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Abstract

Physics informed neural networks (PINNs) have recently been widely used for robust and accurate
approximation of PDEs. We provide rigorous upper bounds on the generalization error of PINNs
approximating solutions of the forward problem for several dispersive PDEs.

1 Introduction

Our aim is to show that PINNs approximate a wide variety of PDEs including dispersive PDEs. We explore
this framework to dispersive PDEs like KdV type equations, BO type equations, and Camassa-Holm type
equations.

2 Mathematical framework for PINNs

In this section, following [?], we recapitulate some of the relevant mathematical tools to be used in the
subsequent analysis.

2.1 The underlying abstract PDE

Let -,. be separable Banach spaces with norms ‖ · ‖- and ‖ · ‖. , respectively. For definiteness, we set
. = ! ? (D;R<) and - = , B,@ (D;R<), for < > 1, 1 6 ?, @ < ∞ and B > 0, with D ⊂ R

3̄, for some 3̄ > 1. In
particular, we will also consider space-time domains with D = (0, )) × � ⊂ R

3 with 3 > 1. In this case
3̄ = 3 + 1. Let -∗ ⊂ - and . ∗ ⊂ . be closed subspaces with norms ‖ · ‖-∗ and ‖ · ‖. ∗ , respectively.

We start by considering the following abstract formulation of our underlying PDE:

D(u) = f . (2.1)

Here, the differential operator is a mapping, D : -∗ ↦→ . ∗ and the input f ∈ . ∗, such that

(�1) : ‖D(u)‖. ∗ < +∞, ∀ u ∈ -∗, with ‖u‖-∗ < +∞.
(�2) : ‖f ‖. ∗ < +∞.

(2.2)

Moreover, we assume that for all f ∈ . ∗, there exists a unique u ∈ -∗ such that (2.1) holds.
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2.2 Quadrature rules

In the following section, we need to consider approximating integrals of functions. Hence, we need
an abstract formulation for quadrature. To this end, we consider a mapping 6 : D ↦→ R

<, such that
6 ∈ /∗ ⊂ . ∗. We are interested in approximating the integral,

6 :=

∫
D

6(H)3H,

with 3H denoting the 3̄-dimensional Lebesgue measure. In order to approximate the above integral by a
quadrature rule, we need the quadrature points H8 ∈ D for 1 6 8 6 #, for some # ∈ N as well as weights
F8, with F8 ∈ R+. Then a quadrature is defined by,

6# :=
#∑
8=1

F86(H8), (2.3)

for weights F8 and quadrature points H8. We further assume that the quadrature error is bounded as,��6 − 6# �� 6 �@D03 (‖6‖/ ∗ , 3̄
)
#−U, (2.4)

for some U > 0.

2.3 PINNs

In this section, we will describe physics-informed neural networks (PINNs). We start with a description of
neural networks which form the basis of PINNs.

2.3.1 Neural Networks.

Given an input H ∈ D, a feedforward neural network (also termed as a multi-layer perceptron), shown in
figure 1, transforms it to an output, through a layer of units (neurons) which compose of either affine-linear
maps between units (in successive layers) or scalar non-linear activation functions within units, resulting
in the representation,

u\ (H) = � ◦ f ◦ � −1 . . . . . . . . . ◦ f ◦ �2 ◦ f ◦ �1 (H). (2.5)

Here, ◦ refers to the composition of functions and f is a scalar (non-linear) activation function. Popular
choices for the activation function f in (2.5) include the sigmoid function, the hyperbolic tangent function
and the ReLU function.

For any 1 6 : 6  , we define

�: I: = ,: I: + 1: , for ,: ∈ R
3:+1×3: , I: ∈ R

3: , 1: ∈ R
3:+1 . (2.6)

For consistency of notation, we set 31 = 3̄ and 3 = <.
Our neural network (2.5) consists of an input layer, an output layer and ( − 1) hidden layers for some

1 <  ∈ N. The :-th hidden layer (with 3: neurons) is given an input vector I: ∈ R
3: and transforms

it first by an affine linear map �: (2.6) and then by a nonlinear (component wise) activation f. A

straightforward addition shows that our network contains

(
3̄ + < +

 −1∑
:=2

3:

)
neurons. We also denote,

\ = {,: , 1: }, \, = {,: } ∀ 1 6 : 6  , (2.7)

to be the concatenated set of (tunable) weights for our network. It is straightforward to check that
\ ∈ Θ ⊂ R

" with

" =

 −1∑
:=1

(3: + 1)3:+1. (2.8)
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Figure 1: An illustration of a (fully connected) deep neural network. The red neurons represent the inputs to the network
and the blue neurons denote the output layer. They are connected by hidden layers with yellow neurons. Each hidden unit
(neuron) is connected by affine linear maps between units in different layers and then with nonlinear (scalar) activation
functions within units.

2.3.2 Training PINNs: Loss functions and optimization

The neural network u\ (2.5) depends on the tuning parameter \ ∈ Θ of weights and biases. Within the
standard paradigm of deep learning [9], one trains the network by finding tuning parameters \ such that
the loss (error, mismatch, regret) between the neural network and the underlying target is minimized.
Here, our target is the solution u ∈ -∗ of the abstract PDE (2.1) and we wish to find the tuning parameters
\ such that the resulting neural network u\ approximates u.

Following standard practice of machine learning, one obtains training data u(H), for all H ∈ S, with
training set S ⊂ D and then minimizes a loss function of the form

∑
S
‖u(H) − u\ (H)‖- to find the neural

network approximation for u. However, obtaining this training data requires possibly expensive numerical
simulations of the underlying PDE (2.1). In order to circumvent this issue, the authors of [17] suggest a
different strategy. An abstract paraphrasing of this strategy runs as follows: we assume that for every
\ ∈ Θ, the neural network u\ ∈ -∗ and ‖u\ ‖-∗ < +∞. We define the following residual :

R\ = R(u\ ) := D (u\ ) − f . (2.9)

By assumptions (H1),(H2) (cf. (2.2)), we see that R ∈ . ∗ and ‖R‖. ∗ < +∞ for all \ ∈ Θ. Note that
R(u) = D(u) − f ≡ 0, for the solution u of the PDE (2.1). Hence, the term residual is justified for (2.9).

The strategy of PINNs, following [17], is to minimize the residual (2.9), over the admissible set of
tuning parameters \ ∈ Θ i.e

Find \∗ ∈ Θ : \∗ = argmin
\ ∈Θ

‖R\ ‖. . (2.10)

Realizing that . = ! ? (D) for some 1 6 ? < ∞, we can equivalently minimize,

Find \∗ ∈ Θ : \∗ = argmin
\ ∈Θ

‖R\ ‖ ?!? (D) = argmin
\ ∈Θ

∫
D

|R\ (H) |?3H. (2.11)

As it will not be possible to evaluate the integral in (2.11) exactly, we need to approximate it numerically
by a quadrature rule. To this end, we use the quadrature rules (2.3) discussed earlier and select the
training set S = {H=} with H= ∈ D for all 1 6 = 6 # as the quadrature points for the quadrature rule (2.3)
and consider the following loss function:

� (\) :=
#∑
==1

F= |R\ (H=) |? =

#∑
==1

F= |D(u\ (H=)) − f (H=) |? . (2.12)

It is common in machine learning [9] to regularize the minimization problem for the loss function i.e we
seek to find,

\∗ = argmin
\ ∈Θ

(
� (\) + _A46�A46 (\)

)
. (2.13)

Here, �A46 : Θ → R is a regularization (penalization) term. A popular choice is to set �A46 (\) = ‖\, ‖@@ for
either @ = 1 (to induce sparsity) or @ = 2. The parameter 0 6 _A46 ≪ 1 balances the regularization term
with the actual loss � (2.12).

The proposed algorithm for computing this PINN is given below,

3



Algorithm 2.1. Finding a physics informed neural network to approximate the solution of
the PDE (2.1).

Inputs: Underlying domain D, differential operator D and input source term f for the PDE (2.1), quadrature
points and weights for the quadrature rule (2.3), non-convex gradient based optimization algorithms.

Goal: Find PINN u
∗ = u\∗ for approximating the PDE (2.1).

Step 1: Choose the training set S = {H=} for H= ∈ D, for all 1 6 = 6 # such that {H=} are quadrature points

for the underlying quadrature rule (2.3).

Step 2: For an initial value of the weight vector \ ∈ Θ, evaluate the neural network u
\
(2.5), the PDE

residual (2.9), the loss function (2.13) and its gradients to initialize the underlying optimization

algorithm.

Step 3: Run the optimization algorithm till an approximate local minimum \∗ of (2.13) is reached. The map

u
∗ = u\∗ is the desired PINN for approximating the solution u of the PDE (2.1).

3 Korteweg de-Vries & Kawahara equations

3.1 The underlying PDEs

We consider a generalized nonlinear dispersive equation, known as Kawahara equation, which has a form
of the Korteweg de-Vries equation with an additional fifth order derivative term given by

DC + DDG + UDGGG − VDGGGGG = 0, ∀G ∈ (0, 1), C ∈ (0, )),
D(G, 0) = D̄(G), ∀G ∈ (0, 1),
D(0, C) = ℎ1 (C), D(1, C) = ℎ2 (C), DG (0, C) = ℎ3 (C), DG (1, C) = ℎ4 (C), DGG (1, C) = ℎ5 (C), ∀ C ∈ (0, )).

(3.1)
Here U, V are non-negative real constants. Note that if V = 0, then the above equation is called Korteweg
de-Vries equation, and if V ≠ 0, then the above equation is called Kawahara equation. It is well known
that KdV equation plays a pivotal role in the modeling of shallow water waves, and in particular, the
one-dimensional waves of small but finite amplitude in dispersive systems can be described by the KdV
equation. However, under certain circumstances, the coefficient of the third order derivative in the KdV
equation may become very small or even zero. In such a scenario, one has to take account of the higher
order effect of dispersion in order to balance the nonlinear effect, and consider generalized nonlinear
dispersive equation, known as Kawahara equation. For more specific physical background of Kawahara
equation, we refer to the work by Hunter and Scheurle [12].

For the sake of simplicity it will be assumed U = V = 1 in the upcoming analysis, since their values
are not relevant in the present setting, and needless to mention that the analysis also works for the case
V = 0 (KdV case). Regarding the existence of solutions to (3.1), we closely follow the work by Faminskii
& Larkin [7], and report the following result.

Theorem 3.1. For any integer : ≥ 0, ; = 1 or 2, define the spaces

X: ((0, 1) × (0, ))) :=
{
D : m=C D ∈ � ( [0, )];�5(:−=) (0, 1)) ∩ !2 ((0, ));�5(:−=)+1 (0, 1))

}
,

B;: (0, )) :=
;∏
9=0

�:+(2− 9)/5 (0, )).

Let D̄ ∈ �5: (0, 1), boundary data (ℎ1, ℎ3) ∈ B1

:
(0, )), and (ℎ2, ℎ4, ℎ5) ∈ B2

:
(0, )) satisfy the natural

compatibility conditions. Then there exists a unique solution D ∈ X: , and the flow map in Lipschitz

continuous on any ball in the corresponding norm.

Remark 3.2. Since a function which is contained in Sobolev spaces of arbitrary order is in fact smooth,
thus to obtain classical solution of (3.1) we may choose intial and boundary data from appropriate Sobolev
spaces. �
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Remark 3.3. We remark that all the upcoming calculations are valid for more general dispersive equations
of the following form: For ; ∈ N

DC + (−1);+1m2;+1G D + DDG = 5 ,

with appropriate boundary conditions. �

3.2 PINNs

We first specify the training set S, and define appropriate residuals to run the algorithm 2.1. In what
follows, we begin with the description of the training set S.

3.2.1 Training Set.

Let us define the space-time domain Ω) = (0, 1) × (0, )), and divide the training set S = S8=C ∪ SB1 ∪ SC1
of the abstract PINNs algorithm 2.1 into the following three subsets,

(a) Interior training points S8=C = {H=} for 1 6 = 6 #8=C , with each H= = (G=, C=) ∈ Ω) . We use
low-discrepancy Sobol points as training points.

(b) Spatial boundary training points SB1 = (0, C=) ∪ (1, C=) for 1 6 = 6 #B1, and the points C= chosen as
low-discrepancy Sobol points.

(c) Temportal boundary training points SC1 = {G=}, with 1 6 = 6 #C1 and each G= ∈ (0, 1), chosen as
low-discrepancy Sobol points.

3.2.2 Residuals

To define residuals for the neural network D\ ∈ �: ( [0, )] × [0, 1]), defined by (2.5), with \ ∈ Θ as the set
of tuning parameters, we use the hyperbolic tangent tanh activation function, i.e., f = tanh. With this
setting, we define the following residuals

(a) Interior Residual given by,

R8=C , \ (G, C) := mCD\ (G, C) + D\ (D\ )G (G, C) + (D\ )GGG (G, C) − (D\ )GGGGG (G, C). (3.2)

Note that the above residual is well-defined and R8=C , \ ∈ �:−5 ( [0, )] × [0, 1]) for every \ ∈ Θ.

(b) Spatial boundary Residual given by,

RB11, \ (0, C) := D\ (0, C) − ℎ1 (C), ∀C ∈ (0, )),
RB12, \ (1, C) := D\ (1, C) − ℎ2 (C), ∀C ∈ (0, )),
RB13, \ (0, C) := (D\ )G (0, C) − ℎ3 (C), ∀C ∈ (0, )),
RB14, \ (1, C) := (D\ )G (1, C) − ℎ4 (C), ∀C ∈ (0, )),
RB15, \ (1, C) := (D\ )GG (1, C) − ℎ5 (C), ∀C ∈ (0, )).

(3.3)

Given the fact that the neural network and boundary data are smooth, above residuals are well-
defined.

(c) Temporal boundary Residual given by,

RC1, \ (G) := D\ (G, 0) − D̄(G), ∀G ∈ (0, 1). (3.4)

Again the above quantity is well-defined and RC1, \ ∈ �: ((0, 1)), as both the initial data and the
neural network are smooth.
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3.2.3 Loss function

We set the following loss function

� (\) :=
#C1∑
==1

FC1= |RC1, \ (G=) |2 +
#B1∑
==1

5∑
8=1

FB1= |RB18, \ (C=) |2 + _
#8=C∑
==1

F8=C= |R8=C , \ (G=, C=) |2. (3.5)

Here the residuals are defined by (3.4), (3.3), (3.2), FC1= are the #C1 quadrature weights corresponding
to the temporal boundary training points SC1, FB1= are the #B1 quadrature weights corresponding to
the spatial boundary training points SB1 and F8=C= are the #8=C quadrature weights corresponding to the
interior training points S8=C . Furthermore, _ is a hyperparameter for balancing the residuals, on account
of the PDE and the initial and boundary data, respectively.

3.3 Estimate on the generalization error

We are interested in estimating the following generalization error for the PINN D∗ = D\∗ with loss function
(3.5), for approximating the solution of (3.1):

E� :=
©«
)∫

0

1∫
0

|D(G, C) − D∗ (G, C) |23G3Cª®¬

1
2

. (3.6)

We are going to estimate the generalization error in terms of the training error that we define as,

E
2

) :=

#C1∑
==1

FC1= |RC1, \∗ (G=) |2

︸                     ︷︷                     ︸
(EC1

)
)2

+
#B1∑
==1

5∑
8=1

FB1= |RB18, \∗ (C=) |2

︸                           ︷︷                           ︸
(EB1

)
)2

+_
#8=C∑
==1

F8=C= |R8=C , \∗ (G=, C=) |2

︸                           ︷︷                           ︸
(E8=C

)
)2

. (3.7)

Note that the training error can be readily computed a posteriori from the loss function (3.5).
We also need the following assumptions on the quadrature error. For any function 6 ∈ �: (Ω), the

quadrature rule corresponding to quadrature weights FC1= at points G= ∈ SC1, with 1 6 = 6 #C1, satisfies������
∫
Ω

6(G)3G −
#C1∑
==1

FC1= 6(G=)

������ 6 �C1@D03 (‖6‖�: )#−UC1
C1

. (3.8)

For any function 6 ∈ �: (mΩ × [0, )]), the quadrature rule corresponding to quadrature weights FB1= at
points (G=, C=) ∈ SB1, with 1 6 = 6 #B1, satisfies������

)∫
0

∫
mΩ

6(G, C)3B(G)3C −
#B1∑
==1

FB1= 6(G=, C=)

������ 6 �B1@D03 (‖6‖�: )#−UB1
B1

. (3.9)

Finally, for any function 6 ∈ �ℓ (Ω × [0, )]), the quadrature rule corresponding to quadrature weights F8=C=
at points (G=, C=) ∈ S8=C , with 1 6 = 6 #8=C , satisfies������

)∫
0

∫
Ω

6(G, C)3G3C −
#8=C∑
==1

F8=C= 6(G=, C=)

������ 6 �8=C@D03 (‖6‖�ℓ )#−U8=C
8=C

. (3.10)

In the above, U8=C , UB1 , UC1 > 0 and in principle, different order quadrature rules can be used. We estimate
the generalization error for the PINN in the following,
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Theorem 3.4. Let D ∈ �: ( [0, 1] × [0, )]) be the unique classical solution of the Korteweg de-Vries &
Kawahara euqation (3.1). Let D∗ = D\∗ be a PINN generated by algorithm 2.1, corresponding to loss

function (2.13), (3.5). Then the generalization error (3.6) can be estimated as,

Y� 6 �1

(
YC1) + Y8=C) + �2 (YB1) ) + �3 (YB1) )1/2

+ (�C1@D03)
1/2#−UC1/2

C1
+ (�8=C@D03)

1/2#−U8=C/2
8=C

+ �2 (�B1@D03)
1/2#−UB1/2

B1
+ �3 (�B1@D03)

1/4#−UB1/4
B1

) (3.11)

where

�1 =

√
) + 2�4)242�4) , �2 =

√
‖D‖�0

C �
0
G
+ 1

�3 =

√
10(‖D∗‖�0

C �
4
G
+ ‖D‖�0

C �
4
G
))1/2, �4 = ‖D∗‖�0

C �
1
G
+ 1

2
‖D‖�0

C �
1
G
+ 1

2

(3.12)

and �C1
@D03

= �C1
@D03

(‖RC1, \∗ ‖�: ), �B1
@D03

= �B1
@D03

(
5∑
8=1

‖RB18, \∗ ‖�:−2 ) and �8=C
@D03

= �8=C
@D03

(‖R8=C , \∗ ‖�:−5 ) are

the constants defined by the quadrature error (3.8), (3.9), (3.10), respectively.

Proof. It is easy to see that the error D̂ : D∗ − D satisfies the following equation,

D̂C + D̂GGG − D̂GGGGG + D∗D∗G − DDG = R8=C , ∀G ∈ (0, 1) C ∈ (0, )),
D̂(G, 0) = RC1 (G), ∀G ∈ (0, 1),
D̂(0, C) = RB11 (0, C), C ∈ (0, )),
D̂(1, C) = RB12 (1, C), C ∈ (0, )),
D̂G (0, C) = RB13 (0, C), C ∈ (0, )),
D̂G (1, C) = RB14 (1, C), C ∈ (0, )),
D̂GG (1, C) = RB15 (1, C), C ∈ (0, )).

(3.13)

Here, we have denoted R8=C = R8=C , \∗ for notational convenience and analogously for the residuals RC1 ,RB1 .
Note that

D∗D∗G − DDG = D̂D̂G + DD̂G + D̂DG ; D̂D̂GGG = (D̂D̂GG)G −
1

2
(D̂2G)G , D̂D̂GGGGG = (D̂D̂GGGG)G − (D̂G D̂GGG)G +

1

2
(D̂2GG)G .

Multiplying both sides of the PDE (3.13) with D̂, integrating over the domain and integrating by parts
yields,

1

2

3

3C

∫
1

0

D̂2 3G = −
∫

1

0

D̂D̂GGG 3G +
∫

1

0

D̂D̂GGGGG 3G −
∫

1

0

D̂(D̂D̂G − DD̂G + DG D̂) 3G +
∫

1

0

D̂R8=C 3G

6 − D̂GG D̂ |10 +
1

2
(D̂G)2

��
1
+ D̂GGGG D̂ |10 − D̂GGG D̂G |10 +

1

2
(D̂GG)2

��
1

−
∫

1

0

D̂2D̂G 3G − ( 1
2
D̂2D

����
1

0

− 1

2

∫
1

0

D̂2DG 3G) −
∫

1

0

D̂2DG 3G +
∫

1

0

D̂R8=C 3G

6 ‖D̂‖�4
G
( |RB11 | + |RB12 | + |RB13 | + |RB14 |) +

1

2
(R2

B13 + R
2

B15)

+ (‖D∗‖�1
G
+ 1

2
‖D‖�1

G
)
∫

1

0

D̂2 3G + 1

2
‖D‖�0

G
(R2

B11 + R
2

B12) +
1

2

∫
1

0

R
2

8=C 3G +
1

2

∫
1

0

D̂2 3G

6 (‖D∗‖�0
C �

4
G
+ ‖D‖�0

C �
4
G
) ( |RB11 | + |RB12 | + |RB13 | + |RB14 |)

+ 1

2
(R2

B13 + R
2

B15) +
1

2
‖D‖�0

C �
0
G
(R2

B11 + R
2

B12) +
1

2

∫
1

0

R
2

8=C 3G

+ (‖D∗‖�0
C �

1
G
+ 1

2
‖D‖�0

C �
1
G
+ 1

2
)
∫

1

0

D̂2 3G

=: �1 (
5∑
8=1

|RB18 |) + �2 (
5∑
8=1

R
2

B18) +
1

2

∫
1

0

R
2

8=C 3G + �3

∫
1

0

D̂2 3G

(3.14)
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Then integrating the above inequality over [0, )̄] for any )̄ 6 ) , using Cauchy-Schwarz, and Gronwall’s
inequality we obtain

∫
1

0

D̂(G, )̄)2 3G

6

∫
1

0

R
2

C1 3G + 2�1)
1/2

5∑
8=1

(
∫ )

0

R
2

B18 3C)1/2 + 2�2

5∑
8=1

(
∫ )

0

R
2

B18 3C) +
∫ )

0

∫
1

0

R
2

8=C 3G3C + 2�3

∫ )̄

0

∫
1

0

D̂2 3G3C

6 (1 + 2�3)4
2�3) )

( ∫ 1

0

R
2

C1 3G + 10�1)
1/2 (

5∑
8=1

∫ )

0

R
2

B18 3C)1/2 + 2�2

5∑
8=1

(
∫ )

0

R
2

B18 3C) +
∫ )

0

∫
1

0

R
2

8=C 3G3C
)

(3.15)
Then integrate (3.15) in time yields

Y2� :=

∫ )

0

∫
1

0

D̂(G, ))2 3G3) 6 () + 2�3)
242�3) )

( ∫ 1

0

R
2

C1 3G + 10�1)
1/2 (

5∑
8=1

∫ )

0

R
2

B18 3C)1/2

+ 2�2

5∑
8=1

(
∫ )

0

R
2

B18 3C) +
∫ )

0

∫
1

0

R
2

8=C 3G3C
) (3.16)

with

�1 = ‖D‖�0
C �

4
G
+ ‖D∗‖�0

C �
4
G
, �2 =

1

2
‖D‖�0

C �
0
G
+ 1

2
, �3 = ‖D∗‖�0

C �
1
G
+ 1

2
‖D‖�0

C �
1
G
+ 1

2
(3.17)

Finally, applying the estimates (3.8), (3.9), (3.10) on the quadrature error, and definition of training
errors (3.7), yields the desired inequality (3.11).

�

3.4 Numerical experiments

3.4.1 Implementation

The PINNs algorithm 2.1 has been implemented within the PyTorch framework [23] and the code can be
downloaded from https://github.com/baigm11/DispersivePinns. As is well documented [?,?,?],
the coding and implementation of PINNs is extremely simple. Only a few lines of Python code suffice for
this purpose. All the numerical experiments were performed on a single GeForce GTX1080 GPU.

The PINNs algorithm has the following hyperparameters, the number of hidden layers  − 1, the
width of each hidden layer 3: ≔ 3̄ in (2.5), the specific activation function �, the parameter _ in the loss
function (3.5), the regularization parameter _A46 in the cumulative loss function (2.13) and the specific
gradient descent algorithm for approximating the optimization problem (2.13). We use the hyperbolic
tangent tanh activation function, thus ensuring that all the smoothness hypothesis on the resulting neural
networks, as required in all bounds on generalization error below, are satisfied. Moreover, we use the
second-order LBFGS method [8] as the optimizer. We follow the ensemble training procedure of [?] in
order to choose the remaining hyperparameters. To this end, we consider a range of values, shown in Table
1, for the number of hidden layers, the depth of each hidden layer, the parameter _ and the regularization
parameter _A46. For each configuration in the ensemble, the resulting model is retrained (in parallel) =\
times with different random starting values of the trainable weights in the optimization algorithm and the
one yielding the smallest value of the training loss is selected.

3.4.2 KdV equation

We look at single soliton and double soliton solution as the test cases of KdV equation. Fortunately we
have solutions of closed-form for both cases [10]. In single soliton case, we have the following exact solution

D(G, C) = 9
(
1 − tanh2 (

√
3/2(G − 3C))

)
(3.18)
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 − 1 3 @ _A46 _ =\

KdV Equation 4, 8 20, 24, 28 2 0 0.1, 1, 10 5

Kawahara Equation 4, 8, 12 20, 24, 28, 32 2 0 0.1, 1, 10 5

CH Equation 4, 8 20, 24, 28 2 0 0.1, 1, 10 5

BO Equation, Single Soliton 4, 8, 12 20, 24, 28, 32 2 0 0.1, 1, 10 5

BO Equations, Double Soliton 4, 8 20, 24, 28 2 0 0.1, 1, 10 5

Table 1: Hyperparameter configurations employed in the ensemble training of PINNs.

which represents a single bump moving to the right with speed 3 with initial peak at G = 0. In double
soliton case, we have the exact solution

D(G, C) = 6(1 − 0)
1csch2 (

√
1/2(G − 21C)) + 0sech2 (

√
0/2(G − 20C))(√

0 tan(
√
0/2(G − 20C)) −

√
1 tanh(

√
1/2(G − 21C))

)2 (3.19)

for any real numbers a and b where we have used 0 = 0.5 and 1 = 1 in the numerical experiment. (3.19)
represents two solitary waves that “collide” at C = 0 and separate for C > 0. For large |C |, D(·, C) is close
to a sum of two solitary waves at different locations. The results of best performance among ensemble
training are presented in Table 2 and figure 2. We use low-discrepancy Sobol points as training points.
Training is relatively easy for KdV equation. We only need very few training points to get a very low
relative error. The time for LBFGS optimizer to converge is around 1min and 10min for single and double
soliton respectively which are very cheap. Our results outperform a lot what are reported in [6, 10] using
convergent finite difference methods in the sense of relative error.

(a) Single soliton (b) Double soliton

Figure 2: Exact and PINN solution to single and double soliton test case of KdV equation

#8=C #B1 #C1  − 1 3 _ E) E
A
�

Single Soliton 2048 512 512 4 20 0.1 0.000236 0.00338%

Double Soliton 4096 1024 1024 4 32 1 0.000713 0.059%

Table 2: Best performing Neural Network configurations for the Single Soliton and Double Soliton problem. Low-discrepancy
Sobol points are used for every reported numerical example.

The profiles and data at early iterations for KdV single and double soliton cases are summarized in
figure 3, Table 3 and figure 4, Table 4 respectively. Since there is always a time boundary residual term,
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(a) Single soliton (b) Single soliton

Figure 3: (a) is the plot of train error and relative error versus train time; (b) is the plots at initial and final time for different
train iterations

the initial plot of PINNs should be very closed to the exact initial data and what matters is the plot of
PINNs at final time. We see that in both cases only a few iterations are enough to get a very satisfactory
relative generalization error.

max iters training time/B Y) YA
�

100 4 6.75e-02 1.84e-01

500 21 2.41e-03 1.65e-03

1000 44 7.34e-04 4.92e-04

2000 61 2.36e-04 3.38e-05

Table 3: Results for Single Soliton of KdV equation with different training iterations

max iters training time/B Y) YA
�

100 9 1.21e-01 4.82e-01

500 48 2.60e-02 1.30e-01

1000 95 7.00e-03 4.32e-02

2000 159 2.54e-03 1.11e-02

5000 436 7.89e-04 6.50e-04

10000 499 7.13e-04 5.88e-04

Table 4: Results for Double Soliton of KdV equation with different training iterations

3.4.3 Kawahara equation

Following the numerical experiments in [3,14,15], we consider a Kawahara-type equation which differs
from Kawahara equation in a first-order term DG .

DC + DG + DDG + DGGG − DGGGGG = 0 (3.20)

This first-order term DG is harmless and we can easily derive a similar a posterior bound on generalization
error. Different from KdV equation, for this Kawahara-type equation we only have closed-form solution in

10



(a) Double soliton (b) Double soliton

Figure 4: (a) is the plot of train error and relative error versus train time; (b) is the plots at initial and final time for different
train iterations

(a) Single soliton (b) Double soliton

Figure 5: (a) is the plot of exact and PINN solution of single soliton test case of KdV equation; (b) is the PINN solution of
additive initial data. The backgroud plot is the exact solution 3.21 of fast wave alone.

single soliton case. As before, we use low-discrepancy Sobol points as training points. For single soliton
case, we have the exact solution

D(G, C) = 105

169
sech4

( 1

2
√
13

(G − 205

169
C − G0)

)
(3.21)

This represents a single bump moving to the right with speed 205

169
with inital peak at G = G0. For double

soliton case, unfortunately there’s no closed-form solution. Following the construction of initial data in [3]
and [24], we’ll use the following initial data

D(G, 0) := D1 (G, 0) + D2 (G, 0) =
2∑
8=1

328 sech
4

(√`38
4

(G − G8)
)
, ` =

√
16

105
(3.22)

We choose 31 =

√
105

169
and 32 =

√
105

338
in our experiments. At C = 0, this initial data is the sum of two

solitary waves that are located at G1 and G2. Notice that fast wave D1 is exactly the single soliton solution
(3.21) and slow wave D2 is initially half height of D1. We expect the profile of evolution is similar to double
soliton as KdV equation. Since there’s an advective nonlinear term in Kawahara equation, the additive

11



#8=C #B1 #C1  − 1 3 _ E) E
A
�

Single Soliton 2048 512 512 4 24 10 0.000321 0.101%

Double Soliton 16384 4096 4096 4 32 10 0.000665 no exact solution

Table 5: Best performing Neural Network configurations for the Single Soliton, Double Soliton, Wave Generation and
Anti-wave Generation. Low-discrepancy Sobol points are used for every reported numerical example.

(a) Single soliton (b) Single soliton

Figure 6: (a) is the plot of train error and relative error versus train time; (b) is the plots at initial and final time for different
train iterations

structure in initial data should undergo a complicated interaction through this nonlinear term. Indeed
our PINN experiment, see figure 5, shows it’s far from double soliton where peaks collide elastically. The
height and shape of fast wave D1 will be preserved while the slow wave D2 will break down into smaller
waves in the tail. Also the speed of fast wave D1 is a little bit faster than the case where D1 evolves alone
as single soliton (3.21).

We summarize the results and plots in Table 5 and figure 5 respectively. Because time complexity
grows exponential w.r.t. the order of PDEs and Kawahara equation is of 5-th order, it’s computationally
very consuming compared with KdV equation. In double soliton case, usually it takes several hours for
LBFGS optimizer to converge. It’s interesting to notice 15min is enough for LBFGS optimizer to converge
in single soliton case with configurations in Table 5. Intuitively, the moving pattern of single soliton is
very simple, thus PINN can be trained to capture this transitional pattern in a short time.

The profiles and data at early iterations for Kawahara single and double soliton cases are summarized
in figure 6, Table 6 and figure 7, Table 7 respectively. And all other hyperparameters are the same as
in the Table 5. We see that PINN for single soliton case is easy to train: 10<8= is enough to make
generalization error YA

�
less than 0.1%. Double soliton case is much more time consuming through, where

a large part of time is used to resolve the dispersed peaks. From figure 7(b), we see in the final profiles
the peaks are getting more resolved as the increase of iterations.

max iters training time/B Y) YA
�

100 25 8.89e-02 9.70e-01

500 127 4.76e-02 7.86e-01

1000 249 8.40e-03 1.89e-01

2000 466 1.06e-03 5.88e-03

5000 964 3.21e-04 1.01e-03

Table 6: Results for Single Soliton of Kawahara equation with different training iterations
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(a) Double soliton (b) Double soliton

Figure 7: (a) is the plot of train error versus train time; (b) is the plots at initial and final time for different train iterations

max iters training time/B Y)

100 226 6.82e-02

500 1077 3.28e-02

1000 2255 2.23e-02

2000 4616 5.18e-03

5000 10043 2.56e-03

Table 7: Results for Double Soliton of Kawahara equation with different training iterations

4 Camassa-Holm equation

4.1 The underlying PDE

In this section, we consider the following initial-boundary value problem of the one-dimensional Camassa-
Holm equation on a compact interval

DC − DC GG + 3DDG + 2^DG = 2DGDGG + DDGGG , ∀G ∈ (0, 1), C ∈ [0, )],
D(G, 0) = D0 (G), ∀G ∈ (0, 1).
D(0, C) = DGG (0, C) = D(1, C) = DGG (1, C) = 0, ∀C ∈ [0, )] .

(4.1)

Here, ^ is a real constant. This equation models the unidirectional propagation of shallow water waves
over a flat bottom, with D representing the fluid velocity. The most compelling feature of the above
equation is that it is completely integrable for all values of ^. Much of the attention in literature has been
given to the special case ^ = 0, which plays an important role in the modeling of nonlinear dispersive
waves in hyperelastic rods [2]. Regarding the existence of solutions, we report following result which is in
the spirit of Kwek et. al. [16], but slightly differs and is reminiscent of the results from [16].

Theorem 4.1. Let X := {D ∈ �4 (0, 1) : D(0) = DGG (0) = D(1) = DGG (1) = 0}. Then for every D0 ∈ X, the

problem (4.1) has a unique solution

D ∈ � ( [0, ));X) ∩ �1 ( [0, ));�1

0
(0, 1)),

for some ) > 0. In addition, DGG ∈ �1 ( [0, ));�1

0
(0, 1)), and D depends continuously on D0 in the �4-norm.
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4.2 PINNs

We first specify the training set S, and define appropriate residuals to run the algorithm 2.1. In what
follows, we begin with the description of the training set S.

4.2.1 Training Set

Let us define the space-time domain Ω) = (0, 1) × (0, )), and divide the training set S = S8=C ∪ SB1 ∪ SC1
of the abstract PINNs algorithm 2.1 into the following three subsets,

(a) Interior training points S8=C = {H=} for 1 6 = 6 #8=C , with each H= = (G=, C=) ∈ Ω) . We use
low-discrepancy Sobol points as training points.

(b) Spatial boundary training points SB1 = (0, C=) ∪ (1, C=) for 1 6 = 6 #B1, and the points C= chosen as
low discrepancy Sobol points.

(c) Temportal boundary training points SC1 = {G=}, with 1 6 = 6 #C1 and each G= ∈ (0, 1), chosen as
low-discrepancy Sobol points.

4.2.2 Residuals

• Interior Residual given by,

R8=C , \ (G, C) := mCD\ (G, C) − mC GGD\ (G, C) + 3D\ (G, C) (D\ )G (G, C) + 2^(D\ )G (G, C)
− 2(D\ )G (G, C) (D\ )GG (G, C) − (D\ ) (G, C) (D\ )GGG (G, C).

(4.2)

Note that the residual is well defined and R8=C , \ ∈ � ( [0, )] × [0, 1]) for every \ ∈ Θ.

• Spatial boundary Residual given by,

RB11, \ (0, C) := D\ (0, C), ∀C ∈ (0, )),
RB12, \ (1, C) := D\ (1, C), ∀C ∈ (0, )),
RB13, \ (0, C) := (D\ )GG (0, C), ∀C ∈ (0, ))
RB14, \ (1, C) := (D\ )GG (1, C), ∀C ∈ (0, )).

(4.3)

Given the fact that the neural network is smooth, this residual is well defined.

• Temporal boundary Residual given by,

RC1, \ (G) :=
[(
D\ (G, 0) − D0 (G)

)2
+
(
(D\ )G (G, 0) − (D0)G (G)

)2]1/2
, ∀G ∈ (0, 1). (4.4)

Again this quantity is well-defined and RC1, \ ∈ �2 ((0, 1)) as both the initial data and the neural
network are smooth.

4.2.3 Loss function

We use the following loss function to train the PINN for approximating the Camassa-Holm equation (4.1),

� (\) :=
#C1∑
==1

FC1= |RC1, \ (G=) |2 +
#B1∑
==1

4∑
8=1

FB1= |RB18, \ (C=) |2 + _
#8=C∑
==1

F8=C= |R8=C , \ (G=, C=) |2. (4.5)

Here FC1= are the #C1 quadrature weights corresponding to the temporal boundary training points SC1,
FB1= are the #B1 quadrature weights corresponding to the spatial boundary training points SB1 and F8=C=
are the #8=C quadrature weights corresponding to the interior training points S8=C . Furthermore, _ is a
hyperparameter for balancing the residuals, on account of the PDE and the initial and boundary data,
respectively.
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4.3 Estimate on the generalization error.

As for the semilinear parabolic equation, we will try to estimate the following generalization error for the
PINN D∗ = D\∗ , generated through algorithm 2.1, with loss functions (2.13), (4.5), for approximating the
solution of the Camassa-Holm equation (4.1):

E� :=
©«
)∫

0

1∫
0

|D(G, C) − D∗ (G, C) |23G3Cª®¬

1
2

. (4.6)

This generalization error will be estimated in terms of the training error,

E
2

) := _

#8=C∑
==1

F8=C= |R8=C , \∗ (G=, C=) |2

︸                           ︷︷                           ︸
(E8=C

)
)2

+
#C1∑
==1

+FC1= |RC1, \∗ (G=) |2

︸                       ︷︷                       ︸
(EC1

)
)2

+
#B1∑
==1

4∑
8=1

FB1= |RB18, \∗ (C=) |2

︸                           ︷︷                           ︸
(EB1

)
)2

,
(4.7)

readily computed from the training loss (4.5) a posteriori. We have the following estimate,

Theorem 4.2. Let ^ > 0 and let D ∈ �3 ((0, )) × (0, 1)) be the unique classical solution of Casamma-Holm

equation (4.1). Let D∗ = D\∗ be the PINN, generated by algorithm 2.1, with loss function (4.5). Then, the

generalization error (4.6) is bounded by,

Y� 6 �1

(
YC1) + Y8=C) + �2 (YB1) ) + �3 (YB1) )1/2

+ (�C1@D03)
1/2#−UC1/2

C1
+ (�8=C@D03)

1/2#−U8=C/2
8=C

+ �2 (�B1@D03)
1/2#−UB1/2

B1
+ �3 (�B1@D03)

1/4#−UB1/4
B1

) (4.8)

where

�1 =

√
) + 2�4)242�4)

�2 =

√
2( |^ | + ‖D∗‖�0

C �
2
G
+ ‖D‖�0

C �
2
G
)

�3 = 2)1/4
√
2‖D∗‖�1

C �
1
G
+ 2‖D‖�1

C �
1
G
+ 2‖D‖�0

C �
1
G
(‖D∗‖�0

C �
1
G
+ ‖D‖�0

C �
1
G
)

�4 =
1

2
+ 3‖D∗‖�0

C �
1
G
+ 3

2
‖D‖�0

C �
3
G
,

(4.9)

and �C1
@D03

= �C1
@0D3

(
‖RC1, \∗ ‖�2

)
, �8=C

@D03
= �8=C

@0D3

(
‖R8=C , \∗ ‖�0

)
, and �B1

@D03
= �B1

@0D3

(
‖RB1, \∗ ‖�1

)
are the

constants associated with the quadrature errors are constants are appear in the bounds on quadrature error

(3.8)-(3.10).

Proof. Let D̂ = D∗ − D be the error with the PINN. From the PDE (4.1) and the definition of the interior
residual (4.2), we have the following identities,

D̂C − D̂C GG + 2^D̂G + 3(D∗D∗G − DDG) = 2D∗GD
∗
GG − 2DGDGG + D∗D∗GGG − DDGGG + R8=C (4.10)

Observe that

D∗D∗G − DDG = D̂D̂G + DD̂G + D̂DG ; D∗GD
∗
GG − DGDGG = D̂G D̂GG + DG D̂GG + D̂GDGG ,

D∗D∗GGG − DDGGG = D̂D̂GGG + DD̂GGG + D̂DGGG
Then multiply both side of (4.10) with D̂, integrate by part and use the identity (??)

1

2

3

3C

∫
1

0

(D̂2 + (D̂G)2) 3G + ^D̂2
��1
0
− D̂D̂C G |10 = −3A + 2B + C +

∫
1

0

D̂'8=C 3G (4.11)

where

A :=

∫
1

0

D̂(D̂D̂G + DD̂G + D̂DG) 3G =
∫

1

0

(D̂G + DG)D̂2 3G +
∫

1

0

D̂DD̂G 3G

=

∫
1

0

(D̂G + DG)D̂2 3G −
1

2

∫
1

0

DG D̂
2 3G + 1

2
DD̂2

����
1

0

=

∫
1

0

(D̂G +
1

2
DG)D̂2 3G =

∫
1

0

(D∗G −
1

2
DG)D̂2 3G

(4.12)
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We estimate B as follow

B :=

∫
1

0

D̂(D̂G D̂GG + DG D̂GG + D̂GDGG) 3G = −1

2

∫
1

0

D̂GGG D̂
2 3G + 1

2
D̂2D̂GG

����
1

0

−
∫

1

0

DG D̂
2

G 3G +
1

2

∫
1

0

DGGG D̂
2 3G − 1

2
DGG D̂

2

����
1

0

+ D̂DG D̂G |10 −
1

2

∫
1

0

DGGG D̂
2 3G + 1

2
D̂2DGG

����
1

0

= −1

2

∫
1

0

D̂GGG D̂
2 3G −

∫
1

0

DG D̂
2

G 3G +
1

2
D̂2D̂GG

����
1

0

+ D̂DG D̂G |10

(4.13)

where we integrate the second term on the right of first line by part twice. Finally, we estimate C as follow

C :=

∫
1

0

D̂(D̂D̂GGG + DD̂GGG + D̂DGGG) 3G =
∫

1

0

(DGGG + D̂GGG)D̂2 3G +
∫

1

0

D̂DD̂GGG 3G

=

∫
1

0

(DGGG + D̂GGG)D̂2 3G +
3

2

∫
1

0

DG D̂
2

G 3G −
1

2

∫
1

0

DGGG D̂
2 3G − D̂DG D̂G |10

=

∫
1

0

(D∗GGG −
1

2
DGGG)D̂2 3G +

3

2

∫
1

0

DG D̂
2

G 3G − D̂DG D̂G |10

(4.14)

We integrant the second term on the right of first line by part four times, and discard three vanishing zero
boudnary term. For the boundary term in (4.11), we have

| D̂D̂C G |10 | 6 (‖D∗‖�1
C �

1
G
+ ‖D‖�1

C �
1
G
) ( |RB11 | + |RB12 |) (4.15)

From (4.11)-(4.15), we get

1

2

3

3C

∫
1

0

(D̂2 + (D̂G)2) 3G = − ^D̂2
��1
0
+ D̂D̂C G |10 − 3A + 2B + C +

∫
1

0

D̂R8=C 3G

=

∫
1

0

(−3D∗G +
3

2
DG +

1

2
DGGG)D̂2 3G −

1

2

∫
1

0

DG D̂
2

G 3G +
∫

1

0

D̂R8=C 3G

− ^D̂2
��1
0
+ D̂D̂C G |10 + D̂2D̂GG

��1
0
+ D̂DG D̂G |10

6 ( 1
2
+ 3‖D∗‖�0

C �
1
G
+ 3

2
‖D‖�0

C �
3
G
)
∫

1

0

D̂2 3G + 1

2
‖D‖�0

C �
1
G

∫
1

0

D̂2G 3G

+ (|^ | + ‖D∗‖�0
C �

2
G
+ ‖D‖�0

C �
2
G
) (R2

B11 + R
2

B12) +
1

2

∫
1

0

R
2

8=C 3G

+
(
‖D∗‖�1

C �
1
G
+ ‖D‖�1

C �
1
G
+ ‖D‖�0

C �
1
G
(‖D∗‖�0

C �
1
G
+ ‖D‖�0

C �
1
G
)
)
( |RB11 | + |RB12 |)

=: �1

4∑
8=1

|RB18 | + �2

4∑
8=1

R
2

B1,8 +
1

2

∫
1

0

R
2

8=C 3G + �3

∫
1

0

(D̂2 + D̂2G) 3G

(4.16)

Then integrating the above inequality over [0, )̄] for any )̄ 6 ) , we obtain

∫
1

0

(D̂2 + D̂2G) (G, )̄) 3G 6
∫

1

0

R
2

C1 3G

+ 2�1)
1/2

4∑
8=1

(
∫ )

0

R
2

B18 3C)1/2 + 2�2

4∑
8=1

(
∫ )

0

R
2

B18 3C) +
∫ )

0

∫
1

0

R
2

8=C 3G3C + 2�3

∫ )

0

∫
1

0

(D̂2 + D̂2G) 3G3C

6 (1 + 2�3)4
2�3) )

( ∫ 1

0

R
2

C1 3G + 8�1)
1/2 (

4∑
8=1

∫ )

0

R
2

B18 3C)1/2 + 2�2

4∑
8=1

(
∫ )

0

R
2

B18 3C) +
∫ )

0

∫
1

0

R
2

8=C 3G3C
)

(4.17)
We can now use Cauchy-Schwarz in the first inequality and Gronwall’s inequality. Then integrate (4.17)
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over )̄ ∈ [0, )]

Y2� :=

∫ )

0

∫
1

0

D̂(G, )̄)2 3G3)̄ 6
∫ )

0

∫
1

0

(D̂2 + D̂2G) (G, )̄) 3G3)̄

6 () + 2�3)
242�3) )

( ∫ 1

0

R
2

C1 3G + 8�1)
1/2 (

4∑
8=1

∫ )

0

R
2

B18 3C)1/2 + 2�2

4∑
8=1

(
∫ )

0

R
2

B18 3C) +
∫ )

0

∫
1

0

R
2

8=C 3G3C
)

(4.18)
with

�1 = ‖D∗‖�1
C �

1
G
+ ‖D‖�1

C �
1
G
+ ‖D‖�0

C �
1
G
(‖D∗‖�0

C �
1
G
+ ‖D‖�0

C �
1
G
)

�2 = |^ | + ‖D∗‖�0
C �

2
G
+ ‖D‖�0

C �
2
G
, �3 =

1

2
+ 3‖D∗‖�0

C �
1
G
+ 3

2
‖D‖�0

C �
3
G

(4.19)

Finally, applying the estimates (3.8), (3.9), (3.10) on the quadrature error, and definition of training
errors (4.7), yields the desired inequality (4.8).

�

4.4 Peakon limit

Standard test cases for CH equation(^ = 0) are single and double peakon as in [11]. Peakon differs from
soliton in that peakon is singular at its peak. The standard closed-form solution for single peakon is

D(G, C) = 24 |G−2C | (4.20)

and for double peakon is
D(G, C) = 214 |G−21C | + 224 |G−22C | (4.21)

Obviously these solutions are at most �1

G regular due to the singularities at their peaks. To apply theorem
4.2, we need D ∈ �3

G at least. Thus we don’t expect a smooth NN can approximate �1

G functions nicely. In
fact, our experiments also give a negative result on these peakon cases.

Nevertheless, thanks to the so-called peakon limit procedure proposed by Allen Parker in [20–22], we
can test our PINN algorithm on generalized CH(^ ≠ 0) which does have smooth analytic single and double
soliton solution. The linear term 2^DG resolves the singularity of test case (4.20) and (4.21) at the peaks.
For convenience, we write the parameter ^ as :2. With parameter :, the exact solution of single soliton is
given in [20] by

D(\) = 2:2?2

(1 + :2?2) + (1 − :2?2) cosh \
Θ = ?(G − 2̃C + G0)

Θ =
\

:
+ ? ln (1 + : ?) + (1 − : ?)4\

(1 − : ?) + (1 + : ?)4\

(4.22)

where 2̃ =
2
:
=

2:2

1−:2 ?2 and ? is an additional parameter. To get the exact solution, we need to take

the inverse of Θ(\). Θ(\) is invertible if and only if 0 < :? < 1 which is an additional restraint when
choosing ?. It’s easy to observe that the solution moves to the right with speed 2̃ and preserves the shape
meanwhile. Moreover when : → 0 and : ? → 1, the single soliton wave tends to single peakon wave (4.20)
pointwisely and this limiting procedure is termed peakon limit.

For double soliton, similar to the single soliton case, we need additional parameters ?1, ?2. Follow the
procdure in [21], we define

28 =
2:3

1 − :2?2
8

, 8 = 1, 2 (4.23)

and
F8 = −?828 , 8 = 1, 2 (4.24)

and

�12 =
(?1 − ?2)2
(?1 + ?2)2

(4.25)
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for 8 = 1, 2, define
08 = 1 + : ?8
18 = 1 − : ?8

(4.26)

as before, we define \8 w.r.t. H as

\8 = ?8 (H − 28C + U8), 8 = 1, 2 (4.27)

and

E12 =
4:3 (?1 − ?2)2

(1 − :2?2
1
) (1 − :2:2

2
)

112 =
8:6 (?1 − ?2)2 (1 − :4?21?22)
(1 − :2?2

1
)2 (1 − :2?2

2
)2

(4.28)

then the exact double soliton solution w.r.t. H is given by

D(H, C) = :2 + 2

:

F2

1
4\1 + F2

2
4\2 + 1124\1+\2 + �12 (F2

1
4\1+2\2 + F2

2
42\1+\2 )

A 5 2
(4.29)

where
5 (H, C) = 1 + 4\1 + 4\2 + �124

\1+\2

A (H, C) = : + 2

5 2
(21?214\1 + 22?224\2 + E124\1+\2 + �12 (21?214\1+2\2 + 22?2242\1+\2))

(4.30)

Finally we have the following relation between G and H

G(H, C) = H

:
+ ln

0102 + 11024\1 + 12014\2 + 1112�124
\1+\2

1112 + 01124\1 + @2114\2 + 0102�124\1+\2
+ :2C + U (4.31)

where U is the phase parameter. To get the exact solution, we need to take the inverse of G(H, C) w.r.t. H
at the training points. G(H, C) is invertible w.r.t. H if and only if 0 < :?8 < 1, 8 = 1, 2 which, again, is an
additional restraint when choosing ?1, ?2. When : → 0 and : ?8 → 1, 8 = 1, 2, the double soliton wave
tends to double peakon wave (4.21) pointwisely.

4.5 Numerical experiments

For single soliton case of generalized CH, we use parameters : = 0.6, ? = 1, and : = 0, 6, ?1 = 1.5, ?2 = 2
for double soliton case. Similar to the previous equations, PINN for single soliton is easier to train because
of the simple transitional moving pattern. See Table 8 for best performance and figure 8 for corespondent
plots. From figure 8(b), we observe a sharp peak of fast soliton and PINN still succeeds to resolve large
derivatives there.

#8=C #B1 #C1  − 1 3 _ E) E
A
�

Single Soliton 16384 4096 4096 4 20 1 3.70e-06 0.00191%

Double Soliton 16384 4096 4096 8 24 0.1 0.00127 0.186%

Table 8: Best performing Neural Network configurations for the Single Soliton and Double Soliton problem. Low-discrepancy
Sobol points are used for every reported numerical example.

The profiles and data at early iterations for Camassa-Holm single and double soliton cases are
summarized in figure 9, Table 9 and figure 10, Table 10 respectively. And all other hyperparameters are
the same as in the Table 8. And we use parameter (:, : ?) = (0.6, 1) and (:, : ?1, : ?2) = (0.6, 0.9, 0.6) for
single and double soliton respectively. As expected, single soliton case only requires 10<8= to be trained
very well and double soliton needs around 1ℎ to get a comparable relative generalization error.
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(a) Single soliton, : = 0.6, ? = 1 (b) Double soliton, : = 0.6, ?1 = 1.5, ?2 = 1

Figure 8: Exact and PINN solution to single and double soliton test case of generalized CH equation

(a) Single soliton (b) Single soliton

Figure 9: (a) is the plot of train error and relative error versus train time; (b) is the plots at initial and final time for different
train iterations

5 Benjamin-Ono Equation

5.1 The underlying PDE

In this section, we consider the following Benjamin-Ono (BO) equation

DC + DDG + �DGG = 0, G ∈ R, C > 0,

D(G, 0) = D0 (G), G ∈ R,

D(G, C) = D(G + 1, C), G ∈ R, C > 0.

(5.1)

The BO equation was first deduced by Benjamin [1] and Ono [19] as an approximate model for long-crested
unidirectional waves at the interface of a two-layer system of incompressible inviscid fluids, one being
infinitely deep. Later, it was shown to be a completely integrable system. In the periodic setting,
Molinet [18] proved well-posedness in �B (T) for B ≥ 0. For operator splitting methods applied to the BO
equation, see [5]. Since our analysis heavily depends on the smoothness of the solutions, regarding the
existence of smooth solutions, we use the following existence result for BO equation.

Theorem 5.1. For any B > 5/3, let D0 ∈ �B (0, 1). Then there exists a global smooth solution to (5.1)
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max iters training time/B Y) YA
�

100 36 8.08e-03 2.81e-01

500 161 4.71e-04 5.93e-03

1000 284 1.61e-04 1.14e-03

2000 560 4.96e-05 3.75e-04

5000 1457 9.77e-06 9.31e-05

10000 1667 2.83e-06 1.94e-05

Table 9: Results for single Soliton of CH equation with different training iterations

(a) Double soliton (b) Double soliton

Figure 10: (a) is the plot of train error and relative error versus train time; (b) is the plots at initial and final time for
different train iterations

max iters training time/B Y) YA
�

100 83 3.63e-02 7.19e-01

500 386 8.37e-03 1.68e-01

1000 762 5.52e-03 6.99e-02

2000 1508 3.10e-03 3.17e-02

5000 4083 8.71e-04 5.29e-03

10000 5747 4.09e-04 1.84e-03

Table 10: Results for double soliton of CH equation with different training iterations
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such that

D ∈ � (0, ) ;�B (0, 1)), DC ∈ �1 (0, ) ;�B−2 (0, 1)).

Note that the above result was also used by Kenig, Ponce and Vega [13] to prove uniqueness properties
of BO equation. Moreover, the above result ensures that the solutions satisfy the equation (5.1) pointwise
for sufficiently smooth initial data.

5.2 PINNs

We first specify the training set S, and define appropriate residuals to run the algorithm 2.1. In what
follows, we begin with the description of the training set S.

5.2.1 Training Set.

Let us define the space-time domain Ω) = (0, 1) × (0, )), and divide the training set S = S8=C ∪ SB1 ∪ SC1
of the abstract PINNs algorithm 2.1 into the following three subsets,

(a) Interior training points S8=C = {H=} for 1 6 = 6 #8=C , with each H= = (G=, C=) ∈ Ω) . We use
low-discrepancy Sobol points as training points.

(b) Spatial boundary training points SB1 = (0, C=) ∪ (1, C=) for 1 6 = 6 #B1, and the points C= chosen as
low discrepancy Sobol points.

(c) Temportal boundary training points SC1 = {G=}, with 1 6 = 6 #C1 and each G= ∈ (0, 1), chosen as
low-discrepancy Sobol points.

5.2.2 Residuals

We define the residual R in algorithm 2.1, consisting of the following parts,

• Interior residual given by,

R8=C , \ (G, C) := (D\ )C (G, C) + D\ (G, C) (D\ )G (G, C) + � (D\ )GG (G, C), (G, C) ∈ (0, 1) × (0, )), (5.2)

• Spatial boundary Residual given by,

RB1, \ (G, C) := D\ (G, C) − D\ (G + 1, C), ∀G ∈ R, C ∈ (0, )] . (5.3)

• Temporal boundary Residual given by,

RC1, \ (G) := D\ (G, 0) − D0 (G), ∀G ∈ (0, 1). (5.4)

As the underlying neural networks have the required regularity, the residuals are well-defined.

5.2.3 Loss function

We consider the following loss function for training PINNs to approximate the BO equation (5.1),

� (\) :=
#C1∑
==1

FC1= |RC1, \ (G=) |2 +
#B1∑
==1

FB1= |RB1, \ (G=, C=) |2 + _
#8=C∑
==1

F8=C= |R8=C , \ (G=, C=) |2. (5.5)

Here the residuals are defined by (5.2)-(5.4). FC1= are the #C1 quadrature weights corresponding to the
temporal boundary training points SC1, FB1= are the #B1 quadrature weights corresponding to the spatial
boundary training points SB1 and F8=C= are the #8=C quadrature weights corresponding to the interior
training points S8=C . Furthermore, _ is a hyperparameter for balancing the residuals, on account of the
PDE and the initial and boundary data, respectively.
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5.3 Estimate on the generalization error.

We denote the PINN, obtained by the algorithm 2.1, for approximating the BO equation, as u
∗ = u\∗ ,

with \∗ being a (approximate, local) minimum of the loss function (2.13),(5.5). We consider the following
generalization error,

E� :=
©«
)∫

0

1∫
0

‖u(G, C) − u
∗ (G, C)‖23G3Cª®¬

1
2

, (5.6)

with ‖ · ‖ denoting the Euclidean norm in R
3. We will bound the generalization error in terms of the

following training errors,

E
2

) :=

#C1∑
==1

FC1= |RC1, \∗ (G=) |2

︸                     ︷︷                     ︸
(EC1

) )2

+
#B1∑
==1

FB1= |RB1, \∗ (G=, C=) |2

︸                         ︷︷                         ︸
(EB1

) )2

+_
#8=C∑
==1

F8=C= |R8=C , \∗ (G=, C=) |2

︸                           ︷︷                           ︸
(E8=C

) )2

. (5.7)

As in the previous sections, the training errors can be readily computed a posteriori from the loss function
(5.5).

We have the following bound on the generalization error in terms of the training error,

Theorem 5.2. Let D ∈ �: ( [0, 1] × [0, )]) be the unique classical solution of Benjamin-Ono equation (5.1).
Let D∗ = D\∗ be the PINN, generated by algorithm 2.1, with loss function (5.5). Then, the generalization

error (5.6) is bounded by,

Y� 6 �1

(
YC1) + Y8=C) + �2 (YB1) )1/2

+ (�C1@D03)
1/2#−UC1/2

C1
+ (�8=C@D03)

1/2#−U8=C/2
8=C

+ �2 (�B1@D03)
1/4#−UB1/4

B1

) (5.8)

where

�1 =

√
) + 2�3)242�3) ,

�2 = )1/4
√
2(‖D∗‖�0

C �
2
G
+ ‖D‖�0

C �
2
G
) + 2‖D‖�0

C �
0
G
(‖D‖�0

C �
0
G
+ ‖D∗‖�0

C �
0
G
),

�3 =
1

2
+ ‖D∗‖�0

C �
1
G
+ 1

2
‖D‖�0

C �
1
G
,

(5.9)

and �C1
@D03

= �C1
@0D3

(
‖RC1, \∗ ‖�:

)
, �8=C

@D03
= �8=C

@0D3

(
‖R8=C , \∗ ‖�:−2

)
, and �B1

@D03
= �B1

@0D3

(
‖RB1, \∗ ‖�:

)
are the

constants associated with the quadrature errors (3.8)-(3.10).

Proof. We will drop explicit dependence of all quantities on the parameters \∗ for notational convenience.
We denote the difference between the underlying solution D of (5.1) and PINN D∗ as D̂ = D∗ − D. Using
the PDE (5.1) and the definitions of the residuals (5.2)-(5.4), a straightforward calculation yields the
following PDE for the D̂,

D̂C + �D̂GG + D∗D∗G − DDG = RD , a.e. (G, C) ∈ (0, 1) × (0, )),
D̂(0, C) − D̂(1, C) = RB1 , C ∈ (0, )),

D̂(G, 0) = RC1 , G ∈ (0, 1).
(5.10)

We take a inner product of the equation in (5.10) with the vector D̂, and integrate by parts to obtain the
term coming from the Hilbert transform∫

1

0

D̂� (D̂GG) 3G = −
∫

1

0

D̂G� (D̂G) 3G + � (D̂G) (1)D̂(1) − � (D̂G) (0)D̂(0) = � (D̂G) (1)D̂(1) − � (D̂G) (0)D̂(0)

For the boundary terms:[
� (D̂G) (1)D̂(1) − � (D̂G) (0)D̂(0)

]
=

[ (
� (D̂G) (1) − � (D̂G) (0)

)
D̂(1) + � (D̂G) (0) (D̂(1) − D̂(0))

]
= � (D̂G) (0) (D̂(1) − D̂(0)) ≤ ‖� (D̂G) (0)‖�0

C
|RB1 | ≤ (‖D‖�0

C �
2
G
+ ‖D∗‖�0

C �
2
G
) |RB1 |
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In the second line, we used the periodicity of D and D∗. For other terms, we can follow arguments given
before and get

1

2

3

3C

∫
1

0

D̂2 3G = −
∫

1

0

D̂�D̂GG 3G −
∫

1

0

D̂(D̂D̂G − DD̂G + DG D̂) 3G +
∫

1

0

D̂R8=C 3G

6 (‖D∗‖�2
G
+ ‖D‖�2

G
) |RB1 | −

∫
1

0

(D∗G −
1

2
DG)D̂2 −

1

2
DD̂2

����
1

0

+
∫

1

0

D̂R8=C 3G

6 (‖D∗‖�2
G
+ ‖D‖�2

G
) |RB1 |

+ (‖D∗‖�1
G
+ 1

2
‖D‖�1

G
)
∫

1

0

D̂2 3G + ‖D‖�0
G
(‖D‖�0

G
+ ‖D∗‖�0

G
) |RB1 |

+ 1

2

∫
1

0

R
2

8=C 3G +
1

2

∫
1

0

D̂2 3G

6
(
‖D∗‖�0

C �
2
G
+ ‖D‖�0

C �
2
G
+ ‖D‖�0

C �
0
G
(‖D‖�0

C �
0
G
+ ‖D∗‖�0

C �
0
G
)
)
|RB1 |

+ 1

2

∫
1

0

R
2

8=C 3G + ( 1
2
+ ‖D∗‖�0

C �
1
G
+ 1

2
‖D‖�0

C �
1
G
)
∫

1

0

D̂2 3G

=: �1 |RB1 | +
1

2

∫
1

0

R
2

8=C 3G + �2

∫
1

0

D̂2 3G

(5.11)

Then integrating the above inequality over [0, )̄] for any )̄ 6 ) , we obtain

∫
1

0

D̂(G, )̄)2 3G 6
∫

1

0

R
2

C1 3G + 2�1)
1/2 (

∫ )

0

R
2

B1 3C)1/2 +
∫ )

0

∫
1

0

R
2

8=C 3G3C + 2�2

∫ )̄

0

∫
1

0

D̂2 3G3C

6 (1 + 2�2)4
2�2) )

( ∫ 1

0

R
2

C1 3G + �1)
1/2 (

∫ )

0

R
2

B1 3C)1/2 +
∫ )

0

∫
1

0

R
2

8=C 3G3C
) (5.12)

We use Cauchy-Schwarz in the first line and Gronwall’s inequality in the second line. Then integrate
(5.12) over )̄ ∈ [0, )]

Y2� :=

∫ )

0

∫
1

0

D̂(G, )̄)2 3G3)̄

6 () + 2�2)
242�2) )

( ∫ 1

0

R
2

C1 3G + 2�1)
1/2 (

∫ )

0

R
2

B1 3C)1/2 +
∫ )

0

∫
1

0

R
2

8=C 3G3C
) (5.13)

with

�1 = ‖D∗‖�0
C �

2
G
+ ‖D‖�0

C �
2
G
+ ‖D‖�0

C �
0
G
(‖D‖�0

C �
0
G
+ ‖D∗‖�0

C �
0
G
), �2 =

1

2
+ ‖D∗‖�0

C �
1
G
+ 1

2
‖D‖�0

C �
1
G

(5.14)

Finally, applying the estimates (3.8), (3.9), (3.10) on the quadrature error, and definition of training
errors (5.7), yields the desired inequality (5.8).

�

5.4 Evaluation of singular integral

For test cases, we’ll look at single and double soliton as proposed in [4]. We first consider periodic setting
in single soliton case, i.e.

DC + DDG + �?4ADGG = 0 ∀G ∈ T, C ∈ (0, ))
D(G, 0) = D0 (G) ∀G ∈ T

(5.15)

where T := R/2!Z. The periodic Hilbert transform is defined by

�?4AD(G) = p.v.
1

2!

∫ !

−!
cot( c

2!
H)D(G − H)3H (5.16)
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Obviously, the difficulty lies in the singular integral term. To evaluate interior residual at training points,
we need to evaluate Hilbert transform at these training points which, after discretization, is a DGG-related
summation. Since the most computationally part is second derivative term DGG , it’s naturally for us to
search a discretization where required evaluations of DGG are as less as possible. One natural approach is
to use Cartesian grid instead of Sobol points as interior training points. Cartesian grid is regular in the
sense of equidistant and periodicity, thus it has the potential that evaluations of DGG can be reused such
that only evaluations of DGG on the Cartesian grid suffice to compute evaluations of �?4ADGG on the same
grid.

We denote the spatial discretization of Cartesian grid as {G8}#8=−# and additionally require G0 = 0. And
we can discretize singular integral term as

�?4ADGG (G) = p.v.
1

2!

∫ !

−!
cot( c

2!
H)DGG (G − H)3H

≈ 1

2#

#∑
9=−# , 9≠0

cot( c
2!
G 9 )DGG (G − G 9 )

(5.17)

We exclude index 9 = 0 in order to be consistent with the definition of principle value because G0 = 0 is
a singularity of cot( c

2!
G 9 ). More importantly, what we need to compute is �?4ADGG (G)

��
G8

which can be

represented as a discrete periodic convolution of cot( c
2!
G 9 ) and DGG (G) |G 9

�?4ADGG (G8) ≈
1

2#

#∑
9=−# , 9≠0

cot( c
2!
G 9 )DGG (G8 − G 9 )

=
1

2#

#∑
9=−# , 9≠0

cot( c
2!
G 9 )DGG (G8− 9 )

(5.18)

This means that to compute �?4ADGG (G8),−# 6 8 6 # we only need to compute DGG (G8),−# 6 8 6 #.
Moreover, discrete periodic convolution (5.18) can be accelerated by Fast Fourier transformation(FFT)
from a complexity of $ (#2) to $ (# log(#)).

5.5 Numerical experiments

Unlike previous cases, here we need an additional parameter Δ := ΔC
ΔG

for Cartesian grid. The larger is Δ,
more dense is the grid in spatial direction than temporal direction. Because evaluation of singular integral
is the source of leading error, therefore we need to set Δ large to get PINN work. Fortunately, the decrease
of grid in temporal direction doesn’t hurt the error from space-time integral of D(G, C) since, for two
dimension composite trapezoidal rule, the quadrature error is of order $ (ΔGΔC) and ΔGΔC is determined
by total training points thus is independent of ratio Δ.

For periodic single soliton case, we have the exact solution

D(G, C) = 22X2

1 −
√
1 − X2 cos(2X(G − 2C − G0))

, X =
c

2!
(5.19)

where ! is the half periodicity. This represents a single bump moving to the right with speed 2 periodically
with initial peak at G = G0. In our experiments, we choose ! = 15, 2 = 0.25 and G0 = 0. We also observe a
critical value of hyperparameter Δ. That is, for Δ / 5 the performance is getting better as the increase of
Δ and for Δ ' 6 PINN easily converges to zero solution in a very short time.

For periodic double soliton case, the closed-form exact solution is very complicated. However if we
take the long wave limit : → 0, it’s reduced to real line case with a simple expression

D(G, C) =
42122 (21_21 + 22_22 + (21 + 22)32−11 2−12 (21 − 22)−2)

(2122_1_2 − (21 + 22)2 (21 − 22)−2)2 + (21_1 + 22_2)2
(5.20)

where
_1 = G − 21C
_2 = G − 22C

(5.21)
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This solution represents two waves that “collide” at C = 0 and separate for C > 0. For large |C |, D(·, C) is
close to a sum of two one-solitons at different locations. We choose 21 = 2 and 22 = 1 in our experiments.
Because singular integral is global, to evaluate Hilbert transform of PINN, we need PINN to be defined
on R which is not the case. Computationally we are always on a bounded domain. Thus we approximate
as follows: for computational domain [−!, !], we first extend PINN by zero to [−5!, 5!] and then use a
similar discretization as (5.17) and compute discrete periodic convolution of 1

cG 9
and DGG (G) |G 9 and finally

restrict the result of discrete periodic convolution onto domain [−!, !].
Different from periodic single soliton case, we haven’t observe any critical value for Δ 6 30, so one can

expect a nicer performance for some Δ > 30. And surprisingly, we also observe that LBFGS optimizer
converges more quickly than single soliton case under the same hyperparameter configuration, see best
performance in Table 11 and correspondent plots in figure 11.

(a) Single soliton (b) Double soliton

Figure 11: Exact and PINN solution to single and double soliton of BO equation

#8=C #B1 #C1  − 1 3 _ E) E
A
�

Δ

Single Soliton 32768 8192 8192 12 24 1 0.000296 0.773% 4

Double Soliton 65536 16384 16384 4 20 10 0.00616 0.657% 30

Table 11: Best performing Neural Network configurations for the Single Soliton and Double Soliton problem. Low-discrepancy
Sobol points are used for all boundary points; Cartesian grids are used for all interior points.

max iters training time/B Y) YA
�

100 87 1.36e-02 4.11e-01

500 430 3.83e-03 2.36e-01

1000 888 3.30e-03 2.34e-01

2000 1667 1.61e-03 6.13e-02

5000 3492 4.56e-04 8.22e-03

10000 6107 2.96e-04 7.73e-03

Table 12: Results for single soliton of BO equation with different training iterations

The profiles and data at early iterations for Benjamin-Ono single and double soliton case are summarized
in figure 12, Table 12 and figure 13, Table 13 respectively. And all other hyperparameters are the same as
in the Table 11.
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(a) Single soliton (b) Single soliton

Figure 12: (a) is the plot of train error and relative error versus train time; (b) is the plots at initial and final time for
different train iterations

(a) Double soliton (b) Double soliton

Figure 13: (a) is the plot of train error and relative error versus train time; (b) is the plots at initial and final time for
different train iterations

max iters training time/B Y) YA
�

100 74 2.98e-01 4.69e-01

500 325 3.07e-02 2.96e-02

1000 703 1.13e-02 3.92e-03

2000 1280 7.19e-03 6.98e-03

5000 1715 6.16e-03 6.57e-03

10000 1937 6.16e-03 6.57e-03

Table 13: Results for double soliton of BO equation with different training iterations
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It’s interesting to notice that single soliton needs more time to train than double soliton under the same
max iters, which didn’t happen for all previous equations. It’s partially because the periodic boundary
condition of single soliton case. We can see from figure 12(b) and 13(b) that the peak as well as the
boundary values of single soliton at early stage are evidently lower than exact solution, thus more iterations
and training time are required to resolve the peak and boundary values. In contrast with single soliton,
double soliton on the real line resolves its peaks even at small max iters, so heuristically the training
later should be fast since its shape is almost correct. Also we observe that, in figure 13(a) and Table 13,
”<0G 8C4AB = 1000” has the best relative generalization error. It slightly breaks the correlation between
training error Y) and relative generalization error YA

�
. It’s caused by the error coming from the extension

of domain and the zero padding.

6 Discussion

In this paper, following the approach proposed in [?,?,?], we proved the rigorous a posterior bound for
generalization error of PINN in the context of dispersive PDEs. Besides, we tested our PINN algorithm
on several standard test cases and the relative L2 errors of all test cases can be easily reduced to less than
1%. PINN is very easy to implement and our results outperform the convergent finite difference methods
a lot as reported in [3, 4, 10, 11] in the sense of relative L2 error and computational time.

PINN neither relies on any reformulation of PDEs, nor needs observations of the unknown solution. In
other words, PINNs, as unsupervised learning, can learn directly from the PDE problem. What we need
are only the equation imposed with the right boundary conditions. Thus PINN is not ad hoc and can be
easily adapted to a large variety of PDEs.

The gist of PINN is to control the difference of solutions through the interior and boundary residuals.
The boundary conditions to ensure high-order dispersive PDEs well-posed are usually complicated. For
example, Kawahara equation has five spatial boundary conditions. Surprisingly, most of time, they are
exactly what we need to bound the generalization error. It’s interesting to see how they come into
play in the generalization error bound. There’s a very subtle connection between the boundedness of
generalization error and the regularity theory of dispersive PDEs.

Since our bound on generalization error is of a posterior type, it should be interpreted properly as: as
long as the PINN is trained well, it generalizes well. However in the context of dispersive PDEs, it’s not
always trivial to train PINN well. On the one hand, differentiating high-order PDEs needs operations of
exponential growth. On the other hand, dispersive term generally results in complicated oscillations and
fractal structures in the solution, see figure 5 for example. Such multi-scale features are difficult to be
learned by PINN. So a potential direction could be the design of suitable architecture and hyperparameters
to make PINN more robust for dispersive problems.
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