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HIGH ORDER HOMOGENIZED STOKES MODELS CAPTURE ALL1

THREE REGIMES∗2
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Abstract. This article is a sequel to our previous work [13] concerned with the derivation of4
high-order homogenized models for the Stokes equation in a periodic porous medium. We provide5
an improved asymptotic analysis of the coefficients of the higher order models in the low-volume6
fraction regime whereby the periodic obstacles are rescaled by a factor η which converges to zero.7
By introducing a new family of order k corrector tensors with a controlled growth as η → 0 uniform8
in k ∈ N, we are able to show that both the infinite order and the finite order models converge in9
a coefficient-wise sense to the three classical asymptotic regimes. Namely, we retrieve the Darcy10
model, the Brinkman equation or the Stokes equation in the homogeneous cubic domain depending11
on whether η is respectively larger, proportional to, or smaller than the critical size ηcrit ∼ ε2/(d−2).12
For completeness, the paper first establishes the analogous results for the perforated Poisson equation,13
considered as a simplified scalar version of the Stokes system.14
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low volume fraction asymptotics, strange term.16
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1. Introduction. The homogenization of the Stokes system has attracted a lot18

of attention recently, regarding random or complex domains [17, 10], extensions to19

inhomogeneous viscosity or different kinds of boundary conditions [7, 16, 15], and new20

unified and quantitative homogenization approaches [21, 19] in the periodic setting.21

The goal of this paper is to show that higher order effective models provide a22

unified understanding for the homogenization for the Stokes system in a periodic23

porous medium:24

(1.1)





−∆uε +∇pε = f in Dε

div(uε) = 0 in Dε

uε = 0 on ∂ωε

(uε, pε) is D–periodic

25

where Dε = D\ωε is a d-dimensional cubic domain D = (0, L)d perforated with26

periodic obstacles ωε := ε(Zd+ ηT )∩D (represented on Figure 1) and the right-hand27

side f ∈ C∞
per(D,Rd) is a smooth D–periodic vector field. Dε is the union of periodic28

cells of size ε := L/N where N ∈ N is a large integer. Each cell contains an obstacle29

εηT where η > 0 is a rescaling of the obstacles. This parameter η allows to consider30

the so-called low volume fraction regime corresponding to the situation where the31

obstacles disappear at a rate η → 0 which possibly depends on ε. We assume the32

total fluid domain Dε to be connected, as well as the fluid component Y = P\(ηT )33
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2 F. FEPPON AND W. JING
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Fig. 1. The perforated domain Dε = D\ωε and the unit cell Y = P\(ηT ).

of the rescaled unit cell P := (−1/2, 1/2)d. The first assumption ensures that the34

pressure variable pε of (1.1) is uniquely determined up to a single additive constant35

while the second is used when considering cell problems in Y . For simplicity, the36

domain is assumed to be at least three-dimensional: d ≥ 3.37

In [13], we have derived a formal “infinite-order” homogenized system for (1.1)38

which reads in terms of averaged velocity and pressure (u∗
ε, p

∗
ε) as39

(1.2)





+∞∑

k=0

εk−2Mk · ∇ku∗
ε +∇p∗ε = f in D

div(u∗
ε) = 0 in D

(u∗
ε, p

∗
ε) is D–periodic.

40

In (1.2), (Mk)k∈N is a family of matrix valued tensors which can be explicitly con-
structed by a procedure involving cell problems that we review below, and k denotes
the order of the tensor Mk. For a given k ∈ N, Mk · ∇k is the differential operator
defined for any v ∈ C∞(R,Rd) by

(Mk · ∇kv)l := Mk
i1...ik,lm

∂k
i1...ik

vm

where we assume the Einstein summation convention over the repeated indices 1 ≤41

i1 . . . ik ≤ d and 1 ≤ l,m ≤ d.42

In order to obtain effective models suitable for numerical computations, we have43

proposed a truncation procedure for (1.2) inspired from [27]. For any integer K ∈ N,44

it yields a well-posed higher order homogenized model of finite order 2K + 2, which45

reads46

(1.3)





2K+2∑

k=0

εk−2
D

k
K · ∇kv∗

ε,K +∇q∗ε,K = f in D

div(v∗
ε,K) = 0 in D

(v∗
ε,K , q∗ε,K) is D–periodic,

47

where the coefficients (Dk
K)0≤k≤2K+2 is another family of matrix valued tensors. The48

system (1.3) is indeed a truncated version of (1.2) because the first half of the co-49

efficients coincide, namely D
k
K = Mk for 0 ≤ k ≤ K. The remaining higher order50

coefficients (Dk
K)K+1≤k≤2K+2 are in general different from (Mk)K+1≤k≤2K+2; they51
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HIGH ORDER HOMOGENIZED STOKES MODELS CAPTURE ALL THREE REGIMES 3

ensure that (1.3) is well-posed. It is then possible to show that, for a fixed η > 0,52

v∗
ε,K and q∗ε,K yield approximations of uε and pε at orders O(εK+3) and O(εK+1) in53

the L2(Dε) norm respectively. Similar results hold for the Laplace problem with a54

smooth periodic right-hand side f ∈ C∞
per(D),55

(1.4)





−∆uε = f in Dε

uε = 0 on ∂ωε

uε is D–periodic,

56

which we considered in [12]. In fact, it turns out that in scalar context of (1.4), free of57

the divergence constraint, the approximation error on the solution uε committed by58

the homogenized model of order 2K + 2 improves rather surprisingly up to the order59

O(ε2K+4).60

Still in [13], we have analyzed the asymptotic behaviors of the tensors Mk and61

D
k
K in the low volume fraction regime η → 0. Assuming d ≥ 3 for simplicity, we have62

found (see Corollary 5.5 of this reference)63

M0 ∼ ηd−2F(1.5)64

M1 = o(ηd−2)(1.6)65

M2 → −I(1.7)66

∀k ≥ 2,M2k = o

(
1

η(d−2)(k−1)

)
,(1.8)67

∀k ≥ 1,M2k+1 = o

(
1

η(d−2)(k−1)

)
,(1.9)68

69

as well as equivalent results for the tensors (Dk
K). The first result (1.5) has been known70

since the work of Allaire on the continuity of the Darcy equation [3], it involves a d×d71

dimensional matrix F ≡ (Fij)1≤i,j≤d which can be retrieved by solving an exterior72

problem in R
d\T (the definition is recalled in (4.10) below). In the scalar case, the73

same results hold with F being replaced by the capacity Cap(∂T ) of the obstacle.74

The motivation for seeking these asymptotics in [13] was to investigate whether75

the high order models (1.2) and (1.3) have the potential to unify the three classical ho-76

mogenized regimes acknowledged by the literature. Standard homogenization theory77

[26, 24, 9, 2, 4, 1, 5, 22, 23] states that (uε, pε) (or a suitable rescaling) converges in78

some sense to the solution (u∗, p∗) to three possible limit equations as ε → 0, depend-79

ing on how η compares with respect to the critical size ηcrit := ε2/(d−2). The limiting80

equation is either the Darcy, the Brinkman or the Stokes model in the homogeneous81

domain D.82

As far as we are concerned with the present periodic setting, we can read from83

(1.5)–(1.9), the following coefficient-wise convergences of (1.2) (or (1.3)) as η → 0 and84

ε → 0:85

• if 1 ≫ η ≫ ε2/(d−2), namely the holes are large, then the limiting equation86

for (ηd−2ε−2uε, pε) is the Darcy problem87

(1.10)





Fu∗ +∇p∗ = f in D

div(u∗) = 0 in D

u∗ is D–periodic;

88
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4 F. FEPPON AND W. JING

• if η ∼ cε2/(d−2), namely the holes are exactly proportional to the critical89

diameter acrit := ηcritε = εd/(d−2), then the limiting equation for (uε, pε) is90

the Brinkman problem91

(1.11)





−∆u∗ + cFu∗ +∇p∗ = f in D

div(u∗) = 0 in D

(u∗, p∗) is D–periodic,

92

where in both (1.10) and (1.11), F is the matrix appearing in (1.5).93

The coefficient-wise convergence of (1.2) towards either (1.10) and (1.11) is consistent94

with the literature which asserts that the solutions (u∗, p∗) to either (1.10) or (1.11)95

is the limit of (uε, pε) in the corresponding regimes. This allowed us to conclude96

in [13] that the high order homogenization process captures both the Darcy and the97

Brinkman regimes (1.10) and (1.11).98

Finally, the literature states that in the subcritical regime η = o << ε2/(d−2),99

(uε, pε) converges in some sense, as ε → 0, to the solution (u∗, p∗) of the Stokes100

equation in the homogeneous domain D (without holes):101

(1.12)





−∆u∗ +∇p∗ = f in D

div(u∗) = 0 in D

(u∗, p∗) is D–periodic.

102

Intuitively, this means that when η ≪ ε2/(d−2), the holes are too small to be actu-103

ally sensed by the effective model. However, the analysis that we performed in [11]104

is not sufficient to retrieve this result as a coefficient-wise convergence of the higher105

order models (1.2) or (1.3) to the homogeneous Stokes system (1.12). Indeed, al-106

though (1.5)–(1.7) allows to infer that the right convergence holds for the first three107

coefficients M0ε−2, M1ε−1 and M2, the asymptotic bounds (1.8) and (1.9) only en-108

able to obtain that the coefficient ε2k−2M2k is bounded when k ≥ 2 by the quantity109

(ε2/(d−2)/η)(k−1)(d−2) which grows to infinity as η → 0.110

In this perspective, the purpose of this article is to propose a different asymptotic111

analysis of [13] which allows to substantially improve the asymptotic convergences of112

(1.5)–(1.9). Our main results are stated in Corollary 4.6 and Proposition 4.10 where113

we obtain that in fact, Mk → 0 and D
k
K → 0 for any k > 2 with a convergence rate114

not bigger than O(ηd−2). This implies in particular the coefficient-wise convergence115

of the high-order models (1.2) and (1.3) towards the Stokes equation (1.12) not only116

in the subcritical regime η = o(ε2/(d−2)) as ε → 0, but also in the situation where the117

size of the periodic cell ε (and so their number) is fixed while the holes disappear as118

η → 0.119

All in all, this paper demonstrates that at least in the sense of coefficient-wise120

convergence, the effective models (1.2) and (1.3) have indeed the potential to yield high121

order homogenized approximations of (uε, pε) that are valid in all possible regimes122

of size of holes. A more formal statement would require to improve the error bounds123

of [13] involving uε and u∗
ε, so as to obtain error results with bounding constants124

uniform with respect to η. We expect this could be done by using e.g. the unified125

approach proposed in [18] in the context of the homogenization of the Poisson system;126

a precise treatment is left for future works.127

For completeness and in a pedagogical purpose, we prove the results first in the128

context of the Laplace problem (1.4), which can be considered as a simplified scalar129
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version of the full Stokes system (1.1). In a second part, we shall state how the results130

actually extend to (1.1) with an emphasis on the differences that occur due to the131

vectorial context and to the zero divergence constraint.132

The paper outlines as follows. Notation conventions and the definitions of various133

families of tensors (including Mk and D
k
K) related to the high order homogenization134

process are reviewed in section 2 for both the Poisson equation (1.4) and the Stokes135

system (1.1). Section 3 provides our new asymptotic analysis for the tensors Mk and136

D
k
K in the context of the Poisson equation (1.4). Treating first the scalar case allows137

us to highlight the key arguments in a simplified setting, namely the introduction of138

a new family of cell tensors (Yk(y))k∈N in P\(ηT ) whose averages (Yk∗)k∈N remain of139

the same order O(η2−d) uniformly in k ∈ N (Proposition 3.3). Finally, the Stokes case140

is treated in section 4. The main differences of the asymptotic analysis are related to141

the vectorial setting and the presence of the pressure, which require to consider vector142

and matrix valued tensors rather than scalar tensors. Furthermore, the asymptotic143

analysis of the coefficients Dk
K requires an additional treatment due to the fact that,144

in contrast with the scalar case, half of the coefficients (for K + 1 ≤ k ≤ 2K + 1) do145

not coincide with the corresponding tensors Mk.146

2. Setting, notation and review of available results. In this section, we147

review the notation conventions used for tensors and the definitions of the tensors148

(Mk)k∈N and (Dk
K)0≤k≤2K+2 in both contexts of the Poisson equation (1.4) and the149

Stokes system (1.1). Both situations involve the solutions of partial differential equa-150

tions posed in the perforated unit cell Y = P\(ηT ) where P = (−1/2, 1/2)d, T is an151

obstacle centered in the cell (i.e. 0 ∈ T ) and η > 0 is the rescaling. When consid-152

ering the low-volume fraction regime η → 0, we also assume that the hole is strictly153

included in the cell for 0 < η ≤ 1: T ⊂ P . The setting is illustrated on Figure 2.

P = (−1/2, 1/2)d

∂P

ηT

Fig. 2. Schematic of the cell P and the obstacle ηT .

154

2.1. Notation conventions. In the whole paper, we use the same notation155

conventions for tensor related operations as in our previous works [12, 13]. These are156

summarized in the nomenclature below. These notations allow us to systematically157

avoid writing indices for partial derivatives (e.g. 1 ≤ i1 . . . ik ≤ d), and to distinguish158

them from spatial indices (e.g. 1 ≤ l,m ≤ d) associated with vector or matrix159

components.160

We recall that unless otherwise specified, the Einstein summation convention161

over repeated subscript indices is assumed (but never on superscript indices). Vectors162

b ∈ R
d are written in bold face notation.163
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6 F. FEPPON AND W. JING

Scalar, vector, and matrix valued tensors and their coordinates164

b ≡ (bj)1≤j≤d Vector of Rd165

bk Scalar valued tensor of order k (bki1...ik ∈ R for 1 ≤ i1, . . . , ik ≤ d)166

bk Vector valued tensor of order k (bki1...ik ∈ R
d for 1 ≤ i1, . . . , ik ≤ d)167

Bk Matrix valued tensor of order k (Bk
i1...ik

∈ R
d×d for 1 ≤ i1, . . . , ik ≤168

d)169

(bkj )1≤j≤d Coordinates of the vector valued tensor bk (bkj is a scalar tensor of170

order k).171

(Bk
lm)1≤l,m≤d Coefficients of the matrix valued tensor Bk (Bk

lm is a scalar tensors172

of order k).173

bki1...ik,j Coefficient of the vector valued tensor bk (1 ≤ i1, . . . ik, j ≤ d).174

Bk
i1...ik,lm

Coefficients of the matrix valued tensor Bk (1 ≤ i1, . . . ik, l,m ≤ d).175

176

Tensor products177

bp ⊗ ck−p Tensor product of scalar tensors bp and ck−p:178

(2.1) (bp ⊗ ck−p)i1...ik := bpi1...ipc
k−p
ip+1...ik

.179

Bp ⊗ Ck−p Tensor product of matrix valued tensors Bp and Ck−p:180

(2.2) (Bp ⊗ Ck−p)i1...ik,lm := Bp
i1...ip,lj

Ck−p
ip+1...ik,jm

.181

Hence a matrix product is implicitly assumed in the notation Bp ⊗182

Ck−p.183

bp · ck−p Tensor product and inner product of vector valued tensors bp and184

ck−p:185

(2.3) (bp · ck−p)i1...ik := bpi1...ip,mck−p
ip+1...ik,m

.186

Bp · ck−p Tensor product of a matrix tensor Bp and a vector tensors ck−p:187

(2.4) (Bp · ck−p)i1...ik,l := Bp
i1...ip,lm

ck−p
ip+1...ik,m

.188

Hence a matrix-vector product is implicitly assumed in Bp · ck−p.189

Contraction with partial derivatives190

bk · ∇k Differential operator of order k associated with a scalar tensor bk:191

for any smooth scalar field v ∈ C∞
per(D,Rd),192

(2.5) bk · ∇kv := bki1...ik∂
k
i1...ik

v.193

bk · ∇k Differential operator of order k associated with a vector tensor bk:194

for any smooth vector field v ∈ C∞
per(D,Rd),195

(2.6) bk · ∇kv = bki1...ik,l∂
k
i1...ik

vl.196

Bk · ∇k Differential operator of order k associated with a matrix valued ten-197

sor Bk: for any smooth vector field v ∈ C∞
per(D,Rd),198

(2.7) (Bk · ∇kv)l = Bk
i1...ik,lm

∂k
i1...ik

vm.199

In (2.5)–(2.7) above, the reader may equivalently think ∇kv and200

∇kv as scalar valued and vector valued tensors of order k and the201

dot · notation as the contraction operator of two order k tensors.202
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Special tensors203

(ej)1≤j≤d Vectors of the canonical basis of Rd.204

ej Scalar valued tensor of order 1 given by ej,i1 := δi1j (with 1 ≤ j ≤ d).205

δij Kronecker symbol: δij = 1 if i = j and δij = 0 if i 6= j.206

I Scalar-valued identity tensor of order 2:

Ii1i2 = δi1i2 .

The identity tensor is another notation for the Kronecker tensor and207

it holds I = ej ⊗ej with summation on the index 1 ≤ j ≤ d. With a208

small abuse of notation and when the context is clear, we also denote209

by I the matrix-valued second order tensor I ≡ (Ii1i2,lm)1≤i1,i2,l,m≤d210

defined by211

(2.8) Ii1i2,lm := δi1i2δlm.212

This notation is used in (1.7), (4.18), and (4.32).213

In the whole paper, we consider zeroth order tensors which are scalar, vector or214

matrices devoid of partial derivative indices; e.g. b0 ∈ R if b0 is scalar, b0 ∈ R
d if215

b0(y) is a vector field, and so on. Then the various possible tensor products involving216

of a zero-th order tensor make sense and follow the same conventions as in eqn. (2.1)217

to (2.4).218

Since a k-th order tensor bk (scalar, vector or matrix valued) truly makes sense when
contracted with k partial derivatives, as in (2.5)–(2.7), all the tensors considered
throughout this work are identified to their symmetrization:

bki1...ik ≡ 1

k!

∑

σ∈Sk

biσ(1)...iσ(k)
,

where Sk is the permutation group of order k. Consequently, the order in which the219

derivative indices i1, . . . , ik are written in bki1...ik does not matter. This alleviates the220

need for specifying the order of the indices in tensor product notations such as in221

(2.15) below.222

In the paper, the star–“∗”– symbol is used to indicate that a quantity is “macro-
scopic” in the sense that it does not depend on the fast variable x/ε; such as (u∗

ε, p
∗
ε)

or (v∗
ε,K , q∗ε,K) in (1.2) and (1.3). In the particular case where a quantity X (y) is

given as a P–periodic function of Y = P\(ηT ) extended by 0 on the obstacle ∂(ηT ),
then X ∗ denotes the average of y 7→ X (y) with respect to the y variable:

X ∗(y) :=

∫

P

X (y)dy =

∫

P\(ηT )

X (y)dy.

At some places we find occasionally more convenient to write the cell average with
the more usual angle bracket symbols:

〈X 〉 :=
∫

P

X (y)dy.

Finally, we write C or CK to denote universal constants that do not depend on ε223

or η but whose values may be redefined from lines to lines.224
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8 F. FEPPON AND W. JING

Remark 2.1. In a limited number of places, the superscript or subscript indices225

p, q ∈ N are used. Naturally, these are not to be confused with the pressure variables226

pε or q∗ε,K introduced in (1.1) and (1.3).227

Remark 2.2. In all what follows, the various tensors coming at play such as X k,228

X k∗, Mk, Dk
K etc., depend on the scaling of the obstacle η, but this dependence is229

made implicit for notational simplicity.230

2.2. High order effective models for the perforated Poisson equation.231

For the Poisson equation, the homogenized equations of respectively “infinite” order232

and of order 2K + 2 read respectively233

(2.9)





+∞∑

k=0

ε2k−2M2k · ∇2ku∗
ε = f in D

u∗
ε is D–periodic,

234

235

(2.10)





K+1∑

k=0

ε2k−2
D

2k
K · ∇2kv∗ε,K = f in D

v∗ε,K is D–periodic.

236

Note that in this scalar context, (2.9) and (2.10) feature no odd order differential237

operators, i.e. M2k+1 = 0 and D
2k+1
K = 0 . The coefficients (Mk)k∈N and (Dk

2K+1)238

are defined by a procedure involving cell tensors (X k(y))k∈N and (Nk(y))k∈N with239

y ∈ Y .240

Definition 2.3. The cell tensors (X k(y))k∈N are defined recursively as the solu-241

tions to the following cascade of equations:242

(2.11)





−∆X 0 = 1 in P\(ηT )
−∆X 1 = 2∂jX 0 ⊗ ej in P\(ηT )

−∆X k+2 = 2∂jX k+1 ⊗ ej + X k ⊗ I in P\(ηT ), k ≥ 0

X k = 0 on ∂(ηT ), k ≥ 0

X k is P–periodic.

243

We then denote by X k∗ the average of the tensor field X k:244

(2.12) X k∗ :=

∫

P\(ηT )

X k(y)dy.245

Remark 2.4. Owing to our notation convention of subsection 2.1, the third equa-
tion of (2.11) can be equivalently written

−∆X k+2
i1...ik+2

= 2∂jX k+1
i1...ik+1

δjik+2
+ X k

i1...ik
δik+1ik+2

= 2∂ik+2
X k+1

i1...ik+1
+ X k

i1...ik
δik+1ik+2

.
.

In particular, the repeated index k in the equation is not summed over, but the246

repeated index j is.247
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Definition 2.5. The family of constant scalar tensors (Mk)k∈N is defined by the248

following recursive formula249

(2.13) Mk :=





(X 0∗)−1 if k = 0

−(X 0∗)−1
k−1∑

p=0

X k−p∗ ⊗Mp if k ≥ 1.
250

The definition (2.13) is valid because the tensor X 0∗ =
∫
Y
|∇X 0|2dy > 0 is a positive251

number; it rewrites equivalently as252

(2.14)

k∑

p=0

X p∗ ⊗Mk−p =

{
1 if k = 0

0 if k ≥ 1.
253

For k ≥ 1, Mk can be computed by the following explicit formula, see [12] (Proposition254

6):255

(2.15) Mk =
k∑

p=1

(−1)p
∑

i1+...ip=k
1≤i1...ip≤k

(X 0∗)−1 ⊗X i1∗ ⊗ · · · ⊗ (X 0∗)−1 ⊗X ip∗ ⊗ (X 0∗)−1.256

In [12] (Proposition 3), we have found that the definitions (2.11)–(2.13) imply that257

the odd order coefficient tensors vanish, namely X 2k+1∗ = 0 and M2k+1 = 0 for all258

k ≥ 0.259

The Cauchy product of the tensors (Mk)k∈N and (X k(y))k∈N then yields an ad-260

ditional and important family of cell tensors (Nk(y))k∈N.261

Definition 2.6. For any k ∈ N, we define the k-th order cell tensor Nk by262

(2.16) Nk(y) :=

k∑

p=0

Mp ⊗X k−p(y), y ∈ Y.263

Remark 2.7. Equation (2.14) states that the averages of the tensors (Nk)k∈N are264

given respectively by265

(2.17)

∫

Y

Nk(y)dy =

{
1 if k = 0

0 if k ≥ 1.
266

The tensors (Nk(y))k∈N allow to reconstruct the oscillating solution uε of (1.4) from267

its high order homogenized approximations u∗
ε or v∗ε,K given by (2.9) and (2.10).268

Indeed, the following identity holds at least in a formal sense,269

(2.18) uε(x) =

+∞∑

k=0

εkNk(x/ε) · ∇ku∗
ε(x), x ∈ Dε270

and likewise, we proved in [12] (Corollary 5) that the reconstructed function

Wε,2K+1(v
∗
ε,K) :=

2K+1∑

k=0

εkNk(x/ε) · ∇kv∗ε,K(x), x ∈ Dε
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10 F. FEPPON AND W. JING

approximates uε up to a remainder of order O(ε2K+4) in the L2(Dε) norm. The271

identity (2.18) relating uε to u
∗
ε is somewhat remarkable. We have called it a “criminal272

ansatz” based on similar observations which hold in the context of the conductivity273

or wave equation [8, 6].274

Finally, the tensors (Nk(y))k∈N determine the coefficients (Dk
K)0≤k≤2K+2 of (2.10)275

(see [12], Proposition 13).276

Definition 2.8. For any K ≥ 0 and 0 ≤ k ≤ 2K + 2, the coefficient D
k
K is277

defined by:278

D
k
K = Mk for any 0 ≤ k ≤ 2K + 1(2.19)279

D
2K+2
K = (−1)K+1

∫

Y

NK(y)⊗NK(y)⊗ Idy(2.20)280
281

where NK(y) is the cell tensor given by (2.16).282

2.3. High order effective models for the Stokes system in a porous283

medium. The construction of the tensors (Mk)k∈N and (Dk
K)0≤k≤2K+2 for the effec-284

tive Stokes systems (1.2) and (1.3) follow the same construction as in the scalar case,285

up to the following differences:286

1. due to the vectorial nature of uε, the tensors Mk, D
k
K , X k(y), X k∗ and287

Nk(y) become matrix valued. They include therefore k partial derivatives288

indices i1 . . . ik, and two spatial indices 1 ≤ l,m ≤ d which follow the notation289

conventions of subsection 2.1;290

2. the presence of the pressure pε and of the divergence constraint div(uε) = 0291

in (1.1) reflects in the introduction of vector valued tensorial pressure fields292

αk(y), βk(y) coming along X k(y) and Nk(y). The vector valued tensors293

αk(y) and βk(y) are therefore characterized by k partial derivative indices294

1 ≤ i1 . . . ik ≤ d and one spatial index 1 ≤ l ≤ d.295

The starting point is the definition of the solution tensors (X k(y), αk(y)) to a hierarchy296

of Stokes systems analogous to (2.11):297

Definition 2.9. For any k ≥ 0, we define respectively the vector valued tensors298

(X k
j (y))1≤j≤d and the scalar valued tensors (αk

j (y))1≤j≤d to be the unique solutions299

in H1
per(Y,R

d)× L2(Y ) to the following cell problems:300

{
−∆yyX

0
j +∇yα

0
j = ej in Y,

divy(X
0
j ) = 0 in Y

(2.21)301

{
−∆yyX

1
j +∇yα

1
j = (2∂lX

0
j − α0

jel)⊗ el in Y

divy(X
1
j ) = −(X 0

j − 〈X 0
j 〉) · el ⊗ el in Y,

(2.22)302

{
−∆yyX

k+2
j +∇yα

k+2
j = (2∂lX

k+1
j − αk+1

j el)⊗ el +X
k
j ⊗ I in Y

divy(X
k+2
j ) = −(X k+1

j − 〈X k+1
j 〉) · el ⊗ el in Y

∀k ≥ 0,(2.23)303

304

supplemented with the following boundary conditions:305

(2.24)





∫

Y

αk
jdy = 0

X
k
j = 0 on ∂(ηT )

(X k
j , α

k
j ) is P–periodic

∀k ≥ 0.306
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The k-th order matrix valued tensor field X k(y) is then assembled by gathering the
d vector valued tensors (X k

j (y))1≤j≤d into columns:

X k(y) :=
[
X

k
1(y) . . . X

k
d(y)

]
, ∀y ∈ Y, ∀k ≥ 0,

or in other words X k
ij(y) = X

k
j (y) · ei. Similarly, we define αk(y) to be the k-th order

vector valued tensor whose coordinates are the scalar tensors αk
j (y):

αk(y) := (αk
j (y))1≤j≤d, ∀y ∈ Y, ∀k ≥ 0.

Following (2.12), the matrix valued tensor X k∗ is then defined as the average of X k(y)307

over the perforated cell:308

(2.25) X k∗ :=

∫

Y

X k(y)dy, ∀k ≥ 0.309

Note that by the definition (2.24), αk(y) is of zero average for any k ≥ 0. Similarly,310

the porosity matrix X 0∗ is known to be symmetric definite positive [26]. Therefore,311

the following definition makes sense:312

Definition 2.10. The family of matrix valued tensors (Mk)k∈N is defined by the313

following recursive formula:314

(2.26)





M0 = (X 0∗)−1

Mk = −(X 0∗)−1
k−1∑

p=0

X k−p∗ ⊗Mp, ∀k ≥ 1.
315

Note that in contrast with the scalar case, matrix products take place between the316

tensors X k−p∗ and Mp in (2.26). The explicit formula (2.15) still holds under the317

same convention.318

Contrarily to the scalar case, odd order tensors X 2k+1∗ and M2k+1 do not vanish319

in general (they do in case the obstacle ηT is symmetric with respect to the cell axes).320

Instead, we find the following symmetry properties (Proposition 3.5 of [13]):321

Proposition 2.11. The k-th order tensors X k∗ and Mk are symmetric and an-322

tisymmetric matrix valued for respectively even and odd values of k; i.e.323

X 2k∗
i1...ik,lm

= X 2k∗
i1...ik,ml, M2k

i1...ik,lm
= M2k

i1...,ik,ml,324

X 2k+1∗
i1...ik,lm

= −X 2k+1
i1...ik,ml, M2k+1

i1...ik,lm
= −M2k+1

i1...ik,ml,325
326

where 1 ≤ i1, . . . , ik ≤ d and 1 ≤ l,m ≤ d denote respectively the partial derivative327

and the spatial indices.328

From the Cauchy product of Mk and X k(y), we define matrix and vector valued329

cell tensors Nk(y) and βk(y) (Proposition 3.9 in [13]).330

Definition 2.12. For any k ∈ N, let Nk and βk be respectively the k−th order

matrix valued and vector valued tensors defined by

Nk(y) :=
k∑

p=0

X k−p(y)⊗Mp, βk(y) :=

k∑

p=0

(−1)pMp ·αk−p(y), ∀y ∈ Y.
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12 F. FEPPON AND W. JING

Remark that a matrix product and a matrix-vector product take place in the respec-331

tive definitions of Nk(y) and βk(y). We have the following property analogous to332

(2.17) in this vectorial context:333

(2.27)

∫

Y

Nk(y)dy =

{
I if k = 0

0 if k ≥ 1.
334

It is useful to consider (Nk
j )1≤j≤d and (βk

j )1≤j≤d which are respectively the column335

vectors and the coefficients of Nk(y) and βk(y):336

(2.28) ∀1 ≤ i, j ≤ d, Nk
j (y) := Nk(y)ej and βk

j (y) := βk(y) · ej , y ∈ Y.337

Similar to the scalar case, these new tensors allow to reconstruct the oscillating338

velocity and pressure (uε, pε) solutions to (1.1) from their homogenized approxima-339

tions (u∗
ε, p

∗
ε) or (v∗

ε,K , q∗ε,K) given by (1.2) and (1.3). We have indeed the following340

formal identities341

(2.29)





uε(x) =

+∞∑

i=0

εiN i(x/ε) · ∇iu∗
ε(x)

pε(x) = p∗ε(x) +
+∞∑

i=0

εi−1βi(x/ε) · ∇iu∗
ε(x),

∀x ∈ Dε.342

Likewise, we proved in [13] that the reconstructed velocity and pressures343

Wε,K(v∗
ε,K)(x) :=

K∑

k=0

εkNk(x/ε) · ∇kv∗
ε,K(x), x ∈ Dε(2.30)344

Qε,K−1(v
∗
ε,K , q∗ε,K)(x/ε) := q∗ε,K(x) +

K−1∑

k=0

εk−1βk(x/ε) · ∇kv∗
ε,K(x), x ∈ Dε

(2.31)

345

346

yield approximations of uε and pε of respective order O(εK+3) and O(εK+1) in the347

L2(Dε) norm. Unfortunately and in contrast with the scalar case, we do not obtain348

an error estimate of order O(ε2K+4) for the velocity as it could have been expected,349

because only half of the coefficients D
k
K obtained from the well-posed truncation350

process of [13] turn to be equal to the Mk.351

The latter coefficients (Dk
K)0≤k≤2K+2 are indeed given by the following formulas352

(Proposition 4.10 of [13]):353

Definition 2.13. For any K ≥ 0 and 0 ≤ k ≤ 2K + 2, the coefficient D
k
K is354

defined by355

(2.32) D
k
K,ij =





Mk if 0 ≤ k ≤ K

Mk + A
k
K if K + 1 ≤ k ≤ 2K + 1

(−1)K+1

∫

Y

NK
i ·NK

j ⊗ Idy if k = 2K + 2.

356

where the matrix valued tensor A
k
K is given for any K + 1 ≤ k ≤ 2K + 1 by357

(2.33) A
k
K,ij := (−1)K+1

∫

Y

(∇βk−K−1
j ·NK+1

i + (−1)k∇βk−K−1
i ·NK+1

j )dy,358
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remembering the definition (2.28) of the vector valued and scalar valued tensors Nk(y)359

and βk
i (y).360

3. Low volume fraction asymptotic of the high order homogenized361

Laplace model. In this section, we are concerned with the scalar context of the362

perforated Laplace problem (1.4); the setting is therefore the one considered in sub-363

section 2.2. We aim at establishing the coefficient-wise convergence of both higher364

order models (2.9) and (2.10) of respectively infinite and finite orders, in the low-365

volume fraction regime η → 0, or in other words, the convergence of the tensors Mk366

and D
k
K .367

The main results of this section are Corollary 3.8 and Proposition 3.12 where we368

effectively obtain the asymptotics of these coefficient tensors.369

3.1. Cell tensors Yk(y) of controlled growth. The key ingredient which was370

missing in our previous analysis [12, 13] is the introduction of a new family of cell371

tensors (Yk(y))k∈N of controlled growth with respect to k.372

Definition 3.1. We define the family of cell tensors (Yk(y))k∈N by induction as373

the solutions to the following cascade of equations:374

(3.1)





−∆Y0 = 1 in P\(ηT )
−∆Y1 = 2∂jY0 ⊗ ej

−∆Yk+2 = 2∂jYk+1 ⊗ ej + (Yk − Yk∗)⊗ I in P\(ηT )
Yk = 0 on ∂(ηT )

Yk is P–periodic.

375

where for any k ∈ N, we denote by Yk∗ the average of these tensors in the unit cell:376

(3.2) Yk∗ :=

∫

P\(ηT )

Yk(y)dy.377

The benefit of introducing Yk(y) lies in the fact that the mean Yk∗ remains not bigger378

than O(η2−d) as η → 0 uniformly in k ∈ N. The proof relies on the following classical379

Poincaré estimates in the perforated cell [3, 18] which is recalled in the next lemma.380

Lemma 3.2. For any v ∈ H1(P\(ηT )) which is P–periodic and vanishes on the381

hole ∂(ηT ), the following Poincaré inequality holds:382

(3.3) ||v||L2(P\(ηT )) ≤ Cη1−d/2||∇v||L2(P\(ηT ),Rd)383

for a constant C > 0 independent of η and v. Furthermore, for any v ∈ H1(P\(ηT )),384

the following Poincaré-Wirtinger inequality holds:385

(3.4) ||v − 〈v〉||L2(P\(ηT )) ≤ C||∇v||L2(P\(ηT ),Rd)386

These inequalities entail the following result for the tensors (Yk(y))k∈N:387

Proposition 3.3. For any integer k ≥ 0, there exists a constant Ck > 0 inde-388

pendent of η such that389

||∇Yk||L2(P\(ηT ),Rd) ≤ Ckη
1−d/2(3.5)390

||Yk − Yk∗||L2(P\(ηT )) ≤ Ckη
1−d/2(3.6)391392
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14 F. FEPPON AND W. JING

where, with a little abuse of notation, it is understood that every component Yk
i1...ik

with 1 ≤ i1 . . . ik ≤ d satisfies (3.5) and (3.6). In addition, there exists a constant

α > 0 independent of k and η such that

0 < Ck < α(1 +
√
2)kCk

where C is the Poincaré constant of (3.3) and (3.4).393

Proof. We proceed by induction.394

Case k = 0: multiply the first equation of (3.1) by Y0, then integrate by parts to395

obtain396

397

||∇Y0||2L2(P\(ηT ),Rd) =

∫

P\(ηT )

Y0dy ≤ ||Y0||L2(P\(ηT ))398

≤ Cη1−d/2||∇Y0||L2(P\(ηT ),Rd).399400

Case k = 1: multiply the second equation of (3.1) by Y1, then integrate by parts to401

obtain402

403

||∇Y1||2L2(P\(ηT ),Rd) ≤ 2||∇Y0||L2(P\(ηT ),Rd)||Y1 − Y1∗||L2(P\(ηT ))404

≤ 2C2η1−d/2||∇Y1||L2(P\(ηT ),Rd).405406

Case k + 2 with k ≥ 0: assuming the result is true till rank k + 1, multiply the third
equation of (3.1) by Yk+2, then integrate by parts to obtain

||∇Yk+2||2L2(P\(ηT ),Rd)

≤ (2||∇Yk+1||L2(P\(ηT ),Rd) + ||Yk − Yk∗||L2(P\(ηT )))||Yk+2 − Yk+2∗||L2(P\(ηT ))

≤ (2Ck+1 + Ck)Cη1−d/2||∇Yk+2||L2(P\(ηT ),Rd).

This implies (3.5). Then (3.6) follows from (3.3) and (3.4).407

Using the Cauchy-Schwarz inequality and (3.5), we can infer from the above result408

that |Yk∗| ≤ Ckη
2−d. The next proposition provides more precise asymptotics for the409

mean Yk∗ (eqn. (3.2)). In particular, we find that in fact, Yk∗ = o(η2−d) for k ≥ 1.410

Proposition 3.4. The following asymptotic convergences hold for the mean ten-411

sors (Yk∗)k∈N as η → 0:412

(3.7) Y0∗ ∼ η2−d

Cap(∂T )
and Yk∗ = o(η2−d) for k ≥ 1.413

Proof. Since Y0∗ = X 0∗, the result for k = 0 is standard and can be found414

in [3, 18]. The case k = 1 (and in fact for any odd value of k) is trivial since415

Y1∗ = X 1∗ = 0. In order to prove that Yk+2∗ = o(η2−d) for any k ≥ 0, we follow the416

lines of the proof of [12], Proposition 14.417

Let us denote Ỹk := ηd−2Yk for any k ≥ 0. Then Ỹ k is the solution to418

(3.8)





−∆Ỹk+2 = 2η∂jỸk+1 ⊗ ej + η2(Ỹk − 〈Ỹk〉)⊗ I in η−1P\T
Yk+2 = 0 on ∂T

Yk+2 is η−1P–periodic,

419
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with 〈Ỹk〉 := ηd
∫
η−1P\T

Ỹkdx. From the previous proposition, there exists a constant

C > 0 independent of η such that

||∇Ỹk+2||L2(η−1P\T,Rd) ≤ C and |〈Ỹk+2〉| ≤ C.

Hence, up to extracting a subsequence, we may assume the existence of order k + 2
field and scalar valued tensors Ψk+2(x) ∈ H1

loc(η
−1P\T ) and γk+2 ∈ R such that

Ỹk+2 ⇀ Ψk+2 weakly in H1
loc(R

d\T ) and 〈Ỹk+2〉 → γk+2 as η → 0.

Furthermore, the lower-semi continuity of the D1,2(Rd\T ) norm (see the proof of420

Theorem 3.1 in [3] for a detailed justification) implies that Ψk+2 − γk+2 belongs to421

D1,2(Rd\T ). Multiplying (3.8) by a compactly supported test function φ, integrating422

by part and passing to the limit implies that Ψk+2 is the solution to the exterior423

problem424

(3.9)





−∆Ψk+2 = 0 ∈ R
d\T

Ψk+2 = 0 on ∂T

Ψk+2 → γk+2 at infinity.

425

Therefore Ψk+2 = γk+2φ∗ where φ∗ is the solution to426

(3.10)





−∆φ∗ = 0 ∈ R
d\T

φ∗ = 0 on ∂T

φ∗ → 1 at infinity.

427

To identify γk+2, we multiply (3.8) by the constant function 1 and we integrate by
part to obtain that

0 = −
∫

∂T

∂Ỹk+2

∂n
dy

because the right-hand side of (3.8) is of average zero. Using now the continuity of the
normal flux with respect to the H1

loc(R
d\T ) weak convergence, we obtain by passing

to the limit as η → 0:

0 = − lim
η→0

∫

∂T

γk+2 ∂φ
∗

∂n
dy = Cap(∂T )γk+2,

whence γk+2 = 0. This implies that the whole sequence (〈Ỹk+2〉)η>0 converges to428

zero, and then (3.7) by rescaling.429

We now find that the tensors (X k(y))k∈N to (Yk(y))k∈N are related by a Cauchy430

product identity.431

Proposition 3.5. The tensors Yk(y) can be rewritten in terms of the tensors432

X k(y) and X k∗ according to the following recursive formula:433

(3.11)





Y0(y) = X 0(y)

Y1(y) = X 1(y)

Yk(y) = X k(y)−
k−2∑

l=0

Y l(y)⊗X k−l−2∗ ⊗ I for k ≥ 2,

y ∈ P\(ηT ).434
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Proof. Let us denote by Yk(y) the tensors defined according to (3.11). We prove
that the tensors Yk referring to this definition solve the cascade of partial differential
equations (3.1), which implies the result by uniqueness. Obviously (3.1) is true for Yk

with k = 0 or k = 1. Assuming the third equation is true till k − 1 with k ≥ 0 (with
the convention Y−1 = 0), we then prove that it still holds at rank k. We compute

−∆Yk+2 = −∆X k+2 −
k∑

l=0

(−∆Y l)⊗X k−l∗ ⊗ I

= 2∂jX k+1 ⊗ ej + X k ⊗ I −X k∗ ⊗ I − 2∂jY0 ⊗ ej ⊗X k−1∗ ⊗ I

−
k∑

l=2

(2∂jY l−1 ⊗ ej + (Y l−2 − Y l−2∗)⊗ I)⊗X k−l∗ ⊗ I

= 2∂j

(
X k+1 −

k−1∑

l=0

Y l ⊗X k−l−1∗
η ⊗ I

)
⊗ ej

+

(
X k ⊗ I −X k∗ ⊗ I −

k−2∑

l=0

(Y l − Y l∗)⊗X k−l−2∗ ⊗ I ⊗ I

)

= 2∂jYk+1 ⊗ ej + (Yk − Yk∗)⊗ I,

which implies the result.435

Remark 3.6. Let us comment the consequences of Propositions 3.3 and 3.5. From436

(3.11), we have obtained, for any p ∈ N,437

(3.12) X p∗ = Yp∗ +

p−2∑

l=0

Yp−2−l∗ ⊗X l∗ ⊗ I.438

Since Yp−2−l∗ = O(η1−d/2), a simple recursive argument, (3.12) yields the following439

asymptotic for the tensors X 2k∗ for k ≥ 1:440

(3.13) X 2k∗ =
η(2−d)(k+1)

Cap(∂T )k+1
I ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸

k times

+o(η(2−d)k), k ≥ 1,441

which is a slight quantitative improvement of the result of [12], Proposition 14. In442

our previous works [12, 13], our asymptotics (1.5) to (1.9) were obtained by inserting443

the estimate (3.13) into the explicit formula (2.15) for the tensor Mk. However this444

leads to suboptimal bounds due to the fact that the mean of X 2k is growing with k445

like X 2k∗ = O(η−(d−2)(k+1)).446

Since from (3.7), Yk∗ has a controlled growth with respect to η (namely Yk∗ =447

O(η2−d) independently of k), we obtain in the next section improved asymptotic448

estimates for the coefficient tensors Mk by relying on the exact identity (3.12). Note449

that (3.12) can be interpreted as an asymptotic expansion for X p∗, because the terms450

Yp−2−2l∗ ⊗X 2l∗ of the expansion have an increasing magnitude O(η−(d−2)(l+2)).451

3.2. Low-volume fraction asymptotics of the infinite order homoge-452

nized equation.453

Proposition 3.7. The following identity holds for any k ≥ 1:454

(3.14)

k∑

p=0

Yp∗ ⊗Mk−p = −Yk−2∗ ⊗ I455
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with the convention Y−1∗ = 0.456

Proof. Let us multiply (3.12) byMk−p and compute the summation for 0 ≤ p ≤ k:457

(3.15)
k∑

p=0

X p∗ ⊗Mk−p =

k∑

p=0

Yp∗ ⊗Mk−p +

k∑

p=0

p−2∑

l=0

Y l∗ ⊗X p−2−l∗ ⊗Mk−p ⊗ I

=

k∑

p=0

Yp∗ ⊗Mk−p +

k−2∑

l=0

k∑

p=l+2

Y l∗ ⊗X p−2−l∗ ⊗Mk−p ⊗ I

=

k∑

p=0

Yp∗ ⊗Mk−p +

k−2∑

l=0

Y l∗ ⊗
(

k−l−2∑

p=0

X p∗ ⊗Mk−l−2−p

)
⊗ I

.458

Using now (2.14), the second terms of the above equation vanishes except for k−l−2 =
0 where it is equal to one. Since the above quantity is also zero for k ≥ 1, we obtain
therefore, for k ≥ 2:

0 =

k∑

p=0

X p∗ ⊗Mk−p =

k∑

p=0

Yp∗ ⊗Mk−p + Yk−2∗ ⊗ I

which is the result (3.14).459

Identity (3.14) is a recursive formula for the tensors (Mk)k∈N. This allows to obtain460

the following asymptotic estimates.461

Corollary 3.8. The tensors Mk satisfy the following asymptotics as η → 0:462

M0 ∼ Cap(∂T )ηd−2(3.16)463

M2 = −I + o(ηd−2)(3.17)464

M2k = o(ηd−2) for any k ≥ 2.(3.18)465466

Proof. The first asymptotic is already known. For k = 1, (3.14) reads

M2 = (Y0∗)−1(−Y0∗ ⊗ I − Y2∗ ⊗M0) = −I + (M0)2Y2∗.

Since M0 = O(ηd−2) and Y2∗ = o(η2−d), we obtain (3.17).467

Then for k ≥ 2, we rewrite (3.14) as

M2k = −(Y0∗)−1

(
Y2k−2∗ ⊗ I +

k∑

p=1

Y2p∗ ⊗M2(k−p)

)

= −M0
(
Y2k∗ ⊗M0 + Y2k−2∗ ⊗ (M2 + I) + Y2k−4∗ ⊗M4 + · · ·+ Y2∗ ⊗M2k−2

)
.

Assuming the results holds till the rank k − 1, we see that all the terms in the468

parenthesis are of order o(1). Therefore, (3.18) follows by induction, since M0 =469

O(ηd−2).470

Remark 3.9. We now have the full picture of how (2.9) behaves in the low volume471

fraction limit. Indeed, we have obtained, as η → 0472

ε−2M0 ∼ ηd−2ε−2Cap(∂T )(3.19)473

ε0M2 → −I(3.20)474
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ε2k−2M2k = o(ε2k−2ηd−2) for k ≥ 2.(3.21)475476

Therefore we obtain the coefficient-wise convergence of the infinite order homogenized477

equation (2.9) to the three classical limiting equations depending on how η compares478

with the critical scaling ηcrit ∼ ε2/(d−2):479

• if η ≫ ε2/(d−2), then the zero-th order term remains dominant and the limit-480

ing equation for ε−2ηd−2uε is the zero-th order model481

(3.22)

{
Cap(∂T )u∗ = f in D

u∗ is D–periodic,
482

which is the scalar analogue of the Darcy equation (1.10);483

• if η = cε2/(d−2) for some constant c > 0, then ε−2M0 converges to cCap(∂T )484

and (2.9) converges coefficient-wisely to the Poisson equation with “strange485

term”486

(3.23)

{
−∆u∗ + cCap(∂T )u∗ = f in D

u∗ is D–periodic.
487

This is the analogue of the Brinkman regime (1.11).488

• Finally, if η = o(ε2/(d−2)), then ε−2M0 → 0, ε0M2 → −I and ε2k−2M2k → 0489

for k ≥ 2. We obtain therefore the Poisson equation in the homogeneous490

domain D as the limit model:491

(3.24)

{
−∆u∗ = f in D,

u∗ is D–periodic,
492

which is the analogue of the unperturbed Stokes regime (1.12).493

3.3. Low volume fraction asymptotics of the truncated higher order494

homogenized equation. We finally terminate this section by showing that the ho-495

mogenized model (2.10) of finite order 2K + 2 has the same asymptotic behavior as496

(2.9) in the low-volume fraction regime η → 0.497

According to Definition 2.8, it is sufficient to examine the asymptotic of the498

coefficient D
2K+2
K only, since D

k
K = Mk for 0 ≤ k ≤ 2K + 1. From (2.20), this499

requires to estimate the tensor NK(y) defined in (2.16). This can be achieved by500

conveniently rewriting NK(y) in terms of the tensors (Yk(y))k∈N.501

Proposition 3.10. For any k ≥ 0, the tensor Nk(y) reads in terms of Yk(y) as502

follows:503

(3.25)

Nk(y) =

k∑

p=0

Yp(y)⊗Mk−p + Yk−2(y)⊗ I

= Yk ⊗M0 + Yk−1 ⊗M1 + Yk−2 ⊗ (M2 + I) + Yk−3 ⊗M3 + · · ·+ Y0 ⊗Mk

504

where Yk−2 := 0 for 0 ≤ k ≤ 1 by convention.505

Proof. The proof is identical to that of Proposition 3.7: it suffices to replace506

X k−p(y) with the formula given by (3.11) and to simplify the Cauchy product by507

using (2.14).508

Remark 3.11. It is visible that the identity (3.14) can also be obtained by com-509

puting the average of (3.25) and by using (2.17).510
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The estimates of Corollary 3.8 finally allow to prove that the truncated homogenized511

equation (2.10) of order 2K + 2 has the same limiting behavior as the infinite order512

homogenized equation (2.9) as η → 0.513

Proposition 3.12. We have the following asymptotics for the tensor D
2K+2
K as514

η → 0:515

D
2
0 = −I +O(ηd−2)(3.26)516

D
2K+2
K = O(ηd−2) for K ≥ 1.(3.27)517518

In particular, for any K ∈ N, the coefficients (Dk
K)0≤k≤2K+2 of the higher homog-519

enized equation (2.10) of order 2K + 2 satisfy the same asymptotics as the tensors520

(Mk) as η → 0:521

D
0
K ∼ Cap(∂T )ηd−2

522

D
2
K = −I +O(ηd−2)523

D
2k
K = O(ηd−2) for any k ≥ 2.524525

Proof. Case K = 0: we have

D
2
0 =

(
−|M0|2

∫

Y

|Y0|2dy
)
I

=
(
−
(
|Y0∗|2(1− ηd|T |) + ||Y0 − Y0∗||2L2(P\(ηT ))

)
|M0|2

)
I

= (−1 +O(ηd−2))I

where the last estimate is a consequence of (3.6).526

Case K ≥ 1: we have

|D2K+2| =
∣∣∣∣
∫

Y

NK ⊗NK ⊗ Idy

∣∣∣∣ ≤ CK ||NK ||2L2(P\(ηT ))

for a constant CK > 0 which depends only on K. Since NK is of average zero for
K ≥ 1, we can rewrite (3.25) as

NK =
K∑

p=0

(Yp − Yp∗)⊗MK−p + (YK−2 − YK−2∗)⊗ I

= (YK − YK∗)⊗M0 + (YK−1 − YK−1∗)⊗M1 + (YK−2 − YK−2∗)⊗ (M2 + I)

+ (YK−3 − YK−3∗)⊗M3 + · · ·+ (Y0 − Y0∗)⊗MK .

.

Therefore by using again (3.6) and Corollary 3.8, we arrive at

||NK ||2L2(P\(ηT )) = O(ηd−2)

which yields the result by using (2.20).527

Remark 3.13. We lost a bit in terms of speed of convergence: the high order coef-528

ficients (Dk
K)3≤k≤2K+2 are only O(ηd−2) while (Mk)k≥3 is of order o(ηd−2). However,529

since both quantities converge to zero due to our assumption d ≥ 3, the conclusions of530

Remark 3.9 remain valid. Therefore the truncated model (2.10) converge as well to ei-531

ther of the three regimes (3.22)–(3.24) depending on whether η is greater, proportional532

to or lower than the critical size ηcrit ∼ ε2/(d−2).533
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4. The Stokes case. In this final section, we extend the asymptotic analysis534

of the previous section 3 to the Stokes system (1.1). We recall the homogenization535

setting reviewed in subsection 2.3, and our goal is to prove the coefficient-wise conver-536

gence of both the infinite order and the finite order effective models (1.2) and (1.3).537

We recall the Definitions 2.10 and 2.13 of their respective coefficients (Mk)k∈N and538

(Dk)0≤k≤2K+2.539

The asymptotics of these coefficient tensors are obtained in Corollary 4.6 and540

Proposition 4.10. The proof follow the lines of section 3; the key ingredient is the in-541

troduction of matrix and vector valued cell tensors (Yk(y),ωk(y))k∈N with controlled542

growth, which generalize the family of scalar valued tensors (Yk(y))k∈N introduced in543

subsection 3.1.544

4.1. Cell tensors (Yk(y),ωk(y))k∈N of controlled growth. Recall the hier-545

archy of corrector systems (2.21)–(2.23) defining the cell tensors (X k
j (y), α

k
j (y))k∈N.546

We define the cell tensors (Yk
j (y), ω

k
j (y))k∈N by an analogous recurrence.547

Definition 4.1. For any 1 ≤ j ≤ d, we define a family of vector valued tensors548

(Yk
j (y)) and scalar valued tensors (ωk

j (y))k∈N as the unique solutions in H1
per(Y,R

d)×549

L2(Y ) to the following recursive systems:550

{
−∆Y

0
j +∇ω0

j = ej in Y,

div(Y0
j ) = 0 in Y,

(4.1)551

{
−∆Y

1
j +∇ω1

j = (2∂lY
0
j − ω0

jel)⊗ el in Y,

div(Y1
j ) = −(Y0

j − 〈Y0
j 〉) · el ⊗ el in Y,

(4.2)552

{
−∆Y

k+2
j +∇ωk+2

j = (2∂lY
k+1
j − ωk+1

j el)⊗ el + (Yk
j − 〈Yk

j 〉)⊗ I, in Y

div(Yk+2
j ) = −(Yk+1

j − 〈Yk+1
j 〉) · el ⊗ el in Y,

(4.3)553

554

supplemented with the following boundary conditions:555

(4.4)





∫

Y

ωk
j dy = 0

Y
k
j = 0 on ∂(ηT )

(Yk
j , ω

k
j ) is P–periodic

∀k ≥ 0.556

It is immediate to see that (Yk
j (y), ω

k
j (y)) and (X k

j (y), α
k
j (y)) coincide for k = 0, 1.557

In what follows, we also set (Y−1(y), ω−1(y)) = (X−1
j (y), α−1

j (y)) = 0 by convention,558

so that (4.3) becomes valid for k = −1.559

Our goal next is to obtain controlled estimates for (Yk
j (y), ω

k
j (y)) that are similar560

to those obtained in Proposition 3.3 in the Laplace case. We rely on the following561

result which allows to estimate the pressure term.562

Lemma 4.2. Consider h ∈ L2(P\(ηT ),Rd) and g ∈ L2(P\(ηT )) a function sat-563

isfying
∫
P\(ηT )

gdx = 0. Let (v, φ) ∈ H1(P\(ηT ),Rd) × L2(P\(ηT )) be the unique564
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solution to the following Stokes system:565

(4.5)





−∆v +∇φ = h in P\(ηT )
div(v) = g in P\(ηT )

∫

P\(ηT )

φdx = 0

v = 0 on ∂(ηT )

v is P–periodic.

566

There exists a constant C > 0 independent of (v, φ), η, h and g such that567

568

(4.6) ||∇v||L2(P\(ηT ),Rd×d) + ||φ||L2(P\(ηT ))569

≤ C(||h− 〈h〉||L2(P\(ηT ),Rd) + η1−d/2|〈h〉|+ ||g||L2(P\(ηT ))).570571

Proof. (4.6) is obtained by rescaling the estimates of Lemma 5.3 of [13] from the572

growing domain η−1P\T to the perforated cell P\(ηT ).573

Using this lemma yields the fact that (Yk
j (y), ω

k(y)) has indeed a magnitude574

controlled with respect to k.575

Proposition 4.3. For any k ≥ 0 and 1 ≤ j ≤ d, there exists a constant Ck > 0576

independent of η such that577

‖∇Y
k
j ‖L2(P\(ηT ),Rd) + ‖ωk

j ‖L2(P\(ηT )) ≤ Ckη
1−d/2,(4.7)578

||Yk
j − 〈Yk

j 〉||L2(P\(ηT ),Rd) ≤ Ckη
1−d/2.(4.8)579580

Proof. Again, we proceed by induction. Note that it is enough to prove (4.7)581

since (4.8) follows from the Poincaré-Wirtinger inequality (3.4).582

Case k = 0: applying Lemma 4.2 to (4.1) yields

||∇Y0
j ||L2(P\(ηT ),Rd×d) + ||ω0

j ||L2(P\(ηT )) ≤ Cη1−d/2

since ej = |〈ej〉| = 1− ηd|T |.583

Case k = 1: since the right-hand side of (4.2) is of zero average, applying Lemma 4.2
yields

||∇Y
1
j ||L2(P\(ηT ),Rd×d) + ||ω1

j ||L2(P\(ηT ))

≤ C(2||∇Y
0
j ||L2(P\(ηT ),Rd×d) + ||ω0

j ||L2(P\(ηT )) + ||Y0
j − 〈Y0

j 〉||L2(P\(ηT ),Rd))

≤ C1η
1−d/2.

.

Case k+2 with k ≥ 0: similarly, the right-hand side of (4.3) is of average zero. There-
fore, assuming (4.7) and (4.8) holds till rank k + 1 with k ≥ 0, applying Lemma 4.2
yields

||∇Y
k+2
j ||L2(P\(ηT ),Rd×d) + ||ωk+2

j ||L2(P\(ηT ))

≤ C ′(2||∇Y
k+1
j ||L2(P\(ηT ),Rd×d) + ||ωk+1

j ||L2(P\(ηT )) + ||Yk
j − 〈Yk

j 〉||L2(P\(ηT ),Rd)

+ ||Yk+1
j − 〈Yk+1

j 〉||L2(P\(ηT ),Rd))

≤ Ck+2η
1−d/2.
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In the sequel, we consider the matrix-valued tensors Yk and the vector-valued tensors
ωk obtained by gathering the vector valued tensors (Yk

j (y))1≤j≤d as columns and the

scalar valued components (ωk
j (y))1≤j≤d as coordinates:

(Yk
ij(y))1≤i,j≤d :=

[
Y

k
1(y) . . . Y

k
d(y)

]

ij
, ∀y ∈ Y, ∀k ≥ 0.

ωk(y) := (ωk
j (y))1≤j≤d, ∀y ∈ Y, ∀k ≥ 0.

As before, we introduce the mean matrix tensor Yk∗ defined by

Yk∗ :=

∫

P\(ηT )

Yk(y)dy.

584

By using arguments similar to those of the proof of Proposition 3.4, we can585

precise the convergence of the mean Yk∗. For any 1 ≤ j ≤ d, let us consider the586

unique solution (Ψj , σj) to the exterior Stokes problem587

(4.9)





−∆Ψj +∇σj = 0 in R
d\T

div(Ψj) = 0 in R
d\T

Ψj = 0 on ∂T

Ψj → ej at ∞
σj ∈ L2(Rd\T ).

588

The existence and uniqueness of a solution to (4.9) is standard by using layer potential589

theory [20, 19] or variational arguments in homogeneous Sobolev spaces [14, 25] (also590

called Deny-Lions or Beppo-Levi spaces). We denote by F := (Fij)1≤i,j≤d the matrix591

collecting the drag force components:592

(4.10) Fij :=

∫

Rd\T

∇Ψi : ∇Ψjdx = −
∫

∂T

ej · (∇Ψi − σiI) · nds,593

where the normal n is pointing inward T . The matrix F is the analogue of the594

capacity Cap(∂T ) in the context of the Stokes equation. The following result holds.595

Proposition 4.4. The mean matrix valued tensor Yk∗ satisfy the following as-596

ymptotic convergences as η → 0:597

(4.11) Y0∗ ∼ η2−dF−1 and Yk∗ = o(η2−d) for k ≥ 1.598

Proof. The convergence for Y0∗ is a classical result and a proof can be found in599

[3]. The second estimate result from the fact that the right-hand sides of (4.2) and600

(4.3) are of zero average. The proof is obtained by repeating arguments similar to601

those of Proposition 3.4, see also the proof of Proposition 5.4 in [13].602

The pairs (Yk(y),ωk(y)) and (X k(y),αk(y)) are related by Cauchy-product iden-603

tities analogous to (3.11).604
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Proposition 4.5. The matrix valued tensors (Yk(y))k∈N and (X k(y))k∈N are re-605

lated through the following identities:606

(4.12)





Y0(y) = X 0(y), ω0(y) = α0(y),

Y1(y) = X 1(y), ω1(y) = α1(y),

Yk(y) = X k(y)−
k−2∑

l=0

Y l(y)⊗X k−l−2∗ ⊗ I,

ωk(y) = αk(y)−
k−2∑

l=0

(−1)k−lX k−l−2∗ · ωl(y)⊗ I,

y ∈ P\(ηT ), k ≥ 2.607

In particular, we have the formula608

(4.13) X k∗(y) = Yk∗ +

k−2∑

l=0

Y l∗ ⊗X k−l−2∗ ⊗ I609

remembering Proposition 2.11 whereby X k∗ is symmetric when k is even and is anti-610

symmetric when k is odd.611

Proof. The identities for (Yk(y),ωk(y)) = (X k(y),αk(y)), with k = 1, 2, are612

obvious from the definitions (4.1) and (4.2). By induction, (4.12) is obtained as soon613

as we prove614

(4.14)

Y
k+2
j = X

k+2
j −

k∑

l=0

Y l(y) · 〈X k−l
j 〉 ⊗ I = X

k+2
j −

k∑

l=0

(X k−l∗
ij ⊗ I)Y l

i(y),

ωk+2
j = αk+2

j −
k∑

l=0

ωl(y) · 〈X k−l
j 〉 ⊗ I = αk+2

j −
k∑

l=0

(X k−l∗
ij ⊗ I)ωl

i(y),

615

for k ≥ 0, assuming these identities hold for lower values of k (remind the symmetry
and antisymmetry properties of Proposition 2.11). Note that we use the implicit
summation convention over the repeated index 1 ≤ i ≤ d. Let (v, φ) be the right-
hand sides of the above equations. We compute

−∆v +∇φ = (−∆X
k+2
j +∇αk+2

j )−
k∑

l=0

(X k−l∗
ij ⊗ I)(−∆Y

l
i +∇ωl

i)

= (2∂lX
k+1
j − αk+1

j el)⊗ el +X
k
j ⊗ I − (X k∗

ij ⊗ I)ei

− (X k−1∗
ij ⊗ I)(2∂mX

0
i − α0

i em)⊗ em

−
k∑

l=2

(X k−l∗
ij ⊗ I)[(2∂mY

l−1
i − ωl−1

i )⊗ em + (Y l−2
i − 〈Y l−2

i 〉)⊗ I]

= (2∂mY
k+1
j − ωk+1

j em)⊗ em + (Yk
j − 〈Yk

j 〉).

In the last equality, we used the assumption that (4.14) holds when k is replaced by616

k − 1 or k − 2. By uniqueness of the defining problem for (Yk+1
j (y), ωk+1

j (y)), we617

obtain that (4.14) holds.618

4.2. Low-volume fraction asymptotic of the infinite order homogenized619

Stokes system. We now obtain the asymptotic of the coefficients Mk by relating620
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them to the mean tensors Yk∗. Recall that the recursive definition (2.26) of the tensors621

Mk states that622

k∑

p=0

X k−p∗ ⊗Mp =

{
I, if k = 0,

0, if k ≥ 1.
623

Using this result and repeating the proof of Proposition 3.7, we obtain that the identity624

(3.14) remains valid in the present vectorial context:625

(4.15)

k∑

p=0

Yp∗ ⊗Mk−p = −Yk−2∗ ⊗ I for any k ≥ 2.626

This identity implies the following results.627

Corollary 4.6. Let Mk be the tensors defined by (2.26) and F ≡ (Fij)1≤i,jd the628

drag force matrix defined by (4.10). Then as η → 0,629

M0 ∼ ηd−2F(4.16)630

M1 = o(ηd−2)(4.17)631

M2 = −I + o(ηd−2)(4.18)632

Mk = o(ηd−2) for any k > 2.(4.19)633634

Proof. The proof is identical to that of Corollary 3.8, except that some extra635

care must be taken because of non-commuting matrix products and non-zero odd636

order tensors. The result for M0 = (X 0∗)−1 is a restatement of the first asymptotic637

convergence of (4.11). For k = 1, we have by definition638

M1 = −(Y0∗)−1 ⊗ Y1∗ ⊗M0 = −M0 ⊗ Y1∗ ⊗M0.639

Since Y1∗ = o(η2−d) and M0 = O(ηd−2), we obtain M1 = o(ηd−2). For k = 2, the640

identity (4.15) yields641

M2 + I = −M0 ⊗
[
Y1∗ ⊗M1 + Y2∗ ⊗M0

]
642

which is also of order o(ηd−2). Finally, for k > 2, we rewrite (4.15) as643

Mk = −M0
(
Yk∗ ⊗M0 + Yk−1∗ ⊗M1 + Yk−2∗ ⊗ (M2 + I) + · · ·+ Y1∗ ⊗Mk−1

)
.644

By induction, we deduce from the above relation that Mk = o(ηd−2) for all k ≥ 2,645

which completes the proof.646

Remark 4.7. We recall that there is a slight abuse of notation in the notation I647

featured in (4.18) because I is here the second-order matrix-valued defined by (2.8)648

and not the scalar valued tensor I of the other equations.649

Remark 4.8. We have therefore obtained the first main result of the paper, i.e.650

the coefficient-wise convergence of the infinite order homogenized Stokes system (1.2)651

towards either the Darcy, Brinkman or Stokes regimes (1.10)–(1.12) for the various652

scalings of η when compared to the critical size ε2/(d−2). Indeed, the coefficients of653

(1.2) satisfy as η → 0:654

ε−2M0 ∼ ηd−2ε−2F(4.20)655
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ε−1M1 = o(ε−1ηd−2)(4.21)656

ε0M2 → −I(4.22)657

εkMk = o(εkηd−2) for k > 2.(4.23)658659

Reasonning as in Remark 3.9 we obtain the coefficient-wise convergence of (1.2) to-660

wards the three regimes as ε → 0 and η → 0 for the three possible scalings of η. Note661

that we also obtain the coefficinet-wise convergence of the infinite order model (1.2)662

towards the homogeneous Stokes system (1.12) if ε is fixed while η → 0.663

4.3. Low-volume fraction asymptotic of the truncated homogenized664

Stokes system of order 2K + 2. We now come to the final result concerned with665

the coefficient-wise limit of the truncated homogenized model (1.3), or in other words666

with the limit of the tensors D
k
K as η → 0. Similarly as in subsection 3.3 and by667

reading the definition (2.32), we need to find the asymptotic limits of the tensors668

Nk(y) and βk(y) of Definition 2.12. Using (4.13), we can represent them using the669

controlled tensors Yk and ωk, as shown in the next result.670

Proposition 4.9. For k ≥ 1 and with the convention Y−2∗ = Y−1∗ = 0 and671

ω−2 = ω−1 = 0, the following identities hold:672

Nk(y) =

k∑

p=0

Yk−p(y)⊗Mp + Yk−2(y)⊗ I, y ∈ Y,(4.24)673

βk(y) =

k∑

p=0

(−1)pMp · ωk−p(y) + ωk−2(y)⊗ I, y ∈ Y.(4.25)674

675

Proof. Both identities are proved following the arguments and computations of676

Proposition 3.7. We only provide the proof for the second identity. We left multiply677

(4.12) by (−1)pMp and sum over 0 ≤ p ≤ k:678

k∑

p=0

(−1)pMp ·αk−p

=

k∑

p=0

(−1)pMp · ωk−p +

k∑

p=0

k−p−2∑

l=0

(−1)k−l−2Mp ⊗X k−p−l−2 · ωl ⊗ I

=

k∑

p=0

(−1)pMp · ωk−p +

k−2∑

l=0

(−1)k−l−2

[
k−l−2∑

p=0

Mp ⊗X k−p−l−2

]
· ωl ⊗ I,

679

In view of (4.13), the summation in the brackets vanishes unless l = k − 2 when it680

sums to I. This leads to681

(4.26) βk =

k∑

p=0

(−1)pMp ·αk−p =

k∑

p=0

(−1)pMp · ωk−p + ωk−2 ⊗ I682

which is the desired result.683

With those formulas, we finally obtain the low volume fraction asymptotics of the684

tensors (Dk
K)0≤k≤2K+2 of the high order truncated homogenized Stokes system (1.3).685

The analysis requires slightly more work than in the scalar case due to the presence686

of the tensors (Ak
K)K+1≤k≤2K+1 induced by the divergence constraint.687
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Proposition 4.10. We have the following asymptotics for the tensors D2K+2
K and688

(Ak
K)K+1≤k≤2K+1 defined by (2.32) as η → 0:689

D
2
0 = −I +O(ηd−2)(4.27)690

D
2K+2
K = O(ηd−2) for K ≥ 1(4.28)691

A
k
K = O(ηd−2) for K ≥ 0 and K + 1 ≤ k ≤ 2K + 1.(4.29)692693

Therefore, for any K ∈ N, the matrix-valued coefficient tensors (Dk
K)0≤k≤2K+2 of694

the truncated homogenized Stokes system (1.3) satisfy the following convergences as695

η → 0:696

D
0
K ∼ ηd−2F,(4.30)697

D
1
K = O(ηd−2),(4.31)698

D
2
K = −I +O(ηd−2),(4.32)699

D
k
K = O(ηd−2) for any k > 2.(4.33)700701

Proof. 1. Asymptotic (4.27). By the definition (2.32) and by using (4.24), we
have

D
2
ij = −

∫

Y

N0
i ·N0

j ⊗ Idy = −M0
miM

0
lj

∫

Y

Y
0
m ·Y0

l ⊗ Idy

= −M0
miM

0
lj

(
〈Y0

m〉 · 〈Y0
l 〉(1− ηd|T |) +

∫

Y

(Y0
m − 〈Y0

m〉) · (Y0
l − 〈Y0

l 〉)dy
)
⊗ I,

with implicit summation over the repeated indices 1 ≤ l,m ≤ d. Then, we observe
that M0

mi〈Y0
m〉 = X 0∗Mei = ei, and similarly M0

lj〈Y0
l 〉 = ej ; this implies

−M0
miM

0
lj

(
〈Y0

m〉 · 〈Y0
l 〉(1− ηd|T |)

)
= −δijI +O(ηd).

Finally, using (4.8), (4.16) and the Cauchy-Schwarz inequality allows to obtain702

703

−M0
miM

0
lj

(∫

Y

(Y0
m − 〈Y0

m〉) · (Y0
l − 〈Y0

l 〉)dy
)
⊗ I704

= O(ηd−2)O(ηd−2)O(η2−d) = O(ηd−2)705706

which implies (4.27).707

2. Asympotic (4.28). We use (4.24) to rewrite, for any k ≥ 1, Nk
i as

Nk
i =

k∑

p=0

Y
k−p
m ⊗Mp

mi +Y
k−2
i ⊗ I

=

k∑

p=0

(Yk−p
m − 〈Yk−p

m 〉)⊗Mp
mi + (Yk−2

i − 〈Yk−2
i 〉)⊗ I

= (Yk
m − 〈Yk−1

m 〉)⊗M0
mi + (Yk−1

m − 〈Yk−1
m 〉)⊗M1

mi

+ (Yk−2
m − 〈Yk−2

m 〉)⊗ (M2
mi + δmiI)

+ (Yk−3
m − 〈Yk−3

m 〉)⊗M3
mi + · · ·+ (Y0

m − 〈Y0
m〉)⊗Mk

mi,

.
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where we used that 〈Nk
i 〉 = 0 at the second equality. Therefore the result of Corol-

lary 4.6 and the bound of (4.8) controlling ||Yk
m − 〈Yk

m〉||L2(P\(ηT )) imply that

||Nk
i ||L2(P\(ηT )) = O(ηd/2−1) for k ≥ 1.

Then (4.28) follows from the definition (2.32) and the Cauchy-Schwarz inequality.708

3. Asymptotics (4.29). By integration by parts, the formula (2.33) for A
k
K,ij with709

K + 1 ≤ k ≤ 2K + 1 can be rewritten as710

A
k
K,ij = (−1)K

∫

Y

(
βk−K−1
j ⊗ div(NK+1

i ) + (−1)kβk−K−1
i ⊗ div(NK+1

j )
)
dy.711

Therefore we need to control the L2 norm of βk
j (y) for 0 ≤ k ≤ K and of divNk

i for712

any k ≥ 1 and 1 ≤ i, j ≤ d. Using (4.24) to compute the divergence, we obtain for713

any k ≥ 1714

divNk
i =

k∑

p=0

divYk−p
m ⊗Mp

mi + divYk−2
i ⊗ I

= −
k∑

p=0

(Yk−p−1
m − 〈Yk−p−1

m 〉) · el ⊗ el ⊗Mp
mi − (Yk−3

i −Y
k−3∗
i ) · el ⊗ el ⊗ I

= [(Yk−1
m − 〈Yk−1

m 〉)⊗M0
mi + (Yk−2

m − 〈Yk−2
m 〉)⊗M1

mi

+ (Yk−3
m − 〈Yk−3

m 〉)⊗ (M2
mi + δmiI)

+ (Yk−4
m − 〈Yk−4

m 〉)⊗M3
mi + · · ·+ (Y0

m − 〈Y0
m〉)⊗Mk−1

mi ] · el ⊗ el,

715

still assuming the summation convention over the repeated index 1 ≤ m ≤ d. By
using the result of Corollary 4.6 and the bound (4.8), we obtain therefore that

||divNK
i ||L2(P\(ηT )) = O(ηd/2−1) for any K ∈ N.

Similarly, (4.24) allows to rewrite βk
j as

βk
j =

k∑

p=0

ωk−p
m ⊗Mp

mj + ωk−2
j ⊗ I

= ωk
m ⊗M0

mj + ωk−1
m ⊗M1

mj + ωk−2
m ⊗ (M2

mj + δmjI)

+ ωk−3
m ⊗M3

mj + · · ·+ ω0
m ⊗Mk

mj .

Therefore, the bound (4.7) controlling ||ωk
j ||L2(P\(ηT )) and Corollary 4.6 yield716

||βk
j ||L2(P\(ηT )) = O(ηd/2−1) for any k ∈ N.

Hence (4.29) follows by using the Cauchy-Schwarz inequality.717

The result of Proposition 4.10 implies that the conclusions of Remark 4.8 still hold718

for the truncated model (1.3), which converges therefore in the coefficent-wise sense719

towards either of the three models (1.10)–(1.12) depending on how the scaling η720

compares to the critical value ηcrit ∼ η2/(d−2) as claimed.721
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doctorat de l’Université Paris Saclay préparée à l’École polytechnique, 2019.747
[12] F. Feppon, High order homogenization of the Poisson equation in a perforated periodic domain.748

working paper or preprint, Mar. 2020.749
[13] F. Feppon, High order homogenization of the Stokes system in a periodic porous medium. In750

preparation, 2020.751
[14] G. P. Galdi, Steady Stokes Flow in Exterior Domains, Springer New York, New York, NY,752

1994, pp. 244–303.753
[15] D. Gérard-Varet, Derivation of Batchelor-Green formula for random suspensions, Preprint,754

(2020).755
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