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Abstract

When wave scattering systems are subject to certain symmetries, resonant states may
decouple from the far-field continuum; they remain localized to the structure and cannot be
excited by incident waves from the far field. In this work, we use layer-potential techniques
to prove the existence of such states, known as bound states in the continuum, in systems
of subwavelength resonators. When the symmetry is slightly broken, this resonant state can
be excited from the far field. Remarkably, this may create asymmetric (Fano-type) scattering
behaviour where the transmission is fundamentally different for frequencies on either side of
the resonant frequency. Using asymptotic analysis, we compute the scattering matrix of the
system explicitly, thereby characterizing this Fano-type transmission anomaly.
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1 Introduction

The existence of asymmetric peaks in transmission spectra is a curious phenomenon that has been
studied at length in a variety of settings. Resonance peaks with this characteristic asymmetric
shape are often known as Fano resonances due to the work of Ugo Fano [15], who observed this
behaviour in the scattering of electrons by helium. Fano famously explained the asymmetric line
shape as being due to the interference between a “discrete state” and a “continuum”.

The Fano-type resonance studied in this paper emerges from the interference between the two
coupled resonant frequencies of a pair of resonators. In particular, we study resonator pairs which
have been repeated periodically to form a metascreen. The first resonant frequency of this structure
corresponds to the universal property that incoming plane waves with very low frequencies will be
unaffected by the metascreen. This response occurs for a relatively broad range of frequencies and
corresponds to the “continuum” of states that Fano described. In contrast, the second resonant
frequency originates from the resonant behaviour of the metascreen. This peak depends heavily
on the configuration of resonators within the metascreen and has a comparatively sharp response,
corresponding to Fano’s “discrete state”. Since the width of the resonant peaks are proportional
to the imaginary parts of corresponding resonances, the Fano-type resonance is characterised by
the interference of two resonances with significantly different imaginary parts. By manipulating
the parameters of the system, we are able to create interactions between these two resonant states,
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which leads to the creation of a Fano-type asymmetric transmission anomaly. Such an anomaly is
depicted in Figure 1, where we sketch examples of transmission spectra (i.e. the intensity of the
transmitted field as a function of the frequency of the incident field). The difference between an
asymmetric Fano-type line shape and a symmetric (Lorentzian) profile is clear.

The resonant properties of the metascreen can be fine-tuned by altering the parameters of the
system. In the case that the metascreen is symmetric, we will prove that the second (sharper)
resonant frequency is real. Further, we will see that it corresponds to an eigenvalue that is embed-
ded within the continuous radiation spectrum, which is the spectrum of waves that can propagate
into the far field. Remarkably, we will show that the eigenmode associated with this real-valued
resonant frequency vanishes in the far field, meaning that it will not interact with incoming waves
and the corresponding resonance peak will therefore not appear in the transmission spectrum.
A resonant state of this nature is known as a bound state in the continuum and has a range of
important applications in the design of lasers, filters and sensors [17, 18].

If we consider a metascreen that is no longer symmetric, then the real eigenvalue will be shifted
into the lower complex plane and will correspond to a sharp peak in the transmission spectrum. The
phase of the transmitted wave is different on each side of the peak and will interfere either construc-
tively or destructively with the broad peak originating from the first resonant frequency. Thus, we
obtain an asymmetric transmission spectrum that is characteristic of a Fano-type anomaly. This
unusual transmission spectrum is not only of academic interest but has various applications, for
example in the broadband manipulation of light [28] and in the design of tunable sensors [19].

Phenomena similar to those studied in this work have have been studied in several other settings.
For example, Fano-type anomalies have been observed in metallic gratings with repeated pairs of
narrow slits [21, 22] as well as other dimerized structures [20, 26, 29]. Likewise, bound states
in the continuum have been both predicted theoretically and observed experimentally in periodic
structures in photonics, optics, electrical circuits and quantum mechanics [24, 18, 17]. A variety
of methods have been used to understand these phenomena including coupled-mode theory [14],
analytic perturbation theory [25] and asymptotic methods [21, 22].

In this work, we will study the existence of Fano-type resonances in systems of subwavelength
resonators. That is, we will study a Helmholtz scattering problem posed on a system of material
inclusions whose material parameters contrast greatly with those of the background medium. The
main contribution of our work is a unified, mathematically rigorous, theory for both Fano-type
resonances and bound states in the continuum. This extends the mathematical foundation of these
phenomena, most notably the works [21, 22], to the setting of high-contrast metamaterial crystals.
We will perform asymptotic analysis in terms of the material contrast and define subwavelength
resonant modes to be those whose frequencies converge continuously to zero in this limit [1].
We will, first, recall asymptotic expressions for the subwavelength band structure in terms of
the quasiperiodic capacitance matrix (Theorem 2.2), before computing explicit expressions for the
subwavelength band structure close to the origin, corresponding to the two resonances mentioned
above (Theorem 4.2). With this analysis in hand, we will prove that if the metascreen is symmetric
then the second of these resonances is real (Proposition 6.1) and the corresponding mode is a bound
state in the continuum in the sense that it does not propagate into the far field (Proposition 6.2)
and cannot be excited by waves incoming from the far field (Proposition 6.3). Finally, we will
derive an expression for the scattering matrix which can be used to demonstrate the occurrence
of a Fano-type transmission anomaly (Theorem 7.2). This theoretical analysis is complemented
by numerical simulations, which demonstrate Fano-type transmission anomalies for asymmetric
structures (Figures 5 to 7) and a bound state in the continuum in the symmetric case (Figure 8).

2 Metascreens

We study a metascreen consisting of periodically repeated pairs of resonators, which are inclusions
of a contrasting material surrounded by some background medium, as depicted in Figure 2. We will
begin by presenting a capacitance matrix characterization of the band structure, similar to previous
works [3, 4]. Thereafter, we will restrict our attention to the band structure in a neighbourhood of
the origin and will compute the corresponding resonant frequencies explicitly. Using this analysis,
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Figure 1: When the frequency of incident waves varies, the transmittance T (i.e. the intensity of the
transmitted field) will have peaks at certain frequencies. A Lorentzian line shape, which is a symmetric
peak, is typically found in scattering problems. In this work, we study a setting that exhibits a Fano-type
line shape, which is asymmetric and rapidly drops from 1 to 0.

we will compute the scattering matrix of the metascreen and demonstrate a Fano-type transmission
asymmetry. In other words, for frequencies slightly below a critical frequency the transmission is
close to 1, while for frequencies slightly above the critical point the transmission is close to 0.

We will study a structure composed of two resonatorsD1, D2 ⊂ R
3 which are connected domains

such that each boundary ∂Di is Lipschitz continuous. The dimer D is defined as D = D1 ∪ D2.
We assume that the dimer is inversion symmetric in the sense that

PD1 = D2, (2.1)

where P : R3 → R
3, P(x) = −x.

We denote by vb the wave speed inside D and by v the wave speed in the surrounding material.
We have that v, vb > 0 and, for simplicity, assume that the units are chosen such that v = 1.
Denoting the frequency of the waves by ω, we define the wave numbers as

k =
ω

v
, kb =

ω

vb
.

We will assume that there is a large material contrast between D and the surrounding material,
which is described by the contrast parameter δ as

δ ≪ 1.

Next, we define the periodically repeated structure constituting the metascreen. We consider
dimers in a two dimensional square lattice with period L > 0. The lattice is given by Λ := LZ2

with unit cell Y = [−L/2, L/2]× [−L/2, L/2]×R. We assume that D ⋐ Y and define the collection
of periodically repeated resonators as

C =
⋃

(m1,m2)∈Λ

D + (m1,m2, 0).

This structure is depicted in Figure 2. The dual lattice Λ∗ of Λ is defined as Λ∗ = (2π/L)Λ.
The torus Y ∗ := R

2/Λ∗ is known as the Brillouin zone. A function f(y), y ∈ R
2, is said to be

α-quasiperiodic, with quasiperiodicity α ∈ Y ∗, if e−iα·yf(y) is periodic as a function of y.
We study the scattering problem
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


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∆u+ ω2u = 0 in R
3 \ C,

∆u+
ω2

v2b
u = 0 in C,

u|+ − u|− = 0 on ∂C,

δ
∂u

∂ν

∣

∣

∣

∣

+

− ∂u

∂ν

∣

∣

∣

∣

−

= 0 on ∂C,

u(x)− uin(x) satisfies the outgoing quasiperiodic
radiation conditions as x3 → ±∞.

(2.2)
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Here, uin is the incident field while the subscripts + and − indicate the limits from outside and
inside D, respectively. We refer to, e.g. [12, 13, 3] for the definitions of the radiation conditions.
We seek solutions u which are α-quasiperiodic in (x1, x2) for some α in the sense that

u(x+ (m1,m2, 0)) = eiα·(m1,m2)u(x), (m1,m2) ∈ Λ.

If uin is a plane wave uin(x) = eik·x, the quasiperiodicity α is specified by the wave vector k =

(

k1

k2

k3

)

as α =
(

k1

k2

)

(see e.g. [7]).

If uin = 0, then frequencies ω with non-negative real part which are such that there is a
nonzero solution u for some α are known as (quasiperiodic) resonant frequencies (or band functions
when viewed as functions of α). The corresponding α-quasiperiodic solutions u are known as the
(Bloch) eigenmodes of the metascreen. A subwavelength resonant frequency is a resonant frequency
ω = ω(δ) which is continuous in δ and is such that ω(0) = 0.

We will study the scattering problem (2.2) using a layer potential formulation. For α ∈ Y ∗

such that k 6= |α + q| for all q ∈ Λ∗, the quasiperiodic Green’s function Gα,k(x) is defined as the
solution to

∆Gα,k(x) + k2Gα,k(x) =
∑

(m1,m2)∈Λ

δ(x− (m1,m2, 0))e
iα·(m1,m2),

along with the outgoing quasiperiodic radiation condition, where δ(x) denotes the Dirac delta
distribution. Gα,k can be written as

Gα,k(x, y) := −
∑

(m1,m2)∈Λ

eik|x−(m1,m2,0)|

4π|x− (m1,m2, 0)|
eiα·(m1,m2). (2.3)

where the series converges uniformly for x in compact sets of R3, x 6= 0 (see e.g [7, Section 2.12]).

For ϕ ∈ L2(∂D) we define the quasiperiodic single layer potential Sα,k
D by

Sα,k
D [ϕ](x) :=

∫

∂D

Gα,k(x− y)ϕ(y) dσ(y), x ∈ R
3.

On the boundary of D, it satisfies the jump relations

Sα,k
D [ϕ]

∣

∣

+
= Sα,k

D [ϕ]
∣

∣

−
on ∂D, (2.4)

and
∂

∂ν
Sα,k
D [ϕ]

∣

∣

∣

±
=

(

±1

2
I + (K−α,k

D )∗
)

[ϕ] on ∂D, (2.5)

where (K−α,k
D )∗ is the quasiperiodic Neumann–Poincaré operator, given by

(K−α,k
D )∗[ϕ](x) := p.v.

∫

∂D

∂

∂νx
Gα,k(x− y)ϕ(y) dσ(y).

We have the following result from [3].

Lemma 2.1. The quasiperiodic single layer potential Sα,k
D : L2(∂D) → H1(∂D) is invertible if k

is small enough and k 6= |α+ q| for all q ∈ Λ∗.

Recall that we are assuming v = 1, so that k = ω. The condition ω = |α + q| separates the
ωα-plane into regimes with different radiation behaviour as |x3| → ∞. When ω is small, we have
two regimes. In the regime where ω < infq∈Λ∗ |α + q| (which is the unshaded region in Figure 3)
all waves are exponentially decaying as |x3| increases. The regime |α| < ω < infq∈Λ∗\{0} |α + q|
(which is the shaded region in Figure 3) corresponds to the first radiation continuum, where the
waves typically behave as outgoing plane waves for large x3.
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Figure 2: In this work, we study a metascreen with an incident plane wave uin. The metascreen is composed
of a P-symmetric resonator dimer D = D1 ∪D2 repeated periodically in a planar configuration.

2.1 Band structure

Here, we briefly mention the resonance problem uin = 0 in the regime when ω → 0 while |α| > c > 0
for some c independent of ω and δ. In this regime, we have the asymptotic expansions [7]

Sα,k
D = Sα,0

D +O(k2), (K−α,k
D )∗ = (K−α,0

D )∗ +O(k2). (2.6)

Here, the error terms are stated with respect to the operator norms in the spaces B
(

L2(∂D), H1(∂D)
)

and B
(

L2(∂D), L2(∂D)
)

, respectively, where H1(∂D) is the standard Sobolev space of functions
that are square integrable and have a weak first derivative that is also square integrable. Further-
more, the error terms in (2.6) are uniform for all α which satisfies |α| > c > 0. For normed vector
spaces A and B, B(A,B) denotes the set of bounded linear operators from A to B. We define the
quasiperiodic capacitance matrix Cα = (Cα

ij)i,j=1,2 as

Cα
ij = −

∫

∂Di

ψα
j dσ, ψα

j =
(

Sα,0
D

)−1

[χ∂Dj
], (2.7)

for i, j = 1, 2, where χX is used to denote the characteristic function of a set X ⊂ ∂D. From
e.g. [2, Lemma 3.1] we know that Cα is a Hermitian matrix. The following result describes the
subwavelength band structure [3].

Theorem 2.2. Assume |α| > c > 0 for some c independent of δ. As δ → 0, there are precisely
two quasiperiodic resonant frequencies ω1, ω2 depending continuously on δ such that ωi(0) = 0.
Moreover, they satisfy the asymptotic formula

ωi = vb

√

δλαi
|D1|

+O(δ), i = 1, 2,

where |D1| is the volume of a single resonator. Here, λαi are the eigenvalues of the quasiperiodic
capacitance matrix Cα.

We emphasize that Theorem 2.2 holds also for a two-dimensional problem with a one-dimensional
chain of resonators. In Figure 3 we plot the numerically computed subwavelength band structure
(i.e. ωi as functions of α) of such two-dimensional structure (here, we use the same parameters as
in Figure 7, and we refer to Section 7.2 for details on the setup and the method used). The shaded
region shows the first radiation continuum, and will be the region of interest in the remainder of
this work.
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Figure 3: The real part of the band structure, computed using the multipole expansion method. The shaded
region is the first radiation continuum, defined by |α| < ω < infq∈Λ∗\{0} |α+ q|, while the unshaded region
(apart from a neighbourhood of the origin) corresponds to the regime covered in Theorem 2.2. Here, we
use the parameters δ = 2 · 10−4 and θ = 0.05π (the same as in Figure 7).

3 Green’s functions and capacitance matrix formulation

In the analysis that follows, we will see that the Fano-type resonance occurs in a regime where
both ω and α approach zero. In particular, we will study the case when the incident wave has a
fixed direction of incidence and a frequency ω in the subwavelength regime. We define the wave
vectors

k+ =





k1
k2
k3



 , k− =





k1
k2
−k3



 .

We will assume that the incident field is a plane wave uin(x) = eik+·x. We consider subwavelength
frequencies ω = O(δ1/2) when δ → 0. In this limit, we assume that the incident direction is fixed,
i.e. that k+ is given by

k+ = ωw, for w =





w1

w2

w3



 ∈ R
3, (3.1)

where w is independent of ω and satisfies |w| = 1 and w3 > 0. We define

α =

(

k1
k2

)

= ωα0 ∈ Y ∗, where α0 =

(

w1

w2

)

.

In contrast to Section 2.1, this corresponds to the regime when |α| < k < infq∈Λ∗\{0} |α + q|.
Related problems have been previously studied in e.g. [4, 3], and we begin by collecting some
results on the Green’s function in this setting.

3.1 Periodic Green’s functions and capacitance matrix

We begin by recalling some results from [4, 3]. When |α| < k < infq∈Λ∗\{0} |α+q|, the quasiperiodic
Green’s function admits the spectral representation

Gα,k(x) =
eiα·(x1,x2)eik3|x3|

2ik3L2
−

∑

q∈Λ∗\{0}

ei(α+q)·(x1,x2)e−
√

|α+q|2−k2|x3|

2L2
√

|α+ q|2 − k2
, (3.2)
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where k3 =
√

k2 − |α|2. The series in (3.2) converges uniformly for x in compact sets of R3, x 6= 0,
and |α| < k < infq∈Λ∗\{0} |α+ q| (again, see e.g. [7]). In the case when k = α = 0, we have

G0,0(x) =
|x3|
2L2

−
∑

q∈Λ∗\{0}

eiq·(x1,x2)e−|q||x3|

2L2|q| . (3.3)

Here G0,0 is called the periodic Green’s function [4]. When ω → 0, we have

Gωα0,ω(x) =
1

2iωw3L2
+G0,0(x) +

α0 · (x1, x2)
2w3L2

+ ωGα0

1 (x) +O(ω2). (3.4)

Here, Gα0

1 is a function independent of ω, which can be written as [4]

Gα0

1 (x) =
i (w3|x3|+ α0 · (x1, x2))2

4w3L2
+ α0 · g1(x),

where g1(x) is a vector-valued function that is independent of α and ω and satisfies

g1(x1, x2, x3) = g1(x1, x2,−x3), g1(x1, x2, x3) = −g1(−x1,−x2, x3).

From (3.4) we in particular observe that the Green’s function has a singularity of order ω−1. We

define the operators Ŝα,k
D : L2(∂D) → H1(∂D) and (K̂−α,k

D )∗ : L2(∂D) → L2(∂D) as

Ŝα,k
D [ϕ](x) = S0,0

D [ϕ](x)− i − α · (x1, x2)
2ik3L2

∫

∂D

ϕ dσ −
∫

∂D

α · (y1, y2)
2k3L2

ϕ(y) dσ(y), (3.5)

and

(K̂−α,k
D )∗[ϕ](x) = (K0,0

D )∗[ϕ](x) +
α · (νx,1, νx,2)

2k3L2

∫

∂D

ϕ dσ.

Here, νx = (νx,1, νx,2, νx,3) denotes the outwards pointing normal of D at x. Moreover, we define
the operators Sα0

1 : L2(∂D) → H1(∂D) and (K−α0

D,1 )
∗ : L2(∂D) → L2(∂D) as

Sα0

1 [ϕ](x) :=

∫

∂D

Gα0

1 (x− y)ϕ(y) dσ(y), (K−α0

D,1 )
∗[ϕ](x) :=

∫

∂D

∂

∂νx
Gα0

1 (x− y)ϕ(y) dσ(y).

We then have the asymptotic expansion [3]

Sωα0,ω
D = Ŝωα0,ω

D + ωSα0

1 +O(ω2), (K−ωα0,ω
D )∗ = (K̂−ωα0,ω

D )∗ + ω(K−α0

D,1 )
∗ +O(ω2), (3.6)

as ω → 0, where the error terms are with respect to corresponding operator norms. We have the
next three results from [3].

Lemma 3.1. For any ϕ ∈ L2(∂D) we have, for i = 1, 2,

∫

∂Di

(

−1

2
I + (K̂−α,k

D )∗
)

[ϕ] dσ = 0,

∫

∂Di

(K−α0

D,1 )
∗[ϕ] =

i|Di|
2w3L2

∫

∂D

ϕ dσ.

Lemma 3.2. The dimension of kerS0,0
D is at most one. Further, if ϕ ∈ L2(∂D) is such that

∫

∂D
ϕ dσ = 0 and S0,0

D [ϕ] = Kχ∂D for some constant K, then ϕ = 0.

Lemma 3.3. For any α0 ∈ Y ∗ with |α0| < 1,
(

Ŝωα0,ω
D

)−1

and (Sωα0,ω
D )

−1
are holomorphic

operator-valued functions of ω in a neighbourhood of ω = 0.

Let L2
0(∂D) be the mean-zero space defined as

L2
0(∂D) =

{

f ∈ L2(∂D)

∣

∣

∣

∣

∫

∂D

f dσ = 0

}

.
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Then S0,0
D is invertible from L2

0(∂D) onto its image, which does not contain the constant functions.
We will now define the analogous capacitance coefficients in the periodic setting. Since (Sωα0,ω

D )−1

is a holomorphic function of ω we have, as ω → 0,

(Sωα0,ω
D )

−1
= Sα0

0 + ωSα0

−1 +O(ω2),

with respect to the operator norm in B
(

H1(∂D), L2(∂D)
)

, for some operators Sα0

0 and Sα0

−1 which
are independent of ω. For α0 with |α0| < 1, we let

ψ0
i = Sα0

0 [χ∂Di
], ψ1,α0

i = Sα0

−1[χ∂Di
], (3.7)

and then define the periodic capacitance coefficients as

C0
ij = −

∫

∂Di

ψ0
j dσ, i, j = 1, 2. (3.8)

We call the matrix C0 = (C0
ij) the periodic capacitance matrix. Although the definition of the

periodic capacitance matrix depends on α0, we will later see that ψ0
j and C0 are independent of

α0 in the current setting. First, we have from [3] the following result concerning the periodic
capacitance coefficients.

Lemma 3.4. The periodic capacitance matrix C0 is a real matrix given by

C0 = C0
11

(

1 −1
−1 1

)

.

In fact, from [3] we have that ψ0
1 = −ψ0

2 . We also define the “higher-order” coefficients

C1,α0

ij = −
∫

∂Di

ψ1,α0

j dσ, ci =

∫

∂D

yψ0
i (y) dσ(y), i, j = 1, 2.

Then c1 = −c2 and we write the vector c1 as

c1 =





c1
c2
c3



 . (3.9)

We then have a result to describe the capacitance coefficients (which is a development of a similar
symmetry result proved in [3, Lemma 3.17]).

Lemma 3.5. It holds that

(i) ψ0
j , and consequently C0

ij and cj, are independent of α0.

(ii) C1,α0 = − iw3L
2

2

(

1 1
1 1

)

+ i(α0, 0) · c1
(

0 1
−1 0

)

− iw3c
2
3

2L2

(

1 −1
−1 1

)

+O(ω),

where w3 and c3 are defined in (3.1) and (3.9), respectively.

Proof of (i). To emphasise the role of α0, we will use the notation ψ
0
i = ψ0,α0

i and ci = cα0

i in this
proof. From Lemma 3.3 we have the following expansion

(

Ŝα,ω
D

)−1

[χ∂Di
] = ψ0,α0

i + ωψ̂1,α0

i +O(ω2),

for some function ψ̂1,α0

i and for i = 1, 2. Expanding the orders of ω, we find that
∫

∂D

ψ0,α0

j dσ = 0, (3.10)

S0,0
D [ψ0,α0

j ] +
1

2iw3L2

∫

∂D

ψ̂1,α0

j dσ −
∫

∂D

α0 · (y1, y2)
2w3L2

ψ0,α0

j (y) dσ(y) = χ∂Dj
, (3.11)

S0,0
D [ψ̂1,α0

j ] +
α0 · (x1, x2)

2w3L2

∫

∂D

ψ̂1,α0

j dσ +Kχ∂D = 0, (3.12)
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for some constant K. Under the symmetry assumption (2.1), we have

ψ0,α0

1 (y) = ψ0,−α0

2 (Py) = −ψ0,−α0

1 (Py), ψ̂1,α0

1 (y) = ψ̂1,−α0

2 (Py), (3.13)

and, in particular, cα0

i = c−α0

i . Then, from (3.11) we find that

S0,0
D [ψ0,α0

1 + ψ0,−α0

2 ] +
1

iw3L2

∫

∂D

ψ̂1,α0

1 dσ − (α0, 0) · cα0

1

w3L2
= χ∂D, (3.14)

and that
S0,0
D [ψ0,α0

1 − ψ0,−α0

2 ] = χ∂D1
− χ∂D2

. (3.15)

In other words, for some constant K we have

S0,0
D [ψ0,α0

1 + ψ0,−α0

2 ] = Kχ∂D, (3.16)

and since
∫

∂D
ψ0,α0

i = 0, we have from Lemma 3.2 that ψ0,α0

1 = −ψ0,−α0

2 . Then, from (3.15) we
find that

S0,0
D [ψ0,α0

1 ] =
1

2
χ∂D1

− 1

2
χ∂D2

.

Since S0,0
D and the right-hand side are independent of α0, and since S0,0

D is injective on L2
0(∂D),

we find that ψ0,α0

i is independent of α0.

Proof of (ii). From [3, Lemma 3.11] we have

ψ1,α0

j = ψ̂1,α0

j −
(

Ŝωα0,ω
D

)−1

Sα0

1 ψ0
j ,

and from (3.10) it follows that

C1,α0 = Ĉ1,α0 + h

(

1 −1
−1 1

)

, h =

∫

∂D

Sα0

1 [ψ0
1 ]ψ

0
1 dσ, (3.17)

where Ĉ1,α0 =
(

Ĉ1,α0

ij

)

i,j=1,2
is the matrix given by

Ĉ1,α0

ij = −
∫

∂Di

ψ̂1,α0

j dσ. (3.18)

We begin by computing Ĉ1,α0 . From (3.14) we find that, for j = 1, 2,

∫

∂D

ψ̂1,α0

j dσ = iw3L
2 + i(α0, 0) · cj . (3.19)

Multiplying (3.12) by ψ0
i and integrating around ∂D we have, using (3.10), that

∫

∂D

ψ0
i S0,0

D [ψ̂1,α0

j ] dσ +
(α0, 0) · ci
2w3L2

∫

∂D

ψ̂1,α0

j dσ = 0.

Since S0,0
D is self-adjoint in L2(∂D), we find using (3.11) that

∫

∂Di

ψ̂1,α0

j dσ − 1

2iw3L2

(∫

∂D

ψ̂1,α0

i dσ − 2i(α0, 0) · ci
)∫

∂D

ψ̂1,α0

j dσ = 0.

Together with (3.19), we find that

∫

∂Di

ψ̂1,α0

j dσ =
1

2iw3L2

(

iw3L
2 − i(α0, 0) · ci

) (

iw3L
2 + i(α0, 0) · cj

)

.
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From the definition of Ĉ1,α0 in (3.18), we then have

Ĉ1,α0 = − iw3L
2

2

(

1 1
1 1

)

+ i(α0, 0) · c1
(

0 1
−1 0

)

−
(

(α0, 0) · c1
)2

2iw3L2

(

1 −1
−1 1

)

+O(ω). (3.20)

The only remaining task is to explicitly compute h. We follow the proof of [3, Lemma 3.17] and
write the kernel function Gα0

1 of Sα0

1 as

Gα0

1 (x) = K1(x) +Kα0

2 (x) +Kα0

3 (x),

where

K1(x) =
iw3x

2
3

4L2
, Kα0

2 (x) = α0 ·
(

i|x3|(x1, x2)
2L2

+ g1(x)

)

, Kα0

3 (x) =
i (α0 · (x1, x2))2

4w3L2
.

We have

K1(x− y) =
iw3

4L2

(

x23 − 2x3y3 + y23
)

,

and since
∫

∂D
ψ0
1 dσ = 0 we conclude that

I1 :=

∫

∂D

∫

∂D

K1(x− y)ψ0
1(x)ψ

0
1(y) dσ(x) dσ(y) = − iw3

2L2

∫

∂D

x3ψ
0
1(x) dσ(x)

∫

∂D

y3ψ
0
1(y) dσ(y)

= − iw3c
2
3

2L2
.

We observe that Kα0

2 (Px) = −Kα0

2 (x) while ψ0
1(Px) = −ψ0

1(x). Therefore

I2 :=

∫

∂D

∫

∂D

Kα0

2 (x− y)ψ0
1(x)ψ

0
1(y) dσ(x) dσ(y) = 0.

Finally, we have

Kα0

3 (x− y) =
i

4w3L2

(

(α0 · (x1, x2))2 − 2 (α0 · (x1, x2)) (α0 · (y1, y2)) + (α0 · (y1, y2))2
)

,

and hence

I3 :=

∫

∂D

∫

∂D

Kα0

3 (x− y)ψ0
1(x)ψ

0
1(y) dσ(x) dσ(y) =

i

4w3L2

(∫

∂D

(α0 · (x1, x2))2 ψ0
1(x) dσ(x)

∫

∂D

ψ0
1 dσ +

∫

∂D

(α0 · (y1, y2))2 ψ0
1(y) dσ(y)

∫

∂D

ψ0
1 dσ

− 2

∫

∂D

α0 · (x1, x2)ψ0
1(x) dσ(x)

∫

∂D

α0 · (y1, y2)ψ0
1(y) dσ(y)

)

=

(

(α0, 0) · c1
)2

2iw3L2
.

In total, we see that

h = I1 + I2 + I3 = − iw3c
2
3

2L2
+

(

(α0, 0) · c1
)2

2iw3L2
.

This, together with (3.17) and (3.20), proves the claim.

In order to introduce more sophisticated symmetry assumptions, we define the maps P12 :
R

3 → R
3 and P3 : R3 → R

3 by

P12(x1, x2, x3) = (−x1,−x2, x3) and P3(x1, x2, x3) = (x1, x2,−x3).
We will occasionally use P,P12 and P3 as operators on L2(∂D) defined through composition, e.g.
for ϕ ∈ L2(∂D) we define (Pϕ)(x) = ϕ(Px). The following lemma, which shows properties of c1
defined in (3.9), follows directly from symmetry arguments.

Lemma 3.6. If P3Di = Di for i = 1, 2, then c3 = 0. If instead P3D1 = D2, then c1 = c2 = 0.

We remark that if P3D1 = D1 it follows from (2.1) that P3D2 = D2.
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3.2 Green’s function for the free-space Helmholtz equation

We conclude this section by collecting some well-known results on the Green’s function in free-space
Gk, given by

Gk(x) = − e
ik|x|

4π|x| .

These results will be useful for representing the solution of (2.2) in the interior ofD (for more details
we refer, for example, to [7]). For a given bounded domain D in R

3, with Lipschitz boundary, the
single layer potential of the density function ϕ ∈ L2(∂D) is defined by

Sk
D[ϕ](x) :=

∫

∂D

Gk(x− y)ϕ(y) dσ(y), x ∈ R
3.

Then the following jump relation holds

∂

∂ν
Sk
D[ϕ]

∣

∣

∣

∣

±

(x) =

(

±1

2
I + (Kk

D)∗
)

[ϕ](x), x ∈ ∂D, (3.21)

where the operator (Kk
D)∗ is the Neumann–Poincaré operator associated to the domain D and is

defined by

(Kk
D)∗[ϕ](x) = p.v.

∫

∂D

∂Gk(x− y)

∂ν(x)
ϕ(y) dσ(y), x ∈ ∂D.

We denote SD := S0
D and K∗

D := (K0
D)∗. For a small k we have asymptotic expansions given by

[5, Appendix A]

Sk
D[ϕ] = SD[ϕ] +

∞
∑

n=1

knSD,n[ϕ], (Kk
D)∗[ϕ] = K∗

D +

∞
∑

n=1

knKD,n[ϕ], (3.22)

which converge in B(L2(∂D), H1(∂D))) and B(L2(∂D), L2(∂D))), respectively, where

SD,n[ϕ](x) := − in

4πn!

∫

∂D

|x− y|n−1ϕ(y) dσ(y), n = 1, 2, . . . , (3.23)

KD,n[ϕ](x) := − in(n− 1)

4πn!

∫

∂D

〈x− y, νx〉|x− y|n−3ϕ(y) dσ(y), n = 1, 2, . . . . (3.24)

It is known that SD : L2(∂D) → H1(∂D) is invertible and that its inverse is bounded.
Finally, we present some useful formulas which are frequently used in the subsequent analysis

and were proved in [10].

Lemma 3.7. The following identities hold for any ϕ ∈ L2(∂D): for j = 1, 2,

(i)

∫

∂Dj

(

−1

2
I +K∗

D

)

[ϕ] dσ = 0, (ii)

∫

∂Dj

KD,2[ϕ] dσ = −
∫

Dj

SD[ϕ] dσ,

(iii)

∫

∂Dj

KD,3[ϕ] dσ =
i|Dj |
4π

∫

∂D

ϕ dσ, (iv) SD,1[ϕ](x) = − i

4π

∫

∂D

ϕ dσ.

4 Characterization of Fano-type resonances

In this section we will study the resonant frequencies of (2.2). The solutions to (2.2) can be
represented as

u =

{

uin + Sα,ω
D [ψ](x), x ∈ Y \D,

S
ω
vb

D [φ](x), x ∈ ∂D,
(4.1)
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for some surface densities (φ, ψ) ∈ L2(∂D) × L2(∂D). Using the jump conditions (2.4) and (2.5),
we see that the layer densities φ and ψ satisfy

S
ω
vb

D [φ]− Sα,ω
D [ψ] = uin on ∂D, (4.2)

(

−1

2
I + (K

ω
vb

D )∗
)

[φ]− δ

(

1

2
I + (K−α,ω

D )∗
)

[ψ] = δ
∂uin

∂ν
on ∂D. (4.3)

Letting η = Sωα0,ω
D [ψ], the equations (4.2) and (4.3) can be written equivalently as

Aω[η] = F [uin], (4.4)

where

Aω :=

(

−1

2
I + (K

ω
vb

D )∗
)

(

S
ω
vb

D

)−1

− δ

(

1

2
I + (K−ωα0,ω

D )∗
)

(Sωα0,ω
D )

−1
, (4.5)

and

F [uin] := δ
∂uin

∂ν
−

(

−1

2
I + (K

ω
vb

D )∗
)

(

S
ω
vb

D

)−1

[uin].

Then Aω is holomorphic in a neighbourhood of the origin. Moreover, the quasiperiodic resonant
frequencies are precisely the characteristic values of Aω with non-negative real part; in other words
the values of ω in the right-half plane such that Aω[η] = 0 has a non-trivial solution η (see, for
example, [7, Chapter 1] for the definition and further properties of characteristic values).

We now investigate the subwavelength resonant frequencies that exist in the current setting.
By analogous steps as those in the proof of [6, Lemma 3.1], we obtain the following result.

Lemma 4.1. Let α = ωα0 for some α0 which is independent of δ and satisfies |α0| = 1. Then,
there are precisely two quasiperiodic resonant frequencies ω1 and ω2 which depend continuously on
δ and are such that ωi(0) = 0.

Given their existence, we may derive the asymptotic behaviour of ωi as δ → 0, which will be
used to describe the Fano-type resonance of the metascreen.

Theorem 4.2. Let α = ωα0 for some α0 that is independent of δ and satisfies |α0| = 1. Let w3

and c3 be defined by (3.1) and (3.9) respectively. Then, as δ → 0,

ω1 = − iδv2bw3L
2

|D1|
+O(δ2),

ω2 =

√

2δv2bC
0
11

|D1|
− iδv2bw3c

2
3

2|D1|L2
+O(δ3/2).

Proof. We will expand the operator Aω as δ → 0 and ω = O(δ1/2). Since

(

S
ω
vb

D

)−1

= S−1
D − ω

vb
S−1
D SD,1S−1

D +
ω2

v2b

(

S−1
D

(

SD,1S−1
D

)2 − S−1
D SD,2S−1

D

)

+
ω3

v3b

(

S−1
D SD,1S−1

D

(

SD,2 − SD,1S−1
D SD,1

)

S−1
D + S−1

D

(

SD,2S−1
D SD,1 − SD,3

)

S−1
D

)

+O(ω4)

and
(

− 1
2I +K∗

D

)

S−1
D SD,1 = 0, Aω can be expanded as

Aω =

(

−1

2
I +K∗

D

)

S−1
D +

ω2

v2b

(

KD,2S−1
D −

(

−1

2
I +K∗

D

)

S−1
D SD,2S−1

D

)

+
ω3

v3b

(

KD,3S−1
D −KD,2S−1

D SD,1S−1
D +

(

−1

2
I +K∗

D

)

(

S−1
D

(

SD,2S−1
D SD,1 − SD,3

)

S−1
D

)

)

− δ

(

1

2
I + (K̂−ωα0,ω

D )∗ + ω(K−α0

D,1 )
∗

)

(Sωα0,ω
D )

−1
+O(δω2 + ω4).
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Suppose Aω[η] = 0. Then η can be written as

η = q1χ∂D1
+ q2χ∂D2

+O(ω2 + δ), (4.6)

for constants q1, q2 with |q1|+ |q2| = O(1). Integrating Aω[η] = 0 over ∂Di, we have

−ω
2

v2b
|Di|δi1q1 + δ

(

C0
i1 + ωC1,α0

i1

)

q1 −
ω2

v2b
|Di|δi2q2 + δ

(

C0
i2 + ωC1,α0

i2

)

q2 = O(δω2 + ω4).

Thus it reduces to the problem

(

δC0 + δωC1,α0 − ω2|D1|
v2b

I

)(

q1
q2

)

= O(δω2 + ω4). (4.7)

We observe that the eigenvalues λi of C
0 + ωC1,α0 satisfy, as ω → 0,

λi = λ0i + ωvT
0iC

1,α0v0i +O(ω2),

where λ0i,v0i is an eigenpair of C0. In other words,

λ1 = −iωw3L
2 +O(ω2), λ2 = 2C0

11 −
iωw3c

2
3

L2
+O(ω2).

Thus, we see that either

2δC0
11 −

iδωw3c
2
3

L2
− ω2|D1|

v2b
= O(δω2 + ω4)

or

−iδωw3L
2 − ω2|D1|

v2b
= O(δω2 + ω4).

Therefore, we have

ω1 = − iδv2bw3L
2

|D1|
+O(δ2),

ω2 =

√

2δv2bC
0
11

|D1|
− iδv2bw3c

2
3

2|D1|L2
+O(δ3/2),

which concludes the proof.

Remark 4.3. We have proved that the imaginary part of ω1 scales like δ, while the imaginary
part of ω2 scales like c23δ, where c3 was defined in (3.9). From Lemma 3.6, we know that we can
make c3 very small by choosing a structure which is almost symmetric under P3. In particular, if
the dimers are aligned with an angle θ with the x1x2-plane, then we have that c3 → 0 as θ → 0.
Therefore ω1 corresponds to a broad resonance peak while ω2 corresponds to a sharp peak in the
transmission spectrum, and Theorem 4.2 characterizes the Fano-type resonance. As we will see in
the following sections, this will generate a Fano-type transmission anomaly when c3 is very small.

5 Metascreen scattering

We now assume that uin(x) = eik+·x and seek the behaviour of the solution u of (2.2). Throughout
the remainder of this work, we will write f ∼ g to denote that two continuous functions f, g ∈ C(R)
are equal up to exponentially decaying factors, in the sense that there is some constant K > 0
such that

|f(x)− g(x)| = O(e−Kx) as x→ ∞.
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In the first radiation continuum, the scattered field u− uin consists of a single propagating mode
as |x3| → ∞. Then the total field u, which is the solution to (2.2), will behave as

u ∼
{

teik+·x, x3 → ∞,

eik+·x + reik−·x, x3 → −∞.
(5.1)

The coefficients r and t are the reflection and transmission coefficients, while the scattering matrix
S = S(ω) is given by

S(ω) =

(

r t
t r

)

.

Since we are using layer potential techniques to solve the scattering problem (2.2), the next
result will be our main tool to compute the radiative behaviour in the far field [3].

Lemma 5.1. Assume that |α| < k < infq∈Λ∗\{0} |α + q|. Then, as |x3| → ∞, the quasiperiodic
single layer potential satisfies

Sα,k
D [ϕ] ∼























eik+·x

2ik3L2

∫

∂D

e−ik+·yϕ(y) dσ(y), x3 → ∞,

eik−·x

2ik3L2

∫

∂D

e−ik−·yϕ(y) dσ(y), x3 → −∞,

where k3 =
√

k2 − |α|2 while k± =
( α1

α2

±k3

)

and α = ( α1
α2

) .

For later reference, we have the following asymptotic behaviour as ω → 0 [3]

1

2ik3L2

∫

∂D

e−ik±·y (Sωα0,ω
D )

−1
[uin](y) dσ(y) = 1 +O(ω), (5.2)

which can be used to simplify the expressions from Lemma 5.1.

6 Embedded eigenvalues and bound states in the continuum

Theorem 4.2 shows that the O(δ)-imaginary part of ω2 vanishes when the structure is symmetric.
In fact, we will prove in this section that the second resonance ω2 becomes exactly real under
the additional assumption of perpendicular incidence. We will characterize the eigenmodes corre-
sponding to this real resonance and show that they are bound states in the continuum. Specifically,
we show that they do not radiate to the far field and, reciprocally, cannot be excited from the far
field.

Throughout this section, in addition to the assumption of inversion symmetry PD1 = D2 from
(2.1) that is imposed on the resonator dimer, we will assume that each individual resonator is
symmetric in the sense that P3Di = Di for i = 1, 2. For example, Figure 4 with θ = 0 satisfies
this condition. In addition, we will assume that α0 = 0, which corresponds to the case that the
incident waves are perpendicular to the metascreen.

Proposition 6.1. Assume that P3Di = Di for i = 1, 2 and that α0 = 0. Then ω2 is real.

Proof. We define C : L2(∂D) → L2(∂D) as

C[ϕ] = −χ∂D1

∫

∂D1

Sα0

0 [ϕ] dσ − χ∂D2

∫

∂D2

Sα0

0 [ϕ] dσ,

and then we define

Aω
0 =

(

−1

2
I +K∗

D

)

S−1
D − ω2|D1|

v2b
I + δC.
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It is clear that Aω
0 has a characteristic value given by

ω0 =

√

2δv2bC
0
11

|D1|
,

and that η0 = 1√
2|D1|

(χ∂D1
− χ∂D2

) spans the kernels

ker (Aω0

0 ) = span {η0} and ker ((Aω0

0 )∗) = span {η0} .

By arguments analogous to those used in e.g. [6, 8], we have the following pole-pencil decomposition
for ω close to ω0,

(Aω
0 )

−1
=

L

ω − ω0
+R(ω), L =

〈·, η0〉η0
〈 d
dωA

ω0

0 [η0], η0〉
,

where 〈·, ·〉 denotes the L2(∂D)-inner product and R(ω) is a holomorphic function of ω in a neigh-
bourhood of ω0 satisfying

R(ω)[η0] = r(ω)η0,

for some function r(ω) which is real-valued for real ω. We have

〈

d

dω
Aω0

0 [η0], η0

〉

= −2ω0|D1|
v2b

.

By the characteristic value perturbation theory, as in the proof of [11, Theorem 3.9], we have that

ω2 − ω0 =
tr

2πi

∞
∑

p=1

1

p

∫

∂V

(

(Aω
0 )

−1(Aω
0 −Aω)

)p
dω.

Using the property that tr
∫

∂V
AB dω = tr

∫

∂V
BAdω for finitely meromorphic operators A and B

in a neighbourhood of ω0 [7, Proposition 1.7], we have

ω2 − ω0 =
tr

2πi

∞
∑

p=1

p−1
∑

q=1

1

p

(

p

q

)∫

∂V

Lp−qRq

(ω − ω0)p−q
dω

=
1

2πi

∞
∑

p=1

p−1
∑

q=0

(−1)p−q

p

(

p

q

)(

vb
2ω0|D1|

)p−q ∫

∂V

r(ω)q〈(Aω
0 −Aω)[η0], η0〉p−q

(ω − ω0)p−q
dω

=

∞
∑

p=1

p−1
∑

q=0

1

(p− q − 1)!p

(

p

q

)(

vb
2ω0|D1|

)p−q
dp−q−1

dωp−q−1

(

r(ω)q〈Aω[η0], η0〉p−q
)∣

∣

∣

ω=ω0

. (6.1)

Next, we will show that, under the symmetry assumptions P3Di = Di and α0 = 0, the factor
〈Aω[η0], η0〉 is real for all ω ∈ R. This, together with (6.1), shows that ω2 is real.

We write Im〈Aω[η0], η0〉 = I1 + I2, where

I1 = Im

〈(

−1

2
I + (K

ω
vb

D )∗
)

(

S
ω
vb

D

)−1

[η0], η0

〉

,

I2 = −δ Im
〈(

1

2
I + (K−ωα0,ω

D )∗
)

(Sωα0,ω
D )

−1
[η0], η0

〉

.

We begin by studying I1. Let v be the solution to







∆v +
ω2

v2b
v = 0 in D,

v = η0 on ∂D.
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Then ∂v
∂ν is real-valued and it follows that

〈(

−1

2
I + (K

ω
vb

D )∗
)

(

S
ω
vb

D

)−1

[η0], η0

〉

=

∫

∂D1

∂v

∂ν
dσ −

∫

∂D2

∂v

∂ν
dσ

is real-valued. Hence I1 = 0.
We next turn to I2. We observe that

G0,k(x) = G0,k(x)− cos (k|x3|)
ikL2

.

We define S0,ω
D and (K0,ω

D )∗ as the operators corresponding to the kernel G0,k. Then, for functions
ϕ which are such that ϕ(P12x) = −ϕ(x) we have that

S0,ω
D [ϕ] = S0,ω

D [ϕ], (K0,ω
D )∗[ϕ] = (K0,ω

D )∗[ϕ]. (6.2)

Denote ψ =
(

S0,ω
D

)−1

[η0]. Since

S0,ω
D [P12ψ](x) = S0,ω

D [ψ](P12x) = −S0,ω
D [ψ](x), (6.3)

we conclude that ψ(P12x) = −ψ(x). Therefore, using (6.2) and since η0 is real-valued, we have
that

η0 = S0,ω
D [ψ] = S0,ω

D [ψ],

which means that ψ = ψ. Again using (6.2), we therefore have

(

1

2
I + (K0,ω

D )∗
)

[ψ] =

(

1

2
I + (K0,ω

D )∗
)

[ψ],

from which we can see that
I2 = 0.

To conclude, we have proved that 〈Aω[η0], η0〉 is real for all real ω. This, together with (6.1),
proves that ω2 is real.

Next, we study the eigenmodes at ω2, and demonstrate that they correspond to bound states
in the continuum. We first show that the eigenmodes at ω2 are exponentially decaying functions
of x3, meaning that they do not radiate energy into the far field.

Proposition 6.2. Assume that P3Di = Di for i = 1, 2 and that α0 = 0. Let u be a solution to
(2.2) with uin = 0 and ω = ω2. For sufficiently small δ, we have as x3 → ±∞ that

u ∼ 0.

Proof. Let Aω2 [η] = 0. From the P3-symmetry follows that P12η is in the kernel of Aω2 at −α0.
Since α0 = 0, and since ω2 is a simple characteristic value, we find that

P12η = Kη

for some constant K. For small δ we know that η = χ∂D1
− χ∂D2

+ O(δ). We conclude that
K = −1, or in other words that η is odd under P12 (we emphasize that this holds exactly, i.e. that
also the O(δ)-term of η is odd). Then, as x3 → ±∞, we have

u ∼ eik±·x

2ik3L2

∫

∂D

e−ik±·y
(

S0,ω
D

)−1

[η](y) dσ(x).

From the symmetry, we have that
(

S0,ω
D

)−1

[e−ik±·y] is an odd function under P12 (as was the

case in (6.3)). Since α0 = 0, the functions e−ik±·y are even, so u ∼ 0 which proves the claim.
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The next result (which is the reciprocal result of Proposition 6.2) shows that there will be no
transmission peak at ω = ω2 (corresponding to the fact that the bound state in the continuum
cannot be excited from the far field). We remark, however, that there might be some small but
nonzero transmission t = O(δ1/2) originating from the first, broad resonance.

Proposition 6.3. Assume that P3Di = Di for i = 1, 2 and that α0 = 0. Then, at ω = ω2, the
scattering matrix S(ω) satisfies

S(ω2) = −
(

1 0
0 1

)

+O(δ1/2).

Proof. Let Aω2 [η] = F [uin]. Even though the equation is not uniquely solvable, the scattering
matrix is well-defined since (by Proposition 6.2) any ηk ∈ kerAω2 corresponds to an exponentially
decaying part of the solution. We can decompose the solution η as

η = η0 + ηk − uin,

where P12η0 = η0 and ηk is an element in kerAω2 . Then, as in the proof of Theorem 4.2 we can
show that

η0 = Kχ∂D +O(δ),

for some constant K. From (5.2) we have

u− uin ∼ eik±·x

2ik3L2

∫

∂D

e−ik±·y
(

S0,ω
D

)−1

[η](y) dσ(y)

∼
(

K − 1 +O(δ1/2)
)

eik±·x. (6.4)

As in the proof of Theorem 4.2 (cf. also the proof of Proposition 7.1 below), we find from Aω2 [η0−
uin] = F [uin] that

K
(

C0 − λ02I
)

(

1
1

)

= O(δ1/2),

and since ( 11 ) is not in the kernel of (C0 − λ02I) we find that K = O(δ1/2). The expression for S
then follows from (6.4).

Remark 6.4. It is enlightening to compare and contrast the behaviour at real resonances in the
present case to the non-Hermitian case studied in [3]. In the present case, Proposition 6.2 and
Proposition 6.3 show that the corresponding eigenmodes are bound states in the continuum. Con-
sequently, there is no transmission peak at the resonant frequency. Similarly to the present case,
the resonances may also become real in the non-Hermitian case. However, in this case it is pos-
sible that the corresponding modes indeed couple to the far field. This gives a singularity of the
transmitted field at the resonant frequency, corresponding to so-called extraordinary transmission
[3].

Remark 6.5. When the symmetry is broken, the real eigenvalue ω2 will be shifted into the complex
plane and the corresponding mode will be coupled to the far field. We emphasize that the symmetry
can be broken in two distinct fashions: either by making α0 6= 0 or by perturbing the P3-symmetry
of D to make c3 nonzero (e.g. by choosing θ 6= 0 in Figure 4). In order to achieve Fano-type
transmission anomalies, we should design the system so that the two resonances interfere; in par-
ticular, we should make the imaginary part of ω1 rather large. In view of Theorem 4.2, we observe
that we want w3 large. Therefore, we chose to break the symmetry by making c3 nonzero, and in
the next section we will compute the scattering matrix and demonstrate the Fano-type transmission
anomaly.
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7 Fano-type transmission anomaly

In this section we compute the scattering matrix of the metascreen. The goal is to demonstrate
an asymmetric transmission peak around the second resonance ω2, which is characteristic of a
Fano-type transmission anomaly.

We will begin with a characterization of the solution to the scattering problem (2.2). We define
the functions

Sα,ω
j (x) =







Sα,ω
D [ψ0

j + ωψ1,α0

j ](x), x ∈ R
3 \ C,

S
ω
vb

D [ψj ](x), x ∈ C,

where ψj = S−1
D [χ∂Dj

]. We then have the following result (which generalizes [3, Proposition 3.14]
to the present setting).

Proposition 7.1. Assume that c3 6= 0 and that ω is real with 0 ≤ ω ≤ K
√
δ for some constant

K > 0. Then, as δ → 0,

u− uin = q1S
α,ω
1 + q2S

α,ω
2 − Sα,ω

D (Sα,ω
D )

−1
[uin] +O(ω2), (7.1)

where q := ( q1q2 ) satisfies the problem

(

C0 + ωC1,α0 − ω2|D1|
δv2b

I

)(

q1
q2

)

= −
(

p1
p2

)

+O(δ), pi =

∫

∂Di

(Sωα0,ω
D )

−1
[uin] dσ.

Proof. We solve the equation

Aω[η] = δ
∂uin

∂ν
−
(

−1

2
I + (K

ω
vb

D )∗
)

(

S
ω
vb

D

)−1

[uin]. (7.2)

When c3 6= 0 and ω is real, we know that Aω is invertible with bounded inverse. Following the
proof of Theorem 4.2, we have that η satisfies

η = q1χ∂D1
+ q2χ∂D2

− uin +O(ω2 + δ),

which proves (7.1). To prove the equation for q, we proceed as in the proof of Theorem 4.2 by
expanding Aω[η] and integrating around ∂Di, to get

∫

∂Di

Aω[η] dσ = −qi|D1|
ω2

v2b
− δ

∫

∂Di

(Sωα0,ω
D )

−1
η dσ +

∫

Di

ω2

v2b
uin dx+O(δω2 + ω4).

Turning to the right-hand side of (7.2), we have

∫

∂Di

F [uin] dσ = −
∫

∂Di

(

−1

2
I + (K

ω
vb

D )∗
)

(

S
ω
vb

D

)−1

[uin] dσ +O(δ2)

= −
∫

∂Di

∂

∂ν

(

S
ω
vb

D

)−1

[uin] dσ +O(δ2)

=
ω2

v2b

∫

Di

uin dx+O(δ2).

Therefore, we have the equation

−qi|D1|
ω2

v2b
− δ

∫

∂Di

(Sωα0,ω
D )

−1
η = O(δω2 + ω4).

Defining pi =
∫

∂Di
(Sωα0,ω

D )
−1

[uin] dσ, the above equation can be written in matrix form as

(

δC0 + ωδC1,α0 − ω2|D1|
δv2b

I

)(

q1
q2

)

= −δ
(

p1
p2

)

+O(δω2 + ω4),

which proves the claim.
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7.1 Scattering matrix and Fano-type transmission anomaly

We are now able to compute the scattering matrix and demonstrate the Fano-type asymmetric
transmission line. We define the coefficients

Rj,± =
1

2ik3L2

∫

∂D

e−ik±·y
(

ψ0
j (y) + ωψ1,α0

j (y)
)

dσ(y), i = 1, 2,

which describe the radiation of Sα,ω
j as x → ±∞. As ω → 0, we have the following asymptotic

behaviour

Rj,± =
1

2ik3L2

(∫

∂D

ψ0
j (y) dσ(y)−

∫

∂D

ik± · yψ0
j (y) dσ(y) + ω

∫

∂D

ψ1,α0

j dσ

)

+O(ω)

= −k± · cj
2k3L2

+
1

2iw3L2

∫

∂D

ψ1,α0

j dσ +O(ω) =
1

2
− 1

2k3L2

(

k± − (α, 0)
)

· cj +O(ω)

=
1

2
± (−1)jc3

2L2
+O(ω). (7.3)

We then have the following main theorem.

Theorem 7.2. Assume that c3 6= 0 and that 0 ≤ ω ≤ K
√
δ for some constant K. Then we have

the following asymptotic expansion of the scattering matrix as δ → 0

S =
ω1

ω1 − ω

(

1 1
1 1

)

+
2iω Im(ω2)

ω2
2 − ω2

(

1 −1
−1 1

)

−
(

1 0
0 1

)

+O(δ1/2), (7.4)

where the error term is uniform with respect to ω.

Proof. We begin by computing p. Recall that uin(x) = eik+·x. We then have

pi =

∫

∂Di

(Sα,ω
D )

−1
[uin] dσ =

∫

∂D

uin
(

S−α,ω
D

)−1
[χ∂Di

] dσ

=

∫

∂D

ik+ · xψ0
i dσ + ω

∫

∂D

ψ1,−α0

i dσ +O(ω2)

= ik3L
2 + i

(

k+ − (α, 0)
)

· ci +O(δ),

so that

p = ik3L
2

(

1
1

)

+ ik3c3

(

1
−1

)

+O(δ).

As x→ ±∞, we have using (7.3) and (5.2) that

u− uin ∼ (q1R1,± + q2R2,± − 1) eik±·x

∼
(

q2 + q1
2

± c3
L2

q2 − q1
2

− 1 +O(ω)

)

eik±·x.

For all real ω with 0 ≤ ω ≤ K
√
δ and for fixed c3 6= 0, there exists a constant A > 0 such that

|ω − ωi| > Aδ for i = 1, 2. Then
(

C0 + ωC1,α0 − ω2|D1|
δv2

b

I
)

is invertible and its inverse satisfies
(

C0 + ωC1,α0 − ω2|D1|
δv2

b

I
)−1

= O(δ−1/2) uniformly in ω. We have that

d := det

(

C0 + ωC1,α0 − ω2|D1|
δv2b

I

)

=

(

−ik3L
2 − ω2|D1|

δv2b

)(

2C0
11 −

ik3c
2
3

L2
− ω2|D1|

δv2b

)

+O(δ).

Therefore

(

C0 + ωC1,α0 − ω2|D1|
δv2b

I

)−1

=
1

d

((

C0
11 −

ik3c
2
3

2L2

)(

1 1
1 1

)

− ik3L
2

2

(

1 −1
−1 1

)

+ i(α, 0) · c1
(

0 −1
1 0

)

− ω2|D1|
δv2b

I

)

.
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Using Proposition 7.1, we therefore have

q = −1

d

(

ik3L
2

(

2C0
11 −

ik3c
2
3

L2
− ω2|D1|

δv2b

)

+ i(α, 0) · c1(ik3c3)
)(

1
1

)

− 1

d

(

ik3c3

(

−ik3L
2 − ω2|D1|

δv2b

)

− i(α, 0) · c1(ik3L2)

)(

1
−1

)

+O(δ1/2),

uniformly in ω. Simplifying the above expression, we obtain

q =
−ik3L

2

−ik3L2 − ω2|D1|
δv2

b

(1 + ε1)

(

1
1

)

+
−ik3c3

2C0
11 −

ik3c23
L2 − ω2|D1|

δv2
b

(1− ε2)

(

1
−1

)

+O(δ1/2),

where

ε1 =
i(α, 0) · c1 c3

L2
(

2C0
11 −

ik3c23
L2 − ω2|D1|

δv2
b

) , ε2 =
i(α, 0) · c1 L2

c3
(

−ik3L2 − ω2|D1|
δv2

b

) .

When ω is away from ω1, we have ε2 = O(δ1/2). For ω − ω1 = O(δ) we have

ik3c3
(

2C0
11 −

ik3c23
L2 − ω2|D1|

δv2
b

) (1− ε2) = O(δ1/2).

An analogous argument for ω close to ω2 shows that for 0 ≤ ω ≤ K
√
δ it holds that

q =
−ik3L

2

(

−ik3L2 − ω2|D1|
δv2

b

)

(

1
1

)

+
−ik3c3

(

2C0
11 −

ik3c23
L2 − ω2|D1|

δv2
b

)

(

1
−1

)

+O(δ1/2).

Then, as x→ ±∞, we can see that

u− uin ∼
(

q2 + q1
2

± c3
L2

q2 − q1
2

− 1 +O(ω)

)

eik±·x

∼





−ik3L
2

−ik3L2 − ω2|D1|
δv2

b

± ik3c
2
3

L2
(

2C0
11 −

ik3c23
L2 − ω2|D1|

δv2
b

) − 1 +O(δ1/2)



 eik±·x,

which gives

t =
−ik3L

2

−ik3L2 − ω2|D1|
δv2

b

+
ik3c

2
3

L2
(

2C0
11 −

ik3c23
L2 − ω2|D1|

δv2
b

) +O(δ1/2),

and

r =
−ik3L

2

−ik3L2 − ω2|D1|
δv2

b

− ik3c
2
3

L2
(

2C0
11 −

ik3c23
L2 − ω2|D1|

δv2
b

) − 1 +O(δ1/2).

In light of Theorem 4.2 we can rewrite this as

S =
ω1

ω1 − ω

(

1 1
1 1

)

+
2iω Im(ω2)

ω2
2 − ω2

(

1 −1
−1 1

)

−
(

1 0
0 1

)

+O(δ1/2),

which proves the claim.

Remark 7.3. At the resonances, i.e. when ω = 0 or ω = Re(ω2), the scattering matrix is given
by

S(0) =

(

0 1
1 0

)

+O(δ1/2) and S(Re(ω2)) =

(

0 −1
−1 0

)

+O(δ1/2),

corresponding to transmission peaks where the transmittance is close to 1. The widths of these
peaks are specified by the corresponding imaginary part Im(ω1) and Im(ω2).
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Remark 7.4. Theorem 7.2 can be used to demonstrate the Fano-type transmission anomaly. If
we tune the parameters of the system so that Im(ω1) is large while Im(ω2) is small we can have,
for small ω∗, that

ω1

ω1 − (Re(ω2)− ω∗)
≈ ω1

ω1 − (Re(ω2) + ω∗)
≈ ω1

ω1 − Re(ω2)
=: t1,

where t1 is not too small. In this case, the transmission coefficient is given by

t(Re(ω2) + ω∗) ≈ 1

1− Re(ω2)
ω1

− 1

1− ω∗

i Im(ω2)

.

In particular, at ω∗ = Re(ω2)
Im(ω2)
Im(ω1)

, we can see that

t(Re(ω2) + ω∗) ≈ 0, t(Re(ω2)− ω∗) ≈ 2t1.

We emphasize that ω∗ > 0 and that t is close to zero at ω = Re(ω2)+ω
∗ and not at ω = Re(ω2)−ω∗.

In other words, we have an asymmetric transmission peak at ω = Re(ω2). For some frequency
slightly larger than Re(ω2) the transmittance will be close to zero, but for all frequencies slightly
lower than Re(ω2) the transmittance will be nonzero.

7.2 Numerical illustrations

Here, we compute numerically the transmission and reflection spectra of a two-dimensional ana-
logue of the structure studied above. We assume that D consists of two disks D1 and D2, which
are both of radius RD and are separated by a distance d. Moreover, we denote by θ the angle at
which D is rotated from being parallel to the x1-axis, as depicted in Figure 4. In order to achieve
a Fano-type resonance, we will choose a small but nonzero θ.

We use the material parameters L = 1, RD = 0.05, d = 0.3, α0 = 0 and v = vb = 1 (these are the
same parameters used to derive the band structure in Section 2.1). We compute the transmittance
T = |t|2 and reflectance R = |r|2 in two different ways: using the asymptotic formulas that were
derived in Section 7.1 (denoted by Tf and Rf ) and by discretizing the operator Aω using the
multipole method (denoted by T and R). For details on the multipole discretization method, we
refer to, e.g. [3, 9].

Figures 5–7 show numerically computed transmission spectra for different values of δ. In
Figure 5 we chose θ = 0.025π while in Figures 6 and 7 we chose θ = 0.05π. All cases demonstrate
Fano-type transmission anomalies, where the transmittance is close to zero for frequencies slightly
above the second peak. For larger values of δ, the widths of the first, broad transmission peaks are
larger and the Fano-type transmission more pronounced. As expected, the asymptotic formulas
are more accurate for smaller values of δ.

In Figure 8 we show the transmission spectra for the same parameters as Figure 6 but with θ = 0,
meaning that the structure is P3-symmetric. We observe that there is no the sharp transmission
peak in this case, which is expected since the eigenmodes are bound states in the continuum and
are not excited by incident waves from the far field.

8 Concluding remarks

In this work, we have studied the existence of Fano-type resonances for high-contrast resonators
in the subwavelength regime. We have explicitly characterized the Fano-type resonance in terms
of the periodic capacitance matrix. In the symmetric case, we have proved that the structure
supports bound states in the continuum. When the symmetry is perturbed, we showed that the
states will interact with the far field and give rise to an asymmetric Fano-type transmission line
shape.

Building on this work, there have also been various attempts to use the topological properties of
periodic structures to produce Fano-type responses that are robust as a result of being topologically
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· · ·· · ·

uin

L

Figure 4: The front view of a symmetric metascreen with an incident plane wave uin. In this case, we have
circular resonators arranged in a P-symmetric dimer that is inclined at an angle of θ to the plane of the
metascreen.
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(a) Transmission spectrum.
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(b) Reflection spectrum.

Figure 5: Transmittance (a) and reflectance (b) in the case δ = 0.02, computed using the multipole dis-
cretization method. The asymmetric Fano-type transmission curve is clearly visible. Choosing δ rather
large makes the Fano-type asymmetry more pronounced. Here, we use θ = 0.025π.
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(b) Reflection spectrum.

Figure 6: Transmittance (a) and reflectance (b) in the case δ = 10−3, computed using the multipole
discretization (dashed line) and the asymptotic formulas (solid line). Compared to Figure 5, the smaller
value of δ here means that the resonances occur in the subwavelength regime and that the asymptotic
formulas provide a good approximation. Here, we use θ = 0.05π.
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(b) Reflection spectrum.

Figure 7: Transmittance (a) and reflectance (b) in the case δ = 2 · 10−4, computed using the multipole
discretization (dashed line) and the asymptotic formulas (solid line). Here, we use θ = 0.05π.

Figure 8: In a symmetric structure, there is a bound state in the continuum. Here, we repeat the analysis
from Figure 6 (with δ = 1/1000) but with θ = 0. We observe that the transmission peak around ω ≈ 0.7
is not present in this case, consistent with Proposition 6.3 and the fact that corresponding resonant mode
is a bound state in the continuum. This was computed using both the multipole discretization (dashed line)
and the asymptotic formulas (solid line).
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protected [16, 23, 27, 29]. With the analysis of [2] in mind, we expect that it will be possible to
create robust Fano-type resonances in the subwavelength regime by coupling a “continuum” to a
“discrete” state which is topologically protected. Moreover, in a related work [1] we will study a
large system of finitely many resonators and examine the extent to which its Fano-type transmission
and reflection behaviours can be approximated by the infinite system that was studied here.
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