
On the approximation of functions by tanh

neural networks

T. De Ryck and S. Lanthaler and S. Mishra

Research Report No. 2021-14

April 2021
Latest revision: August 2021

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

__

On the approximation of functions by tanh neural

networks

Tim De Ryck∗, Samuel Lanthaler, Siddhartha Mishra

Seminar for Applied Mathematics, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland

Abstract

We derive bounds on the error, in high-order Sobolev norms, incurred in the ap-
proximation of Sobolev-regular as well as analytic functions by neural networks
with the hyperbolic tangent activation function. These bounds provide explicit
estimates on the approximation error with respect to the size of the neural net-
works. We show that tanh neural networks with only two hidden layers suffice
to approximate functions at comparable or better rates than much deeper ReLU
neural networks.

Keywords: neural networks, tanh, function approximation, deep learning

1. Introduction

Deep learning, relying on the use of deep artificial neural networks for regres-
sion and classification, has been very successful in different contexts in science
and engineering in recent years [1]. These include image recognition, natural
language understanding, machine translation, game intelligence, robotics, au-5

tonomous systems and protein folding.
Deep learning is also being increasingly used in scientific computing, partic-

ularly in the numerical solution of partial differential equations (PDEs). A very
incomplete list of examples for the successful use of deep learning in this con-
text includes the solution of high-dimensional linear and semi-linear parabolic10

partial differential equations [2, 3] and references therein, the solution of para-
metric partial differential equations that arise in many-query problems like un-
certainty quantification (UQ), PDE constrained optimization and (Bayesian)
inverse problems [4, 5, 6, 7, 8] and in infinite-dimensional operator learning
frameworks [9, 10, 11]. Another avenue for the application of deep neural net-15

works in scientific computing is provided by physics-informed neural networks
(PINNs) [12, 13, 14, 15, 16], which serve as replacements for traditional numer-
ical methods for both forward as well as inverse problems for PDEs.

∗Corresponding author
Email address: tim.deryck@sam.math.ethz.com (Tim De Ryck)

Preprint submitted to Neural Networks August 23, 2021

The question of why deep neural networks are so successful at many diverse
tasks in very different fields eludes a definitive answer. A very partial explana-20

tion may lie in the fact that artificial neural networks are universal approxima-
tors i.e., any continuous (even measurable) mapping can be approximated by
artificial neural networks to arbitrarily high accuracy [17, 18, 19] and references
therein. However, such universality results only imply the existence of a (shal-
low) neural network and do not provide any quantitative information (bounds)25

on the width of the underlying neural networks.
The task of quantitatively relating the size and architecture of neural net-

works to their expressivity i.e., accuracy in approximating functions of a certain
hypothesis class, has received considerable attention in the literature in the last
few years. A seminal work in the direction is [20], where the author derived30

explicit estimates on the size (width and depth) of a neural network with a
ReLU activation function for approximating Lipschitz functions to any given
accuracy in the L∞-norm. Expressivity results for such ReLU neural networks
in Sobolev norms were presented in [21, 22, 4] and references therein, see also
[23, 24, 25, 26, 27] and references therein for further approximation results for35

ReLU and related ReQU and RePU activation functions.
Despite the fact that several quantitative results on the expressivity of neural

networks have been obtained in recent years, we highlight some of the lacunae
of the current state of the art in this direction,

• Most of the available results are on the expressivity and approximation40

properties of ReLU neural networks. Although ReLU activations are very
common in practical applications of deep learning, there is a large number
of areas where other activation functions are employed. One of the most
popular activations is the tanh (hyperbolic tangent) activation function
and the related sigmoid or logistic function (a scaled and shifted tanh).45

These activation functions are the basis of heavily used recurrent neural
network (RNN) architectures such as LSTM [28] and GRU [29]. Other
areas where smooth activation functions such as tanh are preferred over
ReLU is in physics-informed neural networks (PINNs) for solving forward
and inverse problems for PDEs [13, 14, 15, 16] and references therein,50

and in the use of quasi-random training points [30, 31]. Although the
approximation abilities of general smooth activation functions have been
investigated in [32, 33, 34, 35, 36, 37] and references therein, it is fair to
say that the level of detail in existing results for the expressivity of ReLU
neural networks, is not yet available for tanh neural networks.55

• Moreover, most of the approximation results for smooth activation func-
tions, with the exception of the recent paper [34], measure error in Lp-
norms. However, it is essential to measure errors in higher-order Sobolev
norms for many applications, such as PINNs where the neural network
needs to be differentiated in order to evaluate the underlying PDE resid-60

ual.

• A persistent focus of approximation results for neural networks has been

2

to highlight the role of depth of the neural network, see [38] for a review
and further references. In particular, there are several results to the effect
that very deep neural networks are, in some sense, more expressive than65

shallower networks, which in turn might explain the superior performance
of deep neural networks in many applications [39, 40, 41, 42]. The em-
pirical superiority of deep networks over their shallower counterparts has
indeed been observed in many applications in computer science. However,
in the context of scientific computing, empirical experience has revealed70

that shallower but wider networks result in superior performance over deep
and narrow neural networks, see [43] and references therein. A reason for
this observation lies in the fact that deeper networks might be harder to
train in the relatively data poor regime of scientific computing. Some
theoretical understanding of this deterioration of performance for deeper75

networks, at least in the context of ReLU networks is provided in [44].
However, most of the available approximation theory results trade width
for depth and there is little theoretical understanding of why relatively
shallow networks can perform well in some contexts.

• Most of the available results on expressivity focus on asymptotic approx-80

imation rates i.e., the complexity of the network as the approximation
error ǫ → 0. However, the fundamental question is how large a neural
network should be to provide a certain accuracy of this approximation.
This requires going beyond asymptotic approximation rates and provid-
ing explicit bounds on the underlying constants. Such explicit bounds85

are available for approximation in Hilbert and Lp spaces with p < ∞
[17, 45, 46, 47, 48, 49] and approximation using a non-standard activation
function [50, 51], but they remain mostly unavailable for function approx-
imation in W k,∞ spaces with neural networks with widely used activation
functions.90

• The approximation error is only one component of the total error of neu-
ral networks, with optimization and generalization errors being the other
components [52, 53]. In particular, standard approaches to estimate the
generalization error such as covering number estimates [54] or Rademacher
complexity [52] require explicit estimates on the weights of the underlying95

neural networks, in addition to bounds on their width and depth. Such
estimates on weights of the best approximations of functions in the class
of neural networks are rarely available in the current literature.

The main objective of this paper is to address some of the afore-mentioned
deficiencies in the literature on approximation properties of neural networks.100

We will focus on the expressivity of neural networks with the very popular
tanh activation function and will aim to prove error and complexity bounds
in high-order Sobolev norms for such tanh neural networks in approximating
functions belonging to Sobolev spaces as well as Ck-spaces. We go beyond the
usual practice of proving only asymptotic convergence rates and will provide105

explicit approximation error bounds for explicit network architectures in order

3

to answer the question of “How large should a neural network be to approximate
a specified function to some chosen accuracy ǫ > 0?”. All our results will be for
tanh neural networks with at most two hidden layers.

A key application of our results is on the approximation of analytic functions110

by tanh neural networks. We will prove that a two hidden layer tanh neural
network suffices to approximate an analytic function at an exponential rate, in
terms of the network width, even in Sobolev norms. This result provides an
improvement over available results for the approximation of analytic functions
by ReLU neural networks [55, 4, 22] and also neural networks with smooth115

activation functions [56] and further illustrate the powers of rather shallow tanh
networks at approximating smooth functions. Finally, we also derive explicit
bounds on the width of the tanh neural networks as well as asymptotic bounds
on their weights, thus paving the way for bounds on the generalization error for
these neural networks.120

The rest of the paper is organized as follows: in Section 2, we introduce the
notation for the rest of the paper. Our main results, presented in Section 5, rely
on the uniform approximation of polynomials by tanh neural networks, discussed
in Section 3, and on the approximation of a partition of unity, presented in
Section 4. In Section 6, we discuss the contents of this paper and distinguish125

them from other related papers.

2. Preliminaries

We start by providing an overview of all the notation and the definitions
that will be used frequently throughout the paper.

2.1. Multi-index notation130

For d ∈ N, we call a d-tuple of non-negative integers α ∈ N
d
0 a multi-

index. We write |α| = ∑d
i=1 αi, α! =

∏d
i=1 αi! and, for x ∈ R

d, we denote

by xα =
∏d

i=1 x
αi
i the corresponding multinomial. Given two multi-indices

α, β ∈ N
d
0, we say that α ≤ β if, and only if, αi ≤ βi for all i = 1, . . . , d. For a

multi-index α, we define the following multinomial coefficient

(|α|
α

)
=
|α|!
α!

, (1)

and, given α ≤ β, we define a corresponding multinomial coefficient by

(
β

α

)
=

d∏

i=1

(
βi
αi

)
=

β!

α!(β − α)! . (2)

For Ω ⊆ R
d and a function f : Ω→ R we denote by

Dαf =
∂|α|f

∂xα1
1 · · · ∂xαd

d

(3)

4

the classical or distributional (i.e. weak) derivative of f . We will frequently
encounter the set Pn,d = {α ∈ N

d
0 : |α| = n} (notation as in [57]). In particular,

we will need estimates on its cardinality. This is the subject of the following
lemma.

Lemma 2.1. Let n ∈ N, d ∈ N≥2 and let Pn,d = {α ∈ N
d
0 : |α| = n}. Then

∣∣Pn,d

∣∣ =
(
n+ d− 1

n

)
≤ √πmin{ed−1nd−1, en(d− 1)n} and

∣∣Pd,d

∣∣ ≤ 5d.

(4)

Proof. It is well known that
∣∣Pn,d

∣∣ =
(
n+d−1

n

)
. We use Stirling’s approximation,

∣∣Pn,d

∣∣ =
(
n+ d− 1

n

)
≤ e(n+ d− 1)n+d−1/2

2πnn+1/2(d− 1)d−1/2

≤ e

2π

(
n+ d− 1

d− 1

)d−1(
n+ d− 1

n

)n
√
n+ d− 1

n(d− 1)

≤ e√
2π

(
1 +

n

d− 1

)d−1(
1 +

d− 1

n

)n

.

To estimate the last term, we note that there are two possible approximations:
for a, b ≥ 1 it holds that (1 + a/b)b ≤ eab and also (1 + a/b)b ≤ ea. Using the
fact that e2/

√
2π ≤ √π, we obtain

∣∣Pn,d

∣∣ ≤ √πed−1nd−1 and
∣∣Pn,d

∣∣ ≤ √πen(d− 1)n. (5)

Setting n = d for λ ∈ N, we also find that

∣∣Pd,d

∣∣ ≤ e√
2π

(
1 +

d

d− 1

)d(
1 +

d− 1

d

)d

≤
(
3 +

d

d− 1

)d

≤ 5d, (6)

since e√
2π
≤ 1 and x

x−1 ≤ 2 for x ≥ 2.135

2.2. Sobolev spaces

Let d ∈ N, 1 ≤ p ≤ ∞ and let Ω ⊆ R
d be open. We denote by Lp(Ω) the

usual Lebesgue space and for k ∈ N0 we define the Sobolev space W k,p(Ω) as

W k,p(Ω) = {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω) for all α ∈ N
d
0 with |α| ≤ k}. (7)

For p <∞, we define the following seminorms on W k,p(Ω),

|f |Wm,p(Ω) =

 ∑

|α|=m

‖Dαf‖pLp(Ω)

1/p

for m = 0, . . . , k, (8)

5

and for p =∞ we define

|f |Wm,∞(Ω) = max
|α|=m

‖Dαf‖L∞(Ω) for m = 0, . . . , k. (9)

Based on these seminorms, we can define the following norm for p <∞,

‖f‖Wk,p(Ω) =

k∑

m=0

|f |pWm,p(Ω)

1/p

, (10)

and for p =∞ we define the norm

‖f‖Wk,∞(Ω) = max
0≤m≤k

|f |Wm,∞(Ω). (11)

The space W k,p(Ω) equipped with the norm ‖·‖Wk,p(Ω) is a Banach space.

2.3. Neural networks

In this paper, we will consider function approximation using feedforward140

artificial neural networks where only connections between neighbouring layers
are allowed. In the following, we formally introduce our definition of a neural
network and the related terminology.

Let L ∈ N and l0, . . . , lL ∈ N. Let σ : R→ R be an activation function and
define the parameter space

Θ =
⋃

L∈N

⋃

l0,...,lL∈N

L×
k=1

(
R

lk×lk−1 × R
lk
)
. (12)

For θ ∈ Θ, we define θk := (Wk, bk) and Ak : Rlk−1 → R
lk : x 7→ Wkx + bk for

1 ≤ k ≤ L and we denote by Ψθ : Rl0 → R
lL , x 7→ Ψθ(x), the function

Ψθ(x) =

{
A1(x) L = 1,

(AL ◦ σ ◦ AL−1 ◦ σ ◦ · · · ◦ σ ◦ A1)(x) L ≥ 2,
(13)

where σ is applied element-wise. We refer to Ψθ as the realization of the neural
network associated to the parameter θ with L layers and widths (l0, l1, . . . , lL).145

We refer to the first L − 1 layers as hidden layers. For 1 ≤ k ≤ L, we say
that layer k has width lk and we refer to Wk and bk as the weights and biases
corresponding to layer k. The width of Ψθ is defined as max(l0, . . . , lL). If
L = 2, we say that Ψθ is a shallow neural network ; if L ≥ 3, we say that Ψθ is
a deep neural network. Hence, a shallow neural network has exactly one hidden150

layer whereas deep neural networks can have two or more hidden layers.
In this work, we will focus on neural networks which use the hyperbolic

tangent as activation function, defined by

σ(x) := tanh(x) =
ex − e−x

ex + e−x
for x ∈ R. (14)

6

We will refer to these networks as tanh neural networks. Even though our ideas
can be carried over to other smooth activation functions, focusing on a particular
activation will allow us to prove precise and explicit bounds without sacrificing
the clarity of our arguments. In particular, we note that all results of this work155

directly apply to the sigmoid or logistic activation function, which is simply a
shifted and scaled version of the hyperbolic tangent.

We close this section by recalling some basic properties of neural network
calculus which we will use throughout, without explicitly referring to them.

Proposition 2.2 (Parallelization of neural networks). Let L ∈ N, l0, l
′
0, . . . , lL, l

′
L ∈160

N and θ, ϑ ∈ Θ such that Ψθ is a neural network with widths (l0, . . . , lL) and Ψϑ

is a neural network with widths (l′0, . . . , l
′
L). Then there exists η ∈ Θ such that

Ψη is a neural network with widths (l0 + l′0, . . . , lL + l′L) for which it holds that

Ψη(x) = (Ψθ((x1, . . . , xl0)),Ψϑ((xl0+1, . . . , xl0+l′0
))) for all x ∈ R

l0+l′0 .

Proposition 2.3 (Composition of neural networks). Let L,L′ ∈ N, l0, . . . , lL =165

l′0, . . . , l
′
L′ ∈ N and θ, ϑ ∈ Θ such that Ψθ is a neural network with widths

(l0, . . . , lL) and Ψϑ is a neural network with widths (l′0, . . . , l
′
L′). Then there ex-

ists η ∈ Θ such that Ψη is a neural network with widths (l0, . . . , lL = l′0, . . . , l
′
L′)

for which it holds that Ψη = Ψϑ ◦Ψθ.

3. Uniform approximation of polynomials170

The first step in our strategy for deriving bounds on approximation error
for tanh neural networks is to provide uniform bounds in Sobolev norms, on the
error for approximating polynomials by shallow tanh neural networks. We do
so in the current section.

The observation that a shallow neural network of fixed size can approximate175

monomials to arbitrary accuracy in the supremum norm was already observed
in [36]. A generalization of this approximation result to Sobolev norms was
proven in e.g. [34]. In the current section, we present a novel generalization
that allows us to obtain explicit error estimates for the uniform approximation
of all polynomials of a certain maximal degree, which will be crucial for the180

efficient approximation of analytic functions.

3.1. Univariate polynomials

We first describe how to approximate univariate polynomials of any degree
with tanh neural networks. We introduce the p-th order central finite difference
operator δph for any f ∈ Cp+2([a, b]) for some p ∈ N by

δph[f](x) =

p∑

i=0

(−1)i
(
p

i

)
f

(
x+

(
p

2
− i
)
h

)
. (15)

Next we define for any p ∈ N, q ∈ 2N − 1 and M > 0 the monomials fp :

[−M,M]→ R and the tanh neural networks f̂q,h : [−M,M]→ R as

fp(y) := yp and f̂q,h(y) :=
δqhy[σ](0)

σ(q)(0)hq
. (16)

7

We first prove that these neural networks are accurate approximations to mono-
mials with odd degree.

Lemma 3.1. Let k ∈ N0 and s ∈ 2N− 1. Then it holds that for all ǫ > 0 there

exists a shallow tanh neural network Ψs,ǫ : [−M,M]→ R
s+1
2 of width s+1

2 such
that

max
p≤s,
p odd

∥∥∥fp − (Ψs,ǫ) p+1
2

∥∥∥
Wk,∞

≤ ǫ, (17)

Moreover, the weights of Ψs,ǫ scale as O
(
ǫ−s/2(2(s+ 2)

√
2M)s(s+3)

)
for small185

ǫ and large s.

Proof. Let p ≤ s be odd and let 0 < h < 2/pM . Let 0 ≤ m ≤ min{k, p + 1}.
Then Taylor’s theorem guarantees the existence of ξx,i such that

dm

dxm
δphx[σ](0) =

p∑

i=0

(−1)i
(
p

i

)(
p

2
− i
)m

hm · σ(m)

((
p

2
− i
)
hx

)

=

p∑

i=0

(−1)i
(
p

i

)(
p

2
− i
)m

hm

p+1∑

l=m

σ(l)(0)

(l −m)!

(
p

2
− i
)l−m

(hx)l−m

+

p∑

i=0

(−1)i
(
p

i

)(
p

2
− i
)m

hm
σ(p+2)(ξx,i)

(p+ 2−m)!

(
p

2
− i
)p+2−m

(hx)p+2−m.

From [58, Theorem 1] it follows that

p∑

i=0

(−1)i
(
p

i

)(
p

2
− i
)l

= p! δ(l − p) =
{
p!, (l = p),

0, (l 6= p).
(18)

for l = 0, . . . , p. We observe that (18) remains true also for l = p + 1, since all
summands change sign when i is replaced by p− i. Using this fact, we can then
rewrite the first term as

p∑

i=0

(−1)i
(
p

i

)(
p

2
− i
)m

hm

p+1∑

l=m

σ(l)(0)

(l −m)!

(
p

2
− i
)l−m

(hx)l−m

= hm
p+1∑

l=m

σ(l)(0)

(l −m)!
(hx)l−m

p∑

i=0

(−1)i
(
p

i

)(
p

2
− i
)l

=

hm

σ(p)(0)

(p−m)!
(hx)p−mp!, 0 ≤ m ≤ p

0, m = p+ 1

= hpσ(p)(0)f (m)
p (x).

(19)

Combining the previous results, it thus follows that we have

f̂
(m)
p,h (x)− f (m)

p (x) =

p∑

i=0

(−1)i
(
p

i

)
1

(p+ 2−m)!

σ(p+2)(ξx,i)

σ(p)(0)

(
p

2
− i
)p+2

h2xp+2−m.

8

Together with the lower and upper bounds on the derivatives of σ from Lemma
Appendix A.1 and Lemma Appendix A.4, this yields for m ≤ min(k, p+ 1):

∣∣∣fp − f̂p,h
∣∣∣
Wm,∞

≤
p∑

i=0

(
p

i

)
∣∣∣σ(p+2)(ξx,i)

∣∣∣
∣∣σ(p)(0)

∣∣

∣∣∣∣
p

2
− i
∣∣∣∣
p+2

h2Mp+2

≤ 2p
(2(p+ 2))p+3

1

(
p

2

)p+2

h2Mp+2

≤ (2(p+ 2)pM)p+3h2.

(20)

If k ≤ p+ 1, then this shows that
∥∥∥fp − f̂p,h

∥∥∥
Wk,∞

≤ (2(p+ 2)pM)p+3h2. (21)

If k > p + 1, let p + 2 ≤ m ≤ k. In this case, f
(m)
p = 0, therefore it suffices to

bound f̂
(m)
p,h . We see that for 0 < h < 1,

∣∣∣f̂ (m)
p,h (x)

∣∣∣ =

∣∣∣∣∣∣
1

hpσ(p)(0)

p∑

i=0

(−1)i
(
p

i

)(
p

2
− i
)m

hm · σ(m)

((
p

2
− i
)
hx

)∣∣∣∣∣∣

≤ 2

p∑

i=0

(
p

i

)∣∣∣∣
p

2
− i
∣∣∣∣
m

h2(2m)m+1

≤ 2p+1

(
p

2

)k

(2k)k+1h2 ≤ (2pk)k+1h2.

(22)

We thus obtain, for arbitrary k ∈ N:
∥∥∥fp − f̂p,h

∥∥∥
Wk,∞

≤
(
(2(p+ 2)pM)p+3 + (2pk)k+1

)
h2 =: ǫ. (23)

Furthermore observe that the weights scale as O
(
maxi

(
p
i

)
h−p

)
. For ǫ→ 0

and large p, it holds that O(h−p) = O
(
ǫ−p/2((p+ 2)

√
2M)p(p+3)

)
, where the

implied constant depends on k. Next, we find using Stirling’s approximation
that for 0 ≤ i ≤ p it holds that

(
p

i

)
≤
(

p
p−1
2

)
≤ epp+1/2

2π
(

p−1
2

) p
2
(

p+1
2

) p
2+1

= O

(
2p√
p

)
. (24)

The weights therefore scale as O
(
ǫ−p/2(2(p+ 2)

√
2M)p(p+3)

)
.

Regarding the network architecture, note that the neurons needed for all f̂p,h
are already available in the network f̂s,h. This allows us to define the shallow

tanh neural network Ψs,ǫ by (Ψs,ǫ)p = f̂p,h such that it only has s+1
2 neurons190

in its hidden layer. The width follows directly from its definition and the fact
that σ is an odd function.

9

We would like to state that the above proof is largely inspired by [34, Propo-
sition 4.7] but differs at some crucial points. In particular, we take into account
the fact that ξx,i’s are functions of x and derivatives with respect to x have to195

take this into account.
We now extend the previous result to monomials with even degree. To this

end, we rely on the observation that for n ∈ N and α > 0, it holds that

y2n =
1

2α(2n+ 1)

(
(y + α)2n+1 − (y − α)2n+1

− 2

n−1∑

k=0

(
2n+ 1

2k

)
α2(n−k)+1y2k

)
.

(25)

This formula allows us to construct recursively defined tanh neural network
approximations of even powers of y. The following lemma quantifies the uniform
approximation accuracy of these networks in the Sobolev norm.

Lemma 3.2. Let k ∈ N0, s ∈ 2N− 1 and M > 0. For every ǫ > 0, there exists

a shallow tanh neural network ψs,ǫ : [−M,M]→ R
s of width 3(s+1)

2 such that

max
p≤s

∥∥fp − (ψs,ǫ)p
∥∥
Wk,∞ ≤ ǫ. (26)

Furthermore, the weights scale as O
(
ǫ−s/2(

√
M(s+ 2))3s(s+3)/2

)
for small ǫ200

and large s.

Proof. For h,M > 0, p ≤ s, we define f̂p,h : [−M − 1,M + 1] → R as in (16).
For ǫ > 0, h > 0 small enough and dependent on ǫ, α ≤ 1 and y ∈ [−M,M], we

define (ψs,ǫ(y))p = f̂p,h(y) for p odd and, for p = 2n even, we define (ψs,ǫ(y))p =
(ψs,ǫ(y))2n recursively by (ψs,ǫ)0(y) := 1, and

(ψs,ǫ(y))2n =
1

2α(2n+ 1)

(
f̂2n+1,h(y + α)− f̂2n+1,h(y − α)

− 2

n−1∑

k=0

(
2n+ 1

2k

)
α2(n−k)+1(ψs,ǫ(y))2k

)
.

(27)

Moreover, we introduce the notation Ep =
∥∥fp − (ψs,ǫ)p

∥∥
Wk,∞ . We will prove

the statement that for all ǫ > 0, there exists h > 0, such that for all p ≤ s, we
have

Ep ≤ E∗
p :=

2p/2(1 + α)(p
2+p)/2

αp/2
· ǫ. (28)

We first note that choosing h as in Lemma 3.1 implies that

max
p≤s,
p odd

Ep ≤ ǫ, (29)

10

which proves the statement for p odd, since (1 + α)/α ≥ 1. We will now prove
(28) for even p using induction. First note that

E2 ≤
1

6α
· 2ǫ ≤ E∗

2 , (30)

which proves the base step. To prove the induction step, let n ∈ N be such
that 2n + 1 ≤ s and n > 1, and we assume by the induction hypothesis that
E2k ≤ E∗

2k for all k < n. It then follows from (25) and (27), that

E2n ≤
1

2α(2n+ 1)

E2n+1 + E2n+1 + 2

n−1∑

k=1

(
2n+ 1

2k

)
α2(n−k)+1E2k

 . (31)

Note that by the induction hypothesis and the fact that E∗
2k is monotonically

increasing in k, we have E2k ≤ E∗
2k ≤ E∗

2(n−1). Using also (29), and the fact

that ǫ ≤ E∗
2(n−1), this allows us to estimate (31), by

E2n ≤
1

α(2n+ 1)

max

p≤s,
p odd

Ep +
n−1∑

k=1

(
2n+ 1

2k

)
α2(n−k)+1E∗

2(n−1)

≤ 1

α

(
E∗

2(n−1) + (1 + α)2n+1E∗
2(n−1)

)

≤ 2

α
(1 + α)2n+1E∗

2(n−1).

(32)

Recalling the definition of E∗
2(n−1), we obtain

E2n ≤
2

α
(1 + α)2n+1E∗

2(n−1) ≤
(
2

α
(1 + α)2n+1

)n

· ǫ = E∗
2n. (33)

This proves the claimed estimate (28) also for the case where p = 2n is even,
and therefore concludes the proof of (28).

Next, we optimize (28) by choosing the optimal value of α. Lemma Appendix
A.2 proves that the optimal choice is α = 1/s. We conclude that for any ǫ > 0,
there exists a shallow tanh neural network ψs,ǫ, with width independent of ǫ,
such that

max
p≤s

∥∥fp − (ψs,ǫ)p
∥∥
Wk,∞ ≤

√
e(2es)s/2ǫ. (34)

Replacing ǫ→ ǫ/
√
e(2es)s/2 recovers the claimed error bound in the statement

of this lemma. To quantify the size of the weights, we observe that equation
(27) reveals that the weight bound of Lemma 3.1 needs to be multiplied with a
factor

max
k

s

(
s

2k

)(
1

s

)s−2k

≤ s
s∑

j=0

(
s

j

)(
1

s

)s−j

≤ s
(
1 +

1

s

)s

= O(s), (35)

11

where we used the binomial theorem. The weight bound can seen to be equal
to

O
(
ǫ−s/2s(2

4
√
2es
√
2(M + 1)(s+ 2))s(s+3)

)
= O

(
ǫ−s/2(

√
M(s+ 2))3s(s+3)/2

)

(36)
for small ǫ and large s. This proves the weight bound stated in the lemma.

Finally, we note that the constructed approximations indeed correspond to
a shallow tanh neural network of the stated size. Indeed, one can see from the
fact that σ is odd, equation (15), Lemma 3.1 and equation (27) that a shallow
tanh neural network suffices, where the values of the 3(s+ 1)/2 neurons in the
hidden layer are given by

σ

((
s

2
− i
)
h(y + β)

)
where i = 0, 1, . . .

s− 1

2
and β ∈ {−α, 0, α}. (37)

205

Remark 3.3. Combined with the Weierstrass approximation theorem [59], the
preceding results show that any continuous function can be uniformly approxi-
mated in supremum norm on a compact interval by shallow tanh neural networks
to arbitrary accuracy, as was already observed by e.g. [36]. Using the construc-
tive proof of the Weierstrass approximation theorem based on Bernstein polyno-210

mials, one can even obtain a rate of convergence in terms of the width of the
neural network and the modulus of continuity of the continuous function [60].

Remark 3.4. Note that one can also construct monomials with even powers
directly, as was done in e.g. [34]. Indeed, there exists an x ∈ R such that

tanh(p)(x) 6= 0 for all p ∈ N, allowing us to use a neural network as in (16)215

for even p as well. However, a key difficulty lies in explicitly finding a function

γ : N→ (0,∞) such that
∣∣∣tanh(p)(x)

∣∣∣ ≥ γ(p) for all p ∈ N. It is unclear if such

a function, which is quite essential when proving uniform bounds as in Lemma
3.2, can be constructed directly. Instead, our construction circumvents this issue
and can be readily extended to other activation functions.220

3.2. Approximating multivariate polynomials

Next, we consider the approximation of multivariate polynomials using tanh
neural networks. As an application, we will also present two different approxi-
mations of the multiplication operator.

First, recall the set Pn,q = {α ∈ N
q
0 : |α| = n} from Section 2.1. The

multinomial theorem implies that for α ∈ Pn,q and ω ∈ R
q, it holds that

∑

β∈Pn,q

(
n

β

)
αβ

nn
ωβ =

q∑

i=1

αi

n
ωi

n

. (38)

Now let x ∈ R
d, set q = d and ω = x. Then the set {ωβ : β ∈ Pn,q} corresponds

to the set of all d-variate monomials of total degree equal to n. Similarly, one

12

can set q = d + 1 and ω = (1, x), such that {ωβ : β ∈ Pn,q} corresponds to
the set of all d-variate monomials of total degree at most n. It is the goal of
this section to approximate these monomials ωβ using tanh neural networks.
Notice however that the results from the previous section already allow us to
approximate the right hand side of (38), as it is merely a composition of a linear
map and a univariate monomial. Writing bα =

(∑
i αiωi/n

)n
one can interpret

(38) for every α ∈ Pn,q as the linear equation
∑

β Dα,βω
β = bα, where

Dα,β =

(
n

β

)
αβ

nn
, (39)

which leads us to a linear system {∑β Dα,βω
β = bα : α ∈ Pn,q} with as un-225

knowns the monomials ωβ . Since the Dyson matrix D = (Dα,β)α,β∈Pn,q
, where

the order of rows and columns reflects the lexicographic order on Pn,q, is in-
vertible [57], it is possible to write every monomial as a linear combination of
the bα’s. We will exploit this fact to construct approximations of multivariate
polynomials and the multiplication

∏d
i=1 xi in particular.230

Lemma 3.5. Let q, n ∈ N, k ∈ N0 and M > 0. Then for every ǫ > 0,

there exists a shallow tanh neural network Ψn,q : [−M,M]q → R|Pn,q| of width
3
⌈
n+1
2

⌉ ∣∣Pn,q

∣∣ such that

max
β∈Pn,q

∥∥∥ωβ − (Ψn,q(ω))ι(β)

∥∥∥
Wk,∞

≤ ǫ, (40)

where ι : Pn,q → {1, . . .
∣∣Pn,q

∣∣} is a bijection. Furthermore, the weights of the

network scale as O
(
ǫ−n/2(n(n+ 2))3(n+2)2

)
for small ǫ and large n.

Proof. From the previous section, we can see that approximating bα =
(∑

i αiωi/n
)n

requires a shallow tanh subnetwork b̂α of width 3
⌈
n+1
2

⌉
. As we require

∣∣Pn,q

∣∣
such subnetworks, the total network width can be summarized as 3

⌈
n+1
2

⌉ ∣∣Pn,q

∣∣.
Now denote by ω̂β the neural network approximation one obtains by solving the

linear system {∑β Dα,βω̂β = b̂α : α ∈ Pn,q}. We then set (Ψn,q(ω))ι(β) :=

(ω̂β)β , where ι : Pn,q → {1, . . .
∣∣Pn,q

∣∣} is a bijection. Then it holds that
∥∥∥(ω̂β)β − (ωβ)β

∥∥∥
Wk,∞

≤
∥∥∥D−1

∥∥∥
∞

∥∥∥(b̂α)α − (bα)α

∥∥∥
Wk,∞

. (41)

Now define hα(ω) =
∑

i αiωi/n, then it holds that b̂α− bα = ((ψs,ǫ)n−fn)◦hα,
where ψs,ǫ is as in Lemma 3.2 and s = 2

⌊
n
2

⌋
+ 1. It is easy to check that

‖hα‖Wk,∞ ≤ max{1,M}. Invoking Lemma Appendix A.7 then gives us
∥∥∥b̂α − bα

∥∥∥
Wk,∞

≤ 16(e2k4q2)k
∥∥(ψs,ǫ)n − fn

∥∥
Wk,∞ max{1,M}k. (42)

In addition, Lemma Appendix A.3 provides us with the bound
∥∥∥D−1

∥∥∥
∞
≤ (n!)3

∣∣Pn,q

∣∣22n ≤ πe3q2nn3(n+1/2), (43)

13

where we used Stirling’s approximation and Lemma 2.1. Now let ǫ > 0. Com-
bining the two obtained inequalities with Lemma 3.2 then proves that

∥∥∥(ω̂β)β − (ωβ)β

∥∥∥
Wk,∞

≤
∥∥∥D−1

∥∥∥
∞
· 16(e2k4q2)k max{1,M}k · ǫ (44)

where the weights of (ψs,ǫ)n scale as O
(
ǫ−n/2(

√
M(n+ 2))3n(n+3)/2

)
for small

ǫ and large n. We can now rescale ǫ such that
∥∥∥(ω̂β)β − (ωβ)β

∥∥∥
Wk,∞

≤ ǫ. (45)

As a consequence, the weights of Ψn,q will scale as

O

(
ǫ−n/2

∥∥∥D−1
∥∥∥
n/2+1

∞

(
4(ek2q)k

√
1 +M

)n
(
√
M(n+ 2))3n(n+2)/2

)
. (46)

Note that O
(∥∥D−1

∥∥n/2+1

∞

)
= O

(
(πe3qn)3(n+2)2/2

)
and that therefore a (con-

servative) upper bound of the weights of Ψn,q is given by

O
(
ǫ−n/2(n(n+ 2))3(n+2)2

)
(47)

for small ǫ and large n.

Corollary 3.6 (Approximation of multivariate monomials). Let d, s ∈ N, k ∈
N0 and M > 0. Then for every ǫ > 0, there exists a shallow tanh neural network

Φs,d : [−M,M]d → R|Ps,d+1| of width 3
⌈
s+1
2

⌉ ∣∣Ps,d+1

∣∣ such that

max
β∈Ps,d+1

∥∥∥xβ − (Φs,d(x))ι(β)

∥∥∥
Wk,∞

≤ ǫ, (48)

where ι : Ps,d+1 → {1, . . .
∣∣Ps,d+1

∣∣} is a bijection. Furthermore, the weights of

the network scale as O
(
ǫ−s/2(s(s+ 2))3(s+2)2

)
for small ǫ and large s.235

Proof. The statement follows directly from Lemma 3.5 with n ← s, q ← d + 1
and ω ← (1, x), where x ∈ [−M,M]d.

Next, we discuss how the multiplication operator can be approximated. To
begin with, Lemma 3.5 shows that the multiplication of d numbers can easily
be approximated using a shallow tanh neural network.240

Corollary 3.7 (Shallow approximation of multiplication of d numbers). Let
d ∈ N, k ∈ N0 and M > 0. Then for every ǫ > 0, there exists a shallow tanh

neural network ×̂ǫ
d : [−M,M]d → R of width 3

⌈
d+1
2

⌉ ∣∣Pd,d

∣∣ such that

∥∥∥∥∥∥
×̂ǫ

d(x)−
d∏

i=1

xi

∥∥∥∥∥∥
Wk,∞

≤ ǫ. (49)

Furthermore, the weights of the network scale as O(ǫ−d/2) for small ǫ.

14

Proof. The statement follows directly from Lemma 3.5 with n← d, q ← d and
ω ← x, where x ∈ [−M,M]d.

One issue with this shallow approximation is that the width of the network
grows quickly with the dimension. The next lemma shows that the same ac-245

curacy can also be obtained using a deep tanh neural network for which both
width and depth scale at most linearly with the input dimension.

Lemma 3.8 (Deep approximation of multiplication of d numbers). Let d ∈ N,
k ∈ N0 and M > 0. Then for every ǫ > 0, there exists a tanh neural network
×̂ǫ

d : [−M,M]d → R with ⌈log2(d)⌉ hidden layers and of width at most 3d such
that ∥∥∥∥∥∥

×̂ǫ

d(x)−
d∏

i=1

xi

∥∥∥∥∥∥
Wk,∞

≤ ǫ. (50)

Furthermore, the weights of the network scale as O(ǫ−1/2) for small ǫ.

Proof. Using the finite difference approach (15), we can approximate the quadratic
function using δ2h[f](x0) for some h > 0 and x0 ∈ [−1, 1] such that σ(2)(x0) 6= 0.
Observing that

xy =
1

4

(
(x+ y)2 − (x− y)2

)
(51)

then provides a recipe to approximate (in Sobolev norm) the multiplication of
two numbers using a shallow tanh neural network with 6 neurons in its hidden250

layer. The proof is similar to that of Lemma 3.1. Moreover, Lemma 3.1 shows as
well that the identity can be approximated using a shallow tanh neural network
with only one neuron in its hidden layer.

The multiplication of d numbers then follows easily from the multiplication
of 2 numbers. In e.g. [4, Proposition 2.36], it is proven that the multiplication255

of d numbers requires a neural network in the form of a binary tree of depth
⌈log2(d)⌉ where each node computes the (approximate) multiplication of two
numbers. The proof of our error bound follows from Lemma Appendix A.6 and
Appendix A.7.

Remark 3.9. For simplicity and motivated by its widespread use, we only fo-260

cused on the hyperbolic tangent activation function here. Our approach can
be generalized to any activation function φ for which there exist P ⊆ N with

supP =∞ and an explicitly known function γ : P → (0,∞) with
∣∣∣φ(p)

∣∣∣ ≥ γ(p)

for all p ∈ P. Monomials with degree p ∈ P can be constructed as in (16), the
construction of monomials with degree p ∈ N \ P is similar to the one described265

for multivariate polynomials.

4. Approximation of partition of unity

Once we have approximated polynomials with shallow tanh neural networks,
the next step in our construction is to approximate a suitable partition of unity.

15

In this section, we show how one can mimic a partition of unity using tanh270

neural networks. We recall that a partition of unity is a set of functions fi :
[0, 1]d → [0, 1] such that every fi is non-zero on only a small part of [0, 1]d and
such that

∑
i fi = 1. For ReLU and RePU neural networks, such partitions

of unity can be constructed exactly [20]. For tanh neural networks, we will
prove that an approximate partition of unity can be constructed. A unifying275

framework for approximating partitions of unity by general neural networks has
been proposed in [34].

Let d,N ∈ N and k ∈ N0. For every j ∈ N
d with ‖j‖∞ ≤ N we define xNj

such that (xNj)i = ji/Ni. We also define

INj =
d×

i=1

(
(ji − 1)/N, ji/N

)
. (52)

Let R > 0 be such that |σ(m)| is decreasing on [R,∞) for every 1 ≤ m ≤ k.
Given ǫ > 0, we first find an α = α(N, ǫ) large enough such that

α/N ≥ R, 1− σ(α/N) ≤ ǫ, αm
∣∣∣σ(m)(α/N)

∣∣∣ ≤ ǫ for all 1 ≤ m ≤ k. (53)

This is possible because limx→∞ σ(x) = 1 and because of Lemma Appendix
A.4. In particular, Lemma Appendix A.5 shows that a suitable choice of α is
given by

α = N max

R, ln

(
(2k)k+1(Nk)k

ekǫ

)
 . (54)

For y ∈ R, we then define

ρN1 (y) =
1

2
− 1

2
σ

(
α

(
y − 1

N

))
, (55)

ρNj (y) =
1

2
σ

(
α

(
y − j − 1

N

))
− 1

2
σ

(
α

(
y − j

N

))
for 2 ≤ j ≤ N − 1,

(56)

ρNN (y) =
1

2
σ

(
α

(
y − N − 1

N

))
+

1

2
. (57)

In the remainder of the paper, we will assume for simplicity that ρNj is always

of the second form. The calculations involving ρN1 and ρNN can be done entirely
similarly and do not change the stated results. Finally, we define for D ≤ d the
functions

ΦN,D
j (x) =

D∏

i=1

ρNi
ji

(xi) (58)

and the sets VD = {v ∈ Z
d : max1≤i≤D |vi| ≤ 1 and vD+1 = · · · = vd = 0}. We

will prove that the functions ΦN,d
j approximate a partition of unity in the sense

16

1

0 1
7

2
7

3
7

4
7

5
7

6
7

1

I74

∑
v∈V1

Φ
7,1

5+v

∑
v 6∈V1, 1≤4+v≤7

Φ
7,1

4+v

Figure 1: Example of an approximate partition of unity on [0, 1] with N = 7. The thin lines

represent the Φ7,1

j
= ρ7j , 1 ≤ j ≤ 7.

that for every j it holds on INj that,

∑

v∈Vd

ΦN,d
j+v ≈ 1 and

∑

v 6∈Vd,

j+v∈{1,...,N}d

ΦN,d
j+v ≈ 0. (59)

An example for d = 1 and N = 7 is shown in Figure 1. The next two lemmas
formalize this approximation. Finally, a tanh neural network approximation of
ΦN,d

j can be constructed by replacing the multiplication operator by the network280

from e.g. Corollary 3.7 or Lemma 3.8.

Lemma 4.1. If 0 < ǫ < 1/4, then

∥∥∥∥∥∥
∑

v∈Vd

ΦN,d
j+v − 1

∥∥∥∥∥∥
Wk,∞(IN

j)

≤ 2dkdǫ. (60)

Proof. We will prove the statement holds by induction on d. We first note that,
for d = 1, we have

∑

v∈V1

ΦN,1
j+v(x) =

1∑

l=−1

ρNj1+l(x1)

=
1

2
σ

(
α

(
x1 −

j1 − 2

N

))
− 1

2
σ

(
α

(
x1 −

j1 + 1

N

))
,

(61)

from which easily follows that

∑

v∈V1

ΦN,1
j+v(x) ≤ 1. (62)

17

Next, note that for x ∈ INj
∑

v∈V1

ΦN,1
j+v(x) =

1

2
σ

(
α

(
x1 −

j1 − 2

N

))
− 1

2
σ

(
α

(
x1 −

j1 + 1

N

))

≥ σ
(
α

N

)
≥ 1− ǫ,

(63)

where we used the definition of α on the last line. Furthermore, for 1 ≤ m ≤ k,
we get that ∣∣∣∣∣∣

dm

dxm

∑

v∈V1

ΦN,1
j+v(x)

∣∣∣∣∣∣
≤ αmσ(m)

(
α

N

)
≤ ǫ, (64)

where we used (61) and the monotonic decay of σ(m)(x) for x ∈ [α/N,∞) and
our choice of α (cf. equation (53)). This allows us to conclude that

∥∥∥∥∥∥
∑

v∈V1

ΦN,1
j+v(x)− 1

∥∥∥∥∥∥
Wk,∞(IN

j)

≤ ǫ. (65)

For the induction step, we assume that for some 2 ≤ D ≤ d it holds that
∥∥∥∥∥∥
∑

v∈VD−1

ΦN,D−1
j+v − 1

∥∥∥∥∥∥
Wk,∞(IN

j)

≤ 2(D−1)k(D − 1)ǫ. (66)

Using Lemma Appendix A.6, we find that for x ∈ INj ,

∥∥∥∥∥∥
∑

v∈VD

ΦN,D
j+v (x)− 1

∥∥∥∥∥∥
Wk,∞(IN

j)

=

∥∥∥∥∥∥
∑

w∈V1

ρNjD+w(xD)
∑

v∈VD−1

ΦN,D−1
j+v (x)− 1

∥∥∥∥∥∥
Wk,∞(IN

j)

≤

∥∥∥∥∥∥
∑

w∈V1

ρNjD+w(xD)− 1

∥∥∥∥∥∥
Wk,∞(IN

j)

+ 2k

∥∥∥∥∥∥
∑

w∈V1

ρNjD+w(xD)

∥∥∥∥∥∥
Wk,∞(IN

j)

∥∥∥∥∥∥
∑

v∈VD−1

ΦN,D−1
j+v (x)− 1

∥∥∥∥∥∥
Wk,∞(IN

j)

≤ ǫ+ 2k2(D−1)k(D − 1)ǫ ≤ 2DkDǫ.

(67)

This concludes the proof.

Lemma 4.2. Let k ∈ N0 and v ∈ Z
d with ‖v‖∞ ≥ 2. Then it holds that

∥∥∥ΦN,d
j+v

∥∥∥
Wk,∞(IN

j)
≤ max{1, (2k)2kαk}ǫ. (68)

18

Proof. Let x ∈ INj and let 1 ≤ i ≤ d be an index such that |vi| ≥ 2. Using some
basic equalities for the hyperbolic tangent function and the definition of α, we
obtain that

∣∣∣ρNji+vi
(xi)

∣∣∣ ≤ 1

2
σ

(
2α

N

)
− 1

2
σ

(
α

N

)

=
1

2
σ

(
α

N

)(
1− σ

(
2α

N

)
σ

(
α

N

))

≤ 1

2

(
1− σ2

(
α

N

))
≤ ǫ.

(69)

In addition, for every 1 ≤ ℓ ≤ d, it holds that
∣∣∣ρNjℓ+vℓ

(xℓ)
∣∣∣ ≤ 1. This implies

that ∥∥∥ΦN,d
j+v

∥∥∥
L∞(IN

j)
≤ ǫ. (70)

Let 1 ≤ m ≤ k, then it holds that (by our choice of the index i),

∣∣∣∣∣
dm

dxmi
ρNji+vi

(xi)

∣∣∣∣∣ ≤ α
m

∣∣∣∣∣σ
(m)

(
α

N

)∣∣∣∣∣ ≤ ǫ. (71)

Now let β ∈ N
d such that 1 ≤ |β| ≤ k. Then

∣∣∣DβΦN,d
j+v(x)

∣∣∣ =

∣∣∣∣∣∣

d∏

ℓ=1

dβℓ

dxβℓ

ℓ

ρNℓ
jℓ+vℓ

(xℓ)

∣∣∣∣∣∣
≤ ǫ

d∏

ℓ=1,ℓ 6=i,βℓ 6=0

(2βℓ)
βℓ+1αβℓ ≤ ǫ(2k)2kαk,

(72)

where we used the fact that
∣∣∣σ(m)(x)

∣∣∣ ≤ (2m)m+1 in the first inequality (cf.

Lemma Appendix A.4). Combining (70) and (72) proves the statement.

5. Main results285

5.1. Approximation of functions in Sobolev spaces

We now present the first main result of the paper. It follows from the lemma
of Bramble–Hilbert (Lemma Appendix A.8) that localized Taylor polynomials
can approximate a function f ∈ W s,∞([0, 1]d). For functions f ∈ Cs([0, 1]d),
this approximation follows from Taylor’s theorem (Lemma Appendix A.9). We290

then use the results from the previous two sections to construct tanh neural
networks that approximate localized Taylor polynomials in Sobolev norm. We
prove that the function f can be approximated by a tanh neural network with
two hidden layers and we provide explicit bounds on the width and approxima-
tion error.295

19

Theorem 5.1. Let d, s ∈ N, R > 0 as in (53), δ > 0 and f ∈ W s,∞([0, 1]d).
There exist constants C(d, k, s, f), N0(d) > 0, such that for every N ∈ N with

N > N0(d) there exists a tanh neural network f̂N with two hidden layers, one
of width at most 3

⌈
s
2

⌉ ∣∣Ps−1,d+1

∣∣ + d(N − 1) and another of width at most

3
⌈
d+2
2

⌉ ∣∣Pd+1,d+1

∣∣Nd (or 3
⌈
s
2

⌉
+N − 1 and 6N for d = 1), such that,

∥∥∥f − f̂N
∥∥∥
L∞([0,1]d)

≤ (1 + δ)
C(d, 0, s, f)

Ns
, (73)

and for k = 1, . . . , s− 1,

∥∥∥f − f̂N
∥∥∥
Wk,∞([0,1]d)

≤ 3d (1 + δ) (2(k+1))3k max

{
Rk, lnk

(
βNs+d+2

)} C(d, k, s, f)
Ns−k

,

(74)
where we define

β =
k32d
√
dmax{1, ‖f‖1/2

Wk,∞([0,1]d)
}

δmin{1,
√
C(d, k, s, f)}

. (75)

If f ∈ Cs([0, 1]d), then it holds that

C(d, k, s, f) = max
0≤ℓ≤k

1

(s− ℓ)!

(
3d

2

)s−ℓ

|f |W s,∞([0,1]d), N0(d) =
3d

2
, (76)

and else it holds that

C(d, k, s, f) = max
0≤ℓ≤k

π1/4
√
s

(s− ℓ− 1)!

(
5d2
)s−ℓ

|f |W s,∞([0,1]d), N0(d) = 5d2. (77)

In addition, the weights of f̂N scale as O
(
C−s/2Nd(d+s2+k2)/2(s(s+ 2))3s(s+2)

)
.

Proof. We will prove the theorem in the following manner. We divide the unit
cube into Nd cubes of edge length 1/N . On each of these cubes, f can be
approximated in Sobolev norm by a polynomial. The global approximation can
then be constructed by multiplying each polynomial with the indicator function300

of the corresponding cubes and summing over all cubes. We then prove that
replacing these polynomials, multiplications and indicator functions with the
tanh neural networks from the previous sections results in a new approximation
that has approximately the same accuracy. In the last step we will calculate the
size of the required neural network.305

Step 1: construction of the approximation. Let us denote JN
j =

×d

i=1

(
(ji − 2)/N, (ji + 1)/N

)
. We calculate that diam(JN

j) = 3
√
d

N and that

there exists a ball with diameter 1√
d
diam(JN

j) such that JN
j is star-shaped with

respect to every point in this ball. As a consequence, the Bramble-Hilbert lemma
(Lemma Appendix A.8) ensures the existence of a polynomial pNj of degree at

20

most s− 1 such that

∥∥∥f − pNj
∥∥∥
W ℓ,∞(JN

j)
≤ π1/4

√
s

(s− ℓ− 1)!

(
5d2

N

)s−ℓ

|f |W s,∞([0,1]d)

≤ max
0≤m≤ℓ

π1/4
√
s(5d2)s−m

(s−m− 1)!

|f |W s,∞([0,1]d)

Ns−ℓ
=:
C(d, ℓ, s, f)
Ns−ℓ

,

(78)

for all 0 ≤ ℓ ≤ k, under the assumption that N > 5d2, and where we used that
3
√
e ≤ 5. If moreover f ∈ Cs([0, 1]d), then Taylor’s theorem (Lemma Appendix

A.9 with δ = 3
2N) ensures the existence of a polynomial pNj of degree at most

s− 1 such that

∥∥∥f − pNj
∥∥∥
W ℓ,∞(JN

j)
≤ 1

(s− ℓ)!

(
3d

2N

)s−ℓ

|f |W s,∞([0,1]d)

≤ max
0≤m≤ℓ

1

(s−m)!

(
3d

2

)s−m |f |W s,∞([0,1]d)

Ns−ℓ
=:
C(d, ℓ, s, f)
Ns−ℓ

,

(79)

for all 0 ≤ ℓ ≤ k, under the assumption that N > 3d/2. The remainder of the
argument will be independent of which polynomial pNj and which definition of

C(d, ℓ, s, f) is used. To simplify notation, we also define pN =
∑

j p
N
j χj , where

χj denotes the indicator function on INj . Next, let qNj be a tanh neural network
as in Section 1 such that ∥∥∥qNj − pNj

∥∥∥
Wk,∞([0,1]d)

≤ η. (80)

In addition, we define

qNj (x)×̂ΦN,d
j (x) := ×̂h

d+1(q
N
j (x), φN,d

j1
(x1), . . . , φ

N,d
jd

(xd)), (81)

where ×̂h

d+1 is the network from Corollary 3.7 and h = h(N) will be defined in
the remainder of the proof. We then define our approximation as

f̂N (x) =
∑

j∈{1,...,N}d

qNj (x)×̂ΦN,d
j (x). (82)

Step 2: estimating the error of the approximation. The triangle
inequality gives us

∥∥∥f − f̂N
∥∥∥
Wk,∞([0,1]d)

≤

∥∥∥∥∥∥
f −

∑

j∈{1,...,N}d

f · ΦN,d
j

∥∥∥∥∥∥
Wk,∞([0,1]d)

+

∥∥∥∥∥∥
∑

j∈{1,...,N}d

(f − qNj) · ΦN,d
j

∥∥∥∥∥∥
Wk,∞([0,1]d)

+

∥∥∥∥∥∥
∑

j∈{1,...,N}d

(qNj · ΦN,d
j − qNj ×̂ΦN,d

j)

∥∥∥∥∥∥
Wk,∞([0,1]d)

(83)

21

We proceed by bounding each term of the right hand side separately.
Step 2a: First term of (83). Let i ∈ {0, . . . , N}d be arbitrary. Recalling

that Vd = {v ∈ Z
d : ‖v‖∞ ≤ 1}, we observe for k ≥ 1,

∥∥∥∥∥∥
f −

∑

j∈{1,...,N}d

f · ΦN,d
j

∥∥∥∥∥∥
Wk,∞(IN

i)

≤ 2k‖f‖Wk,∞(IN
i)

∥∥∥∥∥∥
1−

∑

v∈Vd

ΦN,d
i+v

∥∥∥∥∥∥
Wk,∞(IN

i)

+ 2k‖f‖Wk,∞(IN
i)

∥∥∥∥∥∥∥∥∥

∑

j∈{1,...,N}d

j−i 6∈Vd

ΦN,d
j

∥∥∥∥∥∥∥∥∥
Wk,∞(IN

i)

≤ 2k‖f‖Wk,∞(IN
i)(2

kddǫ+Nd(2k)2kαkǫ)

≤ 2k‖f‖Wk,∞(IN
i)2

kddǫ

+ 2k‖f‖Wk,∞(IN
i)N

d(2k)2kNk(k + 1)k max

R

k, lnk

(
2Nk2

ǫ
1

k+1 e

)
 ǫ

≤ δ(2(k + 1))3k max

R

k, lnk

(
2Nk2

ǫ
1

k+1 e

)

C(d, k, s, f)
Ns−k

,

(84)

where we used Lemma Appendix A.6, Lemma 4.1, Lemma 4.2 and Lemma
Appendix A.5, as well as a suitable definition of ǫ, satisfying

ǫ ≤ δC(d, k, s, f)
2(k+1)ddNs+d‖f‖Wk,∞([0,1]d)

. (85)

Analogously, for k = 0, one can obtain that

∥∥∥∥∥∥
f −

∑

j∈{1,...,N}d

f · ΦN,d
j

∥∥∥∥∥∥
L∞(IN

i)

≤ ‖f‖L∞(IN
i)(dǫ+N

dǫ) ≤ δ

3

C(d, k, s, f)
Ns−k

. (86)

Step 2b: Second term of (83) for k = 0. In order to bound the second term,
we first make some auxiliary calculations. To begin with, we consider the case
where k = 0. We find that

∣∣∣∣∣∣
∑

v∈Vd

(f − qNi+v)Φ
N,d
i+v

∣∣∣∣∣∣
≤ max

v∈Vd

|f − qNi+v|

∑

v∈Vd

|ΦN,d
i+v|

= max
v∈Vd

|f − qNi+v|

∣∣∣∣∣∣
∑

v∈Vd

ΦN,d
i+v

∣∣∣∣∣∣

(87)

22

where all functions are evaluated at some x ∈ INi . We can then use the bounds

∣∣∣f − qNi+v

∣∣∣ ≤ C(d, 0, s, f)
Ns

+ η, (88)

which follows from (78) and (80), and,

∣∣∣∣∣∣
∑

v∈Vd

ΦN,d
i+v

∣∣∣∣∣∣
≤ 1 + dǫ, (89)

which follows from Lemma 4.1. As a consequence, we find that

∥∥∥∥∥∥
∑

v∈Vd

(f − qNi+v)Φ
N,d
i+v

∥∥∥∥∥∥
L∞(IN

i)

≤
(C(d, k, s, f)

Ns−k
+ η

)
(1 + dǫ). (90)

Combining this result with the triangle inequality, (78), (80) and Lemma 4.2,
we find that
∥∥∥∥∥∥

∑

j∈{1,...,N}d

(f − qNj) · ΦN,d
j

∥∥∥∥∥∥
L∞(IN

i)

≤

∥∥∥∥∥∥
∑

v∈Vd

(f − qNi+v)Φ
N,d
i+v

∥∥∥∥∥∥
L∞(IN

i)

+
∑

j∈{1,...,N}d

j−i 6∈Vd

∥∥∥(f − qNj)
∥∥∥
L∞(IN

i)

∥∥∥ΦN,d
j

∥∥∥
L∞(IN

i)

≤
(C(d, k, s, f)

Ns−k
+ η

)
(1 + dǫ) +Nd

(
C(d, k, s, f) + η

)
ǫ

≤
(
1 +

δ

3

) C(d, k, s, f)
Ns−k

.

(91)

where we obtain the last inequality by making a suitable choice of η and ǫ.
Step 2c: Second term of (83) for k ≥ 1. Next we consider the case where

0 < k < s. Let β ∈ N
d
0 be such that |β| ≤ k. Then as a consequence of the

general Leibniz rule we find that

Dβ

∑

v∈Vd

(f − qNi+v)Φ
N,d
i+v

 ≤

∑

β′≤β

(
β

β′

) ∑

v∈Vd

∣∣∣Dβ′

(f − qNi+v)
∣∣∣
∣∣∣Dβ−β′

ΦN,d
i+v

∣∣∣

(92)
where all functions are evaluated at some x ∈ INi . For every v ∈ Vd and β′ ≤ β
with ℓ :=

∣∣β − β′∣∣, we can then use the bounds

∣∣∣Dβ′

(f − qNi+v)
∣∣∣ ≤

∥∥∥f − qNi+v

∥∥∥
Wk−ℓ,∞(IN

i)
≤ C(d, k − ℓ, s, f)

Ns−k+ℓ
+ η, (93)

23

which follows from (78) and (80), and,

∣∣∣Dβ−β′

ΦN,d
i+v

∣∣∣ ≤ αℓ(2ℓ)2ℓ = N ℓ(2ℓ)2ℓ max

R

ℓ, lnℓ

(
(2k)k+1(Nk)k

ekǫ

)
 , (94)

which follows from Lemma Appendix A.4 and Lemma Appendix A.5. As∑
β′≤β

(
β
β′

)
≤ 2k (as a consequence of the multi-binomial theorem), we find

that
∥∥∥∥∥∥
∑

v∈Vd

(f − qNi+v)Φ
N,d
i+v

∥∥∥∥∥∥
Wk,∞(IN

i)

≤ 2k3d
(C(d, k, s, f)

Ns−k
+ ηNk

)
(2k)2k max

R

k, lnk

(
(2Nk2)k+1

ǫek

)
 .

(95)

Combining this result with the triangle inequality, Lemma Appendix A.5,
Lemma Appendix A.6, (78), (80), Lemma 4.2 and the fact that ln(x) ≤ √x for
x > 0, we find that
∥∥∥∥∥∥

∑

j∈{1,...,N}d

(f − qNj) · ΦN,d
j

∥∥∥∥∥∥
Wk,∞(IN

i)

≤

∥∥∥∥∥∥
∑

v∈Vd

(f − qNi+v)Φ
N,d
i+v

∥∥∥∥∥∥
Wk,∞(IN

i)

+
∑

j∈{1,...,N}d

j−i 6∈Vd

∥∥∥(f − qNj)ΦN,d
j

∥∥∥
Wk,∞(IN

i)

≤

∥∥∥∥∥∥
∑

v∈Vd

(f − qNi+v)Φ
N,d
i+v

∥∥∥∥∥∥
Wk,∞(IN

i)

+
∑

j∈{1,...,N}d

j−i 6∈Vd

2k
∥∥∥(f − qNj)

∥∥∥
Wk,∞(IN

i)

∥∥∥ΦN,d
j

∥∥∥
Wk,∞(IN

i)

≤ 2k3d
(C(d, k, s, f)

Ns−k
+ ηNk

)
(2k)2k max

R

k, lnk

(
(2Nk2)k+1

ǫek

)

+Nd2k
(
C(d, k, s, f) + η

)
(2k)2kNk(k + 1)k

(
2Nk2

e

)k/2√
ǫ

≤ 3d
(
1 +

δ

3

)
(2(k + 1))3k max

R

k, lnk

(
2Nk2

ǫ
1

k+1 e

)

C(d, k, s, f)
Ns−k

,

(96)

where we obtain the last inequality by making a suitable choice of η and ǫ,
satisfying

η ≤ δC
6Ns

and ǫ ≤ δ2

N2s+2d+kkk
, (97)

where we assumed that 0 < δ < 5/6.

24

Step 2d: Third term of (83). Finally, using the triangle inequality, Lemma
Appendix A.7, Corollary 3.6 and Lemma Appendix A.4 we obtain that for
some Ck > 0 depending only on k,
∥∥∥∥∥∥

∑

j∈{1,...,N}d

(qNj · ΦN,d
j − qNj ×̂ΦN,d

j)

∥∥∥∥∥∥
Wk,∞(IN

i)

≤ NdCk(d+ 1)dd2k ·

∥∥∥∥∥∥
×̂h

d+1−
d+1∏

i=1

xi

∥∥∥∥∥∥
Wk,∞

(
‖f‖Wk,∞([0,1]d) +

∥∥∥f − qNj
∥∥∥
Wk,∞([0,1]d)

+
∥∥∥ρNi

∥∥∥
Wk,∞([0,1]d)

)k

≤ NdCk(d+ 1)dd2k · h
(
‖f‖Wk,∞([0,1]d) +

C(d, k, s, f)
Ns−k

+ η + (2αk)k+1

)k

≤ 2k
δ

3

C(d, k, s, f)
Ns−k

,

(98)

where we obtain the last inequality by making a suitable choice of h and η,
satisfying

η ≤ ‖f‖Wk,∞([0,1]d) and h ≤ 2kδC
3Nd+s−kCk(d+ 1)dd2k(2‖f‖Wk,∞([0,1]d) + C + (2αk)k+1)k

.

(99)
Step 2e: Final error bound. As i was chosen arbitrary, combining the con-

tributions from the three terms of (83) then proves that

∥∥∥f − f̂N
∥∥∥
L∞([0,1]d)

≤ (1 + δ)
C(d, 0, s, f)

Ns
. (100)

Moreover, from (85) and (97) we find that a suitable definition of ǫ is given by

ǫ =
δ2 min{1, C(d, k, s, f)}

N2s+2d+kkk2(k+1)ddmax{1, ‖f‖Wk,∞([0,1]d)}
, (101)

from which it follows that for k ≥ 1,

ǫ
1

k+1 ≥ δmin{1,
√
C(d, k, s, f)}

Ns+d+1k2d
√
dmax{1, ‖f‖1/2

Wk,∞([0,1]d)
}
. (102)

Combining this observation with all previous steps of the proof then leads to
the error bound
∥∥∥f − f̂N

∥∥∥
Wk,∞([0,1]d)

≤ 3d (1 + δ) (2(k+1))3k max

{
Rk, lnk

(
βNs+d+2

)} C(d, k, s, f)
Ns−k

,

(103)
for k ≥ 1 and where we define

β =
k32d
√
dmax{1, ‖f‖1/2

Wk,∞([0,1]d)
}

δmin{1,
√
C(d, k, s, f)}

. (104)

25

Step 3: Estimating the network and weights sizes. The first hidden
layer requires 3

⌈
s
2

⌉ ∣∣Ps−1,d+1

∣∣ neurons for the computation of all multivariate310

monomials (cf. Corollary 3.6). For d = 1, the result follows from Lemma 3.2
instead of Corollary 3.6. For the computation of all ρNj (xi) another d(N − 1)
neurons are needed in the first hidden layer. The second hidden layer needs at

most 3
⌈
d+2
2

⌉ ∣∣Pd+1,d+1

∣∣ neurons for realizing ×̂h

d+1, which needs to be performed

Nd times. For d = 1, six neurons are sufficient to approximate the multiplication315

(see (51)).
In the proof we achieved the wanted accuracy by making suitable choices of

η, ǫ, h. From equation (100) and Lemma Appendix A.5, it follows that

α = O
(
Ns ln(CN)

)
. (105)

For the approximate multiplication, (99) requires that h−1 = O(Nd+s+k2

sk
2+k).

Corollary 3.7 then proves that the weights of ×̂h

d+1 grow asO(Nd(d+s+k2)/2sd(k
2+k)/2).

Finally, the condition η−1 = O(C−1Ns) from (97) corresponds to weights grow-
ing as

O
(
C−s/2Ns2/2(s(s+ 2))3s(s+2)

)
(106)

as a consequence of Corollary 3.6. Calculating the maximum size of all the
weights concludes the proof.

Remark 5.2. The result of Theorem 5.1 can be generalized to functions f ∈
W k,p(Ω) for p < ∞. For this, a slightly more general version of Lemmas Ap-320

pendix A.6 and Appendix A.8 is needed. The convergence rate will still be as
in Theorem 5.1, only the constant C will be different.

Remark 5.3. Recently, it has been shown that the curse of dimensionality can
be lessened for functions in so-called Korobov spaces [24, 23, 61]. In partic-
ular, in [23, Theorem 4.2], this framework is used to show how ReQU neu-325

ral networks can approximate a Ck([−1, 1]d)-function to an accuracy of ǫ > 0
in supremum norm with at most O

(
d
k ln
(
1
ǫ

)
+ d

)
hidden layers and at most

O
(
ǫ−

1+δ
k

(
1+δ
k ln

(
1
ǫ

))d−1)
neurons and non-zero weights. As their proof builds

upon the mimicking of polynomials, it is clear from our results that similar ap-
proximation rates can be obtained using tanh neural networks.330

One particularly useful consequence of Theorem 5.1 is that it provides an
explicit error bound on the approximation of Lipschitz functions using tanh
neural networks.

Corollary 5.4. Let d ∈ N and let f : [0, 1]d → R be a Lipschitz continuous
function with Lipschitz constant L > 0. For every N ∈ N with N > 5d2

there exists a tanh neural network f̂N with two hidden layers of widths at most

d(N − 1) and 3
⌈
d+1
2

⌉ ∣∣Pd,d

∣∣Nd (or N − 1 and 6N for d = 1), such that

∥∥∥f − f̂N
∥∥∥
L∞([0,1]d)

≤ 7d2L

N
. (107)

26

Proof. The corollary follows directly from Theorem 5.1 by setting k = 0, s = 1,
choosing δ > 0 in such a way that 5(1+δ)π1/4 ≤ 7 and observing that |f |W 1,∞ ≤335

L because of the Lipschitz continuity of f . The constructed network in Theorem
5.1 is based on localized (s−1)-th order polynomials. For s = 1 this corresponds
to constant functions, thereby removing the need to mimick monomials. As a
consequence, the network width can be simplified to the widths stated in the
corollary.340

5.2. Approximation of analytic functions

We now investigate how we can apply Theorem 5.1 to analytic functions.
As the class of analytic functions coincides with the Gevrey class G1, it follows
that for every analytic function there exists a constant Cf > 0 such that

|f |W s,∞([0,1]d) ≤ Cs+1
f s! for all s ∈ N0. (108)

A related concept is the class of (Q,R)-analytic functions [62, 63, 64], where
Q,R > 0, consisting of analytic functions for which the following smoothness
condition holds,

|f |W s,∞([0,1]d) ≤ QR−ss! for all s ∈ N0. (109)

Note that any analytic function is (Cf , C
−1
f)-analytic by the previous charac-

terization of analyticity. Hence, a function is analytic on some compact interval
if and only if it is (Q,R)-analytic for some Q,R > 0 on that interval. The fol-
lowing corollaries discuss multiple ways to approximate analytic functions using345

tanh neural networks. All constants mentioned in the statements can be easily
deduced from the proofs.

We start with the basic consequence of Theorem 5.1 for (Q,R)-analytic
functions. It provides explicit estimates on both the approximation error in
supremum norm and the network size. It can easily be generalized to Sobolev350

norm using Theorem 5.1.

Corollary 5.5. Let d ∈ N, δ,Q,R > 0, Ω ⊂ R
d open with [0, 1]d ⊂ Ω and

let f be (Q,R)-analytic on Ω. Then for every s ∈ N0, N ∈ N with N > 3d/2,

there is a tanh neural network f̂N,s with two hidden layers of widths at most

3
⌈
s
2

⌉ ∣∣Ps−1,d+1

∣∣ + d(N − 1) and 3
⌈
d+2
2

⌉ ∣∣Pd+1,d+1

∣∣Nd (or 3
⌈
s
2

⌉
+ N − 1 and

6Nd for d = 1) such that

∥∥∥f − f̂N,s
∥∥∥
L∞([0,1]d)

≤ (1 + δ)Q

(
3d

2RN

)s

. (110)

Moreover, if R > d/2 then for every s ∈ N0 there is a shallow tanh neural

network f̂s with at most 3s
2

∣∣Ps−1,d+1

∣∣ (or 3
⌈
s
2

⌉
for d=1) in its hidden layer

such that ∥∥∥f − f̂s
∥∥∥
L∞([0,1]d)

≤ (1 + δ)Q

(
d

2R

)s

. (111)

27

Proof. The first part of the statement follows directly from Theorem 5.1 by
taking δ = 1/3. The second part follows from taking N = 1 in Theorem 5.1 and
observing that the proof can be simplified in this case. Indeed, one can then
directly use Taylor’s theorem (Lemma Appendix A.9) with δ = 1

2 instead of355

δ = 3
2N and there is no more need for an approximate partition of unity, thereby

also removing the need for a second hidden layer.

The following corollary enables a consistent comparison with the available
literature, as it bounds the approximation error in terms of one single parameter.
Whereas other papers focus on the number of non-zero weights and biases as360

complexity measure, we opted for the network width. This is useful in practice
as the network width can be directly chosen, whereas it is very challenging to
exactly control the sparsity of the neural network (i.e. the number of non-zero
weights and biases). Moreover, many bounds on the generalization error require
an estimate of the network width [54, 65].365

Corollary 5.6. Let d ∈ N, k ∈ N0, δ,Q,R > 0, Ω ⊂ R
d open with [0, 1]d ⊂ Ω

and let f be (Q,R)-analytic on Ω. Then there exists a constant cd,k,α,f > 0 such

that for every N ∈ N there exists a tanh neural network f̂N with two hidden
layers of width at most O(N) for N →∞ such that
∥∥∥f − f̂N

∥∥∥
Wk,∞([0,1]d)

≤ cd,k,α,fN
k

d+1 exp
(
−αN 1

d+1 log(N)
)
≤ cd,k,α,f
Nα−k/(d+1)

.

(112)
In particular, for k = 0 it holds that
∥∥∥f − f̂N

∥∥∥
L∞([0,1]d)

≤ (1 + δ)Q · exp
(
−αN 1

d+1 log(N)
)
≤ (1 + δ)Q

Nα
. (113)

Proof. First we observe that for every γ > 0 it holds that

lnk
(
βNs+d+2

)
= O

((
2NR

3d

)γs
)

(114)

for large s and N . From Theorem 5.1 we then find that for every N and s there
is a network f̂N,s such that

∥∥∥f − f̂N,s
∥∥∥
Wk,∞([0,1]d)

= O

((
s

R

)k (
3d

2NR

)s(1−γ)−k
)

(115)

From Theorem 5.1 with the choices s = k + α(1 − γ)−1(d + 1)N 1
d+1 and N =

3d
2RN

1
d+1 for some N ∈ N, gives that there exists a constant cd,k,α,f > 0 such

that

∥∥∥f − f̂N
∥∥∥
Wk,∞([0,1]d)

≤ cd,k,α,fN
k

d+1

(
1

N 1
d+1

)α(d+1)N
1

d+1

= cd,k,α,fN
k

d+1 exp
(
−αN 1

d+1 log(N)
)

≤ cd,k,α,f
Nα−k/(d+1)

.

(116)

28

In particular, for k = 0 we find that

∥∥∥f − f̂N
∥∥∥
L∞([0,1]d)

≤ (1 + δ)Q · exp
(
−αN 1

d+1 log(N)
)
≤ (1 + δ)Q

Nα
. (117)

Using Lemma 2.1, we find that the network widths are respectivelyO((eαd)d+1N)

and O(d5dN d
d+1) for largeN and d (the exact sizes can be easily calculated).

We thus find that tanh neural networks with two hidden layers result in
an exponential convergence rate. Moreover, the above corollary shows that a
convergence rate that is independent of the dimension can be obtained, thereby370

lessening the curse of dimensionality. The proof however shows that even though
the rate is free of the curse of dimensionality, the constant implied in the Landau
notation still depends (super)exponentially on the dimension. Similar papers
observe the same phenomena [4], or do not discuss this.

Remark 5.7. One can also restate the previous corollary by saying that an375

approximation rate of O(N k exp (−N)) can be obtained using a tanh neural

network with two hidden layers of widths O
(
N
(N+d

N
))

and O(1) for N → ∞.

Since O
(
N
(N+d

N
))

grows asymptotically slower than O(N d+1), another (very

modest) lessening of the curse of dimensionality is revealed.

Next, we show that, under an additional assumption, shallow tanh neural380

networks can also approximate analytic functions at an exponential rate. More-
over, in contrast to Corollary 5.6, there are no hidden constants that grow as
O(dd). For simplicity, we restrict ourselves to approximation in supremum norm
(i.e. k = 0).

Corollary 5.8. Let d ∈ N, Ω ⊂ R
d open with [0, 1]d ⊂ Ω and let f be analytic

on Ω. If f satisfies for some C > 0 that |f |W s,∞([0,1]d) ≤ Cs for all s ∈ N,

then for every N ∈ N there exists a shallow tanh neural network f̂N of width

3
⌈
N+5Cd

2

⌉ (N+(5C+1)d
N+5Cd

)
(or 3

⌈
N
2

⌉
for d = 1) such that

∥∥∥f − f̂N
∥∥∥
L∞([0,1]d)

≤ exp(−N). (118)

Proof. Assume that f satisfies for some C > 0 that |f |W s,∞([0,1]d) ≤ Cs for all
s ∈ N. We calculate that for ρ > 1,

Cs

s!

(
3dρ

2

)s

=
1

s!

(
3Cdρ

2

)s

≤ 1√
2π

(
3Cdeρ

2s

)s

≤ 1√
2π
e3Cdρ/2, (119)

where we used Stirling’s approximation and maximized over all s. This proves
that f is (Q,R)-analytic with Q = 1√

2π
e3Cdρ/2 and R = 3dρ

2 . Using Corollary

5.5 with s = N and N = 1 gives us that

∥∥∥f − f̂N
∥∥∥
L∞([0,1]d)

≤ 2
1√
2π
e3Cdρ/2ρ−N . (120)

29

If we set ρ = e, then e3dρ/2 ≤ e5d. Therefore it holds that
∥∥∥f − f̂N

∥∥∥
L∞([0,1]d)

≤ exp(−N + 5Cd). (121)

Note that since now N = 1, the network architecture is even simpler: there is no385

need to construct a partition of unity, nor does there need to be a second hidden
layer in order to approximately multiply the results of subnetworks. Therefore,

a shallow tanh neural network with 3
⌈
N
2

⌉ ∣∣PN−1,d+1

∣∣ ≤ 3
⌈
N
2

⌉ (N+d
N
)
neurons

in its hidden layer suffices. The statement from the theorem is obtained by
making the substitution N ← N + 5Cd.390

Finally, we discuss how dimension-independent convergence rates can be
obtained for a class of countably-parametric, holomorphic maps f : U :=
[−1, 1]N → R, which arise in e.g. elliptic PDEs with uncertain coefficients.
This was first discussed in [26] for deep ReLU neural networks and we will show
that their results can be adapted to hold for shallow tanh neural networks.
More precisely, their results hold for functions u that admit a representation as
a sparse Taylor generalized polynomial chaos expansion

f(y) =
∑

ν∈F

Dνf(0)

ν!
yν , (122)

which is unconditionally convergent for y ∈ U and where F is defined by

F = {ν ∈ N
N

0 | νj 6= 0 for only finitely many j}. (123)

For a multi-index ν ∈ N
N
0 , we denote by supp(ν) = {j ∈ N | νj 6= 0} the support

of ν, and we denote by |ν| =∑j∈N
|νj | the ℓ1-norm of ν.

It is shown in [26, Section 2] that f admits such a representation if f is (b, ǫ)-
holomorphic for b ∈ ℓp(N), p ∈ (0, 1] and ǫ > 0. The notion of (b, ǫ)-holomorphy
is defined as follows.395

Definition 5.9 (Def. 2.1 in [26]). Let V be a Banach space. Let b ∈ ℓp(N),
p ∈ (0, 1] be a monotonically decreasing sequence. A poly-radius ρ ∈ [1,∞)N is
called (b, ǫ)-admissible for some ǫ > 0 if

∑

j∈N

bj(ρj − 1) ≤ ǫ. (124)

A continuous function f : U → V is called (b, ǫ)-holomorphic if there exists a
constant Cf < ∞ such that the following holds: For every (b, ǫ)-admissible ρ,

there exists an extension f̃ : Bρ → VC of f , i.e. we have f̃(y) = f(y) for all y ∈
U ⊂ Bρ, f̃ is holomorphic in each component and such that supz∈Bρ

∥∥∥f̃(z)
∥∥∥
VC

≤
Cf . Here, Bρ ⊂ C

N denotes the ball of polyradius ρ:

Bρ = {z ∈ C
N | |zj | < ρj , ∀ j ∈ N},

and VC ≃ V + iV is the complexification of V .

30

In [26], it is shown that for a (b, ǫ)-holomorphic function f , an approxima-
tion rate of O(N 1−1/p) can be obtained using a ReLU neural network of depth
O(log(N) log log(N)) or using a neural network with a smoother activation func-
tion of depth O(log log(N)). We show that their construction can also be used400

to obtain a dimension-independent approximation rate for shallow tanh neural
networks.

Corollary 5.10. Let f : U = [−1, 1]N → R be (b, ǫ)-holomorphic for b ∈
ℓp(N), p ∈ (0, 1) and ǫ > 0. Then there exists a constant C > 0 such that for

every N ∈ N there exists a shallow tanh neural network f̂N of width at most

O
(
N (C log(N))C log(N)

)
such that

∥∥∥f − f̂N
∥∥∥
L∞(U)

= O
(
N 1−1/p

)
for N →∞. (125)

Proof. There exist a constant C > 0 and a sequence of index sets (ΛN)N∈N ⊂ F
for which it holds that (cf. [26, proof of Thm. 3.9])

sup
y∈U

∣∣∣∣∣∣
f(y)−

∑

ν∈ΛN

Dνf(0)

ν!
yν

∣∣∣∣∣∣
= O

(
N 1−1/p

)
. (126)

and such that |ΛN | = N , supp(ν) ⊆ {1, . . . ,N} for all ν ∈ ΛN and for all N
[26, proof of Thm. 3.9], and supN∈N |ν| ≤ C(1+log(N)), where |ν| :=∑j∈N

|νj |
[26, Thm. 2.7]. The latter implies in particular that supN∈N

∣∣supp(ν)
∣∣ ≤ C(1+405

log(N)).
Based on these results from [26], it therefore suffices to show that we can ac-

curately approximate all monomials y 7→ yν for ν ∈ ΛN with shallow tanh neural
networks. For a fixed ν ∈ ΛN , the monomial y 7→ yν can be approximated (to
arbitrary accuracy) using Corollary 3.6 with d = n← C(1 + log(N)), resulting

in a shallow tanh neural network of width O
(
(Ce(1 + log(N)))C(1+log(N))+1

)
.

The network f̂N from the statement can then be constructed by parallelizing all
the networks that approximate the individual monomials, yielding an approxi-
mation ∥∥∥f − f̂N

∥∥∥
L∞(U)

= O(N 1−1/p).

To be precise, we take the input of this network to be (y1, . . . yN) instead of y,
which is possible since supp(ν) ⊆ {1, . . . ,N} for all ν ∈ ΛN . As |ΛN | = N ,

the resulting width of f̂N is O
(
N (Ce(1 + log(N)))C(1+log(N))+1

)
, which is

asymptotically equivalent to the width from the statement for N →∞.410

This result implies in particular, that linear functionals of parametric so-
lutions of PDEs can be approximated by shallow tanh neural networks [26].
Following [26, Section 4], the result can also be extended to directly approxi-
mate the parametric solution manifold, e.g. to approximate (b, ǫ)-holomorphic
operators of the form f : [−1, 1]N → H1

0 ([0, 1]).415

31

5.3. Examples

In this section, we illustrate the bounds derived in Theorem 5.1 with some
prototypical examples. In particular, we will investigate the width, weights and
sparsity of the networks from the proof of Theorem 5.1.

First, we demonstrate how large the networks of Theorem 5.1 are for a
simple function approximation example with d = 1 and L∞-norm. We consider
the functions

fa : [0, 1]→ [−1, 1] : x 7→ sin(ax), a > 0. (127)

For a given error tolerance ε > 0, we look for a three-layer tanh neural network
f̂N,s, as given by Theorem 5.1, such that provably

∥∥∥fa − f̂N,s
∥∥∥
∞
≤ ε. (128)

From all the networks that satisfy this condition, we take the one with the
minimal width. More rigorously, we select

argmins,N∈N : (3a/2N)s/s!<ε max

{
3

⌈
s

2

⌉
+N − 1, 6N

}
, (129)

where we used that |fa|W s,∞ ≤ as for s ≥ 1. Alternatively, one can also set
N = 1 in Theorem 5.1, which makes the bound more efficient as no more
partition of unity is needed, thereby reducing the need for a second hidden
layer. This is similar to the proof of Corollary 5.5. In this case, we select

argmins∈N : (a/2)s/s!<ε

{
3

⌈
s

2

⌉}
. (130)

We present the result in Figure 2. For the chosen examples, a shallow (i.e.420

two-layer) tanh neural network achieves a similar level of error as a three-layer
network of the same width. This can be explained by the fact that |fa|W s,∞

grows asO(as) and not asO(ass!), such that settingN > 1 is not required for the
bound of Theorem 5.1 to be non-vacuous. Moreover, the networks suggested by
Theorem 5.1 are not unreasonably large for this simple example. Yet, they still425

remain overestimates: we found that e.g. f2π can already be approximated to
an error of 1% by a shallow tanh network of width four. Finally, the exponential
convergence is evident as a small increase in the network width already leads to
a very large improvement in the accuracy.

Next, we investigate whether the blow-up of the network weights from the430

theoretical results is observed in practice. We approximate univariate monomi-
als of odd power in supremum norm on the interval [0, 1] using shallow neural
networks whose sizes are determined by Lemma 3.1. We generate a training
set using 2000 randomly generated points, based on the uniform distribution on
[0, 1] and minimize the training loss for 2000 epochs using the Adam optimizer435

[66]. The results can be found in Table 1 and show that the weights do not
blow up in practice. Rather, the weights remain small for this example. This

32

10 6 10 5 10 4 10 3 10 2 10 1

error tolerance

5

10

15

20

25

m
ax

im
um

 la
ye

r w
id

th

a= 2 , 2 hidden layers
a= 2 , 1 hidden layer
a= 1, 2 hidden layers
a= 1, 1 hidden layer

Figure 2: Needed layer width according to Theorem 5.1 to approximate the function fa to a
given error tolerance.

power 1 3 5 7 9
MSE 4.91 · 10−7 1.54 · 10−6 2.87 · 10−5 1.13 · 10−4 6.13 · 10−5

largest weight 3.13 2.14 2.27 4.55 4.41

Table 1: MSE and largest weight (in absolute value) of shallow tanh neural networks that
approximate univariate monomials with odd powers on [0, 1].

is possibly a consequence of the phenomenon of implicit regularization in deep
learning, e.g. [67].

Finally, we show that the neural networks constructed in the proof of Theo-440

rem 5.1 are not very sparse i.e., the fraction of non-zero weights of the network,
compared to the total number of weights, is not small. Figure 3 shows that
the fraction of non-zero weights of the network increases with increasing s and
decreasing N (for d = 1). For analytic functions, it is (asymptotically) more
efficient to increase s than N , as the convergence rate is O(N−s). This lets us445

conclude that the constructed networks corresponding to sensible choices of s
and N are, in general, quite dense. This is in agreement with what one observes
in practice. This is in contrast to the theoretical results for deep ReLU (and
other) neural networks, where the sparsity of the constructed networks generally
increases with increasing accuracy [20, 4, 34].450

6. Summary and discussion

The main aim of this paper was to provide explicit bounds on the error
(in high-order Sobolev) norms with which a neural network with a tanh activa-
tion function approximates Sobolev-regular functions, Ck functions and analytic
functions. To this end, we prove such explicit bounds on the approximation er-455

ror for Sobolev functions in Theorem 5.1 and for analytic functions in Corollary
5.5. In both cases, we prove these bounds for a tanh neural network with just 2

33

2 4 6 8 10
N

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1
- s

pa
rs

ity
s= 1
s= 3
s= 5
s= 7
s= 9
s= 11
s= 13
s= 15
s= 17
s= 19

Figure 3: Fraction of non-zero weights (i.e. 1− sparsity) of the networks of Theorem 5.1 for
different values of s and N in the case where d = 1.

hidden layers. Our proofs are constructive and the construction relies on three
key ideas: (1) the approximation of monomials by finite differences of a smooth
activation function (Lemma 3.5), (2) the approximation of the multiplication460

operator (Lemma 3.7) and (3) the approximation of a partition of unity (Section
4). In particular, we prove that a neural network with only hidden layers and
a tanh activation function yields the same (or better) approximation rates for
Sobolev-regular and for analytic functions.

We elaborate this point further by comparing and contrasting our approach465

and results with the large body of literature on approximation of functions with
artificial neural networks.

First, we compare our approach, as stated above, with other related works.
The simple, yet very effective trick of approximating monomials by finite dif-
ferences of smooth activation function has been around for decades [36], but is470

still a building block in the constructive proofs of many recent papers on neural
network expressivity, e.g. [39, 35, 37, 34]. To the best of the authors’ knowledge,
all available results build upon the observation that there is a x ∈ R such that
σ(n)(x) 6= 0 for all n ∈ N. As such, this construction does not allow for explicit
estimates on the approximation error and the network weights (see Remark475

3.4). Our key novelty in this paper is to circumvent this issue by first approxi-
mating univariate monomials of odd powers and then expanding to even powers
and multivariate monomials. This allows us to obtain uniform explicit bounds
for the error in approximating multivariate monomials of a varying degree and
paves the way for explicit bounds on the approximation error.480

The approximation of the multiplication operator in d dimensions by a shal-
low neural network (Corollary 3.7) was discussed in [40, Appendix A] for activa-
tion functions σ that satisfy that σ(x) =

∑
k σkx

k where σk 6= 0 for 0 ≤ k ≤ d.

34

In particular, they prove that 2d neurons are both sufficient and necessary. How-
ever, this construction does not allow for explicit estimates (again cf. Remark485

3.4). Here, we propose a novel construction of the multiplication operator with
a shallow tanh neural network.

As for the partition of unity, which serves as an essential ingredient in our
proofs, an exact partition of unity for ReLU neural networks can be readily
constructed [20]. Approximations of partitions of unity with neural networks490

with sigmoidal activation function can be found in [32, 68, 35] and a general
framework for approximations of partitions of unity was proposed in [34]. In this
paper, we have constructed approximations of partitions of unity with shallow
tanh neural networks, that were motivated by localized polynomials which arise
in the Bramble-Hilbert Lemma and the Taylor’s theorem. Compared to the495

other works mentioned above, our results on partitions of unity stand out for
the explicit bounds on the approximation error and the weights.

Given the afore-mentioned novel ideas, we were able to obtain explicit bounds
on the approximation error. A suitable avenue to compare our results with
results obtained in related works lies in the approximation error bounds for500

analytic functions. We recall that we prove approximation rates to analytic
functions in the W k,∞-norm. Although approximation rates in this norm were
proved for Sobolev functions in the very recent paper [34], it is unclear if their
results can be extended in an efficient way for analytic functions. A key reason
for this lies in the fact that the widths of their constructed networks are not505

explicitly stated and the depth increases with maximal degree of monomials, in-
hibiting uniform control that is necessary for approximating analytic functions.

Exponential convergence (in terms of network size) of neural networks for an-
alytic functions in the L∞-norm was first proven in [56] for neural networks with
smooth activation functions and in [55] for ReLU neural networks. In [4, 22],510

the authors prove exponential convergence in W 1,∞-norm for ReLU neural net-
works. We compare our results for approximation of analytic functions with
these papers in Table 2. For [56], the parameter ρ is related to the polyradius of
the ellipse to which the function needs to be holomorphically extendable. In [55],
the additional assumption is made that the analytic function admits a Taylor515

expansion on [−1, 1]d that converges absolutely and uniformly, which does not
hold for general analytic functions. For [4], the parameter β is at least inversely
proportional to the dimension d and also depends on the radius of the Bernstein
ellipse to which the analytic function can be holomorphically extended. From
Table 2, one can clearly observe that Corollary 5.6 yields an asymptotically520

faster convergence in terms of network width than the other related works. In
addition, our results hold in stronger norms and we provide explicit bounds on
the approximation error and weights, in contrast to other papers. For instance
in [56, 4], the convergence rate even depends on the (unknown) polyradius of
the ellipse to which the function can be holomorphically extended. Lastly, note525

that Corollary 5.8 assumes that |f |W s,∞([0,1]d) ≤ Cs for some C > 0 and all

s ∈ N, which implies that f must be entire. In [69, Theorem 5.4], exponential
expressivity of ReLU neural networks for entire functions is proven. Compared

35

source norm activation depth width error bound

[56, Thm 2.3] L∞([−1, 1]d) C∞ 2 N O
(
ρ−N 1/d

)

[55, Thm. 6] L∞([−1 + δ, 1− δ]d) ReLU O(N) d+ 4 O

(
exp
(
−dδN 1/2d

))

[4, Thm. 3.6] W 1,∞([−1, 1]d) ReLU O(N 1
d+1 log(N)) O(N) O

(
exp
(
−βN 1

d+1

))

this work W k,∞([0, 1]d) tanh 3 O(N) O

(
N k

d+1 exp
(
−N 1

d+1 ln(N)
))

Table 2: Comparison of upper bounds on the approximation error for analytic functions by
neural networks.

to Corollary 5.8, this result is more efficient in terms of non-zero weights, but

requires O
(
log
(
1/ǫ
)
log log

(
1/ǫ
))

layers to obtain an approximation with accu-530

racy ǫ > 0.
All of our approximation results, including the approximation bounds on

analytic functions hold for a tanh neural network with only two hidden layers.
This result, see also [56], runs contrary to the prevailing view that depth of
neural networks is essential for function approximation and establishes that535

shallow but wide neural networks can be very expressive when it comes to
function approximation and might provide some justification for the use of very
shallow and wide neural networks in scientific computing [43, 9, 70].

Finally, it is essential to mention that although we highlight our contribution
in terms of the tanh activation function as it is the most commonly used of540

the smooth activation functions. Our results apply verbatim to the logistic or
sigmoid activation function as it is a shifted and scaled tanh. However, our
constructions also apply to a much larger class of smooth activation functions
as elaborated in Section 3.

We conclude by pointing out some limitations of the presented results. The545

most important limitation is the fact that the amplitude of the weights in our
constructive network can grow very fast (Theorem 5.1). In practice, implicit
and explicit regularization mechanisms during training will ensure that such
growth of weights will not happen. In fact, we present examples to empirically
show that the gradient-descent based training procedure manages to find rather550

small weights and biases that still provide a very high accuracy. We therefore
believe that our bounds are useful in practice, more as upper bounds for setting
the network size.

Another limitation, which we share with other published results on approx-
imation with neural networks, is that our results suffer from the curse of di-555

mensionality. We could however prove that it is possible to obtain a dimension-
independent convergence rate to analytic functions in Corollary 5.6. Another
possible mitigation of the curse of dimensionality for the approximation rate is
when the underlying map is (b, ǫ)-holomorphic, see Corollary 5.10 for the precise
result. However in these cases, the constants (and hence the network size) can560

still grow exponentially in the input dimension. Fortunately, one can argue that
a large number of high-dimensional functions are in fact compositions of low-
dimensional functions, which might explain the success of deep learning in high

36

dimensions [38]. For instance, the Kolmogorov-Arnold superposition theorem
[71] even states that all d-variate functions are in fact compositions of univariate565

functions and the sum of d numbers, which also can be used to lessen the curse
of dimensionality [72].

Finally, the weights in our constructed networks are continuous with respect
to the function of interest f . It has been proven that the best neural approxi-
mation cannot be achieved using continuous weight selection [73]. An example570

of how discontinuous weight selection can improve the approximation rate can
be found in [27].

Acknowledgements

SL and SM received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme575

(grant agreement No. 770880)

Appendix A. Auxiliary results

Lemma Appendix A.1. It holds for every n ∈ N that
∣∣∣tanh(2n−1) (0)

∣∣∣ ≥ 1.

Proof. For |x| < π
2 , the power series expansion of tanh at x is given by

tanh (x) =

∞∑

n=1

22n(22n − 1)B2n

(2n)!
x2n−1, (A.1)

where Bn is the n-th Bernoulli number. One can then calculate that for every
n ∈ N,

∣∣∣tanh(2n−1) (0)
∣∣∣ =

∣∣∣∣∣
22n(22n − 1)B2n

2n

∣∣∣∣∣ ≥ 1. (A.2)

This concludes the proof of the statement.

Lemma Appendix A.2. Let s ∈ 2N− 1. It holds that

inf
α>0

2s/2(1 + α)(s
2+s)/2

αs/2
≤ √e(2es)s/2, (A.3)

where the infimum is reached at α = 1/s.580

Proof. Some elementary calculations show that

inf
α>0

2s/2(1 + α)(s
2+s)/2

αs/2
= 2s/2

(
1 +

1

s

)(s2+s)/2

ss/2. (A.4)

Moreover, it holds that

(
1 +

1

s

)(s2+s)/2

=

((
1 +

1

s

)s
)(s+1)/2

≤ e(s+1)/2. (A.5)

The statement follows immediately from these inequalities.

37

Lemma Appendix A.3. Let n, q ∈ N and Pn,q = {α ∈ N
q
0 : |α| = n}. If

D = (Dα,β)α,β∈Pn,q is defined as in (39), then D is invertible and

∥∥∥D−1
∥∥∥
∞
≤ (n!)3

∣∣Pn,q

∣∣22n. (A.6)

Proof. Following [57], let Pn,q = {α ∈ N
q
0 : |α| = n} and In,q = {α′ ∈ N

q−1
0 :∣∣α′∣∣ ≤ n}. Let s(k,m) be Stirling numbers of the first kind, for k ≤ m, defined

by

x(x− 1) · · · (x−m+ 1) =

m∑

k=0

s(k,m)xk. (A.7)

For α′, β′ ∈ In,q, define Sα′,β′ =
∏q−1

i=1 s(α
′
i, β

′
i), where S(α′, β′) = 0 unless

α′
i ≤ β′

i for all i. Denote by S the corresponding matrix, where the order of
rows and columns reflects the lexicographic order on In,q. Next, define B by

Bα′,β′ =

(
α′

β′

)
(−1)|β′| :=

q−1∏

i=1

(
α′
i

β′
i

)
(−1)β′

i for α′, β′ ∈ In,q. (A.8)

Finally, let L and Λ be diagonal matrices defined by Lα′,α′ = (−1)|α′|/α′! and
Λα′,α′ = n(n − 1) · · · (n −

∣∣α′∣∣ + 1)/α′! for α′ ∈ In,q. It then holds that [57,
Corollary 2],

D−1 = BL−1Λ−1SLB. (A.9)

To prove an upper bound on the supremum norm of D−1, we first note that∣∣s(k,m)
∣∣ ≤∑m

k=0

∣∣s(k,m)
∣∣ = m! (which can be seen by setting x = −1 in (A.7))

and thus S(α′, β′) ≤ β′!. In addition, it holds for any α′ ∈ In,q that

1 ≤ n!

α′!(n− |α′|)! ≤
n!

α′!
, (A.10)

which gives us that maxα′∈In,q
(α′!) ≤ n!. This gives us consequently

∣∣∣L−1Λ−1S
∣∣∣
α′,β′

≤ (α′!)2β′! ≤ (n!)2β′!, (A.11)
∣∣∣L−1Λ−1SL

∣∣∣
α′,β′

≤ (n!)2, (A.12)

∣∣∣L−1Λ−1SLB
∣∣∣
α′,β′

≤ (n!)2
∑

γ′∈In,q

(
γ′

β′

)
≤ (n!)3

∣∣In,q
∣∣, (A.13)

∣∣∣BL−1Λ−1SLB
∣∣∣
α′,β′

≤ (n!)3
∣∣In,q

∣∣ ∑

γ′∈In,q

(
α′

γ′

)
= (n!)3

∣∣In,q
∣∣2|γ′| ≤ (n!)3

∣∣In,q
∣∣2n.

(A.14)

This and (A.9) let us conclude that
∥∥D−1

∥∥
∞ ≤ (n!)3

∣∣In,q
∣∣22n. The lemma then

follows from the existence of a one-to-one correspondence of elements in In,q
and Pn,q.

38

Lemma Appendix A.4. Let m ∈ N. Then it holds that

∣∣∣σ(m)(x)
∣∣∣ ≤ (2m)m+1 min{exp(−2x), exp(2x)} for all x ∈ R. (A.15)

Proof. In [74], the following formula for the derivative of the hyperbolic tangent
is proven,

σ(m)(x) = (−2)m(σ(x) + 1)
m∑

k=0

k!

2k

{
m

k

}
(σ(x)− 1)k, (A.16)

where
{
m
k

}
denote Stirling numbers of the second kind, for which it holds that{

m
k

}
≤ km

k! . This then gives us

∣∣∣σ(m)(x)
∣∣∣ ≤ 2m

∣∣1 + σ(x)
∣∣

m∑

k=0

km ≤ 2mmm+1
∣∣1 + σ(x)

∣∣ ≤ (2m)m+1 exp(2x),

(A.17)
as
∑m

k=0 k
m ≤ m ·mm ≤ mm+1. Furthermore one can note that σ(m)(−x) =

−σ(m)(x), which gives us

∣∣∣σ(m)(x)
∣∣∣ ≤ 2mmm+1

∣∣1− σ(x)
∣∣ ≤ (2m)m+1 exp(−2x). (A.18)

The statement follows easily.585

Lemma Appendix A.5. The conditions stated in (53) for k > 0 are satisfied
if

α = N max

R, ln

(
(2k)k+1(Nk)k

ekǫ

)
 . (A.19)

Proof. The first condition of (53) is trivially satisfied when α is chosen as in the
statement. From Lemma Appendix A.4, it follows that

αk(2k)k+1 exp
(
−2α/N

)
≤ ǫ (A.20)

is a sufficient condition that implies the other conditions of (53). Using maxα>0 α
k exp

(
−α/N

)
≤

(Nk)k exp(−k) we find that

αk exp
(
−2α/N

)
= αk exp

(
−α/N

)
exp
(
−α/N

)
≤ (Nk)k exp(−k) exp

(
−α/N

)
.

(A.21)
The statement follows directly.

Lemma Appendix A.6. Let d ∈ N, k ∈ N0, Ω ⊂ R
d and f, g ∈ W k,∞(Ω).

Then it holds that

‖fg‖Wk,∞ ≤ 2k‖f‖Wk,∞‖g‖Wk,∞ . (A.22)

Proof. The statement follows directly from the general Leibniz rule.

39

Lemma Appendix A.7. Let d,m, n ∈ N, Ω1 ⊂ R
d, Ω2 ⊂ R

m, f ∈ Cn(Ω1; Ω2)
and g ∈ Cn(Ω2;R). Then it holds that

‖g ◦ f‖Wn,∞ ≤ 16(e2n4md2)n‖g‖Wn,∞ max
1≤i≤m

∥∥(f)i
∥∥n
Wn,∞ . (A.23)

Proof. Let ν ∈ N
d with |ν| = n. We use the multivariate Faà di Bruno formula

[33],

Dν(g ◦ f) =
∑

1≤|λ|≤n

Dλg
∑

p(ν,λ)

(ν!)

n∏

j=1

(flj)
kj

kj !(lj !)
|kj| , (A.24)

where (fµ)i = Dµ(f)i for 1 ≤ i ≤ m and the set p(ν, λ) is defined as

p(ν, λ) = {(κ, ℓ) := (k1, . . . , kn; l1, . . . , ln) : for some 1 ≤ s ≤ n,
ki = 0 and li = 0 for 1 ≤ i ≤ n− s; |ki| > 0 for n− s+ 1 ≤ i ≤ n;
and 0 ≺ ln−s+1 ≺ · · · ≺ ln are such that
n∑

i=1

ki = λ,

n∑

i=1

|ki|li = ν},

(A.25)

where a ≺ b either means that |a| < |b| or a < b according to lexicographic order-
ing; furthermore the vectors ki are m-dimensional and the li are d-dimensional.
From the stated conditions, it follows directly that

∑n
i=1 |ki| ≤ n and

∑n
i=1 |li| ≤

n. Next, we bound the complexity of p(ν, λ). From
∑n

i=1 |ki| ≤ n, it follows

that the number of κ is bounded above by
∣∣∣Pn,(m+1)n

∣∣∣, which can in turn be

bounded by
√
πen(mn)n by Lemma 2.1. Similarly, it follows that the number of

ℓ is bounded above by
∣∣∣Pn,(d+1)n

∣∣∣, which can in turn be bounded by
√
πen(dn)n

by Lemma 2.1. Therefore,
∣∣p(ν, λ)

∣∣ ≤ π(e2n2md)n. Finally, we can make the es-

timates that
∣∣{λ : 1 ≤ |λ| ≤ n}

∣∣ ≤
∣∣Pn,d+1

∣∣ ≤ √πendn, Dλg ≤ ‖g‖Wn,∞ , ν! ≤ n!
and

∏n
j=1(flj)

kj ≤ max1≤i≤m

∥∥(f)i
∥∥n
Wn,∞ . Together with Stirling’s approxima-

tion, this yields
∥∥Dν(g ◦ f)

∥∥
∞ ≤

√
πendn‖g‖Wn,∞ · π(e2n2md)n · n! · max

1≤i≤m

∥∥(f)i
∥∥n
Wn,∞

≤ 16(e2n4md2)n‖g‖Wn,∞ max
1≤i≤m

∥∥(f)i
∥∥n
Wn,∞ .

(A.26)

Lemma Appendix A.8 (Bramble-Hilbert). Let Ω ⊂ R
d be an open and

bounded set of diameter 0 < h < e−1/2d−3/2 which is star-shaped with respect
to every point in an open ball B ⊂ Ω with diameter ρh. Then for every f ∈
W s,∞(Ω) there exists a polynomial f̂ of degree at most s− 1 such that for any
k ∈ N0 with k < s it holds that,

∥∥∥f − f̂
∥∥∥
Wk,∞(Ω)

≤
√
sπ1/4(d

√
deh)s−k

(s− k − 1)!
|f |W s,∞(Ω). (A.27)

40

Proof. By setting p = q = ∞ in the penultimate equation in the proof of
the main theorem in [75] (note that this reference uses a different definition of

Sobolev norm), it follows that there exists a polynomial f̂ of degree at most
s− 1 such that for 0 ≤ m < s it holds that,

∣∣∣f − f̂
∣∣∣
Wm,∞(Ω)

≤ (s−m)

 ∑

β∈Ps−m,d

(β!)−2

1/2

hs−m
√∣∣Ps−m,d

∣∣|f |W s,∞(Ω).

(A.28)

Using Lemma 2.1, we find that
√∣∣Ps−m,d

∣∣ ≤ π1/4(ed)(s−m)/2 and from the

multinomial theorem it follows that

∑

β∈Ps−m,d

(β!)−2 ≤
∑

β′∈P2(s−m),2d

(β′!)−1 =
(2d)2(s−m)

(2(s−m))!
. (A.29)

One can also calculate that (2(s−m))! ≥ 4s−m(s−m)((s−m−1)!)2. Combining
the previous observations, we find

∣∣∣f − f̂
∣∣∣
Wm,∞(Ω)

≤
√
s−m(d

√
deh)s−m

(s−m− 1)!
|f |W s,∞(Ω). (A.30)

Majorizing over 0 ≤ m ≤ k then gives the upper bound from the statement.
590

Lemma Appendix A.9 (Taylor’s theorem). Let d, s ∈ N, 0 < δ < 1/d. Then

for every f ∈ Cs([−δ, δ]d) there exists a polynomial f̂ of degree at most s − 1
such that for any k ∈ N0 with k < s it holds that,

∥∥∥f − f̂
∥∥∥
Wk,∞([−δ,δ]d)

≤ (dδ)s−k

(s− k)! |f |W s,∞([−δ,δ]d) (A.31)

Proof. We give a constructive proof. For f ∈ Cs([−δ, δ]d), we define the poly-

nomial f̂ as

f̂(x) =
∑

|α|≤s−1

Dαf(0)

α!
xα. (A.32)

Then take β ∈ N
d
0 with |β| ≤ k. It then holds that

Dβ f̂(x) =
∑

|α|≤s−1
α≥β

Dαf(0)

α!

α!

(α− β)!x
α−β =

∑

|γ|≤s−1−|β|

DγDβf(0)

γ!
xγ . (A.33)

For x ∈ [−δ, δ]d, Taylor’s theorem guarantees the existence of a constant c ∈
(0, 1) such that

Dβf(x) =
∑

|γ|≤s−1−|β|

DγDβf(0)

γ!
xγ +

∑

|γ|=s−|β|

DγDβf(cx)

γ!
xγ . (A.34)

41

The previous equalities, together with the multinomial theorem, then prove that

∥∥∥Dβf −Dβ f̂
∥∥∥
L∞([−δ,δ]d)

≤ Cs

∑

|γ|=s−|β|

δ|γ|

γ!
=
Cs(dδ)

s−|β|

(s− |β|)! , (A.35)

where Cs := |f |W s,∞([−δ,δ]d). Under the assumption that δ < 1/d we then can
conclude that ∥∥∥f − f̂

∥∥∥
Wk,∞([−δ,δ]d)

≤ Cs(dδ)
s−k

(s− k)! . (A.36)

References

[1] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015)
436–444.

[2] W. E, J. Han, A. Jentzen, Deep learning-based numerical methods for high-595

dimensional parabolic partial differential equations and backward stochas-
tic differential equations, Communications in Mathematics and Statistics
5 (4) (2017) 349–380.

[3] J. Han, A. Jentzen, W. E, Solving high-dimensional partial differential
equations using deep learning, Proceedings of the National Academy of600

Sciences 115 (34) (2018) 8505–8510.

[4] J. A. Opschoor, C. Schwab, J. Zech, Exponential ReLU DNN expression of
holomorphic maps in high dimension, SAM Research Report 2019 (2019).

[5] G. Kutyniok, P. Petersen, M. Raslan, R. Schneider, A theoretical anal-
ysis of deep neural networks and parametric PDEs, arXiv preprint605

arXiv:1904.00377 (2019).

[6] F. Laakmann, P. Petersen, Efficient approximation of solutions of
parametric linear transport equations by ReLU DNNs, arXiv preprint
arXiv:2001.11441 (2020).

[7] K. O. Lye, S. Mishra, D. Ray, P. Chandrashekar, Iterative surrogate model610

optimization (ISMO): An active learning algorithm for PDE constrained
optimization with deep neural networks, Computer Methods in Applied
Mechanics and Engineering 374 (2021) 113575.

[8] K. O. Lye, S. Mishra, D. Ray, Deep learning observables in computational
fluid dynamics, Journal of Computational Physics 410 (2020) 109339.615

[9] L. Lu, P. Jin, G. E. Karniadakis, DeepOnet: Learning nonlinear operators
for identifying differential equations based on the universal approximation
theorem of operators, arXiv preprint arXiv:1910.03193 (2019).

42

[10] S. Lanthaler, S. Mishra, G. E. Karniadakis, Error estimates for Deep-
Onets: A deep learning framework in infinite dimensions, arXiv preprint620

arXiv:2102.09618 (2021).

[11] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart,
A. Anandkumar, Fourier neural operator for parametric partial differential
equations, arXiv preprint arXiv:2010.08895v1 (2020).

[12] I. E. Lagaris, A. Likas, D. I. Fotiadis, Artificial neural networks for solving625

ordinary and partial differential equations, IEEE Transactions on Neural
Networks 9(5) (2000) 987–1000.

[13] M. Raissi, G. E. Karniadakis, Hidden physics models: Machine learning of
nonlinear partial differential equations, Journal of Computational Physics
357 (2018) 125–141.630

[14] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations, Journal of Computational
Physics 378 (2019) 686–707.

[15] S. Mishra, R. Molinaro, Estimates on the generalization error of physics635

informed neural networks (PINNs) for approximating PDEs, arXiv preprint
https://arxiv.org/pdf/2006.16144.pdf (2020).

[16] S. Mishra, R. Molinaro, Estimates on the generalization error of physics-
informed neural networks (PINNs) for approximating PDEs II: A class of
inverse problems, arXiv preprint arXiv:2007.01138 (2020).640

[17] A. R. Barron, Universal approximation bounds for superpositions of a sig-
moidal function, IEEE Transactions on Information theory 39 (3) (1993)
930–945.

[18] G. Cybenko, Approximation by superpositions of a sigmoidal function,
Mathematics of Control, Signals and Systems 2 (4) (1989) 303–314. doi:645

10.1007/BF02551274.
URL https://doi.org/10.1007/BF02551274

[19] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks
are universal approximators, Neural Networks 2 (5) (1989) 359 – 366.
doi:https://doi.org/10.1016/0893-6080(89)90020-8.650

URL http://www.sciencedirect.com/science/article/pii/

0893608089900208

[20] D. Yarotsky, Error bounds for approximations with deep ReLU networks,
Neural Networks 94 (2017) 103–114.

[21] I. Gühring, G. Kutyniok, P. Petersen, Error bounds for approximations655

with deep ReLU neural networks inW s,p norms, Analysis and Applications
18 (05) (2020) 803–859.

43

https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
http://www.sciencedirect.com/science/article/pii/0893608089900208
http://www.sciencedirect.com/science/article/pii/0893608089900208
http://www.sciencedirect.com/science/article/pii/0893608089900208
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
http://www.sciencedirect.com/science/article/pii/0893608089900208
http://www.sciencedirect.com/science/article/pii/0893608089900208
http://www.sciencedirect.com/science/article/pii/0893608089900208

[22] L. Herrmann, J. Opschoor, C. Schwab, Constructive deep ReLU neural
network approximation, SAM research report 2021-04, ETH Zürich (2021).

[23] B. Li, S. Tang, H. Yu, Better approximations of high dimensional smooth660

functions by deep neural networks with rectified power units, arXiv preprint
arXiv:1903.05858 (2019).

[24] H. Montanelli, Q. Du, New error bounds for deep ReLU networks using
sparse grids, SIAM Journal on Mathematics of Data Science 1 (1) (2019)
78–92.665

[25] J. A. Opschoor, P. C. Petersen, C. Schwab, Deep ReLU networks and high-
order finite element methods, Analysis and Applications 18 (05) (2020)
715–770.

[26] C. Schwab, J. Zech, Deep learning in high dimension: Neural network
expression rates for generalized polynomial chaos expansions in UQ, Anal-670

ysis and Applications 17 (01) (2019) 19–55. arXiv:https://doi.org/10.
1142/S0219530518500203, doi:10.1142/S0219530518500203.
URL https://doi.org/10.1142/S0219530518500203

[27] D. Yarotsky, Optimal approximation of continuous functions by very deep
ReLU networks, in: Conference on Learning Theory, PMLR, 2018, pp.675

639–649.

[28] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural computa-
tion 9 (8) (1997) 1735–1780.

[29] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk,
Y. Bengio, Learning phrase representations using RNN encoder-decoder680

for statistical machine translation, in: Conference on Empirical Methods
in Natural Language Processing (EMNLP 2014), 2014.

[30] S. Mishra, T. K. Rusch, Enhancing accuracy of deep learning algorithms
by training on low-discrepancy sequences, arXiv preprint arXiv:2005.12564
(2021).685

[31] M. Longo, S. Mishra, C. Schwab, T. K. Rusch, Higher-order Quasi-Monte
Carlo training of deep neural networks, arXiv preprint arXiv:2009.02713
(2021).

[32] D. Costarelli, R. Spigler, Approximation results for neural network opera-
tors activated by sigmoidal functions, Neural Networks 44 (2013) 101–106.690

[33] G. Constantine, T. Savits, A multivariate Faà di Bruno formula with appli-
cations, Transactions of the American Mathematical Society 348 (2) (1996)
503–520.

[34] I. Gühring, M. Raslan, Approximation rates for neural networks with en-
codable weights in smoothness spaces, Neural Networks 134 (2021) 107–130.695

44

https://doi.org/10.1142/S0219530518500203
https://doi.org/10.1142/S0219530518500203
https://doi.org/10.1142/S0219530518500203
http://arxiv.org/abs/https://doi.org/10.1142/S0219530518500203
http://arxiv.org/abs/https://doi.org/10.1142/S0219530518500203
http://arxiv.org/abs/https://doi.org/10.1142/S0219530518500203
https://doi.org/10.1142/S0219530518500203
https://doi.org/10.1142/S0219530518500203

[35] I. Ohn, Y. Kim, Smooth function approximation by deep neural networks
with general activation functions, Entropy 21 (7) (2019) 627.

[36] A. Pinkus, Approximation theory of the MLP model in neural networks,
Acta numerica 8 (1) (1999) 143–195.

[37] J. W. Siegel, J. Xu, Approximation rates for neural networks with general700

activation functions, Neural Networks 128 (2020) 313–321.

[38] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, Q. Liao, Why and when
can deep-but not shallow-networks avoid the curse of dimensionality: a
review, International Journal of Automation and Computing 14 (5) (2017)
503–519.705

[39] D. Rolnick, M. Tegmark, The power of deeper networks for expressing nat-
ural functions, in: International Conference on Learning Representations,
2018.

[40] H. W. Lin, M. Tegmark, D. Rolnick, Why does deep and cheap learning
work so well?, Journal of Statistical Physics 168 (6) (2017) 1223–1247.710

[41] Y. Bengio, Y. LeCun, et al., Scaling learning algorithms towards ai, Large-
scale kernel machines 34 (5) (2007) 1–41.

[42] M. Bianchini, F. Scarselli, On the complexity of neural network classifiers:
A comparison between shallow and deep architectures, IEEE transactions
on neural networks and learning systems 25 (8) (2014) 1553–1565.715

[43] L. Lu, Y. Su, G. E. Karniadakis, Collapse of deep and narrow neural nets,
arXiv preprint arXiv:1808.04947 (2018).

[44] P. Grohs, F. Voigtlaender, Proof of the theory-to-practice gap in deep
learning via sampling complexity bounds for neural network approxima-
tion spaces, arXiv preprint arXiv:2104.02746 (2021).720

[45] A. R. Barron, Approximation and estimation bounds for artificial neural
networks, Machine learning 14 (1) (1994) 115–133.

[46] V. Kurková, M. Sanguineti, Geometric upper bounds on rates of variable-
basis approximation, IEEE Transactions on Information Theory 54 (12)
(2008) 5681–5688.725

[47] E. Lavretsky, On the geometric convergence of neural approximations,
IEEE Transactions on Neural Networks 13 (2) (2002) 274–282.

[48] Y. Makovoz, Random approximants and neural networks, Journal of Ap-
proximation Theory 85 (1) (1996) 98–109.

[49] P. C. Kainen, V. Kurkova, M. Sanguineti, Dependence of computational730

models on input dimension: Tractability of approximation and optimization
tasks, IEEE Transactions on Information Theory 58 (2) (2012) 1203–1214.

45

[50] N. J. Guliyev, V. E. Ismailov, On the approximation by single hidden layer
feedforward neural networks with fixed weights, Neural Networks 98 (2018)
296–304.735

[51] N. J. Guliyev, V. E. Ismailov, Approximation capability of two hidden
layer feedforward neural networks with fixed weights, Neurocomputing 316
(2018) 262–269.

[52] S. Shalev-Shwartz, S. Ben-David, Understanding machine learning: From
theory to algorithms, Cambridge university press, 2014.740

[53] F. Cucker, S. Smale, On the mathematical foundations of learning, Bulletin
of the American Mathematical Society 39 (1) (2002) 1–49.

[54] C. Beck, A. Jentzen, B. Kuckuck, Full error analysis for the training of
deep neural networks, arXiv preprint arXiv:1910.00121 (2019).

[55] E. Weinan, Q. Wang, Exponential convergence of the deep neural network745

approximation for analytic functions, Science China Mathematics 61 (10)
(2018) 1733–1740.

[56] H. N. Mhaskar, Neural networks for optimal approximation of smooth and
analytic functions, Neural computation 8 (1) (1996) 164–177.

[57] D. S. Moak, Combinatorial multinomial matrices and multinomial Stirling750

numbers, Proceedings of the American Mathematical Society (1990) 1–8.

[58] H. Katsuura, Summations involving binomial coefficients, The College
Mathematics Journal 40 (4) (2009) 275–278.

[59] K. Weierstrass, Über die analytische Darstellbarkeit sogenannter
willkürlicher Functionen einer reellen veränderlichen, Sitzungsberichte der755

Königlich Preußischen Akademie der Wissenschaften zu Berlin 2 (1885)
633–639.

[60] K. R. Davidson, A. P. Donsig, Real analysis and applications: theory in
practice, Springer Science & Business Media, 2009.

[61] M. Blanchard, M. Bennouna, The representation power of neural networks:760

Breaking the curse of dimensionality, arXiv preprint arXiv:2012.05451
(2020).

[62] L. Demanet, L. Ying, On Chebyshev interpolation of analytic functions,
preprint (2010).

[63] E. Candes, L. Demanet, L. Ying, Fast computation of Fourier integral765

operators, SIAM Journal on Scientific Computing 29 (6) (2007) 2464–2493.

[64] E. Candes, L. Demanet, L. Ying, A fast butterfly algorithm for the com-
putation of Fourier integral operators, Multiscale Modeling & Simulation
7 (4) (2009) 1727–1750.

46

[65] A. Jentzen, T. Welti, Overall error analysis for the training of deep neural770

networks via stochastic gradient descent with random initialisation, arXiv
preprint arXiv:2003.01291 (2020).

[66] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, in:
ICLR, 2015.

[67] B. Neyshabur, R. Tomioka, N. Srebro, In search of the real inductive bias:775

On the role of implicit regularization in deep learning., in: ICLR (Work-
shop), 2015.

[68] D. Costarelli, R. Spigler, Multivariate neural network operators with sig-
moidal activation functions, Neural Networks 48 (2013) 72–77.

[69] L. Herrmann, C. Schwab, J. Zech, Deep neural network expression of pos-780

terior expectations in bayesian pde inversion, Inverse Problems 36 (12)
(2020). doi:https://doi.org/10.1088/1361-6420/abaf64.

[70] S. Mishra, R. Molinaro, Physics-informed neural networks for simulating
radiative transfer, arXiv preprint arXiv:2009.13291 (2020). arXiv:2009.

13291.785

[71] A. N. Kolmogorov, On the representation of continuous functions of many
variables by superposition of continuous functions of one variable and addi-
tion, in: Doklady Akademii Nauk, Vol. 114, Russian Academy of Sciences,
1957, pp. 953–956.

[72] H. Montanelli, H. Yang, Error bounds for deep ReLU networks using the790

Kolmogorov-Arnold superposition theorem, Neural Networks 129 (2020)
1–6.

[73] P. C. Kainen, V. Kůrková, A. Vogt, Approximation by neural networks is
not continuous, Neurocomputing 29 (1-3) (1999) 47–56.

[74] K. N. Boyadzhiev, Derivative polynomials for tanh, tan, sech and sec in795

explicit form, arXiv preprint arXiv:0903.0117 (2009).

[75] R. G. Durán, On polynomial approximation in Sobolev spaces, SIAM jour-
nal on numerical analysis 20 (5) (1983) 985–988.

47

https://doi.org/https://doi.org/10.1088/1361-6420/abaf64
http://arxiv.org/abs/2009.13291
http://arxiv.org/abs/2009.13291
http://arxiv.org/abs/2009.13291

	Introduction
	Preliminaries
	Multi-index notation
	Sobolev spaces
	Neural networks

	Uniform approximation of polynomials
	Univariate polynomials
	Approximating multivariate polynomials

	Approximation of partition of unity
	Main results
	Approximation of functions in Sobolev spaces
	Approximation of analytic functions
	Examples

	Summary and discussion
	Auxiliary results

