
Constructive Deep ReLU Neural Network

Approximation

L. Herrmann and J. A. A. Opschoor and Ch. Schwab

Research Report No. 2021-04
January 2021

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

__

Constructive Deep ReLU Neural Network Approximation

Lukas Herrmann†, Joost A. A. Opschoor‡, and Christoph Schwab‡

†
Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences,

Altenbergerstrasse 69, 4040 Linz, Austria.

lukas.herrmann@ricam.oeaw.ac.at
‡Seminar for Applied Mathematics, ETH Zürich, Rämistrasse 101, CH–8092 Zürich, Switzerland.

joost.opschoor@sam.math.ethz.ch, christoph.schwab@sam.math.ethz.ch

January 25, 2021

Abstract

We propose an efficient, deterministic algorithm for constructing exponentially con-
vergent deep neural network (DNN) approximations of multivariate, analytic maps f :
[−1, 1]K → R. We address in particular networks with the rectified linear unit (ReLU)
activation function. Similar results and proofs apply for many other popular activation
functions. The algorithm is based on collocating f in deterministic families of grid points
with small Lebesgue constants, and by a-priori (i.e., “offline”) emulation of a spectral basis
with DNNs to prescribed fidelity.

Assuming availability of N function values of a possibly corrupted, numerical approxi-
mation f̃ of f in [−1, 1]K , a bound on ‖f−f̃‖L∞([−1,1]K), and a given target accuracy ε > 0,
we provide an explicit, computational construction of a deep ReLU NN which attains accu-
racy ε uniformly, with respect to the inputs. For analytic maps f : [−1, 1]K → R, we prove
exponential convergence of expression and generalization errors of the constructed ReLU
DNNs with respect to ε, in the norm W 1,∞([−1, 1]K ;R), up to an additive data-corruption
bound ‖f − f̃‖L∞([−1,1]K) multiplied with a factor growing slowly with 1/ε. The algorith-
mic construction of the ReLU DNNs which will realize the approximations, is explicit and
deterministic in terms of the function values of f̃ in tensorized Clenshaw–Curtis grids in
[−1, 1]K . We illustrate the proposed methodology by a constructive algorithm for (offline)
computations of posterior expectations in Bayesian PDE inversion.

Key words: Deep ReLU neural networks, exponential convergence, neural network construc-
tion.
Subject Classification: 41A10, 41A50, 65D05, 65D15

1 Introduction

Approximation by deep neural networks (DNNs) receives increasing attention recently. DNNs
realize mappings by a combination of affine mappings and a coordinatewise applied (generally)
non-linear function, which is referred to as the activation function. Most rigorous analyses study
the approximation properties of certain DNN architectures and the existence of DNN weights
which guarantee a small error, cf. [35, 3, 27, 8]. A common theme among these references is
that DNNs perform as well as the state-of-the-art numerical method in a variety of contexts.

In application the actual weights that represent the particular DNN are commonly com-
puted by DNN training, effected with numerically minimizing a certain positive functional, the
loss-function. Training of DNNs is generally challenging: the occurring optimization problem
is highly non-convex. This has for example been approached in computational uncertainty
quantification and also in image processing, cf. [28, 21, 2, 1].

1

On the other hand, there is empirical and mathematical evidence that this approach may
not always be successful, cf. e.g. [12, 5]. In the present paper, we propose to explicitly construct
values of the weights of DNNs via a deterministic algorithm thereby circumvent the need of
computationally costly optimization routines.

1.1 Previous Work

The idea of constructive NN approximations via Chebyšev expansions and collocation in a tensor
product Clenshaw-Curtis grid was already suggested in [23], in particular [23, Theorem 2.3] on
the approximation of multivariate holomorphic functions by DNNs with smooth activations.
There, robustness of the NN approximation rates under noisy data was described as “expected”,
but not proved.

Constructive proofs for ReLU-based DNN emulation of polynomials were firstly seen in [19,
35]. Mainly in [35] a construction for DNNs with rectified linear unit (ReLU) activation that
approximate the product of two scalars was found. The convergence of these constructions
is exponential with respect to the size of the DNNs meaning the number of nonzero weights.
Subsequent works used DNNs and polynomial approximations for smooth (or analytic) functions
and established the existence of DNNs with exponential convergence, in the L∞- and some in the
stronger W 1,∞-norm: For example, [31] provided W 1,∞-error bounds for the product network
in [35], exponential convergence in W 1,∞ for univariate analytic and Gevrey regular functions
was shown in [25], [9] provided exponentially convergent DNN approximations of holomorphic
maps on [−1, 1]d, with respect to the L∞-norm. A more efficient approximation with respect
to the W 1,∞-norm and under weaker smoothness assumptions was given in [26]. The proofs in
these references are constructive, in principle, and algorithmic realizations could be based on the
ReLU reapproximation of polynomials as linear combinations of monomials. It is well-known
that such representations may have poor stability in finite-precision arithmetic (in particular,
in the context of quantized DNN weights) due to exponential w.r. to the polynomial degree
coefficient growth in monomial expansions. Furthermore, these constructions use e.g. Taylor,
Legendre or Chebyšev coefficients of analytic functions, which cannot be determined exactly
based on a finite number of function evaluations.

An alternative approach to exponential DNN approximation of multivariate holomorphic
maps was used in [8], which used ReLU NN approximations of tensor products of univariate
polynomials with real roots by using approximate ReLU NN multiplications of their linear
factors. This did not lead to better asymptotic approximation rates than for the previously
mentioned monomial-based polynomial approximations. The NNs inherit the well-known sta-
bility and conditioning issues from monomial representations of interpolation polynomials.

Constructive approximation of multivariate holomorphic parametric maps by tensorized
Chebyšev polynomials with exponential convergence has been studied in the context of option
pricing in [13]. The approximation of multivariate maps by DNNs based on Chebyšev poly-
nomials has been considered in [32]. There, Chebyšev polynomials represented exactly by so
called RePU DNNs serve as starting value for computing DNN weights in black box optimiza-
tion routines. The presented DNNs are based on a well-known identity satisfied by the product
of two Chebyšev polynomials. The initial error prior to NN optimization was not analyzed
theoretically in [32].

Relevance of the present results is due to the fact that numerous applications in computa-
tional science and engineering aim at efficient numerical realization of input-output maps be-
tween suitable Banach spaces, such as for example data-to-solution maps for continuum models
governed by partial differential equations. Equipping the input data space with suitable, affine-
parametric representation systems such as (Riesz) bases or frames renders the maps of interest
parametric. In many applications such maps are holomorphic, even for data spaces of inputs
with possibly low spatial or temporal regularity, see for example [15]. In the present paper,
following a general, algorithmic DNN construction and expression rate analysis, we develop one

2

example consisting in Data-to-Prediction maps for Bayesian Inverse Problems of elliptic PDEs
which should be contrasted with other, standard (i.e. numerical minimization of loss functions)
approaches (e.g. [34, 20]). Other applications include shape-to-solution maps of differential or
integral equations (e.g. [17, 6, 14] and the references there).

1.2 Contributions

The principal contributions of this work are threefold: we propose and implement a constructive
numerical approximation algorithm for DNN expression of maps f : [−1, 1]K → R. Specifically,
we propose and analyze an algorithm to build by explicit construction a DNN surrogate f̃ to
the map f with a) rigorous, sup-norm generalization error bounds and with b) good stability
properties in finite precision arithmetic, and c) with low complexity.

We achieve this by adapting ideas from spectral collocation, for some finite index set Λ ⊂ NK
0

with associated polynomial space PΛ = span{xν : ν ∈ Λ} and corresponding data-sampling grid
ΓΛ ⊂ [−1, 1]K of unisolvent (for PΛ) interpolation points. We consider the (unique) polynomial
interpolant fΛ ∈ PΛ which satisfies

∀x ∈ ΓΛ : f(x) = fΛ(x) .

Numerical stability of the polynomial interpolation process in finite precision arithmetic is
required in order to preclude catastrophic amplification of, e.g., numerical errors in the function
value queries f(x), for x ∈ ΓΛ. It is well known to depend on two related issues: the choice
of the sampling grid ΓΛ and of the basis {pν : ν ∈ Λ} spanning PΛ. Favorable numerical
conditioning of the interpolation operator IΛ : C0([−1, 1]K) → PΛ : f 7→ fΛ is known to be
governed by the Lebesgue constant of ΓΛ. Assuming the basis to have the Kronecker property,
i.e. pν(x

µ) = δν,µ for all ν,µ ∈ Λ, we may represent IΛ as

fΛ(x) := IΛ[f](x) =
∑

ν∈Λ

f(xν)pν(x), x ∈ [−1, 1]K . (1.1)

As [−1, 1]K is a cartesian product, the construction of unisolvent interpolation grids ΓΛ with
good stability properties and corresponding error bounds for f−fΛ in various norms in [−1, 1]K

reduces to the univariate case.
The second step in the DNN construction is to replace in (1.1) the basis functions pν by

suitable DNNs, denoted generically by x 7→ p̃ν(x). Based on (1.1), the DNN is then given by
(assuming at hand exact evaluations of f on ΓΛ)

x 7→ f̃Λ(x) :=
∑

ν∈Λ

f(xν)p̃ν(x), x ∈ [−1, 1]K .

The DNNs p̃ν ∈ PΛ are independent of the data f(xν) and are constructed a-priori (i.e., the
DNN should “learn” the basis {pν : ν ∈ Λ} of PΛ offline, prior to accounting for data f(xν))
to prescribed numerical accuracy ε > 0 being dictated, e.g., by the data fidelity. Our algorithm
therefore mandates the construction of p̃ν from an admissible class of DNNs. We consider here
in particular the class of DNNs with ReLU activation, and we propose a DNN architecture of
low complexity by exploiting certain algebraic properties of Chebyšev polynomials which are
tensorized to build the pν . Based on the observation of [32], we obtain smaller architectures and
better stability than with other bases pν (e.g. in [35, 26] either monomial bases were considered
resulting in small DNNs with large Lebesgue constants or Legendre polynomials were considered
which have better stability, but require larger DNNs for their accurate emulation).

For ease of exposition, we consider here only isotropic tensor product interpolation. I.e., for
a prescribed polynomial degree p ∈ N, Λ := {0 : p}K = {ν ∈ NK

0 : ‖ν‖∞ ≤ p}. We hasten to
add, however, that also more general polynomial spaces could be considered which are based

3

on, e.g., anisotropic, total degree or more general sparse grids ΓΛ ⊂ [−1, 1]K which will be
addressed elsewhere. The DNN expression and generalization error analysis will then proceed
according to

‖f − f̃Λ‖ ≤ ‖f − fΛ‖+ ‖fΛ − f̃Λ‖,

where the first error is an error of polynomial interpolation, and the second error term is,
essentially, the DNN emulation error of the polynomial basis elements pν . The choice of the
norm ‖ ◦ ‖ will be either the L∞ or also the W 1,∞ norm on the (scaled) input data domain
[−1, 1]K . The latter norm therefore also allows to control the generalization error of first order
sensitivities of the DNNs.

We develop the error analysis and the emulation algorithm for DNNs with the rectified
linear unit (ReLU) activation function. We prove the proposed construction algorithm (see
ahead Algorithm 4.1) yields ReLU DNNs that are able to approximate multivariate analytic
mappings that have a size of the DNN that depends only polylogarithmically on the reciprocal
of the desired accuracy. This error bound is pointwise and holds for all possible inputs in the
hypercube [−1, 1]K . A so-called training routine, for example by the widely used stochastic
gradient descent method, is not necessary.

More specifically, the algorithm combines mainly two building blocks. Firstly, the function
to be approximated is collocated on a multivariate, tensor product Clenshaw–Curtis grid Γ
which serves here as training data. Based on this data, exponentially convergent polynomial
interpolants can be constructed as linear combination of tensor product Chebyšev polynomi-
als (we recall the relevant details of polynomial interpolation in Section 2). Secondly, DNNs
are constructed that emulate Chebyšev polynomials in a stable way. It shows that here the
meticulous choice of training data points is crucial for the good performance of the algorithm,
in particular for the exponential convergence of ReLU DNNs for analytic functions. This is
in contrast to randomly chosen training points, which have been used in connection with the
stochastic gradient method, see for example [21].

We provide a complete error analysis for the proposed DNN approximation in Proposition
3.5. Specifically, we prove exponential decay of three error contributions in terms of the num-
ber of nonzero NN weights by estimating (i) the error of approximating f by a polynomial, (ii)
the additional error of polynomial interpolation, based on only finitely many function values
of f , (iii) and the error of reapproximating the polynomial interpolant by a ReLU DNN. In
the approximation literature, the first two are often referred to as approximation error and
generalization error, respectively. In Proposition 3.5, it is also shown that if the function f can
only be accessed through a possibly corrupted numerical approximation f̃ , the proposed DNN
approximations are stable with respect to the error f− f̃ . In the worst case, the L∞- error f− f̃
is magnified by a factor C(log(log(1/ε)))K , where ε denotes the accuracy of polynomial approx-
imation (i.e. log(1/ε) ∝ n in Proposition 3.5). Also the bound on the W 1,∞-error only depends
on f − f̃ through ‖f − f̃‖L∞([−1,1]K), multiplied with a factor C(log(1/ε))2(log(log(1/ε)))K . In
Remark 3.6 we quantify stability of the DNN architecture and DNN weights with respect to
small changes in the approximated function f .

1.3 Notation

We will denote vectors and multiindices by bold characters. We denote N = {1, 2, ...} and
N0 = {0, 1, 2, ...}. For k ∈ N0 and a subset S ⊂ N0, we define 1S(k) := 1 if k ∈ S, and

1S(k) := 0 otherwise. For K ∈ N and k ∈ NK
0 , we define 1S(k) :=

∑K
j=1 1S(kj) and denote

by |k|0 := 1N(k) the number of nonzero components of k. For finite index sets Λ ⊂ NK
0 , we

denote the number of elements by |Λ| and the maximum coordinatewise degree by m∞(Λ) :=
maxk∈Λ ‖k‖ℓ∞ .

We denote by Tk, k ∈ N0, the univariate Chebyšev polynomials of the first kind, normalized
such that Tk(1) = 1 for all k ∈ N0. For K ∈ N and k = (kj)

K
j=1 ∈ NK

0 , we denote tensor

4

product Chebyšev polynomials by Tk(x) :=
∏K

j=1 Tkj
(xj), for x = (xj)

K
j=1 ∈ [−1, 1]K . We

write cos(θ) := (cos(θ1), . . . , cos(θK)) for vectors θ = (θ1, . . . , θK) ∈ RK and xν :=
∏K

j=1 x
νj

j

for x ∈ RK and ν ∈ NK
0 .

We introduce the following notation for circles in the complex plane: For all r > 0 we define
Γr := {z ∈ C : |z| = r}. For all r ≥ 1, the image of the closed disc of radius r in C under the

map z 7→ z+z−1

2 is a closed Bernstein ellipse, denoted by Eρ :=
{

z+z−1

2 ∈ C : 1 ≤ |z| ≤ ρ
}
. For

p ≥ 0, the space of polynomials of degree at most p are denoted by Pp. The space of polynomials
in K ∈ N variables of coordinatewise degree at most p are denoted by Qp := span{xν : ν ∈
NK

0 and ‖ν‖ℓ∞ ≤ p}.
Error estimates will be expressed in terms of the W 1,∞ Sobolev norm, which is defined, for

an open and bounded domain Ω ⊂ RK , as ‖u‖W 1,∞(Ω) = max{‖u‖L∞(Ω),maxKi=1 ‖
∂

∂xi
u‖L∞(Ω)},

∂
∂xi

denoting weak derivatives.

1.4 Outline

In Section 2, we first recapitulate classical results on constructive polynomial approximation
of multivariate, holomorphic functions on [−1, 1]K . In Section 3, we recapitulate ReLU DNN
approximation rates of multivariate maps f : [−1, 1]K → R from [26]. We also develop a
constructive DNN approximation. It is based on standard spectral collocation approximation of
f in a tensorized Clenshaw–Curtis grid, and on ReLU DNN emulation of tensorized Chebyšev
polynomials. In Section 3.4, we comment on generalizations of our results to DNNs with
activation functions other than ReLU. In Section 4, a construction algorithm is proposed and
analyzed that converges exponentially for analytic functions. An application of the presented
algorithm to a Bayesian inverse problem is discussed in Section 5 and numerical experiments
confirming the theory are provided in Section 6.

2 Polynomial Approximation of Multivariate Holomor-

phic Functions

It is classical that univariate functions f : [−1, 1]→ R which are real-analytic in [−1, 1] admit
sequences of polynomial approximations {fp}p≥0 with fp ∈ Pp which converge at an exponential
rate. These univariate polynomial approximations can be tensorized to produce exponentially
convergent, tensorized polynomial approximations to multivariate maps f : [−1, 1]K → R. This
argument was used in [26] to infer existence of tensorized truncated Legendre expansions of co-
ordinatewise polynomial degree at most p ∈ N of f which could, in principle, serve as building
block for the corresponding multivariate ReLU NNs which emulate the map f .

In this section, we present an alternative proof of such multivariate polynomial approxima-
tion of holomorphic maps f : [−1, 1]K → R, which admit a holomorphic complex extension
to the isotropic Bernstein polyellipse Eρ = EKρ with polyradius ρ = (ρ, . . . , ρ) ∈ RK for some
ρ ∈ (1,∞). The interpolation results are basically known, being based on tensorized Chebyšev
polynomials. We detail them here, as they are are the basis for the ensuing ReLU DNN ap-
proximations. Bounds on Lebesgue constants of Chebyšev points in [−1, 1] are essential in
quantifying numerical stability of the interpolation and, more importantly, of the DNN approx-
imation process.

2.1 Chebyšev Expansion

We first recall the tensor product Chebyšev expansion, which is obtained by inductively taking
the Chebyšev expansion with respect to each of the K coordinates. The following results are
classical, we refer to [33, Theorem 3.1] for the arguments in the univariate case, which we

5

apply K times. Denoting the Chebyšev measure on [−1, 1] by λ, which has Lebesgue density
(1− x2)−1/2 for x ∈ (−1, 1), it holds for all y = (y1, . . . , yK) ∈ [−1, 1]K

f(y1, . . . , yK) =
∞∑

k1=0

21N(k1)π−1Tk1
(y1)

∫ 1

−1

f(x1, y2, . . . , yK)Tk1
(x1) dλ(x1)

=

∞∑

k1=0

21N(k1)π−1Tk1(y1)

∫ 1

−1

· · ·

∞∑

kK=0

21N(kK)π−1TkK
(yK)

∫ 1

−1

f(x1, . . . , xK)TkK
(xK) dλ(xK) · · ·Tk1

(x1) dλ(x1)

=
∑

k∈NK
0

Tk(y)2
|k|0π−K

∫ 1

−1

· · ·

∫ 1

−1

f(x)Tk(x) dλ(x1) · · · dλ(xK)

=:
∑

k∈NK
0

Tk(y)fk. (2.1)

In the third step, interchanging summation and integration is justified by the dominated conver-
gence theorem. It implies that for all j = 2, . . . ,K and ℓ = 1, . . . , j−1, all (kℓ, . . . , kj−1) ∈ N

j−ℓ
0 ,

all y = (y1, . . . , yK) ∈ [−1, 1]K and all (x1, . . . , xℓ−1) ∈ [−1, 1]ℓ−1

∫ 1

−1

∞∑

kj=0

π−(j−ℓ)

j∏

i=ℓ+1

(
21N(ki)Tki

(yi)
)

[∫

[−1,1]j−ℓ

f(x1, . . . , xj , yj+1, . . . , yK)Tkj
(xj) dλ(xj) · · ·Tkℓ+1

(xℓ+1) dλ(xℓ+1)

]
Tkℓ

(xℓ) dλ(xℓ)

= lim
N→∞

∫ 1

−1

N∑

kj=0

π−(j−ℓ)

j∏

i=ℓ+1

(
21N(ki)Tki

(yi)
)

[∫

[−1,1]j−ℓ

f(x1, . . . , xj , yj+1, . . . , yK)Tkj
(xj) dλ(xj) · · ·Tkℓ+1

(xℓ+1) dλ(xℓ+1)

]
Tkℓ

(xℓ) dλ(xℓ).

Use of the dominated convergence theorem is justified because for all N ∈ N0, Lemma 2.1 below
can be applied to

g : [−1, 1]j−ℓ → R : (xℓ+1, . . . , xj) 7→ f(x1, . . . , xj , yj+1, . . . , yK),

which implies that

∣∣∣∣
N∑

kj=0

π−(j−ℓ)

j∏

i=ℓ+1

(
21N(ki)Tki

(yi)
)

[∫

[−1,1]j−ℓ

f(x1, . . . , xj , yj+1, . . . , yK)Tkj
(xj) dλ(xj) · · ·Tkℓ+1

(xℓ+1) dλ(xℓ+1)

]
Tkℓ

(xℓ)

∣∣∣∣

≤
N∑

kj=0

π−(j−ℓ)

j∏

i=ℓ+1

(
21N(ki)|Tki

(yi)|
)

∣∣∣∣∣

∫

[−1,1]j−ℓ

f(x1, . . . , xj , yj+1, . . . , yK)Tkj
(xj) dλ(xj) · · ·Tkℓ+1

(xℓ+1) dλ(xℓ+1)

∣∣∣∣∣ |Tkℓ
(xℓ)|

≤

N∑

kj=0

π−(j−ℓ)

j∏

i=ℓ+1

21N(ki)

6

∣∣∣∣∣

∫

[−1,1]j−ℓ

f(x1, . . . , xj , yj+1, . . . , yK)Tkj
(xj) dλ(xj) · · ·Tkℓ+1

(xℓ+1) dλ(xℓ+1)

∣∣∣∣∣

=
N∑

kj=0

|g(kℓ+1,...,kj)| ≤

j∏

i=ℓ+1

21N(ki) max
z∈Ej−ℓ

ρ

|g(z)|ρ−(kℓ+1,...,kj) < 2j−ℓ ρ
ρ−1 max

z∈Eρ

|f(z)|,

where g(kℓ+1,...,kj) denotes a Chebyšev coefficient of g, analogous to fk defined in Equation (2.1).
We next estimate the size of the coefficients, which we later need to bound the NN error.

Lemma 2.1 Let K ∈ N, and let f : [−1, 1]K → R be a map which admits a holomorphic
complex extension to the isotropic Bernstein polyellipse Eρ ⊂ CK with ρ = (ρ, . . . , ρ) ∈ (1,∞)K

for some ρ > 1. Then, for every k ∈ NK
0

|fk| ≤ 2|k|0 max
z∈Eρ

|f(z)|ρ−k,
∑

k∈NK
0

|fk| ≤
(

2ρ
ρ−1

)K
max
z∈Eρ

|f(z)|. (2.2)

Proof. The Chebyšev coefficients of f satisfy (cf. e.g. [33, Equations (3.12) – (3.14)] and [29,
Theorem 3.8])

fk =2|k|0π−K

∫ 1

−1

· · ·

∫ 1

−1

f(x)Tk(x) dλ(x1) · · · dλ(xK) (2.3)

= 2|k|0(2π)−K

∫ π

−π

· · ·

∫ π

−π

f(cos(θ)) cos(k1θ1) dθ1 · · · cos(kKθK) dθK

=2|k|0(2πi)−K

∫

Γ1

· · ·

∫

Γ1

f
(

z1+z−1
1

2 , . . . ,
zK+z−1

K

2

)
(
z
k1
1 +z

−k1
1

2) dz1
z1
· · · (

z
kK
K

+z
−kK
K

2) dzK
zK

=2|k|0(2πi)−K

∫

Γ1

· · ·

∫

Γ1

f
(

z1+z−1
1

2 , . . . ,
zK+z−1

K

2

)
z−k1
1

dz1
z1
· · · z−kK

K
dzK
zK

,

where the last step follows by invariance of z+z−1

2 under the transformation z 7→ z−1, for
z ∈ C\{0}. By holomorphy of f , we can change the curve of integration from Γ1 to Γρ, so that

|fk| =

∣∣∣∣∣2
|k|0(2πi)−K

∫

Γρ

· · ·

∫

Γρ

f
(

z1+z−1
1

2 , . . . ,
zK+z−1

K

2

)
z−k dz1

z1
· · · dzK

zK

∣∣∣∣∣

≤ 2|k|0 max
z∈Eρ

|f(z)|(2π)−K

∣∣∣∣∣

∫

Γρ

· · ·

∫

Γρ

z−k dz1
z1
· · · dzK

zK

∣∣∣∣∣

≤ 2|k|0 max
z∈Eρ

|f(z)|ρ−k,

∑

k∈NK
0

|fk| ≤ 2K max
z∈Eρ

|f(z)|
(

ρ
ρ−1

)K
=
(

2ρ
ρ−1

)K
max
z∈Eρ

|f(z)|.

✷

2.2 Chebyšev Interpolation

Because in general the Chebyšev coefficients of f are not known explicitly, we next approximate
the coefficients and thus consider polynomial interpolation of f : We approximate f by a poly-
nomial whose coefficients with respect to the Chebyšev basis only depend on function values
of f in the tensor product Clenshaw–Curtis grid. For n ∈ N, we consider the approximation
f̂k;n of the Chebyšev coefficients, for k ∈ {0, . . . , n}K , obtained by applying an (n+ 1)K point

7

tensor product Gauss–Lobatto quadrature in the Clenshaw–Curtis points xn
j := cos(jπ/n) for

j ∈ {0, . . . , n}K to the integrals in (2.3)

wj :=
(

π
2n

)K K∏

ℓ=1

21{1,...,n−1}(jℓ), j ∈ {0, . . . , n}K ,

f̂k;n := 21S(n)(k)π−K
∑

j∈{0,...,n}K

wjf(cos(jπ/n)) cos(kjπ/n) (2.4)

= 21S(n)(k)(2n)−K
∑

j∈{0,...,2n−1}K

f(cos(jπ/n)) cos(kjπ/n)

= 21S(n)(k) IFFT
(
(f(xn

j))j∈{0,...,2n−1}K

)
k
,

where S(n) := {1, . . . , n−1} and kj = (k1j1, . . . , kKjK) ∈ NK
0 for j ∈ {0, . . . , 2n−1}K . In addi-

tion, IFFT denotes the inverse fast Fourier transform. Note that cos((2n− j)π/n) = cos(jπ/n)
for j = 1, . . . , n − 1, thus (f(xn

j))j∈{0,...,n}K are sufficient to determine (f(xn
j))j∈{0,...,2n−1}K .

In 21S(n)(k), the factor 2 is omitted for each kj = n, j = 1, . . . ,K, because of aliasing in the
coefficients of the Chebyšev interpolant (cf. [33, Chapter 4]).

The approximation

p̂f,n := ILobn [f] :=
∑

k∈{0,...,n}K

f̂k;nTk (2.5)

of f is in fact the Lagrange interpolant in the nodes (xn
j)j∈{0,...,n}K (cf. [29, Theorem 3.13] for

K = 1, which can be applied inductively). It is known that the Lebesgue constant of tensor
product Lagrange interpolation in these nodes satisfies

∥∥ILobn

∥∥
L∞,L∞ :=

∥∥ILobn

∥∥
L∞([−1,1]K),L∞([−1,1]K)

≤ (2π log(n+ 1) + 1)K

(cf. [29, Theorem 1.2] for K = 1 and the zeroes of Chebyšev polynomials as nodes, from which
the result for (xn

j)j∈{0,...,n}K and K = 1 follows with [10, Theorem 4, Equation (4.6)]). Using

Markov’s inequality, a bound on the Lebesgue constant with respect to the W 1,∞-norm can be
obtained as follows:

∥∥ILobn

∥∥
W 1,∞,W 1,∞ :=

∥∥ILobn

∥∥
W 1,∞([−1,1]K),W 1,∞([−1,1]K)

= sup
g∈W 1,∞([−1,1]K)\{0}

∥∥ILobn [g]
∥∥
W 1,∞([−1,1]K)

‖g‖W 1,∞([−1,1]K)

≤ sup
g∈W 1,∞([−1,1]K)\{0}

n2
∥∥ILobn [g]

∥∥
L∞([−1,1]K)

‖g‖W 1,∞([−1,1]K)

≤ sup
g∈W 1,∞([−1,1]K)\{0}

n2
∥∥ILobn

∥∥
L∞,L∞ ‖g‖L∞([−1,1]K)

‖g‖W 1,∞([−1,1]K)

≤n2
∥∥ILobn

∥∥
L∞,L∞ .

In the third step, we used that for all q ∈ Qn([−1, 1]
K)

K
max
i=1

∥∥∥ ∂
∂xi

q
∥∥∥
L∞([−1,1]K)

=
K

max
i=1

max
x1,...,xi−1,xi+1,...,xK∈[−1,1]

∥∥∥(∂
∂xi

q)(x1, . . . , xi−1, ·, xi+1, . . . , xK)
∥∥∥
L∞([−1,1])

≤
K

max
i=1

max
x1,...,xi−1,xi+1,...,xK∈[−1,1]

n2 ‖q(x1, . . . , xi−1, ·, xi+1, . . . , xK)‖L∞([−1,1])

=n2 ‖q‖L∞([−1,1]K) , (2.6)

8

where we applied Markov’s inequality to the univariate polynomial z 7→ q(x1, . . . , xi−1, z, xi+1, . . . , xK).
This computation holds in particular for polynomials q ∈ Qn([−1, 1]

K) which are themselves
derivatives of other polynomials in Qn([−1, 1]

K), hence the previous argument can be iterated
to obtain for all s ∈ N

∥∥ILobn

∥∥
W s,∞,W s,∞ ≤ n

2s
∥∥ILobn

∥∥
L∞,L∞ .

The arguments used above also prove the following, slightly stronger result:

∥∥ILobn

∥∥
L∞,W 1,∞ :=

∥∥ILobn

∥∥
L∞([−1,1]K),W 1,∞([−1,1]K)

= sup
g∈W 1,∞([−1,1]K)\{0}

∥∥ILobn [g]
∥∥
W 1,∞([−1,1]K)

‖g‖L∞([−1,1]K)

≤ n2
∥∥ILobn

∥∥
L∞,L∞ . (2.7)

Again, we get the analogous result for arbitrary s ∈ N by iterating (2.6) s times:

∥∥ILobn

∥∥
L∞,W s,∞ ≤ n

2s
∥∥ILobn

∥∥
L∞,L∞ .

2.3 Chebyšev Interpolation Based On Approximate Function Values

In the case that the function f is only accessible through a (possibly corrupted) numerical
approximation f̃ in the Chebyšev points (xn

j)j∈{0,...,n}K , a further approximation of the coeffi-

cients f̂k;n is made. The function values of f in Equation (2.4) are replaced by function values

of f̃ . For all k ∈ {0, . . . , n}K

f̃k;n := 21S(n)(k)π−K
∑

j∈{0,...,n}K

wj f̃(cos(jπ/n)) cos(kjπ/n) (2.8)

= 21S(n)(k)(2n)−K
∑

j∈{0,...,2n−1}K

f̃(cos(jπ/n)) cos(kjπ/n)

= 21S(n)(k) IFFT
(
(f̃(xn

j))j∈{0,...,2n−1}K

)

k
. (2.9)

We define the corresponding interpolant p̃f,n as

p̃f,n :=
∑

k∈{0,...,n}K

f̃k;nTk = ILobn [f̃]. (2.10)

Lemma 2.2 Let K ∈ N, and let f : [−1, 1]K → R be a map which admits a holomorphic
complex extension to the Bernstein polyellipse Eρ with ρ = (ρ, . . . , ρ) ∈ (1,∞)K for some ρ > 1.

We assume that an approximation f̃ of f is available, and an upper bound on ‖f−f̃‖L∞([−1,1]K).
Then, for every ρ′ ∈ (1, ρ) and every s ∈ N, there exists C ′(s, ρ, ρ′) > 0 such that

‖f − p̃f,n‖L∞([−1,1]K) ≤
(
1 +

∥∥ILobn

∥∥
L∞,L∞

)
K
(

2ρ
ρ−1

)K
max
z∈Eρ

|f(z)| ρ−n−1

+
∥∥ILobn

∥∥
L∞,L∞

∥∥∥f − f̃
∥∥∥
L∞([−1,1]K)

, (2.11)

‖f − p̃f,n‖W s,∞([−1,1]K) ≤
(
1 +

∥∥ILobn

∥∥
W s,∞,W s,∞

)
K
(

2C′ρ′

ρ′−1

)K
max
z∈Eρ

|f(z)| ρ′
−n−1

+
∥∥ILobn

∥∥
L∞,W s,∞

∥∥∥f − f̃
∥∥∥
L∞([−1,1]K)

. (2.12)

9

Proof. We can estimate the error as follows. For all q ∈ Qn we use q = ILobn [q] and obtain

‖f − p̃f,n‖L∞([−1,1]K)

≤ ‖f − q‖L∞([−1,1]K) + ‖q − p̂f,n‖L∞([−1,1]K) + ‖p̂f,n − p̃f,n‖L∞([−1,1]K)

= ‖f − q‖L∞([−1,1]K) +
∥∥ILobn [q − f]

∥∥
L∞([−1,1]K)

+
∥∥∥ILobn [f − f̃]

∥∥∥
L∞([−1,1]K)

≤ ‖f − q‖L∞([−1,1]K) +
∥∥ILobn

∥∥
L∞,L∞ ‖f − q‖L∞([−1,1]K)

+
∥∥ILobn

∥∥
L∞,L∞

∥∥∥f − f̃
∥∥∥
L∞([−1,1]K)

. (2.13)

By the same argument it follows that

‖f − p̃f,n‖W s,∞([−1,1]K) ≤ ‖f − q‖W s,∞([−1,1]K) +
∥∥ILobn

∥∥
W s,∞,W s,∞ ‖f − q‖W s,∞([−1,1]K)

+
∥∥ILobn

∥∥
L∞,W s,∞

∥∥∥f − f̃
∥∥∥
L∞([−1,1]K)

. (2.14)

Now, we can take the infimum over q ∈ Qn and replace ‖f − q‖ by the error of best poly-
nomial approximation. Next, we discuss two upper bounds on the error of best polynomial
approximation, which are sufficient for our purposes.

In case f is not only holomorphic on Eρ, but also on the polydisk Bρ′ :=×K

j=1
{zj ∈ C :

|zj | ≤ ρ′}, with ρ′ := (ρ′, . . . , ρ′) ∈ (1,∞)K for some ρ′ ∈ (1,∞), an upper bound on the
error of best approximation follows by taking q ∈ Qn to be the Taylor approximation of f in
0 and using a bound on the error of the Taylor approximation, e.g. [15, Theorem 5.1]. It then
follows that ‖f − q‖L∞([−1,1]K) ≤ C(ρ′, f)ρ′

−n
. Using that ∂

∂xj
q is the Taylor approximation

of ∂
∂xj

f for j = 1, . . . ,K, the same bound on the error of the Taylor approximation gives that

‖f − q‖W 1,∞([−1,1]K) ≤ C(ρ
′, f)ρ′

−n+1
≤ C(ρ′, f)ρ′

−n
, where the constant was increased in the

last step. Applying this argument s times gives a bound of the W s,∞-error.
If such a stronger condition of holomorphy on a polydisk does not hold, we can take q to

be a truncation of the Chebyšev expansion: q :=
∑

k∈{0,...,n}K fkTk. We obtain a bound on

the truncation error using the bound (2.2) on the Chebyšev coefficients. We use as notation
Λc
n := NK

0 \{0, . . . , n}
K and k(j) := (0, . . . , 0, n + 1, 0, . . . , 0) ∈ NK

0 for j = 1, . . . ,K, with the

nonzero component in the j’th position. Using that Λc
n =

⋃K
j=1{k

(j) + k : k ∈ NK
0 }, and the

fact that ‖Tk‖L∞([−1,1]K) = 1 for all k ∈ NK
0 , it follows that

‖f − q‖L∞([−1,1]K) ≤
∑

Λc
n

|fk| ‖Tk‖L∞([−1,1]K) ≤

K∑

j=1

∑

k∈NK
0

∣∣fk(j)+k

∣∣

≤

K∑

j=1

∑

k∈NK
0

2K max
z∈Eρ

|f(z)|ρ−k(j)−k ≤ K
(

2ρ
ρ−1

)K
max
z∈Eρ

|f(z)| ρ−n−1.

For all s ∈ N, bounds on the W s,∞-error follow similarly, using that for all ρ′ ∈ (1, ρ) there

exists C ′(s, ρ, ρ′) > 0 such that ρ−kk2s ≤ C ′ρ′
−k

for all k ∈ N0. By the Markov inequality, the
definition of the ‖ ◦ ‖W s,∞ -norm (cf. Sec. 1.3), and the fact that ‖Tk‖L∞([−1,1]K) = 1 for all

k ∈ NK
0 , we get

‖Tk‖W s,∞([−1,1]K) = max
i∈NK

0 :|i|≤s
‖∂ix

K∏

ℓ=1

Tkℓ
(xℓ)‖L∞([−1,1]K)

= max
i∈NK

0 :|i|≤s

K∏

ℓ=1

‖∂iℓxℓ
Tkℓ

(·)‖L∞([−1,1])

10

≤ max
i∈NK

0 :|i|≤s
k2i ≤

K∏

ℓ=1

max{1, k2sℓ }.

We obtain that for all ρ′ ∈ (1, ρ)

‖f − q‖W s,∞([−1,1]K) ≤
∑

Λc
n

|fk| ‖Tk‖W s,∞([−1,1]K) ≤

K∑

j=1

∑

k∈NK
0

∣∣fk(j)+k

∣∣
K∏

ℓ=1

max{1, (k(j) + k)2sℓ }

≤

K∑

j=1

∑

k∈NK
0

2K max
z∈Eρ

|f(z)|ρ−k(j)−k

K∏

ℓ=1

max{1, (k(j) + k)2sℓ }

≤K2K max
z∈Eρ

|f(z)|

(
∞∑

k=0

max{1, k2s}ρ−k

)K−1(∞∑

k=n+1

max{1, k2s}ρ−k

)

≤K2K max
z∈Eρ

|f(z)|

(
∞∑

k=0

C ′ρ′
−k

)K−1(∞∑

k=n+1

C ′ρ′
−k

)

≤K
(

2C′ρ′

ρ′−1

)K
max
z∈Eρ

|f(z)| ρ′
−n−1

.

With (2.13) and (2.14) we obtain

‖f − p̃f,n‖L∞([−1,1]K) ≤ ‖f − q‖L∞([−1,1]K) +
∥∥ILobn

∥∥
L∞,L∞ ‖f − q‖L∞([−1,1]K)

+
∥∥ILobn

∥∥
L∞,L∞

∥∥∥f − f̃
∥∥∥
L∞([−1,1]K)

≤
(
1 +

∥∥ILobn

∥∥
L∞,L∞

)
K
(

2ρ
ρ−1

)K
max
z∈Eρ

|f(z)| ρ−n−1

+
∥∥ILobn

∥∥
L∞,L∞

∥∥∥f − f̃
∥∥∥
L∞([−1,1]K)

,

‖f − p̃f,n‖W s,∞([−1,1]K) ≤ ‖f − q‖W s,∞([−1,1]K) +
∥∥ILobn

∥∥
W s,∞,W s,∞ ‖f − q‖W s,∞([−1,1]K)

+
∥∥ILobn

∥∥
L∞,W s,∞

∥∥∥f − f̃
∥∥∥
L∞([−1,1]K)

≤
(
1 +

∥∥ILobn

∥∥
W s,∞,W s,∞

)
K
(

2C′ρ′

ρ′−1

)K
max
z∈Eρ

|f(z)| ρ′
−n−1

+
∥∥ILobn

∥∥
L∞,W s,∞

∥∥∥f − f̃
∥∥∥
L∞([−1,1]K)

.

✷

Remark 2.3 The estimates in Equations (2.13) and (2.14) apply more generally also for func-
tions of finite regularity, using Jackson-type estimates on the error of best polynomial approxi-
mation. Error estimates for interpolation of functions of finite regularity on a Clenshaw–Curtis
grid could also be based on other arguments. For example, see the proof of [23, Theorem 2.1],
which uses such a result to show a lower bound on the convergence rate of NNs with a smooth
activation function.

The previous error bound leads to the following bound on the approximate Chebyšev coef-
ficients:

Corollary 2.4 Let K ∈ N, and let f : [−1, 1]K → R be a map which admits a holomorphic
complex extension to the Bernstein polyellipse Eρ with ρ = (ρ, . . . , ρ) ∈ (1,∞)K for some ρ > 1.

11

We assume that an approximation f̃ of f is available, and an upper bound on ‖f−f̃‖L∞([−1,1]K).
Then,

∑

k∈{0,...,n}K

∣∣∣f̃k;n
∣∣∣ ≤C(K, ρ)max

z∈Eρ

|f(z)| + (n+ 1)KπK
∥∥ILobn

∥∥
L∞,L∞

∥∥∥f − f̃
∥∥∥
L∞([−1,1]K)

.

(2.15)

Proof. We compute

∣∣∣fk − f̃k;n
∣∣∣ ≤

∣∣∣∣
∫ 1

−1

· · ·

∫ 1

−1

(f − p̃f,n)Tk dλ(x1) · · · dλ(xK)

∣∣∣∣

≤ ‖f − p̃f,n‖L∞([−1,1]K) ‖Tk‖L∞([−1,1]K)

∣∣∣∣
∫ 1

−1

· · ·

∫ 1

−1

dλ(x1) · · · dλ(xK)

∣∣∣∣

=πK ‖f − p̃f,n‖L∞([−1,1]K) ,
∑

k∈{0,...,n}K

∣∣∣f̃k;n
∣∣∣ ≤

∑

k∈NK
0

|fk|+
∑

k∈{0,...,n}K

∣∣∣fk − f̃k;n
∣∣∣

≤
(

2ρ
ρ−1

)K
max
z∈Eρ

|f(z)|+ (n+ 1)KπK ‖f − p̃f,n‖L∞([−1,1]K)

≤
(

2ρ
ρ−1

)K
max
z∈Eρ

|f(z)|
[
1 +K(n+ 1)KπK

(
1 +

∥∥ILobn

∥∥
L∞,L∞

)
ρ−n−1

]

+ (n+ 1)KπK
∥∥ILobn

∥∥
L∞,L∞

∥∥∥f − f̃
∥∥∥
L∞([−1,1]K)

.

Here,
(

2ρ
ρ−1

)K [
1 +K(n+ 1)KπK

(
1 +

∥∥ILobn

∥∥
L∞,L∞

)
ρ−n−1

]
is bounded by a constant C(K, ρ) >

0 independent of n. ✷

Remark 2.5 For all f̃ , g̃ ∈ C0([−1, 1]K), it follows from (2.8) and the positivity of the quadra-
ture weights wj , which are defined just above (2.4) and sum up to πK , that for all n ∈ N and
k ∈ {0, . . . , n}K

∣∣∣f̃k;n − g̃k;n
∣∣∣ ≤ 21S(n)(k)

∥∥∥f̃ − g̃
∥∥∥
L∞([−1,1]K)

≤ 2K
∥∥∥f̃ − g̃

∥∥∥
L∞([−1,1]K)

.

3 Constructive Deep Neural Network Approximation of

Multivariate Holomorphic Functions

As we showed in [26] by (straightforward) tensorization of the univariate results, multivariate
holomorphic maps f : [−1, 1]K → R admit DNN surrogates which approximate f to any
accuracy ε > 0 with NN size scaling as O(| log(ε)|K+1) (with the constant implied in O(·) still
depending on the input dimension K).

In the present section, we shall recapitulate this result, with a new proof via multivariate,
tensorized Chebyšev expansions.

3.1 Definitions and Architecture of Deep ReLU NNs

We consider feed-forward deep neural networks. These DNNs result from repeated application
of affine mappings and a specific non-linear map. This nonlinearity is specified via the so-called
activation function σ : R → R of the DNN. Here, we take σ(x) = max{0, x}, x ∈ R, to be
the rectified linear unit (ReLU) activation function. The architecture of the DNN comprises
a fixed number of hidden layers L ∈ N, numbers Nℓ ∈ N of computation nodes in layer ℓ ∈

12

{1, . . . , L+1}, the map Φ : RN0 → RNL+1 is said to be realized by a feedforward neural network,
if for certain weights Aℓ

i,j ∈ R, and biases bℓj ∈ R it holds for all x = (xi)
N0
i=1

w1
j = σ

(
N0∑

i=1

A1
i,jxi + b1j

)
, j ∈ {1, . . . , N1} ,

and

wℓ+1
j = σ

(
Nℓ∑

i=1

Aℓ+1
i,j w

ℓ
i + bℓ+1

j

)
, ℓ ∈ {1, . . . , L− 1}, j ∈ {1, . . . , Nℓ+1} ,

and finally

Φ(x) = (wL+1
j)

NL+1

j=1 =

(
NL∑

i=1

AL+1
i,j wL

i + bL+1
j

)NL+1

j=1

.

In this case N0 is the dimension of the DNN input, and NL+1 is the dimension of the output.
The acronym NN for neural network shall also be used. The number of hidden layers L of a DNN
is referred to as its depth, denoted by depth(Φ). Also, we define the total number of nonzero
weights and biases as the size of the DNN, i.e. size(Φ) := |{(i, j, ℓ) : Aℓ

i,j 6= 0}|+ |{(j, ℓ) : bℓj 6=
0}|.

We do emphasize that different DNN architectures, weights and biases can realize the same
function. In this paper, we focus on a constructive procedure to find weights and biases such
that the resulting DNN as a function approximates a given holomorphic map to a specified
accuracy.

To construct such networks from smaller subnetworks, we use NN concatenation from [27,
Remark 2.6], parallelization from [27, Definition 2.7] and [11, Setting 5.2], and networks emu-
lating the identity from [27, Lemma 2.3], which we all recall below.

Let f and g be two NNs with the same depth L ∈ N0 and the same input dimension n ∈ N.
Denote by mf the output dimension of f and by mg the output dimension of g. There exists a
neural network (f, g), called parallelization of f and g, which in parallel emulates f and g, i.e.

(f, g) : Rn → Rmf × Rmg : x 7→ (f(x), g(x)),

and it satisfies depth((f, g)) = L and size((f, g)) = size(f) + size(g) ([27, Definition 2.7]).
Let f and g be ReLU NNs, such that the number of nodes in the output layer of g equals

the number of nodes in the input layer of f . Denote by n the number of nodes in the input
layer of g, and by m the number of nodes in the output layer of f . There exists a NN f ◦ g,
called sparse concatenation of the NNs f and g, which we will refer to simply as concatenation
of f and g, which realizes the composition of f and g, i.e.

f ◦ g : Rn → Rm : x 7→ f(g(x)). (3.1)

It satisfies depth(f ◦ g) = depth(f) + 1 + depth(g) and size(f ◦ g) ≤ 2 size(f) + 2 size(g) ([27,
Remark 2.6]).

Next, let f and g be two NNs with the same depth L ∈ N0, whose input dimensions nf and
ng may be different, and whose output dimensions we will denote by mf and mg, respectively.
There exists a NN (f, g)d, called full parallelization of networks with distinct inputs of f and g,
which in parallel emulates f and g, i.e.

(f, g)d : Rnf × Rng → Rmf × Rmg : (x, x̃) 7→ (f(x), g(x̃)).

It satisfies depth((f, g)d) = L and size((f, g)d) = size(f) + size(g) ([11, Setting 5.2]).
Finally, for all n ∈ N and L ∈ N0 there exists an identity network ΦId

n,L of depth L which

emulates the identity map IdRn : Rn → Rn : x 7→ x. It satisfies size(ΦId
n,L) ≤ 2n(L + 1) ([27,

Lemma 2.3]).

13

3.2 ReLU NN Approximations of Chebyšev Polynomials

We construct the ReLU NN approximation of f as a reapproximation of p̃f,n defined in (2.10).
The coefficients of p̃f,n can be computed with (2.9). The polynomial approximation p̃f,n is a
tensor product of univariate Chebyšev polynomials. We use the ReLU NN approximation of
univariate Chebyšev polynomials from [24], and for the ReLU NN approximation of products
with multiple arguments, we recall [26, Proposition 2.6], based on [31, Proposition 3.1].

Lemma 3.1 ([24]) There exists C > 0 such that for all n ∈ N there exist ReLU NNs
{
ΦCheb,n

δ

}

δ∈(0,1)

with input dimension one and output dimension n which satisfy

∥∥∥Tℓ −
(
ΦCheb,n

δ

)

ℓ

∥∥∥
W 1,∞([−1,1])

≤ δ, ℓ = 1, . . . , n,

depth
(
ΦCheb,n

δ

)
≤C(1 + log(n)) log(1/δ) + C(1 + log(n))3,

size
(
ΦCheb,n

δ

)
≤Cn log(1/δ) + Cn(1 + log(n)).

The construction of these networks is described in Appendix A.

Proposition 3.2 ([26, Proposition 2.6]) For any δ ∈ (0, 1), n ∈ N and M ≥ 1 there exists

a ReLU NN
∏̃n

δ,M : [−M,M]n → R such that

sup
(xi)ni=1∈[−M,M]n

∣∣∣∣∣∣

n∏

j=1

xj −
∏̃n

δ,M
(x1, . . . , xn)

∣∣∣∣∣∣
≤ δ, (3.2)

ess sup
(xi)ni=1∈[−M,M]n

sup
i=1,...,n

∣∣∣∣∣∣
∂

∂xi

n∏

j=1

xj −
∂

∂xi

∏̃n

δ,M
(x1, . . . , xn)

∣∣∣∣∣∣
≤ δ. (3.3)

There exists a constant C independent of δ ∈ (0, 1), n ∈ N and M ≥ 1 such that

size

(∏̃n

δ,M

)
≤ C(1 + n log(nMn/δ)) and depth

(∏̃n

δ,M

)
≤ C(1 + log(n) log(nMn/δ)).

(3.4)

Similar to [26, Proposition 2.13], there holds the following result on deep ReLU NN emulation
rates for Chebyšev polynomials, which is of independent interest. As compared to the results
in [26] and as observed in [32], the functional structure of Chebyšev polynomials affords gains
in DNN depth and size bounds.

Proposition 3.3 There exists a constant C > 0, such that for every K ∈ N, every finite subset
Λ ⊂ NK

0 and every δ ∈ (0, 1) there exists a ReLU NN ΦΛ,δ with input dimension K and output

dimension |Λ|, such that the outputs of ΦΛ,δ, which we denote by {T̃k,δ}k∈Λ, satisfy

∀k ∈ Λ :
∥∥∥Tk − T̃k,δ

∥∥∥
W 1,∞([−1,1]K)

≤ δ,

depth(ΦΛ,δ) ≤C(1 + logm∞(Λ))3 + C(1 + log(K) + logm∞(Λ)) log(1/δ) + CK log(m∞(Λ))

+ CK logK,

size(ΦΛ,δ) ≤CK|Λ| log(m∞(Λ)) + CK|Λ| log(1/δ) + CK2|Λ|

+ CKm∞(Λ) log(m∞(Λ)) + CKm∞(Λ) log(1/δ) + CK2m∞(Λ).

14

Proof. This proof consists of three steps. In the first step, we define the network. In the
second step, we estimate the error. In the third step, we give bounds on the network depth and
size.

Step 1. We construct the network ΦΛ,δ as the concatenation of two subnetworks:

ΦΛ,δ := Φ
(1)
Λ,δ ◦ Φ

(2)
Λ,δ.

See figure 3.1 for a sketch of the network structure.

For β = 1
2δ(1 + δ)−KK−1(m∞(Λ)2 + 1)−1 ≤ δ, the network Φ

(2)
Λ,δ in parallel approximates

univariate Chebyšev polynomials up to degree m∞(Λ), in all K input variables, and is based
on Lemma 3.1: Denoting the input of ΦΛ,δ by y = (y1, . . . , yK) ∈ [−1, 1]K ,

Φ
(2)
Λ,δ :=

(
Φ

Cheb,m∞(Λ)
β , . . . ,Φ

Cheb,m∞(Λ)
β

)

d
,

which contains K copies of Φ
Cheb,m∞(Λ)
β , the j’th of which receives yj as input, for j = 1, . . . ,K.

For β′ = 1
2δ(m∞(Λ)2 + 1)−1, the network Φ

(1)
Λ,δ computes tensor products of univariate

Chebyšev polynomials using networks from Proposition 3.2. Denoting the output of Φ
(2)
Λ,δ by{

T̃k,β(yj)
}

j=1,...,K
k=1,...,m∞(Λ)

, it holds that

Φ
(1)
Λ,δ ◦ Φ

(2)
Λ,δ(y1, . . . , yK) =

({∏̃K

β′,1+δ

(
T̃k1,β(y1), . . . , T̃kK ,β(yK)

)}

k∈Λ

)
,

where, in case kj = 0, the factor T̃0,β ≡ 1 is implemented by a bias in the first layer of
∏̃K

β′,1+δ.
We used that

∥∥∥T̃kj ,β

∥∥∥
L∞([−1,1])

≤
∥∥Tkj

∥∥
L∞([−1,1])

+
∥∥∥Tkj

− T̃kj ,β

∥∥∥
L∞([−1,1])

≤ 1 + β ≤ 1 + δ ≤ 2,

so that {T̃kj ,β(yj)}
K
j=1 can be used as inputs of

∏̃K

β′,1+δ.
Step 2. The error can be estimated as follows:

sup
y∈[−1,1]K

∣∣∣Tk(y)− T̃k,δ(y)
∣∣∣

≤ sup
y∈[−1,1]K

∣∣∣∣∣∣
Tk(y)−

K∏

j=1

T̃kj ,β(yj)

∣∣∣∣∣∣

+ sup
y∈[−1,1]K

∣∣∣∣∣∣

K∏

j=1

T̃kj ,β(yj)−
∏̃K

β′,1+δ

({
T̃kj ,β(yj)

}K

j=1

)∣∣∣∣∣∣

≤ sup
y∈[−1,1]K

K∑

i=1

∣∣∣∣∣∣

∏

j=1,...,i−1

T̃kj ,β(yj)

∣∣∣∣∣∣
·
∣∣∣Tki

(yi)− T̃ki,β(yi)
∣∣∣ ·

∣∣∣∣∣∣

∏

j=i+1,...,K

Tkj
(yj)

∣∣∣∣∣∣
+ β′

≤

K∑

i=1

(1 + δ)i−1β + β′ ≤ K(1 + δ)Kβ + β′ ≤ δ.

For the estimate on the error in the derivative, we consider only the derivative with respect to
y1. The derivatives with respect to the other inputs satisfy analogous bounds. Using that
∣∣∣T̃kj ,β

∣∣∣
W 1,∞([−1,1])

≤
∣∣Tkj

∣∣
W 1,∞([−1,1])

+
∣∣∣Tkj
− T̃kj ,β

∣∣∣
W 1,∞([−1,1])

≤ m∞(Λ)2 + β ≤ m∞(Λ)2 + 1,

15

Figure 3.1: Sketch of ΦΛ,δ for Λ = {0, . . . , n}K , with n ∈ N, K = 2, and δ ∈ (0, 1). The

subnetwork ΦCheb,n
β from Lemma 3.1 approximates univariate Chebyšev polynomials of degrees

1, . . . , n, which are then multiplied by the networks
∏̃2

β′,1+δ from Proposition 3.2 to obtain
approximations of tensor product Chebyšev polynomials. The Chebyšev polynomial of degree
0 is identically equal to 1 and implemented by a bias in the first layer of the product networks
∏̃2

β′,1+δ.

we obtain

ess sup
y∈[−1,1]K

∣∣∣∣
∂

∂y1
Tk(y)−

∂

∂y1
T̃k,δ(y)

∣∣∣∣

≤ ess sup
y∈[−1,1]K

∣∣∣∣∣∣
∂

∂y1
Tk(y)−

∂

∂y1

K∏

j=1

T̃kj ,β(yj)

∣∣∣∣∣∣

+ ess sup
y∈[−1,1]K

∣∣∣∣∣∣
∂

∂y1

K∏

j=1

T̃kj ,β(yj)−
∂

∂y1

∏̃K

β′,1+δ

({
T̃kj ,β(yj)

}K

j=1

)∣∣∣∣∣∣

≤ ess sup
y∈[−1,1]K

∣∣∣∣
∂

∂y1
Tk1(y1)−

∂

∂y1
T̃k1,β(y1)

∣∣∣∣ ·

∣∣∣∣∣∣

∏

j=2,...,K

Tkj
(yj)

∣∣∣∣∣∣

16

+ ess sup
y∈[−1,1]K

∑

i=2,...,K

∣∣∣∣
∂

∂y1
T̃k1,β(y1)

∣∣∣∣ ·

∣∣∣∣∣∣

∏

j=2,...,i−1

T̃kj ,β(yj)

∣∣∣∣∣∣
·
∣∣∣Tki

(yi)− T̃ki,β(yi)
∣∣∣ ·

∣∣∣∣∣∣

∏

j=i+1,...,K

Tkj
(yj)

∣∣∣∣∣∣

+ ess sup
y∈[−1,1]K

∣∣∣∣∣∣

∏

j=2,...,K

T̃kj ,β(yj)−

(
∂

∂x1

∏̃K

β′,1+δ

)({
T̃kj ,β(yj)

}K

j=1

)∣∣∣∣∣∣
·

∣∣∣∣
∂

∂y1
T̃k1,β(y1)

∣∣∣∣

≤β +

K∑

i=2

(m∞(Λ)2 + 1)(1 + δ)i−2β + β′(m∞(Λ)2 + 1)

≤K(1 + δ)Kβ(m∞(Λ)2 + 1) + β′(m∞(Λ)2 + 1)

≤ δ
2 + δ

2 ≤ δ,

where ∂
∂x1

∏̃K

β′,1+δ denotes the (weak) derivative of
∏̃K

β′,1+δ : [−1− δ, 1 + δ]K → R with respect
to its first argument, cf. Proposition 3.2.

Step 3. As a bound on the network depth and size we obtain, using log(1 + δ) ≤ 1 in the
last step,

depth(ΦΛ,δ) ≤ depth
(
Φ

(1)
Λ,δ

)
+ 1 + depth

(
Φ

(2)
Λ,δ

)

≤ depth

(∏̃K

β′,1+δ

)
+ 1 + depth

(
Φ

Cheb,m∞(Λ)
β

)

≤C(1 + log(K) log(K(1 + δ)K/β′)) + 1

+ C(1 + logm∞(Λ)) log(1/β) + C(1 + logm∞(Λ))3

≤C
(
log(K)2 + log(K)K log(1 + δ) + log(K) log(m∞(Λ)) + log(K) log(1/δ)

)

+ C
(
(1 + logm∞(Λ))2 + (log(K) +K log(1 + δ))(1 + logm∞(Λ))

+ (1 + logm∞(Λ)) log(1/δ)
)
+ C(1 + logm∞(Λ))3

≤C(1 + logm∞(Λ))3 + C(1 + log(K) + logm∞(Λ)) log(1/δ) + CK log(m∞(Λ))

+ CK logK,

size(ΦΛ,δ) ≤C
[
size

(
Φ

(1)
Λ,δ

)
+ size

(
Φ

(2)
Λ,δ

)]

≤C

[
|Λ| size

(∏̃K

β′,1+δ

)
+K size

(
Φ

Cheb,m∞(Λ)
β

)]

≤C
[
|Λ|
(
1 +K log(K(1 + δ)K/β′)

)
+K

(
m∞(Λ) log(1/β)

+m∞(Λ)(1 + logm∞(Λ))
)]

≤C
[
|Λ|
(
K log(K) +K2 log(1 + δ) +K log(m∞(Λ)) +K log(1/δ)

)

+K
(
m∞(Λ) log(m∞(Λ)) +m∞(Λ) log(1/δ) + (log(K) +K log(1 + δ))m∞(Λ)

+m∞(Λ)(1 + logm∞(Λ))
)]

≤C
[
K|Λ| log(m∞(Λ)) +K|Λ| log(1/δ) +K2|Λ|+Km∞(Λ) log(m∞(Λ))

+Km∞(Λ) log(1/δ) +K2m∞(Λ)
]
.

This finishes the proof. ✷

Remark 3.4 For δ ≤ exp(1/K)− 1 it holds K log(1 + δ) ≤ 1, so that the network depth is of
the order log(K)2 and the size of the order K log(K).

17

3.3 Construction of ReLU NN Approximations of Multivariate Holo-

morphic Functions

Proposition 3.5 Let K ∈ N, and let f : [−1, 1]K → R be a map which admits a holomorphic
complex extension to the Bernstein polyellipse Eρ with ρ = (ρ, . . . , ρ) ∈ (1,∞)K for some ρ > 1.

We assume that an approximation f̃ of f is available, and an upper bound on ‖f−f̃‖L∞([−1,1]K).

Then, for all n ∈ N there exists a ReLU NN Φf̃
n with input dimension K and output dimen-

sion one such that for all ρ′ ∈ (1, ρ), there exists a constant C > 0 depending on K, ρ and ρ′

and a constant c > 0 depending on ρ, but not on K and ρ′, such that

∥∥∥f − Φf̃
n

∥∥∥
L∞([−1,1]K)

≤C

(
max
z∈Eρ

|f(z)| +
∥∥∥f − f̃

∥∥∥
L∞([−1,1]K)

)
ρ′

−n

+
(
2
π log(n+ 1) + 1

)K ∥∥∥f − f̃
∥∥∥
L∞([−1,1]K)

,

∥∥∥f − Φf̃
n

∥∥∥
W 1,∞([−1,1]K)

≤C

(
max
z∈Eρ

|f(z)| +
∥∥∥f − f̃

∥∥∥
L∞([−1,1]K)

)
ρ′

−n

+ n2
(
2
π log(n+ 1) + 1

)K ∥∥∥f − f̃
∥∥∥
L∞([−1,1]K)

,

depth
(
Φf̃

n

)
≤ cKn(1 + log(Kn)), size

(
Φf̃

n

)
≤ cK2(n+ 1)K+1.

The NN weights and biases only depend on f through {f̃(xn
j)}j∈{0,...,n}K , where xn

j = cos(jπ/n).

This means that for C as in Proposition 3.5 and for some b > 0 depending on ρ and ρ′, but
not on K, that for all n ∈ N holds

∥∥∥f − Φf̃
n

∥∥∥
W 1,∞([−1,1]K)

≤C

(
max
z∈Eρ

|f(z)| +
∥∥∥f − f̃

∥∥∥
L∞([−1,1]K)

)
exp

(
−b
(
size

(
Φf̃

n

))1/(K+1)
)

+ n2
(
2
π log(n+ 1) + 1

)K ∥∥∥f − f̃
∥∥∥
L∞([−1,1]K)

. (3.5)

The L∞-error satisfies the same estimate, even without the factor n2 in the second term. Equa-
tion (3.5) follows from the error estimate in Proposition 3.5 and from the following estimate,
where we assume, without loss of generality, that c ≥ 1:

log(ρ′)n ≥ log(ρ′)c−1/(K+1)K−2/(K+1)
(
size

(
Φf̃

n

))1/(K+1)

≥ log(ρ′)c−1c′
(
size

(
Φf̃

n

))1/(K+1)

=: b
(
size

(
Φf̃

n

))1/(K+1)

.

We also used the existence of c′ > 0 such that x−2/(x+1) = exp(−2 log(x)/(x + 1)) ≥ c′ for all
x ∈ [1,∞).

Proof of Proposition 3.5. We consider the approximation p̃f,n of f from (2.10). For the
ReLU NN approximation of tensor product Chebyšev polynomials, we apply Proposition 3.3
with Λ = {0, . . . , n}K , |Λ| = (n+ 1)K , m∞(Λ) = n and δ = ρ−n(n+ 1)−K .

We write k(ℓ) for the element of Λ satisfying (ΦΛ,δ)ℓ = T̃k(ℓ),δ (the latter is defined in

Proposition 3.3). With that notation, we define A ∈ R1×|Λ| by A1,ℓ = f̃k(ℓ);n for ℓ = 1, . . . , |Λ|.
With b := [0] ∈ R1, we define

Φf̃
n := ((A, b)) ◦ ΦΛ,δ

18

and observe that depth(((A, b))) = 0 and size(((A, b))) ≤ |Λ|. Its realization satisfies for some
C > 0 depending on K and ρ

Φf̃
n =

∑

k∈Λ

f̃k;nT̃k,δ,

∥∥∥p̃f,n − Φf̃
n

∥∥∥
W 1,∞([−1,1]K)

≤
∑

k∈Λ

|f̃k;n|
∥∥∥Tk − T̃k,δ

∥∥∥
W 1,∞([−1,1]K)

≤ δ
∑

k∈Λ

|f̃k;n|

≤ δC max
z∈Eρ

|f(z)| + δ(n+ 1)KπK
∥∥ILobn

∥∥
L∞,L∞

∥∥∥f − f̃
∥∥∥
L∞([−1,1]K)

≤Cρ−n

(
max
z∈Eρ

|f(z)| +
∥∥ILobn

∥∥
L∞,L∞

∥∥∥f − f̃
∥∥∥
L∞([−1,1]K)

)
, (3.6)

where we used the bound (2.15) on the sum of the coefficients. With Lemma 2.2, for some
C > 0 depending on K and ρ, it further follows that

∥∥∥f − Φf̃
n

∥∥∥
L∞([−1,1]K)

≤ ‖f − p̃f,n‖L∞([−1,1]K) +
∥∥∥p̃f,n − Φf̃

n

∥∥∥
L∞([−1,1]K)

≤
(
1 +

∥∥ILobn

∥∥
L∞,L∞

)
K
(

2ρ
ρ−1

)K
max
z∈Eρ

|f(z)| ρ−n−1

+
∥∥ILobn

∥∥
L∞,L∞

∥∥∥f − f̃
∥∥∥
L∞([−1,1]K)

+ Cρ−n

(
max
z∈Eρ

|f(z)| +
∥∥ILobn

∥∥
L∞,L∞

∥∥∥f − f̃
∥∥∥
L∞([−1,1]K)

)

≤C

(
max
z∈Eρ

|f(z)| +
∥∥∥f − f̃

∥∥∥
L∞([−1,1]K)

)∥∥ILobn

∥∥
L∞,L∞ ρ−n

+
∥∥ILobn

∥∥
L∞,L∞

∥∥∥f − f̃
∥∥∥
L∞([−1,1]K)

.

For all ρ′ ∈ (1, ρ) there exists a constant C depending on ρ, ρ′ andK such that
∥∥ILobn

∥∥
L∞,L∞ ρ−n ≤

(2π log(n+1)+1)Kρ−n ≤ Cρ′
−n

for all n ∈ N, resulting in the error bound stated in the propo-
sition. Similarly, for every ρ′ ∈ (1, ρ) and with C ′(ρ, ρ′) > 0 as in Lemma 2.2, with Equation
(3.6) it follows that there exists C(K, ρ, ρ′) > 0 such that

∥∥∥f − Φf̃
n

∥∥∥
W 1,∞([−1,1]K)

≤ ‖f − p̃f,n‖W 1,∞([−1,1]K) +
∥∥∥p̃f,n − Φf̃

n

∥∥∥
W 1,∞([−1,1]K)

≤
(
1 +

∥∥ILobn

∥∥
W 1,∞,W 1,∞

)
K
(

2C′ρ′

ρ′−1

)K
max
z∈Eρ

|f(z)| ρ′
−n−1

+
∥∥ILobn

∥∥
L∞,W 1,∞

∥∥∥f − f̃
∥∥∥
L∞([−1,1]K)

+ Cρ−n

(
max
z∈Eρ

|f(z)| +
∥∥ILobn

∥∥
L∞,L∞

∥∥∥f − f̃
∥∥∥
L∞([−1,1]K)

)

≤Cρ′
−n ∥∥ILobn

∥∥
W 1,∞,W 1,∞ max

z∈Eρ

|f(z)| + Cρ−n
∥∥ILobn

∥∥
L∞,L∞

∥∥∥f − f̃
∥∥∥
L∞([−1,1]K)

+
∥∥ILobn

∥∥
L∞,W 1,∞

∥∥∥f − f̃
∥∥∥
L∞([−1,1]K)

.

Reasoning as for the bound on the L∞-error, for all ρ′′ ∈ (1, ρ′) there exists a constant C > 0 de-
pending on K, ρ, ρ′ and ρ′′ such that

∥∥ILobn

∥∥
L∞,L∞ ρ−n ≤ Cρ′′

−n
and

∥∥ILobn

∥∥
W 1,∞,W 1,∞ ρ′

−n
≤

19

n2(2π log(n) + 1)Kρ′
−n
≤ Cρ′′

−n
for all n ∈ N. Using these estimates and Equation (2.7), the

bound in the proposition is obtained when we write ρ′ instead of ρ′′. To bound NN depth and
size, we observe that there is c > 0 depending on ρ, but not on K, such that for every n ∈ N,

depth
(
Φf̃

n

)
≤ depth(((A, b))) + 1 + depth(ΦΛ,δ)

≤ 1 + c(1 + logm∞(Λ))3 + c(1 + log(K) + logm∞(Λ)) log(1/δ)

+ cK log(m∞(Λ)) + cK log(K) (3.7)

≤ cKn(1 + log(Kn)),

size
(
Φf̃

n

)
≤ c size(((A, b))) + c size(ΦΛ,δ)

≤ c|Λ|+ c|Λ|K log(m∞(Λ)) + c|Λ|K log(1/δ) + c|Λ|K2 + cKm∞(Λ) log(m∞(Λ))

+ cKm∞(Λ) log(1/δ) + cK2m∞(Λ) (3.8)

≤ cK2(n+ 1)K+1.

✷

Remark 3.6 For K ∈ N assume that f, g : [−1, 1]K → R satisfy the requirements of Proposi-
tion 3.5 for the same ρ ∈ (1,∞), with available approximations f̃ and g̃. For all n ∈ N, the

networks Φf̃
n and Φg̃

n have the same architecture. In fact, all layers but the output layer are iden-
tical, and equal the DNN ΦΛ,δ from Proposition 3.3, for Λ = {0, . . . , n}K and δ = ρ−n(n+1)−K .

The weights in the output layer equal {f̃k;n}k∈Λ and {g̃k;n}k∈Λ, respectively. These depend lin-

early on f̃ , g̃, thus in particular continuously. For example, with Remark 2.5 it follows that

max
k∈Λ
|f̃k;n − g̃k;n| ≤ 2K‖f̃ − g̃‖L∞([−1,1]K).

3.4 More General Activations

The results derived here should extend to DNNs with activation functions other than ReLU.
Specifically, the DNNs constructed in our proofs essentially consist of concatenations and par-
allelizations of identity networks and DNN approximations of products. The proposed ReLU
DNN constructions therefore extend to DNNs with other activation functions, as long as they
allow an exact emulation or efficient approximation of identity networks and products. We
discuss several particular cases.

Poly-ReLU: Exact emulation of both is possible with DNNs with the rectified power unit
(RePU) activation function σr : x 7→ max{0, x}r, for r ∈ N, r ≥ 2 ([18]). Polynomial emulation
with such networks was studied e.g. in [22, Proof of Theorem 3.3], [18]. For DNNs with the
RePU activation function, efficient polynomial emulation based on the recursion in Equation
(A.1) was already obtained in [32].

Rational Activation: Exact emulation of the identity and of multiplications is also pos-
sible by DNNs with rational activation. In [4], networks were studied which have in each com-
putational node σ = p/q as activation, for polynomials p, q of prescribed degrees, but whose
coefficients can be trained and may be different for each node. Such networks can emulate both
the identity and products exactly if the prescribed degrees satisfy deg(p) ≥ 2 and deg(q) ∈ N0

(cf. [4, Proposition 10] and its proof). Because Lemma 2.2 holds for all s ∈ N, networks whose
activation function allows for the exact emulation of polynomials obtain exponential conver-
gence with respect to the W s,∞-norm for a larger range of s ∈ N, with only the constant C in
the error bound depending on s.

Sigmoidal Activation: The present results for RePU networks directly generalize to sig-
moidal activation functions of order k ∈ N, k ≥ 2. A function τ : R → R is sigmoidal of order
k ∈ N0, if it satisfies limx→−∞ τ(x)/xk = 0, limx→∞ τ(x)/xk = 1, and |τ(x)| ≤ C(1 + |x|k),

20

x ∈ R, for a constant C > 0 that does not depend on x, see for example [22, Equations (2.3)
and (2.4)]. In [22, Lemma 3.6], it was shown that for every continuous sigmoidal activation
function τ of order k ≥ 2 and arbitrary A > 0, the RePU σk can be approximated on the interval
[−A,A] with arbitrarily small error ε with respect to the L∞([−A,A])-norm by a τ -NN which
has depth 1 and fixed network size independent of A and ε. When τ is uniformly continuous
on R, this result remains true w.r.t. the L∞(R)-norm (instead of L∞([−A,A])), as remarked
directly below [22, Lemma 3.6]. There it was also noted that a similar statement holds for
the approximation of the ReLU by a NN with arbitrary sigmoidal activation function of the
order k = 1. In the proof of [22, Lemma 3.6], it was observed that for every k ∈ N and every
continuous, sigmoidal τ of order k, the τ -NN that approximates σk is uniformly continuous
on [−A,A]. From this, it follows that σk-NNs can be approximated up to arbitrarily small
L∞([−A,A])-error ε by a τ -NN with network size independent of A and ε. If τ is uniformly
continuous on R, the same holds w.r.t. the L∞(R)-norm.

Genuinely Nonlinear Activation: The existence of NNs that approximate a given RePU
network with arbitrarily small L∞([−A,A])-error ε and network size independent of A and ε,
holds also for NNs with “genuinely nonlinear” activation function τ ∈ C2(R), i.e. for which there
exists x ∈ R where τ ′′(x) 6= 0. In [30, Theorem 3.4] it was shown that for all A, ε > 0 there exists
a τ -NN which approximates the product of two numbers from [−A,A] up to L∞([−A,A]2)-error
at most ε and whose network size is bounded independent of A and ε. See also [31, Section
3.3].

4 DNN Emulation Algorithms

In this section, we develop an algorithm which, assuming at hand a procedure to approximately
evaluate a map f : [−1, 1]K → R, will construct, for a given accuracy threshold ε > 0, an
approximating NN whose estimated error is at most ε and whose depth and size satisfy the
theoretical bounds from Section 3. Importantly, the proposed algorithm is deterministic, and
does not resort to “black-box” loss-function minimization algorithms.

As before, we assume that f admits a holomorphic extension to a closed Bernstein polyellipse
Eρ, with ρ = (ρ, . . . , ρ) ∈ RK for some ρ > 1. The algorithm is based on the observation that the
proof of Proposition 3.5 is constructive, i.e., for n ∈ N, Λ = {0, . . . , n}K and δ = (n+1)−Kρ−n,

the network Φf̃
n := ((A, b)) ◦ΦΛ,δ has been described explicitly. In the proof of Proposition 3.5,

the accuracy δ = (n + 1)−Kρ−n of the network ΦΛ,δ approximating tensor product Chebyšev
polynomials is sufficient, but may be much smaller than needed, and because a priori no good
estimate on ρ may be known, part of the algorithm is dedicated to determining a sufficient
value of δ.

Thus, assuming access to an approximation f̃ of f , the following algorithm determines

values n∗ ∈ N and δ∗ ∈ (0, 1) and constructs a ReLU DNN Φf̃
n∗,δ∗

approximating f . When
determining n∗, we note that in (2.13) the interpolation error ‖f − p̃f,n‖L∞([−1,1]K) is bounded

by ‖ILobn ‖L∞,L∞‖f − f̃‖L∞([−1,1]K), growing polylogarithmically in n, plus a term that decays
exponentially with n. Because we cannot access f directly, the algorithm below cannot ensure
smallness of ‖ILobn ‖L∞,L∞‖f − f̃‖L∞([−1,1]K). It could be taken into account by setting an

upper bound on n, we will not discuss this in detail. The NN error ‖p̃f,n − Φf̃
n‖L∞([−1,1]K)

is bounded by δ
∑

k∈Λ |f̃k;n|. In the proof of Proposition 3.5, we used that in theory, when
neglecting rounding errors in the NN’s affine transformations, this error can be made small
with respect to other error terms by choosing δ sufficiently small, namely δ = (n + 1)−Kρ−n.
In practice, it holds that choosing a smaller δ cannot increase the error (as this holds for the
networks in Proposition 3.2, and therefore also for those in Proposition 3.3). However, because
the accuracy of affine transformations is limited by the machine precision, δ is in practice limited
from below. Therefore, as the upper bound (2.15) on

∑
k∈Λ |f̃k;n| increases with n, the NN

21

error ‖p̃f,n − Φf̃
n‖L∞([−1,1]K) may increase with n for large n, regardless of our choice of δ.

Therefore, we use a greedy algorithm to determine moderate n∗, δ∗ for which the estimated
error w.r.t. f̃ is smaller than a prescribed tolerance.

The construction in Algorithm 4.1 uses some elementary NNs, for which explicit construc-
tions are available in the literature [35, 31]. In [35, Propositions 2 and 3], a NN is proposed
that approximates the square denoted by Φsq

ℓ,M and the product of two scalars denoted by

×̃ℓ,M in a bounded interval [−M,M] with ℓ layers (see also [31, Proposition 3.1] for a different
construction). In Step 1 of the proof of [31, Proposition 3.3], an explicit NN is proposed that

approximates the product of K scalars (already previously) denoted by
∏̃K

δ,M with accuracy

δ on the hypercube [−M,M]K . Based on the scalar product NN ×̃ℓ,M , the NN ΦCheb,n
β is

constructed in Appendix A. Its properties are given by Lemma 3.1. Recall that this DNN has
input dimension one and output dimension n such that the ℓ’th component of the output layer
approximates the Chebyšev polynomial of degree ℓ with accuracy β over the interval [−1, 1]. A
DNN that approximates tensorized Chebyšev polynomials is constructed by a concatenation of

K copies of the NN ΦCheb,n
β with copies of the NN

∏̃K

δ,M and is denoted by ΦΛ,δ, where Λ ⊂ NK
0

is the index set of polynomial degrees of tensorized Chebyšev polynomials. The construction
of ΦΛ,δ is described in detail in Step 1 of the proof of Proposition 3.3. These explicitly con-
structed DNNs with certified accuracy over all inputs in an a priori known hypercube1 are used
in the following algorithm. Finally, as in the proof of Proposition 3.5, let b := [0] ∈ R1 and
A ∈ R1×|Λ| be defined by A1,ℓ = f̃k(ℓ);n, where {k

(ℓ)}ℓ=1,...,|Λ| ⊂ Λ is an enumeration of Λ such

that (ΦΛ,δ)ℓ = T̃k(ℓ),δ (the latter is defined in Proposition 3.3). With this notation, we define

Φf̃
n,δ := ((A, b)) ◦ ΦΛ,δ for all n ∈ N and δ ∈ (0, 1).
Regarding line 5 of Algorithm 4.1, recall that cos((2n−j)π/n) = cos(jπ/n) for j = 1, . . . , n−

1, thus (f(xn
j))j∈{0,...,n}K are sufficient to determine (f(xn

j))j∈{0,...,2n−1}K .
Next, we compute the complexity of the algorithm.

Proposition 4.1 In total, under the assumption that the complexity of constructing a NN from
its weights and biases and evaluating a NN are both proportional to the number of nonzero net-
work weights and biases, the computational complexity of Algorithm 4.1 is bounded by
C
[
K2(n∗ + 1)2K+1 log(1/δ∗) +K2(n∗ + 1)2K log(1/δ∗)

2
]
, in addition to at most (n∗ + 1)K+1

evaluations of f̃ . Here, the constant C > 0 does not depend on n∗, δ∗,K.

The constructed network Φf̃
n∗,δ∗

satisfies

depth(Φf̃
n∗,δ∗

) ≤C
[
1 + log(n∗)

3 + (log(K) + log(n∗)) log(1/δ∗) +K log(n∗) +K log(K)
]
,

size(Φf̃
n∗,δ∗

) ≤C
[
1 +K2(n∗ + 1)K log(1/δ∗) + n∗ log(n∗)

]
.

Proof. Let C > 0 denote some generic constant. The while loop of lines 2–17 is executed at
most n∗ − 2 + log2(δ0/δ∗) times: after the initial execution of the while loop, it is executed
n∗ − 3 times after increasing n and log2(δ0/δ∗) times after decreasing δ.

Per execution of the while loop: Line 4 takes (n+1)K evaluations of f̃ , and is executed for n =
3, . . . , n∗, i.e. only when state = true. Line 5 computes the IFFT of a K-dimensional array of
size (n+1)K . The complexity of each execution is CK(n+1)K log(n) = C(n+1)K log((n+1)K).
Line 6 contains the construction of ΦΛ,δ, which has computational cost CK2(n+1)K log2(1/δ)

(see Step 3 in the proof of Proposition 3.3). Line 8 requires nK evaluations of f̃ and of Φf̃
n,δ,

where each evaluation of Φf̃
n,δ has complexity CK2(n + 1)K log2(1/δ). The evaluations of f̃

are the same as in line 4 (except for n = 3), the evaluation of Φf̃
n,δ contributes CK2(n +

1)2K log2(1/δ) for each execution of line 8.

1The error bounds have been derived under the assumption that the affine transformations in the NNs are

evaluated in exact arithmetic, without rounding.

22

Algorithm 4.1 Construction of a ReLU NN that approximates a function f , based on pointwise
evaluations of an approximation f̃ of f .

Input: K ∈ N, a routine to evaluate f̃ : [−1, 1]K → R, a goal accuracy ε ∈ (0, 1), α ∈ (0, 1),
δ0 ∈ (0, 1)

Output: Φf̃
n∗,δ∗

, for n∗ ∈ N and δ∗ ∈ (0, 1) to be determined.
1: Set n← 3, δ ← δ0, err← 1, and state← true
2: while err > ε do
3: Set err−1 ← err.
4: Compute {f̃(xn

j)}j∈{0,...,n}K . ⊲ xn
j = cos(jπ/n)

5: Compute {f̃k;n}k∈{0,...,n}K with (2.9). Store as ((A, b)), as in the proof of Proposition
3.5.

6: Construct ΦΛ,δ, depending on n and δ with Λ = {0, . . . , n}K .

7: Construct Φf̃
n,δ = ((A, b)) ◦ ΦΛ,δ with Λ = {0, . . . , n}K .

8: Update err← maxx∈{xn−1
j

:j∈{0,...,n−1}K} |f̃(x)− Φf
n,δ(x)|. ⊲ xn−1

j = cos(jπ/(n− 1))

9: if err > αerr−1 then
10: state← complement(state).
11: end if
12: if state = true then
13: n← n+ 1.
14: else
15: δ ← δ/2.
16: end if
17: end while
18: if state = true then
19: n∗ ← n− 1 and δ∗ ← δ.
20: else
21: n∗ ← n and δ∗ ← 2δ.
22: end if
23: return Φf̃

n∗,δ∗
.

23

In total, the computational complexity is upper bounded by (n∗ + 1)K+1 evaluations of f̃
in addition to CK2(n∗ + 1)2K+1 log(1/δ∗) + CK2(n∗ + 1)2K log(1/δ∗)

2, with C depending on
δ0.

The bounds on the network depth and size follow from Proposition 3.3 and

depth
(
Φf̃

n∗,δ∗

)
≤ depth(((A, b))) + 1 + depth(ΦΛ,δ),

size
(
Φf̃

n∗,δ∗

)
≤C size(((A, b))) + C size(ΦΛ,δ).

✷

If the first order partial derivatives of f̃ can be evaluated as well, replacing line 8 by

Update err← maxx∈{xn−1
j

:j∈{0,...,n−1}K} max{|f̃(x)−Φf
n,δ(x)|,maxKi=1 |

∂
∂xi

f̃(x)− ∂
∂xi

Φf
n,δ(x)|}

will give a similar result, now with W 1,∞-error at most ε.

5 DNN Data-to-QoI Maps in Bayesian Inversion

In the present section, we illustrate the foregoing results, including the exponential convergence,
see Proposition 3.5, in the context of PDE constrained Bayesian estimation.

Let X be a separable Banach space and π0 be a prior probability measure on X. The
expectation with respect to π0 is denoted by Eπ0 . Let X be a separable Banach space and let
the forward map S : X → X be continuous. For given u ∈ X, we suppose that we can measure
the response S(u) with observation functionals Oi ∈ X

∗, i = 1, . . . ,K, where X ∗ denotes
the dual space of X . We aim at a reconstruction of u from these measurements Oi(S(u)),
i = 1, . . . ,K. In general this problem is ill-posed (e.g. [7, 16]). We consider additive Gaussian
observation noise which regularizes the Bayesian inverse problem [7], i.e., we assume noisy
observation data δi, i = 1, . . . ,K, such that

δ = O(S(u)) + η,

where η is assumed to be an additive, centered, independent K-dimensional multivariate Gaus-
sian random variable with nondegenerate covariance matrix Σ. We use the notation δ =
(δ1, . . . , δK) and O = (O1, . . . , OK). The Bayesian estimate of a quantity of interest φ : X → R,
which is assumed to be continuous, is given by Eπδ [φ(u)]. Here, πδ denotes the posterior
probability conditional on given data δ.

In practice the computation of an approximation to this Bayesian estimate could be costly,
in particular when the forward map may involve a solver of a partial differential equation. For
the repeated efficient approximate numerical evaluation of the data-to-QoI map δ 7→ Eπδ [φ(u)],
surrogate maps of DNN type can lead to large computational savings. These maps can be
evaluated rapidly in comparison to the pointwise, approximate evaluation of this map using,
e.g., MCMC algorithms requiring one PDE solve for each proposal.

With the presently developed, explicit, DNN emulators, we are able to explicitly construct
a surrogate for the Data-to-QoI map by means of a deep ReLU NN. The exponential error
bound on the generalization error will imply few parallel evaluations of the forward map, at
synthetic data points are required. This is due to the additive Gaussian noise η having a
strong regularizing effect. This has been pointed out and was exploited in [15]. There in [15,
Corollary 4.7] it is shown that for any r > 0, the map

[−r, r]K ∋ δ 7→ f(δ) := Eπδ [φ(u)] (5.1)

is analytic. Bounds on its modulus depend (exponentially) on the observation precision, i.e., on
the inverse observation noise covariance. This allows quite general forward maps S, which are

24

not required to be smooth, see [15, Section 3] for a few examples. Thus, the map [−r, r]K ∋ δ 7→
f(δ) satisfies the assumptions of Proposition 3.5 and Algorithm 4.1 constructs a deep ReLU
NN with size and depth as in Proposition 4.1, if we are able to approximate the map f by some
f̃ sufficiently well.

6 Numerical Experiments

We consider the solution q to an elliptic partial differential equation given a realization of an
uncertain diffusion coefficent function u as forward operator. Specifically, on a Lipschitz domain
D ⊂ Rd let

−∇ · (u∇q) = g q|∂D = 0, (6.1)

where g ∈ L2(D) is assumed known and where u ∈ {ũ ∈ L∞(D) : ess infx∈D ũ(x) > 0}.
For every such coefficient function u, the solution q ∈ H1

0 (D) =: X exists and is unique by
the Lax–Milgram lemma. The forward data-to-solution map S is defined by S(u) := q. The
observation operators Oi, i = 1, . . . ,K, are taken as linear functionals in H−1(D) := (H1

0 (D))∗.
We construct an uncertain diffusion coefficent

u(y) = ū+

s∑

j=1

yjψj ,

where s ∈ N, y ∈ [−1/2, 1/2]s and ess infx∈D{ū(x)} >
∑s

j=1 ‖ψj‖L∞(D)/2. We assume that
ψj ∈ L

∞(D), j = 1, . . . , s. We model the Bayesian prior as product probability measure µ on
[−1/2, 1/2]s by µ(dy) =

⊗s
j=1 dyj . The prior π0 is chosen as the image measure of the random

coefficient y 7→ u(y) on X = {ū +
∑s

i=1 yjψj : y ∈ [−1/2, 1/2]s}, i.e., π0(A) := µ(u−1(A))
for every measurable set A ⊂ X, where u−1(A) denotes the pre-image under the mapping
u : [−1/2, 1/2]s → X. Let ϕ ∈ H−1(D). Then the QoI φ is given by the composition of ϕ and
S, i.e., φ = ϕ ◦ S. According to [7, Theorem 14], the posterior expectation in (5.1) is given by

f(δ) =
1

Z

∫

X

φ(u) exp

(
−
(δ −O(S(u)))⊤Σ−1(δ −O(S(u))

2

)
π0(du) (6.2)

and

Z =

∫

X

exp

(
−
(δ −O(S(u)))⊤Σ−1(δ −O(S(u))

2

)
π0(du). (6.3)

In our computations, we consider the univariate case and one or two parameters, i.e., d = 1,
D = (−1, 1), and s = 1, 2. Also the data space dimension is chosen to be one, i.e., K = 1. For
given u(y), the solution q(y) = S(u(y)) is approximated by the Finite Element Method (FEM)
with 65 degrees of freedom using a hat functions basis and the integrals in (6.2) and in (6.3) are
efficiently approximated by a product Gauss–Legendre quadrature with 40 quadrature nodes in
each parameter direction. This allows our numerical tests to focus on the algorithmic realization
of deep ReLU NNs to approximate the data-to-QoI map [−1/2, 1/2]s ∋ δ 7→ f(δ).

In our setup, we choose ū = 1.5, ψj(x) = 2j−2 cos(jπx). The observation functional is

taken to be O(v) :=
∫ 0

−1
v(x)dx and the goal functional is taken as ϕ(v) :=

∫ 1

0
v(x)dx for every

v ∈ H1
0 (D). The right-hand side in (6.1) is taken as g = 1. We ran Algorithm 4.1 for given

error tolerances and observed the resulting size of the constructed NN. Specifically, we ran an
implementation of Algorithm 4.1 for the data-to-Qoi map δ → f(δ) given in (6.2).

In Figures 6.1 and 6.2, we visualize the output of Algorithm 4.1. The size of the NN that
is constructed in Algorithm 4.1, the depth, and the achieved accuracy are plotted in a semi-
logarithmic scale. In the figures the error should impact the size with the square of the logarithm
according to Proposition 3.5, which is why the square root of the size of the NN is plotted. As
described in Algorithm 4.1 line 8, the error is estimated by the maximum of the absolute value

25

of the difference of the DNN approximation and the data-to-QoI map evaluated in Clenshaw–
Curtis points of one degree less than used as training points. Note that Clenshaw–Curtis
points are not nested. Because we cannot evaluate f exactly, the error was computed with
respect to the previously described, quadrature based numerical approximation, corresponding
to f̃ in the notation of the algorithm. We tested this setting for additive Gaussian noise with
variance σ2 = 0.04, see (5.1). The step-like behavior of the size and depth of the constructed
DNN that is visible in Figures 6.1 and 6.2 is a consequence of the employed construction of
DNNs approximating Chebyšev polynomials, see Appendix A. There, for given polynomial
degree p ∈ N and k ∈ N such that 2k−1 < p ≤ 2k, DNNs approximating univariate Chebyšev
polynomials up to degree 2k are constructed, see also Remark A.1.

10
-15

10
-10

10
-5

error tolerance

0

50

100

150

200

250

300

350

Figure 6.1: Accuracy vs. size and depth of the DNNs constructed by Algorithm 4.1. The
data-to-QoI map δ 7→ f(δ) from (6.2) is approximated by constructed DNNs for s = 1 and
σ2 = 0.04.

26

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

error tolerance

0

50

100

150

200

250

300

350

Figure 6.2: Accuracy vs. size and depth of the DNNs constructed by Algorithm 4.1. The
data-to-QoI map δ 7→ f(δ) from (6.2) is approximated by constructed DNNs for s = 2 and
σ2 = 0.04.

7 Conclusions

We proved approximation results resp. expressive power bounds for DNNs of multivariate,
analytic functions, and introduced a novel, deterministic, constructive approach for generat-
ing ReLU DNN surrogates. Unlike the (constructive) proofs of DNN emulation in [26], the
presently proposed argument and algorithm depends in an essential way on the use of multi-
variate Chebyšev interpolants of the map f which are to be emulated by DNNs. On the one
hand, while retaining exponential convergence for multivariate holomorphic functions, Chebyšev
polynomials have favorable algorithmic and stability properties. In particular, through a
close link with discrete Fourier transformation, Chebyšev interpolants of multivariate functions
f : [−1, 1]K → R can be conveniently computed through function collocation on (n+1)K-point
tensorized Clenshaw–Curtis grids. The good (logarithmic w.r. to the polynomial degree n) sta-
bility of interpolation in Clenshaw–Curtis points also allowed us to perform an error analysis for
interpolation based on “noisy”, corrupted function evaluations. We developed the correspond-
ing error bounds for the DNN expression error. The error is bounded by C exp(−b(M1/(K+1))
in terms of the network size M , for some b > 0 independent of K, if exact function evaluations
of f in Clenshaw–Curtis points are used. The constructed DNN is stable in the sense that if
instead the function values of f in Clenshaw–Curtis points are approximated with a possibly
corrupted, numerical approximation f̃ of f , there is an additional term in the L∞-error bounded
by C(log(log(1/ε)))K‖f − f̃‖L∞([−1,1]K), where ε denotes the error of polynomial interpolation
(for which it holds n ∝ log(1/ε) in Proposition 3.5). The additional error in W 1,∞-norm is
bounded by C(log(1/ε))2(log(log(1/ε)))K‖f − f̃‖L∞([−1,1]K).

In this paper, we applied the constructive algorithm to an example in the context of Bayesian
PDE inversion, where under the assumption of additive Gaussian observation noise the data-to-
quantity of interest map is analytic, cf. [15]. The algorithm is applicable much more generally,
e.g. to any Lipschitz continuous function.

27

A Constructive ReLU DNN Approximation of Tn

We present an emulation of univariate Chebyšev polynomials Tn(x) of arbitrary degrees by
ReLU NNs, which will be developed in [24] and which follows closely the construction in [25]
for univariate monomials. Specifically, we construct a DNN that approximates the Chebyšev
polynomials of the first kind, denoted by {Tℓ}ℓ∈N0

. As was derived for NNs with the RePU
activation function σr(x) = (max{x, 0})r for r ∈ N satisfying r ≥ 2 in [32], they can be
approximated efficiently also by ReLU NNs by exploiting the three term recursion

∀m,n ∈ N0 : Tm+n = 2TmTn − T|m−n|, T0(x) = 1, T1(x) = x, ∀x ∈ R. (A.1)

This recurrence is specific to the Tn and follows from the addition rule for cosines.
To construct the DNNs that approximate all Chebyšev polynomials of degree 1, . . . , n on

Î := (−1, 1), we first construct inductively, for all k ∈ N, NNs {Ψk
δ}δ∈(0,1) with input dimension

one and output dimension 2k−1 + 2 with the following properties: denoting all components of
the output, except for the first one, by T̃ℓ,δ := R(Ψk

δ)2+ℓ−2k−1 for ℓ ∈ {2k−1, . . . , 2k}, it holds
that

Ψk
δ (x) =

(
x, T̃2k−1,δ(x), . . . , T̃2k,δ(x)

)
, x ∈ Î ,

∥∥∥Tℓ(x)− T̃ℓ,δ(x)
∥∥∥
L∞(Î)

≤ δ, ℓ ∈ {2k−1, . . . , 2k}. (A.2)

We only provide the NN constructions, for proofs of the error bound and the estimates on the
network depth and size in Lemma 3.1 we refer to [24].

Induction basis. Let δ ∈ (0, 1) be arbitrary and define L1 := depth(
∏̃2

δ/4,1). Also, define the

matrix A := [1, 1]⊤ ∈ R2×1 and the vector b′ := [−1] ∈ R1, and let Ai, bi, i = 1, . . . , L1 denote

the weights and biases of
∏̃2

δ/4,1 as in Proposition 3.2. Then we define

Ψ1
δ :=

(
ΦId

1,L1
,ΦId

1,L1
,Φ
)
,

where the weights and biases of Φ are A1A,A2, . . . , AL1−1, 2AL1
resp. b1, . . . , bL1−1, 2bL1

+ b′.

It follows that (Ψ1
δ(x))1 = x, T̃1,δ(x) := (Ψ1

δ(x))2 = x = T1(x) and T̃2,δ(x) := (Ψ1
δ(x))3 =

2(
∏̃2

δ/4,1)(x, x)− 1 for all x ∈ Î := (−1, 1).

Induction hypothesis (IH). For all δ ∈ (0, 1) and k ∈ N, let θ := 2−2k−4δ, and assume that
there exists a NN Ψk

θ which satisfies Equation (A.2) with θ instead of δ.
Induction step. For δ and k as in (IH), we show that (A.2) holds with δ as in (IH) and with

k + 1 instead of k. We define, for Φ1,k and Φ2,k
δ introduced below,

Ψk+1
δ := Φ2,k

δ ◦ Φ1,k ◦Ψk
θ . (A.3)

For a sketch of the network structure, see Figure A.1. The NN Φ1,k of depth 0 implements the
linear map

R2k−1+2 → R2k+1+2 :
(
z1, . . . , z2k−1+2) 7→ (z1, z2k−1+2, z2, z3, z3, z3, z3, z4, z4, z4, z4, z5, z5, z5,

. . . , z2k−1+1, z2k−1+2, z2k−1+2, z2k−1+2

)
.

Denoting its weights and biases by A1,k, b1,k, it holds that b1,k = 0 and

(A1,k)m,i =

1 if m = 1, i = 1,

1 if m = 2, i = 2k−1 + 2,

1 if m ∈ {3, . . . , 2k+1 + 2}, i = ⌈m+5
4 ⌉,

0 else.

28

With Lθ := depth(
∏̃2

θ,2) we define

Φ2,k
δ := Φ ◦

(
ΦId

2,Lθ
,
∏̃2

θ,2
, . . . ,

∏̃2

θ,2

)

d

,

containing 2k
∏̃2

θ,2-networks, with Φ denoting the depth 0 network with weights and biases

A2,k ∈ R(2k+2)×(2k+2) and b2,k ∈ R2k+2 defined as

(A2,k)m,i :=

1 if m = i ≤ 2,

2 if m = i ≥ 3,

−1 if m ≥ 3 is odd, i = 1,

0 else,

(b2,k)m =

{
−1 if m ≥ 3 is even,

0 else.

The network Ψk+1
δ defined in Equation (A.3) realizes

(Ψk+1
δ (x))1 = x, for x ∈ Î , (A.4)

(Ψk+1
δ (x))2 = T̃2k,θ(x), for x ∈ Î , (A.5)

(Ψk+1
δ (x))ℓ+2−2k = 2

∏̃2

θ,2

(
T̃⌈ℓ/2⌉,θ(x), T̃⌊ℓ/2⌋,θ(x)

)
− x⌈ℓ/2⌉−⌊ℓ/2⌋, for x ∈ Î and (A.6)

ℓ ∈ {2k + 1, . . . , 2k+1},

where x⌈ℓ/2⌉−⌊ℓ/2⌋ = x = T1(x) for odd ℓ and x⌈ℓ/2⌉−⌊ℓ/2⌋ = 1 = T0(x) for even ℓ. For
ℓ ∈ {2k + 1, . . . , 2k+1} and x ∈ Î, the right-hand side of (A.6) will be denoted by

T̃ℓ,δ(x) := (Ψk+1
δ (x))ℓ+2−2k .

This finishes the construction of Ψk+1
δ .

Next, we construct ΦCheb,n
δ as in Lemma 3.1.

If n = 1, for all δ ∈ (0, 1) we define ΦCheb,n
δ := ((A, b)), where A := [1] ∈ R1×1 and

b := [0] ∈ R1.
If n ≥ 2, let k := ⌈log2(n)⌉. See Figure A.2 for a sketch of the NN construction below.

We use the networks {Ψj
δ}δ∈(0,1),j∈{1,...,k} constructed above and take {ℓj}

k
j=1 ⊂ N such that

depth
(
Ψk

δ

)
+ 1 = depth

(
Ψj

δ

)
+ ℓj for j = 1, . . . , k, and thus ℓj ≤ maxkj=1 depth

(
Ψj

δ

)
=

depth
(
Ψk

δ

)
. We define

ΦCheb,n
δ := Φ3,n ◦

(
Ψ1

δ ◦ Φ
Id
1,ℓ1 , . . . ,Ψ

k
δ ◦ Φ

Id
1,ℓk

)
,

where the NN Φ3,n of depth 0 emulates the linear map R2k+2k−1 → Rn satisfying

Φ3,n(z1, . . . , z2k+2k−1)1 = z2, Φ3,n(z1, . . . , z2k+2k−1)2 = z3,

and for all ℓ = 3, . . . , n, with j := ⌈log2(ℓ)⌉ : Φ3,n(z1, . . . , z2k+2k−1)ℓ = zℓ+2j−1.

The realization satisfies for all ℓ = 1, . . . , n

(ΦCheb,n
δ (x))ℓ = T̃ℓ,δ(x), x ∈ Î , ℓ ∈ {1, . . . , n}.

Remark A.1 The subnetwork Ψk
δ of ΦCheb,n

δ approximates all univariate Chebyšev polynomials
of degree up to 2k, also when n < 2k. This causes the “step-like” behavior in Figures 6.1 and
6.2. This step-wise growth of the network size can easily be prevented by removing from Ψk

δ the

product networks
∏̃2

θ,2 that compute T̃ℓ,δ(x) for ℓ > n, and modifying Φ3,n accordingly.

29

Figure A.1: Sketch of Ψk+1
δ for some k ∈ N and δ ∈ (0, 1), inductively constructed from Ψk

θ

with θ = 2−2k−4δ. The subnetwork Φ1,k realizes a linear map, correctly coupling the output
of Ψk

θ to the input of Φ2,k
δ . The subnetwork Φ2,k

δ acts as the identity on the first two inputs,
and as an approximate multiplication from Proposition 3.2 on pairs of the remaining inputs.
Output are the input x and approximations of Chebyšev polynomials of degree 2k, . . . , 2k+1,
with accuracy δ.

References

[1] B. Adcock and N. Dexter. The gap between theory and practice in function approximation with
deep neural networks, 2020. ArXiv: 2001.07523.

[2] S. Arridge, P. Maass, O. Öktem, and C.-B. Schönlieb. Solving inverse problems using data-driven
models. Acta Numer., 28:1–174, 2019.

[3] H. Bölcskei, P. Grohs, G. Kutyniok, and P. Petersen. Optimal approximation with sparsely con-
nected deep neural networks. SIAM J. Math. Data Sci., 1(1):8–45, 2019.

[4] N. Boullé, Y. Nakatsukasa, and A. Townsend. Rational neural networks, 2020. Accepted for publi-
cation in 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver,
Canada.

[5] P. Cheridito, A. Jentzen, and F. Rossmannek. Non-convergence of stochastic gradient descent in
the training of deep neural networks, 2020. ArXiv: 2006.07075.

[6] A. Cohen, C. Schwab, and J. Zech. Shape holomorphy of the stationary Navier-Stokes Equations.
SIAM J. Math. Analysis, 50(2):1720–1752, 2018.

[7] M. Dashti and A. M. Stuart. The Bayesian approach to inverse problems. In Handbook of uncer-
tainty quantification. Vol. 1, 2, 3, pages 311–428. Springer, Cham, 2017.

[8] J. Daws and C. Webster. Analysis of deep neural networks with quasi-optimal polynomial approx-
imation rates, 2019. ArXiv: 1912.02302.

[9] W. E and Q. Wang. Exponential convergence of the deep neural network approximation for
analytic functions. Sci. China Math., 61(10):1733–1740, 2018.

[10] H. Ehlich and K. Zeller. Auswertung der Normen von Interpolationsoperatoren. Math. Ann.,
164:105–112, 1966.

30

Figure A.2: Sketch of ΦCheb,n
δ for some n ∈ N and δ ∈ (0, 1), constructed from identity networks

and the previously described Ψ1
δ , . . . ,Ψ

k
δ , with k := ⌈log2(n)⌉. The subnetwork Φ3,n realizes

a linear map that selects the desired approximations of univariate Chebyšev polynomials from
the outputs of the preceding layer.

[11] D. Elbrächter, P. Grohs, A. Jentzen, and C. Schwab. DNN Expression Rate Analysis of High-
dimensional PDEs: Application to Option Pricing, 2020. ArXiv:1809.07669, accepted for publica-
tion in Constructive Approximation.

[12] D. Fokina and I. Oseledets. Growing axons: greedy learning of neural networks with application
to function approximation, 2019. ArXiv: 1910.12686.

[13] M. Gaß, K. Glau, M. Mahlstedt, and M. Mair. Chebyshev interpolation for parametric option
pricing. Finance and Stochastics, 22(3):701–731, 2018.

[14] F. Henriquez and C. Schwab. Shape Holomorphy of the Calderon Projector for the Laplacean in
R2. Technical Report 2019-43, Seminar for Applied Mathematics, ETH Zürich, 2019. (to appear
in Journ. Int. Equns. Op. Theory (2021)).

[15] L. Herrmann, C. Schwab, and J. Zech. Deep neural network expression of posterior expectations
in Bayesian PDE inversion. Inverse Problems, 36(12):125011, 2020.

[16] B. Hosseini and N. Nigam. Well-posed Bayesian inverse problems: priors with exponential tails.
SIAM/ASA J. Uncertain. Quantif., 5(1):436–465, 2017.

[17] C. Jerez-Hanckes, C. Schwab, and J. Zech. Electromagnetic Wave Scattering by Random Surfaces:
Shape Holomorphy. Math. Mod. Meth. Appl. Sci., 27(12):2229–2259, 2017.

31

[18] B. Li, S. Tang, and H. Yu. Better approximations of high dimensional smooth functions by deep
neural networks with rectified power units. Communications in Computational Physics, 27(2):379–
411, 2019.

[19] S. Liang and R. Srikant. Why deep neural networks for function approximation? In Proc. of ICLR
2017, pages 1 – 17, 2017. ArXiv:1610.04161.

[20] L. Lu, P. Jin, and G. E. Karniadakis. DeepONet: Learning nonlinear operators for identifying
differential equations based on the universal approximation theorem of operators, 2020.

[21] K. O. Lye, S. Mishra, and D. Ray. Deep learning observables in computational fluid dynamics. J.
Comput. Phys., 410:109339, 26, 2020.

[22] H. N. Mhaskar. Approximation properties of a multilayered feedforward artificial neural network.
Advances in Computational Mathematics, 1(1):61–80, Feb 1993.

[23] H. N. Mhaskar. Neural networks for optimal approximation of smooth and analytic functions.
Neural Computation, 8(1):164–177, 1996.

[24] J. A. A. Opschoor. In preparation. PhD thesis, Dissertation, ETH Zürich, 202x.

[25] J. A. A. Opschoor, P. C. Petersen, and C. Schwab. Deep ReLU networks and high-order finite
element methods. Analysis and Applications, 18(05):715–770, 2020.

[26] J. A. A. Opschoor, C. Schwab, and J. Zech. Exponential ReLU DNN expression of holomorphic
maps in high dimension. Technical Report 2019-35 rev1, Seminar for Applied Mathematics, ETH
Zürich, 2020. Accepted for publication in Constructive Approximation.

[27] P. Petersen and F. Voigtlaender. Optimal approximation of piecewise smooth functions using deep
ReLU neural networks. Neural Netw., 108:296 – 330, 2018.

[28] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: a deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential
equations. J. Comput. Phys., 378:686–707, 2019.

[29] T. J. Rivlin. The Chebyshev polynomials. Wiley-Interscience [John Wiley & Sons], New York-
London-Sydney, 1974. Pure and Applied Mathematics.

[30] D. Rolnick and M. Tegmark. The power of deeper networks for expressing natural functions. In
International Conference on Learning Representations, 2018.

[31] C. Schwab and J. Zech. Deep learning in high dimension: Neural network expression rates for
generalized polynomial chaos expansions in UQ. Analysis and Applications, Singapore, 17(1):19–
55, 2019.

[32] S. Tang, B. Li, and H. Yu. ChebNet: Efficient and stable constructions of deep neural networks with
rectified power units using Chebyshev approximations. Technical report, 2019. ArXiv: 1911.05467.

[33] L. N. Trefethen. Approximation theory and approximation practice. Society for Industrial and
Applied Mathematics, Philadelphia, extended edition, 2019.

[34] L. Yang, X. Meng, and G. E. Karniadakis. B-PINNs: Bayesian physics-informed neural net-
works for forward and inverse PDE problems with noisy data. Journal of Computational Physics,
425:109913, Jan 2021.

[35] D. Yarotsky. Error bounds for approximations with deep ReLU networks. Neural Netw., 94:103–
114, 2017.

32

	Introduction
	Previous Work
	Contributions
	Notation
	Outline

	Polynomial Approximation of Multivariate Holomorphic Functions
	Chebyšev Expansion
	Chebyšev Interpolation
	Chebyšev Interpolation Based On Approximate Function Values

	Constructive Deep Neural Network Approximation of Multivariate Holomorphic Functions
	Definitions and Architecture of Deep ReLU NNs
	ReLU NN Approximations of Chebyšev Polynomials
	Construction of ReLU NN Approximations of Multivariate Holomorphic Functions
	More General Activations

	DNN Emulation Algorithms
	DNN Data-to-QoI Maps in Bayesian Inversion
	Numerical Experiments
	Conclusions
	Constructive ReLU DNN Approximation of Tn

