×[0,1]d) ≤ ε.
By virtue of the nature of linear Kolmogorov PDEs (2.1) it follows immediately that

∥∥Ri[u]
∥∥
L2([0,T]×[0,1]d)

≤
ε. Using a standard trace inequality, one finds similar bounds for the Rs[u] and Rt[u]. From this, it

follows directly that EG(θ̂ε) ≤ ε. �

Hence, ûε is a neural network for which the generalization error (1.3) can be made arbitrarily small,
providing an affirmative answer to Q1. However from Theorem 3.1, we observe that the size (width) of
the resulting deep neural network ûε, grows exponentially with spatial dimension d for (2.1). Thus, this
neural network construction clearly suffers from the curse of dimensionality. Hence, this construction
cannot explain the robust empirical performance of PINNs in approximating Kolmogorov equations
(2.1) in very high spatial dimensions [26, 38, 29]. Therefore, we need a different approach for obtaining
bounds on the generalization error that overcome this curse of dimensionality. To this end, we rely on
the specific structure of the Kolmogorov equations (2.1). In particular, we will use the Dynkin’s formula,
which relates Kolmogorov PDEs to Itô diffusion SDEs.

In order to state Dynkin’s formula, we first need to introduce some notation. Let (Ω,F , P, (Ft)t∈[0,T])

be a stochastic basis, D ⊆ R
d a compact set and, for every x ∈ D, let Xx : Ω × [0, T] → R

d be the
solution, in the Itô sense, of the following stochastic differential equation,

(3.3) dXx
t = µ(Xx

t)dt+ σ(Xx
t)dBt, Xx

0 = x, x ∈ D, t ∈ [0, T],

where Bt is a standard d-dimensional Brownian motion on (Ω,F , P, (Ft)t∈[0,T]). The existence of Xx is
guaranteed by Lemma A.5. Dynkin’s formula relates the generator F of Xx

t , given in e.g. [30],

(3.4) (Fϕ) (Xx
t) =

d∑

i=1

µi(X
x
t)(∂iϕ)(X

x
t) +

1

2

d∑

i,j,k=1

σik(X
x
t)σkj(X

x
t)(∂

2
ijϕ)(X

x
t),

with the initial condition ϕ ∈ C2(D) and differential operator L (2.7) of the corresponding Kolmogorov
PDE (2.1). Equipped with this notation, we state the Dynkin’s formula below,

Lemma 3.2 (Dynkin’s formula). For every x ∈ D, let Xx be the solution to a linear Kolmogorov SDE
(3.3) with affine µ : Rd → R

d and σ : Rd → R
d×d. If ϕ ∈ C2(Rd) with bounded first partial derivatives,

then it holds that (∂tu)(x, t) = L [u] (x, t) where u is defined as

(3.5) u(x, t) = ϕ(x) + E

[
ˆ t

0

(Fϕ) (Xx
τ) dτ

]
, for x ∈ D, t ∈ [0, T].

Proof. See Corollary 6.5 and Section 6.10 in [14]. �

Our construction of a neural network with small residual (2.8) relies on emulating the right hand side
of Dynkin’s formula (3.5) with neural networks. In particular, the initial data ϕ and the generator Fϕ
will be approximated by suitable tanh neural networks. On the other hand, the expectation in (3.5)
will be replaced by an accurate Monte Carlo sampling. Our construction is summarized in the following
theorem,

Theorem 3.3. Let α, β,̟, ζ, T > 0 and let p > 2. For every d ∈ N, let Dd = [0, 1]d, ϕd ∈ C5(Rd) with
bounded first partial derivatives, let (Dd× [0, T],F , µ) be a probability space and let ud ∈ C2,1(Dd× [0, T])
be a function that satisfies

(3.6) (∂tud)(x, t) = L [ud] (x, t), ud(x, 0) = ϕd(x) for all (x, t) ∈ Dd × [0, T].

Moreover, assume that for every ξ, δ, c > 0, there exist tanh neural networks ϕ̂ξ,d : Rd → R and (F̂ϕ)δ,d :

R
d → R with respectively O(dαξ−β) and O(dαδ−β) neurons and weights that grow as O(d̟ξ−ζ) and
O(d̟δ−ζ) such that

(3.7)
∥∥ϕd − ϕ̂ξ,d

∥∥
C2(Dd)

≤ ξ and
∥∥∥Fϕ− (F̂ϕ)δ,d

∥∥∥
C2([−c,c]d)

≤ δ.

Then there exist constants C, λ > 0 such that for every ε > 0 and d ∈ N, there exist a constant ρd > 0
and a tanh neural network Ψε,d with at most C(dρd)

λε−max{5p+3,2+p+β} neurons and weights that grow

at most as C(dρd)
λε−max{ζ,8p+6} for ε→ 0 such that

∥∥∥∂tΨε,d − L
[
Ψε,d

]∥∥∥
L2(Dd×[0,T])

+
∥∥Ψε,d − ud

∥∥
H1(Dd×[0,T])

+
∥∥Ψε,d − ud

∥∥
L2(∂(Dd×[0,T]))

≤ ε.(3.8)

ERROR ANALYSIS FOR PINNS APPROXIMATING KOLMOGOROV PDES 7

Moreover, ρd is defined as

(3.9) ρd := max
x∈Dd

sup
s,t∈[0,T],

s<t

‖Xx
s −Xx

t ‖Lq(P,‖·‖
Rd

)

|s− t| 1p
<∞,

where Xx is the solution, in the Itô sense, of the SDE (3.3) and q > 2 is independent of d.

Proof. Based on the Dynkin’s formula of Lemma 3.2, we will construct a tanh neural network, denoted
by ûM,N for some M,N ∈ N, and we will prove that the PINN residual (2.8) of ûM,N is small. To do so,
we need to define intermediate approximations ūN and ũM,N . In this proof, C > 0 will denote a constant
that will be updated throughout and can only depend on d, D, µ, T , ϕ and L, i.e., not on M nor N . In
particular, the dependence of C on the input dimension d will be of interest. We will argue that the final
value of C will depend polynomially on d and ρd (3.9). Because of the third point of Lemma A.5, the
quantity within the maximum in the definition of ρd (3.9) is finite for every individual x ∈ D and hence
the maximum of this quantity over x ∈ {0, e1, . . . , ed} will be finite as well. As a result of the fourth
point of Lemma A.5 it then follows that ρd < ∞. Moreover, if ρd depends polynomially on d, then so
will C. For notational simplicity, we will not explicitly keep track of the dependence of C on d and ρd.

Next, we observe that
(3.10)

max
x∈D

sup
t∈[0,T]

‖Xx
t ‖Lq(P,‖·‖

Rd
) ≤ max

x∈D
sup

t∈[0,T]

(
‖x‖

Rd + t
1
p

‖Xx
t − x‖Lq(P,‖·‖

Rd
)

t
1
p

)
≤ max

x∈D
‖x‖

Rd + (1 + T
1
p)ρd,

such that the left-hand side also grows at most polynomially in d and ρd.
Finally, we will denote by ‖·‖2 the norm ‖·‖L2(D×[0,T]) and to simplify notation we will write u := ud

and D := Dd.
Step 1: from u to ūN . In the first step we approximate the temporal integral in (3.5) by a Riemann

sum, that can be readily approximated by neural networks. To this end, let h : R → R be defined by
h(x) = max{0,min{x, 1}}. Then we define for N ∈ N,

(3.11) ūN (x, t) = ϕ(x) +
T

N

N∑

n=1

E

[
h

(
Nt

T
− n

)
· (Fϕ)

(
Xx

nT
N

)]
.

We first define n0(t) = ⌊Nt/T ⌋ and calculate for t ∈
(

n0(t)T
N , (n0(t)+1)T

N

)
,

(3.12) ∂t(ū
N − u) = E

[
(Fϕ)

(
Xx

n0(t)T
N

)
− (Fϕ) (Xx

t)

]
.

Next, we make the observation that there exist constants ai, bi, cij (that only depend on the coefficients
of µ and σ) and functions Λi, Ψi and Φij (that linearly depend on ϕ and its derivatives) such that

(3.13) (Fϕ) (Zx) =

d∑

i=1

aiΛi(Z
x) +

d∑

i=1

biZ
x
i Ψi(Z

x) +

d∑

i,j=1

cijZ
x
i Z

x
j Φij(Z

x)

for any d-dimensional stochastic process Zx. If we define x to be random variable that is uniformly
distributed on D, we can use the Lipschitz continuity of Λi and the temporal regularity of Xx (property
(3) of Lemma A.5 with λ← x) to see that

(3.14) sup
t∈[0,T]

ˆ

D

E

[∣∣∣∣Λi(X
x
n0(t)T

N

)− Λi(X
x
t)

∣∣∣∣
2
]
dx ≤ C sup

t∈[0,T]

ˆ

D

E

[∥∥∥∥Xx
n0(t)T

N

−Xx
t

∥∥∥∥
2
]
dx ≤ C

N
2
p

.

8 ERROR ANALYSIS FOR PINNS APPROXIMATING KOLMOGOROV PDES

Similarly, we find using Lemma A.5 and the generalized Hölder inequality with q > 0 such that 1
p+

1
q = 1

2 ,

sup
t∈[0,T]



ˆ

D

E

[∣∣∣∣(Xx
n0(t)T

N

)iΨi(X
x
n0(t)T

N

)− (Xx
t)iΨi(X

x
t)

∣∣∣∣
2
]
dx




1/2

≤ sup
t∈[0,T]



ˆ

D

E

[∣∣∣∣(Xx
n0(t)T

N

)i − (Xx
t)i

∣∣∣∣
p
]
dx




1/p

ˆ

D

E

[∣∣∣∣Ψi(X
x
n0(t)T

N

)

∣∣∣∣
q
]
dx




1/q

+ sup
t∈[0,T]

(
ˆ

D

E

[∣∣(Xx
t)i
∣∣q
]
dx

)1/q


ˆ

D

E

[∣∣∣∣Ψi(X
x
n0(t)T

N

)−Ψi(X
x
t)

∣∣∣∣
p
]
dx




1/p

≤ sup
t∈[0,T]

C



ˆ

D

E

[∥∥∥∥Xx
n0(t)T

N

−Xx
t

∥∥∥∥
p
]
dx




1/p

≤ C

N1/p
.

(3.15)

Using also the fact that

(3.16) sup
t∈[0,T]

(
ˆ

D

E

[∣∣∣Zx
i Z

x
j

∣∣∣
q
]
dx

)1/q

≤ sup
t∈[0,T]

(
ˆ

D

E

[
|Zx

i |2q
]
dx

)1/2q

sup
t∈[0,T]

(
ˆ

D

E

[∣∣∣Zx
j

∣∣∣
2q
]
dx

)1/2q

,

we can find that

(3.17) sup
t∈[0,T]



ˆ

D

E

[∣∣∣∣(Xx
n0(t)T

N

)i(X
x
n0(t)T

N

)jΦij(X
x
n0(t)T

N

)− (Xx
t)i(X

x
t)jΦij(X

x
t)

∣∣∣∣
2
]
dx




1/2

≤ C

N1/p
.

As a result, we find that

(3.18)
∥∥∥∂t(ūN − u)

∥∥∥
2
≤ C

N1/p
.

In a similar fashion, one can also find that

(3.19)

∥∥∥∥L
[
u− ūN

]∥∥∥∥
2

≤ C

N1/p
.

To obtain this result, one can use that for all x ∈ R
d and t ∈ [0, T] it holds that

(3.20) Xx
t =

d∑

i=1

(Xei
t −X0

t)xi +X0
t ,

see Lemma A.5. Using this, and writing X ·
t : D → R : x 7→ Xx

t , one can calculate that L
[
(Fϕ) (X ·

t)
]
(x)

is a linear combination of terms of the form (Xy1

t)k1
· · · (Xyr

t)kr
F (Xx

t)G(x) for y1, . . . , yr ∈ {0, e1, . . . ed},
1 ≤ k1, . . . , kr ≤ d (with r independent of d) and where F is a linear combination of ϕ and its partial
derivatives and G is a product of µ and σ and their derivatives. Using these observations and the fact
that ρd <∞, one can obtain (3.19). Moreover, very similar yet tedious computations yield,

(3.21)
∥∥∥u− ūN

∥∥∥
H1(D×[0,T])

≤ C

N1/p
.

Step 2: from ūN to ũM,N . We continue the proof by constructing a Monte Carlo approximation
of ūN . For this purpose, we randomly draw ωm ∈ Ω for all m ∈ N and define for every M,N ∈ N the
random variable

(3.22) UM,N (x, t) = ϕ(x) +
T

MN

N∑

n=1

M∑

m=1

h

(
Nt

T
− n

)
· (Fϕ)

(
Xx

nT
N

(ωm)
)
.

Using the same arguments as in the proofs of (3.18) and (3.19), we find for all (x, t) ∈ D × [0, T] and
q ∈ {t, x1, . . . xd} that,

(3.23) E

[(
∂qU

1,N (x, t)− E

[
∂qU

1,N (x, t)
])2

]
≤ C and ∂qū

N (x, t) = E

[
∂qU

1,N (x, t)
]
.

Invoking Lemma A.2, we find that

(3.24) E

[∥∥∥∂q(UM,N − u)
∥∥∥
2

]
≤ C√

M
.

ERROR ANALYSIS FOR PINNS APPROXIMATING KOLMOGOROV PDES 9

Similarly, one can prove that

(3.25) E



(
L
[
U1,N

]
(x, t)− E

[
L
[
U1,N

]
(x, t)

])2

 ≤ C and L [u] (x, t) = E

[
L
[
U1,N

]
(x, t)

]
.

This can be proven using the same arguments as in the proof of (3.19). Using again Lemma A.2 and
Lemma A.5, and in combination with our previous result, we find that there is a constant C0 > 0
independent of M (and with the same properties of C in terms of dependence on d) such that

(3.26) E

[
max

0≤n≤N
max

y∈{0,e1,...ed}

∥∥∥∥X
y
nT
N

∥∥∥∥
Rd

+
√
M
∥∥∥UM − u

∥∥∥
H1(D×[0,T])

+
√
M

∥∥∥∥L
[
UM − u

]∥∥∥∥
2

]
≤ C0

and therefore by Lemma A.3 that

(3.27) P

(
max

0≤n≤N
max

y∈{0,e1,...ed}

∥∥∥∥X
y
nT
N

∥∥∥∥
Rd

+
√
M
∥∥∥UM − u

∥∥∥
H1(D×[0,T])

+
√
M

∥∥∥∥L
[
UM − u

]∥∥∥∥
2

≤ C0

)
> 0.

The fact that this event has a non-zero probability implies the existence of some fixed ωm ∈ Ω, 1 ≤ m ≤
M , such that for the function

(3.28) ũM,N (x, t) = ϕ(x) +
T

MN

N∑

n=1

M∑

m=1

h

(
Nt

T
− n

)
· (Fϕ)

(
Xx

nT
N

(ωm)
)

it holds for all 1 ≤ m ≤M that

∥∥∥ũM,N − u
∥∥∥
H1(D×[0,T])

+

∥∥∥∥L
[
ũM,N − u

]∥∥∥∥
2

≤ C0√
M

and max
0≤n≤N

max
y∈{0,e1,...ed}

∥∥∥∥X
y
nT
N

(ωm)

∥∥∥∥
Rd

≤ C0.

(3.29)

Step 3: from ũM,N to ûM,N . For every ǫ > 0 and N = N(ǫ) ∈ N, let hǫ be a tanh neural network
such that

(3.30) ‖hǫ − h‖L∞(R) ≤ ǫ,
∥∥∥h′ǫ − χ[0,1]

∥∥∥
L2([−N,N])

≤ ǫ and
∥∥h′ǫ
∥∥
L∞(R)

≤ 2,

where χ[0,1] denotes the indicator function on [0, 1]. The existence of this neural network is guaranteed

by Lemma A.6. Moreover, for C1 = maxx∈[−C0,C0]d(F̂ϕ)δ (x), we denote the multiplication operator

× : [−2, 2] × [−2C1, 2C1] → R : (x, y) 7→ xy and every η > 0, we define ×̂η : [−2, 2] × [−2C1, 2C1] → R

to be a tanh neural network such that

(3.31)
∥∥∥×− ×̂η

∥∥∥
C2([−2,2]×[−2C1,2C1])

≤ η.

If we now in (3.28) replace ϕ and Fϕ by ϕ̂ξ and (F̂ϕ)δ as from (3.7), h by hǫ and × by ×̂η, then we end
up with the tanh neural network

(3.32) ûM,N (x, t) = ϕ̂ξ(x) +
T

MN

N∑

n=1

M∑

m=1

×̂η

(
hǫ

(
Nt

T
− n

)
, (F̂ϕ)δ

(
Xx,m

nT
N

))
.

A sketch of this network can be found in Figure 1. In what follows, we will write ∂1 for the partial
derivative to the first component and we will write
(3.33)

y1 = hǫ

(
Nt

T
− n0(t)

)
, y2 = (F̂ϕ)δ

(
Xx

n0(t)T
N

(ωm)

)
y3 =

Nt

T
− n0(t), and y4 = Xx

n0(t)T
N

(ωm).

It holds that

∥∥∥∂t(ûM,N − ũM,N)
∥∥∥
2
≤ 1

M

M∑

m=1

∥∥∥∥∥∥
∑

n 6=n0(t)

∂1×̂η (y1, y2)h
′
ǫ

(
Nt

T
− n

)∥∥∥∥∥∥
2

+
1

M

M∑

m=1

∥∥∥∂1×̂η (y1, y2)h
′
ǫ (y3)− (Fϕ) (y4)

∥∥∥
2
.

(3.34)

Using (3.31), we find that

1

M

M∑

m=1

∥∥∥∥∥∥
∑

n 6=n0(t)

∂1×̂η (y1, y2)h
′
ǫ

(
Nt

T
− n

)∥∥∥∥∥∥
2

≤ CN
∥∥∥×̂η

∥∥∥
C2
ǫ ≤ CNǫ.(3.35)

10 ERROR ANALYSIS FOR PINNS APPROXIMATING KOLMOGOROV PDES

for every n

for every m,n

affine

ûM,N (x, t)

×̂η

(
hǫ

(
Nt
T − n

)
, (F̂ϕ)δ

(
Xx,m

nT
N

))

hǫ

(
Nt
T − n

)
(F̂ϕ)δ

(
Xx,m

nT
N

)
ϕ̂ξ(x)

Xx,m
nT
N

t x

Figure 1. Flowchart to visualize the construction of the neural network ûM,N (x, t) =

ϕ̂ξ(x) +
T

MN

∑N
n=1

∑M
m=1 ×̂η

(
hǫ

(
Nt
T − n

)
, (F̂ϕ)δ

(
Xx,m

nT
N

))
.

For the other term, we calculate using (3.7), (3.30) and (3.31) that

∥∥∥∂1×̂η (y1, y2)h
′
ǫ (y3)− (Fϕ) (y4)

∥∥∥
2

≤
∥∥∥h′ǫ (y3) (∂1×̂η (y1, y2)− y2) + h′ǫ (y3) ((F̂ϕ)δ (y4)− (Fϕ) (y4)) + (Fϕ) (y4) (h′ǫ (y3)− χ[0,1](y3))

∥∥∥
2

≤ C
∥∥h′ǫ
∥∥
∞

∥∥∥×− ×̂η

∥∥∥
C2

+ C
∥∥h′ǫ
∥∥
∞

∥∥∥(F̂ϕ)δ −Fϕ
∥∥∥
C2

+ ‖Fϕ‖∞
∥∥∥h′ǫ − χ[0,1]

∥∥∥
L2

≤ C(η + δ + ǫ).

(3.36)

Thus, we find that

(3.37)
∥∥∥∂t(ûM,N − ũM,N)

∥∥∥
2
≤ C (Nǫ+ η + δ)

Finally, we obtain a bound on
∥∥∥L
[
ũM,N − ûM,N

]∥∥∥
2
. We simplify notation again by setting

(3.38) z1 = hǫ

(
Nt

T
− n

)
, z2 = (F̂ϕ)δ

(
Xx

nT
N

(ωm)
)

z3 =
Nt

T
− n, and z4 = Xx

nT
N

(ωm).

We start off by calculating

L
[
ũM,N − ûM,N

]
=L

[
ϕ− ϕ̂ξ

]
+

T

MN

M∑

m=1

N∑

n=1

h (z3) · L
[
(Fϕ)

(
X ·

nT
N

(ωm)
)]

(x)

− T

MN

M∑

m=1

N∑

n=1

L
[
×̂η

(
z1, (F̂ϕ)δ

(
X ·

nT
N

(ωm)
))]

(x).

(3.39)

Explicitly working out the above formula is straightforward, but tedious, and we omit the calculations
for the sake of brevity. From this, together with a repeated use of the triangle inequality and (3.29), we
find that∥∥∥∥L

[
ũM,N − ûM,N

]∥∥∥∥
2

≤ C
(∥∥ϕ− ϕ̂ξ

∥∥
C2 +

∥∥∥×− ×̂η

∥∥∥
C2

+
∥∥∥Fϕ− (F̂ϕ)δ

∥∥∥
C2

+ ‖hǫ − h‖L∞(R)

)

≤ C(ξ + η + δ + ǫ).

(3.40)

ERROR ANALYSIS FOR PINNS APPROXIMATING KOLMOGOROV PDES 11

Moreover, using similar tools as above we also find that

(3.41)
∥∥∥ũM,N − ûM,N

∥∥∥
H1(D×[0,T])

≤ C (Nǫ+ ξ + η + δ) .

Step 4: Total error bound. From the triangle inequality and inequalities (3.18), (3.29), (3.37),
(3.40) and (3.19), we get that

∥∥∥∂tûM,N − LûM,N
∥∥∥
2
≤
∥∥∥∂t(ûM,N − ũM,N)

∥∥∥
2
+
∥∥∥∂t(ũM,N − ūN)

∥∥∥
2
+
∥∥∥∂t(ūN − u)

∥∥∥
2

+

∥∥∥∥L
[
u− ūN

]∥∥∥∥
2

+

∥∥∥∥L
[
ūN − ũM,N

]∥∥∥∥
2

+

∥∥∥∥L
[
ũM,N − ûM,N

]∥∥∥∥
2

≤ C
(

1

N1/p
+

1√
M

+ (Nǫ+ η + δ) + (ξ + η + δ + ǫ) +
1√
M

+
1

N1/p

)

≤ C
(

1

N1/p
+

1√
M

+Nǫ+ η + δ + ξ

)
.

(3.42)

Similarly, the triangle inequality together with inequalities (3.21), (3.29) and (3.41) gives us,

(3.43)
∥∥∥ûM,N − u

∥∥∥
H1(D×[0,T])

≤ C
(

1

N1/p
+

1√
M

+Nǫ+ η + δ + ξ

)
.

Combining this result with a multiplicative trace inequality (e.g. [11, Theorem 3.10.1]) provides us with
the result

(3.44)
∥∥∥ûM,N − u

∥∥∥
L2(∂(D×[0,T]))

≤ C
(

1

N1/p
+

1√
M

+Nǫ+ η + δ + ξ

)
.

Step 5: network size. Recall that we need a tanh neural network with O(dαδ−β) neurons to approx-
imate Fϕ to an accuracy of δ > 0. Similary for approximating ϕ, we need a tanh neural network with
O(dαξ−β) neurons.

We first determine the complexity of the network sizes in terms of ε. The network will consist of

multiple sub-networks, as illustrated in Figure 1. The first part constructs M · N copies of (F̂ϕ)δ,
leading to a subnetwork with O

(
MNδ−β

)
= O

(
ε−2−p−β

)
neurons. Next, we need N copies of hǫ.

From Lemma A.6 it follows that for each copy, one needs a subnetwork with two hidden layers of

width O
(
N

1
2(1−γ) ǫ

−3
1−γ

)
for any γ > 0. One can calculate that N copies of this lead to a width of

O
(
N1+ 1

2(1−γ) ǫ
−3
1−γ

)
= O

(
ε−5p−3

)
. The subnetwork approximating ϕ consists of O(ξ−β) = O(ε−β)

neurons. We assume that the subnetworks to approximate the identity function have a size that is
negligible compared to the network sizes of the other parts [5]. Combining these observations with the
fact that C depends polynomially on d and ρd, we find that there exists a constant λ > 0 such that the
number of neurons of the network is bounded by O((dρd)λε−max{5p+3,2+p+β}).

By assumption, the weights of (F̂ϕ)δ and ϕ̂ξ scale asO(ε−ζ). From [5, Corollary 3.7], it follows that the

weights of ×̂η scale as O(ε−1/2). Finally, from Lemma A.6, the weights of ĥǫ scale as O
(
N

1
(1−γ) ǫ

−6
1−γ

)
=

O
(
ε−8p−6

)
. Hence, the weights of the total network ûM,N grow as O

(
(dρd)

λε−max{ζ,8p+6}
)
, where we

possibly adapted the size of λ. �

Remark 3.4. For the Black-Scholes equation (2.3), the initial condition is to be interpreted as a payoff
function. Note that any mollified version of the payoff functions mentioned in Section 2.1 satisfies the
regularity requirements of Theorem 3.3. Moreover, because of their compositional structure, these payoff
functions and their derivatives can be approximated without the curse of dimensionality. Hence, the
assumption (3.7) is satisfied as well.

Theorem 3.3 reveals that the size of the constructed tanh neural network, approximating the under-
lying solution u of the linear Kolmogorov equation (2.1), and whose PINN residual is as small as desired
(3.8), grows with increasing accuracy, but at a rate that is independent of the underlying dimension d.
Thus, it appears that this neural network overcomes the curse of dimensionality in this sense.

However, Theorem 3.3 reveals that the overall network size grows polynomially in ρd. It could be that
this constant grows exponentially with dimension. Consequently, the overall network size will be subject
to the curse of dimensionality. Given this issue, we will prove that at least for a subclass of Kolmogorov
PDEs (2.1), ρd only grows polynomially on d. This is for example the case when the coefficients µ and
σ are both constant functions.

12 ERROR ANALYSIS FOR PINNS APPROXIMATING KOLMOGOROV PDES

Theorem 3.5. Assume the setting of Theorem 3.3 and assume that µ and σ are both constant. Then
there exists a constant λ > 0 such that for every ε > 0 and d ∈ N, there exists a tanh neural network
Ψε,d with O(dλε−max{5p+3,2+p+β}) neurons and weights that grow as O(dλε−max{ζ,8p+6}) for small ε
and large d such that

∥∥∥∂tΨε,d − L
[
Ψε,d

]∥∥∥
L2(D×[0,T])

+
∥∥Ψε,d − ud

∥∥
H1(D×[0,T])

+
∥∥Ψε,d − ud

∥∥
L2(∂(D×[0,T]))

≤ ε.(3.45)

Proof. We show that when µ and σ are both constant functions, the constant ρd, as defined in (3.9),
grows only polynomially in d. It is well-known that in this setting the solution process to the SDE (3.3)
is given by Xx

t = x+ µt+ σBt, where (Bt)t∈[0,T] is a d-dimensional Brownian motion. The fact that ρd
only grows polynomially in d then follows directly from the Lévy’s modulus of continuity (Lemma A.4).
The corollary then is a direct consequence of Theorem 3.3 �

Thus, we have been able to answer question Q1 by showing that there exists a neural network, for
which the PINN residual (generalization error) (1.3) is as small as desired. In this process, we have also
answered Q2 for this particular tanh neural network as the bound (3.43) clearly shows that the overall
error (in the L2-norm and even H1-norm) of the tanh neural network Ψε,d is arbitrarily small.

Although in this particular case, an affirmative answer to question Q2 was a by-product of the proof
of question Q1, it turns out that one can follow the recent paper [26] and leverage the stability of
Kolmogorov PDEs to answer question Q2 in much more generality, by showing that as long as the
generalization error is the small, the overall error is proportionately small. We have the following precise
statement about this fact,

Theorem 3.6. Let u be a (classical) solution to a linear Kolmogorov equation (2.1) with µ ∈ C1(D;Rd)
and σ ∈ C2(D;Rd×d), uθ a PINN and let the residuals be defined by (2.8). Then

‖u− uθ‖2L2(D×[0,T]) ≤ C1

[∥∥Ri[uθ]
∥∥2
L2(D×[0,T])

+
∥∥Rt[uθ]

∥∥2
L2(D)

+ C2

∥∥Rs[uθ]
∥∥
L2(∂D×[0,T])

+ C3

∥∥Rs[uθ]
∥∥2
L2(∂D×[0,T])

]
,

(3.46)

where C0 =
∑d

i,j=1

∥∥∂ij(σσT)ij
∥∥
L∞(D×[0,T])

, C1 = Te(C0+‖divµ‖
∞

+1)T , C2 =
∑d

i=1

∥∥(σσTJx[u− uθ]T)i
∥∥
L2(∂D×[0,T])

and C3 = ‖µ‖∞ +
∑d

i,j,k=1

∥∥∂i(σikσjk)
∥∥
L∞(∂D×[0,T])

.

Proof. Let û = uθ − u. Integrating Ri[û](t, x) over D and rearranging terms gives

1

2

d

dt

ˆ

D

|û|2 =
1

2

ˆ

D

Trace(σσTHx[û])û+

ˆ

D

µJx[û]û+

ˆ

D

Ri[û]û(3.47)

where all integrals are to be interpreted as integrals with respect to the Lebesgue measure on D, resp.

∂D. For the first term of (3.47), we observe that Trace(σσTHx[û]) =
∑d

i,j,k=1 σikσjk∂ij û and also that

(3.48)

ˆ

D

∂i(σikσjk)û∂j û =

ˆ

∂D

∂i(σikσjk)û
2(êj · n̂)−

ˆ

D

∂i(σikσjk)û∂j û−
ˆ

D

∂ij(σikσjk)û
2

for any 1 ≤ i, j, k ≤ d. Next, we define
(3.49)

c1 = 2

d∑

i=1

∥∥∥(σσTJx[û]
T)i

∥∥∥
L2(∂D×[0,T])

, c2 =

d∑

i,j,k=1

∥∥∂i(σikσjk)
∥∥
L∞(∂D×[0,T])

, c3 =

d∑

i,j=1

∥∥∥∂ij(σσT)ij

∥∥∥
L∞(D×[0,T])

.

ERROR ANALYSIS FOR PINNS APPROXIMATING KOLMOGOROV PDES 13

From this, using integration by parts and letting n̂ denote the unit normal on ∂D, we find that

ˆ

D

Trace(σσTHx[û])û

=

d∑

i,j,k=1

[
ˆ

∂D

σikσjkû∂j û(êi · n̂)−
ˆ

D

σikσjk∂iû∂j û−
ˆ

D

∂i(σikσjk)û∂j û

]

=
d∑

i,j,k=1

[
ˆ

∂D

σikσjkû∂j û(êi · n̂)−
ˆ

D

σikσjk∂iû∂j û−
1

2

ˆ

∂D

∂i(σikσjk)û
2(êj · n̂) +

1

2

ˆ

D

∂ij(σikσjk)û
2

]

≤
d∑

i=1

ˆ

∂D

∣∣∣(σσTJx(û)
T)iû(êi · n̂)

∣∣∣−
ˆ

D

Jx[û]σ(Jx[û]σ)
T

︸ ︷︷ ︸
≥0

+
c2
2

ˆ

∂D

∣∣Rs[uθ]
∣∣2 + c3

2

ˆ

D

û2.

(3.50)

For the second term of (3.47), we find that
ˆ

D

µJx[û]û =
1

2

ˆ

D

µJx[û
2] = −1

2

ˆ

D

û2divµ+
1

2

ˆ

∂D

û2µT · n̂

≤ 1

2
‖divµ‖∞

ˆ

D

û2 +
1

2
‖µ‖∞

ˆ

∂D

∣∣Rs[uθ]
∣∣2

(3.51)

Finally, we find for the third term of the right-hand side of (3.47) that
ˆ

D

Ri[û]û ≤
1

2

ˆ

D

Ri[û]
2 +

1

2

ˆ

D

û2(3.52)

Integrating (3.47) over the interval [0, τ] ⊂ [0, T], using all the previous inequalities together with Hölder’s
inequality, we find that

ˆ

D

∣∣û(x, τ)
∣∣2dx ≤

ˆ

D

∣∣Rt[uθ]
∣∣2 + c1

(
ˆ

∂D×[0,T]

∣∣Rs[uθ]
∣∣2
)1/2

+

ˆ

D×[0,T]

∣∣Ri[û]
∣∣2

+ (c2 + ‖µ‖∞)

ˆ

∂D×[0,T]

∣∣Rs[uθ]
∣∣2 + (c3 + ‖divµ‖∞ + 1)

ˆ

[0,τ]

ˆ

D

∣∣û(x, s)
∣∣2dxds.

(3.53)

Using Grönwall’s inequality and integrating over [0, T] then gives

ˆ

D×[0,T]

|û|2 ≤ Te(c3+‖divµ‖
∞

+1)T

[
ˆ

D

∣∣Rt[uθ]
∣∣2 + c1

(
ˆ

∂D×[0,T]

∣∣Rs[uθ]
∣∣2
)1/2

+

ˆ

D×[0,T]

∣∣Ri[û]
∣∣2 + (c2 + ‖µ‖∞)

ˆ

∂D×[0,T]

∣∣Rs[uθ]
∣∣2
]
.

(3.54)

Renaming the constants yields the statement of the theorem. �

Thus the bound (3.46) clearly shows that controlling the generalization error (1.3) suffices to control
the L2-error for the PINN, approximating the Kolmogorov equations (2.1). In particular, combining The-
orem 3.6 with Theorem 3.3 then proves that it is possible to approximate solutions to linear Kolmogorov
equations in L2-norm at a rate that is independent of the spatial dimension d.

4. Generalization error of PINNs

Having answered the questions Q1 and Q2 on the smallness of the PINN residual (generalization error
(1.3)) and the total error for PINNs approximating the Kolmogorov PDEs (2.1), we turn our attention
to question Q3 i.e., given small training error (2.9) and for sufficiently many training samples Si,s,t,
can one show that the generalization error (1.3) (and consequently the total error by Theorem 3.6) is
proportionately small?

To this end, we start with the observation that the PINN residual as well training error (2.9) has
three parts, two data terms corresponding to the mismatches with the initial and boundary data and a
residual term that measures the amplitude of the PDE residual. Thus, we can embed these two types
of terms in the following very general set-up: let D ⊂ R

d be compact and let f : D → R, fθ : D → R be
functions for all θ ∈ Θ. We can think of f as the ground truth for the initial or boundary data for the
PDE (2.1) and fθ be the corresponding restriction of approximating PINNs to the spatial or temporal

14 ERROR ANALYSIS FOR PINNS APPROXIMATING KOLMOGOROV PDES

boundaries. Similarly, we can think of f ≡ 0 as the PDE residual, corresponding to the exact solution
of (2.1) and fθ is the interior PINN residual (first term in (2.8)), for a neural network with weights θ.
Let M ∈ N be the training set size and let S = {z1, . . . , zM} ⊂ DM be the training set, where each zi is
independently drawn according to some probability measure µ on D. We define the (squared) training
error, generalization error and empirical risk minimizer as
(4.1)

ET (θ,S)2 =
1

M

M∑

i=1

∣∣fθ(zi)− f(zi)
∣∣2, EG(θ)2 =

ˆ

D

∣∣fθ(z)− f(z)
∣∣2dµ(z), θ∗(S) ∈ argmin

θ∈Θ
ET (θ,S)2,

where we restrict ourselves to the (squared) L2-norm only for definiteness, while claiming that all the
subsequent results readily extend to general Lp-norms for 1 ≤ p < ∞. It is easy to see that the above
set-up encompasses all the terms in the definitions of the generalization error (1.3) and training error
(2.9) for PINNs.

Our first aim is to decompose this very general form of generalization error in (4.1) as,

Lemma 4.1. Let k ∈ N and Θ ⊂ R
k compact. Then it holds that

EG(θ∗(S))2 ≤ sup
θ,ϑ∈Θ:

‖θ−ϑ‖≤δ

∣∣∣EG(ϑ)2 − EG(θ)2
∣∣∣+ sup

θ∈Θ

∣∣∣EG(θ)2 − ET (θ)2
∣∣∣

+ sup
θ,ϑ∈Θ:

‖θ−ϑ‖≤δ

∣∣∣ET (θ,S)2 − ET (ϑ,S)2
∣∣∣+ ET (θ∗(S),S)2.

(4.2)

Proof. Since Θ is compact, there exist for every δ > 0 a natural number N = N(δ) ∈ N and parameters
θ1, . . . θN ∈ Θ such that for all θ ∈ Θ there exists 1 ≤ i ≤ N such that ‖θ − θi‖∞ ≤ δ. For every
1 ≤ i ≤ N it holds that

EG(θ∗(S))2 ≤
∣∣∣EG(θ∗(S))2 − EG(θi)2

∣∣∣+
∣∣∣EG(θi)2 − ET (θi)2

∣∣∣+
∣∣∣ET (θi)2 − ET (θ∗)2

∣∣∣+ ET (θ∗(S))2.(4.3)

This error decomposition holds in particular for i∗ = i∗(θ∗) ∈ argmini ‖θ∗ − θi‖∞. Using that ‖θ∗ − θi∗‖∞ ≤
δ and then majorizing gives the bound from the statement. �

Note that we have leveraged the compactness of the parameter space Θ in (4.2) to decompose the
generalization error in terms of the training error ET (θ∗(S),S), the so-called generalization gap i.e.,
supθ∈Θ

∣∣EG(θ)2 − ET (θ)2
∣∣ and error terms that measure the modulus of continuity of the generalization

and training errors. From this decomposition, we can intuitively see that these error terms can be
made suitably small by requiring that the generalization and training errors are, for instance, Lipschitz
continuous. Then, we can use standard concentration inequalities to obtain the following very general
bound on the generalization error in terms of the training error,

Theorem 4.2. Let a, c,L > 0, k, d,M ∈ N, D ⊂ R
d compact, (Ω,A,P) a probability space, Θ = [−a, a]k

and let f : D → R and fθ : D → R be functions for all θ ∈ Θ. Let Xi : Ω→ D, 1 ≤ i ≤M be iid random
variables, S = {X1, . . . XM} and let θ∗(S) be a minimizer of θ 7→ ET (θ,S)2. Let ET (θ)2, EG(θ,S)2 ∈ [0, c]
for all θ ∈ Θ and S ⊂ DM and let θ 7→ EG(θ)2 and θ 7→ ET (θ,S)2 be Lipschitz continuous with Lipschitz
constant L. For every ǫ, η > 0, it holds that

(4.4) P
(
EG(θ∗(S)) ≤ ǫ+ ET (θ∗(S),S)

)
≥ 1− η if M ≥ c2

2ǫ4

(
k ln

(
2aL

ǫ2

)
+ ln

(
1

η

))
.

Proof. For arbitrary ǫ > 0, set δ = ǫ2

2L and let {θi}Ni=1 be a δ-covering of Θ with respect to the supremum

norm. Then it holds that N can be bounded by (2aL/ǫ2)k and moreover

(4.5) sup
θ,ϑ∈Θ:‖θ−ϑ‖≤δ

∣∣∣EG(ϑ)2 − EG(θ)2
∣∣∣+ sup

θ,ϑ∈Θ:‖θ−ϑ‖≤δ

∣∣∣ET (θ,S)2 − ET (ϑ,S)2
∣∣∣ ≤ ǫ.

Then it holds for every 1 ≤ i ≤ N that

EG(θ∗(S))2 ≤
∣∣∣EG(θ∗(S))2 − EG(θi)2

∣∣∣+
∣∣∣EG(θi)2 − ET (θi,S)2

∣∣∣+
∣∣∣ET (θi,S)2 − ET (θ∗(S),S)2

∣∣∣+ ET (θ∗(S),S)2.
(4.6)

ERROR ANALYSIS FOR PINNS APPROXIMATING KOLMOGOROV PDES 15

Next, we define a projection P : Θ → Θ that maps θ to a unique θi∗ with i∗ ∈ argmini ‖θ − θi‖∞ and
we define the following events for 1 ≤ i ≤ N ,

A =
{
EG(θ∗(S))2 ≤ ǫ2 + ET (θ∗(S),S)2

}
, Bi =

{
EG(θi)2 ≤ ǫ2 + ET (θi,S)2

}
, Ci =

{
P(θ∗(S)) = θi

}
,

D =

{
∃i ∈ {1, . . . , N} :

(
EG(θi)2 ≤ ǫ2 + ET (θi,S)2

)
and (P(θ∗(S)) = θi)

}
.

(4.7)

Note that (4.5) and (4.6) imply that D ⊆ A and thus P(D) ≤ P(A). Next, by the definition of P
it holds that P induces a partition on Θ and thus

∑
i P(Ci) = 1. As ET (θ, {Xi})2 : Ω → [0, c]

and E
[
ET (θ, {Xi})2

]
= EG(θ)2 for all i, Hoeffding’s inequality (Lemma C.1) proves that P (Bi) ≥

1− exp
(
−2ǫ4M/c2

)
. Combining this with the observation that D =

⊔N
i=1(Bi ∩ Ci) then proves that

P(A) ≥ P(D) =
N∑

i=1

P(Bi ∩ Ci) ≥
N∑

i=1

(P(Bi) + P(Ci)− P(Bi ∪ Ci))

≥ 1 +
N∑

i=1

(P(Bi)− 1) ≥ 1−N exp

(
−2ǫ4M
c2

)
≥ 1−

(
2aL

ǫ2

)k

exp

(
−2ǫ4M
c2

)
.

(4.8)

As a consequence, it holds that

M ≥ c2

2ǫ4

(
k ln

(
2aL

ǫ2

)
+ ln

(
1

η

))
=⇒ P

(
EG(θ∗(S))2 ≤ ǫ2 + ET (θ∗(S),S)2

)
≥ 1− η

=⇒ P
(
EG(θ∗(S)) ≤ ǫ+ ET (θ∗(S),S)

)
≥ 1− η.

(4.9)

�

The bound on the generalization error in terms of the training error (4.4) is a probabilistic statement.
It can readily be recast in terms of averages by defining the so-called cumulative generalization and
training errors of the form,

(4.10) E2G =

ˆ

DM

EG(θ∗(S))2dµM (S), E2T =

ˆ

DM

ET (θ∗(S),S)2dµM (S).

Here µM = µ ⊗ µ . . . ⊗ µ is the induced product measure on the training set S. We have the following
ensemble version of Theorem 4.2;

Corollary 4.3. Assume the setting of Theorem 4.2. It holds that

(4.11) EG ≤ ǫ+ ET if M ≥ 2c2

ǫ4

(
k ln

(
4aL

ǫ2

)
+ ln

(
2c

ǫ2

))
.

Proof. Let X = EG(θ∗(S))2 − ET (θ∗(S),S)2. Using (the last step of the proof of) Theorem 4.2 with

η = ǫ2

2c then gives that

(4.12) E[X] = E[X✶
X≤ ǫ2

2

] + E[X✶
X> ǫ2

2

] ≤ ǫ2

2
+ cP

(
X >

ǫ2

2

)
≤ ǫ2,

provided that M ≥ 2c2

ǫ4

(
k ln
(

4aL
ǫ2

)
+ ln

(
2c
ǫ2

))
. �

As a first example for illustrating the bounds of Theorem 4.2 (and Corollary 4.3), we apply it to the
estimation of the generalization errors, corresponding to the spatial and temporal boundaries, in terms
of the corresponding training errors (2.9). These bounds readily follow from the following general bound.

Corollary 4.4. Let L,W ∈ N, R ≥ 1, L ≥ 2 and let fθ : D → R, θ ∈ Θ, be tanh neural networks with at
most L− 1 hidden layers, width at most W and weights and biases bounded by R. For every 0 < ǫ < 1,
it holds that for the generalization and training error (4.1) that,

(4.13) P
(
EG(θ∗(S)) ≤ ǫ+ ET (θ∗(S),S)

)
≥ 1− η if M ≥ 16d(L+ 3)2W 6R4

ǫ4
ln

(
4 5
√
d+ 4RW

ǫ

)
.

16 ERROR ANALYSIS FOR PINNS APPROXIMATING KOLMOGOROV PDES

Proof. Using the inverse triangle inequality and the fact that a2 − b2 = (a + b)(a − b) for a, b ∈ R, we
find for θ, ϑ ∈ Θ that

∣∣∣∣
ˆ

D

∣∣fθ(x)− f(x)
∣∣2 −

∣∣fϑ(x)− f(x)
∣∣2dµ(x)

∣∣∣∣ ≤ 4R

ˆ

D

∣∣∣
∣∣fθ(x)− f(x)

∣∣−
∣∣fϑ(x)− f(x)

∣∣
∣∣∣dµ(x)

≤ 4R

ˆ

D

∣∣fθ(x)− fϑ(x)
∣∣dµ(x).

(4.14)

Combining this with Lemma B.3 and Lemma C.2 proves that the Lipschitz constant of the map θ 7→ fθ
is at most 4(d + 4)RLWL−1. We can then use Corollary 4.3 with a ← R, L ← 4(d + 4)RLWL−1 and
c← 4W 2R2 (from (4.1)). Moreover, one can calculate that every fθ has at most (d+ (L− 2)W + 1)W
weights and (L− 1)W + 1 biases, such that k ← 2dLW 2. Next, we make the estimate
(4.15)

c2

2ǫ4

(
k ln

(
2aL

ǫ2

)
+ ln

(
2c

ǫ2

))
≤ 8W 4R4

ǫ4
·2dLW 2 ln

(
26(d+ 4)RL+3WL−1

ǫ4

)
≤ 16d(L+ 3)2W 6R4

ǫ4
ln

(
4 5
√
d+ 4RW

ǫ

)
.

�

Next, we will apply the above general results to PINNs for the Kolmogorov equation (2.1). The
following corollary provides an estimate on the (cumulative) PINN generalization error and can be seen
as the counterpart of Corollary 4.4. It is based on the fact that neural networks and their derivatives
are Lipschitz continuous in the parameter vector, the proof of which can be found in Appendix B.
Consequently, the PINN generalization error is Lipschitz as well (cf. Lemma C.3).

Corollary 4.5. Let L,W ∈ N, R ≥ 1, a, b ∈ R with a < b and let uθ : [a, b]d → R, θ ∈ Θ, be tanh neural
networks with smooth activation function σ, at most L− 1 hidden layers, width at most W and weights
and biases bounded by R. For q = i, t, s let the PINN generalization EqG and training EqT errors for linear
Kolmogorov PDEs (cf. Section 2.1) and let cq > 0 be such that EqT (θ)2, EqG(θ,S)2 ∈ [0, cq] for all θ ∈ Θ
and S ⊂ DM . Assume that max{‖ϕ‖∞, ‖ψ‖∞} ≤ maxθ∈Θ ‖uθ‖∞ and define the constants

α = max{1, |a|, |b|, ‖σ‖∞}, β = max{1,
∥∥σ′
∥∥
∞
,
∥∥σ′′

∥∥
∞
,
∥∥σ′′′

∥∥
∞
},

C = max
x∈D


1 +

d∑

i=1

∣∣µ(x)i
∣∣+

d∑

i,j=1

∣∣(σ(x)σ(x)∗)ij
∣∣

 .

(4.16)

Then for any ǫ > 0 it holds that

(4.17) EqG ≤ ǫ+ E
q

T if Mq ≥
24dL2W 2c2q

ǫ4
ln

(
4cqRWβ

6

√
C(d+ 7)

ǫ2

)
.

Proof. Setting C = maxx∈D

(
1 +

∑d
i=1

∣∣µ(x)i
∣∣+∑d

i,j=1

∣∣(σ(x)σ(x)∗)ij
∣∣
)
, we can use Corollary 4.3 with

a ← R, c ← cq, L ← 25C2(d + 7)2L4R6L−1W 6L−6β2L (cf. Lemma C.3) and k ← 2dLW 2 (cf. proof of
Corollary 4.4). We then calculate

(4.18) k ln

(
4aL

ǫ2

)
+ln

(
2cq
ǫ2

)
≤ 6kL ln

(
4cqRWβ

6

√
C(d+ 7)

ǫ2

)
= 12dL2W 2 ln

(
4cqRWβ

6

√
C(d+ 7)

ǫ2

)
.

�

Remark 4.6. Corollary 4.5 requires bounds cq on the training errors EqT and the generalization errors
EqG of the PINN. Lemma C.3 provides such bounds, given by ci = 4αC(d + 7)L2R3LW 3L−3βL and
ct = cs = 2WR. Although the values for ct and cs are of reasonable size, the value for ci is likely to be
a large overestimate. It might makes sense to consider the approximation

(4.19) ci ≈ max
n,m
E iT (θn, {xm})

for some randomly sampled θn ∈ Θ and xm ∈ D.

Combining Corollary 4.5 with Theorem 3.6 allows us to bound the L2-error of the PINN in terms of the
(cumulative) training error and the training set size. The following corollary proves that a well-trained
PINN on average has a low L2-error provided that the training set is large enough. It is also possible to
prove a similar probabilistic statement instead of a statement that holds on average.

ERROR ANALYSIS FOR PINNS APPROXIMATING KOLMOGOROV PDES 17

Corollary 4.7. Let u be a (classical) solution to a linear Kolmogorov equation (2.1) with µ ∈ C1(D;Rd)

and σ ∈ C1(D;Rd×d), u∗ = uθ∗(S) a trained PINN, let E iT , E
s

T and EtT denote the interior, spatial
and temporal cumulative training error, cf. (1.3) and let C1, C2 and C3 be the constants as defined in
Theorem 3.6. If the training set sizes where chosen as in (4.17) of Corollary 4.5 for some ǫ > 0, then

ˆ

(D×[0,T])M

ˆ

D×[0,T]

∣∣∣u(x, t)− uθ∗(S)(x, t)
∣∣∣
2

dxdtdµM (S) ≤ C1

[
(E iT)2 + (EtT)2 + C2(E

s

T +
√
ǫ) + C3(E

s

T)
2 + (C3 + 2)ǫ

]
.

(4.20)

Proof. This is a direct consequence of Corollary 4.5 and the proof of Theorem 3.6 (in particular, one
needs to take the expectation of all training sets S before applying Hölder’s inequality in the proof of
Theorem 3.6). �

Thus, in Corollaries 4.5 and 4.7, we have answered the question Q3 by proving that a small training
error and a sufficiently large number of samples, as chosen in (4.17), suffice to ensure a small generalization
error (and total error). Moreover, the number of samples only depends polynomially on the dimension.
Therefore, it overcomes the curse of dimensionality.

5. Discussion

Physics informed neural networks (PINNs) are widely used in approximating both forward as well as
inverse problems for PDEs. However, there is a paucity of rigorous theoretical results on PINNs that
can explain their excellent empirical performance. In particular, one wishes to answer the questions
Q1 (on the smallness of PINN residuals), Q2 (smallness of the total error) and Q3 (smallness of the
generalization error if the training error is small) in order to provides rigorous guarantees for PINNs.

In this article, we aimed to address these theoretical questions rigorously. We do so within the
context of the Kolmogorov equations, which are linear parabolic PDEs of the general form (2.1). The
heat equation as well as the Black-Scholes equation of option pricing are prototypical examples of these
PDEs. Moreover, these PDEs can be set in very high-dimensional spatial domains. Thus, in addition to
providing rigorous bounds on the PINN generalization error and total error, we also aimed to investigate
whether PINNs can overcome the curse of dimensionality in this context.

To this end, we answered question Q1 in Theorem 3.3, where we constructed a PINN (see Figure 1)
for which the PINN residual (generalization error) can be made as small as possible. Our constuction
relied on emulating Dynkin’s formula (3.5). Under suitable assumptions on the initial data as well as on
the underlying stochastic process (cf. (3.9) and Theorem 3.5), we are also able to prove that the size of
the constructed only grew polynomially, in input spatial dimension. Thus, we were able to show that
this PINN was able to overcome the curse of dimensionality in attaining as small a residual as desired.

Next, we answered question Q2 in Theorem 3.6 by leveraging the stability of Kolmogorov PDEs to
bound the total error (in L2) for PINNs in terms of the underlying generalization error.

Finally, question Q3 that required one to bound the generalization error in terms of the training error
was answered by using an error decomposition, Lipschitz continuity of the underlying generalization and
training error maps and concentration inequalities in Corollary 4.5, where we derived a bound on the
generalization error in terms of the training error and for sufficiently many randomly chosen training
samples (4.17). Moreover, the number of training samples only grew polynomially in the dimension,
alleviating the curse of dimensionaly in this regard.

Although we do not present numerical experiments in this paper, we point the readers to [38] and the
forthcoming paper [29], where a large number of numerical experiments for PINNs in approximating both
forward and inverse problems for Kolmogorov type and related equations, are presented. In particular,
these experiments reveal that PINNs overcome the curse of dimensionality in this context. These findings
are consistent with our theoretical results.

At this stage, it is instructive to contrast our results with related works. As mentioned in the intro-
duction, there are very few papers where PINNs are rigorously analyzed. When comparing to [36], we
highlight that the fact that the authors of [36] used a special bespoke Hölder-type regularization term
that penalized the gradients in their loss function. In practice, one trains PINNs in the L2 (or L1) setting
and it is unclear how relevant the assumptions of [36] are in this context. On the other hand, we use
the natural training paradigm for PINNs and prove rigorously that overall errors can be made small.
Comparing with [26], we observe that the authors of [26] only address questions Q2 and (partially) Q3,
but in a very general setting. It is not proved in [26] that the total error can be made small. We do
so here. Moreover, we also provide the first bounds for PINNs, where the curse of dimensionality is
alleviated.

18 ERROR ANALYSIS FOR PINNS APPROXIMATING KOLMOGOROV PDES

It is an appropriate juncture to compare our results with a large number of articles demonstrating the
alleviation of the curse of dimensionality for neural networks approximating Kolmogorov type PDEs, see
[8, 3] and references therein. We would like to point out that these articles consider the supervised learning
paradigm, where (possibly large amounts of) data needs to be provided to train the neural network
for approximating solutions of PDEs. This data has to be generated by either expensive numerical
simulations or the use of representation formulas such as the Feynman-Kac formulas, which requires
solutions of underlying SDEs. In contrast, we recall that PINNs do not require any data in the interior
of the domain and thus are very diferent in design and conception to supervised learning frameworks.

We would also like to highlight some limitations of our analysis. We showed in Theorem 3.3 that
network size in approximating solutions of general Kolmogorov equations (2.1) depended on the rate of
growth the quantity ρd, defined in (3.9). We were also able to prove in Theorem 3.5 that ρd only grew
polynomially (in dimension) for a subclass of Kolmogorov PDEs. Extending these results to general
Kolmogorov PDEs is an open question. Moreover, it is worth repeating (see Remark 4.6) that the
constants in our estimates are clearly not optimal and might be significant overestimates, see [26] for a
discussion on this issue.

Finally, we point out that although we focussed our results on the large and important class of
Kolmogorov PDEs in this paper, the methods that we developed will be very useful in the analysis of
PINNs for approximating PDEs. In particular, the use of smoothness of the underlying PDEs solutions
and their approximation by Tanh neural networks (as in [5]), to build PINNs with small PDE residuals
can be applied to a variety of linear and non-linear PDEs. Similarly, the error decomposition (4.2) and
Theorem 4.2 (Corollary 4.3) are very general and can be used in many different contexts, to bound PINN
generalization error by training error, for sufficiently many random training points. We plan to apply
these techniques for the comprehensive error analysis of PINNs for approximating forward as well as
inverse problems for PDEs in forthcoming papers.

References

[1] G. Bai, U. Koley, S. Mishra, and R. Molinaro. Physics informed neural networks (PINNs) for approximating nonlinear
dispersive PDEs. arXiv preprint arXiv:2104.05584, 2021.

[2] A. Barth, A. Jentzen, A. Lang, and C. Schwab. Numerical Analysis of Stochastic Ordinary Differential Equations.
ETH Zürich, 2018.

[3] J. Berner, P. Grohs, and A. Jentzen. Analysis of the generalization error: Empirical risk minimization over deep
artificial neural networks overcomes the curse of dimensionality in the numerical approximation of black–scholes

partial differential equations. SIAM Journal on Mathematics of Data Science, 2(3):631–657, 2020.
[4] T. Chen and H. Chen. Universal approximation to nonlinear operators by neural networks with arbitrary activation

functions and its application to dynamical systems. IEEE Transactions on Neural Networks, 6(4):911–917, 1995.
[5] T. De Ryck, S. Lanthaler, and S. Mishra. On the approximation of functions by tanh neural networks, 2021.
[6] M. Dissanayake and N. Phan-Thien. Neural-network-based approximations for solving partial differential equations.

Communications in Numerical Methods in Engineering, 1994.
[7] W. E, J. Han, and A. Jentzen. Deep learning-based numerical methods for high-dimensional parabolic partial dif-

ferential equations and backward stochastic differential equations. Communications in Mathematics and Statistics,
5(4):349–380, 2017.

[8] P. Grohs, F. Hornung, A. Jentzen, and P. Von Wurstemberger. A proof that artificial neural networks overcome the
curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations. arXiv preprint

arXiv:1809.02362, 2018.
[9] I. Gühring, G. Kutyniok, and P. Petersen. Error bounds for approximations with deep ReLU neural networks in W

s,p

norms. Analysis and Applications, 18(05):803–859, 2020.
[10] I. Gühring and M. Raslan. Approximation rates for neural networks with encodable weights in smoothness spaces.

Neural Networks, 134:107–130, 2021.
[11] R. Hiptmair and C. Schwab. Numerical Methods for Elliptic and Parabolic Boundary Value Problems. ETH Zürich,

2008.
[12] A. D. Jagtap and G. E. Karniadakis. Extended physics-informed neural networks (XPINNs): A generalized space-time

domain decomposition based deep learning framework for nonlinear partial differential equations. Communications in

Computational Physics, 28(5):2002–2041, 2020.

[13] A. D. Jagtap, E. Kharazmi, and G. E. Karniadakis. Conservative physics-informed neural networks on discrete domains
for conservation laws: Applications to forward and inverse problems. Computer Methods in Applied Mechanics and

Engineering, 365:113028, 2020.
[14] F. C. Klebaner. Introduction to stochastic calculus with applications. World Scientific Publishing Company, 2012.

[15] G. Kutyniok, P. Petersen, M. Raslan, and R. Schneider. A theoretical analysis of deep neural networks and parametric
pdes. Constructive Approximation, pages 1–53, 2021.

[16] I. E. Lagaris, A. Likas, and P. G. D. Neural-network methods for bound- ary value problems with irregular boundaries.
IEEE Transactions on Neural Networks, 11:1041–1049, 2000.

[17] I. E. Lagaris, A. Likas, and D. I. Fotiadis. Artificial neural networks for solving ordinary and partial differential
equations. IEEE Transactions on Neural Networks, 9(5):987–1000, 2000.

ERROR ANALYSIS FOR PINNS APPROXIMATING KOLMOGOROV PDES 19

[18] S. Lanthaler, S. Mishra, and G. E. Karniadakis. Error estimates for DeepOnets: A deep learning framework in infinite
dimensions, 2021.

[19] P. Lévy and P. Lévy. Théorie de l’addition des variables aléatoires. Gauthier-Villars, 1954.
[20] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar. Fourier neural

operator for parametric partial differential equations, 2020.
[21] L. Lu, P. Jin, and G. E. Karniadakis. DeepONet: Learning nonlinear operators for identifying differential equations

based on the universal approximation theorem of operators. arXiv preprint arXiv:1910.03193, 2019.
[22] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis. DeepXDE: A deep learning library for solving differential equations.

SIAM Review, 63(1):208–228, 2021.

[23] K. O. Lye, S. Mishra, and D. Ray. Deep learning observables in computational fluid dynamics. Journal of Computa-

tional Physics, page 109339, 2020.

[24] K. O. Lye, S. Mishra, D. Ray, and P. Chandrashekar. Iterative surrogate model optimization (ISMO): An active learning
algorithm for pde constrained optimization with deep neural networks. Computer Methods in Applied Mechanics and

Engineering, 374:113575, 2021.
[25] Z. Mao, A. D. Jagtap, and G. E. Karniadakis. Physics-informed neural networks for high-speed flows. Computer

Methods in Applied Mechanics and Engineering, 360:112789, 2020.
[26] S. Mishra and R. Molinaro. Estimates on the generalization error of physics informed neural networks (PINNs) for

approximating PDEs. arXiv preprint arXiv:2006.16144, 2020.
[27] S. Mishra and R. Molinaro. Estimates on the generalization error of physics-informed neural networks for approximating

a class of inverse problems for pdes. IMA Journal of Numerical Analysis, 2021.
[28] S. Mishra and R. Molinaro. Physics informed neural networks for simulating radiative transfer. Journal of Quantitative

Spectroscopy and Radiative Transfer, 270:107705, 2021.
[29] S. Mishra, R. Molinaro, and R. Tanios. Physics informed neural networks for option pricing. In preparation, 2021.

[30] B. Øksendal. Stochastic differential equations. Springer, 2003.
[31] G. Pang, L. Lu, and G. E. Karniadakis. fPINNs: Fractional physics-informed neural networks. SIAM journal of

Scientific computing, 41:A2603–A2626, 2019.
[32] M. Raissi and G. E. Karniadakis. Hidden physics models: Machine learning of nonlinear partial differential equations.

Journal of Computational Physics, 357:125–141, 2018.
[33] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning framework for

solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational

Physics, 378:686–707, 2019.
[34] M. Raissi, A. Yazdani, and G. E. Karniadakis. Hidden fluid mechanics: A Navier-Stokes informed deep learning

framework for assimilating flow visualization data. arXiv preprint arXiv:1808.04327, 2018.
[35] C. Schwab and J. Zech. Deep learning in high dimension: Neural network expression rates for generalized polynomial

chaos expansions in uq. Analysis and Applications, 17(01):19–55, 2019.
[36] Y. Shin, J. Darbon, and G. E. Karniadakis. On the convergence and generalization of physics informed neural networks.

arXiv preprint arXiv:2004.01806, 2020.
[37] Y. Shin, Z. Zhang, and G. E. Karniadakis. Error estimates of residual minimization using neural networks for linear

equations. arXiv preprint arXiv:2010.08019, 2020.
[38] R. Tanios. Physics informed neural networks in computational finance: high-dimensional forward and inverse option

pricing. Master’s thesis, ETH Zürich, 2021.
[39] L. Yang, X. Meng, and G. E. Karniadakis. B-PINNs: Bayesian physics-informed neural networks for forward and

inverse pde problems with noisy data. Journal of Computational Physics, 425:109913, 2021.

Appendix A. Additional material for Section 3

A.1. Auxiliary results.

Lemma A.1. Let p ∈ [2,∞), d,m ∈ N, let (Ω,F ,P) be a probability space, and let Xi : Ω → R
d, i ∈

{1, . . . ,m}, be i.i.d. random variables with E
[
‖X1‖

]
<∞. Then it holds that

(A.1)


E




∥∥∥∥∥∥
E [X1]−

1

m

m∑

i=1

Xi

∥∥∥∥∥∥

p






1/p

≤ 2

√
p− 1

m

(
E

[∥∥E [X1]−X1

∥∥p
])1/p

.

Proof. This result is [8, Corollary 2.5]. �

Lemma A.2. Let p ∈ [2,∞), q,m ∈ N, let (Ω,F ,P) and (D,A, µ) be probability spaces, and let for

every q ∈ D the maps Xq
i : Ω→ R, i ∈ {1, . . . ,m}, be i.i.d. random variables with E

[∣∣Xq
1

∣∣
]
<∞. Then

it holds that

(A.2) E






ˆ

D

∣∣∣∣∣∣
E
[
Xq

1

]
− 1

m

m∑

i=1

Xq
i

∣∣∣∣∣∣

p

µ(dq)




1/p

 ≤ 2

√
p− 1

m

(
ˆ

D

E

[∣∣∣E
[
Xq

1

]
−Xq

1

∣∣∣
p
]
µ(dq)

)1/p

.

Proof. The proof involves Hölder’s inequality, Fubini’s theorem and Lemma A.1. The calculation is as
in [8, eq. (226)]. �

20 ERROR ANALYSIS FOR PINNS APPROXIMATING KOLMOGOROV PDES

Lemma A.3. Let ǫ > 0, let (Ω,F ,P) be a probability space, and let X : Ω → R be a random variable
that satisfies E

[
|X|
]
≤ ǫ. Then it holds that P(|X| ≤ ǫ) > 0.

Proof. This result is [8, Proposition 3.3]. �

Lemma A.4 (Lévy’s modulus of continuity). For (Bt)t∈[0,1] a Brownian motion, it holds almost surely
that

(A.3) lim sup
h↓0

sup
0≤t≤1−h

|Bt+h −Bt|√
2h log

(
1/h
) = 1.

Proof. This result is due to [19] and can be found in most probability theory textbooks. �

Lemma A.5. Let T > 0, p ≥ 2, d,m ∈ N, let (Ω,F , P, (Ft)t∈[0,T]) be a stochastic basis and let W :
[0, T] × Ω → R

m be a standard m-dimensional Brownian motion on (Ω,F , P, (Ft)t∈[0,T]). Let λ ∈
Lp(P |F0 , ‖·‖Rd) and let µ : Rd → R

d and σ : Rd → R
d×m be affine functions. Then there exists an up to

indistinguishability unique (Ft)t∈[0,T]-adapted stochastic process Xλ : [0, T]× Ω→ R
d, which satisfies

(1) that for all t ∈ [0, T] it holds P -a.s. that

(A.4) Xλ
t = λ+

ˆ t

0

µ(Xλ
s)ds+

ˆ t

0

σ(Xλ
s)dWs

(2) it holds that supt∈[0,T]

∥∥Xλ
t

∥∥
Lp(P,‖·‖

Rd
)
<∞,

(3) it holds that for all α ∈ (0, 12] that

(A.5) sup
s,t∈[0,T],

s<t

∥∥Xλ
s −Xλ

t

∥∥
Lp(P,‖·‖

Rd
)

|s− t|α <∞,

(4) for all x ∈ R
d, t ∈ [0, T] and ω ∈ Ω it holds that

(A.6) Xx
t (ω) =

d∑

i=1

(
Xei

t (ω)−X0
t (ω)

)
xi +X0

t (ω).

Proof. Properties (1)-(3) are proven in [2, Theorem 4.5.1]. Property (4) follows from Lemma 2.20 in [8]
and Lemma 3.3 in [3]. �

Lemma A.6. Let h : R → R : x 7→ min{1,max{0, x}}. For every N ≥ 2 and ǫ, γ > 0 there ex-

ists a tanh neural network ĥ with two hidden layers, O
(
N

1
2(1−γ) ǫ

−3
1−γ

)
neurons and weights growing as

O
(
N

1
(1−γ) ǫ

−6
1−γ

)
such that

(A.7)
∥∥∥h− ĥ

∥∥∥
L∞(R)

≤ ǫ,
∥∥∥h′ − ĥ′

∥∥∥
L2([−N,N])

≤ ǫ and
∥∥∥ĥ′
∥∥∥
L∞(R)

≤ 2.

Proof. We first approximate h with a function h̃ that is twice continuously differentiable,

(A.8) h̃(x) =





0 x ≤ −πǫ2

2 ,
1
2

(
πǫ2

2 + x− ǫ2 cos
(

x
ǫ2

))
−πǫ2

2 < x ≤ πǫ2

2 ,

x πǫ2

2 < x ≤ 1− πǫ2

2 ,
1
2

(
1− πǫ2

2 + x+ ǫ2 cos
(
1−x
ǫ2

))
1− πǫ2

2 < x ≤ 1 + πǫ2

2 ,

1 1 + πǫ2

2 < x.

It is easy to prove that
∥∥∥h− h̃

∥∥∥
L∞(R)

= O(ǫ2). Next, we calculate the derivative of h̃,

(A.9) h̃′(x) =





0 x ≤ −πǫ2

2 ,
1
2

(
1 + sin

(
x
ǫ2

))
−πǫ2

2 < x ≤ πǫ2

2 ,

1 πǫ2

2 < x ≤ 1− πǫ2

2 ,
1
2

(
1 + sin

(
1−x
ǫ2

))
1− πǫ2

2 < x ≤ 1 + πǫ2

2 ,

0 1 + πǫ2

2 < x.

ERROR ANALYSIS FOR PINNS APPROXIMATING KOLMOGOROV PDES 21

A straightforward calculation leads to the bound
∥∥∥h′ − h̃′

∥∥∥
L2(R)

= O(ǫ). Finally, one can easily check

that h̃′′ is continuous and that
∥∥∥h̃′′

∥∥∥
L∞(R)

= O(ǫ−2). An application of [5, Theorem 5.1] on h̃ gives us

for every γ > 0 and N large enough the existence of a tanh neural network ĥN with two hidden layers

and O(N) neurons for which it holds that
∥∥∥h̃− ĥN

∥∥∥
W 1,∞([−1,2])

= O(N−1+γǫ−2). Because of the nature

of the construction of ĥN , the monotonous behaviour of the hyperbolic tangent towards infinity and the

fact that h̃ is constant outside [−1, 2], the stronger result that
∥∥∥h̃− ĥN

∥∥∥
W 1,∞(R)

= O(N−1+γǫ−2) holds

automatically as well. As a result we find that
∥∥∥(ĥN)′

∥∥∥
L∞(R)

≤ 2,
∥∥∥h̃− ĥN

∥∥∥
L∞(R)

= O(N−1+γǫ−2) and
∥∥∥h̃− ĥN

∥∥∥
L2([−N,N])

= O(
√
NN−1+γǫ−2). If we choose N ∼ N 1

2(1−γ) ǫ
−3
1−γ then we find that

(A.10)
∥∥∥h̃− ĥN

∥∥∥
L∞(R)

≤ ǫ and
∥∥∥h̃′ − (ĥN)′

∥∥∥
L2([−N,N])

≤ ǫ.

Moreover, [5, Theorem 5.1] tells us that the weights of ĥN grow as O(N 2) = O
(
N

1
(1−γ) ǫ

−6
1−γ

)
. The

statement then follows from applying the triangle inequality. �

Appendix B. Lipschitz continuity in the parameter vector of a neural network and its

derivatives

In this section we will prove that for any x ∈ D, a neural network and its corresponding Jacobian and
Hessian matrix are Lipschitz continuous in the parameter vector. This property is of crucial importance
to find bounds on the generalization error of physics informed neural networks, cf. Section 4. We first
introduce some notation and then state or results. The main results of this section are Lemma B.3 and
Lemma B.5.

We denote by σ : R → R be an (at least) twice continuously differentiable activation function, like
tanh or sigmoid. For any n ∈ N, we write for x ∈ R

n that σ(x) := (σ(x1), . . . , σ(xn)). We use the
definition of a neural network as in Definition 2.1.

Recall that for a differentiable function f : Rn → R
m the Jacobian matrix J [f] is defined by

(B.1) J [f]ij =
∂fi
∂xj
∈ R

m×n.

For our purpose, we make the following the following convention. For any 1 ≤ k ≤ L, we define

(B.2) Jθ
k (x) := J [fθk]

(
(fθk−1 ◦ · · · ◦ fθ1)(x)

)
∈ R

lk×lk−1 .

Similarly, for a twice differentiable function g : Rn → R the Hessian matrix is defined by

(B.3) H[g]ij =
∂2g

∂xi∂xj
.

Slightly abusing notation, we generalize this to vector-valued functions g : Rn → R
m. We write

(B.4) H[g]kij =
∂2gk
∂xi∂xj

,

where we identify R
1×n×n with R

n×n to make the definitions consistent. Similarly, if v ∈ R
1×m, then

v ·H[g] should be interpreted as

(B.5) v ·H[g](x) :=

m∑

k=1

vkH[gk](x) ∈ R
n×n.

For any 1 ≤ k < L, we write

(B.6) Hθ
k(x) := H[fθk]

(
(fθk−1 ◦ · · · ◦ fθ1)(x)

)
∈ R

lk×lk−1×lk−1 .

Finally, we will use the notation Jθ := J [Ψθ] and Hθ := H[Ψθ]. The following lemma presents a
generalized version of the chain rule.

Lemma B.1. Let f : Rn → R
m and g : Rm → R. Then it holds that

(B.7) H[g ◦ f](x) := J [f](x)T ·H[g](f(x)) · J [f](x) + J [g](f(x)) ·H[f](x).

We now apply this formula to find an expression for Hθ in terms of Jθ
k and Hθ

k .

22 ERROR ANALYSIS FOR PINNS APPROXIMATING KOLMOGOROV PDES

Lemma B.2. It holds that

(B.8) J [Ψθ] =
L−1∏

k=0

Jθ
L−k and H[Ψθ] =

L∑

k=1

(Jθ
1)

T · · · (Jθ
k−1)

T ·
(
Jθ
L · · · Jθ

k+1 ·Hθ
k

)
· Jθ

k−1 · · · Jθ
1 .

Proof. The first statement is just the chain rule for calculating the derivative of a composite function.
We prove the second statement using induction. For the base step, let L = 1. Then Ψθ = fθL and we
have H[Ψθ] = Hθ

L. For the induction step, take K ∈ N,K ≥ 2 and assume that the statement holds
for L = K − 1. Now let Φθ = fθK ◦ · · · ◦ fθ2 and Ψθ = Φθ ◦ fθ1 . Applying the generalized chain rule to
calculate H[Φθ ◦ fθ1] and using the induction hypothesis on H[Φθ] gives the wanted result. �

Next, we formally introduce the element-wise supremum norm |·|∞. Let N ∈ N, n0, . . . nN ∈ N and
A ∈ R

n1×···×nN . Then we define

(B.9) |A|∞ := max
1≤i1≤n1

· · · max
1≤iN≤nN

∣∣Ai1···iN

∣∣.

Let R > 0 and suppose that Ai ∈ R
ni−1×ni . Then it holds that

(B.10)

∣∣∣∣∣∣

N∏

i=1

Ai

∣∣∣∣∣∣
∞

≤ |AN |∞
N−1∏

i=1

ni|Ai|∞.

Moreover, for v ∈ R
1×a and A ∈ R

a×b×c it holds that |v ·A|∞ ≤ a|v|∞|A|∞.
The following lemma states that the output of each layer of a neural network is Lipschitz continuous

in the parameter vector for any input x ∈ [a, b]d. The lemma is stated for neural networks with a
differentiable activation function, but can be easily adapted for e.g. ReLU neural networks.

Lemma B.3. Let d, L,W ∈ N with L,W ≥ 2, a, b ∈ R with a < b and R ≥ 1. Moreover, let θ, ϑ ∈
ΘL,W,R, α = max{1, |a|, |b|, ‖σ‖∞} and β = max{1,

∥∥σ′
∥∥
∞
}. Then it holds for 1 ≤ K ≤ L that

(B.11)
∥∥∥fθK ◦ · · · ◦ fθ1 − fϑK ◦ · · · ◦ fϑ1

∥∥∥
L∞([a,b]d)

≤ α(d+ 4)WK−1RK−1βK |θ − ϑ|∞.

Proof. Let l0, . . . , lL denote the widths of the neural network, where l0 = d. Let x ∈ [a, b]d be arbitrary.
First of all, it holds that

∣∣∣fθ1 (x)− fϑ1 (x)
∣∣∣
∞

=
∣∣∣σ(W θ

1 x+ bθ1)− σ(Wϑ
1 x+ bϑ1)

∣∣∣
∞

≤
∥∥σ′
∥∥
∞

∣∣∣(W θ
1 −Wϑ

1)x+ (bθ1 − bϑ1)
∣∣∣
∞

≤ β(dα+ 1)|θ − ϑ|∞.

(B.12)

Now let 2 ≤ k ≤ L and define y = (fθk−1 ◦ · · · ◦ fθ1)(x) and ỹ = (fϑk−1 ◦ · · · ◦ fϑ1)(x). We find that
∣∣∣fθk (y)− fϑk (ỹ)

∣∣∣
∞
≤ max{1,

∥∥σ′
∥∥
∞
}
∣∣∣(W θ

k −Wϑ
k)y + bθk − bϑk +Wϑ

k (y − ỹ)
∣∣∣
∞

≤ β((lk−1α+ 1)|θ − ϑ|∞ + lk−1R|y − ỹ|∞).
(B.13)

A recursive application of this inequality then gives us for 1 ≤ K ≤ L that
∥∥∥fθK ◦ fθK−1 ◦ · · · ◦ fθ1 − fϑK ◦ fϑK−1 ◦ · · · ◦ fϑ1

∥∥∥
∞

≤
K∑

k=1

lK−1 · · · lk(lk−1α+ 1)RK−kβK−k+1|θ − ϑ|∞

≤WK−1(dα+ 1)RK−1βK |θ − ϑ|∞ + β(Wα+ 1)|θ − ϑ|∞
K∑

k=2

WK−kRK−kβK−k

≤WK−1(dα+ 1)RK−1βK |θ − ϑ|∞ +
β(Wα+ 1)WK−1RK−1βK−1

WRβ − 1
|θ − ϑ|∞

≤ α(d+ 4)WK−1RK−1βK |θ − ϑ|∞,

(B.14)

where we used that β(Wα+ 1)/(WRβ − 1) ≤ β(2α+ 1)/(2Rβ − 1) ≤ 3α when W ≥ 2, R ≥ 1, α ≥ 1.
�

ERROR ANALYSIS FOR PINNS APPROXIMATING KOLMOGOROV PDES 23

Lemma B.4. Let d, L,W ∈ N with L,W ≥ 2, a, b ∈ R with a < b and R ≥ 1. Moreover, let θ, ϑ ∈
ΘL,W,R, α = max{1, |a|, |b|, ‖σ‖∞} and β = max{1,

∥∥σ′
∥∥
∞
,
∥∥σ′′

∥∥
∞
,
∥∥σ′′′

∥∥
∞
}. Then it holds for all

1 ≤ k ≤ L and x ∈ [a, b]d that
∣∣∣Jθ

k (x)i − Jϑ
k (x)i

∣∣∣
∞
≤ β(1 + α(d+ 4)W k−1Rkβk−1 +R(αW + 1))|θ − ϑ|∞ and(B.15)

∣∣∣Hθ
k(x)i −Hϑ

k (x)i

∣∣∣
∞
≤ 2βR(1 + α(d+ 4)W k−1Rkβk−1 +R(αW + 1))|θ − ϑ|∞.(B.16)

Proof. Let wT
i be the i-th row of W θ,k, let w̃T

i be the i-th row of Wϑ,k and set b := bθ,k and b̃ := bϑ,k.

Let F = fθk−1 ◦ · · · ◦ fθ1 and F̃ = fϑk−1 ◦ · · · ◦ fϑ1 . For 1 ≤ i ≤ lk, we have that

Jθ
k (x)i = σ′(wT

i · F (x) + bi) · wT
i ∈ R

1×lk−1(B.17)

Hθ
k(x)i = σ′′(wT

i · F (x) + bi) · wi · wT
i ∈ R

lk−1×lk−1(B.18)

and analogously for Jϑ
k (x)i and H

ϑ
k (x)i. The triangle inequality and the Lipschitz continuity of σ′ gives

us that

∣∣∣Jθ
k (x)i − Jϑ

k (x)i

∣∣∣
∞
≤
∥∥σ′
∥∥
∞
|wi − w̃i|∞ +

∣∣∣σ′(wT
i · F (x) + bi)− σ′(w̃T

i · F̃ (x) + b̃i)
∣∣∣|w̃i|∞

≤ β|θ − ϑ|∞ +
∥∥σ′′

∥∥
∞
R
∣∣∣wT

i · (F (x)− F̃ (x)) + (wi − w̃i)
T · F̃ (x) + bi − b̃i

∣∣∣

≤ β|θ − ϑ|∞ +
∥∥σ′′

∥∥
∞
R

(
lk−1R

∣∣∣F (x)− F̃ (x)
∣∣∣
∞

+ (lk−1‖σ‖∞ + 1)|θ − ϑ|∞
)
.

(B.19)

Using that
∣∣∣F (x)− F̃ (x)

∣∣∣
∞
≤ α(d + 4)W k−2Rk−2βk−1|θ − ϑ|∞ (Lemma B.3) for k ≥ 2 and lk−1 ≤ W ,

we get

(B.20)
∣∣∣Jθ

k (x)i − Jϑ
k (x)i

∣∣∣
∞
≤ β(1 + α(d+ 4)W k−1Rkβk−1 +R(αW + 1))|θ − ϑ|∞

for k ≥ 2. One can check that the inequality also holds for k = 1.
For the Hessian matrix, the triangle inequality and the Lipschitz continuity of σ′′ gives us that

∣∣∣Hθ
k(x)i −Hϑ

k (x)i

∣∣∣
∞
≤
∥∥σ′′

∥∥
∞

∣∣∣wi · wT
i − w̃i · w̃T

i

∣∣∣
∞

+
∣∣∣σ′′(wT

i · F (x) + bi)− σ′′(w̃T
i · F̃ (x) + b̃i)

∣∣∣
∣∣∣w̃i · w̃T

i

∣∣∣
∞

≤2βR|θ − ϑ|∞ +
∥∥σ′′′

∥∥
∞
R2(αW + 1)|θ − ϑ|∞ +

∥∥σ′′′
∥∥
∞
R3W

∣∣∣F (x)− F̃ (x)
∣∣∣
∞

(B.21)

Using Lemma B.3 again, we get

(B.22)
∣∣∣Hθ

k(x)i −Hϑ
k (x)i

∣∣∣
∞
≤ 2βR(1 + α(d+ 4)W k−1Rkβk−1 +R(αW + 1))|θ − ϑ|∞

for k ≥ 2. One can check that the inequality also holds for k = 1. �

The following lemma states that the Jacobian and Hessian matrix of a neural network are Lipschitz
continuous in the parameter vector for any input x ∈ [a, b]d.

Lemma B.5. Let d, L,W ∈ N with L,W ≥ 2, a, b ∈ R with a < b and R ≥ 1. Moreover, let θ, ϑ ∈
ΘL,W,R, α = max{1, |a|, |b|, ‖σ‖∞} and β = max{1,

∥∥σ′
∥∥
∞
,
∥∥σ′′

∥∥
∞
,
∥∥σ′′′

∥∥
∞
}. Then it holds that for all

x ∈ [a, b]d that
∣∣∣J [Ψθ](x)− J [Ψϑ](x)

∣∣∣
∞
≤ 2α(d+ 7)LR2L−1W 2L−2βL−1|θ − ϑ|∞,(B.23)

∣∣∣H[Ψθ](x)−H[Ψϑ](x)
∣∣∣
∞
≤ 4α(d+ 7)L2R3L−1W 3L−3βL|θ − ϑ|∞.(B.24)

Proof. We will prove the formulas by repeatedly using the triangle inequality and using the representa-
tions proven in Lemma B.2. To do so, we need to introduce some notation. Define for 0 ≤ l ≤ L+ k− 1
the object φl ∈ {θ, ϑ}2L such that

(B.25) φlj =

{
ϑ j ≤ l,
θ j > l.

and Ak,l
j =





(J
φl
j

j)T 1 ≤ j ≤ k − 1,

J
φl
k

L+k−j k ≤ j ≤ L− 1

H
φl
L

k j = L

J
φl
k

L+k−j L+ 1 ≤ j ≤ L+ k − 1.

24 ERROR ANALYSIS FOR PINNS APPROXIMATING KOLMOGOROV PDES

In particular, φk,0j = θ and φk,L+k−1
j = ϑ for all j. To simplify notation, we write

hlk = (J
φl
1

1)T · · · (Jφl
k−1

k−1)T ·
(
J
φl
k

L · · · J
φl
L−1

k+1 ·H
φl
L

k

)
· Jφl

L+1

k−1 · · · J
φl
L+k−1

1 =
L+k−1∏

j=1

Ak,l
j .(B.26)

The triangle inequality and Lemma B.2 then give that

(B.27)
∣∣∣Hθ −Hϑ

∣∣∣
∞
≤

L∑

k=1

L+k−1∑

l=1

∣∣∣hl−1
k − hlk

∣∣∣
∞
.

Observe that Ak,l−1
j −Ak,l

j = 0 for j 6= l. Therefore
∣∣∣hl−1

k − hlk
∣∣∣
∞

=
∣∣∣Ak,l

1 · · ·Ak,l
l−1 · (A

k,l−1
l −Ak,l

l) ·Ak,l
l+1 · · ·A

k,l
L+k−1

∣∣∣
∞

≤ (l1 · · · lk−1)
2 · lk · · · lL−1 ·RL+k−2

∣∣∣Ak,l−1
l −Ak,l

l

∣∣∣
∞

≤WL+k−2RL+k−2
∣∣∣Ak,l−1

l −Ak,l
l

∣∣∣
∞
.

(B.28)

From Lemma B.4, it follows that

(B.29)
∣∣∣Ak,l−1

l −Ak,l
l

∣∣∣
∞
≤ 2βR(1 + α(d+ 4)W k−1Rkβk−1 +R(αW + 1))|θ − ϑ|∞

Writing γ := 1 +R(αW + 1) we get

∣∣∣Hθ −Hϑ
∣∣∣
∞
≤

L∑

k=1

(L+ k − 1)WL+k−2RL+k−2 · 2βR(1 + α(d+ 4)W k−1Rkβk−1 +R(αW + 1))|θ − ϑ|∞

≤
L∑

k=1

2LW 2L−2R2L−2 · 2βRα(d+ 7)WL−1RLβL−1|θ − ϑ|∞

≤ 4α(d+ 7)L2R3L−1W 3L−3βL|θ − ϑ|∞.

(B.30)

In an entirely similar fashion we obtain

∣∣∣Jθ − Jϑ
∣∣∣
∞
≤

L∑

k=1

WL−1RL−1
∣∣∣Jθ

k − Jϑ
k

∣∣∣
∞
≤ 2α(d+ 7)LR2L−1W 2L−2βL−1|θ − ϑ|∞.(B.31)

�

Appendix C. Additional material for Section 4

Lemma C.1 (Hoeffding’s inequality). Let ǫ, c > 0, N ∈ N, let (Ω,A,P) be a probability space and let
Xn : Ω→ [0, c] be independent random variables. Then it holds that

(C.1) P


 1

N




N∑

i=1

(Xi − E[Xi])


 ≥ ǫ


 ≤ exp

(
−2ǫ2N
c2

)
.

Lemma C.2. Let x ∈ R and σ(x) = tanhx = e−x−ex

e−x+ex . It holds that σ′(x) = 1 − (σ(x))2 and σ′′(x) =

−2σ(x)/(1− (σ(x))2). In addition, it holds that
∥∥σ′
∥∥
∞

= 1 and
∥∥σ′′

∥∥
∞

= 4/3
√
3 ≤ 1 and

∥∥σ′′′
∥∥
∞

= 2.

The following lemma provides estimate on the various PINN residuals. It is based on the fact that
neural networks and their derivatives are Lipschitz continuous in the parameter vector, the proof of
which can be found in Appendix B.

Lemma C.3. Let d, L,W ∈ N, R ≥ 1, a, b ∈ R with a < b and let uθ : [a, b]d → R, θ ∈ Θ, be tanh
neural networks with smooth activation function σ, at most L − 1 hidden layers, width at most W and
weights and biases bounded by R. Let the PINN generalization EqG and training EqT errors be defined
as in Section 2.3 for linear Kolmogorov PDEs (cf. Section 2.1). Let α = max{1, |a|, |b|, ‖σ‖∞} and

β = max{1,
∥∥σ′
∥∥
∞
,
∥∥σ′′

∥∥
∞
,
∥∥σ′′′

∥∥
∞
} and assume that max{‖ϕ‖∞, ‖ψ‖∞} ≤ maxθ∈Θ ‖uθ‖∞. Let L

q
Q

denote the Lipschitz constant of EqQ, for q = i, t, s and Q = G, T . Then it holds that

(C.2) L
q
Q ≤ 25 max

x∈D


1 +

d∑

i=1

∣∣µ(x)i
∣∣+

d∑

i,j=1

∣∣(σ(x)σ(x)∗)ij
∣∣



2

(d+ 7)2L4R6L−1W 6L−6β2L.

ERROR ANALYSIS FOR PINNS APPROXIMATING KOLMOGOROV PDES 25

Proof. Without loss of generality, we only focus on EqG, for q = i, s, t. We see for q = i, t, s

(C.3)
∣∣EqG(θ)− EqT (ϑ)

∣∣
∞
≤ 2max

θ

∥∥Rq[uθ]
∥∥
∞

∥∥∥Rq[uθ]−Rq[Φ
ϑ]
∥∥∥
∞

For q = t, s and (x, t) ∈ D × [0, T], it follows from Lemma B.3 that

(C.4)
∣∣∣Rq[uθ](x, t)−Rq[Φ

ϑ](t, x)
∣∣∣ ≤ (d+ 4)WL−1RL−1|θ − ϑ|∞,

and similarly using Lemma B.5 that∣∣∣Ri[uθ](t, x)−Ri[Φ
ϑ](t, x)

∣∣∣ ≤ (1 +
∣∣µ(x)

∣∣
1
)
∣∣∣Jθ − Jϑ

∣∣∣
∞

+
∣∣σ(x)σ(x)∗

∣∣
1

∣∣∣Hθ
x −Hϑ

x

∣∣∣
∞

≤ 4α(1 +
∣∣µ(x)

∣∣
1
+
∣∣σ(x)σ(x)∗

∣∣
1
)(d+ 7)L2R3L−1W 3L−3βL|θ − ϑ|∞,

(C.5)

where we let |·|p denote the vector p-norm of the vectorized version of a general tensor (cf. (B.9)). Next,

we calculate using again Lemma B.5 (by setting ϑ = 0) and max{‖ϕ‖∞, ‖ψ‖∞} ≤ maxθ∈Θ ‖uθ‖∞ for
q = t, s that

max
θ

∥∥Ri[uθ]
∥∥
∞
≤ 4αC(d+ 7)L2R3LW 3L−3βL, max

θ

∥∥Rq[uθ]
∥∥
∞
≤ 2WR,(C.6)

where C = maxx∈D(1 +
∣∣µ(x)

∣∣
1
+
∣∣σ(x)σ(x)∗

∣∣
1
). Combining all the previous results prove the stated

bound. �

	1. Introduction
	2. PINNs for Linear Kolmogorov Equations
	2.1. Linear Kolmogorov PDEs
	2.2. Neural Networks.
	2.3. PINNs.

	3. Bounds on the approximation error for PINNs
	4. Generalization error of PINNs
	5. Discussion
	References
	Appendix A. Additional material for Section 3
	A.1. Auxiliary results

	Appendix B. Lipschitz continuity in the parameter vector of a neural network and its derivatives
	Appendix C. Additional material for Section 4

