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Abstract

This paper focuses on the extractions of Lagrangian Coherent Sets from realistic velocity fields obtained
from ocean data and simulations, each of which can be highly resolved and non volume-preserving. Two
classes of methods have emerged for such purpose: those relying on the flow map diffeomorphism associated
with the velocity field, and those based on spectral decompositions of the Koopman or Perron-Frobenius
operators. The two classes of methods are reviewed, synthesized, augmented, and compared numerically
on three velocity fields. First, we propose a new “diffeomorphism-based” criterion to extract “rigid sets”,
defined as sets over which the flow map acts approximately as a rigid transformation. Second, we develop
a matrix-free methodology that provides a simple and efficient framework to compute “coherent sets” with
operator methods. Both new methods and their resulting rigid sets and coherent sets are illustrated and
compared using three numerically simulated flow examples, including a realistic, submesocale to large-scale
dynamic ocean current field in the Palau Island region of the western Pacific Ocean.

Keywords: LCS, Rigid sets, Koopman operator, Arnoldi Iterations, Ocean Modeling, Lagrangian
transport, Realistic data
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1. Introduction

The pioneering concept of Lagrangian Coherent Structures (LCS) has emerged [1] to offer visualization
and understanding of material transport in time-dependent fluid flows. The terminology was born from
direct observations of realistic flows and refers to the persistence of distinguished material sub-domains over
time [2, 3, 4, 5]. Extracting LCS is expected to allow for improved Lagrangian hazard predictions; typical5

ocean applications include pollution tracking [6, 7, 8], search and rescue [9], or ecosystem characterizations
[10, 11, 12]. To date, several definitions of LCS that do not fully coincide have been proposed [2, 13, 4, 14,
15, 16, 17, 18, 19], and there are as many computational methodologies to extract them from time-dependent
(non-autonomous) velocity fields v(t,x). Here, the variable x denotes the spatial position over a two or
three dimensional computational domain Ω ⊂ R

n (n = 2 or n = 3). These approaches can be classified10

broadly into two categories [20].
The first category of methods [21, 22] focuses on the motion of individual particles whose location x(t)

satisfies the Ordinary Differential Equation (ODE),

{

ẋ = v(t,x(t))

x(0) = x0,
(1)

or equivalently on the relevant feature of the flow map φt : Ω → R
n associated to (1) which is defined for any

x0 ∈ Ω by φt(x0) = x(t). This first category of methods seeks simplified visualizations of the diffeomorphism
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φt, which we refer to here as diffeomorphism based methods. The difficulty in displaying the vectorial
function φt : Rn → R

n with a 2D or 3D plot is usually addressed by representing only exceptional features15

which are sufficient to offer a representative picture of its action over individual trajectories x(t). Several
works have suggested that such relevant features are codimension one surfaces across which φt exhibits
a sharp gradient; particles that are located on either side of such surface have indeed largely diverging
trajectories. Hence, these codimension one LCS (attracting, repelling, and elliptic LCS), extracted from
Finite Time Lyapunov Exponent (FTLE) fields [17] or from tensor lines of the flow map Jacobian matrix20

Dφt [23, 24, 25, 26], exhibit extremal properties of repulsion or attraction, ideally globally, or at least in
the neighborhood of these surfaces. The aforementioned methods yield LCS that can be computed at a
relatively low cost even for highly resolved velocity fields (by taking advantage of parallel computing for
trajectory integrations). However these have also the flaw of offering hardly interpretable pictures when too
many LCS are found in the domain [20]. For this reason, several other techniques (that we also refer to as25

diffeomorphism based methods) have been developed, such as braiding [19] or clustering [27]; see e.g. [28, 5]
for more exhaustive reviews.

The second category of methods focuses on the action of advection onto passive tracer fields f0 ∈ L2(Ω),
physically understood as weighted measures or density distributions of particles. This action is described by
the functional operator L : f0 7→ f0 ◦ (φt)−1, that maps the L2(Ω) function f0 to the advected distribution
f(t, ·) = f0 ◦ (φt)−1. The transported function f(t, ·) is also the solution of the advection partial differential
equation (PDE),

{

(∂t + v(t,x) · ∇)f = 0

f(0,x) = f0(x).
(2)

We refer to the techniques falling into this second category as operator based methods, which have been
introduced by Froyland et. al. [13, 29]. Different types of coherent structures, called “coherent sets”, can be
extracted from spectral decompositions of the operator L [30, 31, 32], which correspond to sets of simple30

geometry mixing slowly with their complement [33, 34]. In contrast with diffeomorphism based methods, this
approach yields coherent structures that are subdomains and not codimension-one sets [31]. Furthermore,
instead of exhibiting material coherence uniformly, coherent sets may allow large stretching within their
boundaries but no mixing between each subsets of the partition, which yields a different picture of material
transport than the first class of methods. Nevertheless, computing finite dimensional approximations of35

the functional operator L : L2(Ω) → L2(φt(Ω)) and their associated spectral decompositions (SVD or
eigenvalue decompositions) is a challenging task, which is a priori much more costly than only estimating
the invariant flow map diffeomorphism φt : Ω → R

n. Hence most of the literature so far restricts the
applications to rather low-resolution velocity fields [30] or to subregions of the working domain [35]. Specific
techniques have been proposed in more recent works so as to treat highly resolved 2D or 3D velocity fields40

[36, 37], making use of finite element basis functions adapted to the advected domain φt(Ω).

This paper aims at synthesizing, improving and comparing computational methodologies from both
diffeomorphism and operator based methods on three benchmark sets of “realistic” velocity data. The
word “realistic” refers to velocity data that are gridded, potentially highly resolved, that may include inlets
and outlets, and that are not necessary divergent free (volume-preserving), as is typically the case of high-45

dimensional realistic ocean current fields. The contributions of the paper are twofold.
In Section 3, we propose a new diffeomorphism based method that allows to characterize and extract

very efficiently rigid sets (instead of codimension one surfaces). We define rigid sets as level-sets of a polar
distance function, which correspond to subdomains over which the flow map behaves approximately as an
isometry (the composition of a translation, rotation, and orthogonal symmetry). This formulation allows to50

rapidly visualize coherent regions of the domain at a desired scale and to detect configurations for which no
such distinguished sets are found, e.g. when there is a uniform stretch everywhere in the domain.

Our second contribution is concerned with the application of operator based methods to realistic ocean
current fields. In Section 4, we propose a new matrix-free numerical algorithm which allows to extract
efficiently coherent sets from potentially highly resolved velocity data. Our technique uses Arnoldi iterations55

to compute eigenvectors of the transfer operator L without the need of storing the matrix associated to its
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finite dimensional approximation. This approach does not rely on the construction of finite-element bases
and can therefore be considered as an alternative to the methods of [36, 37]; crucially the same number of
particles is used to compute FTLEs, rigid sets, or coherent sets with a resolution identical to that of the
input velocity field.60

The theoretical and methodological advances are illustrated and compared throughout the paper on three
benchmark 2D numerical flows which are introduced and detailed beforehand in Section 2. These are the
analytic double gyre flow of Shadden et. al. [17], a Navier-Stokes flow past a cylinder, and a high-dimensional
data-driven simulation of a submesoscale to large-scale ocean current field in the Palau Island region of the
western Pacific Ocean.65

In what follows, a time dependent velocity field v(t,x) is considered, which is not necessarily a solution
of the Navier-Stokes equations. Incompressibility, i.e. div(v) = 0, is satisfied approximately in the three
examples considered in the sequel but is never a theoretical requirement.

2. Description of the three benchmark numerical flow fields

In Sections 3 and 4, the computation of rigid and coherent sets is numerically illustrated on three velocity70

fields examples: the analytic double-gyre flow, a Navier-Stokes Flow Past a Cylinder in the periodic regime,
and a high-dimensional realistic submesoscale to large-scale ocean velocity field in the Palau Island region.

2.1. Analytic double-gyre

The double gyre flow is a classical 2D benchmark example for studying Lagrangian coherence of particle
motions [17, 38, 4]. This flow consists of two vortices oscillating horizontally (Figure 1) and is commonly
defined by the analytic expression of Shadden et al. [17] :

v(t,x) = (−∂yψ, ∂xψ) with ψ(x, t;ω) = A sin[πf(x, t)] sin(πy), (3)

where f(x, t) = σ sin(ωt)x2 + (1− 2σ sin(ωt))x and x = (x, y). The 2D domain is Ω = [0, 2]× [0, 1] and the
values considered for the parameters are A = 0.1, σ = 0.1 and ω = 2π/10. The velocity values are given on75

a 512x256 grid and the flow is integrated between t = 0 and t = 15 by solving (1) with a Runge-Kutta 4
scheme for each point of the grid.

Figure 1: Streamlines and vorticity of the Double Gyre Flow at t = 10.

2.2. Flow Past a Cylinder

The second data set is obtained from a numerical simulation of a Flow Past a Cylinder solving the
incompressible Navier-Stokes equations (Figure 2). The flow is set on a domain Ω = [0, 16]× [0, 6] discretized80

with a 240 × 90 grid and a time step ∆t = 0.01. The Reynolds number is Re=100. The cylinder is a disc
of center (xc, yc) = (4.5, 3) with radius R = 0.5. The flow enters the left side of the domain with a velocity
v = (1, 0). Neumann boundary conditions are considered at the top and bottom walls, while the second
normal derivative is set to ∂2v/∂n2 = 0 at the right outflow. The flow is integrated by solving (1) on a
non-dimensional time window t ∈ [0, 10] on which the periodic regime is established (we discard the transient85

regime occurring at negative times). The ODE integration is performed with a Runge-Kutta 4 scheme using
a linear interpolation of the velocity field in between time steps.
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Figure 2: Streamlines and vorticity of the Flow Past a Cylinder Flow at t = 0 (transient regime discarded).

2.3. Realistic ocean current field in the Palau Island region

The third example is a high-dimensional numerical simulation of realistic ocean currents (Figure 3) in the
Palau Island region of the western Pacific Ocean [39]. The ocean simulations were computed using the data-90

assimilative MIT MSEAS (Multidisciplinary Simulation, Estimation, and Assimilation System) modeling
system [40, 41, 42], configured with implicit two-way nested computational domains. The domain utilized
in the present examples spans a 420 km × 360 km region, with a 1/225◦ horizontal grid resolution and
70 optimized terrain-following vertical levels [43]. Initial conditions were downscaled from 1/12◦ HYCOM
analyses (Hybrid Coordinate Ocean Model) [44] via optimization for our higher resolution coastlines and95

bathymetry [42]. The ocean simulations were forced with 1/4◦ GFS atmospheric fluxes from NCEP and
with tidal forcing from the high resolution TPXO8-Atlas from OSU [45] with adjustments to our higher
resolution geometry [46] and quadratic bottom drag. In the present Lagrangian studies, the size of the
surface of the domain is 853x728. The total duration of the ocean currents utilized is 6 days corresponding
to the period of May 8th – May 14th, 2015.100

(a) Day 3 (b) Day 6

Figure 3: Streamlines and vorticity field around the Palau Island region at t = 3 and t = 6 days. The land is colored in brown.

This example is more challenging because (i) the resolution of this example is relatively high, (ii) the
domain includes inlets, outlets, and an inner obstacle with complex geometry, and (iii) the surface flow field
is complex with multi-scale currents, eddies, jets, wakes, tides, and waves [43], and is only approximately
divergence-free, with a dynamic free-surface.

3. A diffeomorphism-based method: rigid sets from a polar distance105

In this section, we propose a new diffeomorphism based method for the computation and visualization of
LCSs. We define a polar distance functional from the singular value decomposition of the differential of the
flow map. We then propose a simple criterion to define and extract rigid sets which are subdomains which
preserves their shape when advected by a dynamic flow over a given time duration. The resulting method
is evaluated numerically and compared to the more classically used FTLE field approaches [21, 7].110
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3.1. Notations: Singular Value Decomposition of the flow map Jacobian matrix

In the following, we use the notation φ−t = (φt)−1 for the inverse flow map between the instants 0 and
t. The Singular Value Decomposition [47] of the differential of the forward (resp., backward) flow map, Dφt

(resp., Dφ−t), at the position x ∈ Ω ⊂ R
n (resp., y ∈ φt(Ω) ⊂ R

n) is denoted by,

Dφt(x) =

n
∑

i=1

σt
i(x)η

t
i(x)ξ

tT
i (x), Dφ−t(y) =

n
∑

i=1

σ−t
i (y)η−t

i (y)ξ−tT
i (y), (4)

where singular values are assumed to be given in a decreasing order, (i.e. σt
1(x) ≥ σt

2(x) ≥ . . . ≥ σt
n(x) > 0),

and singular vectors form two orthonormal basis of Rn. It is recalled that singular vectors and singular
values of Dφt (resp., Dφ−t) can be obtained from the eigenvectors and eigenvalues of the symmetric Cauchy
Green tensor Dφt(x)TDφt(x) (resp., Dφ−t(y)TDφ−t(y)) [47, 4]. Any definition of LCS based on these115

spectral invariant satisfy the “objectivity” requirement as defined by Haller in [4]: all quantities derived
from these singular values and vectors are independent under an Euclidean change of coordinates and hence
of a particular reference frame.

In this context, right singular vectors ξti(x) of the differential Dφt(x) of the forward flow map correspond
to the directions in the initial domain characterized by maximal stretching of a fluid parcel located around120

the position x. A local perturbation initially aligned along the right singular vector ξti(x) is stretched by
the factor σt

i(x) and rotated to align with the corresponding matching left singular vector ηt
i(x), as it is

directly visible from the equality Dφt(x)ξTi (x) = σt
i(x)η

t
i(x). Naturally, the same properties hold for the

backward flow map φ−t by inverting initial and advected domain. It is useful to bear in mind the duality
between the SVD of the forward and backward flow maps as stated in [48, 49, 14, 20]:125

Proposition 1. The differential Dφt(x) of the flow map and the differential Dφ−t of the inverse flow map
are related by the formula Dφ−t = (Dφt)−1 ◦ φ−t. This implies that the Singular Value Decomposition of
Dφ−t is given by

(Dφ−t)(y) =

n
∑

i=1

σt
i(φ

−t(y))−1ξt(φ−t(y))ηtT (φ−t(y)).

In other words:

• The singular values of Dφ−t are inverse of those of Dφt advected backward in time:

σ−t
i (y) = σt

n−i+1(φ
−t(y))−1.

• The right (resp., left) singular vectors of Dφ−t are the corresponding left (resp., right) singular vectors
of Dφt advected backward in time:

ξ−t
i (y) = ηt

n−i+1(φ
−t(y))

η−t
i (y) = ξ−t

n−i+1(φ
−t(y)).

It is recalled that the forward and backward FTLE field on the time window [0, t], denoted respectively
FTLEt and FTLE−t, are defined by a logarithmic rescaling of the maximal singular values σt

1(x) and σ
−t
1 (y):

FTLEt(x) =
log(σt

1(x))

t
, FTLE−t(y) =

log(σ−t
1 (y))

t
. (5)

These quantities estimate the local maximum stretch experienced by a fluid parcel or, in other words, the
local Lipschitz regularity of the flow map. Ridges of the forward and backward FTLEs, i.e. lines where the
FTLE is locally maximal, have been used to define repelling and attracting LCS [17]. If the domain is two-
dimensional and the velocity field is divergent free, div(v) = 0, then Proposition 1 implies that the forward130

FTLE is the backward FTLE (a quantity defined on the advected domain) advected backward in time.
Haller [4] suggested that LCS can be defined as integral curves of vector fields obtained from the singular
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vectors ξit(x) or ξ−t
i (y). Indeed, these curves are locally most repelling when allowing local deformations

[3]. Nevertheless, this approach does not yield globally coherent structures since a LCS can be drawn from
every point of the domain, and it is sometimes unclear how to retain the most influential ones. In [4], Haller135

proposes to select the curves that go along global maxima of the FTLE field, but it is not a priori guaranteed
that a globally maximizing property is maintained all the way along the curve. Other useful variants of
this approach have been considered in [24] as well as some instantaneous techniques [26], valid for small
integration times or for autonomous systems.

3.2. Definition of rigid sets from the polar distance140

We now propose a simple definition of coherent structures based on the singular decomposition of the
differential of the flow map that addresses some of the above concerns. Our criterion allows to extract
coherent subregions instead of codimension one surfaces. The idea is based on the following theorem which
is a well known results of continuum mechanics [50, 51]:

Theorem 1. Suppose that φt is a transformation whose differential is an orthogonal matrix at any point
of the domain Ω, namely

∀x ∈ Ω,Dφt(x)TDφt(x) = I. (6)

Then φt is an isometry on Ω: Dφt(x) = P is a an element of the group On of n-by-n orthogonal matrices
P ∈ On (independent of x and satisfying PTP = I) and φt is the composition of P with a uniform
translation:

∀x ∈ Ω,φt(x) = φt(x0) + P (x− x0).

The condition (6) states that the singular values of Dφt are equal to one: σt
i(x) = 1 for any x ∈ Ω.145

Theorem 1 suggests that a way to quantify how far the flow map φt is from being a rigid transformation
can be done by measuring how far the Jacobian matrix Dφt(x) is from being an orthogonal matrix at every
point. It turns out that John (1961) has showed that Theorem 1 is “stable under perturbations” in the
following sense:

Theorem 2 (John [52], see also chapter 5, Theorem. 2.2 in [53]). Let B(x0, ρ) ⊂ Ω be the ball centered at
x0 and of radius ρ. Assume that there exists ǫ > 0 such that

∀x ∈ B(x0, ρ), ∀1 ≤ i ≤ n, |σt
i(x)− 1| ≤ ǫ,

where σt
i(x) = σt

i(Dφt(x)) is the i-th singular value of the Jacobian matrix Dφt(x). Then there exists a
constant C dependent only of the dimension n of Rn and an orthogonal matrix P independent of x such
that φt is close to be a rigid transformation on B(x0, ρ):

∀x ∈ B(x0, ρ), ||φt(x)− φt(x0)− P (x− x0)|| ≤ Cρǫ.

Based on the previous ideas, we can propose a definition of rigid sets.150

Definition 1. A set Arigid is called rigid between the instants 0 and t if the restriction of flow map φt

to Arigid is close to be a rigid transformation (the composition of a rotation, translation, and orthogonal
symmetry), namely if there exists x0 ∈ Ω and P ∈ On such that,

φt(Arigid) ≃ {x0 + P (x− x0) |x ∈ Arigid}.

Remark 1. Orthogonal symmetries are allowed because large stretching of Arigid can occur at intermediate
times 0 < s < t, which may deform the shape of Arigid in such a way Dφt(x) ≃ P at the final time t for an
isometry satisfying P ∈ On with det(P ) = −1.

From Theorem 2, rigid sets are subdomains over which the singular values (σt
i(x))1≤i≤n of Dφt remain

close to one, according to a “distance” P(Dφt) to be defined. For example, the distance considered in
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Theorem 2 is max1≤i≤n |σt
i(x) − 1|. From the equivalence of norms in finite dimension, we rather consider

the following quantity for our numerical applications:

P(Dφt)(x) =

(

n
∑

i=1

(1− σt
i(x))

2

)
1
2

. (7)

This quantity can be showed to be equal to the Euclidean distance between the matrix Dφt and its projection
P (x) onto the group of n-by-n orthogonal matrices On:

P(Dφt)(x) = ||Dφt(x)− P (x)|| = inf
P∈On

||Dφt(x)− P ||.

The projection P (x) is also the unique matrix P (x) ∈ On occuring in the polar decomposition Dφt =
P (x)S(x) with S(x) symmetric definite positive (see e.g. [54, 55]). For this reason, P is referred to as a155

polar distance in the present paper, because it measures the distance between a matrix and its polar part
(see also [56]). Rigid sets Aǫ,t

rigid are defined from a simple threshold on the polar distance.

Definition 2. For a given ǫ > 0, the ǫ-rigid sets of φt are the connected components of the set Aǫ,t
rigid

defined by:
Aǫ,t

rigid = {x ∈ Ω|P(Dφt)(x) ≤ ǫ}. (8)

The parameter ǫ allows for some tolerance over the scale at which one seeks the rigidity. Connected
components of Aǫ

rigid are transformed by φt in an approximate rigid manner, with a possible stretching of
magnitude of order ǫTρ where ρ is the characteristic length of the each component set.160

Remark 2. In 2D, i.e. n = 2, and for a divergence free field, this criterion can be related to a thresholding
of the FTLE field: indeed, the relation σt

1(x)σ
t
2(x) = 1 holds for all times t, which can be showed to imply

{x ∈ Ω|FTLEt(x) ≤ log(1 + ǫ/
√
2)/t} ⊂ Aǫ,t

rigid ⊂ {x ∈ Ω|FTLEt(x) ≤ log(1 + ǫ)/t}.

Hence ridges of the FTLE that delimit regions where the FTLE field is small may be considered as true
boundaries of rigid sets. This addresses the limitations of the ability of FTLE fields to detect LCSs: examples
given in [23] for which FTLE ridges are disqualified to be LCS, are also disqualified to be rigid sets, in the
sense that FTLE values of these examples are high everywhere in the domain. In these cases, the flow
map φt exhibits uniformly high stretching which translates to high values of the polar distance P(Dφt)(x)165

everywhere in the domain and the proposed criterion (8) thus correctly disqualifies these regions from being
rigid sets: Aǫ,t

rigid is empty for small ǫ, even if the FTLE field admits ridges. Such a relation between FTLEs
and rigid sets is lost in 3D or for non-volume preserving velocity fields.

Remark 3. Exploiting the duality of Proposition 1, an alternative definition of the polar distance could be

P(Dφt)(x) =

(

n
∑

i=1

(1− σt
i(x))

2

σt
i(x)

)
1
2

. (9)

An advantage of using (9) rather than (7) is an invariance when inverting the direction of the time window:
P(Dφ−t) = P(Dφt) ◦ φ−t. With this definition, rigid sets obtained from the thresholding of equation (8)
at time 0 coincide with those obtained at time t from a thresholding of the backward flow map advected
backward in time:

Aǫ,t
rigid = {x ∈ Ω|P(Dφt)(x) ≤ ǫ} = φ−t({y ∈ φt(Ω)|P(Dφ−t)(y) ≤ ǫ}).
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3.3. Further criterion

It is possible to extend the definition of the polar distance and their resulting rigid sets by taking into
account the evolution of a set Aǫ,t

rigid over the whole time window [0, t] instead of only the initial and final

times 0 and t, e.g. Aǫ,t
rigid := (Pt)−1([0, ǫ]) with,

Pt(x) :=
1

T

∫ t

0

n
∑

i=1

(1− σs
i (x))

2

σs
i (x)

ds.

We refer to [57, 58] for detailed analyses and examples on this extended polar distance.170

3.4. Numerical Results

For each of the three examples of Section 2, the logarithm of the polar distance log(P(Dφt)(x) (eq. (7))
is plotted on Figure 4, and compared to the associated FTLE field on Figure 5. “Rigid sets” Aǫ,t

rigid (with
ǫ = 1) on which the flow map acts approximately as a rigid transformation are obtained as the blue regions.
Since these flows are approximately divergence free, a clear analogy is visible between the polar distance175

and the FTLE field: on Figure 5, rigid sets correspond to the darkest regions of the FTLE field. Initial and
final configurations of rigid sets obtained with such thresholding are visible on Figure 6 and identified with
matching colors. These examples demonstrate that the thresholding criterion (8) may be used to identify
key subregions that are advected in a rigid manner.

For the Double Gyre Flow of Section 2.1, we identify 4 rigid sets depicted with four different colors180

on Figure 6a. It is interesting to observe that the flow map behaves visibly as the composition of a rigid
rotation, orthogonal symmetry, and of a translation on each of the connected rigid subregions, but these
transformations may be different on each component. Surrounding regions are characterized by increased
material stretching. More specifically, rigid sets of the left part of the domain (in red and blue) evolve
according to the left vortex of the flow (Figure 1) in a clock-wise rotation. Furthermore, we observe that a185

symmetry along the vertical axis comes into play between each matching pairs of rigid sets. As is highlighted
in [57], this emphasizes that our polar distance criterion (7) is able to determine shapes that remain similar
between the initial and the final instants, but which may undergo severe stretching at intermediate times
t ∈ (0, 15) (otherwise only a rotation and a translation could possibly occur on each component because the
sign of det(Dφt) remains positive). The remaining part of the flow is subject to large stretching, e.g. due to190

the high shear between the two vortices, and no other rigid set is identified.
For the Flow Past a Cylinder of Section 2.2, we identify 6 rigid sets depicted with matching colors on

Figure 6b. Clearly, each of these sets move mainly according to a translation towards the right as prescribed
by the incoming flow. The sets labeled in red and blue are however also subject to some rotation. The
remaining part of the flow is subject to large stretching due to the periodic oscillations of the flow, or leaves195

the domain before the final recorded time t = 10.
Finally, prominent connected rigid components are less easily identified for the high-dimensional surface

flow in the Palau Island region Section 2.3, due to the occurrence of rather large stretching and transport
barriers in multiple locations of the domain, as a result of the complex submesoscale-to-large currents around
and above the steep topography of the Palau Archipelago. This is in agreement with the forward FTLE200

field of Figure 5c. The thresholding of the polar distance (7) with ǫ = 1 yields the black regions visible on
Figure 6c. Examining how these various sub-regions evolve with the flow, we identified 6 regional sets whose
shapes are approximately conserved from the initial to the final time. Despite the larger complexity of the
flow, this analysis allows us to qualitatively identify the main coherent sets and describe their advective
transport. The yellow set evolves according to a slight translation towards the northwest with almost no205

rotation. The violet, brown and light green set are only approximately translated towards the northwest,
north-northwest, and north, respectively, as each undergo some east-west stretching. The dark red subdo-
main is subject to a significantly larger translation towards the northwest. The dark green subdomain is
subjected to approximately the same translation towards the northwest but with a more significant rotation.
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(a) Double Gyre Flow of Section 2.1(forward time, from t = 0 to t = 15)

(b) Flow Past a Cylinder of Section 2.2 (forward time, from t = 0 to t = 10).

(c) Palau Island flow of Section 2.3 from May 8th 2015 (forward

time, from t = 0 to t = 6 days), in day−1 (color scale).

(d) Palau Island flow of Section 2.3 from May 14th 2015 (backward

time, from t = 6 days to t = 0), in day−1 (color scale).

Figure 4: Plots of the logarithm of the polar distance log(P(Dφt)(x))/t (eq. (7)) for each of the three velocity fields of Section 2.

4. An operator-based method: efficient matrix-free algorithm for computing coherent sets210

We now focus on the computation of coherent sets using operator based methods as developed by
Froyland et. al. [30, 59, 34] on realistic velocity data. An issue to address is the large computational cost
of assembling matrices associated with functional operators and of computing their spectral decomposition.
The main contribution of this section is to propose a simple and efficient matrix-free method that computes
coherent sets based on an Eulerian or Lagrangian flow-map representation [38, 60, 61] at the same spatial215

resolution as the numerical flow (number of trajectories mimics the resolution of the spatial discretization).
The interpretation of coherent sets as subdomains of smooth functions in the language of Sobolev space,

the use of power iterations to compute them, and the exploitation of the zero diffusion-limit in our algorithm
are the main originality of this section. However, our numerical method (presented in Algorithm 1 below)
relies on several aspects of the theory of coherent sets that are briefly reviewed throughout the section.220

Consequently, we provide in Section 4.1 a short review of the transfer operator method interpreted in a
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(a) Forward FTLE field of the Double Gyre Flow of Section 2.1(forward time,
from t = 0 to t = 15)

(b) Forward FTLE field of the Flow Past a Cylinder of Section 2.2 (forward time,
from t = 0 to t = 10).

(c) Forward FTLE field of the Palau Island flow of Section 2.3
from May 8th 2015 (forward time, from t = 0 to t = 6 days), in

day−1 (color scale).

(d) Backward FTLE field of the Palau Island flow of Section 2.3
from May 14th 2015 (backward time, from t = 6 days to t = 0),

in day−1 (color scale).

Figure 5: Plots of the FTLE field FTLEt
0
(x) (eq. (5)) for the each of the three velocity fields of Section 2. The white

area corresponds to locations of particles that either leave rectangular domain (forward time) or that have not been reached
(backward time).

Sobolev space framework (following [34]) rather than in the more classical language of ergodic theory (as
e.g. in [30]). Our matrix-free algorithm is then introduced in Section 4.2; its efficiency takes advantage of
the power method and of the zero diffusion limit relating the Singular Value Decomposition of the transfer
operator to that of the dynamic Laplacian. Finally, we present our numerical results for the three previous225

benchmark flow examples in Section 4.3, so as to offer the comparison with diffeomorphism based methods.
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(a) Double Gyre Flow of Section 2.1 (left: t = 0, and right: t = 15)

(b) Flow Past a Cylinder of Section 2.2 (left: t = 0, and right: t = 10)

(c) Palau Island flow of Section 2.3 for May 8th - May 14th 2015 (left: t = 0 days, and right: t = 6 days)

Figure 6: Initial and final configurations of rigid and approximately rigid sets. Colors have been added to help the reader
identify corresponding pairs of rigid sets.

4.1. Definition and properties of coherent sets as zero level-sets of eigenfunctions of a dynamic Laplace
operator

Several pioneering works of Froyland et. al. [13, 29, 33, 30, 34] have developed methodologies to decom-
pose the material domain Ω into “coherent partitions”, that can be interpreted as a set of subdomains that
stir or mix slowly when subjected to material transport by the flow v(t, x). The key idea is to study spectral
decompositions of the push-forward operator

L : L2(Ω, dµ(x)) → L2(φt(Ω), dν(y))
f 7→ f ◦ φ−t,

(10)

where L2(Ω, dµ(x)) and L2(φt(Ω), dν(y)) denote the spaces of square integrable functions over the initial
and advected domains Ω and φt(Ω), equipped with respective given measures dµ(x) and dν(y). The operator230
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L maps a scalar data f labelling all particles at initial positions x ∈ Ω with the values f(x), to the function
Lf = f ◦ φ−t obtained by transporting all function values along particles’ paths.

Roughly speaking, coherent sets are obtained in the initial and advected configurations from the level-sets
of respectively the right and left singular vectors of a regularized version Lǫ ≃ L of the transport operator
by addition of a small amount of diffusion. In the zero diffusion limit ǫ→ 0, the right eigenvectors converge235

to the eigenvectors of the Dynamic Laplace operator T = −∆Ω − L∗∆L where L∗ is the adjoint of L.
These results have been first derived by Froyland et. al., by using ideas of ergodic theory [13, 29, 33], and
by developing later variational [30, 59] or geometric [34, 31] characterizations. Next, we synthesize these
results using the vocabulary of Sobolev’s spaces instead of that of ergodic theory.

4.1.1. Coherent sets as minimizers of an energy functional240

Based on [34, 31, 36], coherent sets Acoherent are sets that have a “simple geometry” in both the initial
and final configurations. As it is classical in functional analysis and shape optimization [62, 63], a class Oρ of
sets with “simple” geometry can be mathematically defined as the set of negative subdomains of sufficiently
smooth functions f , e.g. functions of the Sobolev space H1(Ω, dµ(x)) (see [62]) having a Sobolev energy
∫

Ω
|∇f |2dµ(x) lower than some constant ρ for a given “mass”

∫

Ω
|f |2dµ(x) = 1:

Oρ =

{

f−1((−∞, 0]) |
∫

Ω

|∇f |2dµ(x) ≤ ρ and

∫

Ω

|f |2dµ(x) = 1

}

. (11)

Intuitively, sets of Oρ have a “simple”, smooth geometry for small values of ρ, because the associated
functions f cannot oscillate two much (this statement can be made precise by the Courant Nodal domain
theorem, see Theorem 13 p111 in [62], vol. 3).

Remark 4. It would also be possible to consider the class of “simple” sets that have a small perimeter for
a prescribed volume. This class can be in fact related to (11) by using the Federer-Fleming theorem and245

Cheeger inequalities (see [34]). In numerical practice, (11) is more convenient to manipulate.

In order to obtain coherent sets as the connected components of negative subdomains f−1((−∞, 0])), we
seek functions f satisfying

∫

Ω
|f |2dx = 1 and with small values of both energies

E0(f) :=

∫

Ω

|∇f |2dµ(x), Et(f) :=

∫

φt(Ω)

|∇Lf |2dν(y).

Small values of E0(f) and Et(f) are indeed expected to imply that both the associated domain f−1((−∞, 0]))
and its transported configuration Lf−1((−∞, 0])) admit a small number of connected component with simple
geometries both in the initial and in the advected configurations. Following [34, 31], we see that a natural
way to obtain such functions f is to consider the following minimization problem:

min
f∈H1(Ω,dµ(x))∫
Ω
|f |2dµ(x)=1

J(f) := E0(f) + Et(f) =

∫

Ω

|∇f |2dµ(x) +
∫

φt(Ω)

|∇(Lf)|2dν(y). (12)

Remark 5. In the definition of eq. (12), it is assumed that the advection operator (eq. (10)),

L : H1(Ω, dµ(x)) 7→ H1(φt(Ω), dν(y)) , (13)

maps H1(Ω, dµ(x)) to H1(φt(Ω), dν(y)), which is the case if the velocity field v is sufficiently smooth on
[64, 65, 34], for example a C1 function. Indeed, in that case the H1(Ω, dµ(x)) regularity is preserved under
the composition with the diffeomorphism φt.

Obviously, there is a trivial minimizer to (12) which is the constant function f0 =
∣

∣

∫

Ω
dµ(x)

∣

∣

−1/2
. f0 is250

indeed the most regular function of H1(Ω, dµ(x)), but it defines no coherent set because f0((−∞, 0])) = ∅.
However (12) is related to an eigenvalue problem which admits solutions on smaller functional spaces.
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Proposition 2 (see Froyland (2015) [34]). Consider the bilinear form a(f, g) defined by

∀f, g ∈ H1(Ω, dµ(x)), a(f, g) =

∫

Ω

∇f · ∇gdµ(x) +
∫

φt(Ω)

∇(Lf) · ∇(Lg)dν(y), (14)

where the dot · denotes the usual scalar product over 2D or 3D vectors. There exists an orthonormal basis
of eigenfunctions (fk)k∈N of L2(Ω, dµ(x)) and a diverging and increasing sequence of associated positive
eigenvalues (λk)k∈N satisfying,

fk ∈ H1(Ω, dµ(x)) and ∀g ∈ H1(Ω, dµ(x)), a(fk, g) = λk

∫

Ω

fkgdµ(x) . (15)

The first eigenvalue is λ0 = J(f0) = 0 and its associated eigenvector is the constant function f0 =
(
∫

Ω
dµ(x))−1/2. These functions (fk) are the solution of the minimization problem (12) in the following

sense:255

• The constant function f0 is the solution to the minimization problem (12) with cost value λ0 = 0.

• If k > 0, fk is a solution of the minimization problem:

λk = J(fk) = min
f∈H1(Ω,dµ(x))∫

Ω
|f |2dx=1

f∈span(fi)
⊥
0≤i≤k−1

J(f) =

∫

Ω

|∇f |2dµ(x) +
∫

φt(Ω)

|∇(Lf)|2dν(y). (16)

where the minimization includes the additional constraint that fk is orthogonal to the space orthogonal
to the first k eigenvectors f0, . . . , fk−1.

Proposition 2 yields functions f satisfying
∫

Ω
|f |2dµ(x) = 1 with an energy J(f) ≤ λk, by considering

functions f ∈ span(fi)1≤i≤k in the space spanned by the first k eigenfunctions. Since the first eigenvalue λ0 is260

null and associated with the space of constant functions, higher order eigenvectors satisfy the orthogonality
condition

∫

Ω
fkdµ(x) = 0 for k ≥ 2. This implies that an identical amount of mass is distributed in

either component of the zero level-set function, which suggests that the zero level-set may be an adequate
candidate for delimiting coherent sets, which is the strategy retained in this paper. In [30], such level set
was rather selected by solving an additional minimization problem. This synthesis also makes clear that the265

computation of eigenfunctions of order k greater than 2 is advantageous.

Definition 3. Given a choice of measures µ(x) and ν(y), the coherent sets of order k ≥ 1 are defined to
be the connected components of the partition of Ω induced by the negative subdomains fk((−∞, 0)) of the
eigenvector fk of (15).

4.1.2. Choice of initial and image measures270

In general and in this paper, one sets the initial and the image measures according to,

dµ(x) = dx

dν(y) = |det(Dφt)|−1 ◦ φ−t(y)dy,
(17)

where dx and dy are the usual Lebesgue measures over the domains Ω and φt(Ω). This has the advantage
of implying the following convenient fact (see [31]):

Proposition 3. Assuming the choice of measure (17), the operator L−1 : f 7→ f ◦ φt is both the inverse
of the transport operator L (eq. (10)) and its adjoint with respect to the scalar products of L2(Ω, dµ(x)) and
L2(φt(Ω), dν(y)), namely L∗ = L−1 and the following identity holds:

∀f ∈ H1(Ω, dµ(x)), g ∈ H1(φt(Ω), dν(y)),

∫

φt(Ω)

(Lf)(y)g(y)dν(y) =

∫

Ω

f(x)(L−1g)(x)dµ(x). (18)
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In particular, (18) implies that both energies
∫

Ω
|∇f |2dµ(x) and

∫

φt(Ω)
|∇(Lf)|2dν(y) in the definition

(12) are weighted relatively to the same mass constraint
∫

φt(Ω)
|Lf |2dν(y) =

∫

Ω
|f |2dµ(x) = 1.

If L is volume preserving, i.e. if the velocity field is divergent free (div(v) = 0), the image measure dν(y)275

and the initial measure are identically equal to the Lebesgue measure: dµ(x) = dx and dν(y) = dy.

4.1.3. Strong form of the dynamic Laplace operator

The dynamic Laplace operator has been introduced in [34] as follows.

Definition 4. Assuming the choice of measures (17), the dynamic Laplace operator is the operator T :
H1(Ω, dµ(x)) → H−1(Ω, dµ(x)) defined by

T = −∆−L∗∆φt(Ω)L. (19)

The following proposition states that the functions fk are the eigenvectors of T equipped with suitable
boundary conditions. We also refer to [31] for further generalizations.280

Proposition 4 (see Froyland (2015) [34]). Assuming the choice of measure (17), the sequence (fk) defined
in Proposition 2 are solutions to the following eigenvalue problem:

{

−∆fΩ,k − [∆(fk ◦ φ−t)] ◦ φt = λkfk in Ω

∇fk · (I + (Dφ−t)(Dφ−t)T )n = 0 on ∂Ω,
(20)

where n is the outward normal to ∂Ω and −∆ = −∑n
i=1 ∂

2
i is the usual Laplace operator.

4.2. Efficient computation of coherent sets using the zero-diffusion limit and matrix-free evaluations

We now present our matrix-free methodology to compute coherent sets, relying on the characterization
(20) rather than on the eigenvalue problem (15) given in variational form. We start by providing a few
remarks regarding the issues arising in the computation of the eigenvalues of the dynamic Laplace operator285

(19) with standard finite element methods. We then present an efficient way to solve (20) by relying on

(i) a matrix-free approach for the computation of eigenvectors of the dynamic Laplace operator (19);

(ii) the zero-diffusion limit property [34] which relates the eigenvectors fk of (20) to the singular vectors of
the transfer operator L (10). This allows computing eigenvectors of (20) associated with the smallest
eigenvalues.290

These two ingredients are detailed next. The whole procedure is summarized in Algorithm 1 below.

4.2.1. Lack of sparsity when using standard finite element eigenvalue solvers

A challenge that arises when trying to solve the eigenvalue problem (15) with the finite element method
is the computation of the matrix associated with the bilinear form a of (14) (or in other words, of the
discretization of the dynamic Laplace operator −∆Ω − L∗∆φt(Ω)L). Finite-element methods as well as295

collocations methods have been considered by Froyland in [66].
Generally, the domain Ω is discretized into p mesh elements Ω = ∪p

i=1Ωi with centers (xi)1≤i≤p and one
considers a standard P1 Lagrange finite element discretization of the space H1(Ω,Rn) with basis functions
ψ1, . . . , ψp) (see e.g. [67]). The matrices Akl = a(ψk, ψl) and Bkl =

∫

Ω
ψkψldµ(x) are then computed and

the generalized eigenvalue problem
Ax = λBx (21)

is solved numerically to obtain finite dimensional approximations of the functions fk satisfying (15).
The matrix A is given by A = A1 + A2, where A1 is defined by A1

kl =
∫

Ω
∇ψk∇ψldµ(x) and A2 is

A2
kl =

∫

φt(Ω)
∇(Lψk)∇(Lψl)dν(y). The matrix A1 is sparse, however this is in general not the case for the
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matrix A2 due to numerical diffusion and the exponential stretching of each of the elements φt(Ωi). This is
mostly visible from the following identity (see e.g. [63]):

A2
kl =

∫

φt(Ω)

∇(Lψk) · (∇Lψl)dν(y) =

∫

Ω

(Dφt)−T∇ψk · (Dφt)−T∇ψl| det(Dφt)|dµ(x).

The matrix A2 is not sparse because the transported gradient (Dφt)−T∇ψk has in general a support inter-
secting the one of (Dφt)−T∇ψl. As a consequence, the matrix A2 tends to be a large dense matrix even for
moderate integration times. Hence, solving the eigenvalue problem (21) becomes very expensive as soon as300

the resolution of the input velocity fields becomes large.

Remark 6. The initial works of Froyland et. al. [30] relied on the Ulam Galerkin method which considers
basis functions ψk that do not even belong to the spaceH1(Ω, dµ(x)) (namely ψk = 1Ωk

are the characteristic
functions of the elements Ωk). More recent works [36, 37] have proposed to use finite element bases adapted
to φt(Ω) in order to make the assembly of A and the solution of (21) computationally tractable.305

4.2.2. Matrix-free evaluation of the dynamic Laplace operator

Matrix-free eigenvalue solvers rely on variants of the power method, such as Lanczos or Arnoldi iterations
[68, 69]. These algorithms use the classical fact that repeated iterations T kf of the matrix with an initial
data f tend to align with the eigenvector associated with the eigenvalues of largest magnitude. Only
matrix-vector products T f need to be evaluated, which alleviates the need for computing and storing all310

the coefficients Tkl.
Presently, matrix-vector products T f of the dynamic Laplace operator (19) can be evaluated efficiently,

by using e.g. sparse finite dimensional approximations of the Laplace operators −∆Ω and ∆φt(Ω), and
efficient matrix-free evaluations of the finite dimensional approximations of advected functions Lf and
L∗ = L−1g with g = ∆(Lf). The latter is possible thanks to an interpolation scheme of Lf on the315

computational domain Ω (known at locations φt(xi) of the advected grid points (xi)1≤i≤p).

4.2.3. The zero-diffusion limit for computing smallest eigenvalues

From Proposition 2, coherent sets of lowest orders k are obtained from of the eigenvectors fk of the
dynamic Laplace operator T associated with the eigenvalues λk of smallest magnitudes. Consequently, we
can not use the power method directly on the operator T (19), which would yield eigenvectors associated with320

eigenvalues of the largest magnitudes. Usually, matrix-free iterative algorithms compute power iterations of
the inverse T−1 in order to find the smallest eigenvalues of T . Additional matrix-free iterative algorithms
can for instance be used to solve for such linear inversion (with e.g., conjugate gradient methods [68]).

In this paper, we rely on the advantageous use of the zero-diffusion limit highlighted by Froyland in [34]
in order to avoid such inversion.325

Theorem 3 (Froyland (2015) [34]). For any ǫ > 0, consider the operator Tǫ defined by

Tǫ : H1(Ω, dµ(x)) −→ H−1(Ω, dµ(x))

f 7−→ I − (I − ǫ∆Ω)
− 1

2L∗(I − ǫ∆φt(Ω))
−1L(I − ǫ∆Ω)

− 1
2

ǫ
f.

Then, Tǫf ⇀ T f weakly-∗ in H−1(Ω, dµ(x)).

Remark 7. The weak-∗ convergence Tǫ ⇀ T means that for any functions f, g ∈ H1(Ω, dµ(x)), it holds
〈Tǫf, g〉 → 〈T f, g〉 where 〈·, ·〉 is the duality product between H−1(Ω, dµ(x)) and H1(Ω, dµ(x)).

Remark 8. The regularization operator (I − ǫ∆Ω)
− 1

2 : L2(Ω, dµ(x)) → H1(Ω, dµ(x)) is defined from any
standard definition of fractional power [70], e.g.

(I − ǫ∆Ω)
− 1

2 : L2(Ω, dµ(x)) → H1(Ω, dµ(x))
f 7−→ ∑

k∈N

1
(1+ǫµk)1/2

〈ek, f〉L2(Ω)ek.
(22)
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where (µk)k∈N and (ek)k∈N are the eigenvalues and an orthonormal basis of eigenvectors of −∆Ω with

Neumann boundary conditions, respectively. The operator (I − ǫ∆φt(Ω))
− 1

2 on L2(φt(Ω), dν(y)) can be330

defined in a similar manner.

Theorem 3 suggests therefore that the eigenvectors (fk) of −∆Ω − L∗∆φt(Ω)L can be approximated by
eigenvectors of L∗

ǫLǫ where Lǫ is the “diffusive” approximation

Lǫ = (I − ǫ∆φt(Ω))
− 1

2L(I − ǫ∆Ω)
− 1

2 ≃ L. (23)

Remark 9. The coefficient ǫ in (22) quantifies the intensity of the regularization induced by the smoothing

operators (I − ǫ∆Ω)
− 1

2 and (I − ǫ∆φt(Ω))
−1. It must be chosen both sufficiently small so as to ensure that

the approximation (23) holds, and sufficiently large so as to allow eigenvalues of L∗
ǫLǫ (which all converge

to 1 as ǫ → 0 since L∗
ǫLǫ converges to the identity) to be distinguished by numerical algorithms. Lǫ335

can be interpreted as a diffusive transport operator that accounts for the introduction of a small quantity
of artificial/numerical diffusion in the purely advective dynamics (2), or of a small random noise in the
deterministic particle trajectories (1) (see also the discussions in [71]).

Remark 10. The original statement of Theorem 3 in [34] states that the convergence Tǫ ⇀ T still holds (up

to a multiplicative constant) when the smoothing operators (I−ǫ∆Ω)
− 1

2 and (I−ǫ∆φt(Ω)) are replaced with340

any isotropic regularizing kernels. This implies the important property that the right singular vectors fk,ǫ
of Lǫ (eq. (23)) become independent of the nature of the added diffusion when ǫ→ 0. This has the notable
benefit of yielding a computational methodology that is “robust to the numerical advection schemes”, in the
sense that singular vectors fk,ǫ of Lǫ are thus moderately insensitive to the (unknown) numerical diffusion
affecting any discrete approximation of the advected functions Lf .345

Remark 11. Computing coherent sets from the Singular Value Decomposition of Lǫ rather than from
the spectral decomposition of the dynamic Laplace operator T was the original framework proposed by
Froyland [30]. Physically, right singular vectors fǫ,k of Lǫ are the most “resistant” functions to diffusion
when advected by the flow. Indeed, singular values σk,ǫ ≃ (1−ǫλk)1/2 of the operator Lǫ with corresponding
right and left singular vectors fk,ǫ, gk,ǫ = Lǫfk,ǫ solve the following maximization problem:

σk,ǫ = 〈Lǫfk,ǫ, gk,ǫ〉L2(Ω,dµ(x)) = max
f∈H1(Ω,dµ(x)),

g∈H1(φt(Ω),dν(y)),∫
Ω
|f |2dµ(x)=

∫
φt(Ω)

|g|2dν(y)=1

g∈span(gj)
⊥
j<i,f∈span(fj)

⊥
j<i

〈Lǫf, g〉L2(Ω,dµ(x)). (24)

Under pure advection, and with the choice of measure (17), the mass of a function f is conserved in the
sense that

∫

Ω
|f |2dµ(x) =

∫

φt(Ω)
|Lf |2dν(y). If a small amount of diffusion ǫ is added in such a way that

L is replaced with Lǫ, Lǫf suffers from a loss of mass:
∫

φt(Ω)
|Lǫf |2dν(y) <

∫

Ω
|f |2dµ(x). From (24),

functions belonging to the subspace span(fi,ǫ)i≤k will be affected by a loss of mass by a factor at most σk,ǫ.
Since the singular values σk,ǫ are close to 1 for the first values of k, span(fi,ǫ)i≤k can be understood as the350

k dimensional subspace of initial data that is the most resistant to diffusion.

The key advantage offered by the operator Lǫ lies in the fact that the largest singular values of the
compact, Hilbert-Schmidt operator Lǫ correspond to the smallest eigenvalues of the dynamic Laplace op-
erator T . Furthermore, matrix-vector products Lǫf can still be evaluated without the need for storing a
discretization matrix of Lǫ. This enables computing approximate eigenvectors fk,ǫ ≃ fk corresponding to355

these eigenvalues without the need for evaluating the inverse T−1.
Our new numerical methodology is summarized in Algorithm 1. In our implementation, the domain Ω

is rectangular and is discretized into a finite dimensional grid with nodal points (xi, yj)1≤i≤p,1≤j≤q and grid
spacing ∆x,∆y > 0. We use trajectory integration of the ODE (1) for the computation of the flow map φt

and its inverse φ−t. Given a discretized scalar function (f(xi, yj))1ı≤p,1≤j≤q, the vector products Lf and360

L∗f are computed by projecting f ◦φt and f ◦φ−t on the grid points thanks to a linear interpolation scheme.
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Algorithm 1 Matrix-free method for coherent sets extraction

1: Compute a numerical approximation of the flow map φt and of its inverse φ−t, using e.g., trajectory
integration of each of the grid points or an eulerian method [38, 60, 61].

2: Assuming the choice of measures (17) and for any finite-dimensional approximation of a function f ,
matrix-free estimations of Lf = f ◦ φ−t and L∗f = f ◦ φt are computed by using direct interpolation
of f at advected points φt(xi, yj) or φ

−t(xi, yj) (using e.g., interpn in MATLAB)
3: A diffusive approximation Lǫ of L is estimated by composition with self-adjoint regularizing operators
jΩ,ǫ and jφt(Ω),ǫ as in [59]:

Lǫ = jφt(Ω),ǫLjΩ,ǫ, L
∗
ǫ = jΩ,ǫL

∗jφt(Ω,ǫ). (25)

In (23), one has jΩ,ǫ = (I − ǫ∆Ω)
− 1

2 and jφt(Ω,ǫ) = (I − ǫ∆φt(Ω))
− 1

2 . If the diffusion satisfies the CFL
condition ǫ < (∆y2 +∆x2)/2, the linear inversion can be avoided by using explicit schemes, e.g.,

jΩ,ǫ((fi,j)i,j) =

(

fi +
ǫ

2

fi+1,j − 2fi,j + fi−1,j

∆x2
+
ǫ

2

fi,j+1 − 2fi,j + fi,j−1

∆y2

)

i,j

,

for central finite-differences at internal nodes, where (fi,j)i,j ≡ (f(xi, yj))i,j is the discretization of a
function f . Alternatively, a power of such operator or more general shapiro filters [74, 72, 60]) can be
used if larger values of the diffusion ǫ are needed.

4: Finally, estimate dominant eigenvectors of L∗
ǫLǫ by using any iterative method that evaluates only

matrix-vector products such as Lanczos or Arnoldi iterations (see e.g. [68]). Our implementation relies
on the MATLAB function eigs with the functional operator Lǫ as an argument (instead of a matrix).

Finally, the operators (I− ǫ∆Ω)
− 1

2 and (I− ǫ∆φt(Ω))
− 1

2 are approximated by using finite differences. In our
own numerical application, we found advantageous to increase the amount of diffusion by replacing these
operators with the third power jǫ(fi) = (F (1))3 of a first order Shapiro filter F (1) (see [72, 73, 20]).

Remark 12. An alternative approach to Algorithm 1 suggests to estimate singular vectors fk from a low365

rank estimation of the operator Lǫ, which could be used in the case where computing many Arnoldi iterations
would become too expensive. These results are detailed and illustrated in [20].

4.3. Numerical results

The numerical methodology of Algorithm 1 is now illustrated on the three benchmark flow examples
introduced in Section 2.370

For comparison with prior results, we first include in our study the double gyre test case considered in
[59]: the flow velocity v(t, x) is defined by (3) with A = 0.25, σ = 0.25 and ω = 2π, and the flow is integrated
from t = 0 to t = 2 on a 256x128 grid. The resulting first 8 singular vectors of the diffusive transfer operator
Lǫ are shown on Figure 7. This enables one to verify that the second pair of singular vectors computed with
Algorithm 1 matches the results of [59] obtained with the Ulam Galerkin method.375

Results for the three benchmark flow examples of Section 2 are then shown on Figure 8, Figure 9, and
Figure 10, respectively. Note that right singular vectors fk,ǫ, which correspond to the initial configuration,
have been plotted on the left while left singular vectors gk,ǫ = Lǫfk,ǫ have been plotted on the right.
Coherent partitions are extracted from the zero level-sets of these eigenvectors, the color scale being set
such that red and blue correspond to positive and negative values respectively.380

We note the ability of the method to deal with (i) flows having outlets and inlets, by putting all the
“mass” of the eigenvectors in areas where the flow remains in the domain, (ii) complex multiscale and multi-
dynamics ocean flows that involve potentially high-dimensional and highly resolved velocity fields. The
number of connected components of the zero level-set increases with the order k of the singular vector fk,ǫ,
yielding coherent sets with more complex geometries. It is interesting to compare these figures to those of385

Figure 6 and to observe the influence of high forward or backward FTLE values on the shape of the coherent
sets in, respectively, the initial or final configuration.

17
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(c) f1,ǫ (d) g1,ǫ
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(i) f4,ǫ (j) g4,ǫ

(k) f5,ǫ (l) g5,ǫ

(m) f6,ǫ (n) g6,ǫ

(o) f7,ǫ (p) g7,ǫ

Figure 7: Pairs of the first 8 right and left singular vectors (fk,ǫ)0≤k≤7 and (gk,ǫ)0≤k≤7 of the diffusive operator Lǫ for the
Double Gyre Flow example of [59] (corresponding to the flow defined by (3) with A = 0.25, σ = 0.25, ω = 2π on the time
window t ∈ [0, 2]).

On Figure 8, we plot the first 8 pairs of singular vectors for the Double Gyre Flow of Section 2.1. Due
to the symmetrical role played by the two vortices, we obtain similar coherent sets as the blue and red
regions in the left and right half portion of the domain, respectively. Similarity are found with the rigid390

shapes found in Figure 6a, for instance the red and blue regions of f2,ǫ and f3,ǫ. However, further coherent
partitions are found on the remaining singular vectors.

On Figure 9, we plot a set of 4 pairs of singular vectors for the Flow Past a Cylinder of Section 2.2. We
chose the singular vectors of order 2, 3, 5 and 12 so as to show that relevant coherent partitions may be
found in higher order singular vectors. Interestingly, five small coherent sets are identified as the blue regions395

on Figure 9(g), which are approximately superimposed on the rigid sets depicted on Figure 6b. Similarly,
these plots illustrate how the material transport of particles to the right is affected by the mixing due to
the oscillations of the flow in the direction transverse to the pipe.

Finally, coherent sets are computed for the high-dimensional Palau Island flow of Section 2.3. We display
on Figure 10 a selection of five coherent partitions. For this example, the gap between the first singular400

values is small and the resulting coherent partitions seem of similar relevance. Again, we find similarities
between the boundaries of some of the coherent sets and the rigid sets identified on Figure 6c, for instance
the left red set of f7,ǫ matches approximatively the left green rigid set of Figure 6c. However singular vectors
of higher order enable to extract other possible determinations of coherent partitions.

Our results highlight that the coherent sets identified with the operator based method differ logically405

from the rigid sets obtained from the thresholding of the polar distance in eq. (8): coherent sets divide the
domain into regions that “mix” one another slowly, large stretching are allowed within their boundaries. We
note that due to the smoothing nature of the eigenvalue problem, the first pairs of coherent sets are very
smooth and gradually become more complex as their rank k of the associated eigenvector fk increases. In
contrast with rigid sets which are less smooth, coherent stes are therefore able to distinguish a hierachy of410

scales in material transport, which is most visible in the Palau example featuring multiscale ocean currents
fields. Depending on what definition of coherence is sought, this enables to extract non-mixing material
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Figure 8: Pairs of corresponding right and left singular vectors fk,ǫ and gk,ǫ for k = 0 to k = 7 of the diffusive operator Lǫ for
the Double Gyre Flow of Section 2.1 (eq. (3) with A = 0.1, σ = 0.1 and ω = 2π/10 on the time window t ∈ [0, 15]).

regions even if intense stretching occurs uniformly in the working domain (in such a case, diffeomorphism
based methods presented in Section 3 would not detect any rigid set). The picture of Lagrangian transport
that is obtained from this operator method is therefore complementary to the one obtained from the one415

based on the polar distance.

5. Conclusion

Two methodologies have been developed and applied so as to extract two kinds of Lagrangian coherent
subdomains from realistic complex velocity fields characterized by inlets and outlets, potentially highly
resolved grids, and non necessarily divergence-free flows. A new criterion was proposed to define and extract420

rigid sets efficiently in the context of diffeomorphism-based methods. The theory of coherent sets developed
by Froyland et. al. [30, 34] based on operator methods was reviewed and synthesized. A new efficient
matrix-free algorithms exploiting the zero diffusion limit was proposed for the computation of coherent sets.
Both approaches were illustrated and compared on three sets of benchmark numerical flow simulation data,
including a high-dimensional, realistic and data-driven simulation of a submesoscale to large-scale ocean425

current field in the Palau Island region of the western Pacific Ocean.
Our results highlight that rigid sets and coherent sets provide two complementary pictures of material

transport in dynamic flow fields. Rigid sets are sets which are transported by the flow almost in a rigid man-
ner between two instants; distances among particles are approximately preserved. Coherent sets determine
smooth partitions of the domain in which large mixing is possible, but each partition remains independent430

of the other. These properties were illustrated on the three different flow fields.
Future works include utilizing methods that efficiently transfer the uncertainty of the flow fields to

the LCS and the rigid and coherent sets [75, 76, 77, 78], leading to probabilistic rigid and coherent sets.
Extracting the three-dimensional in space rigid and coherent sets [79] would also be useful in realistic ocean
and atmospheric applications [80, 81, 82]. The use of tight control on the numerical diffusion using flow435
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Figure 9: Approximate right and left singular vectors fk,ǫ and gk,ǫ of orders k ∈ {2, 3, 5, 12} of the diffusive transfer operator
Lǫ for the Flow Past a Cylinder of Section 2.2.

map composition [61] should also be investigated. Finally, quantitative criteria to characterize coherence,
stirring, and mixing in geophysical fluid flows [83, 84, 85] such as those that developed here are likely to
provide new understanding for complex ocean and atmospheric transports and dynamics.
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(a) f3,ǫ (b) g3,ǫ

(c) f7,ǫ (d) g7,ǫ

(e) f12,ǫ (f) g12,ǫ

(g) f17,ǫ (h) g17,ǫ

(i) f20,ǫ (j) g20,ǫ

Figure 10: Approximate pairs of corresponding right and left singular vectors number 3, 7, 12, 17 and 20 of the diffusive
operator Lǫ for the Palau Island flow of Section 2.3.
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