
Adaptive Quasi-Monte Carlo Finite Element

Methods for parametric elliptic PDEs

M. Longo

Research Report No. 2021-03

January 2021

Latest revision: June 2022

Seminar für Angewandte Mathematik

Eidgenössische Technische Hochschule

CH-8092 Zürich

Switzerland

____________________________________________________________________________________________________



Adaptive Quasi-Monte Carlo Finite Element Methods for

parametric elliptic PDEs

Marcello Longo∗

June 1, 2022

Abstract

We introduce novel adaptive methods to approximate moments of solutions of Partial
Differential Equations (PDEs) with uncertain parametric inputs. A typical problem in Un-
certainty Quantification is the approximation of the expected values of quantities of interest
of the solution, which requires the efficient numerical approximation of high-dimensional in-
tegrals. We perform this task by a class of deterministic Quasi-Monte Carlo integration rules
derived from Polynomial lattices, that allows to control a-posteriori the integration error with-
out querying the governing PDE and does not incur the curse of dimensionality. Based on
an abstract formulation of Adaptive Finite Element Methods (AFEM) for deterministic prob-
lems, we infer convergence of the combined adaptive algorithms in the parameter and physical
space. We propose a selection of examples of PDEs admissible for these algorithms. Finally,
we present numerical evidence of convergence for a model diffusion PDE.

Key words: high-dimensional quadrature, Quasi-Monte Carlo, adaptivity, Finite Element
methods, curse of dimensionality.

AMS Subject Classification: 65C05, 65N30, 65N50.

1 Introduction

The study of problems governed by parametric Partial Differential Equations (PDEs) has seen
a steady development in recent years with an eye to applications to computational sciences and
engineering. The general common methodology is to treat the parametric equation as a family of
equations with given data and to query a possibly large number of them, by well-known solvers.

In the spirit of Uncertainty Quantification (UQ), we aim at the approximation of low-order
moments of a linear goal functional G ∈ V ∗ (also called quantity of interest or observable) of the
solution u : U → V of a parametric PDE. We are particularly interested in the case of a large
number s of parameters, all independent uniformly distributed on the interval [− 1

2 ,
1
2 ]. Moments

of u are then expressed as high-dimensional integrals with respect to the Lebesgue measure µ on
U := [− 1

2 ,
1
2 ]
s, which is a probability measure. In particular, we consider problems of the form:

given s ∈ N and k = 1, 2, 3, . . . find

I(Gk(u)) =

∫

U

Gk(u(y)) dµ(y), (1)

where, for all y ∈ U , u(y) ∈ V solves a linear variational problem

ay(u(y), w) = ly(w) ∀w ∈W, (2)
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with smooth dependence on the parameters y = (y1, . . . , ys).
As an example, our general framework includes a diffusion equation modeling the Darcy’s flow

in uncertain porous media

−div(a(x,y)∇u(x,y)) = f(x) x ∈ D, u(·,y)
∣
∣
∂D

= 0, (3)

on a bounded domain D. The PDE (3) has been used in several works as a model problem to
develop deterministic UQ techniques [8, 31, 16, 3, 14, 18]. A more computationally challenging
(and less studied) parametric PDE arises from linear elasticity, where the Young modulus E(x,y)
is uncertain

{

−div
(
E(x,y)
2(1+ν) [∇u(x,y) + (∇u(x,y))⊤]

)

+∇p(x,y) = f(x),

div(u(x,y)) + c−1p(x,y)/E(x,y) = 0,
x ∈ D (4)

with suitable boundary conditions, see (42) and the constant c := ν
(1+ν)(1−2ν) is only dependent

on the Poisson ratio ν. For nearly incompressible materials (i.e. ν ≈ 1
2 ), a suitable mixed formu-

lation inspired from [29] will be used to avoid the so-called locking effect, while keeping a smooth
parametric dependence. We address these PDEs more in detail in Section 3.6 below, in the case
of affine dependence on y of the data a(·,y) or E(·,y).

For the computation of (1), deterministic Quasi-Monte Carlo (QMC) integration is proven
to outperform standard Monte Carlo sampling: suitable assumptions on the regularity of the
parameter to solution map u : U → V are known to grant dimension independent and higher order
decay of the quadrature error, for deterministic QMC rules derived from Polynomial lattices,
comprising Interlaced Polynomial lattices [12, 24, 23] and Extrapolated Polynomial lattices (EPL)
[11, 10].

Moreover, EPL rules allow for an easily computable a-posteriori error estimator, that is known
to be asymptotically exact and free of the curse of dimensionality [10]. We remark that other a-
posteriori estimation techniques were developed for Sobol’ points and Rank-1 Lattices in [27, 28],
but the analysis there provides no dimension robust asymptotic exactness.

For deterministic PDEs, quasi-optimality of Adaptive Finite Element Methods (AFEM) has
been extensively studied, we refer to [6] for classical results on elliptic diffusion PDEs and to
[5, 17, 21] and the references therein for more recent developments towards an abstract analysis.
When including uncertainty in the underlying PDE, in order to maintain the computational cost
to a minimum, it is crucial to estimate the error for the parametric solution and in particular to
determine adaptively a finite sampling set P contained in U and a suitable Finite Element space
of the PDE, such that a given error tolerance is met a-posteriori. Existing approaches involve
adaptive stochastic Galerkin, studied in [15, 16, 2] and more recently adaptive collocation methods
on sparse grids [14, 18]. We extend these results to sampling based on QMC rules, while leveraging
the aforementioned abstract AFEM framework of the Axioms of adaptivity [5].

The purpose of this work is to introduce a family of adaptive algorithms, to approximate
solutions of many-query problems, based on deterministic QMC sampling on the parameter box
U . Our contribution is to provide convergence results of these algorithms, without incurring in the
curse of dimensionality, in a generic framework comprising several common PDE problems, where
the parametric error estimator is independent of the underlying PDE. We employ parametric error
estimators that only depend on the computed discrete solution uT : U → VT (where VT is a finite
dimensional space), while its computation is independent of a) the specific discretization space
VT , b) the equation (2) satisfied by u and c) the PDE solver used. Moreover, we pay particular
attention to modularity of the algorithm, i.e. we break the overall computation into smaller parts,
each with its requirements, in order to be able to reuse existing implementations. In fact, any
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other adaptive and reliable discretization can be used in place of AFEM in Algorithms 2 and 3
below.

To summarize, we leverage recent progress in QMC – in particular EPL rules – and established
AFEM results to obtain adaptive, deterministic, reliable and non-intrusive computational strategies
for UQ, that are free of the curse of dimensionality.

The structure of the paper is as follows: in Section 2 we introduce the problem and we summa-
rize the relevant notation and results from Quasi-Monte Carlo integration with Polynomial lattice
rules and convergence of AFEM. Section 3 is devoted to the description and proof of convergence
of 3 different adaptive procedures; for each of them, we show that it is possible to include goal
oriented adaptivity as described in [17, 3]. Additionally, we indicate a few examples of problems
that can be solved with our method. In Section 4 we present numerical experiments for a model
PDE with random diffusion. Additional material, including a brief introduction to Polynomial
lattices and a theoretical analysis the computational cost, is given in the Appendix.

2 Preliminaries

In this section we formulate the problem and illustrate our working assumptions. Let V,W be
reflexive Banach spaces of functions defined on a Lipschitz domain D ⊂ Rd, d ∈ {2, 3}. For y ∈ U ,
let ay : V ×W → R be a bilinear form and ly ∈W

∗, W ∗ denoting the topological dual of W .
In order to ensure that the linear PDE (2) is well-posed we shall impose the following, [4].

Assumption 2.1. The data ay, ly satisfy uniform, with respect to y ∈ U , inf-sup conditions

inf
0 6=v∈V

sup
0 6=w∈W

ay(v, w)

‖v‖V ‖w‖W
≥ λ > 0

inf
0 6=w∈W

sup
0 6=v∈V

ay(v, w)

‖v‖V ‖w‖W
≥ λ > 0

(5)

and continuity

ay(v, w) ≤ Λ ‖v‖V ‖w‖W , ∀v ∈ V,w ∈W, (6)

for some 0 < λ < Λ <∞ independent of y. Moreover, we assume, for some 0 < Cl <∞

sup
y∈U
‖ly‖W∗ ≤ Cl. (7)

Under Assumption 2.1, we have the following a-priori estimate

sup
y∈U
‖u(y)‖V ≤

Cl

λ
. (8)

Let G ∈ V ∗ be the sought Quantity of Interest. Then, given a small tolerance ε > 0, we want to
compute a Q ∈ R such that

∣
∣I(Gk(u))−Q

∣
∣ ≈ ε.

It is clear that we have multiple sources of error to take into consideration. First, we have
the quadrature error in approximating the expectation by sampling with Quasi-Monte Carlo rules.
Second, we include the discretization error as the solution u(y) comes from a PDE problem and
we cannot expect in general to recover it exactly.

Additionally, one could consider dimension truncation error, that arises in the treatment of
countably many parameters by means of a quadrature rule over a finite dimensional set U , [22].
We exclude this error from the analysis and we assume that the dimension s ∈ N is finite throughout
the rest of the discussion.
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2.1 Quasi-Monte Carlo a posteriori error estimation

In order to determine a stopping criterion for the QMC-AFEM algorithms below, we use the
asymptotically exact a-posteriori estimator from [10, Section 4] derived from the so-called Poly-
nomial lattices Pm of cardinality 2m, m ∈ N. In Appendix A, we recall briefly the construction
of Pm used here. QMC integration rules are sample averages that employ deterministic sampling
sets, in our case Pm

Q2m(F ) :=
1

2m

∑

y∈Pm

F (y).

The fundamental result from QMC theory that we will need to overcome the curse of dimen-
sionality is the next Proposition 2.1, first proved in [11, 10]. In particular, we consider infinitely
differentiable integrands F := Gk(u), satisfying certain bounds on the derivatives uniformly in
y ∈ U and in the parametric dimension s ∈ N, as we specify next. To this end, we fix some nota-
tion: consider a multiindex ν = (νj)j∈N ∈ NN

0 with finite support supp(ν) := |{j : νj > 0}| < ∞.
We write ν! :=

∏

j∈supp(ν) νj !, and denote the partial derivatives ∂νy := ∂ν1y1∂
ν2
y2 · · · . We also write,

for a real valued sequence β, βν :=
∏

j∈supp(ν) β
νj
j .

Then, we require derivative bounds of the form

sup
y∈U

∥
∥∂νyu(y)

∥
∥
V
≤ C(|ν|!)1+κβν ∀ν ∈ NN

0 , supp(ν) <∞, (9)

for some κ ≥ 0, C > 0,β independent of ν, s and β ∈ ℓp(N) for some p ∈ (0, 1
2+κ ).

Alternatively, we can assume bounds of the form

sup
y∈U

∥
∥∂νyu(y)

∥
∥
V
≤ Cν!βν ∀ν ∈ NN

0 , supp(ν) <∞, (10)

where β ∈ ℓp(N), p ∈ (0, 1).

Proposition 2.1. Assume that (10) is satisfied for some β ∈ ℓp(N) for all p > 1
2 , or that (9)

holds with β ∈ ℓp(N) for some 0 < p < 1
2+κ . Then, for F := Gk(u) a sequence of Polynomial

lattice rules (Q2m)m∈N can be constructed so that

|I(F )−Q2m(F )| ≤ C2−m (11)

for a constant C independent of m, s. Moreover,

I(F )−Q2m(F ) = Q2m(F )−Q2m−1(F ) +O
(
2−2m+δ

)
as m→∞ (12)

for all δ > 0, with the hidden constant in O(·) independent of s,m but dependent on δ.

Proof. In the case k = 1, (11) follows combining the derivative bounds (9), (10) and the quadrature
error estimate [11, Equation (3.1)], while (12) is [10, Theorem 4.1]. The case k > 1 is shown
analogously, using the derivative bounds in Section 3.5 below.

We denote the QMC a-posteriori error estimator by

E2m(F ) := Q2m(F )−Q2m−1(F ). (13)

For completeness, we mention a criterion to verify (9) in Appendix B, for the special case of
bilinear forms ay with affine dependence on the parameters. However, the parametric regularity
bound (9) can be verified with alternative methods, also for non-affine parametric operators, based
on holomorphic extensions of ay for complex parameters y ∈ Ũ ⊆ Cs, U ⊆ Ũ . For more details we
refer to [13]. On the other hand, (10) can also be verified in some situations [23]. In what follows,
we will assume that Assumption 2.1 and either (9) or (10) are available for the parametric solution
map u : U → V .
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2.2 Modules of AFEM

We mentioned that discretization error occurs in the solution of (2), for any instance of y ∈ U . In
this section we precise our discretization method of choice.

We restrict ourselves to polyhedral Lipschitz domains D ⊂ Rd, d ∈ {2, 3}. A mesh T on
D is defined as a finite collection of compact sets T ∈ T , |T | > 0 such that

⋃

T∈T T = D and
|T ∩ T ′| = 0, for all T, T ′ ∈ T with T 6= T ′. We assume availability of finite-dimensional spaces
VT ⊂ V,WT ⊂W linked to a mesh T on D with dim(VT ) = dim(WT ) and such that the following
stable discrete inf-sup condition hold: for λ̃ > 0 independent of T ∈ T and y ∈ U ,

inf
0 6=v∈VT

sup
0 6=w∈WT

ay(v, w)

‖v‖V ‖w‖W
≥ λ̃ > 0,

inf
0 6=w∈WT

sup
0 6=v∈VT

ay(v, w)

‖v‖V ‖w‖W
≥ λ̃ > 0.

(14)

Then, uT (y) ∈ VT denotes the unique solution of the problem

ay(uT (y), w) = ly(w) ∀w ∈WT , (15)

corresponding to (2). We will often use the shorthand notation T ≤ T ′, meaning that the mesh T ′

can be obtained from another mesh T by possibly multiple applications of the module REFINE,
as described in Assumption 2.2 below. Further, we fix an initial mesh T0 of D and we denote by
T := {T : T0 ≤ T } the set of admissible refinements of the initial mesh T0.

The well-established Adaptive FEM algorithm, see Algorithm 1, is composed of the four mod-
ules SOLVE, ESTIMATE, MARK and REFINE, plus a stopping criterion determined by a given
tolerance tol.

Algorithm 1 AFEM

Input: a, l, tol, T0
Output: uT , T
1: T ← T0
2: while True do

3: uT ← SOLVE(a, l, T )
4: {ηT (T )} ← ESTIMATE(uT )
5: if

∑
η2T (T ) ≤ tol

2 then

6: return uT , T
7: end if

8: M← MARK({ηT (T )})
9: T ← REFINE(T ,M)

10: end while

The parameter dependent error indicators {ηy,T (T )}T∈T , are computable values that approx-
imate the local FEM error ‖u(y)

∣
∣
T
− uT (y)

∣
∣
T
‖V corresponding to each cell T ∈ T : these are used

to determine which cells to refine, to drive the global error to 0. Following the description in [21],
we state the abstract assumptions for Algorithm 1 to ensure error convergence of AFEM, pointwise
for all y ∈ U .

Assumption 2.2. AFEM modules for parametric problems:

• For given y ∈ U and uT (y) ∈ VT , ESTIMATE computes positive real numbers {ηy,T (T )}T∈T ,
called indicators. We assume that the indicators satisfy, for all T , T ′ with T0 ≤ T ≤ T

′ the
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stability over non-refined elements
(

∑

T∈T ∩T ′

η2y,T ′(T )

) 1
2

≤

(
∑

T∈T ∩T ′

η2y,T (T )

) 1
2

+ S(‖uT ′(y)− uT (y)‖V ), (16)

and reduction over refined elements
∑

T∈T ′\T

η2y,T ′(T ) ≤ qred
∑

T∈T \T ′

η2y,T (T ) +R(‖uT ′(y)− uT (y)‖V ), (17)

where qred ∈ (0, 1) and the functions S,R : [0,∞) → [0,∞) are continuous at 0 with S(0) =
R(0) = 0 and monotocally increasing. We assume that S(·), R(·), qred are independent of
y ∈ U . Furthermore, we assume reliability: there exists a constant c∗ > 0 such that ∀ T ∈
T, ∀y ∈ U

‖u(y)− uT (y)‖V ≤ c
∗

(
∑

T∈T

η2y,T (T )

) 1
2

. (18)

• The marking procedure MARK selects, based on a set of indicators {ηy,T (T )} computed in
the previous step, a subset M ⊂ T of cells that will be refined. We assume that there exists
a function M : [0,∞)→ [0,∞) continuous at 0 with M(0) = 0 such that

max
T∈T \M

ηy,T (T ) ≤M





(
∑

T∈M

η2y,T (T )

) 1
2



 . (19)

• The REFINE module, for a given mesh T and a set of marked elements M ⊆ T , produces
a new mesh T ′ such that T ′ ∩M = ∅. We assume that parents are union of their children,
that is T =

⋃
{T ′ ∈ T ′ : T ′ ⊆ T} for all T ∈ T . We stress thatM⊆ T \T ′, that is REFINE

can in principle refine more than the marked set. To simplify the presentation, we further
assume conformity VT ⊆ VT ′ ⊂ V for all T ≤ T ′, T , T ′ ∈ T.

• For the module SOLVE, we assume that the Galerkin solution uT (y) of (15) can be recovered
exactly for every y ∈ U , which entails exact integration and linear algebra.

We stress that the availability of c∗ (18) depends implicitly on the set T, and hence on the
REFINE module. In practice, usually c∗ depends on λ,Λ from (5),(6) and on the shape regularity
of a mesh T , and hence it is often required that REFINE does not generate strongly anisotropic
meshes, i.e. T is uniformly shape-regular. Typical MARK strategies, as the Dörfler criterion, are
known to satisfy (19), see e.g. [21].

Let (uTℓ(y)(y))ℓ∈N, Tℓ := Tℓ(y) be the sequence of approximations produced by the AFEM loop

with Tℓ+1(y) = REFINE(Tℓ(y),Mℓ(y)), Mℓ(y) = MARK(
{
ηy,Tℓ(y)(T )

}
) ⊆ Tℓ(y) for all ℓ ∈ N;

then, as a corollary of [21, Theorem 3.1] we get the following pointwise convergence result.

Lemma 2.2. Consider a problem of the form (2) satisfying Assumption 2.1. Let AFEM satisfy
(14) and Assumption 2.2. Then, for all y ∈ U and all initial meshes T ∈ T, it returns in finite
time T (y) and uT (y)(y) such that

∥
∥u(y)− uT (y)(y)

∥
∥
V
≤ c∗tol, (20)

for a constant c∗ > 0 independent of tol,y and T ∈ T.

Proof. From [32], for all y there exists u∞(y) ∈ V such that
∥
∥u∞(y)− uTℓ(y)(y)

∥
∥
V
→ 0 as ℓ→∞. (21)

Hence, the result follows from [21, Theorem 3.1] and reliability (18).
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3 QMC-AFEM algorithms

3.1 A first convergence result

In this section we present a first combined QMC-AFEM algorithm, that outputs an approximation
of I(Gk(u)) for a given tolerance ε. For simplicity, we consider the case k = 1 in (1) and postpone
the case k > 1. Algorithm 2 is in fact not efficient for implementation, but it illustrates effectively
the key ideas.

First of all, we observe that E2m can be fully evaluated by means of quantities Q2m , Q2m−1

that have already been computed, when we loop over m. In other words, when adding more QMC
points we reuse part of the work done previously so that the cost to compute E2m is negligible. A
second crucial observation is that each call of the Algorithm 1 results (in principle) in a different
mesh T (y) ≥ T0, starting from a common coarse mesh T0. In particular, G(uT (y)(y)) may not be
even continuous with respect to y ∈ U , and hence in general Proposition 2.1 is not applicable for
G(uT (·)(·)) regardless of the discretization scheme.

Algorithm 2 QMC-AFEM

Input: [y 7→ ay], [y 7→ ly], G, ε, T0
Output: Approximation of I(G(u)) within tolerance ∝ ε
1: m← 1
2: while True do

3: Generate lattice Pm
4: for y ∈ Pm do

5: uT (y)(y)← AFEM(ay, ly, εF , T0) ⊲ Algorithm 1
6: Evaluate G(uT (y)(y))
7: end for

8: if m ≥ 2 and |E2m(G(uT ))| ≤ εQ then

9: return Q2m(G(uT ))
10: end if

11: m← m+ 1
12: end while

Proposition 3.1. Let T0 ∈ T. Assume that G ∈ V ∗, that u satisfies either (9) or (10) for a
sequence β as in Proposition 2.1 and that ∀y ∈ U and any tolerance tol > 0, AFEM returns in
finite time uT (y)(y) such that (20) holds for a constant c∗ independent of tol. Then, for any ε > 0,
there exist choices εQ and εF := tol, with ε−1εF , ε

−1εQ independent of ε, such that

1. Algorithm 2 stops in finite time and

2. it produces an approximation of I(G(u)) within tolerance c∗ε + O
(
2−2m+δ

)
, with constant

hidden in O(·) independent of s.

Proof. Let εF be the tolerance for AFEM. To prove the first item it is sufficient to show that, for
any εQ > 2c∗ ‖G‖V ∗ εF there exists m sufficiently large such that |E2m(G(uT ))| ≤ εQ. By linearity
of G,

|E2m(G(uT ))| ≤ |E2m(G(u− uT ))|+ |E2m(G(u))|

≤ 2 max
y∈Pm−1∪Pm

G(u− uT (y))(y) + |E2m(G(u))|

≤ 2c∗ ‖G‖V ∗ εF + |E2m(G(u))|.
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Proposition 2.1 also implies that |E2m(G(u))| → 0 as m→∞ and hence the claim.
Now we show the second item: we separate the error due to the Finite Element discretization

from the QMC integration error as follows

|I(G(u))−Q2m(G(uT ))| ≤ |Q2m(G(u− uT ))|+ |I(G(u))−Q2m(G(u))|.

For the FEM error we have

|Q2m(G(u− uT ))| ≤ max
y∈Pm

|G(u(y)− uT (y))| ≤ c
∗ ‖G‖V ∗ εF . (22)

For the QMC error we apply Proposition 2.1 to get for all δ > 0

|I(G(u))−Q2m(G(u))| ≤
(
|E2m(G(uT ))|+ 2c∗ ‖G‖V ∗ εF

)
+O

(
2−2m+δ

)

≤
(
εQ + 2c∗ ‖G‖V ∗ εF

)
+O

(
2−2m+δ

)
.

Hence, for given ε we can choose εF := ε
6‖G‖V ∗

and εQ := 2
5c

∗ε > 2c∗ ‖G‖V ∗ εF and obtain

|I(G(u))−Q2m(G(uT ))| ≤ (εQ + 3c∗ ‖G‖V ∗ εF ) +O
(
2−2m+δ

)
≤ c∗ε+O

(
2−2m+δ

)
. (23)

We remark that a sharp value for the reliability constant c∗ is usually not known but (potentially
pessimistic) upper bounds exist. The size of c∗ can be controlled for structured meshes and
refinement by bisection in spatial dimension d = 2.

Algorithm 2 entails a decoupling of the QMC sampling with a AFEM solver. In practice, this
implies that an adaptive software can be integrated into such algorithm in a non-intrusive manner,
provided that the reliability (20) is satisfied for some variational space V and G ∈ V ∗. This
feature can be advantageous in many situations, especially when a solver is complex to implement.
However, it presents two main computational difficulties:

• Algorithm 2 recomputes a mesh T ≥ T0 for the domain D, for each QMC sample y ∈ Pm as
well as for all iterations over m, which for complex geometries is an expensive step.

• Imposing the same AFEM threshold (20) for all QMC points can be unnecessary since we
are primarily interested in the average over the parameter space.

In what follows we propose two alternative algorithms that improve upon Algorithm 2 under
these aspects. The first is a modification of Algorithm 2, that recycles part of the computation
from previous iterations over m.

Algorithm 3 is motivated by the following heuristics. If there exists a metric dβ : U×U → [0,∞)
and a Lipschitz constant L > 0 satisfying

max(‖uT (y)− uT (y
′)‖V , ‖u(y)− u(y

′)‖V ) ≤ Ldβ(y,y
′) ∀y,y′ ∈ U, ∀ T ∈ T, (24)

then
∥
∥u(y)− uT (y′)(y)

∥
∥
V
≤ 2Ldβ(y,y

′) +
∥
∥u(y′)− uT (y′)(y

′)
∥
∥
V

≤ 2Ldβ(y,y
′) + c∗εF .

In particular, for a small distance of the parameters we have a good chance to meet the AFEM
tolerance by just one call of the SOLVE module, starting from the mesh T (y′).

Following verbatim the proof of Proposition 3.1, we get convergence Algorithm 3. The param-
eter q ∈ N in line 6 regulates how much information from previous iterations we use. A discussion
of possible choices q = q(ε) depending on the tolerance is given in Appendix C below.
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Algorithm 3 QMC-AFEM (v2)

Input: [y 7→ ay], [y 7→ ly], G, ε, T0, q
Output: Approximation of I(G(u)) within tolerance ∝ ε
1: m← 1; generate P1

2: T (y′)← T0 ∀y
′ ∈ P1

3: while True do

4: for y ∈ Pm do

5: if m > 1 then

6: y′ ← argmin
{
dβ(y, z) : z ∈ Pmin(m−1,q)

}

7: end if

8: uT (y)(y), T (y)← AFEM(ay, ly, εF , T (y
′)) ⊲ Algorithm 1

9: Evaluate G(uT (y)(y))
10: end for

11: if m ≥ 2 and |Ebm(G(uT ))| ≤ εQ then

12: return Q2m(G(uT ))
13: end if

14: m← m+ 1
15: Generate lattice Pm
16: end while

Proposition 3.2. Let T0 ∈ T. Assume that G ∈ V ∗, that u satisfies either (9) or (10) for a
sequence β as in Proposition 2.1 and that ∀y ∈ U , ∀ T ∈ T and any tolerance tol, AFEM, starting
from the initial mesh T , returns in finite time a mesh T (y) ≥ T and uT (y)(y) such that (20) holds
for a constant c∗ independent of tol and T . Then, for any ε, there exist choices εQ and εF := tol,
with ε−1εF , ε

−1εQ independent of ε such that

1. Algorithm 3 stops in finite time and

2. it produces an approximation of I(G(u)) within tolerance c∗ε + O
(
2−2m+δ

)
, with constant

hidden in O(·) independent of s.

3.2 Goal oriented AFEM – part 1

For the convergence of Algorithm 2 and 3, we assumed (20). This assumption alone does not
yield optimal convergence rate of the AFEM module; as a consequence, the Finite Element error
is overestimated and the spatial domain D could be overrefined in the algorithms. Nevertheless,
we only require a reliable upper bound for the difference |G(u(y))−G(uT (y))|, that in many
situations converges to 0 faster than ‖u(y)− uT (y)‖V as we refine T , by an Aubin-Nitsche duality
argument.

Let T ∈ T,y ∈ U , then we define z(y) ∈W as the unique solution of the dual problem

ay(v, z(y)) = G(v) ∀v ∈ V. (25)

Then, for all wT ∈WT ,

|G(u(y))−G(uT (y))| = |ay(u(y), z(y))− ay(uT (y), z(y))|

= |ay(u(y)− uT (y), z(y)− wT )|

≤ Λ ‖u(y)− uT (y)‖V ‖z(y)− wT ‖W . (26)
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When the goal functional G ∈ V ∗ has additional regularity, i.e. it belongs to a suitable subspace
H ⊆ V ∗, then for hT := maxT∈T diam(T )

lim
hT →0

inf
wT ∈VT

‖z(y)− wT ‖W = 0. (27)

However, in general AFEM produces non quasi-uniform meshes. Hence we can exploit regularity
of G as follows: we pick wT := zT (y) ∈WT the FE solution of

ay(v, zT (y)) = G(v) ∀v ∈ VT (28)

and define reliable indicators {ζy,T (T )}T∈T such that, for a constant c∗∗ > 0 independent of
y, T ∈ T,

‖z(y)− zT (y)‖W ≤ c
∗∗

(
∑

T∈T

ζ2y,T (T )

) 1
2

. (29)

Similarly to ηy,T (T ), each indicator ζy,T (T ) has the purpose of estimating the local error of the
dual FEM problem ‖z(y)

∣
∣
T
− zT (y)

∣
∣
T
‖V . Combining (26) and (29) we can use the following

a-posteriori estimator as termination criterion for AFEM, in Algorithms 2 and 3

|G(u(y))−G(uT (y))| .

(
∑

T∈T

η2y,T (T )
∑

T∈T

ζ2y,T (T )

) 1
2

≤ εF . (30)

Furthermore, as shown in [17], suitable marking strategies driven by both indicators ηy,T , ζy,T yield
optimal convergence of the resulting goal oriented AFEM (or goAFEM) algorithm, provided that
the axioms of adaptivity (A1-A4 in [5]) hold for the indicators ηy,T (T ), ζy,T (T ). If in Algorithms
2 and 3, we replace AFEM by goAFEM, then the results of Propositions 3.1 and 3.2 remain valid.
As a side advantage, we do not need to include ‖G‖V ∗ to the FEM tolerance εF .

Remark 3.3. Note that to use (30) we must solve numerically (28) for each sample y ∈ Pm,m =
1, 2, . . ., until the tolerance is met. However, the stiffness matrix of the dual problem coincides with
the transpose of the stiffness matrix of the primal, thus the additional work for the solution of (28)
includes only the construction of the load vector corresponding to G (independent of y) and one
linear solver per sample – in particular it is independent of the parametric dimension s ∈ N.

Remark 3.4. The axioms of adaptivity [5, (A1)-(A2)] are analogous to (16) and (17), while [5,
(A4)] is a discrete version of (18). Quasi-orthogonality [5, (A3)] holds trivially for symmetric
bilinear forms ay, y ∈ U , although here we do not assume symmetry and we must verify it on a
case by case basis, so to obtain optimal convergence of goAFEM.

3.3 Indicator averaging

Next, we design an iterative algorithm that refines the mesh or increases the number of samples
at each step. Conversely to the previous algorithms, at any given time we employ only one mesh
of the domain D for all y ∈ U . In this case, we will assume a-priori uniform convergence, slightly
stronger than the a-priori convergence in (21).

Assumption 3.1. Denote by (uTℓ
(y))ℓ∈N0 the sequence of approximations produced by Algorithm

4 with Tℓ+1 = REFINE(Tℓ,Mℓ), Mℓ = MARK({ηTℓ
(T )}) ⊆ Tℓ for all ℓ ∈ N0. We assume that

there exists u∞ ∈ C
0(U, V ) such that

‖u∞ − uTℓ
‖L∞(U,V ) → 0 as ℓ→∞. (31)
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Algorithm 4 AQMC-FEM

Input: [y 7→ ay], [y 7→ ly], G, ε, T0
Output: Approximation of I(G(u)) within tolerance ∝ ε
1: m← 2; generate P1, P2

2: T ← T0
3: while True do

4: for y ∈ Pm do

5: uT (y)← SOLVE(ay, ly, T )
6: {ηy,T (T )} ← ESTIMATE(uT (y))
7: Evaluate G(uT (y))
8: end for

9: η2T (T )←
1
2m

∑

y∈Pm
η2y,T (T )

10: if

√
∑

T∈T η
2
T (T ) > εF then

11: T ← REFINE(T ,MARK({ηT (T )}))
12: else

13: if Q2m−1(G(uT )) was not computed for the current T then

14: for y ∈ Pm−1 do

15: uT (y)← SOLVE(ay, ly, T )
16: Evaluate G(uT (y))
17: end for

18: end if

19: if |E2m(G(uT ))| ≤ εQ then

20: return Q2m(G(uT ))
21: end if

22: m← m+ 1
23: Generate lattice Pm
24: end if

25: end while

Theorem 3.5. Let T0 ∈ T. Assume that G ∈ V ∗, and that ∀T ∈ T u, uT satisfy either (9) or
(10) for a sequence β as in Proposition 2.1. Impose that the AFEM modules satisfy Assumption
2.2 and Assumption 3.1. Then, for all ε > 0 there exist εF , εQ, with ε

−1εF , ε
−1εQ independent of

ε, such that

1. Algorithm 4 stops in finite time and

2. it produces an approximation of I(G(u)) within tolerance c∗ε + O
(
b−2m+δ

)
, with constant

hidden in O(·) independent of s.

Proof. Fix m ∈ N. For a mesh T on D define ηT (T ) :=
(

1
2m

∑

y∈Pm
η2y,T (T )

) 1
2

the quadratic

mean over y ∈ Pm of the local indicators. Since {ηy,T (T )}T satisfy (17) for all y ∈ Pm, and all
T0 ≤ T ≤ T

′, we get

∑

T∈T ′\T

η2T ′(T ) ≤ qred
∑

T∈T \T ′

η2T (T ) +
1

2m

∑

y∈Pm

R(‖uT ′(y)− uT (y)‖V )

≤ qred
∑

T∈T \T ′

η2T (T ) +R(‖uT ′ − uT ‖L∞(U,V ))
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as R is increasing and uT ′ , uT are continuous. Hence, also ηT (T ) has the reduction property
(17), but with respect to the L∞(U, V )-norm. Similarly, from (16), monotonicity of S and Jensen
inequality

∑

T∈T ∩T ′

η2T ′(T ) ≤
∑

T∈T ∩T ′

η2T (T ) +
1

2m

∑

y∈Pm

S(‖uT ′(y)− uT (y)‖V )
2

+
1

2m

∑

y∈Pm

2S(‖uT ′(y)− uT (y)‖V )

(
∑

T∈T ∩T ′

η2y,T (T )

) 1
2

≤
∑

T∈T ∩T ′

η2T (T ) + S(‖uT ′ − uT ‖L∞(U,V ))
2

+ 2S(‖uT ′ − uT ‖L∞(U,V ))

(
∑

T∈T ∩T ′

η2T (T )

) 1
2

.

Taking square roots on both sides, we obtain that ηT (T ) has the stability property (16) with
respect to the L∞(U, V )-norm. Note that the modules MARK,REFINE are independent of y ∈ U
and we assumed a-priori convergence in (31) in the same norm; therefore, from the proof [21,
Theorem 3.1], for the sequence of meshes (Tℓ)ℓ∈N0

constructed by

Tℓ+1 = REFINE(Tℓ,MARK({ηTℓ
(T )}))

we obtain,
∑

T∈Tℓ

η2Tℓ
(T )→ 0 as ℓ→∞.

Thus for all m ∈ N, any FEM tolerance εF is met in finite time. Since uT satisfies (9) or (10) for
all T ∈ T (conversely to Algorithms 2 and 3, here there is only one mesh T at a time, used for
all points y ∈ Pm ∪ Pm−1), Proposition 2.1 implies that E2m(G(uT )) → 0 as m → ∞, showing
that Algorithm 4 stops in finite time. The error bound follows as in Proposition 3.1: denote by
T (m) := Tℓ(m),m ∈ N the mesh that meets the FEM error tolerance for the lattice Pm, i.e.

1

2m

∑

T∈T (m)

∑

y∈Pm

η2
y,T (m)(T ) ≤ ε

2
F . (32)

For all δ > 0,

|I(G(u))−Q2m(G(uT (m)))| ≤|Q2m(G(u− uT (m)))|+ |E2m(G(u− uT (m)))|

+ |E2m(G(uT (m)))|+O
(
2−2m+δ

)
.

Jensen inequality and (18) give

|Q2m(G(u− uT (m)))| ≤ ‖G‖V ∗

1

2m

∑

y∈Pm

‖u(y)− uT (m)(y)‖V ≤ c
∗ ‖G‖V ∗ εF . (33)

Note that, since T (m−1) ≤ T (m) as we never coarsen meshes, Galerkin orthogonality implies, for
C(λ̃,Λ) = 1 + Λ

λ̃

1

2m−1

∑

y∈Pm−1

‖u(y)− uT (m)(y)‖V ≤
C(λ̃,Λ)

2m−1

∑

y∈Pm−1

‖u(y)− uT (m−1)(y)‖V ≤ C(λ̃,Λ)c
∗εF ,
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whence
|E2m(G(u− uT (m)))| ≤

(

1 + C(λ̃,Λ)
)

c∗ ‖G‖V ∗ εF . (34)

The stopping criterion gives |E2m(G(uT (m)))| ≤ εQ so that

|I(G(u))−Q2m(G(uT (m)))| ≤
(

2 + C(λ̃,Λ)
)

c∗ ‖G‖V ∗ εF + εQ +O
(
2−2m+δ

)

and it is sufficient to pick εF := ε
2(2+C(λ̃,Λ))‖G‖V ∗

, εQ := c∗ε
2 to get the claim.

3.4 Goal oriented AFEM – part 2

We now include a goal oriented adaptivity approach in Algorithm 4. Given the estimator average

ϕT (T ) :=
(

1
2m

∑

y∈Pm
ϕ2
y,T (T )

) 1
2

, ϕ ∈ {η, ζ}, we define the following indicators from [1]

ρ2T (T ) := η2T (T )
∑

T ′∈T

ζ2T (T
′) + ζ2T (T )

∑

T ′∈T

η2T (T
′).

Proposition 3.6. Let {Tℓ}ℓ∈N0
be a sequence of meshes produced with the indicators ρTℓ

(T ) by a
marking and refinement strategy as in Assumption 2.2. Let K0 := maxy∈U (η

2
y,T0

+ ζ2y,T0
) < ∞.

Assume that both estimators ηy,T , ζy,T for the primal and dual problems satisfy reliability (18),
and (29) and the properties (16), (17) for T ∈ T. Then

ηTℓ
ζTℓ

=

(
∑

T∈Tℓ

ζ2Tℓ
(T )

) 1
2
(
∑

T∈Tℓ

η2Tℓ
(T )

) 1
2

→ 0, as ℓ→∞.

Proof. Due to (14), we have quasi-optimality of the primal and dual problems

‖u(y)− uT (y)‖V ≤ C(λ̃,Λ) inf
vT ∈VT

‖u(y)− vT ‖V

‖z(y)− zT (y)‖W ≤ C(λ̃,Λ) inf
wT ∈WT

‖z(y)− wT ‖W ,

for all T ∈ T. Hence, we get from [5, Lemma 3.6], quasi-monotonicity of the estimators: there
exists C > 0 independent of y ∈ U, T ∈ T such that

∑

T∈T

ϕ2
y,T (T ) ≤ C

∑

T∈T

ϕ2
y,T0

(T ) < CK0 with ϕ ∈ {η, ζ}. (35)

The axioms (16) and (17) for the indicators ρT (T ) are verified as in Theorem 3.5, and using that
K0 < ∞. Therefore we conclude with [21, Theorem 3.1] the claim,

∑

T∈Tℓ
ρ2Tℓ

(T ) = 2η2Tℓ
ζ2Tℓ
→ 0

as ℓ→∞.

As termination criterion for the spatial refinement we impose

1

2m

∑

y∈Pm

|G(u(y))−G(uT (y))| .

(
∑

T∈T

ζ2T (T )

) 1
2
(
∑

T∈T

η2T (T )

) 1
2

≤ εF . (36)

Convergence of a goal oriented adaptive QMC-FEM Algorithm follows replacing (33) with the
latter equation.
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3.5 Higher moments and Lipschitz goal functionals

Although we confined the analysis to linear G ∈ V ∗, inspection of the proofs reveals that the results
of the previous sections carry over to sufficiently smooth functionals Ĝ : V → R. In particular,
instead of the expectation of G(u) we can obtain higher moments setting Ĝ = Gk for some k ∈ N,
G ∈ V ∗. The additional steps required in the proofs read as follows. First, from (8) and a local
Lipschitz estimate for Gk we can bound the FEM error in (22), (33) as

∣
∣Gk(u(y))−Gk(uT (y))

∣
∣ = |G(u(y))−G(uT (y))|

∣
∣
∣
∣
∣

k−1∑

i=0

Gk−i−1(u(y))Gi(uT (y))

∣
∣
∣
∣
∣

. |G(u(y))−G(uT (y))|

≤ ‖G‖V ∗ ‖u(y)− uT (y)‖V .

Note that for k = 1 the last inequality was sufficient. Moreover, the first inequality also allows to
recover the goal oriented stopping criteria (30) and (36). Second, parametric regularity required
in Proposition 2.1 follows from the multivariate product rule: for k = 2 and the assumption (9)

∣
∣∂νyG

2(u(y))
∣
∣ =

∣
∣
∣
∣
∣
∣

∑

µ≤ν

(
ν

µ

)

∂µyG(u(y))∂
ν−µ
y G(u(y))

∣
∣
∣
∣
∣
∣

≤ ‖G‖2V ∗ (|ν|!)
1+κ(21+κβ)ν ,

which is again of the form (9). Here we used the bound
∑

µ≤ν

(
ν
µ

)
|µ|!|ν−µ|! ≤ 2|ν||ν|!. Note that

β ∈ ℓp(N) ⇐⇒ 21+κβ ∈ ℓp(N); therefore Proposition 2.1 applies for the same choice of p, which
in turn does not change depending on k. The case of assumption (10) follows the same steps, while
regularity for higher k > 2 can be treated iterating the product rule.

Hence, the computation of higher moments is covered and the error is only changed by a
constant dependent on k, ‖G‖V ∗ , Cl and λ.

3.6 Examples

In the present section we illustrate the framework in a selection of model problems.

Parametric diffusion. We consider a parametric stationary diffusion equation: given y ∈ U ,
find u(·,y) such that (3) holds, where a(·,y) ∈ W 1,∞(D) and f ∈ L2(D). We select an affine-
parametric diffusion coefficient: for {ψj}j∈N0

∈W 1,∞(D),

a(x,y) = ψ0(x) +

s∑

j=1

yjψj(x). (37)

Assume that the ψ0 > ψ0,min a.e. in D for a constant ψ0,min > 0 and the sequence β given by

βj =
‖ψj‖L∞(D)

ψ0,min
, j ≥ 1 satisfies ‖β‖ℓ1(N) :=

∑

j≥1 βj < 2 and β ∈ ℓp(N), for some p ∈ (0, 12 ). The

weak formulation of equation (3) reads, for all y ∈ U find u(·,y) ∈ V := H1
0 (D) such that

ay(u(·,y), v) :=

∫

D

a(·,y)∇u(·,y) · ∇v =

∫

D

fv =: ly(v) ∀v ∈ V. (38)

This model problem satisfies (2.1) and the derivative bound (9) with κ = 0, follows from [8]
or Theorem B.1. AFEM can be performed (with quasi-optimal convergence) for example by first
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order Lagrangian elements, standard residual indicators, Dörfler marking and refinement by newest
vertex bisection, as derived in [6].

For completeness we verify Lipschitz continuity (24) for the model problem: denote u(y) =
u(·,y) ∈ V , then affine parametric structure of a(·,y) gives

ψ0,min

(

1−
‖β‖ℓ1(N)

2

)

‖u(y)− u(y′)‖
2
V ≤ay(u(y)− u(y

′), u(y)− u(y′))

= 〈f, u(y)− u(y′)〉 − ay(u(y
′), u(y)− u(y′))

= 〈f, u(y)− u(y′)〉 − ay′(u(y′), u(y)− u(y′))

+
∑

j≥1

(y′j − yj)

∫

D

ψj∇u(y
′)∇(u(y)− u(y′)).

The first two terms cancel since f is independent of y ∈ U . Furthermore,

∣
∣
∣
∣
∣
∣

∑

j≥1

(y′j − yj)

∫

D

ψj∇u(y
′)∇(u(y)− u(y′))

∣
∣
∣
∣
∣
∣

≤ ψ0,min ‖u(y)− u(y
′)‖V ‖u(y)‖V

∑

j≥1

∣
∣y′j − yj

∣
∣βj .

Therefore defining dβ(y,y
′) :=

∑

j≥1

∣
∣y′j − yj

∣
∣βj and L := 4

ψ0,min(2−‖β‖ℓ1(N))
2 ‖f‖V ∗ we have the

claim. The same steps hold for a FE solution uT (y), for any T ∈ T. This also implies Assumption
3.1 due to compactness of U .

Shape Uncertainty Quantification for the Poisson equation. Consider the following do-
main uncertainty problem from [26]: define a family of domains {D(y) : y ∈ U} contained in a
hold-all domain D :=

⋃
D(y). Given a reference Lipschitz polyhedron D̂ ⊂ Rd d ∈ {2, 3}, we as-

sume that the family is parametrized by a C2(D̂) diffeomorphism Ψ: D̂×U → D by the relations
D(y) := Ψ(D̂,y) and

Ψ(x,y) = x+

s∑

j=1

yjψj(x), x ∈ D̂,y ∈ U (39)

for functions {ψj}j∈N
⊂ W 1,∞(D) satisfying β ∈ ℓp(N), p ∈ (0, 12 ) with βj := ‖ψj‖W 1,∞(D̂). For

all y ∈ U , let u(·,y) ∈ H1
0 (D(y)) solve the Poisson equation, given a source f ∈ C∞(D) analytic

(as in [26, Lemma 5]),

−∆u(x,y) = f(x) x ∈ D(y), u
∣
∣
∂D(y)

= 0. (40)

This problem can be recast by a change of variables to the reference domain: for V =W = H1
0 (D̂)

and for any y ∈ U , we seek û(·,y) := u(·,y) ◦Ψ ∈ V such that (2) holds with

ly(ŵ) :=

∫

D̂

f ◦Ψ(x,y)ŵ(x) det(J(x,y)) dx,

ay(v̂, ŵ) :=

∫

D̂

A(x,y)∇v̂(x) · ∇ŵ(x) dx,

(41)

where A(x,y) := (J⊤(x,y)J(x,y))−1 det(J(x,y)) and J(x,y) := ∇xΨ(x,y) is the Jacobian matrix
of Ψ. In [26, Theorem 5], the authors provided a derivative bound in the form (9), κ = 0, for û. The
AFEM modules are analogous to the previous example (but here with parametric matrix-valued
diffusion coefficient); the applicability of Algorithms 2 and 4 is straightforward.
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Linear elasticity of nearly incompressible materials. Robust approximation of linear elas-
ticity in the incompressible limit, (that is Poisson ratio ν ∈ (0, 12 ) approaching

1
2 ), was studied in

[30, 29] by the following three-field-formulation. Let E(x,y) = e0(x) +
∑s
j=1 yjej(x) ∈ L∞(D)

be the (affine-parametric) Young modulus, with 0 < e0,min < e0(x) < e0,max a.e., for constants
e0,min, e0,max. Define ε(v) := 1

2 [∇v + (∇v)⊤] the strain tensor (for a vector field v : D → Rd) and
f ∈ L2(D)d. Assume that the boundary conditions are of mixed type Dirichlet-Neumann given
respectively on ΓD,ΓN , both of positive length, with ΓD ∪ ΓN = ∂D, ΓD ∩ ΓN = ∅. Introducing
the extra variable p̃(x,y) = p(x,y)/E(x,y), where p(x,y) is the (parameter-dependent) Herrmann
pressure, we can write the linear elasticity equations as







−div
(
E(x,y)
(1+ν) ε(u(x,y))

)

+∇p(x,y) = f(x) x ∈ D,y ∈ U

div(u(x,y)) + c−1p̃(x,y) = 0 x ∈ D,y ∈ U

c−1p(x,y)− c−1E(x,y)p̃(x,y) = 0 x ∈ D,y ∈ U

u(x,y) = 0 x ∈ ΓD,y ∈ U(
E(x,y)
1+ν ε(u(x,y))− p(x,y)I

)

n(x) = 0 x ∈ ΓN ,y ∈ U

(42)

for the absolute constant c = c(ν) := ν
(1+ν)(1−2ν) only dependent on ν ∈ (0, 12 ). The weak

formulation is: for all y ∈ U , find (u(·,y), p(·,y), p̃(·,y)) ∈ V :=W := H1
ΓD

(D)d×L2(D)×L2(D)
such that (2) holds for the bilinear form

ay((v, g, g̃), (w, q, q̃)) =

∫

D

E(·,y)

1 + ν
ε(v) : ε(w)−

∫

D

gdivw −

∫

D

qdivv − c−1

∫

D

g̃ q

− c−1

∫

D

g q̃ + c−1

∫

D

E(·,y)g̃ q̃ ∀(v, g, g̃), (w, q, q̃) ∈ V (43)

and ly((w, q, q̃)) =
∫

D
fw. We equip V with the norm (related to [30, Equation (2.21)], but without

integrating out the parameter space)

‖(w, q, q̃)‖2V :=
1

1 + ν
‖∇w‖2L2(D) + (1 + ν + c−1) ‖q‖2L2(D) + c−1 ‖q̃‖2L2(D) . (44)

The main motivation to introduce the three-field formulation is that E only appears in the
numerator, and it is in particular affine-parametric. We thus verify the criteria of Theorem B.1.
The nominal operator A0 : V → V ∗, induced by a0 is linear and boundedly invertible by [30,

Theorem 2.4], with norm
∥
∥A−1

0

∥
∥ ≤ K0(1+ν)

1/2

e0,min
, for a constant K0 > 0 dependent on D and

‖e0‖L∞(D). Moreover, the fluctuations {Aj}j in the notation of Theorem B.1 satisfy, for all triples

(v, g, g̃), (w, q, q̃) ∈ V

〈Aj(v, g, g̃), (w, q, q̃)〉 =
1

1 + ν

∫

D

ejε(v) : ε(w) + c−1

∫

D

ej g̃q̃ ≤ ‖ej‖L∞(D) ‖(v, g, g̃)‖V ‖(w, q, q̃)‖V ,

(45)
that is ‖Aj‖ ≤ ‖ej‖L∞(D). Therefore, to obtain (9) we assume ‖β‖ℓ1(N) < 2,β ∈ ℓp(N) for some

p ∈ (0, 12 ), where

βj :=
K0(1 + ν)1/2

e0,min
‖ej‖L∞(D) . (46)

With these choices, this formulation fits Assumption 2.1 by [30, Lemma 2.3] and Theorem B.1;
hence the problem is well-posed and (9) holds with p < 1

2 . Lipschitz continuity (24) follows as
in the first example. Any converging AFEM solver (not necessarily conforming) for (42) ensures
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that Algorithms 2, 3 are applicable. In particular, the reliability and efficiency of [29, Theorem
5.1] (applied with Γ = {0}, in the notation there, i.e. for a deterministic equation) and suitable
inf-sup stable discretization spaces as VT := (Q2(T ))

d × Q1(T ) × Q1(T ) satisfying in (14) give,
for all y ∈ U , an AFEM algorithm based on hierarchical spatial refinement. Here, Q2(T ) denotes
the space of continuous piecewise biquadratic functions on T and Q1(T ) the continuous piecewise
bilinear functions, on quadrilatelar meshes.

4 Numerical experiments

We consider the model problem (3) on a polygon D ⊆ R2, for the solution of (15) we employ
Lagrangian P1-FEM on regular triangulations T ∈ T of D. AFEM is driven by the residual
indicators from, e.g. [35, Section 1.4] and the Dörfler MARK strategy with marking parameter
θ ∈ (0, 1), where larger θ corresponds to more aggressive refinement. In all the computations,
we select θ = 0.25. The REFINE module is the Newest Vertex Bisection as from the MATLAB
implementation in [19], that gives uniform shape regularity of T. We run on a machine equipped
with Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz (OctaCore) and MATLAB R2019a.

4.1 Convex domain

As a first example we select an affine-parametric diffusion, (3), (37) with ψ0 ≡ 1 and for j ≥ 1,

ψj(x) :=
1

(k2j,1 + k2j,2)
ξ
sin(kj,1πx1) sin(kj,2πx2), (47)

where the pairs (kj,1, kj,2) ∈ N2 are defined by the ordering of N2 such that for j ∈ N, k2j,1 + k2j,2 ≤

k2j+1,1 + k2j+1,2, and the ordering is arbitrary when equality holds. With this choice βj ∼ j−ξ,

that is β ∈ ℓp(N), p > 1
ξ . Let D = (0, 1)2, f(x) = e−|x|2 , s = 32, ξ = 2.1 and goal functional

G(v) = 4
∫

(0, 12 )
2 v. In this case we expect the mesh to be approximately uniformly refined by

AFEM, starting from a structured mesh T0 with 128 elements, since u(·,y) ∈ H2(D) for all y ∈ U ,
due to convexity of the domain and smoothness of the data. We also use the stopping criteria
(30), (36) for the FEM error exploiting symmetry of the stiffness matrix – see Remark 3.3 –
thus avoiding excessive spatial refinement. We compare the algorithms in Figure 1, for various
tolerances εF = εQ. For convenience of the reader, we compute a reference value with |T | ≈ 105

many P2 (i.e. quadratic) elements obtained by uniform refinement of T0 and |Pm| = 2m, m = 8
samples, obtaining I(G(u)) ≈ 0.024411631814585. Since we observe that the cost of computing
dβ(y,y

′) :=
∑

j≥1

∣
∣y′j − yj

∣
∣βj is negligible, we formally set q = ∞ in Algorithm 3. As predicted,

they all produce outputs well within the tolerance ε = 2εF . We also observe that, for the finest
tolerance (εF = 10−5), all 3 algorithms produce meshes with ≈ 2 · 105 degrees of freedom and they
stop at m = 7, that is 128 samples are sufficient to meet the tolerance. In terms of computing
time, Algorithm 2 lags behind the other 2 algorithms, which in turn offer comparable performance.
The rates in Figure 1 (right) are estimated excluding the coarsest tolerance (εF = 10−3).

4.2 L-shape domain

We again pick the affine parametric diffusion in sin expansion of (47). Let D = (−1, 1)2 \ [0, 1)×

(−1, 0], f(x) = e−2|x+(1,0)|2 be a localized source at (−1, 0). Assume homogeneous Neumann
boundary conditions at ΓN = {1}×(0, 1)∪(0, 1]×{0} and homogeneous Dirichlet at ΓD = ∂D\ΓN .
As Goal functional we pick G(v) =

∫

D∩B1/2
v, where Br denotes the ball centered at the origin with

radius r > 0. Again we choose s = 32, ξ = 2.1. We start from a uniform mesh T0 with |T0| = 192.
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Figure 1: Errors committed by the 3 different algorithms for varying tolerances (left). Runtimes
(in seconds) averaged over 2 runs and estimated rate (right).

The evolution of the QMC and FEM error estimators run by AQMC-FEM for εF = εQ = 5 · 10−6

are displayed in Figure 2. Note that no QMC estimator is computed until the FEM tolerance
is reached for m = 2. We measure the computational effort of each iteration of the algorithm
AQMC-FEM (indexed by a pair (m, ℓ) ∈ N2, corresponding to QMC and FEM refinement level,
respectively) by

W (m, ℓ) = |Pm||Tℓ|. (48)

This is proportional to the cost of the iteration (m, ℓ) of the SOLVE module, assuming that s is
fixed and that a FEM solver that performs linearly with respect to |Tℓ| is available. We also show
the mesh generated by AQMC-FEM for εF = εQ = 10−3; as expected, it is strongly graded near
the source and towards the corner of the domain, where a singularity of the solution occurs.
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Figure 2: Mesh produced by AQMC-FEM for εF = εQ = 10−3 (left) and decay of FEM and QMC
estimators (asterisk and square, respectively) against W (m, ℓ), for εF = εQ = TOL := 5 · 10−6

(right).
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5 Conclusions

We have presented a family of adaptive discretization methods that combine FEM error esti-
mation in the spatial domain and deterministic Polynomial lattice rules in the parameter box
U = [− 1

2 ,
1
2 ]
s. We recalled possible criteria to verify convergence of the AFEM iteration and to en-

able QMC a-posteriori estimation. The convergence of the parametric estimator is free of the curse
of dimensionality, allowing for arbitrary s ∈ N, also in practical examples, under the assumption
of quantified decay of the derivatives (10) or (9). Moreover, we stress that the parametric error is
estimated without resorting to the specific problem formulation. These are the main features that
improve upon existing methods based on stochastic Galerkin or sparse grids [2, 29, 14, 18].

Thus, we expect our algorithms to be applicable in a wide range of problems, including, but
not restricted to, those in the framework of Section 2, provided that a converging AFEM algorithm
is available for the corresponding non-parametric equation. In particular, we mention parabolic
equations (cp. a posteriori indicators in [35, Chapter 6]) and certain non-linear PDEs meeting the
criteria exposed in [7], stationary Stokes (cp. [5, Section 6.2-6.3]) and Navier-Stokes (cp. [35,
Chapter 5]) equations on uncertain domains [9] and elliptic eigenvalue problems [25], [5, Section
10.3].

Acknowledgement. The author would like to express his gratitude to Prof. Christoph Schwab
for the useful input and advice throughout the redaction of this work.

19



Appendix

A Polynomial lattices

Polynomial lattices are a class of QMC point sets, first introduced in [33]. Here we present the
definition used in the numerical experiments. Fix m ∈ N and b = 2 and denote by Z2 := {0, 1
(mod 2)} the field with 2 elements; let Z2[x],Z2((x)) be respectively the polynomials and formal
Laurent series with coefficients in Z2. We define

vm : Z2((x))→ [0, 1) with vm

(
∞∑

i=−∞

ξix
−i

)

:=

m∑

i=1

ξi2
−i. (49)

For n ∈ N with (unique) binary expansion n =
∑⌊log2(n)⌋
i=0 ni2

i, ni ∈ Z2, we write n(x) :=
∑⌊log2(n)⌋
i=0 nix

i ∈ Z2[x]. Given an irreducible polynomial p(x) ∈ Z2[x] of degree m and q(x) =
(q1(x), . . . , qs(x)) ∈ (Z2[x])

s componentwise of degree at most m− 1, a Polynomial lattice on U is
defined as the set Pm(q(x), p(x)) = {y0, . . . ,y2m−1} ⊂ U , where for n = 0, . . . , 2m − 1

yn :=

(

vm

(
q1(x)n(x)

p(x)

)

, . . . , vm

(
qs(x)n(x)

p(x)

))

−
1

2
, (50)

i.e. the cardinality |Pm(q(x), p(x))| = 2m.
For fixed m ∈ N, it remains to construct suitable polynomials p(x), q1(x), . . . , qs(x) that satisfy

Proposition 2.1. If u satisfies either (10) or (9), the sequence β is given as input to a Component-By-
Component (CBC) construction of the generating vector q(x) = (q1(x), . . . , qs(x)) of a Polynomial
lattice rule. Specifically, we operate inductively (over the parametric dimension s̄ = 1, . . . , s) a
minimization of (a computable bound for) the worst case quadrature error. Furthermore, the
computation of the minimum can be accelerated employing Fast Fourier transform, resulting in
a computational cost O(sm2m) for product weights, (that is, if (10) holds) and O

(
2m(s2 + sm)

)

for SPOD weights (in case (9) holds). We refer to [11] for a detailed analysis of the (Fast) CBC
algorithm for product weights, and to [10] for the case of weights of SPOD type used here. To
simplify the notation, we omit the explicit dependence of Pm(q(x), p(x)) on q(x), p(x) and write
Pm, to denote Polynomial lattices constructed by a CBC algorithm for given weights.

B Regularity of affine-parametric operators

We give a criterion to verify (9) for linear operators, with affine-parametric coefficients. Here
L(V,W ) denotes the space of linear operators A : V →W equipped with the usual norm.

Theorem B.1. Let V,W be reflexive Banach spaces and Ay ∈ L(V,W
∗) be affine parametric,

that is there exist a family of linear operators {Aj}j=0,...,s ⊂ L(V,W
∗) such that A0 is boundedly

invertible and

Ay = A0 +

s∑

j=1

yjAj in W ∗. (51)

Assume that β̃ = (β̃j) ∈ ℓ
p(N), p ∈ (0, 1] defined by β̃j :=

∥
∥A−1

0 Aj
∥
∥
L(V,V )

satisfies

∑

j≥1

β̃j < 2. (52)
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Moreover, for a sequence βl ∈ ℓ
p(N) assume that ly ∈ C

∞(U,W ∗) and

sup
y∈U

∥
∥∂νy ly

∥
∥
W∗ ≤ Cl|ν|!β

ν
l
, ∀ν ∈ NN

0 , supp(ν) <∞. (53)

Then, Ay is boundedly invertible for all y ∈ U and (9) holds with κ = 0, C = C ′Cl

∥
∥A−1

0

∥
∥
L(W∗,V )

and β := βl + C ′β̃ with C ′ = 2
2−

∑
j≥1 β̃j

. If l = ly is independent of y, the same estimate holds

with β := C ′β̃.

Proof. The proof follows the same arguments of [8, Theorem 4.3], see also [34].

For affine parametric bilinear forms ay, we can define Ay ∈ L(V,W
∗) by Ayv := ay(v, ·) ∈W

∗

for all v ∈ V . Hence, it is sufficient to verify (52) and (53) to obtain our working Assumption 2.1
and (9).

C Computational cost

We analyze the computation cost under the assumption that we have available SOLVE and
ESTIMATE modules for the Galerkin formulation (15) that run in O(s|T |) operations. On the
other hand, we assume that MARK and REFINE have cost O(|T |).

Fix a tolerance ε > 0 and consider Algorithm 2. Let Nℓ := maxy∈Pm |Tℓ(y)|, where Tℓ(y) is the
mesh obtained after ℓ iterations of AFEM for a sample y. From Proposition 3.1, we have ε ∼ εF
independent of m, that justifies imposing Nℓ independent of m: then the number of operations
required is

Work(QMC-AFEM) = O








M(ε)
∑

m=1

2m








s2 + sm
︸ ︷︷ ︸

CBC construction (SPOD weights)

+ s

ℓ(ε)
∑

ℓ=0

Nℓ

︸ ︷︷ ︸

AFEM















= O



s22M(ε)+1 + sM(ε)2M(ε)+1 + s2M(ε)+1

ℓ(ε)
∑

ℓ=0

Nℓ



 .

Here, M(ε), ℓ(ε) := ℓ(m, ε) ∈ N are the maximum number of iterations in the (outer) QMC and

(inner) AFEM loop, respectively. In the last step we used
∑M(ε)
m=1 m2m ∼M(ε)2M(ε)+1.

For spaces VT of piecewise polynomials, we have Nℓ(ε) ∼ ε
−d/t for some t > 0, which is typically

determined by the polynomial degree and the spatial regularity of the data (see e.g. [6]). Moreover,
due to Proposition 2.1 we have

2M(ε) ∼ ε−1. (54)

Similarly, in the case of Algorithm 3 we get, with ℓ(0, ε) := 0,

Work(QMC-AFEMv2) = O









M(ε)
∑

m=1

2m









s2 + sm
︸ ︷︷ ︸

CBC construction (SPOD weights)

+ s

ℓ(m,ε)
∑

ℓ=ℓ(m−1,ε)

Nℓ

︸ ︷︷ ︸

AFEM solver

+ s2min(m−1,q)
︸ ︷︷ ︸

argmin dβ

















= O



s22M(ε)+1 + sM(ε)2M(ε)+1 + 2s

ℓ(ε)
∑

ℓ=0

Nℓ + s2M(ε)+1Nℓ(ε) + s2M(ε)+1+min(M(ε),q)



 .
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If we set q > M(ε), the asymptotic cost increases quadratically with respect to 2M(ε), and the
argmin computation dominates the cost. Therefore, such choice is only possible when the metric
dβ is cheap to compute. Another possibility is imposing q such that 2q ∼ Nℓ(ε), so that the
dominating contribution to the computational cost is due to the AFEM solver.

We finally turn to Algorithm 4. The mesh that meets the FEM tolerance for Pm is denoted by
T (m) := Tℓ(m,ε) (cf. (32)). Hence we get

Work(AQMC-FEM) = O










M(ε)
∑

m=1

2m










s2 + sm
︸ ︷︷ ︸

CBC construction (SPOD weights)

+ s

ℓ(m,ε)
∑

ℓ=ℓ(m−1,ε)

Nℓ

︸ ︷︷ ︸

SOLVE,ESTIMATE



















+O







M(ε)
∑

m=1

2m−1
(

1 + sNℓ(m,ε)χ{T (m) 6=T (m−1)}

)

︸ ︷︷ ︸

QMC estimator

+

ℓ(M(ε),ε)
∑

ℓ=0

Nℓ
︸︷︷︸

MARK,REFINE






,

where χA denotes the indicator function of a set A. We observe that the extra cost, due to the
condition of Algorithm 4 line 13, is asymptotically lower than the cost for SOLVE and ESTIMATE.
Thus we conclude

Work(AQMC-FEM) = O



s22M(ε)+1 + sM(ε)2M(ε)+1 + (1 + 2s)

ℓ(ε)
∑

ℓ=0

Nℓ + s2M(ε)+1Nℓ(ε)



 .

Remark C.1. When
∑ℓ(ε)
ℓ=0Nℓ ∼ Nℓ(ε), i.e. the cost of the adaptive loop is dominated by the

last iteration (cf. [20]), all three algorithms require (asymptotically) the same computational effort
O
(
s2ε−1 + sε−1−d/t

)
.

Remark C.2. In addition to the assumptions of Proposition 2.1, if we impose that β ∈ ℓp(N)
for 0 < p < 1

α , for some α ∈ N, α ≥ 2, it is possible to employ higher-order QMC integration of
order α [12, 10], and a-posteriori QMC error estimation up to order α− 1 [10]. Thus, after slight
modifications to the algorithms, (54) improves to 2M(ε) ∼ ε−1/(α−1).
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Zürich, Switzerland, 2020.

[11] Josef Dick, Takashi Goda, and Takehito Yoshiki. Richardson extrapolation of polynomial
lattice rules. SIAM J. Numer. Anal., 57(1):44–69, 2019.

[12] Josef Dick, Frances Y. Kuo, Quoc T. Le Gia, Dirk Nuyens, and Christoph Schwab. Higher or-
der QMC Petrov-Galerkin discretization for affine parametric operator equations with random
field inputs. SIAM J. Numer. Anal., 52(6):2676–2702, 2014.

[13] Josef Dick, Quoc T. Le Gia, and Christoph Schwab. Higher order quasi-Monte Carlo inte-
gration for holomorphic, parametric operator equations. SIAM/ASA J. Uncertain. Quantif.,
4(1):48–79, 2016.

[14] Martin Eigel, Oliver G. Ernst, Björn Sprungk, and Lorenzo Tamellini. On the convergence of
adaptive stochastic collocation for elliptic partial differential equations with affine diffusion.
SIAM J. Numer. Anal., 60(2):659–687, 2022.

[15] Martin Eigel, Claude Jeffrey Gittelson, Christoph Schwab, and Elmar Zander. Adaptive
stochastic Galerkin FEM. Comput. Methods Appl. Mech. Engrg., 270:247–269, 2014.

[16] Martin Eigel, Claude Jeffrey Gittelson, Christoph Schwab, and Elmar Zander. A convergent
adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes. ESAIM
Math. Model. Numer. Anal., 49(5):1367–1398, 2015.

[17] Michael Feischl, Dirk Praetorius, and Kristoffer G. van der Zee. An abstract analysis of
optimal goal-oriented adaptivity. SIAM J. Numer. Anal., 54(3):1423–1448, 2016.

[18] Michael Feischl and Andrea Scaglioni. Convergence of adaptive stochastic collocation with
finite elements. Comput. Math. Appl., 98:139–156, 2021.

[19] Stefan Funken, Dirk Praetorius, and Philipp Wissgott. Efficient implementation of adaptive
P1-FEM in Matlab. Comput. Methods Appl. Math., 11(4):460–490, 2011.

[20] Gregor Gantner, Alexander Haberl, Dirk Praetorius, and Stefan Schimanko. Rate optimality
of adaptive finite element methods with respect to overall computational costs. Math. Comp.,
90(331):2011–2040, 2021.

23



[21] Gregor Gantner and Dirk Praetorius. Plain convergence of adaptive algorithms without ex-
ploiting reliability and efficiency. IMA Journal of Numerical Analysis, 03 2021. drab010.

[22] Robert N. Gantner. Dimension truncation in QMC for affine-parametric operator equations.
In Monte Carlo and quasi–Monte Carlo methods, volume 241 of Springer Proc. Math. Stat.,
pages 249–264. Springer, Cham, 2018.

[23] Robert N. Gantner, Lukas Herrmann, and Christoph Schwab. Quasi-Monte Carlo integration
for affine-parametric, elliptic PDEs: local supports and product weights. SIAM J. Numer.
Anal., 56(1):111–135, 2018.

[24] Robert N. Gantner and Christoph Schwab. Computational higher order quasi-Monte Carlo
integration. In Monte Carlo and quasi-Monte Carlo methods, volume 163 of Springer Proc.
Math. Stat., pages 271–288. Springer, Cham, 2016.

[25] A. D. Gilbert, I. G. Graham, F. Y. Kuo, R. Scheichl, and I. H. Sloan. Analysis of quasi-Monte
Carlo methods for elliptic eigenvalue problems with stochastic coefficients. Numer. Math.,
142(4):863–915, 2019.

[26] H. Harbrecht, M. Peters, and M. Siebenmorgen. Analysis of the domain mapping method for
elliptic diffusion problems on random domains. Numer. Math., 134(4):823–856, 2016.
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