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Abstract

In this paper, given a linear system of equations A x = b, we
are finding locations in the plane to place objects such that sending
waves from the source points and gathering them at the receiving
points solves that linear system of equations. The ultimate goal is to
have a fast physical method for solving linear systems. The issue dis-
cussed in this paper is to apply a fast and accurate algorithm to find
the optimal locations of the scattering objects. We tackle this issue
by using asymptotic expansions for the solution of the underlying
partial differential equation. This also yields a potentially faster al-
gorithm than the classical BEM for finding solutions to the Helmholtz
equation.
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1 Introduction

In physical problems such as reflection of light in a three dimensional en-
vironment, aircraft simulations, or image recognition, we are searching
for methods to numerically solve linear systems of equations of the form
A x = b. Recently, optical analog computing has been introduced as an
alternative paradigm to classical computational linear algebra in order to
contribute to computing technology. In [9], the authors design a two di-
mensional structure with a physical property, which allows for solving a
predetermined linear system of equations. In general, structures with such
favourable physical properties are called meta-structures or meta-surfaces
and are under very active research [3, 7, 8]. To be precise in their set-up,
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sending specific waves across the meta-structure modifies those waves,
such that they represent the solution x to the problem.

One issue with this method is to quickly find the accurate structure for
a given matrix A. In [9] the authors use physics software to gradually form
such a structure. Here we demonstrate another method, which relies on
using asymptotic expansions of solutions to partial differential equation.
Such expansions have already been studied in different papers [2, 1, 4,
5]. With that tool we can position and scale objects, on which the waves
scatter, such that the resulting structure satisfies the desired requirements.

In the process of developing these asymptotic formulas, we have re-
alized that we can compute the scattered wave using a method which is
similar to the explicit Euler scheme. There we can numerically compute
the solution to an ordinary differential equation by successively progress-
ing in time with small time-steps until we reach the desired time. With
our method we solve the partial differential equation around an obstacle
by progressing the object-radius with small radius increments until we
reach the full extent. We present the numerical application of that method
on a circular domain.

This paper is organized as follows. In Section 2 we model the math-
ematical foundation for the underlying physical problem and define the
fundamental partial differential equations for the asymptotic expansions.
This leads us to the definition for the Neumann function on the outside.
We then explain the connection of the Neumann function and the lin-
ear system of equations. In Section 3 we prove the asymptotic formulas
concerning the Neumann function. There we discover special singular
behaviours, which are essential to prove the asymptotic expansions. In
Section 4, we first show the method to solve for the wave by increasing
the radius by small steps and discuss the numerical error. Afterwards, we
explain how we numerically build the meta-structure to solve the linear
system of equations and discuss how well it operates. In Section 5, we
conclude the paper with final considerations, open questions and possi-
ble future research directions. In the appendix we provide an interesting
proof of a technical result and a modification of the trapezoidal rule, when
we apply a logarithmic singularity.

2 Preliminaries

Let k ∈ (0, ∞) and let Ω be a finite union of disjoint, non-touching, simply
connected, bounded and open C2-domains in R2

+ = {x ∈ R2 | x2 > 0}. Let
(zj)

N
j=1 be N ∈ N source points on the horizontal axis Λ = {x ∈ R2 | x1 ∈

(0, 1) and x2 = 0}. We have N functions uj : R2 → C, for j = 1, . . . , N,
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which solve the following partial differential equation:




(
△+ k2

)
uj(x) = Ij δzj

(x) in R
2
+ \ Ω ,

∂νx uj(x)|+= 0 on ∂Ω ,

uj(x) = 0 on ∂R
2
+ \ Λ ,

∂x2 uj(x) = 0 on Λ ,
( ∂

∂|x| − i k
)

uj(x) → 0 for |x| → ∞ ,

(2.1)

Figure 1: This is the geometric set-up.
In black we have the domain Ω, in green
the line segment Λ and in blue the source
point zj. In violet, the absorbing layer is
depicted.

where · | + denotes the limit from
the outside of Ω to ∂Ω, and ∂νx

denotes the outside normal deriva-
tive on ∂Ω. δzj

denotes the Dirac
delta function at point zj and Ij ∈
C denotes the intensity at the
source zj. The first condition is
the Helmholtz equation which rep-
resents the time-independent wave
equation, and arises from the wave
equation using the Fourier trans-
form in time on the wave equation.
The second condition is known as
the Neumann condition and mod-
els a material with a high elec-
trical impedance. The third and
fourth conditions model an absorb-
ing layer on ∂R2

+ \ Λ and a Neu-
mann condition on Λ. The fifth
condition is known as the Sommer-
feld radiation condition, and originates from a physical constraint for the
behaviour of an outgoing wave.

We define Γk to be the fundamental solution to the Helmholtz equation,
that is Γk solves PDE (2.1) without the Neumann boundary condition and
a source at the origin. Furthermore we define Γk(z, x) = Γk(z − x) for
z, x ∈ R2, z 6= x. Then we define the Neumann function Nk

Ω to be the
solution to





(
△+ k2

)
Nk

Ω(z, x) = δz(x) in R
2 \ Ω ,

∂νx Nk
Ω(z, x)|+= 0 on ∂Ω ,

( ∂

∂|x| − i k
)

Nk
Ω(z, x) → 0 for |x| → ∞ .

(2.2)

In contrast with uj, Nk
Ω is not only defined on the upper half. We recall that

Nk
Ω(z, x) = Nk

Ω(x, z), which we can readily see using a Green’s identity.
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We can express Nk
Ω as a sum of Γk and a smooth remainder, which satisfies

PDE (2.2) with a vanishing right-hand side in the first equation. The same
holds true for uj.

Using Green’s identity on the convolution of uj with
(
△+ k2

)
Nk

Ω, we
can infer for i 6= j that

1
2 uj(zi) =

∫

R2
+\Ω

uj(x)
(
△+ k2

)
Nk

Ω(zi, x)dx ,

= Ij Nk
Ω(zj, zi)−

∫

Λ
uj(x) ∂x2Nk

Ω(zi, x)dσx .

Using the trapezoidal rule we can approximate the integral in the last
equation up to an error in O(N−1). Here we note that uj and Nk

Ω have a
logarithmic singularity at zj, hence uj(zj) is not well defined. Thus we use
a slight modification in the trapezoidal rule, which is elaborated in Ap-
pendix A. After such modification, we define the complex column vector
uj = (uj(zi))

N
i=1, the complex column vector Nj = (Nk

Ω(zj, zi))
N
i=1 and the

N × N complex matrix S = (∂x2Nk
Ω(zi, zk)) i=1,...,N

k=1,...,N
. Then we have that

( 1
2 IN + 2

N+1 S)uj = Ij Nj +O(N−1) ,

where IN denotes the N × N identity matrix.
Our objective is to solve a linear system of equation A x = b using a

physical procedure, in which an electrical signal is applied at zj, for every

j = 1, . . . , N, and then is measured again at those points, for A ∈ CN×N

and x, b ∈ CN , where A and b are given. The scattered wave, originated
at zj, is in its Fourier space the function uj. Thus we are especially looking
for a domain Ω, which yields

S = N+1
2

(
A − 1

2 IN

)
, (2.3)

and in searching so we keep track of the vector Nj with the intention of

rapidly determining the intensities Is such that ∑
N
j=1 Ij Nj = b. In this pa-

per we primarily consider rapidly finding the domain Ω such that Equa-
tion (2.3) holds.

3 Asymptotic Formula for the Perturbation of the Neu-

mann Function Nk
Ω

Let Ω be a finite union of disjoint, non-touching, simply connected, bounded
and open C2-domains in R2. Let k ∈ (0, ∞), then for z 6∈ Ω, where Ω is
the topological closure of the open set Ω, we define the outside Neumann
function Nk

Ω(z, x), for x 6∈ Ω, as the solution to the partial differential
equation (2.2). Let Br(ζ) be a ball centred at ζ ∈ R2 with radius r > 0.
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We define Ωr as the union of some set Ω as defined above and of the ball
Br(ζ), where Br(ζ) does not intersect Ω. Let Nk

Ωr
and Nk

Ω be the outside
Neumann function to Ωr and Ω, respectively.

Theorem 3.1 For kr small enough and for all z, x 6∈ Ωr , x 6= z, we have that

Nk
Ωr
(z, x) = Nk

Ω(z, x) + π r2
(

k2 Nk
Ω(z, ζ)Nk

Ω(x, ζ)− 2∇Nk
Ω(z, ζ) · ∇Nk

Ω(x, ζ)
)

+O(r3 log(r)) , (3.1)

where ∇ denotes the gradient to the second input in Nk
Ω , ’·’ denotes the dot-

product and O(·) denotes the limiting behaviour for r → 0. Additionally, for
y ∈ ∂(Ωr \ Ω), we have that

Nk
Ωr
(z, y) =Nk

Ω(z, ζ) + 2 (y − ζ) · ∇Nk
Ω(z, ζ) + (y − ζ)T (∇∇T)Nk

Ω(z, ζ) (y − ζ)

− r2k2 1

2
Nk

Ω(z, ζ) (i
π

2
− γ − 0.5 − log

( k r

2

)
− 2π Rk

Ω(ζ, ζ))

− r2 2π ∇wRk
Ω(ζ, w) |w=ζ ·∇Nk

Ω(z, ζ) +O(r3 log(r)) , (3.2)

where (∇∇T) denotes the Hessian matrix, γ ≈ 0.57721 denotes the Euler–Mascheroni
constant, and Rk

Ω(z, w) := Nk
Ω(z, w)− Γk(z, w) has a removable singularity at

w = z.
For k · r > 0 small enough and for all y, w ∈ ∂Ωr , y 6= w, we have that

Nk
Ωr
(y, w) =

log(1 − cos(θy−θw))

2π
+

2 log(kr) + 2γ − i π

4π
+ Rk

Ω(ζ, ζ) +O(r log(r)) .

(3.3)

Proof 1 Using Green’s identity and the PDE (2.2) we readily see that

Nk
Ωr
(z, x) =

∫

R2\Ωr

(
△+ k2

)
Nk

Ω(x, y) Nk
Ωr
(z, y)dy

= Nk
Ω(x, z)−

∫

∂Br(ζ)
∂νy Nk

Ω(x, y) Nk
Ωr
(z, y)dσy , (3.4)

where the normal vector still points outwards. Using an analogous argument by
integrating Nk

Ω with itself, we see that Nk
Ω(x, z) = Nk

Ω(z, x). We let x go to
∂Br(ζ) and apply the gradient on both sides and apply the normal at y. Then we
obtain the equation

−∂νy Nk
Ω(z, y) = −∂νy

∫

∂Br(ζ)
∂νw Nk

Ω(y, w) Nk
Ωr
(z, w)dσw , (3.5)

where y as well as w are elements of ∂Br(ζ). We remark here that we cannot pull
the normal derivative inside the integral. Let us consider next the decomposition
Nk

Ω(y, w) = Γk(y, w) + Rk
Ω(y, w), where Γk(y, w) is the fundamental solution

to the Helmholtz equation, that means that (△w + k2)Γk(y, w) = δy(w), and

Rk
Ω(y, w) is the remaining part of the PDE (2.2). Γk can be expressed through

5



Γk(y, w) = − i
4 H

(1)
0 (k|y − w|), where H

(1)
0 is the Hankel function of first kind

of order zero and Rk
Ω is smooth [6]. From the decomposition in Equation (3.5) to

arrive at

∂νy Nk
Ω(z, y) = ∂νy

∫

∂Br(ζ)
∂νw Γk(y, w) Nk

Ωr
(z, w)dσw +O(r) ,

by using the fact that the integral over ∂Br(ζ) decays linearly for r → 0. Trans-
forming the normal derivative in the integral using polar coordinates, where we
use that we have an integral over the boundary of a circle, we can infer that

∂νy Nk
Ω(z, y(τ)) = lim

hց0

∫ 2π

0

i k r

4

[ k(h + r(1 − cos(∆))(−h cos(∆) + r(1 − cos(∆)))H
(1)
0 (k| · |)

| · |2

+
(−2r(h + r) + (h2 + 2hr + 2r2) cos(∆))H

(1)
1 (k| · |)

| · |3
]

Nk
Ωr
(z, w(t))dt +O(r) ,

where ∆ := t − τ, where y(τ) = ζ + r
( cos(τ)

sin(τ)

)
and w(t) = ζ + r

( cos(t)
sin(t)

)
and

| · | :=
√

h2 + (1 − cos(∆))(2hr + 2r2).

With the Taylor series for the Hankel function H
(1)
0 and Hankel function H

(1)
1 ,

for k r small enough, and considering the asymptotic behaviour of the forthcoming
terms and applying some trigonometric identities we readily see that

∂νy Nk
Ω(z, y(τ)) = lim

hց0

r

2π

∫ 2π

0

h2 − 2 sin(∆
2 )

2 (h2+2hr+2r2)

(h2 + 2 sin(∆
2 )

2 (2hr+2r2))2
Nk

Ωr
(z, w(t))dt +O(r log(r)) .

Using integration by parts, where we consider that Nk
Ωr
(z, w(·)) is a periodic

function, we obtain that

∂νy Nk
Ω(z, y(τ)) = lim

hց0

−1

4π r

∫ 2π

0

sin(t − τ) ∂tN
k
Ωr
(z, y(t))

2 sin
(

t−τ
2

)2
+ h

dt +O(r log(r)) .

Before we can proceed, we have to study a linear operator we call H̊, which takes
a 2π periodic C2 function ϕ and maps it to

H̊[ϕ](τ) :=
1

2π
lim
hց0

∫ 2π

0

sin(t − τ)

2 sin
(

t−τ
2

)2
+ h

ϕ(t)dt.

We can readily show that

H̊[ϕ](τ) =
1

2π
p. v.

∫ 2π

0
ϕ(t) cot

( t − τ

2

)
dt ,

where ’p.v.’ stands for the ’principle value’. This equation follows by integra-
tion by parts on both sides of the equation, and by using the integrability of the
logarithm function. Now, we can state that H̊ is an invertible operator up to a
constraint, according to [10, § 28], and that the solution to H̊[ϕ] = ψ is given
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through ϕ = −H̊[ψ], where the constraint is that
∫ 2π

0 ϕ = 0. Then we can infer
that

H̊[∂νy Nk
Ω(z, y(·))](t) = 1

2 r
∂tN

k
Ωr
(z, y(t)) +O(r log(r)) ,

where we used that H̊[O(r log(r))] = O(r log(r)). Thus it follows that

Nk
Ωr
(z, y(t)) = C + 2 r

∫
H̊[∂νy Nk

Ω(z, y(·))] +O(r2 log(r)) ,

for a constant function C in t. Next, we approximate the known function Nk
Ω

through

∂νy Nk
Ω(z, y(t)) =

( cos(t)
sin(t)

)
· ∇yNk

Ω(z, y)|y=ζ +O(r) .

Using that H̊[sin(·)] = cos(·) , we see that

Nk
Ωr
(z, y(t)) = C + 2 r

( cos(t)
sin(t)

)
· ∇Nk

Ω(z, ζ) +O(r2 log(r)) . (3.6)

Analogously to Equation (3.4), we can formulate the statement that

Nk
Ωr
(z, y) = 2 Nk

Ω(z, y)− 2
∫

∂Br(ζ)
∂νw Nk

Ω(y, w) Nk
Ωr
(z, w)dσw , (3.7)

where z 6∈ Ω and y ∈ ∂Br(ζ), and where we use that the Dirac measure located
at y, which is at the boundary of the integration domain, which is a C2 boundary,
yields only half of the evaluation of the integrand at y. We then apply Equation

(3.6) to the last equation and see that C = Nk
Ω(z, ζ). Applying it again for the

second order term, while using Taylor expansions and comparing coefficients of
the same order in r, we readily obtain the second equation in Theorem 3.1. For

the first equation in Theorem 3.1, we apply the formula for Nk
Ωr
(z, y(t)), and

the Taylor expansion up to second order for ∂νy Nk
Ω(z, y(t)) to Equation (3.4) to

obtain

Nk
Ωr
(z, x) = Nk

Ω(z, x)− 2 r
∫ 2π

0
r ∂νNk

Ω(x, ζ)
( cos(t)

sin(t)

)
· ∇Nk

Ω(z, ζ)dt +O(r3 log(r))

− Nk
Ω(z, ζ)

∫ 2π

0
r
(( cos(t)

sin(t)

)
· ∇Nk

Ω(x, ζ) + r
( cos(t)

sin(t)

)T
(∇∇T)Nk

Ω(x, ζ)
( cos(t)

sin(t)

))
dt ,

where (∇∇T) denotes the Hessian matrix which emerges from the Taylor expan-

sion. We evaluate the two integrals explicitly, use that △Nk
Ω = −k2Nk

Ω and
obtain Equation (3.1). For Equation (3.3) we use Green’s identity and obtain

Nk
Ωr
(y, w) = 2Nk

Ω(y, w)− 2
∫

∂Ωr

∂νu Nk
Ω(w, u)Nk

Ωr
(y, u)dσu

= 1
2π log(1 − cos(θy − θw)) +

log( kr√
2
)

π
+

2γ − i π

2π
+ 2Rk

Ω(ζ, ζ)

− 2r
∫ π

−π

1

2π 2r
Nk

Ωr
(y, u(t))dt +O(r Nk

Ωr
(y, u)) .

Solving for 1
2π

∫ π
−π Nk

Ωr
(y, u(t))dt and substituting we obtain Equation (3.3).
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Let R > r > 0 and let ΩR be defined in the way that Ωr was introduced,
that is ΩR is a ball of radius R at ζ ∈ R2 adjoined to the domain Ω, hence
Ωr ( ΩR. Then for any zr ∈ ∂Br(ζ), we define zR ∈ ∂BR(ζ) to be the
projection of zr along the normal vector to BR(ζ). Thus we have that
zR(tz) = R (cos(tz), sin(tz))T + ζ , for tz ∈ (−π, π).

Lemma 3.2 Let R > r > 0, for all zr, xr ∈ ∂Ωr, zR, xR ∈ ∂Ωr we have that

Nk
Ωr
(zr(tz), xr(tx)) =

1

2π
log(1−cos(tz−tx)) + Q1(tz, tx) , (3.8)

Nk
Ωr
(zR(tz), xr(tx)) =

1

2π
log(1−cos(tz−tx)) + Q1(tz, tx) , (3.9)

Nk
Ωr
(zR(tz), xR(tx)) =

1

4π
log(1−cos(tz−tx))

+
1

4π
log(R4+r4−2 R2r2 cos(tz−tx)) + Q2(tz, tx) , (3.10)

∂νxR
Nk

Ωr
(zR(tz), xR(tx)) =

−1

4πR
+

1

2πR

r2 (R2 cos(tz−tx)− r2)

R4 + r4 − 2 R2r2 cos(tz−tx)
+ Q3(tz, tx) ,

(3.11)

where Q1, Q2, Q3 have removable singularities at tx = tz, when R = r.

Proof 2 Equations (3.8) and (3.9) follow by readily using Green’s identity on the
convolution of Nk

Ωr
with Γk, and PDE (2.2), where we have to consider that an

integral whose integration-boundary is over the singularity of the Dirac measure
leads to half of the evaluation of the integrand.

For Equation (3.10), its proof is a simplification of the derivation of Equation
(3.11). For Equation (3.11) we have with Green’s identity that

∂νxR
Nk

Ωr
(zR, xR) = ∂νxR

Nk
Ω(zR, xR)−

∫

∂Br(ζ)
∂νxR

∂νyr
Nk

Ω(xR, yr)N
k
Ωr
(zR, yr)dσyr .

Splitting Nk
Ω in its singular part Γk and its smooth remainder and subsequently

extracting the singularity in Γk, and doing so for Nk
Ωr

as well, where we use
Equation (3.9), we obtain that

∂νxR
Nk

Ωr
(zR, xR) =

1

2πR

r (R cos(tz−tx)− r)

R2 + r2 − 2Rr cos(tz−tx)
+ Q3(tz, tx)

− r
∫ π

−π

−1

2π

2Rr − (R2 + r2) cos(tx − t)

(R2 + r2 − 2Rr cos(tx − t))2

1

2π
log

(R2 + r2

2 R r
−cos(tz − t)

)
dt .

Using the technical derivation shown in Appendix A we prove Equation (3.11).

We decompose Nk
Ωr
(zr(tz), xr(tx)), for zr, xr ∈ ∂Br(ζ), into its singular

part and a smooth enough part, that is,

Nk
Ωr
(zr(tz), xr(tx)) =

1

2π
log(1 − cos(tz − tx)) + Ñk

Ωr
(zr(tz), xr(tx)) ,
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and furthermore we express Ñk
Ωr

through a Fourier series as

Ñk
Ωr
(zr(tz), xr(tx)) =

∞

∑
n=0

p
(n)
zr

cos(n tx) + q
(n)
zr

sin(n tx) . (3.12)

Theorem 3.3 For kr > 0 small enough and for all z, x 6∈ Ωr , x 6= z, we have
that

Nk
Ωr
(zR, xr) =Nk

Ωr
(zr, xr) +

1

2π
log

( R2+r2

2 R r − cos(tz − tx)

1 − cos(tz − tx)

)
+OL2

( (R − r)2

r2

)
,

(3.13)

where the OL2 term is a function with a L2(∂Ωr) norm, which is in O
( (R−r)2

r2

)
,

in the xr variable. Moreover,

∂νxR
Nk

Ωr
(zR, xR) = ∂νxR

Nk
Ω(zR, xR) +

r2

2π R

R2 cos(tz − tx)− r2

R4 + r4 − 2R2r2 cos(tz − tx)

− r
∫ π

−π
∂νxR

∂νyr(t)
Ñk

Ω
(xR, yr(t))

(
1

2π log
(

R2+r2

2 R r − cos(tz−t)
)
+ Ñk

Ωr
(zr, yr(t))

)
dt

− 1

2R

∞

∑
n=1

n ( r
R )

n
(

p
(n)
zr cos(n tx) + q

(n)
zr sin(n tx)

)

+ O
( (R − r)2

r

)
, (3.14)

where

∂νxR
∂νyr

Ñk
Ω
(xR, yr) := ∂νxR

∂νyr
Nk

Ω(xR, yr)−
−1

2π

2Rr − (R2 + r2) cos(tx − ty)

(R2 + r2 − 2Rr cos(tx − ty))2
.

Furthermore, we have

Nk
ΩR

(zR, xR) =Nk
Ωr
(zr, xr) + (Nk

Ω(zR, xR)− Nk
Ω(zr, xr))

− r (R−r)
∫ π

−π
∂νxr

∂νyr(t)
Ñk

Ω
(xr, yr(t))N

k
Ωr
(zr, yr(t))dt

− r
∫ π

−π
∂νyr(t)

Ñk
Ω
(xr, yr(t))

1
2π log

( R2+r2

2 R r − cos(tz − t)

1 − cos(tz − t)

)
dt

− 1
2

∞

∑
n=1

(
( r

R )
n − ( r

R )
2n
)(

p
(n)
zr cos(n tx) + q

(n)
zr sin(n tx)

)

− R
∫ π

−π

˜∂νyR(t)
Nk

Ωr
(xR, yR(t))N

k
Ωr
(zr, yr(t))dt

+ O
( (R − r)2

r

)
, (3.15)

where

∂νyr
Ñk

Ω
(xR, yr) := ∂νyr

Nk
Ω(xR, yr)−

1

2π

r − R cos(tx−ty)

R2 + r2 − 2Rr cos(tx−ty)
,

˜∂νxR
Nk

Ωr
(zR, xR) := ∂νxR

Nk
Ωr
(zR, xR)−

1

2π 2R
− r2

2π R

R2 cos(tz − tx)− r2

R4 + r4 − 2R2r2 cos(tz − tx)
.

9



The idea of proving this theorem is to extract the singularities devel-
oped in Lemma 3.2 in the integral expression for Nk

ΩR
. Then any explicitly

appearing integrals are solved in a similar way as described in Appendix
A by using Fourier series.

Proof 3 Assuming zr 6= xr, we can use Taylor’s theorem to obtain that

Nk
Ωr
(zR, xr) = Nk

Ωr
(zr, xr) + (R − r)∂νzr

Nk
Ωr
(zr, xr) +

1
2 (R − r)2∂2

νzr
Nk

Ωr
(wR,r, xr) ,

for some wR,r ∈ R2 between zR and zr. We note that ∂νzr
Nk

Ωr
(zr, xr) = 0.

We need the term 1
2 (R − r)2∂2

νzr
Nk

Ωr
(wR,r, xr) to be in OL2 , but that is not the

case due to the singular term in Nk
Ωr

. Hence we extract the singular term from

Nk
Ωr
(zR, xr) and then we can infer that

Nk
Ωr
(zR, xr) =

1
2π log(R2 + r2 − 2Rr cos(tz − tx)) + Ñk

Ωr
(zR, xr)

= 1
2π log(R2 + r2 − 2Rr cos(tz − tx)) + Ñk

Ωr
(zr, xr)

+ (R − r)∂νzr
Ñk

Ωr
(zr, xr) +

1
2 (R − r)2∂2

νzr
Ñk

Ωr
(wR,r, xr)

= 1
2π log

(R2 + r2 − 2Rr cos(tz − tx)

2r2 − 2r2 cos(tz − tx)

)
+ Nk

Ωr
(zr, xr)

+ (R − r)
(
0 − 1

2π r

)
+O((R − r)2) .

Extracting the term log(R
r ) from the logarithm term and using the Taylor ap-

proximation for R → r, on that extraction, we then obtain Equation (3.13). Con-
sidering Green’s identity we have that

Nk
Ωr
(zR, xR) = Nk

Ω(zR, xR)− r
∫ π

−π
∂νyr(t)

Nk
Ω(xR, yr(t))N

k
Ωr
(zR, yr(t))dt .

Next we apply ∂xR
on both sides and then interchange the integral and ∂xR

.

This leads to the term ∂νxR
∂νyr

Nk
Ω(xR, yr), whose singular part we extract from

∂νxR
∂νyr

Nk
Ω(xR, yr). The equation then reads

∂νxR
Nk

Ωr
(zR, xR) = ∂νxR

Nk
Ω(zR, xR)− r

∫ π

−π
∂νxR

∂νyr(t)
Ñk

Ω
(xR, yr(t))N

k
Ωr
(zR, yr(t))dt

− r
∫ π

−π

−1

2π

2Rr − (R2 + r2) cos(tx − t)

(R2 + r2 − 2Rr cos(tx − t))2
Nk

Ωr
(zR, yr(t))dt .

10



Then we use Equation (3.13) and this leads us to the equation

∂νxR
Nk

Ωr
(zR, xR) = ∂νxR

Nk
Ω(zR, xR)

− r
∫ π

−π
∂νxR

∂νyr(t)
Ñk

Ω
(xR, yr(t))

1
2π log

(
R2+r2

2 R r − cos(tz − t)
)
dt

− r
∫ π

−π
∂νxR

∂νyr(t)
Ñk

Ω
(xR, yr(t)) Ñk

Ωr
(zr, yr(t))dt

− r
∫ π

−π

−1

2π

2Rr − (R2 + r2) cos(tx − t)

(R2 + r2 − 2Rr cos(tx − t))2
1

2π log
(

R2+r2

2 R r − cos(tz − t)
)
dt

− r
∫ π

−π

−1

2π

2Rr − (R2 + r2) cos(tx − t)

(R2 + r2 − 2Rr cos(tx − t))2
Ñk

Ωr
(zr, yr(t))dt

− r
∫ π

−π

−1

2π

2Rr − (R2 + r2) cos(tx − t)

(R2 + r2 − 2Rr cos(tx − t))2
( 1

2π log(r/R)− R−r
2πr +OL2((R − r)2))dt

+O
( (R − r)2

r

)
. (3.16)

Note that

∫ π

−π

−1

2π

2Rr − (R2 + r2) cos(tx − t)

(R2 + r2 − 2Rr cos(tx − t))2
cos(n(tz − t))dt =

n

2Rr

( r

R

)n
cos(n(tz − tx)) ,

(3.17)

for all n ∈ N0, which we can readily show from the 2π-periodicity by using
trigonometric formulas and applying an induction on n ≥ 1. Furthermore, we
have that

1

2π
log

(
R2+r2

2 R r − cos(tz − t)
)
=

1

2π
log

(
R
2 r

)
− 1

π

∞

∑
n=1

(r/R)n

n
cos(n(tz − t)) ,

With that identity we can determine all integrals in Equation (3.16) and show
Equation (3.14). For an elaborated calculation of the third integral, see Appendix
A.
Using Green’s identity on Nk

ΩR
(zR, xR), we can infer that

Nk
ΩR

(zR, xR) = 2Nk
Ωr
(zR, xR)− 2R

∫ π

−π
∂νyR(t)

Nk
Ωr
(xR, yR(t))N

k
ΩR

(zR, yR(t))dt .

(3.18)

11



Similar to the derivation of Equation (3.14), we can compute that

Nk
Ωr
(zR, xR) = Nk

Ω(zR, xR)

− r
∫ π

−π
∂νyr(t)

Ñk
Ω
(xR, yr(t))

1
2π log

(
R2+r2

2 R r − cos(tz − t)
)
dt

− r
∫ π

−π
∂νyr(t)

Ñk
Ω
(xR, yr(t)) Ñk

Ωr
(zr, yr(t))dt

− r
∫ π

−π

1

2π

r − R cos(tx − t)

R2 + r2 − 2Rr cos(tx − t)
1

2π log
(

R2+r2

2 R r − cos(tz − t)
)
dt

− r
∫ π

−π

1

2π

r − R cos(tx − t)

R2 + r2 − 2Rr cos(tx − t)
Ñk

Ωr
(zr, yr(t))dt

− r
∫ π

−π

1

2π

r − R cos(tx − t)

R2 + r2 − 2Rr cos(tx − t)
( 1

2π log(r/R)− R−r
2πr +OL2((R − r)2))dt

+O
( (R − r)2

r

)
.

Using that

∫ π

−π

1

2π

r − R cos(tx−t)

R2 + r2 − 2Rr cos(tx−t)
cos(n(tz−t))dt =

{
0 , if n = 0 ,
−1
2π r (

r
R )

n cos(n(tx−tz)), if n ≥ 1 ,

(3.19)

we readily see that

Nk
Ωr
(zR, xR) = Nk

Ω(zR, xR) +
1

4π
log

(R4 + r4 − 2R2r2 cos(tz−tx)

R4

)
(3.20)

− r
∫ π

−π
∂νyr(t)

Ñk
Ω
(xR, yr(t))

(
1

2π log
(

R2+r2

2 R r − cos(tz − t)
)
+ Ñk

Ωr
(zr(tz), yr(t))

)
dt

+ 1
2 Ñk

Ωr
(zr, xr)− 1

2 p
(0)
zr − 1

2

∞

∑
n=1

(
1 − ( r

R )
n
)(

p
(n)
zr cos(n tx) + q

(n)
zr sin(n tx)

)

+ O
( (R − r)2

r

)
, (3.21)

where the logarithm term is derived similarly as in Appendix A. We consider the
integral term in Equation (3.18). To this end we will apply Equation (3.14) and

consider the singular parts of ∂νxR
Nk

Ωr
(zR, xR). Hence we define

∂νxR
Nk

Ωr
(zR, xR) =

1

2π 2R
+

r2

2π R

R2 cos(tz − tx)− r2

R4 + r4 − 2R2r2 cos(tz − tx)
+ ˜∂νxR

Nk
Ωr
(zR, xR) .

Consider that ˜∂νxR
Nk

Ωr
(zR, xR) is of order O(R − r), because using Taylor series

we have that

˜∂νxR
Nk

Ωr
(zR, xR) =

˜∂νxR
Nk

Ωr
(zR, xr) +O(R − r)

= ∂νxR
Nk

Ωr
(zR, xr) +O(R − r)

−
( r − R cos(tz−tx)

2π(R2 + r2 − 2Rr cos(tz−tx))
+

1

2π r

r3(R cos(tz−tx)− r)

r2(R2 + r2 − 2Rr cos(tz−tx))

)

=O(R − r) .
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Then, applying the singular decomposition to the integral in Equation (3.18),
and using the same techniques as are those used in Appendix A, we have that

Nk
ΩR

(zR, xR) = 2 Nk
Ωr
(zR, xR) +

log(2)

4π
− 1

2π

∫ π

−π
Ñk

ΩR
(zR, yR(t))dt

− 1

2π
log

(
R4 + r4 − 2R2r2 cos(tz−tx)

R4(1 − cos(tz−tx))

)
− Nk

ΩR
(zR, xR)

+ 1
2π

∫ π

−π
Ñk

ΩR
(zR, yR(t))dt +

∞

∑
n=1

(
1 − ( r

R )
2n
)(

p
(n)
zR

cos(n tx) + q
(n)
zR

sin(n tx)
)

− 2R
∫ π

−π

˜∂νyR(t)
Nk

Ωr
(xR, yR(t))N

k
ΩR

(zR, yR(t))dt .

Then we can apply Equation (3.20) and obtain

2Nk
ΩR

(zR, xR) = 2 Nk
Ω(zR, xR) + Nk

Ωr
(zr, xr) +

log(2)

2π
− p

(0)
zr

− 2r
∫ π

−π
∂νyr(t)

Ñk
Ω
(xR, yr(t))

(
1

2π log
(

R2+r2

2 R r − cos(tz − t)
)
+ Ñk

Ωr
(zr, yr(t))

)
dt

−
∞

∑
n=1

(
1 − ( r

R )
n
)(

p
(n)
zr cos(n tx) + q

(n)
zr sin(n tx)

)

+
∞

∑
n=1

(
1 − ( r

R )
2n
)(

p
(n)
zR

cos(n tx) + q
(n)
zR

sin(n tx)
)

− 2R
∫ π

−π

˜∂νyR(t)
Nk

Ωr
(xR, yR(t))N

k
ΩR

(zR, yR(t))dt

+ O
( (R − r)2

r

)
. (3.22)

We can further simplify this approximation by using Green’s identity on Nk
Ωr
(zr, xr),

with Nk
Ω(zr, xr), and using Taylor series on Nk

Ω(zR, xR) and on Ñk
Ω

. This leads
us to the equation

2Nk
ΩR

(zR, xR) = 2 Nk
Ωr
(zr, xr) + 2(Nk

Ω(zR, xR)− Nk
Ω(zr, xr))

− 2r
∫ π

−π

(
∂νyr(t)

Ñk
Ω
(xR, yr(t))− ∂νyr(t)

Ñk
Ω
(xr, yr(t))

)
Nk

Ωr
(zr, yr(t))dt

− 2r
∫ π

−π
∂νyr(t)

Ñk
Ω
(xr, yr(t))

1
2π log

( R2+r2

2 R r − cos(tz − t)

1 − cos(tz − t)

)
dt

−
∞

∑
n=1

(
1 − ( r

R )
n
)(

p
(n)
zr cos(n tx) + q

(n)
zr sin(n tx)

)

+
∞

∑
n=1

(
1 − ( r

R )
2n
)(

p
(n)
zR

cos(n tx) + q
(n)
zR

sin(n tx)
)

− 2R
∫ π

−π

˜∂νyR(t)
Nk

Ωr
(xR, yR(t))N

k
ΩR

(zR, yR(t))dt

+ O
( (R − r)2

r

)
.
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Using that ˜∂νyR(t)
Nk

Ωr
(xR, yR(t)) = O(R − r),

(
1 − ( r

R )
n
)
= O(R − r) and

that the logarithm in the second integral is in OL2(R − r), we can infer that
Nk

ΩR
(zR, xR)− Nk

Ωr
(zr, xr) = O(R − r) and thus make further simplifications,

which lead to Equation (3.15) and finishes the proof.

Remark 3.4 We note here, that Equation (3.22) is numerically more stable than
Equation (3.15) in Theorem 3.3. We expect the reason to be that the constant
error in the first step is lowered by the factor (R − r) and the factor 1/2 in every
subsequent step.

4 Numerical Implementation and Application

4.1 Applying Theorem 3.3 - Gradually Increasing the Radius

With Theorem 3.3 we are able to evaluate the Neumann function Nk
Ωr
(zr, xr)

while we increase the radius of the circular sub-domain Br(ζ) in Ωr by
∆r, where zr, xr ∈ ∂Br(ζ), with an error in O((R − r)2). Similar to how
we numerically evaluate the solution to an ordinary differential equa-
tion y(t) = f (t, y(t)), y(t0) = y0, using the explicit Euler scheme, where
we start at t0 and then evaluate the function y at t0 + ∆t with an er-
ror in O((∆t)2), we can now evaluate the function Nk

Ωr
(zr, xr) at radius

R = r + ∆r. For the Euler scheme, we can show using Grönwall’s in-
equality that the global error is O(∆t). Thus we expect the global error of
Nk

Ωr
(zr, xr) to be O(∆r).

The domain Ωr for the numerical evaluation is set to be Ωr = Br([0, 0]T)∪
B1([1, 2.5]T). We increase the radius of Br in Ωr by ∆r successively until
the radius reaches 1. In every step we compute the first N f Fourier coeffi-

cients of the smooth part of Nk
Ωr
(zr, · ), see (3.12), using Theorem 3.3 with

Remark 3.4, where we also have to discretize zr in such a way that we have
N f equidistant points on ∂Br(0), where one point is set at [−r, 0]T. For the
first step we use Equation (3.3) in Theorem 3.1.

In Figure 2 we have depicted the error, which we calculated using
MATLAB, between the actual Neumann function and the approximation
given through the algorithm corresponding to ∆r. To be more precise, we
computed all possible N2

f discretized values of the smooth enough part

of Nk
Ω1
(z1, x1) for z1, x1 ∈ ∂B1(ζ) and averaged them in the numerical

approximation. The actual Neumann function was numerically computed
using the BEM with a very large number of boundary points. The Figure
shows that we indeed achieve an error in O((∆r)1). It seems that we
even achieve a higher order than only a linear one, but this is not further
investigated here.

Comparing this numerical approximation with the BEM, we see that
for this approximation we have have a runtime complexity of O(N2

f ) ×

14



Figure 2: We have depicted the average error between the smooth enough Neu-

mann function Ñk
Ω
(z1, x1) and the numerical approximation with respect to the

radius increase ∆r, at the N f ∈ N points z1, x1 = 1 · [cos(tn), sin(tn)]T,
tn = −π, ..., π. We see that the error is at least linear in ∆r. We set here
k = 1, N f = 28.

O((∆r)−1) and an error in O(∆r) multiplied to an error with respect to
N f , which in the above numerical experiments had no influence. For the
BEM we have to invert a Nc × Nc matrix, where Nc is the amount of dis-
cretisation points used on the boundary, which yields an error in O(N−1

c )
and has a complexity runtime of O(N3

c ) in simple algorithms.

4.2 Reconstructing a Matrix

In this section we use the approximation shown in the last section to deter-
mine a specific scattering matrix S, as it is elaborated in Section 2. Different
than in Equation (2.3) we search here for a matrix S, which is as close as
possible in average value to all entries to a predetermined Matrix, which
we call in this subsection matrix A ∈ CN×N . Thus we try to minimise the
value e(S) = 1

N2 ∑i,j |Ai,j − Si,j|.
The procedure to form such a matrix S is as follows. We have N source

points (zi)
N
i=1 equidistantly distributed in (0, 1)× {0}. When there are no

scattering objects placed in R2
+, then the Neumann function Nk

Ω is simply

15



the Γk function, and hence Si,j = ∂(zj)2
Nk

Ω(zi, zj) = 0. Next we place a

small ball within R2
+, where we place the center so that the error e(S) is

minimised, which we in turn calculate using Theorem 3.1. We did this
minimization classically using a grid of points, but can in general be re-
alized with more sophisticated methods as for example with the gradient
descend method. Given the initial ball, we increase its radius using The-
orem 3.3 as it is shown in the previous section. After every increase we
compute the Neumann function at the source points using the associated
integral formulation, that is,

Nk
Ωr
(zi, zj) = Nk

Ω(zi, zj)−
∫

∂Br(ζ)
∂νy Nk

Ω(zj, y)Nk
Ωr
(zi, y)dσy , (4.1)

Nk
Ωr
(zi, y) = Nk

Ω(zi, y)−
∫

∂Br(ζ)
∂νw Nk

Ω(zj, w)Nk
Ωr
(w, y)dσw . (4.2)

Thus we can compute e(S), with the objective to see whether the error
decreases or increases and whether we should increase the radius further
or not. As soon as an increase in the radius does not yield a lower error,
we search for a place to add another small ball. We again use Theorem 3.1
to determine the next best place to center the ball. In addition, we need to
calculate Nk

Ω(ζi, ζ j),∇Nk
Ω(ζi, ζ j), (∇ζi

∇T
ζ j
)Nk

Ω(ζi, ζ j) in order to apply The-

orem 3.3, where ζi, ζ j are values in R2
+ \ Ωr and where (∇ζi

∇T
ζ j
) denotes

a 2 × 2 matrix in which the entries are the respective coordinate differen-
tiations. To this end, we use the integral formulation above, in which we
can interchange integration and differentiation. In practice, we used a lin-
ear interpolation to speed up the calculation. After we established a new
place for the small ball, we can also increase it until the error e(S) does
not decrease any further. And then we search for a place for a third ball,
and then a fourth and so forth until we cannot decrease e(S) any further.
This algorithm is explicit and does not use the inversion of any matrix as
it is commonly done using a BEM.

For our first numerical experiment, we set our predetermined matrix
A to be the scattering matrix of a predetermined domain, which is given
on the left-hand side in Figure 3. Using the algorithm described above, we
obtain the domain on the right-hand side. On the left-hand side in Figure
4 we see a heat-map of the real part of the matrix A and on the right-hand
side we see a heat-map of the real part of the scattering matrix S.

For more general matrices A we need more sources than given by the
size of A. To have such a more extended matrix we have to cast A to a
integral of the form

∫
Λ

K(zi, y)u(y)dσy, and finally discretize that integral,
and then apply the algorithm to the discretization.

16



Figure 3: On the left side a domain which yields a specific scattering matrix is
given. On the right we have the domain given by the algorithm. In Figure 4 we
can examine both scattering matrices. The predetermined domain is build of 4
circles of radius 0.02 with center [0.5, 0.3]T, [0.7, 0.5]T, [0.5, 0.7]T, [0.3, 0.5]T.

5 Concluding Remarks

We considered the physical experiment presented in [9], in which scat-
tering objects were placed in front of signal sources. Those sources send
waves which reflect at the object and then receiving points collect the wave
intensity. The registered intensity is the solution to a predetermined lin-
ear system of equations. Hence, instead of solving the linear system with
mathematical means, we can solve it using a physical set-up, which is sub-
stantially faster. The complication arises in finding the exact configuration
of the scattering objects.

Using a mathematical model for the underlying physical problem we
were able to describe the PDE using the Neumann function. Studying its
asymptotic behaviour when we place tiny scattering objects and when we
increase the extent of those objects successively, we were able to develop
an explicit algorithm to place and enlarge objects such that the scattering
matrix approaches the predetermined matrix, which is needed to solve
the linear system of equation. In Section 4 we showed that the numerical
implementation for calculating the Neumann function when we enlarge an
object works better then intended, in regard of the explicit Euler scheme.
With such an algorithm we have a new and faster numerical method to
calculate the Neumann function than using the ordinary BEM. We then
applied that process to approach a desired matrix.

In this paper we considered circular scattering objects. It would be
interesting to have more complicated domains such as ellipses, which
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Figure 4: Here we see the real part of the corresponding scattering matrices to
Figure 3. On the right-hand side we have the approximated one given by the
algorithm. The sources are enumerate from 1 to N, where the first corresponds to
the leftmost source on the x-axis.

would allow for one more easily accessible degree of freedom to control
the waves. We think that the mathematical proofs in Section 3 can be read-
ily extended to more complicated C2-boundaries. To this end, we need to
consider a function ϕ : (−π, π) → R2, which described the boundary, and
consider it in the integration formulae.

In the last section we mentioned that reconstructing a more general
matrix A in a linear system of equation does not work well. We need more
options in our algorithm, or a bigger matrix, which has similar properties
to A, and additionally can be described as a kernel of an integration oper-
ator. In [9], the authors set the matrix to be the lower left quadrant of their
scattering matrix.

We are looking forward to see these asymptotic formulae being used
in other physical problems concerning scattering problems. We are also
very curious to see improvements in the object reconstruction of general
linear systems and hope that our research will lead to an improvement of
mathematical and technological tools for numerical computing.

A An Integral Identity

In this appendix we derive the following identity:

−r
∫ π

−π

−1

2π

2Rr − (R2 + r2) cos(tx − t)

(R2 + r2 − 2Rr cos(tx − t))2

1

2π
log

(R2 + r2

2 R r
− cos(tz − t)

)
dt

=
r2

2π R

R2 cos(tz − tx)− r2

R4 + r4 − 2R2r2 cos(tz − tx)
.
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Using the 2π periodicity, we can rewrite the left-hand side in the above
identity as

−r
∫ π

−π

−1

2π

2Rr − (R2 + r2) cos(t − τ)

(R2 + r2 − 2Rr cos(t − τ))2

1

2π
log

(R2 + r2

2 R r
− cos(t)

)
dt ,

where τ := tx − tz. Then we use the Fourier series

1

2π
log

(R2 + r2

2 R r
− cos(t)

)
=

1

2π
log

( R

2 r

)
− 1

π

∞

∑
n=1

(r/R)n

n
cos(n t) ,

and subsequently the following identity

∫ π

−π

−1

2π

2Rr − (R2 + r2) cos(tx−t)

(R2 + r2 − 2Rr cos(tx−t))2
cos(n(tz−t))dt =

n

2Rr

( r

R

)n
cos(n(tz−tx)) ,

for all n ∈ N0, to obtain that

1

2π R

∞

∑
n=1

(
r
R

)2n
cos(nτ) .

This infinite sum is the Fourier sum of

1

2π R

r2(R2 cos(τ)− r2)

R4 + r4 − 2R2r2 cos(τ)
,

which is the desired term.

B Modification to the Trapezoidal Rule

In Section 2, we need to calculate the integral
∫

Λ
uj(x) ∂x2Nk

Ω(zi, x)dσx ,

using the trapezoidal rule. But the function uj(x), where x = [x1, x2]T,
x1 ∈ (0, 1), x2 = 0, is not well defined for x = zi. It has a logarithmic
singularity around zi. To use the trapezoidal rule, we need to modify it
slightly. Let us be more general and consider an integral of the form

∫ 1

0
log(|t − t∗|) f (t)dt ,

where t∗ ∈ (0, 1) and f : [0, 1] → C is a twice continuously differen-
tiable function. Assume we have N strictly increasing grid points t1 =
0, . . . , tN = 1, where tm = t∗. We define ∆i = ti+1 − ti. Then we have that

∫ tm+1

tm

log(|t − t∗|) f (t)dt

= [ f (t)
(
(t − t∗) log(t − t∗)− t

)
]
tm+1
t=tm

−
∫ tm+1

tm

f ′(t)
(
(t − t∗) log(t − t∗)− t

)
dt ,

= 1
2 f (tm+1)∆m(log(∆m)− 2) + 1

2 f (tm+1) log(∆m)∆m +O((∆m)
2 log(∆m)) ,
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where we used partial integration in the first equation, and in the second
one that f (tm+1) = f (tm) +O(∆m) and f ′(t) = ( f (tm+1)− f (tm))/∆m +
O(∆m). Similarly, we have that

∫ tm

tm−1

log(|t − t∗|) f (t)dt = 1
2 f (tm−1)∆m−1(log(∆m−1)− 2)

+ 1
2 f (tm−1) log(∆m−1)∆m−1 +O((∆m−1)

2 log(∆m−1)) .

Now we define ( fi)
N
i=1 = ( fi(ti))

N
i=1 and (li)

N
i=1 = (log(|ti − t∗|)N

i=1,i 6=m, with

lm = (log(∆m) + log(∆m−1)− 4)/2. We have then

∫ 1

0
log(|t − t∗|) f (t)dt = 1

2 f1 l1 ∆1 +
N−1

∑
i=2

fi li ∆i +
1
2 fN lN ∆N +O( max

i=1,...,N
∆i| log(∆i)|) .
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