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Abstract

The design of recurrent neural networks (RNNs)

to accurately process sequential inputs with long-

time dependencies is very challenging on account

of the exploding and vanishing gradient problem.

To overcome this, we propose a novel RNN archi-

tecture which is based on a structure preserving

discretization of a Hamiltonian system of second-

order ordinary differential equations that models

networks of oscillators. The resulting RNN is fast,

invertible (in time), memory efficient and we de-

rive rigorous bounds on the hidden state gradients

to prove the mitigation of the exploding and van-

ishing gradient problem. A suite of experiments

are presented to demonstrate that the proposed

RNN provides state of the art performance on a

variety of learning tasks with (very) long-time

dependencies.

1. Introduction

Recurrent Neural Networks (RNNs) have been very suc-

cessful in solving a diverse set of learning tasks involving

sequential inputs (LeCun et al., 2015). These include text

and speech recognition, time-series analysis and natural lan-

guage processing. However, the well-known Exploding and

Vanishing Gradient Problem (EVGP) (Pascanu et al., 2013)

and references therein, impedes the efficiency of RNNs on

tasks that require processing (very) long sequential inputs.

The EVGP arises from the fact that the backpropagation

through time (BPTT) algorithm for training RNNs entails

computing products of hidden state gradients over a large

number of steps and this product can either be exponen-

tially small or large as the number of recurrent interactions

increases.

Different approaches to solve the EVGP has been suggested

in recent years. These include the use of gating mechanisms,
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land. Correspondence to: T. Konstantin Rusch <kon-
stantin.rusch@sam.math.ethz.ch>.

Proceedings of the 38
th International Conference on Machine

Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

such as in LSTMs (Hochreiter & Schmidhuber, 1997) and

GRUs (Cho et al., 2014), where the additive structure of

the gates mitigates the vanishing gradient problem. How-

ever, gradients might still explode, impeding the efficiency

of LSTMs and GRUs on problems with very long time de-

pendencies (LTDs) (Li et al., 2018). The EVGP can also

be mitigated by constraining the structure of the recurrent

weight matrices, for instance requiring them to be orthog-

onal or unitary (Henaff et al., 2016; Arjovsky et al., 2016;

Wisdom et al., 2016; Kerg et al., 2019). Constraining re-

current weight matrices may lead to a loss of expressivity

of the resulting RNN, reducing its efficiency in handling

realistic learning tasks (Kerg et al., 2019). Finally, restrict-

ing weights of the RNN to lie within some prespecified

bounds might lead to control over the norms of the recurrent

weight matrices and alleviate the EVGP. Such an approach

has been suggested in the context of independent neurons in

each layer in (Li et al., 2018), and using a coupled system

of damped oscillators in (Rusch & Mishra, 2021), among

others. However, ensuring that weights remain within a

pre-defined range during training might be difficult. Further-

more, weight clipping could also reduce expressivity of the

resulting RNN.

In addition to EVGP, the learning of sequential tasks with

very long time dependencies can require significant com-

putational resources, for training and evaluating the RNN.

Moreover, as the BPTT training algorithms entail storing

all hidden states at every time step, the overall memory re-

quirements can be prohibitive. Thus, the design of a fast

and memory efficient RNN architecture that can mitigate

the EVGP is highly desirable for the effective use of RNNs

in realistic learning tasks with very long time dependencies.

The main objective of this article is to propose, analyze and

test such an architecture.

The basis of our proposed RNN is the observation that a

large class of dynamical systems in physics and engineering,

the so-called Hamiltonian systems (Arnold, 1989), allow

for very precise control on the underlying states. Moreover,

the fact that the phase space volume is preserved by the

trajectories of a Hamiltonian system, makes such systems

invertible and allows one to significantly reduce the storage

requirements. Furthermore, if the resulting hidden state

gradients also evolve according to a Hamiltonian dynamical

system, one can obtain precise bounds on the hidden state
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gradients and alleviate the EVGP. We combine and extend

these ideas into an RNN architecture that will allow us to

prove rigorous bounds on the hidden states and their gradi-

ents, mitigating the EVGP. Moreover, our RNN architecture

results in a fast implementation that attains state of the art

performance on a variety of learning tasks with very long

time dependencies.

2. The proposed RNN

Our proposed RNN is based on the time-discretization of

the following system of second-order ordinary differential

equations (ODEs),

y′′ = −[σ (w ⊙ y +Vu+ b) + αy]. (1)

Here, t ∈ [0, 1] is the (continuous) time variable, u =
u(t) ∈ R

d is the time-dependent input signal, y = y(t) ∈
R

m is the hidden state of the RNN with w ∈ R
m is a weight

vector, V ∈ R
m×d a weight matrix, b ∈ R

m is the bias

vector and α ≥ 0 is a control parameter. The operation ⊙ is

the Hadamard product and the function σ : R 7→ R is the

activation function and is applied component wise. For the

rest of this paper, we set σ(u) = tanh(u).

By introducing the auxiliary variable z = y′, we can rewrite

the second order ODE (1) as a first order ODE system:

y′ = z, z′ = −[σ (w ⊙ y +Vu+ b) + αy]. (2)

Assuming that wi 6= 0, for all 1 ≤ i ≤ m, it is easy to see

that the ODE system (2) is a Hamiltonian system,

y′ =
∂H

∂z
, z′ = −

∂H

∂y
, (3)

with the time-dependent Hamiltonian,

H(y, z, t) =
α

2
‖y‖2 +

1

2
‖z‖2

+

m∑

i=1

1

wi

log(cosh(wiyi + (Vu(t))i + bi)),

(4)

with ‖x‖2 = 〈x,x〉 denoting the Euclidean norm of the

vector x ∈ R
m and 〈·, ·〉 the corresponding inner product.

The next step is to find a discretization of the ODE sys-

tem (2). Given that it is highly desirable to ensure that

the discretization respects the Hamiltonian structure of the

underlying continuous ODE, the simplest such structure

preserving discretization is the symplectic Euler method

(Sanz Serna & Calvo, 1994; Hairer et al., 2003). Applying

the symplectic Euler method to the ODE (2) results in the

following discrete dynamical system,

yn = yn−1 +∆tzn,

zn = zn−1 −∆t[σ (w ⊙ yn−1 +Vun + b) + αyn−1],
(5)

for 1 ≤ n ≤ N . Here, 0 < ∆t < 1 is the time-step and

un ≈ u(tn), with tn = n∆t, is the input signal. It is

common to initialize with y0 = z0 = 0.

We see from the structure of the discrete dynamical system

(5) that there is no interaction between the neurons in the

hidden layer of (5). Such an RNN will have very limited

expressivity. Hence, we stack more hidden layers to propose

the following deep or multi-layer RNN,

yℓ
n = yℓ

n−1 +∆tσ̂(cℓ)⊙ zℓn,

zℓn = zℓn−1 −∆tσ̂(cℓ)⊙ [σ(wℓ ⊙ yℓ
n−1 +Vℓyℓ−1

n + bl)

+ αyℓ
n−1].

(6)

Here yl
n, z

l
n ∈ R

m are hidden states and wℓ,Vℓ,bℓ are

weights and biases, corresponding to layer ℓ = 1, . . . , L.

We set y0
n = un in the multilayer RNN (6).

In Fig. 1, we present a schematic diagram of the proposed

multi-layer recurrent model UnICORNN.

Input

Layer l = 1

Layer l = 2

n = 1 n = 2

Time n

[y1
1, z

1
1]

⊤

[y2
1, z

2
1]

⊤

[y1
2, z

1
2]

⊤

[y2
2, z

2
2]

⊤

u1 u2

Figure 1. Schematic diagram of the multi-layer UnICORNN ar-

chitecture, where the layers (respectively the input) are densely

connected and the hidden states evolve independently in time. The

invertibility of UnICORNN is visualized with blue arrows, em-

phasizing that the hidden states can be reconstructed during the

backward pass and do not need to be stored.

Observe that we use the same step-size ∆t for every layer,

while multiplying a trainable parameter vector c ∈ R
m to

the time step. The action of c is modulated with the sig-

moidal activation function σ̂(u) = 0.5 + 0.5 tanh(u/2),
which ensures that the time-step ∆t is multiplied by a value

between 0 and 1. We remark that the presence of this train-

able vector c allows us to incorporate multi-scale behavior

in the proposed RNN, as the effective time-step is learned

during training and can be significantly different from the

nominal time-step ∆t. It is essential to point out that includ-

ing this multi-scale time stepping is only possible, as each
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neuron (within the same hidden layer) is independent of the

others and can be integrated with a different effective time

step. Finally, we also share the control hyperparameter α
across the different layers, which results in a memory unit

of L layers with a total of only 2 hyperparameters.

2.1. Motivation and background

The ODE system (2) is a model for a nonlinear system of un-

coupled driven oscillators (Guckenheimer & Holmes, 1990).

To see this, we denote yi(t) as the displacement and zi(t)
as the velocity. Then, the dynamics of the i-th oscillator

is determined by the frequency α and also by the forcing

or driving term in the second equation of (2), where the

forcing acts through the input signal u and is modulated by

the weight V and bias b. Finally, the weight w modulates

the frequency α and allows each neuron to oscillate with

its own frequency, rather than the common frequency α of

the system. The structure of w implies that each neuron is

independent of the others. A key element of the oscillator

system (2) is the absence of any damping or friction term.

This allows the system to possess a Hamiltonian structure,

with desirable long time behavior. Thus, we term the result-

ing RNN (6), based on the ODE system (2) as Undamped

Independent Controlled Oscillatory RNN or UnICORNN.

We remark that networks of oscillators are very common in

science and engineering (Guckenheimer & Holmes, 1990;

Strogatz, 2015) with prominent examples being pendulums

in mechanics, electrical circuits in engineering, business

cycles in economics and functional brain circuits such as

cortical columns in neurobiology.

2.2. Comparison with related work.

UnICORNN lies firmly in the class of ODE-based or ODE-

inspired RNNs, which have received considerable amount of

attention in the machine learning literature in recent years.

Neural ODEs, first proposed in (Chen et al., 2018), are

a prominent example of using ODEs to construct neural

networks. In this architecture, the continuous ODE serves

as the learning model and gradients are computed from a

sensitivity equation, which allows one to trade accuracy with

computing time. Moreover, it is argued that these neural

ODEs are invertible and hence, memory efficient. However,

it is unclear if a general neural ODE, without any additional

structure, can be invertible. Other RNN architectures that

are based on discretized ODEs include those proposed in (E,

2017) and (Chang et al., 2018), where the authors proposed

an anti-symmetric RNN, based on the discretization of a

stable ODE resulting from a skew-symmetric hidden weight

matrix, thus constraining the gradient dynamics.

Our proposed RNN (6) is inspired by two recent RNN ar-

chitectures. The first one is coRNN, proposed recently in

(Rusch & Mishra, 2021), where the underlying RNN archi-

tecture was also based on the use of a network of oscillators.

As long as a constraint on the underlying weights was satis-

fied, coRNN was shown to mitigate the EVGP. In contrast

to coRNN, our proposed RNN does not use a damping term.

Moreover, each neuron, for any hidden layer, in UnICORNN

(6) is independent. This is very different from coRNN where

all the neurons were coupled together. Finally, UnICORNN

is a multi-layer architecture whereas coRNN used a single

hidden layer. These innovations allow us to admit a Hamil-

tonian structure for UnICORNN and facilitate a fast and

memory efficient implementation.

Our proposed architecture was also partly inspired by In-

dRNN, proposed in (Li et al., 2018; 2019), where the neu-

rons in each hidden layers were independent of each other

and interactions between neurons were mediated by stack-

ing multiple RNN layers, with output of each hidden layer

passed on to the next hidden layer, leading to a deep RNN.

We clearly use this construction of independent neurons

in each layer and stacking multiple layers in UnICORNN

(6). However in contrast to IndRNN, our proposed RNN

is based on a discretized Hamiltonian system and we will

not require any constraints on the weights to mitigate the

EVGP.

Finally, we would like to point out that discrete Hamil-

tonian systems have already been used to design RNNs,

for instance in (Greydanus et al., 2019) and also in (Chen

et al.), where a symplectic time-integrator for a Hamiltonian

system was proposed as the RNN architecture. However,

these approaches are based on underlying time-independent

Hamiltonians and are only relevant for mechanical systems

as they cannot process time-dependent inputs, which arise

in most realistic learning tasks. Moreover, as these methods

enforce exact conservation of the Hamiltonian in time, they

are not suitable for learning long-time dependencies, see

(MacKay et al., 2018) for a discussion and experiment on

that issue. Although we use a Hamiltonian system as the

basis of our proposed RNN (6), our underlying Hamiltonian

(4) is time-dependent and the resulting RNN can readily

process any time-dependent input signal.

2.3. On the Memory Efficiency of UnICORNN

As mentioned in the introduction, the standard BPTT train-

ing algorithm for RNNs requires one to store all the hid-

den states at every time step. To see this, we observe that

for a standard multi-layer RNN with L layers and a mini-

batch size of b (for any mini-batch stochastic gradient de-

scent algorithm), the storage (in terms of floats) scales as

O(Nbd + LbmN), with input and hidden sequences of

length N . This memory requirement can be very high. Note

that we have ignored the storage of trainable weights and

biases for the RNN in the above calculation.

On the other hand, as argued before, our proposed RNN is
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a symplectic Euler discretization for a Hamiltonian system.

Hence, it is invertible. In fact, one can explicitly write the

inverse of UnICORNN (6) as,

yl
n−1 = yl

n −∆tσ̂(cl)⊙ zln,

zln−1 = zln +∆tσ̂(cl)⊙ [σ(wl ⊙ yl
n−1 +Vℓyℓ−1

n + bl)

+ αyl
n−1].

(7)

Thus, one can recover all the hidden states in a given hidden

layer, only from the stored hidden state at the final time step,

for that layer. Moreover, only the input signal needs to be

stored as the other hidden states can be reconstructed from

the formula (7). Hence, a straightforward calculation shows

that the storage for UnICORNN scales as O(Nbd+ Lbm).
As L << N , we conclude that UnICORNN allows for a

significant saving in terms of storage, when compared to a

standard RNN.

3. Rigorous Analysis of UnICORNN

On the dynamics of the hidden state gradients for ODE

(2). In order to investigate the EVGP for the proposed

RNN (6), we will first explore the dynamics of the gradients

of hidden states y, z (solutions of the ODE (2)) with respect

to the trainable parameters w,V and b. Denote any scalar

parameter as θ and fθ = ∂f
∂θ

, then differentiating the ODE

(2) with respect to θ results in the ODE,

y′
θ = zθ,

z′θ = −σ′(A)⊙ (w ⊙ yθ)− αyθ − σ′(A)⊙C(t),
(8)

where A = w ⊙ y + Vu + b is the pre-activation and

the coefficient C ∈ R
m is given by Ci = yi if θ = wi,

Ci = uj if θ = Vij and Ci = 1 if θ = bi, with all other

entries of the vector C being zero.

It is easy to check that the ODE system (8) is a Hamilto-

nian system of form (3), with the following time-dependent

Hamiltonian;

H (yθ, zθ, t) :=
α

2
‖yθ‖

2 +
1

2
‖zθ‖

2

+
1

2

m∑

i=1

σ′(Ai)wi((yθ)i)
2 +

m∑

i=1

σ′(Ai)Ci(t)(yθ)i.

(9)

Thus, by the well-known Liouville’s theorem (Sanz Serna &

Calvo, 1994), we know that the phase space volume of (8)

is preserved. Hence, this system cannot have any asymptoti-

cally stable fixed points. This implies that {0,0} cannot be

a stable fixed point for the hidden state gradients (yθ, zθ).
Thus, we can expect that the hidden state gradients with

respect to the system of oscillators (2) do not remain near

zero and suggest a possible mechanism for the mitigation of

the vanishing gradient problem for UnICORNN (6), which

is a structure preserving discretization of the ODE (2).

On the Exploding Gradient Problem for UnICORNN.

We train the RNN (6) to minimize the loss function,

E :=
1

N

N∑

n=1

En, En =
1

2
‖yL

n − ȳn‖
2
2, (10)

with ȳ being the underlying ground truth (training data).

Note that the loss function (10) only involves the output

at the last hidden layer (we set the affine output layer to

identity for the sake of simplicity). During training, we

compute gradients of the loss function (10) with respect to

the trainable weights and biases Θ = [wℓ,Vℓ,bℓ, cℓ], for

all 1 ≤ ℓ ≤ L, i.e.,

∂E

∂θ
=

1

N

N∑

n=1

∂En

∂θ
, ∀ θ ∈ Θ. (11)

We have the following upper bound on the hidden state

gradient,

Proposition 3.1. Let the time step ∆t << 1 be sufficiently

small in the RNN (6) and let yℓ
n, z

ℓ
n, for 1 ≤ ℓ ≤ L, and

1 ≤ n ≤ N be the hidden states generated by the RNN (6).

Then, the gradient of the loss function E (10) with respect

to any parameter θ ∈ Θ is bounded as,

∣
∣
∣
∣

∂E

∂θ

∣
∣
∣
∣
≤

1− (∆t)L

1−∆t
T (1 + 2γT )V(Y + F)∆, (12)

with Ȳ = max
1≤n≤N

‖ȳn‖∞, be a bound on the underlying

training data and other quantities in (12) defined as,

γ = max
(
2, ‖wL‖∞ + α

)
+

(
max

(
2, ‖wL‖∞ + α

))2

2
,

V =

L∏

q=1

max{1, ‖Vq‖∞}, β = max{1 + 2α, 4α2}

F =

√

2

α
(1 + 2βT ), T = N∆t,

∆ = 2 +
√

2 (1 + 2βT ) + (2 + α)

√

2

α
(1 + 2βT ).

This proposition, proved in Appendix C.2, demonstrates

that as long as the weights wL,Vq are bounded, there is a

uniform bound on the hidden state gradients. This bound

grows at most as (N∆t)3, with N being the total number

of time steps. Thus, there is no exponential growth of the

gradient with respect to the number of time steps and the

exploding gradient problem is mitigated for UnICORNN.

On the Vanishing Gradient Problem for UnICORNN.

By applying the chain rule repeatedly to each term on the
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right-hand-side of (11), we obtain

∂En

∂θ
=

L∑

ℓ=1

n∑

k=1

∂E
(n,L)
k,ℓ

∂θ
,
∂E

(n,L)
k,ℓ

∂θ
:=

∂En

∂XL
n

∂XL
n

∂Xℓ
k

∂+Xℓ
k

∂θ
,

Xℓ
n =

[
yℓ,1
n , zℓ,1n , . . . ,yℓ,j

n , zℓ,jn , . . . ,yℓ,m
n , zℓ,mn

]
.

(13)

Here, the notation
∂+Xℓ

k

∂θ
refers to taking the partial deriva-

tive of Xℓ
k with respect to the parameter θ, while keeping

the other arguments constant. The quantity
∂E

(n,L)
k,ℓ

∂θ
denotes

the contribution from the k-recurrent step at the l-th hidden

layer of the deep RNN (6) to the overall hidden state gradi-

ent at the step n. The vanishing gradient problem (Pascanu

et al., 2013) arises if

∣
∣
∣
∣

∂E
(n,L)
k,ℓ

∂θ

∣
∣
∣
∣
, defined in (13), → 0 expo-

nentially fast in k, for k << n (long-term dependencies).

In that case, the RNN does not have long-term memory, as

the contribution of the k-th hidden state at the ℓ-th layer to

error at time step tn is infinitesimally small.

We have established that the hidden state gradients for the

underlying continuous ODE (2) do not vanish. As we use

a symplectic Euler discretization, the phase space volume

for the discrete dynamical system (5) is also conserved

(Sanz Serna & Calvo, 1994; Hairer et al., 2003). Hence, one

can expect that the gradients of the multilayer RNN (6) do

not vanish. However, these heuristic considerations need to

be formalized. Observe that the vanishing gradient problem

for RNNs focuses on the possible smallness of contributions

of the gradient over a large number of recurrent steps. As

this behavior of the gradient is independent of the number

of layers, we focus on the vanishing gradient problem for

a single hidden layer here, while presenting the multilayer

results in Appendix C.4. Also, for the sake of definiteness,

we set the scalar parameter θ = w1,p for some 1 ≤ p ≤ m.

Similar results also hold for any other θ ∈ Θ.

We have the following representation formula (proved in

Appendix C.3) for the hidden state gradients,

Proposition 3.2. Let yn be the hidden states generated by

the RNN (6). Then the gradient for long-term dependencies,

i.e. k << n, satisfies the representation formula,

∂E
(n,1)
k,1

∂w1,p
= −∆tσ̂(c1,p)2tnσ

′(A1,p
k−1)y

1,p
k−1

(
y1,p
n − yp

n

)

+O(∆t2).
(14)

It is clear from the representation formula (14) that there is

no k-dependence for the gradient. In particular, as long as

all the weights are of O(1), the leading-order term in (14) is

O(∆t). Hence, the gradient can be small but is independent

of the recurrent step k. Thus, we claim that the vanishing

gradient problem, with respect to recurrent connections, is

mitigated for UnICORNN (6).

4. Experiments

The details of the training procedure for each experiment can

be found in Appendix A. Code to replicate the experiments

can be found at https://github.com/tk-rusch/unicornn.

Implementation The structure of UnICORNN (6) en-

ables us to achieve a very fast implementation. First,

the transformation of the input (i.e. Vℓyℓ−1
n for all l =

1, . . . , L), which is the most computationally expensive part

of UnICORNN, does not have a sequential structure and

can thus be computed in parallel over time. Second, as

the underlying ODEs of the UnICORNN are uncoupled for

each neuron, the remaining recurrent part of UnICORNN is

solved independently for each component. Hence, inspired

by the implementation of Simple Recurrent Units (SRU)

(Lei et al., 2018) and IndRNN, we present in Appendix B,

the details of an efficient CUDA implementation, where the

input transformation is computed in parallel and the dynam-

ical system corresponding to each component of (6) is an

independent CUDA thread.

We benchmark the training speed of UnICORNN with L =
2 layers, against the fastest available RNN implementations,

namely the cuDNN implementation (Appleyard et al., 2016)

of LSTM (with 1 hidden layer), SRU and IndRNN (both

with L = 2 layers and with batch normalization). Fig. 2

shows the computational time (measured on a GeForce RTX

2080 Ti GPU) of the combined forward and backward pass

for each network, averaged over 100 batches with each of

size 128, for two different sequence lengths, i.e. N =
1000, 2000. We can see that while the cuDNN LSTM is

relatively slow, the SRU, IndRNN and the UnICORNN

perform similarly fast. Moreover, we also observe that

UnICORNN is about 30 − 40 times faster per combined

forward and backward pass, when compared to recently

developed RNNs such as expRNN (Casado & Martı́nez-

Rubio, 2019) and coRNN (Rusch & Mishra, 2021). We thus

conclude that the UnICORNN is among the fastest available

RNN architectures.

Permuted sequential MNIST A well-established bench-

mark for testing RNNs on input sequences with long-time

dependencies is the permuted sequential MNIST (psM-

NIST) task (Le et al., 2015). Based on the classical MNIST

data set (LeCun et al., 1998), the flattened grey-scale ma-

trices are randomly permuted (based on a fixed random

permutation) and processed sequentially by the RNN. This

makes the learning task more challenging than sequential

MNIST, where one only flattens the MNIST matrices with-

out permuting them. In order to make different methods

comparable, we use the same fixed seed for the random per-

mutation, as in (Casado & Martı́nez-Rubio, 2019; Casado,

2019; Helfrich et al., 2018). Table 1 shows the results for

UnICORNN with 3 layers, together with other recently pro-

https://github.com/tk-rusch/unicornn
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Figure 2. Measured computing time for the combined forward and

backward pass for the UnICORNN as well as for three of the

fastest available RNN implementations.

posed RNNs, which were explicitly designed to learn LTDs

as well as two gated baselines. We see that UnICORNN

clearly outperforms the other methods.

Table 1. Test accuracies on permuted sequential MNIST together

with number of hidden units as well as total number of parameters

M for each network. All other results are taken from the corre-

sponding original publication, cited in the main text, except that

we are using the results of (Chang et al., 2017) for GRU and of

(Helfrich et al., 2018) for LSTM.

MODEL TEST ACC. #UNITS M

LSTM 92.9% 256 270K

GRU 94.1% 256 200K

EXPRNN 96.6% 512 127K

CORNN 97.3% 256 134K

INDRNN (L=6) 96.0% 128 86K

DENSE-INDRNN (L=6) 97.2% 128 257K

UNICORNN (L=3) 97.8% 128 35K

UNICORNN (L=3) 98.4% 256 135K

Noise padded CIFAR-10 A more challenging test for the

ability of RNNs to learn LTDs is provided by the recently

proposed noise padded CIFAR-10 experiment (Chang et al.,

2018). In it, the CIFAR-10 data points (Krizhevsky et al.,

2009) are fed to the RNN row-wise and flattened along

the channels resulting in sequences of length 32. To test

long term memory, entries of uniform random numbers

are added such that the resulting sequences have a length

of 1000, i.e. the last 968 entries of each sequences are

only noise to distract the RNNs. Table 2 shows the result

of the UnICORNN with 3 layers together with the results

of other recently proposed RNNs, namely for the LSTM,

anti.sym. RNN and gated anti.sym. RNN (Chang et al.,

2018), Lipschitz RNN (Erichson et al., 2021), Incremental

RNN (Kag et al.), FastRNN (Kusupati et al., 2018) and

coRNN (Rusch & Mishra, 2021). We conclude that the

proposed RNN readily outperforms all other methods on

this experiment.

Table 2. Test accuracies on noise padded CIFAR-10 together with

number of hidden units as well as total number of parameters

M for each network. All other results are taken from literature,

specified in the main text.

MODEL TEST ACC. #UNITS M

LSTM 11.6% 128 64K

INCREMENTAL RNN 54.5% 128 12K

LIPSCHITZ RNN 55.8% 256 158K

FASTRNN 45.8% 128 16K

ANTI.SYM. RNN 48.3% 256 36K

GATED ANTI.SYM. RNN 54.7% 256 37K

CORNN 59.0% 128 46K

UNICORNN (L=3) 62.4% 128 47K

EigenWorms The EigenWorms data set (Bagnall et al.,

2018) is a collecting of 259 very long sequences, i.e. length

of 17984, describing the motion of a worm. The task is,

based on the 6-dimensional motion sequences, to classify a

worm as either wild-type or one of four mutant types. We

use the same train/valid/test split as in (Morrill et al., 2020),

i.e. 70%/15%/15%. As the length of the input sequences is

extremely long for this test case, we benchmark UnICORNN

against three sub-sampling based baselines. These include

the results of (Morrill et al., 2020), which is based on signa-

ture sub-sampling routine for neural controlled differential

equations. Additionally after a hyperparameter fine-tuning

procedure, we perform a random sub-sampling as well as

truncated back-propagation through time (BPTT) routine

using LSTMs, where the random sub-sampling is based

on 200 randomly selected time points of the sequences as

well as the BPTT is truncated after the last 500 time points

of the sequences. Furthermore, we compare UnICORNN

with three leading RNN architectures for solving LTD tasks,

namely expRNN, IndRNN and coRNN, which are all ap-

plied to the full-length sequences. The results, presented

in Table 3, show that while sub-sampling approaches yield

moderate test accuracies, expRNN as well as the IndRNN

yield very poor accuracies. In contrast, coRNN performs

very well. However, the best results are obtained for UnI-

CORNN as it reaches a test accuracy of more than 90%,

while at the same time yielding a relatively low standard

deviation, further underlining the robustness of the proposed

RNN.

As this data set has only recently been proposed as a test for

RNNs in learning LTDs, it is unclear if the input sequences
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Table 3. Test accuracies on EigenWorms using 5 re-trainings of

each best performing network (based on the validation set) together

with number of hidden units as well as total number of parameters

M for each network.

MODEL TEST ACC. #UNITS M

T-BPTT LSTM 57.9% ± 7.0% 32 5.3K

SUB-SAMP. LSTM 69.2% ± 8.3% 32 5.3K

SIGN.-NCDE 77.8% ± 5.9% 32 35K

EXPRNN 40.0% ± 10.1% 64 2.8K

INDRNN (L=2) 49.7% ± 4.8% 32 1.6K

CORNN 86.7% ± 3.0% 32 2.4K

UNICORNN (L=2) 90.3% ± 3.0% 32 1.5K

truly exhibit very long-time dependencies. To investigate

this further, we train UnICORNN on a subset of the entries

of the sequences. To this end, we consider using only the

last entries as well as using a random subset of the entries.

Fig. 3 shows the distributional results (10 re-trainings of

the best performing UnICORNN) for the number of entries

used in each sub-sampling routine, ranging from only using

1000 entries to using the full sequences for training. We

can see that in order to reach a test accuracy of 80% when

training on the last entries of the sequences, at least the last

10k entries are needed. Moreover, for both sub-sampling

methods the test accuracy increases monotonically as the

number of entries for training is increased. On the other

hand, using a random subset of the entries increases the test

accuracy significantly when compared to using only the last

entries of the sequences. This indicates that the important

entries of the sequences, i.e. information needed in order to

classify them correctly, are uniformly distributed throughout

the full sequence. We thus conclude that the EigenWorms

data set indeed exhibits very long-time dependencies.

Healthcare application: Vital signs prediction We ap-

ply UnICORNN on two real-world data sets in health care,

aiming to predict the vital signs of a patient, based on PPG

and ECG signals. The data sets are part of the TSR archive

(Tan et al., 2020) and are based on clinical data from the

Beth Israel Deaconess Medical Center. The PPG and ECG

signals are sampled with a frequency of 125Hz for 8 min-

utes each. The resulting two-dimensional sequences have a

length of 4000. The goal is to predict a patient’s respiratory

rate (RR) and heart rate (HR) based on these signals. We

compare UnICORNN to 3 leading RNN architectures for

solving LTDs, i.e. expRNN, IndRNN and coRNN. Addition-

ally, we present two baselines using the LSTM as well as the

recently proposed sub-sampling method of computing sig-

natures for neural controlled differential equations (NCDE)

(Morrill et al., 2020). Following (Morrill et al., 2020), we

split the 7949 sequences in a training set, validation set and
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Figure 3. Test accuracy (mean and standard deviation) for the

UnICORNN on EigenWorms for two types of sub-sampling ap-

proaches, i.e. using the last entries of the sequences as well as

using a random subset of the entries. Both are shown for increas-

ing number of entries used in each corresponding sub-sampling

routine.

testing set, using a 70%/15%/15% split. Table 4 shows the

distributional results of all networks using 5 re-trainings of

the best performing RNN. We observe that while the LSTM

does not reach a low L2 testing error in both experiments,

the other RNNs approximate the vital signs reasonably well.

However, UnICORNN clearly outperforms all other meth-

ods on both benchmarks. We emphasize that UnICORNN

significantly outperforms all other state-of-the-art methods

on estimating the RR, which is of major importance in

modern healthcare applications for monitoring hospital in-

patients as well as for mobile health applications, as special

invasive equipment (for instance capnometry or measure-

ment of gas flow) is normally needed to do so (Pimentel

et al., 2016).

Table 4. L2 test error on vital sign prediction using 5 re-trainings

of each best performing network (based on the validation set),

where the respiratory rate (RR) and heart rate (HR) is estimated

based on PPG and ECG data.

MODEL RR HR

SIGN.-NCDE 1.51 ± 0.08 2.97 ± 0.45
LSTM 2.28 ± 0.25 10.7 ± 2.0
EXPRNN 1.57 ± 0.16 1.87 ± 0.19
INDRNN (L=3) 1.47 ± 0.09 2.10 ± 0.2
CORNN 1.45 ± 0.23 1.71 ± 0.1
UNICORNN (L=3) 1.06 ± 0.03 1.39 ± 0.09
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Table 5. Test accuracies on IMDB together with number of hidden

units as well as total number of parameters M (without embed-

ding) for each network. All other results are taken from literature,

specified in the main text.

MODEL TEST ACC. #UNITS M

LSTM 86.8% 128 220K

SKIP LSTM 86.6% 128 220K

GRU 85.2% 128 99K

RELU GRU 84.8% 128 99K

SKIP GRU 86.6% 128 165K

CORNN 87.4 % 128 46K

UNICORNN (L=2) 88.4% 128 30K

Sentiment analysis: IMDB As a final experiment, we

test the proposed UnICORNN on the widely used NLP

benchmark data set IMDB (Maas et al., 2011), which con-

sists of 50k online movie reviews with 25k reviews used for

training and 25k reviews used for testing. This denotes a

classical sentiment analysis task, where the model has to de-

cide whether a movie review is positive or negative. We use

30% of the training set (i.e. 7.5k reviews) as the validation

set and restrict the dictionary to 25k words. We choose an

embedding size of 100 and initialize it with the pretrained

100d GloVe (Pennington et al., 2014) vectors. Table 5 shows

the results for UnICORNN with 2 layers together with other

recently proposed RNN architectures and gated baselines

(which are known to perform very well on these tasks). The

result of ReLU GRU is taken from (Dey & Salemt, 2017),

of coRNN from (Rusch & Mishra, 2021) and all other re-

sults are taken from (Campos et al., 2018). We can see that

UnICORNN outperforms the other methods while requiring

significantly less parameters. We thus conclude, that the

UnICORNN can also be successfully applied to problems,

which do not necessarily exhibit long-term dependencies.

Further experimental results As stated before, UnI-

CORNN has two hyperparameters, i.e. the maximum al-

lowed time-step ∆t and the damping parameter α. It is

of interest to examine how sensitive the performance of

UnICORNN is with respect to variations of these hyper-

parameters. To this end, we consider the noise padded

CIFAR-10 experiment and perform an ablation study of the

test accuracy with respect to variations of both α and ∆t.
Both hyperparameters are varied by an order of magnitude

and the results of this study are plotted in Fig. 4. We ob-

serve from this figure, that the results are indeed somewhat

sensitive to the maximum allowed time-step ∆t and show a

variation of approximately 15% with respect to to this hyper-

parameter. On the other hand, there is very little noticeable

variation with respect to the damping parameter α. Thus, it

can be set to a default value, for instance α = 1, without

impeding the performance of the underlying RNN.
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Figure 4. Ablation study on the hyperparameters ∆t and α of UnI-

CORNN (6) using the noise padded CIFAR-10 experiment.

Next, we recall that the design of UnICORNN (6) enables it

to learn the effective time step (with a possible maximum of

∆t) from data. It is instructive to investigate if this ability

to express multi-scale behavior is realized in practice or

not. To this end, we consider the trained UnICORNN of

the psMNIST task with 3 layers and 256 neurons. Here,

a maximum time step of ∆t = 0.19 was identified by the

hyperparameter tuning. In Fig. 5, we plot the effective time

step ∆tσ̂(cli), for each hidden neuron i = 1, . . . , 256 and

each layer l = 1, 2, 3. We observe from this figure that a

significant variation of the effective time step is observed,

both within the neurons in each layer, as well as between

layers. In particular, the minimum effective time step is

about 28 times smaller than the maximum allowed time

step. Thus, we conclude from this figure, that UnICORNN

exploits its design features to learn multi-scale behavior

that is latent in the data. This perhaps explains the superior

performance of UnICORNN on many learning tasks.

5. Discussion

The design of RNNs that can accurately handle sequen-

tial inputs with long-time dependencies is very challenging.

This is largely on account of the exploding and vanishing

gradient problem (EVGP). Moreover, there is a significant

increase in both computational time as well as memory re-

quirements when LTD tasks have to be processed. Our main

aim in this article was to present a novel RNN architecture

which is fast, memory efficient, invertible and mitigates the

EVGP. To this end, we proposed UnICORNN (6), an RNN

based on the symplectic Euler discretization of a Hamilto-

nian system of second-order ODEs (2) modeling a network

of independent, undamped, controlled and driven oscillators.
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Figure 5. Effective time-step ∆tσ̂(cli) for each hidden neuron

i = 1, . . . ,m and each layer l = 1, . . . , L of UnICORNN, af-

ter training on the psMNIST task using m = 256 hidden units and

L = 3 layers.

In order to gain expressivity, we stack layers of RNNs and

also endow this construction with a multi-scale feature by

training the effective time step in (6).

Given the Hamiltonian structure of our continuous and dis-

crete dynamical system, invertibility and volume preserva-

tion in phase space are guaranteed. Invertibility enables the

proposed RNN to be memory efficient. The independence

of neurons within each hidden layer allows us to build a

highly efficient CUDA implementation of UnICORNN that

is as fast as the fastest available RNN architectures. Un-

der suitable smallness constraints on the maximum allowed

time step ∆t, we prove rigorous upper bounds (12) on the

gradients and show that the exploding gradient problem

is mitigated for UnICORNN. Moreover, we derive an ex-

plicit representation formula (14) for the gradients of (6),

which shows that the vanishing gradient problem is also

mitigated. Finally, we have tested UnICORNN on a suite of

benchmarks that includes both synthetic as well as realistic

learning tasks, designed to test the ability of an RNN to

deal with long-time dependencies. In all the experiments,

UnICORNN was able to show state of the art performance.

It is instructive to compare UnICORNN with two recently

proposed RNN architectures, with which it shares some

essential features. First, the use of coupled oscillators to

design RNNs was already explored in the case of coRNN

(Rusch & Mishra, 2021). In contrast to coRNN, neurons in

UnICORNN are independent (uncoupled) and as there is no

damping, UnICORNN possesses a Hamiltonian structure.

This paves the way for invertibility as well as for mitigating

the EVGP without any assumptions on the weights whereas

the mitigation of EVGP with coRNN was conditional on

restrictions on weights. Finally, UnICORNN provides even

better performance on benchmarks than coRNN, while be-

ing significantly faster. While we also use independent

neurons in each hidden layer and stack RNN layers together

as in IndRNN (Li et al., 2018), our design principle is com-

pletely different as it is based on Hamiltonian ODEs. Con-

sequently, we do not impose weight restrictions, which are

necessary for IndRNN to mitigate the EVGP. Moreover,

in contrast to IndRNNs, our architecture is invertible and

hence, memory efficient.

This work can be extended in different directions. First, UnI-

CORNN is a very flexible architecture in terms of stacking

layers of RNNs together. We have used a fully connected

stacking in (6) but other possibilities can be readily explored.

See Appendix C.5 for a discussion on the use of residual

connections in stacking layers of UnICORNN. Second, the

invertibility of UnICORNN can be leveraged in the context

of normalizing flows (Papamakarios et al., 2019), where

the objective is to parametrize a flow such that the resulting

Jacobian is readily computable. Finally, our focus in this

article was on testing UnICORNN on learning tasks with

long-time dependencies. Given that the underlying ODE (2)

models oscillators, one can envisage that UnICORNN will

be very competitive with respect to processing different time

series data that arise in healthcare AI such as EEG and EMG

data, as well as seismic time series from the geosciences.
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Supplementary Material for

”UnICORNN: A recurrent model for learning very long time dependencies”

A. Training details

All experiments were run on GPU, namely NVIDIA GeForce GTX 1080 Ti and NVIDIA GeForce RTX 2080 Ti. The hidden

weights w of the UnICORNN are initialized according to U(0, 1), while all biases are set to zero. The trained vector c is

initialized according to U(−0.1, 0.1). The input weights V are initialized according to the Kaiming uniform initialization

(He et al., 2015) based on the input dimension mode and the negative slope of the rectifier set to a = 8.

The hyperparameters of the UnICORNN are selected using a random search algorithm based on a validation set. The

hyperparameters of the best performing UnICORNN can be seen in Table 6. The value for ∆t and α is shared across

all layers, except for the IMDB task and EigenWorms task, where we use a different ∆t value for the first layer and the

corresponding ∆t value in Table 6 for all subsequent layers, i.e. we use ∆t = 6.6× 10−3 for IMDB and ∆t = 2.81× 10−5

for EigenWorms in the first layer. Additionally, the dropout column corresponds to variational dropout (Gal & Ghahramani,

2016), which is applied after each consecutive layer. Note that for the IMDB task also an embedding dropout with p = 0.65
is used.

We train the UnICORNN for a total of 50 epochs on the IMDB task and for a total of 250 epochs on the EigenWorms task.

Moreover, we train UnICORNN for 650 epochs on psMNIST, after which we decrease the learning rate by a factor of 10 and

proceed training for 3 times the amount of epochs used before reducing the learning rate. On all other tasks, UnICORNN is

trained for 250 epochs, after which we decrease the learning rate by a factor of 10 and proceed training for additional 250

epochs. The resulting best performing networks are selected based on a validation set.

Table 6. Hyperparameters of the best performing UnICORNN architecture (based on a validation set) for each experiment.

Experiment learning rate dropout batch size ∆t α

noise padded CIFAR-10 3.14× 10−2 1.0× 10−1 30 1.26× 10−1 13.0
psMNIST (#units = 128) 1.14× 10−3 1.0× 10−1 64 4.82× 10−1 12.53
psMNIST (#units = 256) 2.51× 10−3 1.0× 10−1 32 1.9× 10−1 30.65
IMDB 1.67× 10−4 6.1× 10−1 32 2.05× 10−1 0.0
EigenWorms 8.59× 10−3 0.0 8 3.43× 10−2 0.0
Healthcare: RR 3.98× 10−3 1.0× 10−1 32 1.1× 10−2 9.0
Healthcare: HR 2.88× 10−3 1.0× 10−1 32 4.6× 10−2 10.0

B. Implementation details

As already described in the implementation details of the main paper, we can speed up the computation of the forward and

backward pass, by parallelizing the input transformation and computing the recurrent part for each independent dimension

in an independent CUDA thread. While the forward/backward pass for the input transformation is simply that of an affine

transformation, we discuss only the recurrent part. Since we compute the gradients of each dimension of the UnICORNN

independently and add them up afterwards to get the full gradient, we will simplify to the following one-dimensional system:

zn = zn−1 −∆tσ̂(c)[σ (wyn−1 + xn) + αyn−1],

yn = yn−1 +∆tσ̂(c)zn,

where xn = (Vun)j is the transformed input corresponding to the respective dimension j = 1, . . . ,m.
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Since we wish to train the UnICORNN on some given objective

E :=

N∑

n=1

Ẽ(yn), (1)

where Ẽ is some loss function taking the hidden states yn as inputs, for instance mean-square distance of (possibly

transformed) hidden states yn to some ground truth. During training, we compute gradients of the loss function (1) with

respect to the following quantities Θ = [w,∆t, xn], i.e.

∂E

∂θ
=

N∑

n=1

∂Ẽ(yn)

∂θ
, ∀ θ ∈ Θ. (2)

We can work out a recursion formula to compute the gradients in (2). We will exemplarily provide the formula for the

gradient with respect to the hidden weight w. The computation of the gradients with respect to the other quantities follow

similarly. Thus

δzk = δzk−1 + δyk−1∆tσ̂(c), (3)

δyk = δyk−1 − δzk∆tσ̂(c)[σ′(wyN−k + xN−k+1)w + α] +
∂Ẽ

∂yN−k

, (4)

with initial values δy0 = ∂Ẽ
∂yN

and δz0 = 0. The gradient can then be computed as

∂E

∂w
=

N∑

k=1

ak, with ak = −δzk∆tσ̂(c)σ′(wyN−k + xN−k+1)yN−k. (5)

Note that this recursive formula is a direct formulation of the back-propagation through time algorithm (Werbos, 1990) for

the UnICORNN.

We can verify formula (3)-(5) by explicitly calculating the gradient in (2):

∂E

∂w
=

N∑

n=1

∂Ẽ(yn)

∂w
=

N−1∑

n=1

∂Ẽ(yn)

∂w
+

∂Ẽ

∂yN

[
∂yN−1

∂w
+∆tσ̂(c)

(
∂zN−1

∂w
−∆tσ̂(c)(σ′(wyN−1 + xN )

(yN−1 + w
∂yN−1

∂w
) + α

∂yN−1

∂w

)]

=

N−2∑

n=1

∂Ẽ(yn)

∂w
+ a1 + δz1

∂zN−1

∂w
+ δy1

∂yN−1

∂w

=

N−2∑

n=1

∂Ẽ(yn)

∂w
+ a1 + δy1

∂yN−2

∂w
+ (δy1∆tσ̂(c) + δz1)

(
∂zN−2

∂w
−∆tσ̂(c)(σ′(wyN−2 + xN−1)

(yN−2 + w
∂yN−2

∂w
) + α

∂yN−2

∂w
)

)

=

N−3∑

n=1

∂Ẽ(yn)

∂w
+

2∑

k=1

ak + δz2
∂zN−2

∂w
+ δy2

∂yN−2

∂w
.

Iterating the same reformulation yields the desired formula (3)-(5).

C. Rigorous bounds on UnICORNN

We rewrite UnICORNN (Eqn. (6) in the main text) in the following form: for all 1 ≤ ℓ ≤ L and for all 1 ≤ i ≤ m

yℓ,i
n = y

ℓ,i
n−1 +∆tσ̂(cℓ,i)zℓ,in ,

zℓ,in = z
ℓ,i
n−1 −∆tσ̂(cℓ,i)σ(Aℓ,i

n−1)− α∆tσ̂(cℓ,i)yℓ,i
n−1,

A
ℓ,i
n−1 = wℓ,iy

ℓ,i
n−1 +

(
Vℓyℓ−1

n

)i
+ bℓ,i.

(6)

Here, we have denoted the i-th component of a vector x as xi.

We follow standard practice and set yℓ
0 = zℓ0 ≡ 0, for all 1 ≤ ℓ ≤ L. Moreover for simplicity of exposition, we set α > 0 in

the following.
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C.1. Pointwise bounds on hidden states.

We have the following bounds on the discrete hidden states,

Proposition C.1. Let yℓ
n, z

ℓ
n be the hidden states at the n-th time level tn for UnICORNN (6), then under the assumption

that the time step ∆t << 1 is sufficiently small, these hidden states are bounded as,

max
1≤i≤m

|yℓ,i
n | ≤

√

2

α
(1 + 2βtn), max

1≤i≤m
|zℓ,in | ≤

√

2 (1 + 2βtn) ∀n, ∀ 1 ≤ ℓ ≤ L, (7)

with the constant

β = max{1 + 2α, 4α2}.

Proof. We fix ℓ, n and multiply the first equation in (6) with αyℓ,i
n−1 and use the elementary identity

b(a− b) =
a2

2
−

b2

2
−

1

2
(a− b)2,

to obtain

α(yℓ,i
n )2

2
=

α(yℓ,i
n−1)

2

2
+

α

2
(yℓ,i

n − y
ℓ,i
n−1)

2 + α∆tσ̂(cℓ,i)yℓ,i
n−1z

ℓ,i
n ,

=
α(yℓ,i

n−1)
2

2
+

α∆t2

2
(σ̂(cℓ,i))2(zℓ,in )2 + α∆tσ̂(cℓ,i)yℓ,i

n−1z
ℓ,i
n .

(8)

Next, we multiply the second equation in (6) with zℓ,in and use the elementary identity

a(a− b) =
a2

2
−

b2

2
+

1

2
(a− b)2,

to obtain

(zℓ,in )2

2
=

(zℓ,in−1)
2

2
−

1

2
(zℓ,in − z

ℓ,i
n−1)

2 −∆tσ̂(cℓ,i)σ(Aℓ,i
n−1)

(

zℓ,in − z
ℓ,i
n−1

)

−∆tσ̂(cℓ,i)σ(Aℓ,i
n−1)z

ℓ,i
n−1 − α∆tσ̂(cℓ,i)yℓ,i

n−1z
ℓ,i
n .

(9)

Adding (8) and (9) and using Cauchy’s inequality yields,

α(yℓ,i
n )2

2
+

(zℓ,in )2

2
≤

α(yℓ,i
n−1)

2

2
+

(1 + ∆t)(zℓ,in−1)
2

2
+

α∆t2

2
(σ̂(cℓ,i))2(zℓ,in )2

+ (σ̂(cℓ,i))2(σ(Aℓ,i
n−1))

2∆t+
∆t− 1

2
(zℓ,in − z

ℓ,i
n−1)

2

⇒ α(yℓ,i
n )2 + (zℓ,in )2 ≤ α(yℓ,i

n−1)
2 + (1 +∆t)(zℓ,in−1)

2 + 2∆t+ α∆t2(zℓ,in )2,

where the last inequality follows from the fact that |σ|, |σ̂| ≤ 1 and ∆t < 1. Using the elementary inequality,

(a+ b+ c)2 ≤ 4a2 + 4b2 + 2c2,

and substituting for zℓ,in from the second equation of (6) in the last inequality leads to,

α(yℓ,i
n )2 + (zℓ,in )2 ≤ (1 + 4α2∆t4)α(yℓ,i

n−1)
2 + (1 +∆t+ 2α∆t2)(zℓ,in−1)

2 + 2∆t+ 4α∆t4.

Denoting Hn = α(yℓ,i
n )2 + (zℓ,in )2 and

G := 1 + β∆t, β = max{1 + 2α, 4α2}

yields the following inequality,

Hn ≤ GHn−1 + 2∆t(1 + 2α∆t3). (10)
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Iterating the above n-times and using the fact that the initial data is such that H0 ≡ 0 we obtain,

Hn ≤
(
2∆t+ 4α∆t4

)
n−1∑

k=0

(1 + β∆t)k

≤
(1 + β∆t)n

β∆t

(
2∆t+ 4α∆t4

)

≤
1

β
(1 + 2βn∆t)

(
2 + 4α∆t3

)
as ∆t << 1,

≤ 2(1 + 2βtn) (from definition of β).

(11)

The definition of H clearly implies the desired bound (7).

C.2. On the exploding gradient problem for UnICORNN and Proof of proposition 3.1 of the main text.

We train the RNN (6) to minimize the loss function,

E :=
1

N

N∑

n=1

En, En =
1

2
‖yL

n − ȳn‖
2
2, (12)

with ȳ being the underlying ground truth (training data). Note that the loss function (12) only involves the output at the last

hidden layer (we set the affine output layer to identity for the sake of simplicity). During training, we compute gradients of

the loss function (12) with respect to the trainable weights and biases Θ = [wℓ,Vℓ,bℓ, cℓ], for all 1 ≤ ℓ ≤ L i.e.

∂E

∂θ
=

1

N

N∑

n=1

∂En

∂θ
, ∀ θ ∈ Θ. (13)

We have the following bound on the gradient (13),

Proposition C.2. Let the time step ∆t << 1 be sufficiently small in the RNN (6) and let yℓ
n, z

ℓ
n, for 1 ≤ ℓ ≤ L, be the

hidden states generated by the RNN (6). Then, the gradient of the loss function E (12) with respect to any parameter θ ∈ Θ

is bounded as, ∣
∣
∣
∣

∂E

∂θ

∣
∣
∣
∣
≤

1− (∆t)L

1−∆t
T (1 + 2γT )V(Y + F)∆, (14)

with Ȳ = max
1≤n≤N

‖ȳn‖∞, be a bound on the underlying training data and other quantities in (14) defined as,

γ = max
(
2, ‖wL‖∞ + α

)
+

(
max

(
2, ‖wL‖∞ + α

))2

2
,

V =

L∏

q=1

max{1, ‖Vq‖∞},

F =

√

2

α
(1 + 2βT ),

∆ =

(

2 +
√

(1 + 2βT ) + (2 + α)

√

2

α
(1 + 2βT )

)

.

(15)

Proof. For any 1 ≤ n ≤ N and 1 ≤ ℓ ≤ L, let Xℓ
n ∈ R

2m be the augmented hidden state vector defined by,

Xℓ
n =

[
yℓ,1
n , zℓ,1n , . . . ,yℓ,i

n , zℓ,in , . . . ,yℓ,m
n , zℓ,mn

]
. (16)

For any θ ∈ Θ, we can apply the chain rule repeatedly to obtain the following extension of the formula of (Pascanu et al.,

2013) to a deep RNN,

∂En

∂θ
=

L∑

ℓ=1

n∑

k=1

∂En

∂XL
n

∂XL
n

∂Xℓ
k

∂+Xℓ
k

∂θ
︸ ︷︷ ︸

∂E
(n,L)
k,ℓ
∂θ

. (17)
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Here, the notation
∂+Xℓ

k

∂θ
refers to taking the partial derivative of Xℓ

k with respect to the parameter θ, while keeping the other

arguments constant.

We remark that the quantity
∂E

(n,L)
k,ℓ

∂θ
denotes the contribution from the k-recurrent step at the l-th hidden layer of the deep

RNN (6) to the overall hidden state gradient at the step n.

It is straightforward to calculate that,

∂En

∂XL
n

=
[
yL,1
n − y1

n, 0, . . . ,y
L,i
n − yi

n, 0, . . . ,y
L,m
n − ym

n , 0
]
. (18)

Repeated application of the chain and product rules yields,

∂XL
n

∂Xℓ
k

=

n∏

j=k+1

∂XL
j

∂XL
j−1

L∏

q=ℓ+1

∂Xq
k

∂Xq−1
k

. (19)

For any j, a straightforward calculation using the form of the RNN (6) leads to the following representation formula for the

matrix
∂XL

j

∂XL
j−1

∈ R
2m × R

2m:

∂XL
j

∂XL
j−1

=










B
L,1
j 0 . . . 0

0 B
L,2
j . . . 0

. . . . . . . . . . . .

. . . . . . . . . . . .

0 . . . 0 B
L,m
j










, (20)

with the block matrices B
L,i
j ∈ R

2×2 given by,

B
L,i
j =




1− (σ̂(cL,i))2∆t2

(

wL,iσ′(AL,i
j−1) + α

)

σ̂(cL,i)∆t

−σ̂(cL,i)∆t
(

wL,iσ′(AL,i
j−1) + α

)

1



 . (21)

Similarly for any q, the matrix
∂X

q

k

∂X
q−1
k

∈ R
2m×2m can be readily computed as,

∂Xq
k

∂Xq−1
k

=












D
q,k
11 0 D

q,k
12 0 . . . . . . D

q,k
1m 0

E
q,k
11 0 E

q,k
12 0 . . . . . . E

q,k
1m 0

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

D
q,k
m1 0 D

q,k
m2 0 . . . . . . Dq,k

mm 0

E
q,k
m1 0 E

q,k
m2 0 . . . . . . Eq,k

mm 0












, (22)

with entries given by,

D
q,k

i,̄i
= −∆t2(σ̂(cq,i))2σ′

(

A
q,i
k−1

)

V
q

īi
, E

q,k

i,̄i
= −∆tσ̂(cq,i)σ′

(

A
q,i
k−1

)

V
q

īi
. (23)

A direct calculation with (21) leads to,

‖BL,i
j ‖∞ ≤ max

(
1 + ∆t+ (|wL,i|+ α)∆t2, 1 + (|wL,i|+ α)∆t

)

≤ 1 + max
(
2, |wL,i|+ α

)
∆t+

(
max

(
2, |wL,i|+ α

))2 ∆t2

2
.

(24)

Using the definition of the L∞ norm of a matrix, we use (24) to the derive the following bound from (20),

∥
∥
∥
∥
∥

∂XL
j

∂XL
j−1

∥
∥
∥
∥
∥
∞

≤ 1 + max
(
2, ‖wL‖∞ + α

)
∆t+

(
max

(
2, ‖wL‖∞ + α

))2 ∆t2

2

≤ 1 + γ∆t,

(25)
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with γ defined in (15).

As ∆t < 1, it is easy to see that, ∥
∥
∥
∥
∥

∂Xq
k

∂Xq−1
k

∥
∥
∥
∥
∥
∞

≤ ‖Vq‖∞∆t. (26)

Combining (25) and (26) , we obtain from (19)

∥
∥
∥
∥

∂XL
n

∂Xℓ
k

∥
∥
∥
∥
∞

≤

n∏

j=k+1

∥
∥
∥
∥
∥

∂XL
j

∂XL
j−1

∥
∥
∥
∥
∥
∞

L∏

q=ℓ+1

∥
∥
∥
∥
∥

∂Xq
k

∂Xq−1
k

∥
∥
∥
∥
∥
∞

≤ ∆tL−ℓ

L∏

q=ℓ+1

‖Vq‖∞(1 + 2γ(n− k)∆t), (as ∆t << 1)

≤ V∆tL−ℓ(1 + 2γtn),

(27)

where the last inequality follows from the fact that tn = n∆t ≤ T and the definition of V in (15).

Next, we observe that for any θ ∈ Θ

∂+Xℓ
k

∂θ
=

[

∂+y
ℓ,1
k

∂θ
,
∂+z

ℓ,1
k

∂θ
. . . , . . . ,

∂+y
ℓ,i
k

∂θ
,
∂+z

ℓ,i
k

∂θ
, . . . , . . . ,

∂+y
ℓ,m
k

∂θ
,
∂+z

ℓ,m
k

∂θ

]⊤

. (28)

For any 1 ≤ i ≤ m, a direct calculation with the RNN (6) yields,

∂+y
ℓ,i
k

∂θ
= ∆tσ̂′(cℓ,i)

∂cℓ,i

∂θ
z
ℓ,i
k +∆tσ̂(cℓ,i)

∂+z
ℓ,i
k

∂θ
,

∂+z
ℓ,i
k

∂θ
= −∆tσ̂′(cℓ,i)

∂cℓ,i

∂θ
σ(Aℓ,i

k−1)−∆tσ̂(cℓ,i)σ′(Aℓ,i
k−1)

∂Aℓ,i
k−1

∂θ
− α∆tσ̂′(cℓ,i)

∂cℓ,i

∂θ
y
ℓ,i
k−1.

(29)

Next, we have to compute explicitly ∂cℓ,i

∂θ
and

∂A
ℓ,i

k−1

∂θ
in order to complete the expressions (29). To this end, we need to

consider explicit forms of the parameter θ and obtain,

If θ = wq,p, for some 1 ≤ q ≤ L and 1 ≤ p ≤ m, then,

∂Aℓ,i
k−1

∂θ
=

{

y
ℓ,i
k−1, if q = ℓ, p = i,

0, if otherwise.
(30)

If θ = bq,p, for some 1 ≤ q ≤ L and 1 ≤ p ≤ m, then,

∂Aℓ,i
k−1

∂θ
=

{

1, if q = ℓ, p = i,

0, if otherwise.
(31)

If θ = V
q
p,p̄, for some 1 ≤ q ≤ L and 1 ≤ p, p̄ ≤ m, then,

∂Aℓ,i
k−1

∂θ
=

{

y
ℓ−1,p̄
k , if q = ℓ, p = i,

0, if otherwise.
(32)

If θ = cq,pfor any 1 ≤ q ≤ L and 1 ≤ p ≤ m, then,

∂Aℓ,i
k−1

∂θ
≡ 0. (33)

Similarly, if θ = wq,p or θ = bq,p, for some 1 ≤ q ≤ L and 1 ≤ p ≤ m, or If θ = V
q
p,p̄, for some 1 ≤ q ≤ L and

1 ≤ p, p̄ ≤ m, then

∂cℓ,i

∂θ
≡ 0. (34)
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On the other hand, if θ = cq,pfor any 1 ≤ q ≤ L and 1 ≤ p ≤ m, then

∂cℓ,i

∂θ
=

{

1, if q = ℓ, p = i,

0, if otherwise.
(35)

For any θ ∈ Θ, by substituting (30) to (35) into (29) and doing some simple algebra with norms, leads to the following

inequalities,
∣
∣
∣
∣
∣

∂+z
ℓ,i
k

∂θ

∣
∣
∣
∣
∣
≤ ∆t

(

1 + α|yℓ,i
k−1|+max

(

|yℓ,i
k−1|, |y

ℓ−1,p̄
k |, 1

))

, (36)

and,
∣
∣
∣
∣
∣

∂+y
ℓ,i
k

∂θ

∣
∣
∣
∣
∣
≤ ∆t|zℓ,ik |+∆t2

(

1 + α|yℓ,i
k−1|+max

(

|yℓ,i
k−1|, |y

ℓ−1,p̄
k |, 1

))

, (37)

for any 1 ≤ p̄ ≤ m.

By the definition of L∞ norm of a vector and some straightforward calculations with (37) yields,

∥
∥
∥
∥

∂+Xℓ
k

∂θ

∥
∥
∥
∥
∞

≤ ∆t
(
2 + ‖zℓk‖∞ + (1 + α)‖yℓ

k−1‖∞ + ‖yℓ−1
k ‖∞

)
. (38)

From the pointwise bounds (7), we can directly bound the above inequality further as,

∥
∥
∥
∥

∂+Xℓ
k

∂θ

∥
∥
∥
∥
∞

≤ ∆t

(

2 +
√

2 (1 + 2βT ) + (2 + α)

√

2

α
(1 + 2βT )

)

. (39)

By (18) and the definition of Y as well as the bound (7) on the hidden states, it is straightforward to obtain that,

∥
∥
∥
∥

∂En

∂XL
n

∥
∥
∥
∥
∞

≤ Y +

√

2

α
(1 + 2βT ) (40)

From the definition in (17), we have

∣
∣
∣
∣
∣

∂E
(n,L)
k,ℓ

∂θ

∣
∣
∣
∣
∣
≤

∥
∥
∥
∥

∂En

∂XL
n

∥
∥
∥
∥
∞

∥
∥
∥
∥

∂XL
n

∂Xℓ
k

∥
∥
∥
∥
∞

∥
∥
∥
∥

∂+Xℓ
k

∂θ

∥
∥
∥
∥
∞

. (41)

Substituting (40), (39) and (25) into (41) yields,

∣
∣
∣
∣
∣

∂E
(n,L)
k,ℓ

∂θ

∣
∣
∣
∣
∣
≤ ∆tL−ℓ+1 (1 + 2γT )V(Y + F)∆, (42)

with F and ∆ defined in (15).

Therefore, from the fact that ∆t < 1, tn = n∆t ≤ T and (17), we obtain

∣
∣
∣
∣

∂En

∂θ

∣
∣
∣
∣
≤

1− (∆t)L

1−∆t
T (1 + 2γT )V(Y + F)∆. (43)

By the definition of the loss function (12) and the fact that the right-hand-side of (43) is independent of n leads to the desired

bound (14).
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C.3. On the Vanishing gradient problem for UnICORNN and Proof of Proposition 3.2 of the main text.

By applying the chain rule repeatedly to the each term on the right-hand-side of (13), we obtain

∂En

∂θ
=

L∑

ℓ=1

n∑

k=1

∂E
(n,L)
k,ℓ

∂θ
,
∂E

(n,L)
k,ℓ

∂θ
:=

∂En

∂XL
n

∂XL
n

∂Xℓ
k

∂+Xℓ
k

∂θ
. (44)

Here, the notation
∂+Xℓ

k

∂θ
refers to taking the partial derivative of Xℓ

k with respect to the parameter θ, while keeping the other

arguments constant. The quantity
∂E

(n,L)
k,ℓ

∂θ
denotes the contribution from the k-recurrent step at the l-th hidden layer of the

deep RNN (6) to the overall hidden state gradient at the step n. The vanishing gradient problem (Pascanu et al., 2013) arises

if

∣
∣
∣
∣

∂E
(n,L)
k,ℓ

∂θ

∣
∣
∣
∣
, defined in (44), → 0 exponentially fast in k, for k << n (long-term dependencies). In that case, the RNN

does not have long-term memory, as the contribution of the k-th hidden state at the ℓ-th layer to error at time step tn is

infinitesimally small.

As argued in the main text, the vanishing gradient problem for RNNs focuses on the possible smallness of contributions of

the gradient over a large number of recurrent steps. As this behavior of the gradient is independent of the number of layers,

we start with a result on the vanishing gradient problem for a single hidden layer here. Also, for the sake of definiteness,

we set the scalar parameter θ = w1,p for some 1 ≤ p ≤ m. Similar results also hold for any other θ ∈ Θ. Moreover, we

introduce the following order-notation,

β = O(γ), for γ, β ∈ R+ if there exists constants C,C such that Cγ ≤ β ≤ Cγ.

M = O(γ), for M ∈ R
d1×d2 , γ ∈ R+ if there exists constant C such that ‖M‖ ≤ Cγ.

(45)

We restate Proposition 3.2 of the main text,

Proposition C.3. Let yn be the hidden states generated by the RNN (6). Then the gradient for long-term dependencies, i.e.

k << n, satisfies the representation formula,

∂E
(n,1)
k,1

∂w1,p
= −∆tσ̂(c1,p)2tnσ

′(A1,p
k−1)y

1,p
k−1

(
y1,p
n − yp

n

)
+O(∆t2). (46)

Proof. Following the definition (44) and as L = 1 and θ = w1,p, we have,

∂E
(n,1)
k,1

∂w1,p
:=

∂En

∂X1
n

∂X1
n

∂X1
k

∂+X1
k

∂w1,p
. (47)

We will explicitly compute all three expressions on the right-hand-side of (47). To start with, using (28), (29) and (30), we

obtain,

∂+X1
k

∂w1,p
=

[

0, 0, . . . , . . . ,
∂+y

1,p
k

∂w1,p
,
∂+z

1,p
k

∂w1,p
, . . . , . . . , 0, 0

]⊤

,

(
∂+X1

k

∂w1,p

)

2p−1

=
∂+y

1,p
k

∂w1,p
= −∆t2(σ̂(c1,p))2σ′(A1,p

k−1)y
1,p
k−1,

(
∂+X1

k

∂w1,p

)

2p

=
∂+z

1,p
k

∂w1,p
= −∆tσ̂(c1,p)σ′(A1,p

k−1)y
1,p
k−1.

(48)

Using the product rule (19) we have,

∂X1
n

∂X1
k

=

n∏

j=k+1

∂X1
j

∂X1
j−1

. (49)

Observing from the expressions (20) and (21) and using the order-notation (45), we obtain that,

∂X1
j

∂X1
j−1

= I2m×2m +∆tC1
j +O(∆t2), (50)
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with Ik×k is the k × k Identity matrix and the matrix C1
j defined by,

∂XL
j

∂XL
j−1

=









C
1,1
j 0 . . . 0

0 C
1,2
j . . . 0

. . . . . . . . . . . .

. . . . . . . . . . . .

0 . . . 0 C
1,m
j









, (51)

with the block matrices C
1,i
j ∈ R

2×2 given by,

C
1,i
j =

[
0 σ̂(c1,i)

−σ̂(c1,i)
(

w1,iσ′(A1,i
j−1) + α

)

0

]

. (52)

By a straightforward calculation and the use of induction, we claim that

n∏

j=k+1

∂X1
j

∂X1
j−1

= I2m×2m +∆tC1 +O(∆t2), (53)

with

C1 =









C1,1 0 . . . 0
0 C1,2 . . . 0
. . . . . . . . . . . .
. . . . . . . . . . . .
0 . . . 0 C1,m









, (54)

with the block matrices C1,i ∈ R
2×2 given by,

C1,i =





0 (n− k)σ̂(c1,i)

−(n− k)ασ̂(c1,i)− σ̂(c1,i)w1,i
n∑

j=k+1

σ′(A1,i
j−1) 0



 . (55)

By the assumption that k << n and using the fact that tn = n∆t, we have that,

∆tC1,i =





0 tnσ̂(c
1,i)

−tnασ̂(c
1,i)− σ̂(c1,i)w1,i∆t

n∑

j=k+1

σ′(A1,i
j−1) 0



 . (56)

Hence, the non-zero entries in the block matrices can be O(1). Therefore, the product formula (53) is modified to,

n∏

j=k+1

∂X1
j

∂X1
j−1

= C+O(∆t), (57)

with the 2m× 2m matrix C defined as,

C =









C1 0 . . . 0
0 C2 . . . 0
. . . . . . . . . . . .
. . . . . . . . . . . .
0 . . . 0 Cm









, (58)

and,

Ci =





1 tnσ̂(c
1,i)

−tnασ̂(c
1,i)− σ̂(c1,i)w1,i∆t

n∑

j=k+1

σ′(A1,i
j−1) 1



 . (59)

Thus by taking the product of (57) with (48), we obtain that,

n∏

j=k+1

∂X1
j

∂X1
j−1

∂+X1
k

∂w1,p
=

[

0, 0, . . . , . . . ,
∂+y

1,p
k

∂w1,p
+C

p
12

∂+z
1,p
k

∂w1,p
,Cp

21

∂+y
1,p
k

∂w1,p
+

∂+z
1,p
k

∂w1,p
. . . , . . . , 0, 0

]⊤

+O(∆t2), (60)
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with C
p
12,C

p
21 are the off-diagonal entries of the corresponding block matrix, defined in (59). Note that the O(∆t2)

remainder term arises from the ∆t-dependence in (48).

From (18), we have that,
∂En

∂X1
n

=
[
y1,1
n − y1

n, 0, . . . ,y
1,i
n − yi

n, 0, . . . ,y
1,m
n − ym

n , 0
]
. (61)

Therefore, taking the products of (61) and (60) and substituting the explicit expressions in (48), we obtain the desired

identity (46).

C.4. On the vanishing gradient problem for the multilayer version of UnICORNN.

The explicit representation formula (46) holds for 1 hidden layer in (6). What happens when additional hidden layers are

stacked together as in UnICORNN (6)? To answer this question, we consider the concrete case of L = 3 layers as this is the

largest number of layers that we have used in the context of UnICORNN with fully connected stacked layers. As before,

we set the scalar parameter θ = w1,p for some 1 ≤ p ≤ m. Similar results also hold for any other θ ∈ Θ. We have the

following representation formula for the gradient in this case,

Proposition C.4. Let yn be the hidden states generated by the RNN (6). The gradient for long-term dependencies satisfies

the representation formula,

∂E
(n,3)
k,1

∂w1,p
= ∆t4σ̂(c1,p)tn

∂+z
1,p
k

∂w1,p

m∑

i=1

Ḡ2i−1,2p−1

(
y3,i − yi

)
+O(∆t6), (62)

with the coefficients given by,

∂+z
1,p
k

∂w1,p
= −∆tσ̂(c1,p)σ′(A1,p

k−1)y
1,p
k−1,

Ḡ2i−1,2p−1 =

m∑

j=1

G3
ijG

2
jp, ∀ 1 ≤ i ≤ m, Gq

r,s = −(σ̂(cq,r))2σ′
(
A

q,r
n−1

)
Vq

rs, q = 2, 3.
(63)

Proof. Following the definition (44) and as L = 3 and θ = w1,p, we have,

∂E
(n,3)
k,1

∂w1,p
:=

∂En

∂X3
n

∂X3
n

∂X1
k

∂+X1
k

∂w1,p
. (64)

We will explicitly compute all three expressions on the right-hand-side of (64).

In (48), we have already explicitly computed the right most expression in the RHS of (64). Using the product rule (19) we

have,

∂X3
n

∂X1
k

=
∂X3

n

∂X2
n

∂X2
n

∂X1
n

n∏

j=k+1

∂X1
j

∂X1
j−1

. (65)

Note that we have already obtained an explicit representation formula for
n∏

j=k+1

∂X1
j

∂X1
j−1

in (57).

Next we consider the matrices
∂X3

n

∂X2
n

and
∂X2

n

∂X1
n

. By the representation formula (22), we have the following decomposition for

any 1 ≤ q ≤ n,
∂Xq

n

∂Xq−1
n

= ∆t2Gq,n +∆tHq,n, (66)

with,

Gq,n =











G
q,n
11 0 G

q,n
12 0 . . . . . . G

q,n
1m 0

0 0 0 0 . . . . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
G

q,n
m1 0 G

q,n
m2 0 . . . . . . Gq,n

mm 0
0 0 0 0 . . . . . . 0 0











, G
q,k

i,̄i
= −(σ̂(cq,i))2σ′

(

A
q,i
n−1

)

V
q

īi
, (67)
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and

Hq,n =











0 0 0 0 . . . . . . 0 0
H

q,n
11 0 H

q,n
12 0 . . . . . . H

q,n
1m 0

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . . . . 0 0

H
q,n
m1 0 H

q,n
m2 0 . . . . . . Hq,n

mm 0











, H
q,k

i,̄i
= −σ̂(cq,i)σ′

(

A
q,i
n−1

)

V
q

īi
. (68)

It is straightforward to see from (68) and (67) that,

H3,nH2,n ≡ 02m×2m, G3,nH2,n ≡ 02m×2m, (69)

and the entries of the 2m× 2m matrix Ḡ = G3,nG2,n are given by,

Ḡ2r−1,2s−1 =
m∑

j=1

G
3,n
r,j G

2,n
j,s , Ḡ2r−1,2s = Ḡ2r,2s−1 = Ḡ2r,2s = 0, ∀ 1 ≤ r, s ≤ m, (70)

while the entries of the 2m× 2m matrix H̄ = H3,nG2,n are given by

H̄2r,2s−1 =

m∑

j=1

H
3,n
r,j G

2,n
j,s , H̄2r−1,2s−1 = H̄2r−1,2s = H̄2r,2s = 0, ∀ 1 ≤ r, s ≤ m. (71)

Hence we have,
∂X3

n

∂X2
n

∂X2
n

∂X1
n

= ∆t4(Ḡ+∆t−1H̄). (72)

Taking the matrix-vector product of (72) with (60), we obtain

∂X3
n

∂X1
k

∂+X1
k

∂w1,p
= ∆t4

(

∂+y
1,p
k

∂w1,p
+C

p
12

∂+z
1,p
k

∂w1,p

)

[
Ḡ1,2p−1,∆t−1H̄2,2p−1, . . . , Ḡ2m−1,2p−1,∆t−1H̄2m,2p−1

]⊤
+O(∆t6)

= ∆t4Cp
12

∂+z
1,p
k

∂w1,p

[
Ḡ1,2p−1,∆t−1H̄2,2p−1, . . . , Ḡ2m−1,2p−1,∆t−1H̄2m,2p−1

]⊤
+O(∆t6),

(73)

where the last identify follows from the fact that
∂+y

1,p
k

∂w1,p = O(∆t2).

Therefore, taking the products of (61) and (73), we obtain the desired identity (62).

An inspection of the representation formula (62) shows that as long as the weights are O(1) and from the bounds (7), we

know that y ∼ O(1), the gradient

∂E
(n,3)
k,1

∂w1,p
∼ O(∆t5),

where the additional ∆t stems from the ∆t-term in (48). Thus the gradient does not depend on the recurrent step k. Hence,

there is no vanishing gradient problem with respect to the number of recurrent connections, even in the multi-layer case.

However, it is clear from the representation formulas (46) and (62), as well as the proof of proposition C.4 that for L-hidden

layers in UnICORNN (6), we have,

∂E
(n,L)
k,1

∂w1,p
∼ O

(
∆t2L−1

)
. (74)

Thus, the gradient can become very small if too many layers are stacked together. This is not at all surprising as such a

behavior occurs even if there are no recurrent connections in UnICORNN (6). In that case, we simply have a fully connected

deep neural network and it is well-known that the gradient can vanish as the number of layers increases, making it harder to

train deep networks.
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C.5. Residual stacking of layers in UnICORNN.

Given the above considerations, it makes imminent sense to modify the fully-connected stacking of layers in UnICORNN

(6) if a moderately large number of layers (L ≥ 4) are used. It is natural to modify the fully-connected stacking with a

residual stacking, see (Li et al., 2019). We use the following form of residual stacking,

yℓ
n = yℓ

n−1 +∆tσ̂(cℓ)⊙ zℓn, (75)

zℓn = zℓn−1 −∆tσ̂(cℓ)⊙ [σ
(
wℓ ⊙ yℓ

n−1 + xℓ
n + bl

)
+ αyℓ

n−1], (76)

where the input xℓ
n corresponds to a residual connection skipping S layers, i.e.

xℓ
n =

{

Λℓyℓ−S−1
n +Vℓyℓ−1

n , for l > S

Vℓyℓ−1
n , for l ≤ S

.

The number of skipped layers is 2 ≤ S and Λℓ ∈ R
m×m is a trainable matrix.

The main advantages of using a residual staking such as (75) is to alleviate the vanishing gradient problem that arises from

stacking multiple layers together and obtain a better scaling of the gradient than (74). To see this, we can readily follow the

proof of proposition C.4, in particular the product,

∂XL
n

∂X1
n

=
ν∏

s=1

∂X
L−(s−1)S
n

∂XL−sS
k

L−νS∏

ℓ=2

∂Xℓ
n

∂Xℓ−1
n

+
L−1∏

ℓ=1

∂Xℓ+1
n

∂Xℓ
k

, (77)

with,

ν =

{[
L
S

]
, if L mod S 6= 0,

[
L
S

]
− 1, if L mod S = 0.

(78)

Here [x] ∈ N is the largest natural number less than or equal to x ∈ R.

Given the additive structure in the product of gradients and using induction over matrix products as in (69) and (70), we can

compute that,

∂XL
n

∂X1
n

= O
(

∆t2(ν+L−νS−1)
)

+O
(

∆t2(L−1)
)

. (79)

By choosing S large enough, we clearly obtain that ν+L− νS− 1 < L− 1. Hence by repeating the arguments of the proof

of proposition C.4, we obtain that to leading order, the gradient of the residual stacked version of UnICORNN scales like,

∂E
(n,L)
k,1

∂w1,p
∼ O

(
∆t2ν+2L−2νS−1

)
. (80)

Note that (80) is far more favorable scaling for the gradient than the scaling (74) for a fully connected stacking. As a

concrete example, let us consider L = 7 i.e., a network of 7 stacked layers of UniCORNN. From (74), we see that the

gradient scales like O(∆t13) in this case. Even for a very moderate values of ∆t < 1, this gradient will be very small and

will ensure that the first layer will have very little, if any, influence on the loss function gradients. On the other hand, for the

same number of layers L = 7, let us consider the residual stacking (75) with S = 3 skipped connections. In this case ν = 2
and one directly concludes from (80) that the gradient scales like O(∆t5), which is significantly larger than the gradient

for the fully connected version of UnICORNN. In fact, it is exactly the same as the gradient scaling for fully connected

UnICORNN (6) with 3 hidden layers (62). Thus, introducing skipped connections enabled the gradient to behave like a

shallower fully-connected network, while possibly showing the expressivity of a deeper network.

D. Chaotic time-series prediction: Lorenz 96 system

It is instructive to explore limitations of the proposed UnICORNN. It is straightforward to prove, along the lines of the proof

of proposition C.1, that the UnICORNN architecture does not exhibit chaotic behavior with respect to changes in the input.

While this property is highly desirable for many applications where a slight change in the input should not lead to a major
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(possibly unbounded) change in the output, it impairs the performance on tasks where an actual chaotic system has to be

learned.

Following the experiment in (Rusch & Mishra, 2021), we aim to predict future states of a dynamical system, following the

Lorenz 96 system (Lorenz, 1996):

x′
j = (xi+1 − xi−2)xi−1 − xi + F, (81)

where xj ∈ R for all j = 1, . . . , 5 and F is an external force controlling the level of chaos in the system.

We consider two different choices for the external force, namely F = 0.9 and F = 8. While the first one produces

non-chaotic trajectories, the latter leads to a highly chaotic system. We discretize the system exactly along the lines of

(Rusch & Mishra, 2021), resulting in 128 sequences of length 2000 for each the training, validation and testing set. Table 7

Table 7. Test NRMSE on the Lorenz 96 system (81) for UnICORNN, coRNN and LSTM.

Model F = 0.9 F = 8 # units # params

LSTM (Rusch & Mishra, 2021) 2.0× 10−2 6.8× 10−2 44 9k

coRNN (Rusch & Mishra, 2021) 2.0× 10−2 9.8× 10−2 64 9k

UnICORNN (L=2) 2.2× 10−2 3.1× 10−1 90 9k

shows the normalized root mean square error (NRMSE) for UnICORNN as well as for coRNN and an LSTM, where all

models have 9k parameters. We can see that UnICORNN performs comparably to coRNN and LSTM in the chaos-free

regime (i.e. F = 0.9), while performing poorly compared to an LSTM when the system exhibits chaotic behavior (i.e.

F = 8). This is not surprising, as LSTMs are shown to be able to exhibit chaotic behavior (Laurent & von Brecht, 2017),

while coRNN and UnICORNN are not chaotic by design. This shows also numerically that UnICORNN should not be used

for chaotic time-series prediction.

E. Further experimental results

As we compare the results of the UnICORNN to the results of other recent RNN architecture, where only the best results of

each RNN were published for the psMNIST, noise padded CIFAR-10 and IMDB task, we as well show the best (based on

a validation set) obtained results for the UnICORNN in the main paper. However, distributional results, i.e. statistics of

several re-trainings of the best performing UnICORNN based on different random initialization of the trainable parameters,

provide additional insights into the performance. Table 8 shows the mean and standard deviation of 10 re-trainings of the

best performing UnICORNN for the psMNIST, noise padded CIFAR-10 and IMDB task. We can see that in all experiments

the standard deviation of the re-trainings are relatively low, which underlines the robustness of our presented results.

Table 8. Distributional information (mean and standard deviation) on the results for the classification experiment presented in the paper,

where only the best results is shown, based on 10 re-trainings of the best performing UnICORNN using different random seeds.

Experiment Mean Standard deviation

psMNIST (128 units) 97.7% 0.09%

psMNIST (256 units) 98.2% 0.22%

Noise padded CIFAR-10 61.5% 0.52%

IMDB 88.1% 0.19%

As emphasized in the main paper and in the last section, naively stacking of many layers for the UnICORNN might result in

a vanishing gradient for the deep multi-layer model, due to the vanishing gradient problem of stacking many (not necessarily

recurrent) layers. Following section C.5, one can use skipped residual connections and we see that the estimate on the

gradients scale preferably when using residual connections compared to a naively stacking, when using many layers. To

test this also numerically, we train a standard UnICORNN (6) as well as a residual UnICORNN (res-UnICORNN) (75),

with S = 2 skipping layers, on the noise padded CIFAR-10 task. Fig. 6 shows the test accuracy (mean and standard

deviation) of the best resulting model for different number of network layers L = 3, . . . , 6, for the standard UnICORNN and

res-UnICORNN. We can see that while both models seem to perform comparably for using only few layers, i.e. L = 3, 4,
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the res-UnICORNN with S = 2 skipping connections outperforms the standard UnICORNN when using more layers, i.e.

L = 5, 6. In particular, we can see that the standard UnICORNN is not able to significantly improve the test accuracy when

using more layers, while the res-UnICORNN seems to obtain higher test accuracies when using more layers.

Moreover, Fig. 6 also shows the test accuracy for a UnICORNN with an untrained time-step vector c, resulting in a

UnICORNN without the multi-scale property generated by the time-step. We can see that the UnICORNN without the

multi-scale feature is inferior in performance, to the standard UnICORNN as well as its residual counterpart.
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Figure 6. Test accuracies (mean and standard deviation of 10 re-

trainings of the best performing model) of the standard UnI-

CORNN, res-UnICORNN and UnICORNN without multi-scale

behavior on the noise padded CIFAR-10 experiment for different

number of layers L.
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Figure 7. Norms (mean and standard deviation of 10 re-trainings)

of the hidden weights ‖wl‖∞, for l = 1, 2, 3, of the UnICORNN

during training.

Finally, we recall that the estimate (14) on the gradients for UnICORNN (6) needs the weights to be bounded, see (15). One

always initializes the training with bounded weights. However, it might happen that the weights explode during training. To

check this issue, in Fig. 7, we plot the mean and standard deviation of the norms of the hidden weights wl for l = 1, 2, 3
during training based on 10 re-trainings of the best performing UnICORNN on the noise padded CIFAR-10 experiment. We

can see that none of the norms of the weights explode during training. In fact the weight norms seem to saturate, mostly on

account of reducing the learning rate after 250 epochs. Thus, the upper bound (14) can be explicitly computed and it is

finite, even after training has concluded.


