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Abstract We propose an efficient, deterministic algorithm for constructing
exponentially convergent deep neural network (DNN) approximations of mul-
tivariate, analytic maps f : [−1, 1]K → R. We address in particular networks
with the rectified linear unit (ReLU) activation function. Similar results and
proofs apply for many other popular activation functions. The algorithm is
based on collocating f in deterministic families of grid points with small
Lebesgue constants, and by a-priori (i.e., “offline”) emulation of a spectral
basis with DNNs to prescribed fidelity.

Assuming availability of N function values of a possibly corrupted, numer-
ical approximation f̆ of f in [−1, 1]K and a bound on ‖f − f̆‖L∞([−1,1]K), we
provide an explicit, computational construction of a ReLU DNN which attains
accuracy ε (depending on N and ‖f−f̆‖L∞([−1,1]K)) uniformly, with respect to

the inputs. For analytic maps f : [−1, 1]K → R, we prove exponential conver-
gence of expression and generalization errors of the constructed ReLU DNNs.
Specifically, for every target accuracy ε ∈ (0, 1), there exists N depending also
on f such that the error of the construction algorithm with N evaluations of
f̆ as input in the norm L∞([−1, 1]K ;R) is smaller than ε up to an additive

data-corruption bound ‖f − f̆‖L∞([−1,1]K) multiplied with a factor growing
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slowly with 1/ε and the number of non-zero DNN weights grows polylogarith-
mically with respect to 1/ε. The algorithmic construction of the ReLU DNNs
which will realize the approximations, is explicit and deterministic in terms of
the function values of f̆ in tensorized Clenshaw–Curtis grids in [−1, 1]K . We
illustrate the proposed methodology by a constructive algorithm for (offline)
computations of posterior expectations in Bayesian PDE inversion.

Keywords Deep ReLU neural networks, exponential convergence, neural
network construction, generalization error.

Mathematics Subject Classification (2010) 41A10 · 41A50 · 65D05 ·
65D15

1 Introduction

Approximation by deep neural networks (DNNs) receives increasing attention
recently. DNNs realize mappings by a combination of affine mappings and
a coordinatewise applied (generally) non-linear function, which is referred to
as the activation function. Most rigorous analyses study the approximation
properties of certain DNN architectures and the existence of DNN weights
which guarantee a small error, cf. [39,3,31].

A common theme among these references is that DNNs perform as well as
the state-of-the-art numerical method in a variety of contexts.

In application the actual weights that represent the particular DNN are
commonly computed by DNN training, effected with numerically minimizing
a certain positive functional, the loss function. Training of DNNs is generally
challenging: the occurring optimization problem is highly non-convex. This
has for example been approached in computational uncertainty quantification
and also in image processing, cf. [32,25,2,1].

On the other hand, there is mathematical evidence that this approach
may not always be successful, cf. e.g. [5]. In the present paper, we propose to
explicitly construct values of the weights of DNNs via a deterministic algo-
rithm thereby circumventing the need of computationally costly optimization
routines. Relevance of the present results is due to the fact that numerous
applications in computational science and engineering aim at efficient numer-
ical realization of input-output maps between suitable Banach spaces, such as
for example data-to-solution maps for continuum models governed by partial
differential equations. Equipping the input data space with suitable, affine-
parametric representation systems such as (Riesz) bases or frames renders the
maps of interest parametric. In many applications such maps are holomorphic,
even for data spaces of inputs with possibly low spatial or temporal regularity,
see for example [18]. In the present paper, following a general, algorithmic
DNN construction and expression rate analysis, we develop one example con-
sisting in data-to-prediction maps for Bayesian inverse problems of elliptic
PDEs which should be contrasted with other, standard (i.e. numerical mini-
mization of loss functions) approaches (e.g. [38,24]). Other applications include
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shape-to-solution maps of differential or integral equations (e.g. [21,6,17] and
the references there).

1.1 Previous Work

The idea of constructive DNN approximations via Chebyšev expansions and
collocation in a tensor product Clenshaw-Curtis grid was already suggested
in [27], in particular [27, Theorem 2.3] on the approximation of multivariate
holomorphic functions by DNNs with smooth activations. There, robustness of
the DNN approximation rates under noisy data was described as “expected”,
but not proved.

Constructive proofs for ReLU-based DNN emulation of polynomials were
firstly seen in [23,39]. Mainly in [39] a construction for DNNs with rectified
linear unit (ReLU) activation that approximate the product of two scalars was
found. The convergence of these constructions is exponential with respect to
the size of the DNNs meaning the number of nonzero weights. Subsequent
works used DNNs and polynomial approximations for smooth (or analytic)
functions and established the existence of DNNs with exponential convergence,
in the L∞- and some in the stronger W 1,∞-norm: For example, [35] provided
W 1,∞-error bounds for the product network in [39], exponential convergence in
W 1,∞ for univariate analytic and Gevrey regular functions was shown in [29],
[12] provided exponentially convergent DNN approximations of holomorphic
maps on [−1, 1]d, with respect to the L∞-norm. A more efficient approximation
with respect to the W 1,∞-norm and under weaker smoothness assumptions
was given in [30]. The proofs in these references are constructive, in principle,
and algorithmic realizations could be based on the ReLU reapproximation of
polynomials as linear combinations of monomials. It is well-known that such
representations may have poor stability in finite-precision arithmetic (in par-
ticular, in the context of quantized DNN weights) due to exponential w.r. to
the polynomial degree coefficient growth in monomial expansions. Further-
more, these constructions use e.g. Taylor, Legendre or Chebyšev coefficients
of analytic functions, which cannot be determined exactly based on a finite
number of function evaluations.

An alternative approach to exponential DNN approximation of multivari-
ate holomorphic maps was used in [8], which used ReLU DNN approxima-
tions of tensor products of univariate polynomials with real roots by using
approximate ReLU DNN multiplications of their linear factors. This did not
lead to better asymptotic approximation rates than for the previously men-
tioned monomial-based polynomial approximations. The DNNs inherit the
well-known stability and conditioning issues from monomial representations
of interpolation polynomials.

Constructive approximation of multivariate holomorphic parametric maps
by tensorized Chebyšev polynomials with exponential convergence has been
studied in the context of option pricing in [15]. The approximation of multi-
variate maps by DNNs based on Chebyšev polynomials has been considered
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in [36]. There, Chebyšev polynomials represented exactly by so called RePU
DNNs serve as starting value for computing DNN weights in black box opti-
mization routines. The presented DNNs are based on a well-known identity
satisfied by the product of two Chebyšev polynomials. The initial error prior
to DNN optimization was not analyzed theoretically in [36].

Recently, collocation-based DNN constructions based on spline interpola-
tion were studied in [11]. For the approximation of functions of mixed smooth-
ness, algebraic convergence rates were obtained which are free from the curse
of dimensionality.

1.2 Contributions

The principal contributions of this work are threefold: we propose and imple-
ment a constructive numerical approximation algorithm for DNN expression
of maps f : [−1, 1]K → R. Specifically, we propose and analyze an algorithm to
build by explicit construction a DNN surrogate to the map f with a) rigorous,
sup-norm generalization error bounds and with b) good stability properties in
finite precision arithmetic, and c) with low complexity.

The general idea of our approach is as follows: in the parameter “box”
[−1, 1]K of finite dimension K, we wish to construct DNN emulations of given
maps f : [−1, 1]K → R, having at hand a finite set of samples {f(x) : x ∈
Γ} for a grid (i.e. a finite subset with additional structure, to be specified)
Γ ⊂ [−1, 1]K . Importantly, we assume that the map f to be emulated can be
numerically queried at x ∈ Γ at unit cost. We also allow a sampling error,
resulting in noisy evaluations f̆(x) for x ∈ Γ , with a known bound on the

noise maxx∈Γ |f(x)− f̆(x)|.
The construction of the DNN surrogate of f proceeds in two steps. First,

for some finite index set Λ ⊂ NK
0 with associated polynomial space PΛ =

span{xν : ν ∈ Λ} and corresponding data-sampling grid ΓΛ ⊂ [−1, 1]K , a
polynomial interpolant IΛ[f ] of f on [−1, 1]K based on samples in the grid ΓΛ is
constructed, where we require for ΓΛ unisolvency for polynomial interpolation
in PΛ. We consider the (unique) polynomial interpolant fΛ := IΛ[f ] ∈ PΛ

which satisfies f(x) = fΛ(x) for all x ∈ ΓΛ. Unisolvency of ΓΛ on PΛ implies

that on noisy evaluations f̆ of f in ΓΛ, there is a uniquely defined interpolant
f̆Λ := IΛ[f̆ ].

For ease of exposition, we consider here only isotropic tensor product inter-
polation. I.e., for a prescribed polynomial degree n ∈ N, Λ := {0 : n}K = {ν ∈
NK

0 : ‖ν‖∞ ≤ n} so that dim(PΛ) = (n + 1)K . We hasten to add, however,
that also more general polynomial spaces could be considered which are based
on, e.g., anisotropic, total degree or more general sparse grids ΓΛ ⊂ [−1, 1]K

which will be addressed elsewhere.
The second step of our DNN construction is DNN emulation of a basis of

PΛ: assuming PΛ = span{pν : ν ∈ Λ}, we shall construct DNN surrogates
p̃ν of pν . Being independent of f |Γ , these can be constructed offline, and we
develop concrete constructions here. With the DNN surrogates p̃ν at hand,
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the constructed DNN emulating f is

˜̆
f(x) :=

∑

ν∈Λ

f̆ν p̃ν(x) .

Evidently,
˜̆
f is a DNN, being a linear combination of (pre-computed) DNNs

p̃ν . We also see that the coefficients f̆ν , computed from the data (f̆(x))x∈ΓΛ
,

can be incorporated simply in the output layer of
˜̆
f .

Efficiency, stability and accuracy of this process depend on the following
key properties to be addressed here: (i) choice of the sampling designs ΓΛ ⊂
[−1, 1]K , (ii) stability of the basis pν of PΛ, (iii) accuracy and complexity of
the emulations p̃ν .

We achieve (i) and (ii) by adapting ideas from spectral collocation. Nu-
merical stability of the polynomial interpolation process in finite precision
arithmetic is required in order to preclude catastrophic amplification of, e.g.,
numerical errors in the function value queries f(x), for x ∈ ΓΛ. It is well
known to depend on two related issues: the choice of the sampling grid ΓΛ and
of the basis {pν : ν ∈ Λ} spanning PΛ. Favorable numerical conditioning of
the interpolation operator IΛ : C0([−1, 1]K) → PΛ : f 7→ fΛ is known to be
governed by the Lebesgue constant of ΓΛ.

For our DNN approximations, it turns out that tensor product Chebyšev
polynomials are a more favorable basis than e.g. Lagrange polynomials. We
have

fΛ(x) =
∑

ν∈Λ

fνTν(x), f̆Λ(x) =
∑

ν∈Λ

f̆νTν(x), x ∈ [−1, 1]K , (1.1)

where each coefficient fν (resp. f̆ν) can be computed from the function values

(f(x))x∈ΓΛ
(resp (f̆(x))x∈ΓΛ

). When ΓΛ is the tensor product Clenshaw–
Curtis grid, these coefficients can be computed efficiently using the inverse fast
Fourier transform (we recall the relevant details of polynomial interpolation
in Section 2).

We consider here in particular DNNs T̃ν approximating Tν with ReLU
activation, and we propose a DNN architecture of low complexity by exploit-
ing certain algebraic properties of univariate Chebyšev polynomials which are
tensorized to build the Tν . Based on an observation in [36], we obtain smaller
architectures and better stability than with other polynomial bases (e.g. in
[39,30] either monomial bases were considered resulting in small DNNs with
large Lebesgue constants or Legendre polynomials were considered which have
better stability, but require larger DNNs for their accurate emulation). We fi-

nally obtain a DNN approximation
˜̆
f of f whose DNN weights are computable

explicitly:

x 7→
˜̆
fΛ(x) :=

∑

ν∈Λ

f̆ν T̃ν(x), x ∈ [−1, 1]K . (1.2)
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The coefficients f̆ν are computed from the function values (f̆(x))x∈ΓΛ
, which

serve here as synthetic training data. A so-called training routine, for exam-
ple the widely used stochastic gradient descent method, is not necessary. The
meticulous choice of training data points x ∈ ΓΛ is crucial to obtain a small
Lebesgue constant and thereby good performance of our algorithm. This is in
contrast to randomly or quasi-randomly chosen training points, which have
been used in connection with the stochastic gradient method, see for exam-
ple [25].

The DNN expression and generalization error analysis proceeds according
to

‖f −
˜̆
fΛ‖ ≤ ‖f − fΛ‖+ ‖fΛ − f̆Λ‖+ ‖f̆Λ −

˜̆
fΛ‖. (1.3)

The first term is an error of polynomial interpolation, the second term is due
to the error in the numerical approximation f̆ of the true response f used
in the DNN construction, and the third error term is, essentially, the DNN
emulation error of the polynomial basis elements Tν .

The choice of the norm ‖ ◦ ‖ will be either the L∞- or also the W 1,∞-norm
on the (scaled) input data domain [−1, 1]K . This means we provide upper
bounds on what is often referred to as generalization error of the DNN and
its first order sensitivities.

The decay of the first error in (1.3) is determined by the error of best
polynomial approximation in PΛ and the Lebesgue constant of ΓΛ, with respect
to the norm ‖ ◦ ‖, which we denote by ‖IΛ‖. We recall that

sup
f∈B
‖f − fΛ‖ ≤ (1 + ‖IΛ‖) sup

f∈B
inf
p∈PΛ

‖f − p‖. (1.4)

That is, for every function class B ⊂ C0([−1, 1]K) the interpolation operator
IΛ obtains, uniformly over all f ∈ B, the convergence rate of best polynomial
approximation in PΛ, up to a factor (1+‖IΛ‖). In addition, the second term in

(1.3) is bounded by ‖IΛ‖‖f − f̆‖ for all f, f̆ ∈ C
0([−1, 1]K). The third term in

(1.3) is the error of approximating tensorized Chebyšev polynomials by ReLU
DNNs. It is bounded in Proposition 3.3 for arbitrary index sets Λ ⊂ NK

0 , which
is a result of independent interest.

For our choice of index sets Λ = {0, . . . , n}K , n ∈ N, and ΓΛ the ten-
sorized Clenshaw–Curtis grids, the bound ‖IΛ‖ ≤ C(1 + log(n))K for the
L∞-Lebesgue constant implies that IΛ obtains in L∞, in terms of the number
of degrees of freedom |Λ| and up to logarithmic factors in n, the rate of best
polynomial approximation of f . The size of the ReLU DNN approximations
is bounded by C|Λ| multiplied by factors logarithmic in n and the reciprocal
of the desired accuracy, and algebraic in K. This shows exponential conver-
gence of ReLU DNN approximations of holomorphic functions f , as analyzed
in detail in this paper. By the same arguments, ReLU DNN approximations
of f ∈ C0([−1, 1]K) satisfying infp∈PΛ

‖f − p‖ ∼ Cn−θ for θ > 0, obtain in
L∞ the rate θ/K of best polynomial approximation in terms of the network
size, up to logarithmic factors in n stemming from the Lebesgue constant and
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the fact that the size of a ReLU DNN approximating a multiplication of two
numbers depends logarithmically on the reciprocal of the desired accuracy.

For many other activation functions than ReLU, smallness of the third
term in (1.3) can be guaranteed for DNNs whose size is independent of the
accuracy. We comment on such networks, obtaining the same convergence rates
as polynomial interpolation, in Section 3.4.

1.3 Notation

We will denote vectors and multiindices by bold characters. We denote N =
{1, 2, ...} and N0 = {0, 1, 2, ...}. For k ∈ N0 and a subset S ⊂ N0, we define
1S(k) := 1 if k ∈ S, and 1S(k) := 0 otherwise. For K ∈ N and k ∈ NK

0 ,

we define 1S(k) :=
∑K

j=1 1S(kj) and denote by |k|0 := 1N(k) the number of

nonzero components of k. For finite index sets Λ ⊂ NK
0 , we denote the number

of elements by |Λ| and the maximum coordinatewise degree by m∞(Λ) :=
maxk∈Λ ‖k‖ℓ∞ .

We denote by Tk, k ∈ N0, the univariate Chebyšev polynomials of the
first kind, normalized such that Tk(1) = 1 for all k ∈ N0. For K ∈ N

and k = (kj)
K
j=1 ∈ NK

0 , we denote tensor product Chebyšev polynomials

by Tk(x) :=
∏K

j=1 Tkj
(xj), for x = (xj)

K
j=1 ∈ [−1, 1]K . We write cos(θ) :=

(cos(θ1), . . . , cos(θK)) for vectors θ = (θ1, . . . , θK) ∈ RK and xν :=
∏K

j=1 x
νj

j

for x ∈ RK and ν ∈ NK
0 , with the convention 00 = 1.

We introduce the following notation for circles in the complex plane: For
all r > 0 we define Γr := {z ∈ C : |z| = r}. For all r ≥ 1, the image of

the annulus {z ∈ C : 1 ≤ |z| ≤ ρ} under the map z 7→ z+z−1

2 is a closed

Bernstein ellipse, denoted by Eρ :=
{

z+z−1

2 ∈ C : 1 ≤ |z| ≤ ρ
}

. For p ≥ 0,

the space of polynomials of degree at most p is denoted by Pp. The space of
polynomials in K ∈ N variables of coordinatewise degree at most p is denoted
by Qp := span{xν : ν ∈ NK

0 and ‖ν‖ℓ∞ ≤ p}.
Error estimates will be expressed in terms of the W 1,∞-Sobolev norm,

which is defined, for an open and bounded domain Ω ⊂ RK , as ‖u‖W 1,∞(Ω) =

max{‖u‖L∞(Ω),maxKi=1 ‖
∂

∂xi
u‖L∞(Ω)},

∂
∂xi

denoting weak derivatives. For in-
teger s ≥ 1, the W s,∞-norm is defined analogously, taking the maximum over
all weak derivatives of order at most s.

Throughout, a superscript tilde (e.g. f̃) shall denote a DNN. With a super-

script breve (e.g. f̆) we shall denote a corrupted quantity. Typically, f̆ denotes
a numerical approximation of the map f , due to some measurement or, in our
case, due to some discretization error in approximating the map f .

1.4 Outline

In Section 2, we first recapitulate classical results on constructive polynomial
approximation of multivariate, holomorphic functions on [−1, 1]K . In Section
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3, we recapitulate ReLU DNN approximation rates of multivariate maps f :
[−1, 1]K → R from [30]. We also develop a constructive DNN approximation.
It is based on standard spectral collocation approximation of f in a tensorized
Clenshaw–Curtis grid, and on ReLU DNN emulation of tensorized Chebyšev
polynomials. In Section 3.4, we comment on generalizations of our results to
DNNs with activation functions other than ReLU. In Section 4, a construction
algorithm is proposed and analyzed that converges exponentially for analytic
functions. An application of the presented algorithm to a Bayesian inverse
problem is discussed in Section 5 and numerical experiments confirming the
theory are provided in Section 6.

2 Polynomial Approximation of Multivariate Holomorphic
Functions

It is classical that univariate functions f : [−1, 1]→ R which are real-analytic
in [−1, 1] admit sequences of polynomial approximations {fp}p≥0 with fp ∈ Pp

which converge at an exponential rate. These univariate polynomial approx-
imations can be tensorized to produce exponentially convergent, tensorized
polynomial approximations to multivariate maps f : [−1, 1]K → R. This ar-
gument was used in [30] to infer existence of tensorized truncated Legendre
expansions of co-ordinatewise polynomial degree at most p ∈ N of f which
could, in principle, serve as building block for the corresponding multivariate
ReLU DNNs which emulate the map f .

In this section, we present an alternative proof of such multivariate poly-
nomial approximation of holomorphic maps f : [−1, 1]K → R, which admit a
holomorphic complex extension to the isotropic Bernstein polyellipse Eρ = EKρ
with polyradius ρ = (ρ, . . . , ρ) ∈ RK for some ρ ∈ (1,∞). The interpolation
results are basically known, being based on tensorized Chebyšev polynomi-
als. We detail them here, as they are the basis for the ensuing ReLU DNN
approximations. Bounds on Lebesgue constants of Chebyšev points in [−1, 1]
are essential in quantifying numerical stability of the interpolation and, more
importantly, of the DNN approximation process.

2.1 Chebyšev Expansion

We first recall the tensor product Chebyšev expansion, which is obtained by
inductively taking the Chebyšev expansion with respect to each of the K
coordinates. The following results are classical, we refer to [37, Theorem 3.1]
for the arguments in the univariate case, which we apply K times. Denoting
the Chebyšev measure on [−1, 1] by λ, which has Lebesgue density (1−x2)−1/2
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for x ∈ (−1, 1), it holds for all y = (y1, . . . , yK) ∈ [−1, 1]K

f(y1, . . . , yK) =

∞
∑

k1=0

21N(k1)π−1Tk1
(y1)

∫ 1

−1

f(x1, y2, . . . , yK)Tk1
(x1) dλ(x1)

=

∞
∑

k1=0

21N(k1)π−1Tk1(y1)

∫ 1

−1

· · ·

∞
∑

kK=0

21N(kK)π−1TkK
(yK)

∫ 1

−1

f(x1, . . . , xK)TkK
(xK) dλ(xK) · · ·Tk1

(x1) dλ(x1)

=
∑

k∈NK
0

Tk(y)2
|k|0π−K

∫ 1

−1

· · ·

∫ 1

−1

f(x)Tk(x) dλ(x1) · · · dλ(xK)

=:
∑

k∈NK
0

Tk(y)fk. (2.1)

In the third step, interchanging summation and integration is justified by
the dominated convergence theorem. It implies that for all j = 2, . . . ,K and
ℓ = 1, . . . , j − 1, all (kℓ, . . . , kj−1) ∈ N

j−ℓ
0 , all y = (y1, . . . , yK) ∈ [−1, 1]K and

all (x1, . . . , xℓ−1) ∈ [−1, 1]ℓ−1

∫ 1

−1

∞
∑

kj=0

π−(j−ℓ)

j
∏

i=ℓ+1

(

21N(ki)Tki
(yi)

)

[
∫

[−1,1]j−ℓ

f(x1, . . . , xj , yj+1, . . . , yK)Tkj
(xj) dλ(xj) · · ·Tkℓ+1

(xℓ+1) dλ(xℓ+1)

]

Tkℓ
(xℓ) dλ(xℓ)

= lim
N→∞

∫ 1

−1

N
∑

kj=0

π−(j−ℓ)

j
∏

i=ℓ+1

(

21N(ki)Tki
(yi)

)

[
∫

[−1,1]j−ℓ

f(x1, . . . , xj , yj+1, . . . , yK)Tkj
(xj) dλ(xj) · · ·Tkℓ+1

(xℓ+1) dλ(xℓ+1)

]

Tkℓ
(xℓ) dλ(xℓ).

Use of the dominated convergence theorem is justified because for all N ∈ N0,
Lemma 2.1 below can be applied to

g : [−1, 1]j−ℓ → R : (xℓ+1, . . . , xj) 7→ f(x1, . . . , xj , yj+1, . . . , yK),
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which implies that

∣

∣

∣

∣

N
∑

kj=0

π−(j−ℓ)

j
∏

i=ℓ+1

(

21N(ki)Tki
(yi)

)

Tkℓ
(xℓ)

[
∫

[−1,1]j−ℓ

f(x1, . . . , xj , yj+1, . . . , yK)Tkj
(xj) dλ(xj) · · ·Tkℓ+1

(xℓ+1) dλ(xℓ+1)

]
∣

∣

∣

∣

≤

N
∑

kj=0

π−(j−ℓ)

j
∏

i=ℓ+1

(

21N(ki)|Tki
(yi)|

)

|Tkℓ
(xℓ)|

∣

∣

∣

∣

∣

∫

[−1,1]j−ℓ

f(x1, . . . , xj , yj+1, . . . , yK)Tkj
(xj) dλ(xj) · · ·Tkℓ+1

(xℓ+1) dλ(xℓ+1)

∣

∣

∣

∣

∣

≤

N
∑

kj=0

π−(j−ℓ)

j
∏

i=ℓ+1

21N(ki)

∣

∣

∣

∣

∣

∫

[−1,1]j−ℓ

f(x1, . . . , xj , yj+1, . . . , yK)Tkj
(xj) dλ(xj) · · ·Tkℓ+1

(xℓ+1) dλ(xℓ+1)

∣

∣

∣

∣

∣

=

N
∑

kj=0

|g(kℓ+1,...,kj)| ≤

N
∑

kj=0

j
∏

i=ℓ+1

21N(ki) max
z∈Ej−ℓ

ρ

|g(z)|ρ−(kℓ+1,...,kj)

< 2j−ℓ ρ
ρ−1 max

z∈Eρ

|f(z)|,

where g(kℓ+1,...,kj) denotes a Chebyšev coefficient of g, analogous to fk defined
in Equation (2.1).

We next estimate the size of the coefficients, which we later need to bound
the DNN error.

Lemma 2.1 Let K ∈ N, and let f : [−1, 1]K → R be a map which admits a
holomorphic complex extension to the isotropic Bernstein polyellipse Eρ ⊂ CK

with ρ = (ρ, . . . , ρ) ∈ (1,∞)K for some ρ > 1. Then, for every k ∈ NK
0

|fk| ≤ 2|k|0 max
z∈Eρ

|f(z)|ρ−k,
∑

k∈NK
0

|fk| ≤
(

2ρ
ρ−1

)K

max
z∈Eρ

|f(z)|. (2.2)

Proof The Chebyšev coefficients of f satisfy (cf. e.g. [37, Equations (3.12) –
(3.14)] and [33, Theorem 3.8])

fk =2|k|0π−K

∫ 1

−1

· · ·

∫ 1

−1

f(x)Tk(x) dλ(x1) · · · dλ(xK) (2.3)

= 2|k|0(2π)−K

∫ π

−π

· · ·

∫ π

−π

f(cos(θ)) cos(k1θ1) dθ1 · · · cos(kKθK) dθK

=2|k|0(2πi)−K

∫

Γ1

· · ·

∫

Γ1
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f
(

z1+z−1
1

2 , . . . ,
zK+z−1

K

2

)

(

z
k1
1 +z

−k1
1

2

)

dz1
z1
· · ·

(

z
kK
K

+z
−kK
K

2

)

dzK
zK

=2|k|0(2πi)−K

∫

Γ1

· · ·

∫

Γ1

f
(

z1+z−1
1

2 , . . . ,
zK+z−1

K

2

)

z−k1
1

dz1
z1
· · · z−kK

K
dzK
zK

,

where the last step follows by invariance of z+z−1

2 under the transformation
z 7→ z−1, for z ∈ C\{0}. By holomorphy of f , we can change the curve of
integration from Γ1 to Γρ, so that

|fk| =

∣

∣

∣

∣

∣

2|k|0(2πi)−K

∫

Γρ

· · ·

∫

Γρ

f
(

z1+z−1
1

2 , . . . ,
zK+z−1

K

2

)

z−k dz1
z1
· · · dzK

zK

∣

∣

∣

∣

∣

≤ 2|k|0 max
z∈Eρ

|f(z)|(2π)−K

∣

∣

∣

∣

∣

∫

Γρ

· · ·

∫

Γρ

z−k dz1
z1
· · · dzK

zK

∣

∣

∣

∣

∣

≤ 2|k|0 max
z∈Eρ

|f(z)|ρ−k,

∑

k∈NK
0

|fk| ≤ 2K max
z∈Eρ

|f(z)|
(

ρ
ρ−1

)K

=
(

2ρ
ρ−1

)K

max
z∈Eρ

|f(z)|.

2.2 Chebyšev Interpolation

Because in general the Chebyšev coefficients of f are not known explicitly, we
next approximate the coefficients and thus consider polynomial interpolation
of f : We approximate f by a polynomial whose coefficients with respect to
the Chebyšev basis only depend on function values of f in the tensor product
Clenshaw–Curtis grid. For n ∈ N, we consider the approximation f̂k;n of the
Chebyšev coefficients, for k ∈ {0, . . . , n}K , obtained by applying an (n +
1)K point tensor product quadrature in the Clenshaw–Curtis points xn

j :=

cos(jπ/n) for j ∈ {0, . . . , n}K to the integrals in (2.3)

wj :=
(

π
2n

)K
K
∏

ℓ=1

21{1,...,n−1}(jℓ), j ∈ {0, . . . , n}K ,

f̂k;n := 21S(n)(k)π−K
∑

j∈{0,...,n}K

wjf(cos(jπ/n)) cos(kjπ/n) (2.4)

= 21S(n)(k)(2n)−K
∑

j∈{0,...,2n−1}K

f(cos(jπ/n)) cos(kjπ/n)

= 21S(n)(k) IFFT
(

(f(xn
j ))j∈{0,...,2n−1}K

)

k
,

where S(n) := {1, . . . , n − 1} and kj = (k1j1, . . . , kKjK) ∈ NK
0 for j ∈

{0, . . . , 2n − 1}K . In addition, IFFT denotes the inverse fast Fourier trans-
form. Note that cos((2n − j)π/n) = cos(jπ/n) for j = 1, . . . , n − 1, thus
(f(xn

j ))j∈{0,...,n}K are sufficient to determine (f(xn
j ))j∈{0,...,2n−1}K . If kj = n
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for some j = 1, . . . ,K, the definition of f̂k;n differs from the result of applying
quadrature to (2.3) by a constant factor: In 21S(n)(k), the factor 2 is omitted
for each kj = n, j = 1, . . . ,K, because of aliasing in the coefficients of the
Chebyšev interpolant (cf. [37, Chapter 4]).

The approximation

p̂f,n := ICC
n [f ] :=

∑

k∈{0,...,n}K

f̂k;nTk (2.5)

of f is in fact the Lagrange interpolant in the nodes (xn
j )j∈{0,...,n}K (cf. [33,

Theorem 3.13] for K = 1, which can be applied inductively). It is known that
the Lebesgue constant of tensor product Lagrange interpolation in these nodes
satisfies

∥

∥ICC
n

∥

∥

L∞,L∞ :=
∥

∥ICC
n

∥

∥

L∞([−1,1]K),L∞([−1,1]K)
≤ ( 2π log(n+ 1) + 1)K

(cf. [33, Theorem 1.2] for K = 1 and the zeroes of Chebyšev polynomials
as nodes, from which the result for (xn

j )j∈{0,...,n}K and K = 1 follows with
[13, Theorem 4, Equation (4.6)]). Using Markov’s inequality, a bound on the
Lebesgue constant with respect to the W 1,∞-norm can be obtained as follows:

∥

∥ICC
n

∥

∥

W 1,∞,W 1,∞ :=
∥

∥ICC
n

∥

∥

W 1,∞([−1,1]K),W 1,∞([−1,1]K)

= sup
g∈W 1,∞([−1,1]K)\{0}

∥

∥ICC
n [g]

∥

∥

W 1,∞([−1,1]K)

‖g‖W 1,∞([−1,1]K)

≤ sup
g∈W 1,∞([−1,1]K)\{0}

n2
∥

∥ICC
n [g]

∥

∥

L∞([−1,1]K)

‖g‖W 1,∞([−1,1]K)

≤ sup
g∈W 1,∞([−1,1]K)\{0}

n2
∥

∥ICC
n

∥

∥

L∞,L∞ ‖g‖L∞([−1,1]K)

‖g‖W 1,∞([−1,1]K)

≤n2
∥

∥ICC
n

∥

∥

L∞,L∞ .

In the third step, we used that for all q ∈ Qn([−1, 1]
K)

K
max
i=1

∥

∥

∥

∂
∂xi

q
∥

∥

∥

L∞([−1,1]K)

=
K

max
i=1

max
x1,...,xi−1,

xi+1,...,xK∈[−1,1]

∥

∥

∥
( ∂
∂xi

q)(x1, . . . , xi−1, ·, xi+1, . . . , xK)
∥

∥

∥

L∞([−1,1])

≤
K

max
i=1

max
x1,...,xi−1,

xi+1,...,xK∈[−1,1]

n2 ‖q(x1, . . . , xi−1, ·, xi+1, . . . , xK)‖L∞([−1,1]) (2.6)

=n2 ‖q‖L∞([−1,1]K) ,

where we applied Markov’s inequality to the univariate polynomial

z 7→ q(x1, . . . , xi−1, z, xi+1, . . . , xK).
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This computation holds in particular for polynomials q ∈ Qn([−1, 1]
K) which

are themselves derivatives of other polynomials in Qn([−1, 1]
K), hence the

previous argument can be iterated to obtain for all s ∈ N
∥

∥ICC
n

∥

∥

W s,∞,W s,∞ ≤ n
2s
∥

∥ICC
n

∥

∥

L∞,L∞ .

The arguments used above also prove the following, slightly stronger result:
∥

∥ICC
n

∥

∥

L∞,W 1,∞ :=
∥

∥ICC
n

∥

∥

L∞([−1,1]K),W 1,∞([−1,1]K)

= sup
g∈W 1,∞([−1,1]K)\{0}

∥

∥ICC
n [g]

∥

∥

W 1,∞([−1,1]K)

‖g‖L∞([−1,1]K)

≤n2
∥

∥ICC
n

∥

∥

L∞,L∞ . (2.7)

Again, we get the analogous result for arbitrary s ∈ N by iterating (2.6) s
times:

∥

∥ICC
n

∥

∥

L∞,W s,∞ ≤ n
2s
∥

∥ICC
n

∥

∥

L∞,L∞ .

2.3 Chebyšev Interpolation Based On Approximate Function Values

In the case that the function f is only accessible through a (possibly corrupted)

numerical approximation f̆ in the Clenshaw–Curtis points (xn
j )j∈{0,...,n}K , a

further approximation of the coefficients f̂k;n is made. The function values of f

in Equation (2.4) are replaced by function values of f̆ . For all k ∈ {0, . . . , n}K

f̆k;n := 21S(n)(k)π−K
∑

j∈{0,...,n}K

wj f̆(cos(jπ/n)) cos(kjπ/n) (2.8)

= 21S(n)(k)(2n)−K
∑

j∈{0,...,2n−1}K

f̆(cos(jπ/n)) cos(kjπ/n)

= 21S(n)(k) IFFT
(

(f̆(xn
j ))j∈{0,...,2n−1}K

)

k
. (2.9)

We define the corresponding interpolant p̆f,n as

p̆f,n :=
∑

k∈{0,...,n}K

f̆k;nTk = ICC
n [f̆ ]. (2.10)

Lemma 2.2 Let K ∈ N, and let f : [−1, 1]K → R be a map which admits a
holomorphic complex extension to the isotropic Bernstein polyellipse Eρ with

ρ = (ρ, . . . , ρ) ∈ (1,∞)K for some ρ > 1. We assume that an approximation f̆

of f is available, and an upper bound on ‖f − f̆‖L∞([−1,1]K). Then, for every
ρ′ ∈ (1, ρ) and every s ∈ N, there exists C ′(s, ρ, ρ′) > 0 such that

‖f − p̆f,n‖L∞([−1,1]K) ≤
(

1 +
∥

∥ICC
n

∥

∥

L∞,L∞

)

K
(

2ρ
ρ−1

)K

max
z∈Eρ

|f(z)| ρ−n−1

+
∥

∥ICC
n

∥

∥

L∞,L∞

∥

∥

∥
f − f̆

∥

∥

∥

L∞([−1,1]K)
, (2.11)
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‖f − p̆f,n‖W s,∞([−1,1]K)

≤
(

1 +
∥

∥ICC
n

∥

∥

W s,∞,W s,∞

)

K
(

2C′ρ′

ρ′−1

)K

max
z∈Eρ

|f(z)| ρ′
−n−1

+
∥

∥ICC
n

∥

∥

L∞,W s,∞

∥

∥

∥
f − f̆

∥

∥

∥

L∞([−1,1]K)
. (2.12)

Proof We can estimate the error as follows. For all q ∈ Qn we use q = ICC
n [q]

and obtain

‖f − p̆f,n‖L∞([−1,1]K)

≤ ‖f − q‖L∞([−1,1]K) + ‖q − p̂f,n‖L∞([−1,1]K) + ‖p̂f,n − p̆f,n‖L∞([−1,1]K)

= ‖f − q‖L∞([−1,1]K) +
∥

∥ICC
n [q − f ]

∥

∥

L∞([−1,1]K)
+
∥

∥

∥
ICC
n [f − f̆ ]

∥

∥

∥

L∞([−1,1]K)

≤ ‖f − q‖L∞([−1,1]K) +
∥

∥ICC
n

∥

∥

L∞,L∞ ‖f − q‖L∞([−1,1]K)

+
∥

∥ICC
n

∥

∥

L∞,L∞

∥

∥

∥
f − f̆

∥

∥

∥

L∞([−1,1]K)
. (2.13)

By the same argument it follows that

‖f − p̆f,n‖W s,∞([−1,1]K)

≤ ‖f − q‖W s,∞([−1,1]K) +
∥

∥ICC
n

∥

∥

W s,∞,W s,∞ ‖f − q‖W s,∞([−1,1]K)

+
∥

∥ICC
n

∥

∥

L∞,W s,∞

∥

∥

∥
f − f̆

∥

∥

∥

L∞([−1,1]K)
. (2.14)

Now, we can take the infimum over q ∈ Qn and replace ‖f − q‖ by the error
of best polynomial approximation. Next, we discuss two upper bounds on the
error of best polynomial approximation, which are sufficient for our purposes.

In case f is not only holomorphic on Eρ, but also on the polydisk Bρ′ :=

×K
j=1{zj ∈ C : |zj | ≤ ρ′}, with ρ′ := (ρ′, . . . , ρ′) ∈ (1,∞)K for some ρ′ ∈

(1,∞), an upper bound on the error of best approximation follows by taking
q ∈ Qn to be the Taylor approximation of f in 0 and using a bound on the
error of the Taylor approximation, e.g. [18, Theorem 5.1]. It then follows that
‖f − q‖L∞([−1,1]K) ≤ C(ρ′, f)ρ′

−n
. Using that ∂

∂xj
q is the Taylor approxima-

tion of ∂
∂xj

f for j = 1, . . . ,K, the same bound on the error of the Taylor ap-

proximation gives that ‖f − q‖W 1,∞([−1,1]K) ≤ C(ρ
′, f)ρ′

−n+1
≤ C(ρ′, f)ρ′

−n
,

where the constant was increased in the last step. Applying this argument s
times gives a bound of the W s,∞-error.

If such a stronger condition of holomorphy on a polydisk does not hold, we
can take q to be a truncation of the Chebyšev expansion: q :=

∑

k∈{0,...,n}K fkTk.

We obtain a bound on the truncation error using the bound (2.2) on the
Chebyšev coefficients. We use as notation Λc

n := NK
0 \{0, . . . , n}

K and k(j) :=
(0, . . . , 0, n+ 1, 0, . . . , 0) ∈ NK

0 for j = 1, . . . ,K, with the nonzero component

in the j’th position. Using that Λc
n =

⋃K
j=1{k

(j) + k : k ∈ NK
0 }, and the fact
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that ‖Tk‖L∞([−1,1]K) = 1 for all k ∈ NK
0 , it follows that

‖f − q‖L∞([−1,1]K) ≤
∑

Λc
n

|fk| ‖Tk‖L∞([−1,1]K) ≤

K
∑

j=1

∑

k∈NK
0

∣

∣fk(j)+k

∣

∣

≤
K
∑

j=1

∑

k∈NK
0

2K max
z∈Eρ

|f(z)|ρ−k(j)−k

≤K
(

2ρ
ρ−1

)K

max
z∈Eρ

|f(z)| ρ−n−1.

For all s ∈ N, bounds on the W s,∞-error follow similarly, using that for all
ρ′ ∈ (1, ρ) there exists C ′(s, ρ, ρ′) > 0 such that ρ−kk2s ≤ C ′ρ′

−k
for all

k ∈ N0. By the Markov inequality, the definition of the ‖ ◦ ‖W s,∞ -norm (cf.
Sec. 1.3), and the fact that ‖Tk‖L∞([−1,1]K) = 1 for all k ∈ NK

0 , we get

‖Tk‖W s,∞([−1,1]K) = max
i∈NK

0 :‖i‖ℓ1≤s

∥

∥

∥

∥

∥

∂ix

K
∏

ℓ=1

Tkℓ
(xℓ)

∥

∥

∥

∥

∥

L∞([−1,1]K)

= max
i∈NK

0 :‖i‖ℓ1≤s

K
∏

ℓ=1

∥

∥

∥

∥

∥

∂iℓ

∂xiℓℓ
Tkℓ

(·)

∥

∥

∥

∥

∥

L∞([−1,1])

≤ max
i∈NK

0 :‖i‖ℓ1≤s
k2i ≤

K
∏

ℓ=1

max{1, k2sℓ }.

We obtain that for all ρ′ ∈ (1, ρ)

‖f − q‖W s,∞([−1,1]K)

≤
∑

Λc
n

|fk| ‖Tk‖W s,∞([−1,1]K)

≤

K
∑

j=1

∑

k∈NK
0

∣

∣fk(j)+k

∣

∣

K
∏

ℓ=1

max{1, (k(j) + k)2sℓ }

≤

K
∑

j=1

∑

k∈NK
0

2K max
z∈Eρ

|f(z)|ρ−k(j)−k

K
∏

ℓ=1

max{1, (k(j) + k)2sℓ }

≤ K2K max
z∈Eρ

|f(z)|

(

∞
∑

k=0

max{1, k2s}ρ−k

)K−1( ∞
∑

k=n+1

max{1, k2s}ρ−k

)

≤ K2K max
z∈Eρ

|f(z)|

(

∞
∑

k=0

C ′ρ′
−k

)K−1( ∞
∑

k=n+1

C ′ρ′
−k

)

≤ K
(

2C′ρ′

ρ′−1

)K

max
z∈Eρ

|f(z)| ρ′
−n−1

.



16 Lukas Herrmann, Joost A. A. Opschoor, Christoph Schwab

With (2.13) and (2.14) we obtain

‖f − p̆f,n‖L∞([−1,1]K)

≤ ‖f − q‖L∞([−1,1]K) +
∥

∥ICC
n

∥

∥

L∞,L∞ ‖f − q‖L∞([−1,1]K)

+
∥

∥ICC
n

∥

∥

L∞,L∞

∥

∥

∥
f − f̆

∥

∥

∥

L∞([−1,1]K)

≤
(

1 +
∥

∥ICC
n

∥

∥

L∞,L∞

)

K
(

2ρ
ρ−1

)K

max
z∈Eρ

|f(z)| ρ−n−1

+
∥

∥ICC
n

∥

∥

L∞,L∞

∥

∥

∥
f − f̆

∥

∥

∥

L∞([−1,1]K)
,

‖f − p̆f,n‖W s,∞([−1,1]K)

≤ ‖f − q‖W s,∞([−1,1]K) +
∥

∥ICC
n

∥

∥

W s,∞,W s,∞ ‖f − q‖W s,∞([−1,1]K)

+
∥

∥ICC
n

∥

∥

L∞,W s,∞

∥

∥

∥
f − f̆

∥

∥

∥

L∞([−1,1]K)

≤
(

1 +
∥

∥ICC
n

∥

∥

W s,∞,W s,∞

)

K
(

2C′ρ′

ρ′−1

)K

max
z∈Eρ

|f(z)| ρ′
−n−1

+
∥

∥ICC
n

∥

∥

L∞,W s,∞

∥

∥

∥
f − f̆

∥

∥

∥

L∞([−1,1]K)
.

Remark 2.3 The estimates in Equations (2.13) and (2.14) apply more gener-
ally also for functions of finite regularity, using Jackson-type estimates on the
error of best polynomial approximation. Error estimates for interpolation of
functions of finite regularity on a Clenshaw–Curtis grid could also be based on
other arguments. For example, see the proof of [27, Theorem 2.1], which uses
such a result to show a lower bound on the convergence rate of DNNs with a
smooth activation function.

The previous error bound leads to the following bound on the approximate
Chebyšev coefficients:

Corollary 2.4 Let K ∈ N, and let f : [−1, 1]K → R be a map which admits
a holomorphic complex extension to the Bernstein polyellipse Eρ with ρ =

(ρ, . . . , ρ) ∈ (1,∞)K for some ρ > 1. We assume that an approximation f̆ of

f is available, and an upper bound on ‖f − f̆‖L∞([−1,1]K). Then,

∑

k∈{0,...,n}K

∣

∣

∣
f̆k;n

∣

∣

∣
(2.15)

≤ C(K, ρ)max
z∈Eρ

|f(z)| + (n+ 1)KπK
∥

∥ICC
n

∥

∥

L∞,L∞

∥

∥

∥
f − f̆

∥

∥

∥

L∞([−1,1]K)
.
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Proof We compute
∣

∣

∣
fk − f̆k;n

∣

∣

∣

≤

∣

∣

∣

∣

∫ 1

−1

· · ·

∫ 1

−1

(f − p̆f,n)Tk dλ(x1) · · · dλ(xK)

∣

∣

∣

∣

≤ ‖f − p̆f,n‖L∞([−1,1]K) ‖Tk‖L∞([−1,1]K)

∣

∣

∣

∣

∫ 1

−1

· · ·

∫ 1

−1

dλ(x1) · · · dλ(xK)

∣

∣

∣

∣

= πK ‖f − p̆f,n‖L∞([−1,1]K)

and

∑

k∈{0,...,n}K

∣

∣

∣
f̆k;n

∣

∣

∣

≤
∑

k∈NK
0

|fk|+
∑

k∈{0,...,n}K

∣

∣

∣
fk − f̆k;n

∣

∣

∣

≤
(

2ρ
ρ−1

)K

max
z∈Eρ

|f(z)|+ (n+ 1)KπK ‖f − p̆f,n‖L∞([−1,1]K)

≤
(

2ρ
ρ−1

)K

max
z∈Eρ

|f(z)|
[

1 +K(n+ 1)KπK
(

1 +
∥

∥ICC
n

∥

∥

L∞,L∞

)

ρ−n−1
]

+ (n+ 1)KπK
∥

∥ICC
n

∥

∥

L∞,L∞

∥

∥

∥
f − f̆

∥

∥

∥

L∞([−1,1]K)
.

Here,
(

2ρ
ρ−1

)K [

1 +K(n+ 1)KπK
(

1 +
∥

∥ICC
n

∥

∥

L∞,L∞

)

ρ−n−1
]

is bounded by

a constant C(K, ρ) > 0 independent of n.

Remark 2.5 For all f̆ , ğ ∈ C0([−1, 1]K), it follows from (2.8) and the positivity
of the quadrature weights wj , which are defined just above (2.4) and sum up
to πK , that for all n ∈ N and k ∈ {0, . . . , n}K

∣

∣

∣
f̆k;n − ğk;n

∣

∣

∣
≤ 21S(n)(k)

∥

∥

∥
f̆ − ğ

∥

∥

∥

L∞([−1,1]K)
≤ 2K

∥

∥

∥
f̆ − ğ

∥

∥

∥

L∞([−1,1]K)
.

3 Constructive Deep Neural Network Approximation of
Multivariate Holomorphic Functions

As we showed in [30] by (straightforward) tensorization of the univariate re-
sults, multivariate holomorphic maps f : [−1, 1]K → R admit DNN surro-
gates which approximate f to any accuracy ε > 0 with DNN size scaling as
O(| log(ε)|K+1) (with the constant implied in O(·) still depending on the input
dimension K).

In the present section, we shall recapitulate this result, with a new proof
via multivariate, tensorized Chebyšev expansions.
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3.1 Definitions and Architecture of ReLU DNNs

We consider feed-forward deep neural networks. These DNNs result from re-
peated application of affine mappings and a specific non-linear map. This
nonlinearity is specified via the so-called activation function σ : R→ R of the
DNN. Here, we take σ(x) = max{0, x}, x ∈ R, to be the rectified linear unit
(ReLU) activation function. The architecture of the DNN comprises a fixed
number of hidden layers L ∈ N0, numbers Nℓ ∈ N of computation nodes in
layer ℓ ∈ {1, . . . , L+1}, the map Φ : RN0 → RNL+1 is said to be realized by a
feedforward neural network, if for certain weights Aℓ

i,j ∈ R, and biases bℓj ∈ R

it holds for all x = (xi)
N0
i=1

w1
j = σ

(

N0
∑

i=1

A1
i,jxi + b1j

)

, j ∈ {1, . . . , N1} ,

and

wℓ+1
j = σ

(

Nℓ
∑

i=1

Aℓ+1
i,j w

ℓ
i + bℓ+1

j

)

, ℓ ∈ {1, . . . , L− 1}, j ∈ {1, . . . , Nℓ+1} ,

and finally

Φ(x) = (wL+1
j )

NL+1

j=1 =

(

NL
∑

i=1

AL+1
i,j wL

i + bL+1
j

)NL+1

j=1

.

In this case N0 is the dimension of the DNN input, and NL+1 is the dimension
of the output. The number of hidden layers L of a DNN is referred to as its
depth, denoted by depth(Φ). If L = 0, then the previous equation holds with
w0

i := xi for i = 1, . . . , N0 and we refer to such networks, realizing affine
functions, as DNNs of depth 0. Also, we define the total number of nonzero
weights and biases as the size of the DNN, i.e. size(Φ) := |{(i, j, ℓ) : Aℓ

i,j 6=

0}|+ |{(j, ℓ) : bℓj 6= 0}|.
We do emphasize that different DNN architectures, weights and biases can

realize the same function. In this paper, we focus on a constructive procedure to
find weights and biases such that the resulting DNN as a function approximates
a given holomorphic map to a specified accuracy.

To construct such networks from smaller subnetworks, we use DNN con-
catenation from [31, Remark 2.6], parallelization from [31, Definition 2.7] and
[14, Setting 5.2], and networks emulating the identity from [31, Lemma 2.3],
which we all recall below.

Let f and g be two DNNs with the same depth L ∈ N0 and the same
input dimension n ∈ N. Denote by mf the output dimension of f and by
mg the output dimension of g. There exists a neural network (f, g), called
parallelization of f and g, which in parallel emulates f and g, i.e.

(f, g) : Rn → Rmf × Rmg : x 7→ (f(x), g(x)),
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and it satisfies depth((f, g)) = L and size((f, g)) = size(f) + size(g) ([31,
Definition 2.7]).

Let f and g be ReLU DNNs, such that the number of nodes in the output
layer of g equals the number of nodes in the input layer of f . Denote by n the
number of nodes in the input layer of g, and by m the number of nodes in the
output layer of f . There exists a DNN f ◦ g, called sparse concatenation of
the DNNs f and g, which we will refer to simply as concatenation of f and g,
which realizes the composition of f and g, i.e.

f ◦ g : Rn → Rm : x 7→ f(g(x)). (3.1)

It satisfies depth(f ◦ g) = depth(f)+1+depth(g) and size(f ◦ g) ≤ 2 size(f)+
2 size(g) ([31, Remark 2.6]).

Next, let f and g be two DNNs with the same depth L ∈ N0, whose input
dimensions nf and ng may be different, and whose output dimensions we will
denote by mf and mg, respectively. There exists a DNN (f, g)d, called full
parallelization of networks with distinct inputs of f and g, which in parallel
emulates f and g, i.e.

(f, g)d : Rnf × Rng → Rmf × Rmg : (x, x̃) 7→ (f(x), g(x̃)).

It satisfies depth((f, g)d) = L and size((f, g)d) = size(f)+size(g) ([14, Setting
5.2]).

Finally, for all n ∈ N and L ∈ N0 there exists an identity network ΦId
n,L of

depth L which emulates the identity map IdRn : Rn → Rn : x 7→ x. It satisfies
size(ΦId

n,L) ≤ 2n(L+ 1) ([31, Lemma 2.3]).

3.2 ReLU DNN Approximations of Chebyšev Polynomials

We construct the ReLU DNN approximation of f as a reapproximation of
p̆f,n defined in (2.10). The coefficients of p̆f,n can be computed with (2.9).
The polynomial approximation p̆f,n is a tensor product of univariate Chebyšev
polynomials. We use the ReLU DNN approximation of univariate Chebyšev
polynomials from [28], and for the ReLU DNN approximation of products with
multiple arguments, we recall [30, Proposition 2.6], based on [35, Proposition
3.1].

Lemma 3.1 ([28]) There exists C > 0 such that for all n ∈ N there exist

ReLU DNNs
{

ΦCheb,n
δ

}

δ∈(0,1)
with input dimension one and output dimension

n which satisfy
∥

∥

∥
Tℓ −

(

ΦCheb,n
δ

)

ℓ

∥

∥

∥

W 1,∞([−1,1])
≤ δ, ℓ = 1, . . . , n,

depth
(

ΦCheb,n
δ

)

≤C(1 + log(n)) log(1/δ) + C(1 + log(n))3,

size
(

ΦCheb,n
δ

)

≤Cn log(1/δ) + Cn(1 + log(n)).
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The construction of these networks is described in Appendix A.

Proposition 3.2 ([30, Proposition 2.6]) For any δ ∈ (0, 1), n ∈ N and

M ≥ 1 there exists a ReLU DNN ˜∏n

δ,M : [−M,M ]n → R such that

sup
(xi)ni=1∈[−M,M ]n

∣

∣

∣

∣

∣

∣

n
∏

j=1

xj −
˜∏n

δ,M
(x1, . . . , xn)

∣

∣

∣

∣

∣

∣

≤ δ, (3.2)

ess sup
(xi)ni=1∈[−M,M ]n

sup
i=1,...,n

∣

∣

∣

∣

∣

∣

∂

∂xi

n
∏

j=1

xj −
∂

∂xi

˜∏n

δ,M
(x1, . . . , xn)

∣

∣

∣

∣

∣

∣

≤ δ. (3.3)

There exists a constant C independent of δ ∈ (0, 1), n ∈ N and M ≥ 1
such that

size

(

˜∏n

δ,M

)

≤C(1 + n log(nMn/δ)),

depth

(

˜∏n

δ,M

)

≤C(1 + log(n) log(nMn/δ)).

(3.4)

Similar to [30, Proposition 2.13], there holds the following result on ReLU
DNN emulation rates for Chebyšev polynomials, which is of independent in-
terest. As compared to the results in [30] and as observed in [36], the func-
tional structure of Chebyšev polynomials affords gains in DNN depth and size
bounds. To state the depth and size bounds, we use the notation m∞ defined
in Section 1.3.

Proposition 3.3 There exists a constant C > 0, such that for every K ∈ N,
every finite subset Λ ⊂ NK

0 and every δ ∈ (0, 1) there exists a ReLU DNN ΦΛ,δ

with input dimension K and output dimension |Λ|, such that the outputs of
ΦΛ,δ, which we denote by {T̃k,δ}k∈Λ, satisfy

∀k ∈ Λ :
∥

∥

∥
Tk − T̃k,δ

∥

∥

∥

W 1,∞([−1,1]K)
≤ δ,

depth(ΦΛ,δ) ≤ C(1 + logm∞(Λ))3 + C(1 + log(K) + logm∞(Λ)) log(1/δ)

+ CK log(m∞(Λ)) + CK logK,

size(ΦΛ,δ) ≤ CK|Λ| log(m∞(Λ)) + CK|Λ| log(1/δ) + CK2|Λ|

+ CKm∞(Λ) log(m∞(Λ)) + CKm∞(Λ) log(1/δ) + CK2m∞(Λ).

Proof This proof consists of three steps. In the first step, we define the network.
In the second step, we estimate the error. In the third step, we give bounds
on the network depth and size.

Step 1. We construct the network ΦΛ,δ as the concatenation of two sub-
networks:

ΦΛ,δ := Φ
(1)
Λ,δ ◦ Φ

(2)
Λ,δ.

See Figure 3.1 for a sketch of the network structure.
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For β = 1
2δ(1+δ)

−KK−1(m∞(Λ)2+1)−1 ≤ δ, the network Φ
(2)
Λ,δ in parallel

approximates univariate Chebyšev polynomials up to degree m∞(Λ), in all K
input variables, and is based on Lemma 3.1: Denoting the input of ΦΛ,δ by
y = (y1, . . . , yK) ∈ [−1, 1]K ,

Φ
(2)
Λ,δ :=

(

Φ
Cheb,m∞(Λ)
β , . . . , Φ

Cheb,m∞(Λ)
β

)

d
,

which contains K copies of Φ
Cheb,m∞(Λ)
β , the j’th of which receives yj as input,

for j = 1, . . . ,K.

For β′ = 1
2δ(m∞(Λ)2 + 1)−1, the network Φ

(1)
Λ,δ computes tensor products

of univariate Chebyšev polynomials using networks from Proposition 3.2. De-

noting the output of Φ
(2)
Λ,δ by

{

T̃k,β(yj)
}

j=1,...,K
k=1,...,m∞(Λ)

, it holds that

Φ
(1)
Λ,δ ◦ Φ

(2)
Λ,δ(y1, . . . , yK) =

({

˜∏K

β′,1+δ

(

T̃k1,β(y1), . . . , T̃kK ,β(yK)
)

}

k∈Λ

)

,

where, in case kj = 0, the factor T̃0,β ≡ 1 is implemented by a bias in the first

layer of ˜∏K

β′,1+δ. We used that

∥

∥

∥
T̃kj ,β

∥

∥

∥

L∞([−1,1])
≤
∥

∥Tkj

∥

∥

L∞([−1,1])
+
∥

∥

∥
Tkj
− T̃kj ,β

∥

∥

∥

L∞([−1,1])

≤ 1 + β ≤ 1 + δ ≤ 2,

so that {T̃kj ,β(yj)}
K
j=1 can be used as inputs of ˜∏K

β′,1+δ.

Step 2. The error can be estimated as follows:

sup
y∈[−1,1]K

∣

∣

∣
Tk(y)− T̃k,δ(y)

∣

∣

∣

≤ sup
y∈[−1,1]K

∣

∣

∣

∣

∣

∣

Tk(y)−

K
∏

j=1

T̃kj ,β(yj)

∣

∣

∣

∣

∣

∣

+ sup
y∈[−1,1]K

∣

∣

∣

∣

∣

∣

K
∏

j=1

T̃kj ,β(yj)−
˜∏K

β′,1+δ

(

{

T̃kj ,β(yj)
}K

j=1

)

∣

∣

∣

∣

∣

∣

≤ sup
y∈[−1,1]K

K
∑

i=1

∣

∣

∣

∣

∣

∣

∏

j=1,...,i−1

T̃kj ,β(yj)

∣

∣

∣

∣

∣

∣

·
∣

∣

∣
Tki

(yi)− T̃ki,β(yi)
∣

∣

∣
·

∣

∣

∣

∣

∣

∣

∏

j=i+1,...,K

Tkj
(yj)

∣

∣

∣

∣

∣

∣

+ β′

≤

(

K
∑

i=1

(1 + δ)i−1β

)

+ β′ ≤ K(1 + δ)Kβ + β′ ≤ δ.



22 Lukas Herrmann, Joost A. A. Opschoor, Christoph Schwab

Fig. 3.1: Sketch of ΦΛ,δ for Λ = {0, . . . , n}K , with n ∈ N, K = 2, and

δ ∈ (0, 1). The subnetwork ΦCheb,n
β from Lemma 3.1 approximates univari-

ate Chebyšev polynomials of degrees 1, . . . , n, which are then multiplied by

the networks ˜∏2

β′,1+δ from Proposition 3.2 to obtain approximations of tensor
product Chebyšev polynomials. The Chebyšev polynomial of degree 0 is iden-
tically equal to 1 and implemented by a bias in the first layer of the product

networks ˜∏2

β′,1+δ.

For the estimate on the error in the derivative, we consider only the derivative
with respect to y1. The derivatives with respect to the other inputs satisfy
analogous bounds. Using that

∣

∣

∣
T̃kj ,β

∣

∣

∣

W 1,∞([−1,1])
≤
∣

∣Tkj

∣

∣

W 1,∞([−1,1])
+
∣

∣

∣
Tkj
− T̃kj ,β

∣

∣

∣

W 1,∞([−1,1])

≤ m∞(Λ)2 + β ≤ m∞(Λ)2 + 1,

we obtain

ess sup
y∈[−1,1]K

∣

∣

∣

∣

∂

∂y1
Tk(y)−

∂

∂y1
T̃k,δ(y)

∣

∣

∣

∣

≤ ess sup
y∈[−1,1]K

∣

∣

∣

∣

∣

∣

∂

∂y1
Tk(y)−

∂

∂y1

K
∏

j=1

T̃kj ,β(yj)

∣

∣

∣

∣

∣

∣
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+ ess sup
y∈[−1,1]K

∣

∣

∣

∣

∣

∣

∂

∂y1

K
∏

j=1

T̃kj ,β(yj)−
∂

∂y1

˜∏K

β′,1+δ

(

{

T̃kj ,β(yj)
}K

j=1

)

∣

∣

∣

∣

∣

∣

≤ ess sup
y∈[−1,1]K

∣

∣

∣

∣

∂

∂y1
Tk1(y1)−

∂

∂y1
T̃k1,β(y1)

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

∣

∏

j=2,...,K

Tkj
(yj)

∣

∣

∣

∣

∣

∣

+ ess sup
y∈[−1,1]K

∑

i=2,...,K

∣

∣

∣

∣

∂

∂y1
T̃k1,β(y1)

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

∣

∏

j=2,...,i−1

T̃kj ,β(yj)

∣

∣

∣

∣

∣

∣

·
∣

∣

∣
Tki

(yi)− T̃ki,β(yi)
∣

∣

∣
·

∣

∣

∣

∣

∣

∣

∏

j=i+1,...,K

Tkj
(yj)

∣

∣

∣

∣

∣

∣

+ ess sup
y∈[−1,1]K

∣

∣

∣

∣

∣

∣

∏

j=2,...,K

T̃kj ,β(yj)−

(

∂

∂x1

˜∏K

β′,1+δ

)(

{

T̃kj ,β(yj)
}K

j=1

)

∣

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∂

∂y1
T̃k1,β(y1)

∣

∣

∣

∣

≤β +

(

K
∑

i=2

(m∞(Λ)2 + 1)(1 + δ)i−2β

)

+ β′(m∞(Λ)2 + 1)

≤K(1 + δ)Kβ(m∞(Λ)2 + 1) + β′(m∞(Λ)2 + 1)

≤ δ
2 + δ

2 ≤ δ,

where ∂
∂x1

˜∏K

β′,1+δ denotes the (weak) derivative of
˜∏K

β′,1+δ : [−1− δ, 1 + δ]K →
R with respect to its first argument, cf. Proposition 3.2.

Step 3. As a bound on the network depth and size we obtain, using log(1+
δ) ≤ 1 in the last step,

depth(ΦΛ,δ) ≤ depth
(

Φ
(1)
Λ,δ

)

+ 1 + depth
(

Φ
(2)
Λ,δ

)

≤ depth

(

˜∏K

β′,1+δ

)

+ 1 + depth
(

Φ
Cheb,m∞(Λ)
β

)

≤C(1 + log(K) log(K(1 + δ)K/β′)) + 1

+ C(1 + logm∞(Λ)) log(1/β) + C(1 + logm∞(Λ))3

≤C
(

log(K)2 + log(K)K log(1 + δ) + log(K) log(m∞(Λ))
)

+ C
(

log(K) log(1/δ) + (1 + logm∞(Λ))2

+ (log(K) +K log(1 + δ))(1 + logm∞(Λ))

+ (1 + logm∞(Λ)) log(1/δ)
)

+ C(1 + logm∞(Λ))3

≤C(1 + logm∞(Λ))3 + C(1 + log(K) + logm∞(Λ)) log(1/δ)

+ CK log(m∞(Λ)) + CK logK,

size(ΦΛ,δ) ≤C
[

size
(

Φ
(1)
Λ,δ

)

+ size
(

Φ
(2)
Λ,δ

)]



24 Lukas Herrmann, Joost A. A. Opschoor, Christoph Schwab

≤C

[

|Λ| size

(

˜∏K

β′,1+δ

)

+K size
(

Φ
Cheb,m∞(Λ)
β

)

]

≤C
[

|Λ|
(

1 +K log(K(1 + δ)K/β′)
)

+K
(

m∞(Λ) log(1/β)

+m∞(Λ)(1 + logm∞(Λ))
)]

≤C
[

|Λ|
(

K log(K) +K2 log(1 + δ) +K log(m∞(Λ)) +K log(1/δ)
)

+K
(

m∞(Λ) log(m∞(Λ)) +m∞(Λ) log(1/δ)

+ (log(K) +K log(1 + δ))m∞(Λ) +m∞(Λ)(1 + logm∞(Λ))
)]

≤C
[

K|Λ| log(m∞(Λ)) +K|Λ| log(1/δ) +K2|Λ|

+Km∞(Λ) log(m∞(Λ)) +Km∞(Λ) log(1/δ) +K2m∞(Λ)
]

.

This finishes the proof.

Remark 3.4 For δ ≤ exp(1/K) − 1 it holds K log(1 + δ) ≤ 1, so that the
network depth is of the order log(K)2 and the explicit K-dependent factors
in the bound on the network size are of the order K log(K) (in addition, the
network size may depend on K indirectly through |Λ|). A sufficient condition
is that δ ≤ 1/K, because exp(x)− 1 ≥ x for all x ≥ 0.

3.3 Construction of ReLU DNN Approximations of Multivariate
Holomorphic Functions

Proposition 3.5 Let K ∈ N, and let f : [−1, 1]K → R be a map which
admits a holomorphic complex extension to the Bernstein polyellipse Eρ with
ρ = (ρ, . . . , ρ) ∈ (1,∞)K for some ρ > 1. We assume that an approximation

f̆ of f is available, and an upper bound on ‖f − f̆‖L∞([−1,1]K).

Then, for all n ∈ N there exists a ReLU DNN Φf̆
n with input dimension K

and output dimension one such that for all ρ′ ∈ (1, ρ), there exists a constant
C > 0 depending on K, ρ and ρ′ and a constant c > 0 depending on ρ, but
not on K and ρ′, such that

∥

∥

∥
f − Φf̆

n

∥

∥

∥

L∞([−1,1]K)
≤C

(

max
z∈Eρ

|f(z)| +
∥

∥

∥
f − f̆

∥

∥

∥

L∞([−1,1]K)

)

ρ′
−n

+
(

2
π log(n+ 1) + 1

)K
∥

∥

∥
f − f̆

∥

∥

∥

L∞([−1,1]K)
,

∥

∥

∥
f − Φf̆

n

∥

∥

∥

W 1,∞([−1,1]K)
≤C

(

max
z∈Eρ

|f(z)| +
∥

∥

∥
f − f̆

∥

∥

∥

L∞([−1,1]K)

)

ρ′
−n

+ n2
(

2
π log(n+ 1) + 1

)K
∥

∥

∥
f − f̆

∥

∥

∥

L∞([−1,1]K)
,

depth
(

Φf̆
n

)

≤ cKn(1 + log(Kn)), size
(

Φf̆
n

)

≤ cK2(n+ 1)K+1.

The DNN weights and biases only depend on f through {f̆(xn
j )}j∈{0,...,n}K ,

where xn
j = cos(jπ/n). These are (n+ 1)K points.
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This means that for C as in Proposition 3.5 and for some b > 0 depending
on ρ and ρ′, but not on K, that for all n ∈ N holds
∥

∥

∥
f − Φf̆

n

∥

∥

∥

W 1,∞([−1,1]K)

≤ ρ′C

(

max
z∈Eρ

|f(z)| +
∥

∥

∥
f − f̆

∥

∥

∥

L∞([−1,1]K)

)

exp

(

−b
(

size
(

Φf̆
n

))1/(K+1)
)

+ n2
(

2
π log(n+ 1) + 1

)K
∥

∥

∥
f − f̆

∥

∥

∥

L∞([−1,1]K)
. (3.5)

The L∞-error satisfies the same estimate, even without the factor n2 in the
second term. Equation (3.5) follows from the error estimate in Proposition 3.5
and from the following estimate, where we assume, without loss of generality,
that c ≥ 1:

log(ρ′)(n+ 1) ≥ log(ρ′)c−1/(K+1)K−2/(K+1)
(

size
(

Φf̆
n

))1/(K+1)

≥ log(ρ′)c−1c′
(

size
(

Φf̆
n

))1/(K+1)

=: b
(

size
(

Φf̆
n

))1/(K+1)

.

We also used the existence of c′ > 0 such that x−2/(x+1) = exp(−2 log(x)/(x+
1)) ≥ c′ for all x ∈ [1,∞).

Proof of Proposition 3.5. We consider the approximation p̆f,n of f from
(2.10). For the ReLU DNN approximation of tensor product Chebyšev poly-
nomials, we apply Proposition 3.3 with Λ = {0, . . . , n}K , |Λ| = (n + 1)K ,
m∞(Λ) = n and δ = ρ−n(n+ 1)−K .

We write k(ℓ) for the element of Λ satisfying (ΦΛ,δ)ℓ = T̃k(ℓ),δ (the latter

is defined in Proposition 3.3). With that notation, we define A ∈ R1×|Λ| by

A1,ℓ = f̆k(ℓ);n for ℓ = 1, . . . , |Λ|. With b := [0] ∈ R1, we define

Φf̆
n := ((A, b)) ◦ ΦΛ,δ

and observe that depth(((A, b))) = 0 and size(((A, b))) ≤ |Λ|. Its realization
satisfies for some C > 0 depending on K and ρ

Φf̆
n =

∑

k∈Λ

f̆k;nT̃k,δ,

∥

∥

∥
p̆f,n − Φ

f̆
n

∥

∥

∥

W 1,∞([−1,1]K)

≤
∑

k∈Λ

|f̆k;n|
∥

∥

∥
Tk − T̃k,δ

∥

∥

∥

W 1,∞([−1,1]K)

≤ δ
∑

k∈Λ

|f̆k;n|

≤ δC max
z∈Eρ

|f(z)| + δ(n+ 1)KπK
∥

∥ICC
n

∥

∥

L∞,L∞

∥

∥

∥
f − f̆

∥

∥

∥

L∞([−1,1]K)

≤ Cρ−n

(

max
z∈Eρ

|f(z)| +
∥

∥ICC
n

∥

∥

L∞,L∞

∥

∥

∥
f − f̆

∥

∥

∥

L∞([−1,1]K)

)

, (3.6)
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where we used the bound (2.15) on the sum of the coefficients. With Lemma
2.2, for some C > 0 depending on K and ρ, it further follows that

∥

∥

∥
f − Φf̆

n

∥

∥

∥

L∞([−1,1]K)

≤ ‖f − p̆f,n‖L∞([−1,1]K) +
∥

∥

∥
p̆f,n − Φ

f̆
n

∥

∥

∥

L∞([−1,1]K)

≤
(

1 +
∥

∥ICC
n

∥

∥

L∞,L∞

)

K
(

2ρ
ρ−1

)K

max
z∈Eρ

|f(z)| ρ−n−1

+
∥

∥ICC
n

∥

∥

L∞,L∞

∥

∥

∥
f − f̆

∥

∥

∥

L∞([−1,1]K)

+ Cρ−n

(

max
z∈Eρ

|f(z)| +
∥

∥ICC
n

∥

∥

L∞,L∞

∥

∥

∥
f − f̆

∥

∥

∥

L∞([−1,1]K)

)

≤ C

(

max
z∈Eρ

|f(z)| +
∥

∥

∥
f − f̆

∥

∥

∥

L∞([−1,1]K)

)

∥

∥ICC
n

∥

∥

L∞,L∞ ρ−n

+
∥

∥ICC
n

∥

∥

L∞,L∞

∥

∥

∥
f − f̆

∥

∥

∥

L∞([−1,1]K)
.

For all ρ′ ∈ (1, ρ) there exists a constant C depending on ρ, ρ′ and K such that
∥

∥ICC
n

∥

∥

L∞,L∞ ρ−n ≤ ( 2π log(n + 1) + 1)Kρ−n ≤ Cρ′
−n

for all n ∈ N, resulting

in the error bound stated in the proposition. Similarly, for every ρ′ ∈ (1, ρ)
and with C ′(ρ, ρ′) > 0 as in Lemma 2.2, with Equation (3.6) it follows that
there exists C(K, ρ, ρ′) > 0 such that

∥

∥

∥
f − Φf̆

n

∥

∥

∥

W 1,∞([−1,1]K)

≤ ‖f − p̆f,n‖W 1,∞([−1,1]K) +
∥

∥

∥
p̆f,n − Φ

f̆
n

∥

∥

∥

W 1,∞([−1,1]K)

≤
(

1 +
∥

∥ICC
n

∥

∥

W 1,∞,W 1,∞

)

K
(

2C′ρ′

ρ′−1

)K

max
z∈Eρ

|f(z)| ρ′
−n−1

+
∥

∥ICC
n

∥

∥

L∞,W 1,∞

∥

∥

∥
f − f̆

∥

∥

∥

L∞([−1,1]K)

+ Cρ−n

(

max
z∈Eρ

|f(z)| +
∥

∥ICC
n

∥

∥

L∞,L∞

∥

∥

∥
f − f̆

∥

∥

∥

L∞([−1,1]K)

)

≤Cρ′
−n ∥
∥ICC

n

∥

∥

W 1,∞,W 1,∞ max
z∈Eρ

|f(z)| + Cρ−n
∥

∥ICC
n

∥

∥

L∞,L∞

∥

∥

∥
f − f̆

∥

∥

∥

L∞([−1,1]K)

+
∥

∥ICC
n

∥

∥

L∞,W 1,∞

∥

∥

∥
f − f̆

∥

∥

∥

L∞([−1,1]K)
.

Reasoning as for the bound on the L∞-error, for all ρ′′ ∈ (1, ρ′) there exists a
constant C > 0 depending on K, ρ, ρ′ and ρ′′ such that

∥

∥ICC
n

∥

∥

L∞,L∞ ρ−n ≤

Cρ′′
−n

and
∥

∥ICC
n

∥

∥

W 1,∞,W 1,∞ ρ′
−n
≤ n2( 2π log(n) + 1)Kρ′

−n
≤ Cρ′′

−n
for all

n ∈ N. Using these estimates and Equation (2.7), the bound in the proposition
is obtained when we write ρ′ instead of ρ′′. To bound DNN depth and size, we
observe that there is c > 0 depending on ρ, but not on K, such that for every
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n ∈ N,

depth
(

Φf̆
n

)

≤ depth(((A, b))) + 1 + depth(ΦΛ,δ)

≤ 1 + c(1 + logm∞(Λ))3 + c(1 + log(K) + logm∞(Λ)) log(1/δ)

+ cK log(m∞(Λ)) + cK log(K) (3.7)

≤ cKn(1 + log(Kn)),

size
(

Φf̆
n

)

≤ c size(((A, b))) + c size(ΦΛ,δ)

≤ c|Λ|+ c|Λ|K log(m∞(Λ)) + c|Λ|K log(1/δ) + c|Λ|K2

+ cKm∞(Λ) log(m∞(Λ)) + cKm∞(Λ) log(1/δ) + cK2m∞(Λ)

≤ cK2(n+ 1)K+1. (3.8)

✷

Remark 3.6 Vector-valued maps mapping into RN for N ∈ N can be treated
in the same way: we only need to replace the matrix A ∈ R1×|Λ| in the proof
by a matrix A ∈ RN×|Λ|. This does not affect the depth, and adds at most
cN(n+ 1)K to the network size.

Remark 3.7 For K ∈ N assume that f, g : [−1, 1]K → R satisfy the require-
ments of Proposition 3.5 for the same ρ ∈ (1,∞), with available approxima-

tions f̆ and ğ. For all n ∈ N, the networks Φf̆
n and Φğ

n have the same archi-
tecture. In fact, all layers but the output layer are identical, and equal the
DNN ΦΛ,δ from Proposition 3.3, for Λ = {0, . . . , n}K and δ = ρ−n(n+ 1)−K .

The weights in the output layer equal {f̆k;n}k∈Λ and {ğk;n}k∈Λ, respectively.

These depend linearly on f̆ , ğ, thus in particular continuously. For example,
with Remark 2.5 it follows that

max
k∈Λ
|f̆k;n − ğk;n| ≤ 2K‖f̆ − ğ‖L∞([−1,1]K).

3.4 More General Activations

The results derived here should extend to DNNs with activation functions
other than ReLU. Specifically, the DNNs constructed in our proofs essentially
consist of concatenations and parallelizations of identity networks and DNN
approximations of products. The proposed ReLU DNN constructions therefore
extend to DNNs with other activation functions, as long as they allow an exact
emulation or efficient approximation of identity networks and products. We
discuss several particular cases.

Poly-ReLU: Exact emulation of both is possible with DNNs with the
rectified power unit (RePU ) activation function σr : x 7→ max{0, x}r, for
r ∈ N, r ≥ 2 ([22]). Polynomial emulation with such networks was studied
e.g. in [26, Proof of Theorem 3.3], [22]. For DNNs with the RePU activation
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function, efficient polynomial emulation based on the recursion in Equation
(A.1) was already obtained in [36].

Rational Activation: Exact emulation of the identity and of multiplica-
tions is also possible by DNNs with rational activation. In [4], networks were
studied which have in each computational node σ = p/q as activation, for
polynomials p, q of prescribed degrees, but whose coefficients can be trained
and may be different for each node. Such networks can emulate both the iden-
tity and products exactly if the prescribed degrees satisfy deg(p) ≥ 2 and
deg(q) ∈ N0 (cf. [4, Proposition 10] and its proof).

Because Lemma 2.2 holds for all s ∈ N, networks whose activation function
allows for the exact emulation of polynomials obtain exponential convergence
with respect to the W s,∞-norm for a larger range of s ∈ N, with only the
constant C in the error bound depending on s. This applies in particular to
DNNs with Poly-ReLU and rational activation.

Sigmoidal Activation: The present results for RePU networks directly
generalize to sigmoidal activation functions of order k ∈ N, k ≥ 2. A function
τ : R → R is sigmoidal of order k ∈ N0, if it satisfies limx→−∞ τ(x)/xk = 0,
limx→∞ τ(x)/xk = 1, and |τ(x)| ≤ C(1 + |x|k), x ∈ R, for a constant C > 0
that does not depend on x, see for example [26, Equations (2.3) and (2.4)]. In
[26, Lemma 3.6], it was shown that for every continuous sigmoidal activation
function τ of order k ≥ 2 and arbitrary A > 0, the RePU σk can be ap-
proximated on the interval [−A,A] with arbitrarily small error ε with respect
to the L∞([−A,A])-norm by a τ -DNN which has depth 1 and fixed network
size independent of A and ε. When τ is uniformly continuous on R, this result
remains true w.r.t. the L∞(R)-norm (instead of L∞([−A,A])), as remarked di-
rectly below [26, Lemma 3.6]. There it was also noted that a similar statement
holds for the approximation of the ReLU by a DNN with arbitrary sigmoidal
activation function of the order k = 1. In the proof of [26, Lemma 3.6], it was
observed that for every k ∈ N and every continuous, sigmoidal τ of order k,
the τ -DNN that approximates σk is uniformly continuous on [−A,A]. From
this, it follows that σk-DNNs can be approximated up to arbitrarily small
L∞([−A,A])-error ε by a τ -DNN with network size independent of A and ε.
If τ is uniformly continuous on R, the same holds w.r.t. the L∞(R)-norm.

Genuinely Nonlinear Activation: The existence of DNNs that approx-
imate a product with arbitrarily small L∞([−A,A])-error ε and network size
independent of A and ε, holds also for DNNs with “genuinely nonlinear” acti-
vation function τ ∈ C2(R), i.e. for which there exists x ∈ R where τ ′′(x) 6= 0.
In [34, Theorem 3.4] it was shown that for all A, ε > 0 there exists a τ -DNN
which approximates the product of any two numbers in [−A,A] up to accuracy
ε with respect to the L∞([−A,A]2)-norm and the network size is bounded in-
dependently of A and ε. See also [35, Section 3.3]. The identity can now be
approximated based on x = 1

4 ((x+ 1)2 − (x− 1)2) for all x ∈ R.
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4 DNN Emulation Algorithm

In this section, we develop an algorithm which, assuming at hand a procedure
f̆ to approximately evaluate a map f : [−1, 1]K → R, will construct, for a given
accuracy threshold ε > 0, an approximating DNN whose estimated error is at
most ε and whose depth and size satisfy the theoretical bounds from Section 3.
Importantly, the proposed algorithm is deterministic, and does not resort to
“black-box” loss function minimization algorithms.

As before, we assume that f admits a holomorphic extension to a closed
Bernstein polyellipse Eρ, with ρ = (ρ, . . . , ρ) ∈ RK for some ρ > 1. The
algorithm is based on the observation that the proof of Proposition 3.5 is con-
structive, i.e., for n ∈ N, Λ = {0, . . . , n}K and δ = (n+1)−Kρ−n, the network

Φf̆
n := ((A, b)) ◦ΦΛ,δ has been described explicitly. In the proof of Proposition

3.5, the accuracy δ = (n+1)−Kρ−n of the network ΦΛ,δ approximating tensor
product Chebyšev polynomials is sufficient, but may be much smaller than
needed, and because a priori no good estimate on ρ may be known, part of the
algorithm is dedicated to determining a moderate value of δ which is sufficient.

Thus, assuming access to an approximation f̆ of f , the following algorithm

determines values n∗ ∈ N and δ∗ ∈ (0, 1) and constructs a ReLU DNN Φf̆
n∗,δ∗

approximating f . When determining n∗, we note that in (2.13) the interpola-

tion error ‖f− p̆f,n‖L∞([−1,1]K) is bounded by ‖ICC
n ‖L∞,L∞‖f− f̆‖L∞([−1,1]K),

growing polylogarithmically in n, plus a term that decays exponentially with
n. Because we cannot access f directly, the algorithm below cannot ensure
smallness of ‖ICC

n ‖L∞,L∞‖f− f̆‖L∞([−1,1]K). It could be taken into account by
setting an upper bound on n, we will not discuss this in detail. The DNN error

‖p̆f,n − Φ
f̆
n‖L∞([−1,1]K) is bounded by δ

∑

k∈Λ |f̆k;n|. In the proof of Propo-
sition 3.5, we used that in theory, when neglecting rounding errors in the
DNN’s affine transformations, this error can be made small with respect to
other error terms by choosing δ sufficiently small, namely δ = (n+ 1)−Kρ−n.
In practice, it holds that choosing a smaller δ cannot increase the error (as
this holds for the networks in Proposition 3.2, and therefore also for those in
Proposition 3.3). However, because the accuracy of affine transformations is
limited by the machine precision, δ is in practice limited from below. There-
fore, as the upper bound (2.15) on

∑

k∈Λ |f̆k;n| increases with n, the DNN

error ‖p̆f,n−Φ
f̆
n‖L∞([−1,1]K) may increase with n for large n, regardless of our

choice of δ. Therefore, we use a greedy algorithm to determine moderate n∗,
δ∗ for which the estimated error w.r.t. f̆ is smaller than a prescribed tolerance.

The construction in Algorithm 4.1 uses some elementary DNNs, for which
explicit constructions are available in the literature [39,35]. In [39, Propo-
sitions 2 and 3], a DNN is proposed that approximates the square denoted
by Φsq

ℓ,M and the product of two scalars denoted by ×̃ℓ,M in a bounded in-
terval [−M,M ] with ℓ layers (see also [35, Proposition 3.1] for a different
construction). In Step 1 of the proof of [35, Proposition 3.3], an explicit DNN
is proposed that approximates the product of K scalars (already previously)

denoted by ˜∏K

β′,M with accuracy β′ on the hypercube [−M,M ]K . Based on the
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scalar product DNN ×̃ℓ,M , the DNN ΦCheb,n
β is constructed in Appendix A. Its

properties are given by Lemma 3.1. Recall that this DNN has input dimension
one and output dimension n such that the ℓ’th component of the output layer
approximates the Chebyšev polynomial of degree ℓ with accuracy β over the
interval [−1, 1]. A DNN that approximates tensorized Chebyšev polynomials

is constructed by a concatenation of K copies of the DNN ΦCheb,n
β with copies

of the DNN ˜∏K

β′,M and is denoted by ΦΛ,δ, where Λ = {0, . . . , n}K ⊂ NK
0 is

the index set of polynomial degrees of tensorized Chebyšev polynomials. The
construction of ΦΛ,δ is described in detail in Step 1 of the proof of Proposi-
tion 3.3. These explicitly constructed DNNs with certified accuracy over all
inputs in an a priori known hypercube1 are used in the following algorithm.
Finally, as in the proof of Proposition 3.5, let b := [0] ∈ R1 and A ∈ R1×|Λ|

be defined by A1,ℓ = f̆k(ℓ);n, where {k
(ℓ)}ℓ=1,...,|Λ| ⊂ Λ is an enumeration of Λ

such that (ΦΛ,δ)ℓ = T̃k(ℓ),δ (the latter is defined in Proposition 3.3). With this

notation, we define Φf̆
n,δ := ((A, b)) ◦ ΦΛ,δ for all n ∈ N and δ ∈ (0, 1).

Regarding line 5 of Algorithm 4.1, recall that cos((2n−j)π/n) = cos(jπ/n)

for j = 1, . . . , n − 1, thus (f̆(xn
j ))j∈{0,...,n}K are sufficient to determine the

values (f̆(xn
j ))j∈{0,...,2n−1}K .

Next, we compute the complexity of the algorithm in the setting that has
been outlined in this section.

Proposition 4.1 Let the assumptions of Section 4 and of Algorithm 4.1 be
satisfied. In total, under the assumption that the complexity of constructing a
DNN from its weights and biases and evaluating a DNN are both proportional
to the number of nonzero network weights and biases, the computational com-
plexity of Algorithm 4.1 is bounded by
C
[

K2(n∗ + 1)2K+1 (log(1/δ∗) + log(n∗)) +K2(n∗ + 1)2K log(1/δ∗)
2
]

, in addi-

tion to at most (n∗ + 1)K+1 evaluations of f̆ . Here, the constant C > 0 does
not depend on n∗, δ∗,K.

The constructed network Φf̆
n∗,δ∗

satisfies

depth(Φf̆
n∗,δ∗

) ≤C
[

1 + log(n∗)
3 + (log(K) + log(n∗)) log(1/δ∗) +K log(n∗)

+K log(K)
]

,

size(Φf̆
n∗,δ∗

) ≤C
[

1 +K2(n∗ + 1)K (log(1/δ∗) + log(n∗))
]

.

We remark that in practice the input value n0 in Algorithm 4.1 should be cho-
sen sufficiently large to prevent pathological situations, where Algorithm 4.1
terminates before reaching the desired accuracy. This could for example hap-

pen when f̆ and Φf̆
n,δ are zero in all xn−1

j and xnj but f̆ is non-zero as a func-

tion. This is possible for certain polynomials f̆ , which then results in Φf̆
n,δ ≡ 0.

Again, this can be prevented, when choosing n0 sufficiently large.

1 The error bounds have been derived under the assumption that the affine transforma-
tions in the DNNs are evaluated in exact arithmetic, without rounding.
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Algorithm 4.1 Construction of a ReLU DNN that approximates a function
f , based on pointwise evaluations of an approximation f̆ of f . Suppose that
f admits a complex holomorphic extension to Eρ for ρ = (ρ, . . . , ρ) ∈ RK and

(possibly unknown) ρ > 1, and that f̆ ∈ C0([−1, 1]K).

Input: K ∈ N, a routine to evaluate f̆ : [−1, 1]K → R, a target accuracy ε ∈ (0, 1),
α ∈ (0, 1), δ0 ∈ (0, 1), n0 ≥ 3

Output: Φf̆
n∗,δ∗

, for n∗ ∈ N and δ∗ ∈ (0, 1) to be determined.

1: Set n← n0, δ ← δ0, err← 1, and state← true
2: while err > ε do

3: Set err−1 ← err.

4: Compute {f̆(xn
j
)}j∈{0,...,n}K . ⊲ xn

j
= cos(jπ/n)

5: Compute {f̆k;n}k∈{0,...,n}K with (2.9). Store as ((A, b)), as in the proof of Proposi-
tion 3.5.

6: Construct ΦΛ,δ , depending on n and δ with Λ = {0, . . . , n}K .

7: Construct Φf̆
n,δ = ((A, b)) ◦ ΦΛ,δ with Λ = {0, . . . , n}K .

8: Update err← max
x∈{xn−1

j
:j∈{0,...,n−1}K}

|f̆(x)− Φf̆
n,δ(x)|.

⊲ xn−1
j

= cos(jπ/(n− 1))

9: if err > αerr−1 then

10: state← complement(state).
11: end if

12: if state = true then

13: n← n+ 1.
14: else

15: δ ← δ/2.
16: end if

17: end while

18: if state = true then

19: n∗ ← n− 1 and δ∗ ← δ.
20: else

21: n∗ ← n and δ∗ ← 2δ.
22: end if

23: return Φf̆
n∗,δ∗

.

Proof Let C > 0 denote some generic constant. The while loop of lines 2–17 is
executed at most n∗−n0+1+ log2(δ0/δ∗) times: after the initial execution of
the while loop, it is executed n∗ − n0 times after increasing n and log2(δ0/δ∗)
times after decreasing δ.

Per execution of the while loop: Line 4 takes (n + 1)K evaluations of

f̆ , and is executed for n = n0, . . . , n∗, i.e. only when state = true. Line 5
computes the IFFT of a K-dimensional array of size (n + 1)K . The com-
plexity of each execution is CK(n + 1)K log(n + 1) = C(n + 1)K log((n +
1)K). Line 6 contains the construction of ΦΛ,δ, which has computational cost
CK2(n+1)K (log(1/δ) + log(n)) (Proposition 3.3). Line 8 requires nK evalua-

tions of f̆ and of Φf̆
n,δ, where each evaluation of Φf̆

n,δ has complexity CK2(n+

1)K (log(1/δ) + log(n)). The evaluations of f̆ are the same as in line 4 (except

for n = n0, which adds nK
0 evaluations of f̆), the evaluation of Φf̆

n,δ contributes

CK2(n+ 1)2K (log(1/δ) + log(n)) for each execution of line 8.
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In total, the computational complexity is upper bounded by (n∗ + 1)K+1

evaluations of f̆ in addition to CK2(n∗+1)2K+1 (log(1/δ∗) + log(n∗))+CK
2(n∗+

1)2K log(1/δ∗)
2, with C depending on δ0 and n0.

The bounds on the network depth and size follow from Proposition 3.3 and

depth
(

Φf̆
n∗,δ∗

)

≤ depth(((A, b))) + 1 + depth(ΦΛ,δ),

size
(

Φf̆
n∗,δ∗

)

≤C size(((A, b))) + C size(ΦΛ,δ).

If the first order partial derivatives of f̆ can be evaluated as well, replacing
line 8 by

Update err← maxx∈{xn−1
j

:j∈{0,...,n−1}K} max
{

|f̆(x)− Φf̆
n,δ(x)|,

maxKi=1 |
∂

∂xi
f̆(x)− ∂

∂xi
Φf̆
n,δ(x)|

}

will give a similar result, now with W 1,∞-error at most ε.

5 DNN Data-to-QoI Maps in Bayesian Inversion

In the present section, we illustrate the foregoing results, including the expo-
nential convergence, see Proposition 3.5, in the context of PDE constrained
Bayesian estimation.

Let X be a separable Banach space and π0 be a prior probability measure
on X. The expectation with respect to π0 is denoted by Eπ0 . Let X be a
separable Banach space and let the forward map S : X → X be continuous.
For given u ∈ X, we suppose that we can measure the response S(u) with
observation functionals Oi ∈ X

∗, i = 1, . . . ,K, where X ∗ denotes the dual
space of X . We aim at a reconstruction of u from these measurementsOi(S(u)),
i = 1, . . . ,K. In general this problem is ill-posed (e.g. [7,20]). We consider
additive Gaussian observation noise which regularizes the Bayesian inverse
problem [7], i.e., we assume noisy observation data δi, i = 1, . . . ,K, such that

δ = O(S(u)) + η,

where η is assumed to be an additive, centered, independent K-dimensional
multivariate Gaussian random variable with nondegenerate covariance ma-
trix Σ. We use the notation δ = (δ1, . . . , δK) and O = (O1, . . . , OK). The
Bayesian estimate of a quantity of interest φ : X → R, which is assumed to be
continuous, is given by Eπδ [φ(u)]. Here, πδ denotes the posterior probability
conditional on given data δ.

In practice the computation of an approximation to this Bayesian estimate
could be costly, in particular when the forward map may involve a solver of a
partial differential equation. For the repeated efficient approximate numerical
evaluation of the data-to-QoI map δ 7→ Eπδ [φ(u)], surrogate maps of DNN
type can lead to large computational savings. These maps can be evaluated
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rapidly in comparison to the pointwise, approximate evaluation of this map
using, e.g., MCMC algorithms requiring one PDE solve for each proposal.

With the presently developed, explicit, DNN emulators, we are able to
explicitly construct a surrogate for the data-to-QoI map by means of a ReLU
DNN. The exponential error bound on the generalization error will imply
that few parallel evaluations of the forward map, at synthetic data points,
are required. This is due to the additive Gaussian noise η having a strong
regularizing effect. This has been pointed out and was exploited in [18]. There
in [18, Corollary 4.7] it is shown that for any r > 0, the map

[−r, r]K ∋ δ 7→ f(δ) := Eπδ [φ(u)] (5.1)

is analytic. This allows quite general forward maps S, which are not re-
quired to be smooth, see [18, Section 3] for a few examples. Thus, the map
[−r, r]K ∋ δ 7→ f(δ) satisfies the assumptions of Proposition 3.5 and Algo-
rithm 4.1 constructs a ReLU DNN with size and depth as in Proposition 4.1,
if we are able to approximate the map f by some f̆ sufficiently well. In this
example the modulus of the considered mapping f depends exponentially on
the smallest eigenvalue of the covariance matrix Σ of the additive noise η. This
term consequentially appears on the right-hand side of our error estimates.

6 Numerical Experiments

We consider the solution q to an elliptic partial differential equation given a
realization of an uncertain diffusion coefficient function u as forward operator.
Specifically, on a bounded Lipschitz domain D ⊂ Rd let

−∇ · (u∇q) = g q|∂D = 0, (6.1)

where g ∈ L2(D) is assumed known and where u ∈ {ũ ∈ L∞(D) : ess infx∈D ũ(x) >
0}. For every such coefficient function u, the solution q ∈ H1

0 (D) =: X exists
and is unique by the Lax–Milgram lemma. The forward coefficient-to-solution
map S is defined by S(u) := q. The observation operators Oi, i = 1, . . . ,K, are
taken as linear functionals inH−1(D) := (H1

0 (D))∗. We construct an uncertain
diffusion coefficient

u(y) = ū+

s
∑

j=1

yjψj ,

where s ∈ N, y ∈ [−1/2, 1/2]s and ess infx∈D{ū(x)} >
∑s

j=1 ‖ψj‖L∞(D)/2.
We assume that ψj ∈ L

∞(D), j = 1, . . . , s. We model the Bayesian prior as
product probability measure µ on [−1/2, 1/2]s by µ(dy) =

⊗s
j=1 dyj . The

prior π0 is chosen as the pushforward measure of the random coefficient y 7→
u(y) on X = {ū+

∑s
i=1 yjψj : y ∈ [−1/2, 1/2]s}, i.e., π0(A) := µ(u−1(A)) for

every measurable set A ⊂ X, where u−1(A) denotes the pre-image under the
mapping u : [−1/2, 1/2]s → X. Let ϕ ∈ H−1(D). Then the QoI φ is given by
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the composition of ϕ and S, i.e., φ = ϕ ◦ S. According to [7, Theorem 14], the
posterior expectation in (5.1) is given by

f(δ) =
1

Z

∫

X

φ(u) exp

(

−
(δ −O(S(u)))⊤Σ−1(δ −O(S(u))

2

)

π0(du) (6.2)

and

Z =

∫

X

exp

(

−
(δ −O(S(u)))⊤Σ−1(δ −O(S(u))

2

)

π0(du). (6.3)

In our computations, we consider the univariate case and one or two pa-
rameters, i.e., d = 1, D = (−1, 1), and s = 1, 2. Also the data space dimension
is chosen to be one, i.e., K = 1. For given u(y), the solution q(y) = S(u(y))
is approximated by the Finite Element Method (FEM) with 65 degrees of
freedom using a hat functions basis and the integrals in (6.2) and in (6.3)
are efficiently approximated by a product Gauss–Legendre quadrature with
40 quadrature nodes in each parameter direction. This allows our numerical
tests to focus on the algorithmic realization of ReLU DNNs to approximate
the data-to-QoI map [−1/2, 1/2]s ∋ δ 7→ f(δ).

In our setup, we choose ū = 1.5, ψj(x) = 2j−2 cos(jπx). The observation

functional is taken to be O(v) :=
∫ 0

−1
v(x)dx and the goal functional is taken as

ϕ(v) :=
∫ 1

0
v(x)dx for every v ∈ H1

0 (D). The right-hand side in (6.1) is taken
as g = 1. We ran Algorithm 4.1 for given error tolerances and observed the
resulting size of the constructed DNN. Specifically, we ran an implementation
of Algorithm 4.1 for the data-to-QoI map δ → f(δ) given in (6.2).

In Figures 6.1 and 6.2, we visualize the output of Algorithm 4.1 with the
choice n0 = 3. The size of the DNN that is constructed in Algorithm 4.1, the
depth, and the achieved accuracy are plotted in a semi-logarithmic scale. In
the figures the error should impact the size with the square of the logarithm
according to Proposition 3.5, which is why the square root of the size of the
DNN is plotted. As described in Algorithm 4.1 line 8, the error is estimated
by the maximum of the absolute value of the difference of the DNN approxi-
mation and the data-to-QoI map evaluated in Clenshaw–Curtis points of one
degree less than used as training points. Note that Clenshaw–Curtis points
are not nested. Because we cannot evaluate f exactly, the error was computed
with respect to the previously described, quadrature based numerical approx-
imation, corresponding to f̆ in the notation of the algorithm. We tested this
setting for additive Gaussian noise with variance σ2 = 0.04, see (5.1). The
step-like behavior of the size and depth of the constructed DNN that is vis-
ible in Figures 6.1 and 6.2 is a consequence of the employed construction of
DNNs approximating Chebyšev polynomials, see Appendix A. There, for given
polynomial degree p ∈ N and k ∈ N such that 2k−1 < p ≤ 2k, DNNs approxi-
mating univariate Chebyšev polynomials up to degree 2k are constructed, see
also Remark A.1.

We remark that for large values of s the Gauss–Legendre quadrature that
is used to compute the training data is no longer feasible as the number of
quadrature points would depend exponentially on s. However, for these cases
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high-dimensional quadratures such as quasi-Monte Carlo or Smolyak are ap-
plicable and the convergence is of high order and independent of the dimension
s [9,10,19,40].
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Fig. 6.1: Accuracy of the DNNs constructed by Algorithm 4.1 vs. (a) size and
depth and (b) polynomial degree n. The data-to-QoI map δ 7→ f(δ) from (6.2)
is approximated by constructed DNNs for s = 1 and σ2 = 0.04. The number
of evaluations of f̆ in Algorithm 4.1 is bounded by (n + 1)2, see Proposition
4.1, which is the amount of training data that is used.
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Fig. 6.2: Accuracy of the DNNs constructed by Algorithm 4.1 vs. (a) size and
depth and (b) polynomial degree n. The data-to-QoI map δ 7→ f(δ) from (6.2)
is approximated by constructed DNNs for s = 2 and σ2 = 0.04. The number
of evaluations of f̆ in Algorithm 4.1 is bounded by (n + 1)2, see Proposition
4.1, which is the amount of training data that is used.
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7 Conclusions

We proved approximation results resp. expressive power bounds for DNNs
approximating multivariate, analytic functions, and introduced a novel, deter-
ministic, constructive approach for generating ReLU DNN surrogates. Unlike
the (constructive) proofs of DNN emulation in [30], the presently proposed
argument and algorithm depends in an essential way on the use of multivari-
ate Chebyšev interpolants of the map f which are to be emulated by DNNs.
On the one hand, while retaining exponential convergence for multivariate
holomorphic functions, Chebyšev polynomials are well-known to have favor-
able algorithmic and stability properties. In particular, through a close link
with discrete Fourier transformation, Chebyšev interpolants of multivariate
functions f : [−1, 1]K → R can be conveniently computed through function
collocation on (n+ 1)K-point tensorized Clenshaw–Curtis grids.

The good (logarithmic w.r. to the polynomial degree n) stability of interpo-
lation in Clenshaw–Curtis points also allowed us to perform an error analysis
for interpolation based on “noisy”, corrupted function evaluations. We devel-
oped bounds for the DNN expression error of the type C exp(−bM1/(K+1))
in terms of the network size M , for some constants C > 0 independent
of M and b > 0 independent of K and M , under the provision that ex-
act function evaluations of f in Clenshaw–Curtis points are used. The con-
structed DNN is stable with respect to errors in the training data. If the
function values of f in the Clenshaw–Curtis points are approximated with
a possibly corrupted, numerical approximation f̆ of f , then the additional
term in the L∞-error is bounded by C(log(log(1/ε)))K‖f − f̆‖L∞([−1,1]K),
where ε denotes the error of polynomial interpolation (for which it holds
n ∝ log(1/ε) in Proposition 3.5). The additional error in W 1,∞-norm is

bounded by C(log(1/ε))2(log(log(1/ε)))K‖f − f̆‖L∞([−1,1]K).

The presently proposed DNN construction does not require loss function
minimization, and is not prone to the difficulties encountered in [1] with DNN
training via optimization techniques. Our procedure reproduces the polyno-
mial best approximation rates up to logarithmic factors. Furthermore, note
that when larger function classes are considered, which can still be approxi-
mated with some rate by DNNs, any algorithm based on point evaluations of
functions at best only realizes a significantly smaller rate. This has been proved
in [16]. However, for analytic functions, continuously differentiable functions,
or Lipschitz continuous functions, this is not the case as we prove in the present
paper for analytic functions. As pointed out in Section 1.2, the proofs are
also applicable to Lipschitz continuous functions. Moreover, our methodology
extends to any method that is based on constructive polynomial approxima-
tion, with the polynomials subsequently replaced by DNNs that emulate them.
Potential candidates are least squares (LSQ) and compressed sensing (CS)
techniques. See, for example, [1] for studies of CS in the context of DNN ap-
proximations. In LSQ polynomial regression, guarantees hold only in the root
mean squared sense. Polynomial fitting via CS only affords guarantees with
high probability, whereas the presently developed bounds hold with certainty.
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The use of DNN emulations of Chebyšev polynomials also resolves numerical
stability issues of DNNs approximating polynomials recently highlighted in [1,
p. 650 bottom].

In this paper, we applied the constructive algorithm to an example in the
context of Bayesian PDE inversion, where under the assumption of additive
Gaussian observation noise the data-to-quantity of interest map is analytic,
cf. [18]. Again, the algorithm is applicable much more generally, e.g. to any
Lipschitz continuous map.

A Constructive ReLU DNN Approximation of Tn

We present an emulation of univariate Chebyšev polynomials Tn(x) of arbitrary degrees by
ReLU DNNs, which will be developed in [28] and which follows closely the construction
in [29] for univariate monomials. Specifically, we construct a DNN that approximates the
Chebyšev polynomials of the first kind, denoted by {Tℓ}ℓ∈N0

. As was derived for DNNs with
the RePU activation function σr(x) = (max{x, 0})r for r ∈ N satisfying r ≥ 2 in [36], they
can be approximated efficiently also by ReLU DNNs by exploiting the three term recursion

∀m,n ∈ N0 : Tm+n = 2TmTn − T|m−n|, T0(x) = 1, T1(x) = x, ∀x ∈ R. (A.1)

This recursion is specific to the Tn and follows from the addition rule for cosines.
To construct the DNNs that approximate all Chebyšev polynomials of degree 1, . . . , n

on Î := (−1, 1), we first construct inductively, for all k ∈ N, DNNs {Ψk
δ }δ∈(0,1) with in-

put dimension one and output dimension 2k−1 + 2 with the following properties: denot-
ing all components of the output, except for the first one, by T̃ℓ,δ := (Ψk

δ )2+ℓ−2k−1 for

ℓ ∈ {2k−1, . . . , 2k}, it holds that

Ψk
δ (x) =

(

x, T̃2k−1,δ(x), . . . , T̃2k,δ(x)
)

, x ∈ Î,
∥

∥

∥
Tℓ(x)− T̃ℓ,δ(x)

∥

∥

∥

W1,∞(Î)
≤ δ, ℓ ∈ {2k−1, . . . , 2k}. (A.2)

We only provide the DNN constructions, for proofs of the error bound and the estimates
on the network depth and size in Lemma 3.1 we refer to [28]. For brevity, we will denote
the weights of a DNN layer by a matrix, similarly to the notation used in [28]. We say that
A ∈ RNℓ×Nℓ−1 are the weights of layer ℓ ∈ {1, . . . , L + 1} if Aji = Aℓ

i,j in the notation of
Section 3.1.

Induction basis. Let δ ∈ (0, 1) be arbitrary and define L1 := depth( ˜
∏2

δ/4,1). Also,

define the matrix A := [1, 1]⊤ ∈ R2×1 and the vector b′ := [−1] ∈ R1, and let Ai, bi,

i = 1, . . . , L1 + 1 denote the weights and biases of ˜∏2

δ/4,1 as in Proposition 3.2. Then we

define

Ψ1
δ :=

(

ΦId
1,L1

, ΦId
1,L1

, Φ
)

,

where the weights and biases of Φ are A1A,A2, . . . , AL1
, 2AL1+1 resp. b1, . . . , bL1

, 2bL1+1+

b′. It follows that (Ψ1
δ (x))1 = x, T̃1,δ(x) := (Ψ1

δ (x))2 = x = T1(x) and T̃2,δ(x) := (Ψ1
δ (x))3 =

2( ˜
∏2

δ/4,1)(x, x)− 1 for all x ∈ Î := (−1, 1).

Induction hypothesis (IH). For all δ ∈ (0, 1) and k ∈ N, let θ := 2−2k−4δ, and assume
that there exists a DNN Ψk

θ which satisfies Equation (A.2) with θ instead of δ.
Induction step. For δ and k as in (IH), we show that (A.2) holds with δ as in (IH) and

with k + 1 instead of k. We define, for Φ1,k and Φ2,k
δ introduced below,

Ψk+1
δ

:= Φ2,k
δ ◦ Φ1,k ◦ Ψk

θ . (A.3)
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For a sketch of the network structure, see Figure A.1. The DNN Φ1,k of depth 0 implements
the linear map

R2k−1+2 → R2k+1+2 : (z1, . . . , z2k−1+2) 7→ (z1, z2k−1+2, z2, z3, z3, z3, z3, z4, z4, z4, z4, z5,

. . . , z2k−1+1, z2k−1+2, z2k−1+2, z2k−1+2).

Denoting its weights and biases by A1,k, b1,k, it holds that b1,k = 0 and

(A1,k)m,i =



















1 if m = 1, i = 1,

1 if m = 2, i = 2k−1 + 2,

1 if m ∈ {3, . . . , 2k+1 + 2}, i = ⌈m+5
4
⌉,

0 else.

With Lθ := depth( ˜
∏2

θ,2) we define

Φ2,k
δ

:= Φ ◦

(

ΦId
2,Lθ

,
˜∏2

θ,2
, . . . ,

˜∏2

θ,2

)

d

,

containing 2k ˜∏2

θ,2-networks, with Φ denoting the depth 0 network with weights and biases

A2,k ∈ R(2k+2)×(2k+2) and b2,k ∈ R2k+2 defined as

(A2,k)m,i :=



















1 if m = i ≤ 2,

2 if m = i ≥ 3,

−1 if m ≥ 3 is odd, i = 1,

0 else,

(b2,k)m =

{

−1 if m ≥ 3 is even,

0 else.

The network Ψk+1
δ defined in Equation (A.3) realizes

(Ψk+1
δ (x))1 = x, for x ∈ Î, (A.4)

(Ψk+1
δ (x))2 = T̃2k,θ(x), for x ∈ Î, (A.5)

(Ψk+1
δ (x))ℓ+2−2k = 2

˜∏2

θ,2

(

T̃⌈ℓ/2⌉,θ(x), T̃⌊ℓ/2⌋,θ(x)
)

− x⌈ℓ/2⌉−⌊ℓ/2⌋, (A.6)

for x ∈ Î and ℓ ∈ {2k + 1, . . . , 2k+1},

where x⌈ℓ/2⌉−⌊ℓ/2⌋ = x = T1(x) for odd ℓ and x⌈ℓ/2⌉−⌊ℓ/2⌋ = 1 = T0(x) for even ℓ. For

ℓ ∈ {2k + 1, . . . , 2k+1} and x ∈ Î, the right-hand side of (A.6) will be denoted by

T̃ℓ,δ(x) := (Ψk+1
δ (x))ℓ+2−2k .

This finishes the construction of Ψk+1
δ .

Next, we construct ΦCheb,n
δ as in Lemma 3.1.

If n = 1, for all δ ∈ (0, 1) we define ΦCheb,n
δ := ((A, b)), where A := [1] ∈ R1×1 and

b := [0] ∈ R1.
If n ≥ 2, let k := ⌈log2(n)⌉. See Figure A.2 for a sketch of the DNN construction below.

We use the networks {Ψj
δ }δ∈(0,1),j∈{1,...,k} constructed above and take {ℓj}

k
j=1 ⊂ N such

that depth
(

Ψk
δ

)

+1 = depth
(

Ψj
δ

)

+ℓj for j = 1, . . . , k, and thus ℓj ≤ maxkj=1 depth
(

Ψj
δ

)

=

depth
(

Ψk
δ

)

. We define

ΦCheb,n
δ

:= Φ3,n ◦
(

Ψ1
δ ◦ Φ

Id
1,ℓ1

, . . . , Ψk
δ ◦ Φ

Id
1,ℓk

)

,
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Fig. A.1: Sketch of Ψk+1
δ for some k ∈ N and δ ∈ (0, 1), inductively constructed

from Ψk
θ with θ = 2−2k−4δ. The subnetwork Φ1,k realizes a linear map, cor-

rectly coupling the output of Ψk
θ to the input of Φ2,k

δ . The subnetwork Φ2,k
δ acts

as the identity on the first two inputs, and as an approximate multiplication
from Proposition 3.2 on pairs of the remaining inputs. Output are the input
x and approximations of Chebyšev polynomials of degree 2k, . . . , 2k+1, with
accuracy δ.

where the DNN Φ3,n of depth 0 emulates the linear map R2k+2k−1 → Rn satisfying

Φ3,n(z1, . . . , z2k+2k−1)1 = z2, Φ3,n(z1, . . . , z2k+2k−1)2 = z3,

and for all ℓ = 3, . . . , n, with j := ⌈log2(ℓ)⌉ : Φ3,n(z1, . . . , z2k+2k−1)ℓ = zℓ+2j−1.

The realization satisfies for all ℓ = 1, . . . , n

(ΦCheb,n
δ (x))ℓ = T̃ℓ,δ(x), x ∈ Î, ℓ ∈ {1, . . . , n}.

Remark A.1 The subnetwork Ψk
δ of ΦCheb,n

δ approximates all univariate Chebyšev polyno-

mials of degree up to 2k, also when n < 2k. This causes the “step-like” behavior in Figures
6.1 and 6.2. This step-wise growth of the network size can easily be prevented by removing

from Ψk
δ the product networks ˜∏2

θ,2 that compute T̃ℓ,δ(x) for ℓ > n, and modifying Φ3,n

accordingly.
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