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HIGH ORDER HOMOGENIZED STOKES MODELS CAPTURE ALL
THREE REGIMES*

FLORIAN FEPPONT AND WENJIA JING#

Abstract. This article is a sequel to our previous work [13] concerned with the derivation of
high-order homogenized models for the Stokes equation in a periodic porous medium. We provide
an improved asymptotic analysis of the coefficients of the higher order models in the low-volume
fraction regime whereby the periodic obstacles are rescaled by a factor n which converges to zero.
By introducing a new family of order k corrector tensors with a controlled growth as n — 0 uniform
in k € N, we are able to show that both the infinite order and the finite order models converge in
a coefficient-wise sense to the three classical asymptotic regimes. Namely, we retrieve the Darcy
model, the Brinkman equation or the Stokes equation in the homogeneous cubic domain depending
on whether 7 is respectively larger, proportional to, or smaller than the critical size ncriz ~ g2/(d=2),
For completeness, the paper first establishes the analogous results for the perforated Poisson equation,
considered as a simplified scalar version of the Stokes system.

Key words. Homogenization, higher order models, perforated Poisson problem, Stokes system,
low volume fraction asymptotics, strange term.

AMS subject classifications. 35B27, 76M50, 35330

1. Introduction. The homogenization of the Stokes system has attracted a lot
of attention recently, regarding random or complex domains [17, 10], extensions to
inhomogeneous viscosity or different kinds of boundary conditions [7, 16, 15], and new
unified and quantitative homogenization approaches [21, 19] in the periodic setting.

The goal of this paper is to show that higher order effective models provide a
unified understanding for the homogenization for the Stokes system in a periodic
porous medium:

—Au.+Vp. = fin D,
div(us) =0 in D,

u, = 0 on Ow,

(1.1)
(e, pe) is D—periodic

where D. = D\@; is a d-dimensional cubic domain D = (0, L)% perforated with
periodic obstacles w, := ¢(Z%+nT) N D (represented on Figure 1) and the right-hand
side f € Ce, (D, R?) is a smooth D-periodic vector field. D, is the union of periodic
cells of size € := L/N where N € N is a large integer. Each cell contains an obstacle
enT where n > 0 is a rescaling of the obstacles. This parameter n allows to consider
the so-called low volume fraction regime corresponding to the situation where the
obstacles disappear at a rate n — 0 which possibly depends on €. We assume the

total fluid domain D, to be connected, as well as the fluid component Y = P\(nT)
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2 F. FEPPON AND W. JING
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FiG. 1. The perforated domain D. = D\wz and the unit cell Y = P\(nT).

of the rescaled unit cell P := (—1/2,1/2)%. The first assumption ensures that the
pressure variable p. of (1.1) is uniquely determined up to a single additive constant
while the second is used when considering cell problems in Y. For simplicity, the
domain is assumed to be at least three-dimensional: d > 3.

In [13], we have derived a formal “infinite-order” homogenized system for (1.1)
which reads in terms of averaged velocity and pressure (u},p}) as

+oo
> ek PMP . VEu +Vpi = fin D
(1.2) k=0
div(ul) =01in D
(ul,pl) is D—periodic.

In (1.2), (M*)gen is a family of matrix valued tensors which can be explicitly con-
structed by a procedure involving cell problems that we review below, and k£ denotes
the order of the tensor M¥. For a given k € N, M* - V¥ is the differential operator
defined for any v € C*°(R,R?) by

(M* - VFv), .= M}

k
il...ik,lmail...ikvm

where we assume the Einstein summation convention over the repeated indices 1 <
i1...9, < dand 1 <[,m <d.

In order to obtain effective models suitable for numerical computations, we have
proposed a truncation procedure for (1.2) inspired from [27]. For any integer K € N,
it yields a well-posed higher order homogenized model of finite order 2K + 2, which
reads

2K+2
> D VR g+ Vgl =Ffin D
k=0

(1.3)
div(vi ) =0in D

(vl i, 4 i) is D—periodic,
where the coefficients (D’}()ogkgg K+2 is another family of matrix valued tensors. The
system (1.3) is indeed a truncated version of (1.2) because the first half of the co-

efficients coincide, namely D¥ = MP* for 0 < k < K. The remaining higher order
coefficients (D’%)KHSkSzKJrQ are in general different from (Mk)K+1§k§2K+2; they

This manuscript is for review purposes only.
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HIGH ORDER HOMOGENIZED STOKES MODELS CAPTURE ALL THREE REGIMES 3

ensure that (1.3) is well-posed. It is then possible to show that, for a fixed n > 0,
v? ;¢ and ¢7 ¢ yield approximations of u. and p. at orders O(eK+3) and O(eX+!) in
the L?(D.) norm respectively. Similar results hold for the Laplace problem with a
smooth periodic right-hand side f € C3.(D),

per
—Au. = fin D,
(1.4) u. = 0 on Jw,

ue is D—periodic,

which we considered in [12]. In fact, it turns out that in scalar context of (1.4), free of
the divergence constraint, the approximation error on the solution u. committed by

the homogenized model of order 2K + 2 improves rather surprisingly up to the order
0(52K+4)_

Still in [13], we have analyzed the asymptotic behaviors of the tensors M* and
D% in the low volume fraction regime 7 — 0. Assuming d > 3 for simplicity, we have
found (see Corollary 5.5 of this reference)

(1.5) M° ~ =2
M" = o(1"7?)
(1.7) M? - —1
1
2k __
(1.8) Vk>2,M* =0 (n(“>(’“>> :
1
2k+1 __
(1.9) VE>1,M* ! =9 (n(d_Q)(k_l)> ,

as well as equivalent results for the tensors (D% ). The first result (1.5) has been known
since the work of Allaire on the continuity of the Darcy equation [3], it involves a d X d
dimensional matrix F' = (Fij)lgi,jgd which can be retrieved by solving an exterior
problem in RN\T (the definition is recalled in (4.10) below). In the scalar case, the
same results hold with F being replaced by the capacity Cap(9T) of the obstacle.

The motivation for seeking these asymptotics in [13] was to investigate whether
the high order models (1.2) and (1.3) have the potential to unify the three classical ho-
mogenized regimes acknowledged by the literature. Standard homogenization theory
[26, 24, 9, 2, 4, 1, 5, 22, 23] states that (u.,p.) (or a suitable rescaling) converges in
some sense to the solution (u*, p*) to three possible limit equations as ¢ — 0, depend-
ing on how 7 compares with respect to the critical size 7 := €2/(4=2). The limiting
equation is either the Darcy, the Brinkman or the Stokes model in the homogeneous
domain D.

As far as we are concerned with the present periodic setting, we can read from
(1.5)=(1.9), the following coefficient-wise convergences of (1.2) (or (1.3)) as n — 0 and
e —0:

e if 1> 1> £2/(4=2) namely the holes are large, then the limiting equation

for (n?=2e~2u.,p.) is the Darcy problem

Fu*+Vp*=finD
(1.10) div(u*) =0in D

u* is D—periodic;

This manuscript is for review purposes only.
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4 F. FEPPON AND W. JING

2/(d=2) " namely the holes are exactly proportional to the critical

4/(d=2) " then the limiting equation for (u.,p.) is

o if § ~ ce
diameter acpit 1= Nerit€ = €
the Brinkman problem

—Au* + cFu* 4+ Vp* = fin D
(1.11) div(u*) =0in D
(u*,p*) is D—periodic,

where in both (1.10) and (1.11), F is the matrix appearing in (1.5).

The coefficient-wise convergence of (1.2) towards either (1.10) and (1.11) is consistent
with the literature which asserts that the solutions (w*,p*) to either (1.10) or (1.11)
is the limit of (u.,p:) in the corresponding regimes. This allowed us to conclude
in [13] that the high order homogenization process captures both the Darcy and the
Brinkman regimes (1.10) and (1.11).

Finally, the literature states that in the subcritical regime n = o << £2/(4=2),
(ue,pe) converges in some sense, as € — 0, to the solution (u*,p*) of the Stokes
equation in the homogeneous domain D (without holes):

—Au*+Vp*=fin D
(1.12) div(u*) =0in D
(u*, p*) is D—periodic.

Intuitively, this means that when n < £2/(4=2) the holes are too small to be actu-
ally sensed by the effective model. However, the analysis that we performed in [11]
is not sufficient to retrieve this result as a coefficient-wise convergence of the higher
order models (1.2) or (1.3) to the homogeneous Stokes system (1.12). Indeed, al-
though (1.5)—(1.7) allows to infer that the right convergence holds for the first three
coefficients M%~2, M'e~! and M?, the asymptotic bounds (1.8) and (1.9) only en-
able to obtain that the coefficient €2*~2M?* is bounded when k > 2 by the quantity
(£2/(d=2) /p)(B=1)(d=2) \which grows to infinity as 7 — 0.

In this perspective, the purpose of this article is to propose a different asymptotic
analysis of [13] which allows to substantially improve the asymptotic convergences of
(1.5)—(1.9). Our main results are stated in Corollary 4.6 and Proposition 4.10 where
we obtain that in fact, M* — 0 and D’IC( — 0 for any k > 2 with a convergence rate
not bigger than O(n9=2). This implies in particular the coefficient-wise convergence
of the high-order models (1.2) and (1.3) towards the Stokes equation (1.12) not only
in the subcritical regime 1 = o(¢2/(?=2)) as ¢ — 0, but also in the situation where the
size of the periodic cell € (and so their number) is fized while the holes disappear as
n — 0.

All in all, this paper demonstrates that at least in the sense of coefficient-wise
convergence, the effective models (1.2) and (1.3) have indeed the potential to yield high
order homogenized approximations of (u.,p.) that are valid in all possible regimes
of size of holes. A more formal statement would require to improve the error bounds
of [13] involving u. and u*, so as to obtain error results with bounding constants
uniform with respect to . We expect this could be done by using e.g. the unified
approach proposed in [18] in the context of the homogenization of the Poisson system;
a precise treatment is left for future works.

For completeness and in a pedagogical purpose, we prove the results first in the
context of the Laplace problem (1.4), which can be considered as a simplified scalar

This manuscript is for review purposes only.
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HIGH ORDER HOMOGENIZED STOKES MODELS CAPTURE ALL THREE REGIMES 5

version of the full Stokes system (1.1). In a second part, we shall state how the results
actually extend to (1.1) with an emphasis on the differences that occur due to the
vectorial context and to the zero divergence constraint.

The paper outlines as follows. Notation conventions and the definitions of various
families of tensors (including M* and ]D’;() related to the high order homogenization
process are reviewed in section 2 for both the Poisson equation (1.4) and the Stokes
system (1.1). Section 3 provides our new asymptotic analysis for the tensors M* and
D% in the context of the Poisson equation (1.4). Treating first the scalar case allows
us to highlight the key arguments in a simplified setting, namely the introduction of
a new family of cell tensors (V¥ (y))ren in P\(nT) whose averages (**)sen remain of
the same order O(n?~?) uniformly in k¥ € N (Proposition 3.3). Finally, the Stokes case
is treated in section 4. The main differences of the asymptotic analysis are related to
the vectorial setting and the presence of the pressure, which require to consider vector
and matrix valued tensors rather than scalar tensors. Furthermore, the asymptotic
analysis of the coefficients D% requires an additional treatment due to the fact that,
in contrast with the scalar case, half of the coefficients (for K +1 < k < 2K + 1) do
not coincide with the corresponding tensors M*.

2. Setting, notation and review of available results. In this section, we
review the notation conventions used for tensors and the definitions of the tensors
(M*)en and (DI;()OS]CSQK+2 in both contexts of the Poisson equation (1.4) and the
Stokes system (1.1). Both situations involve the solutions of partial differential equa-
tions posed in the perforated unit cell Y = P\(nT) where P = (—1/2,1/2)¢, T is an
obstacle centered in the cell (i.e. 0 € T') and 1 > 0 is the rescaling. When consid-
ering the low-volume fraction regime n — 0, we also assume that the hole is strictly
included in the cell for 0 < n < 1: T C P. The setting is illustrated on Figure 2.

oP

P=(-1/2,1/2)¢

F1c. 2. Schematic of the cell P and the obstacle nT .

2.1. Notation conventions. In the whole paper, we use the same notation
conventions for tensor related operations as in our previous works [12, 13]. These are
summarized in the nomenclature below. These notations allow us to systematically
avoid writing indices for partial derivatives (e.g. 1 <y ..., < d), and to distinguish
them from spatial indices (e.g. 1 < I;m < d) associated with vector or matrix
components.

We recall that unless otherwise specified, the Einstein summation convention
over repeated subscript indices is assumed (but never on superscript indices). Vectors
b € R¢ are written in bold face notation.

This manuscript is for review purposes only.
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F. FEPPON AND W. JING

Scalar, vector, and matrix valued tensors and their coordinates

b= (bj)i<j<a
bk
bk
Blc

(0¥)1<j<a

(B )1<tm<d

k
bi1~-ik,j
i1...0k,lm

Vector of RY

Scalar valued tensor of order k (b¥ . € R for 1 <iy,...,ix < d)
Vector valued tensor of order k (b}, € R?for 1 <iy,... i, <d)
Matrix valued tensor of order k (BF , € R4 for 1 <iy,...,ix <
d

C)oordinates of the vector valued tensor b* (béC is a scalar tensor of
order k).

Coefficients of the matrix valued tensor B* (Bf  is a scalar tensors
of order k).

Coefficient of the vector valued tensor b* (1 < iy,...ix,j < d).
Coefficients of the matrix valued tensor B¥ (1 <dq,...ik,0l,m <d).

Tensor products

bP ® ck—P

BP @ Ck—P

b? . kP

BP . ck-r

Tensor product of scalar tensors b and c*—P:

(2.1) (0P @) =00 P

i1.ip Cipa g
Tensor product of matrix valued tensors BP and C*~P:

k— o k—
(2.2) (BP @ C"P)iy i im = Bz...ip,zjcipﬁmzk,jm-
Hence a matrix product is implicitly assumed in the notation BP ®
Cckr,
Tensor product and inner product of vector valued tensors b” and
k—p.
ci P

(2.3) - ) =V P

11.alp, M Tpp1..df,m”

Tensor product of a matrix tensor BP and a vector tensors ¢F—7:

(2.4) (BP - P, g = BP o

il...ip,lm ip+1...i;€,m'

Hence a matrix-vector product is implicitly assumed in B? - ¢F~P.

Contraction with partial derivatives

b - vk

bk . vk

Bk . vk

Differential operator of order k associated with a scalar tensor b*:
for any smooth scalar field v € C22,.(D,R?),

(2.5) bF VR =0F  OF .

Ak
Differential operator of order k associated with a vector tensor b*:
for any smooth vector field v € C,.(D,R%),

per

(2.6) b vk = bfl,..ik,lazkl...ikvl'

Differential operator of order k associated with a matrix valued ten-
sor B¥: for any smooth vector field v € C,.(D,R),

per

(2.7) (B* - V*v), = Bf oF i Um.

In (2.5)-(2.7) above, the reader may equivalently think V*v and
V¥*v as scalar valued and vector valued tensors of order k and the
dot - notation as the contraction operator of two order k tensors.

This manuscript is for review purposes only.
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HIGH ORDER HOMOGENIZED STOKES MODELS CAPTURE ALL THREE REGIMES 7

Special tensors

(ej)i<j<d Vectors of the canonical basis of R?.
e; Scalar valued tensor of order 1 given by e; ;, := §;,; (with1 < j < d).
0ij Kronecker symbol: §;; =1 if i = j and §;; = 0 if i # j.
I Scalar-valued identity tensor of order 2:
Liyiy = 0iyiy-

The identity tensor is another notation for the Kronecker tensor and
it holds I = e; ® e; with summation on the index 1 < j < d. With a
small abuse of notation and when the context is clear, we also denote
by I the matriz-valued second order tensor I = (I;,4y 1m)1<iy is,l,m<d
defined by

(2.8) Iiliz,lm = 6i1i261m'

This notation is used in (1.7), (4.18), and (4.32).

In the whole paper, we consider zeroth order tensors which are scalar, vector or
matrices devoid of partial derivative indices; e.g. b° € R if 80 is scalar, b € R? if
b%(y) is a vector field, and so on. Then the various possible tensor products involving
of a zero-th order tensor make sense and follow the same conventions as in eqn. (2.1)
to (2.4).

Since a k-th order tensor b* (scalar, vector or matrix valued) truly makes sense when
contracted with k partial derivatives, as in (2.5)—(2.7), all the tensors considered
throughout this work are identified to their symmetrization:

b= > b
i L) lo(1)To(k)?
lASICTR

where &y, is the permutation group of order k. Consequently, the order in which the
derivative indices 41, . .., iy are written in bﬁ...ik does not matter. This alleviates the
need for specifying the order of the indices in tensor product notations such as in
(2.15) below.

”_

In the paper, the star—“x”— symbol is used to indicate that a quantity is “macro-
scopic” in the sense that it does not depend on the fast variable z/¢; such as (u}, p})
or (v g, ¢l g) in (1.2) and (1.3). In the particular case where a quantity X (y) is
given as a P—periodic function of Y = P\(nT) extended by 0 on the obstacle d(nT),
then X* denotes the average of y — X(y) with respect to the y variable:

X*(y) ZZ/PX(y)dy=/P\( T)X(y)dy

At some places we find occasionally more convenient to write the cell average with
the more usual angle bracket symbols:

() = /P X(y)dy.

Finally, we write C' or C'x to denote universal constants that do not depend on e
or n but whose values may be redefined from lines to lines.

This manuscript is for review purposes only.
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8 F. FEPPON AND W. JING

Remark 2.1. In a limited number of places, the superscript or subscript indices
p,q € N are used. Naturally, these are not to be confused with the pressure variables
pe or g7 ¢ introduced in (1.1) and (1.3).

Remark 2.2. In all what follows, the various tensors coming at play such as X%,
XF* M*, Dk etc., depend on the scaling of the obstacle 1, but this dependence is
made implicit for notational simplicity.

2.2. High order effective models for the perforated Poisson equation.
For the Poisson equation, the homogenized equations of respectively “infinite” order
and of order 2K + 2 read respectively

“+oo

2%k—27 12k 2k, * .
Ze M=% .-V =finD
(2.9) — :
ul is D—periodic,
K+1
(2.10) > DR Vvl = fin D
: k=0

vZ i is D-periodic.

Note that in this scalar context, (2.9) and (2.10) feature no odd order differential
operators, i.e. M2+ = (0 and D" = 0. The coefficients (M*),cy and (Dyiq)

are defined by a procedure involving cell tensors (X*(y))ren and (N*(y))ren with
yey.

DEFINITION 2.3. The cell tensors (X*(y))ren are defined recursively as the solu-
tions to the following cascade of equations:
—~AX° =1 in P\(nT)
—AX!' =20;X°®e; in P\(nT)
(2.11) —AXF2 =20, X @ e; + X @ T in P\(nT), k>0
XE =0 on omT), k>0
X* is P—periodic.

We then denote by X** the average of the tensor field X*:
(2.12) Xk = / XF(y)dy.
P\(nT)

Remark 2.4. Owing to our notation convention of subsection 2.1, the third equa-
tion of (2.11) can be equivalently written

k42 _ on pktl - k o

—AX T, = 20X i T A D
on k+1 k o :
- 281k+2Xi1...ik+1 + Xil...ik51k+1lk+2'

In particular, the repeated index k in the equation is not summed over, but the
repeated index j is.

This manuscript is for review purposes only.
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HIGH ORDER HOMOGENIZED STOKES MODELS CAPTURE ALL THREE REGIMES 9

DEFINITION 2.5. The family of constant scalar tensors (M*)ey is defined by the
following recursive formula

(X"t ifk=0
2.13 M* = =
( ) —(XO*)_l ZXk—p* ® MP ka > 1.
p=0
The definition (2.13) is valid because the tensor X* = [,, [VX?]2dy > 0 is a positive
number; it rewrites equivalently as

k .
1ifk=0
2.14 P @ MFP =
ar s

For k > 1, M* can be computed by the following explicit formula, see [12] (Proposition
6):

(2.15) MF = Z(_l)p Z (XO*)_l ® xhx R ® (XO*)—l ® Xie* ® (XO*)_l.
=1 it ip=k
P 1<iq...ip<k

In [12] (Proposition 3), we have found that the definitions (2.11)—(2.13) imply that
the odd order coefficient tensors vanish, namely X2**1* = (0 and M?**! = 0 for all
k> 0.

The Cauchy product of the tensors (M*)en and (X*(y))ren then yields an ad-
ditional and important family of cell tensors (N*(y))xen-

DEFINITION 2.6. For any k € N, we define the k-th order cell tensor N* by

k
(2.16) Ni(y) =) MPR X" 7P(@y), yeY.
p=0

Remark 2.7. Equation (2.14) states that the averages of the tensors (N*)rcn are
given respectively by

1lifk=0
2.1 N*(y)dy =
(217) | Ny {Oifk;zl.

The tensors (N*(y))ren allow to reconstruct the oscillating solution u. of (1.4) from
its high order homogenized approximations u; or vl x given by (2.9) and (2.10).
Indeed, the following identity holds at least in a formal sense,

+oo
(2.18) ue(z) = e¥N¥(z/e) - VFui(z), xeD.
k=0

and likewise, we proved in [12] (Corollary 5) that the reconstructed function

2K+1
We ok 1(Vi i) == Z e NF(x/e) - Vkv;"K(x), x € D,
k=0

This manuscript is for review purposes only.



10 F. FEPPON AND W. JING

approximates u. up to a remainder of order O(¢25%4) in the L?(D.) norm. The
identity (2.18) relating u. to u} is somewhat remarkable. We have called it a “criminal
ansatz” based on similar observations which hold in the context of the conductivity
or wave equation [8, 6].

Finally, the tensors (N*(y))ren determine the coefficients (D% )o<k<ax 2 of (2.10)
(see [12], Proposition 13).

DEFINITION 2.8. For any K > 0 and 0 < k < 2K + 2, the coefficient ]D)’I“( 18
defined by:

(2.19) D = M* for any 0 <k < 2K +1

(2.20) D2E+2 = (—1)K+L / NE(y) ® N¥(y) @ Idy
Y

where NX(y) is the cell tensor given by (2.16).

2.3. High order effective models for the Stokes system in a porous
medium. The construction of the tensors (M*)ey and (D% )o<k<2x 1o for the effec-
tive Stokes systems (1.2) and (1.3) follow the same construction as in the scalar case,
up to the following differences:

1. due to the vectorial nature of u., the tensors M* D X*(y), X** and
NF*(y) become matriz valued. They include therefore k partial derivatives
indices 1 .. . i, and two spatial indices 1 < [, m < d which follow the notation
conventions of subsection 2.1;

2. the presence of the pressure p. and of the divergence constraint div(u.) = 0
in (1.1) reflects in the introduction of vector valued tensorial pressure fields
a®(y), B*(y) coming along X*(y) and N*(y). The vector valued tensors
o (y) and B*(y) are therefore characterized by k partial derivative indices
1 <iy...7k < d and one spatial index 1 <[ < d.

The starting point is the definition of the solution tensors (X*(y), a*(y)) to a hierarchy
of Stokes systems analogous to (2.11):

DEFINITION 2.9. For any k > 0, we define respectively the vector valued tensors
(Xf(y))lgjgd and the scalar valued tensors (af(y))lgjgd to be the unique solutions
in HL, (Y,R?) x L*(Y) to the following cell problems:

(2.21) fAyyX? + Vyoz? =e; inY,
' divy(X9) =0inY

(2.22) —AyyX} + Vya; = (281X? - a?el) Qe inY
' divy (X}) = —(X) = (X)) - e, ®e inY,

J

k42 k+2 k41 k1 & )
(2.23) —Ap X+ Ve = 20X — o e) @+ X9 linY
divy(X;?+2) = 7(X?+1 - <X;€+1>) e ®e Y

supplemented with the following boundary conditions:

/ a?dy:()
Y

X? =0 on d(nT)
(X?a;?) is P—periodic

(2.24) Vk > 0.
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The k-th order matrix valued tensor field X*(y) is then assembled by gathering the
d vector valued tensors (X f (y¥))1<j<a into columns:

Xy = [k L xhw)] vwey, Ve,

or in other words A5 (y) = X? (y) - €;. Similarly, we define a*(y) to be the k-th order

vector valued tensor whose coordinates are the scalar tensors oz? (y):

o(y) = (o (W)h<j<a, VY €Y, Yk >0.

Following (2.12), the matriz valued tensor X'** is then defined as the average of X*(y)
over the perforated cell:

(2.25) ke ::/ Xk (y)dy, Yk > 0.
Y

Note that by the definition (2.24), a*(y) is of zero average for any k > 0. Similarly,
the porosity matrix X°* is known to be symmetric definite positive [26]. Therefore,
the following definition makes sense:

DEFINITION 2.10. The family of matriz valued tensors (M*)yen is defined by the
following recursive formula:

MO _ (XO*)fl

2.26 .,
(2:26) MF = —(X0) 71y "Xk e MP, V> 1

p=0
Note that in contrast with the scalar case, matrix products take place between the

tensors X*~P* and MP in (2.26). The explicit formula (2.15) still holds under the
same convention.

Contrarily to the scalar case, odd order tensors X2*+1* and M?¥*+1 do not vanish
in general (they do in case the obstacle nT is symmetric with respect to the cell axes).
Instead, we find the following symmetry properties (Proposition 3.5 of [13]):

PROPOSITION 2.11. The k-th order tensors X** and M* are symmetric and an-
tisymmetric matriz valued for respectively even and odd values of k; i.e.

2hox _ 2k 2k _ A2k
xX: =X M; = M;

(3 4..ik,lm 7 ..Aik,m“ 11..4ik,lm 11...,ik,ml’
2k+1x 2k+1 2k+1 _ 2k+1
Xil.,.ik,lm - _Xil...ik,mh Mil...ik,lm - _Mil...ik,mh
where 1 < i1,...,0 < d and 1 < I,m < d denote respectively the partial derivative

and the spatial indices.

From the Cauchy product of M* and X*(y), we define matrix and vector valued
cell tensors N*(y) and B*(y) (Proposition 3.9 in [13]).

DEFINITION 2.12. For any k € N, let N* and B* be respectively the k—th order
matriz valued and vector valued tensors defined by

k k
NE) =Y Py em?,  By) =) (-1)PMP-a* P(y),  Vyey.
p=0 p=0
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Remark that a matrix product and a matrix-vector product take place in the respec-
tive definitions of N*(y) and B*(y). We have the following property analogous to
(2.17) in this vectorial context:

(2.27) /Nk Tifk=0

’ 0if k> 1.
It is useful to consider (Njk)1<]<d and (ﬁ )i<j<a which are respectively the column
vectors and the coefficients of N*(y) and ,6"“( ):

(228)  V1<i,j<d, Nj(y):=NF(ye; and F(y) :=B"(y)-e;, yeV.

Similar to the scalar case, these new tensors allow to reconstruct the oscillating
velocity and pressure (uc,p.) solutions to (1.1) from their homogenized approxima-
tions (uZ,pl) or (v} ,qZ k) given by (1.2) and (1.3). We have indeed the following
formal identities

+oo
= Z e'N'(z/e) - V'ul(x)

(2.29) = Vz € D..
pe(w) = pi(x)+ > &' B (x/e) - Viui(x),
=0

Likewise, we proved in [13] that the reconstructed velocity and pressures

K
(2.30) W k(v k) () := Zeka(a:/E) ~Vkv:,K(x), x € D,
k=0
(2.31)
K-1
Qe x—1(v i aE k) (/) = e (2) + ) 718 (w/e) - x(x), weD.
k=0

yield approximations of u. and p. of respective order O(¢%¥+3) and O(eX*1!) in the
L?*(D.) norm. Unfortunately and in contrast with the scalar case, we do not obtain
an error estimate of order O(e25%4) for the velocity as it could have been expected,
because only half of the coefficients D% obtained from the well-posed truncation
process of [13] turn to be equal to the M*.

The latter coefficients (]D)IIC()OS]CSQK_‘_Q are indeed given by the following formulas
(Proposition 4.10 of [13]):

DEFINITION 2.13. For any K > 0 and 0 < k < 2K + 2, the coefficient ID)’I“( 8
defined by

MFifOo<k<K
k k
(2.32) D5 = M+ A% if K+1<k<2K+1
(—1)“1/ NS -NFE@Idy if k =2K + 2.
Y

where the matriz valued tensor A% is given for any K +1 <k < 2K +1 by

(2.33) Ak, = (-1)FH! /Y (VA KL NS 4 (—nkvpi Kt Ny,

This manuscript is for review purposes only.



378
379
380

383

384

385

386

HIGH ORDER HOMOGENIZED STOKES MODELS CAPTURE ALL THREE REGIMES 13

remembering the definition (2.28) of the vector valued and scalar valued tensors N*(y)
and B (y).

3. Low volume fraction asymptotic of the high order homogenized
Laplace model. In this section, we are concerned with the scalar context of the
perforated Laplace problem (1.4); the setting is therefore the one considered in sub-
section 2.2. We aim at establishing the coefficient-wise convergence of both higher
order models (2.9) and (2.10) of respectively infinite and finite orders, in the low-
volume fraction regime 7 — 0, or in other words, the convergence of the tensors M*
and D%..

The main results of this section are Corollary 3.8 and Proposition 3.12 where we
effectively obtain the asymptotics of these coefficient tensors.

3.1. Cell tensors V*(y) of controlled growth. The key ingredient which was
missing in our previous analysis [12, 13] is the introduction of a new family of cell
tensors (V¥ (y))xen of controlled growth with respect to k.

DEFINITION 3.1. We define the family of cell tensors (V*(y))ren by induction as
the solutions to the following cascade of equations:
—AY° =1 in P\(nT)
—AY' =20;)" @ ¢
(3.1) — AP =20,V @ e + (VP — V)@ T in P\(nT)
V¥ =0 on O(nT)
y’“ 18 P—periodic.

where for any k € N, we denote by Y** the average of these tensors in the unit cell:
(3.2) ww:/ Yr(y)dy.
P\(nT)

The benefit of introducing J*(y) lies in the fact that the mean Y** remains not bigger
than O(n?~9) as n — 0 uniformly in k € N. The proof relies on the following classical
Poincaré estimates in the perforated cell [3, 18] which is recalled in the next lemma.

LEMMA 3.2. For any v € HY(P\(nT)) which is P-periodic and vanishes on the
hole d(nT), the following Poincaré inequality holds:

(3.3) vl 2o\ (yry) < C'~Y2(|V 0| L2 (P (1) R4

for a constant C' > 0 independent of n and v. Furthermore, for any v € H*(P\(nT)),
the following Poincaré- Wirtinger inequality holds:

(3.4) [[v = () l[z2P\@nry) < ClIVUI|L2(P\ (1), R

These inequalities entail the following result for the tensors (V*(y))xen:

PROPOSITION 3.3. For any integer k > 0, there exists a constant Cy, > 0 inde-
pendent of n such that

IVYE| L2\ () ey < Crom ™2
(3.6) 1VF = V¥ | L2 (p\(yry) < Crm' 42
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where, with a little abuse of notation, it is understood that every component V¥
with 1 < iy ...4, < d satisfies (3.5) and (3.6). In addition, there exists a constant
a > 0 independent of k and n such that

0<Cr <a(l+V2)kC*

where C is the Poincaré constant of (3.3) and (3.4).

Proof. We proceed by induction.
Case k = 0: multiply the first equation of (3.1) by ), then integrate by parts to
obtain

||vy0||%2(P\(nT),Rd) = / Yy < HyOHLZ(P\(nT))
P\(nT)

< Cn' 2|V | 2P\ ()R-

Case k = 1: multiply the second equation of (3.1) by V!, then integrate by parts to
obtain

VY2 rry ey < 21V L2\ my ey [V = VL2 (P ()
< 20°0" 2V | 2P\ (1) R -

Case k + 2 with k > 0: assuming the result is true till rank k£ + 1, multiply the third
equation of (3.1) by Y**2, then integrate by parts to obtain

IIV))HQH%z(P\(nT),Rd)
< @IVY L2 p\rry rey + 1IVF = Y2y 1V = V2| 2oy
< (2Ck41 + C’k)Cﬂl_d/2|\Vyk+2||L2(P\(nT)de)'

This implies (3.5). Then (3.6) follows from (3.3) and (3.4). |

Using the Cauchy-Schwarz inequality and (3.5), we can infer from the above result
that |V**| < Cxn?>~9. The next proposition provides more precise asymptotics for the
mean Y** (eqn. (3.2)). In particular, we find that in fact, Y** = o(n>~9) for k > 1.

PROPOSITION 3.4. The following asymptotic convergences hold for the mean ten-
sors (V) pen asn — 0:

2—d

(3.7) VO~ m and Y** = o(n*=?) for k > 1.

Proof. Since Y%* = X the result for k = 0 is standard and can be found
in [3, 18]. The case k = 1 (and in fact for any odd value of k) is trivial since
Y = X = 0. In order to prove that Y¥T2* = o(n?~9) for any k > 0, we follow the
lines of the proof of [12], Proposition 14.

Let us denote JNJI’“ = nd*ka for any k > 0. Then Y is the solution to

—AYF2 = VR @ e + (VX — (VF)) @ I in ' P\T
(3.8) V2 =0 on OT
RARETY n~! P-periodic,
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with (PF) := p fn,l AT Y*dz. From the previous proposition, there exists a constant
C > 0 independent of ) such that

HVj}VHQHB(n*lP\T,Rd) < C and |<j§k+2>| <C.

Hence, up to extracting a subsequence, we may assume the existence of order k + 2
field and scalar valued tensors W*+2(x) € HL (p~*P\T) and v**2 € R such that

loc
VFH2 Gk weakly in Hi,(RA\T) and (DF12) — 42 ag 5 — 0.

Furthermore, the lower-semi continuity of the DY2(R?\T) norm (see the proof of
Theorem 3.1 in [3] for a detailed justification) implies that W*+2 — 4*+2 belongs to
DL2(RU\T). Multiplying (3.8) by a compactly supported test function ¢, integrating
by part and passing to the limit implies that ¥**2 is the solution to the exterior
problem

—ATFT? = 0 e RAT

(3.9) Trt2 =0 on T

\I/k+2 k+2

—y at infinity.

Therefore Wk+2 = 4*+24* where ¢* is the solution to

~A¢p* =0 € R\T
(3.10) ¢* =0 on 0T
¢* — 1 at infinity.

To identify v**2, we multiply (3.8) by the constant function 1 and we integrate by
part to obtain that
9Yk+2
o [ P
aT on
because the right-hand side of (3.8) is of average zero. Using now the continuity of the
normal flux with respect to the H} (R?\T') weak convergence, we obtain by passing
to the limit as n — 0:
k200"

__n 99 4. _ k+2
0= lim 7 5y, ¥ = Cap(0T)y"",

whence v#12 = 0. This implies that the whole sequence ((37’“+2>),,>0 converges to
zero, and then (3.7) by rescaling. o

We now find that the tensors (X*(y))ren to (V*(y))ren are related by a Cauchy
product identity.

PROPOSITION 3.5. The tensors Y*(y) can be rewritten in terms of the tensors
X*(y) and X** according to the following recursive formula:

Vo(y) = X°(y)

Viy) = X'(y)

(3.11) y € P\(nT).

k—2
V) =X (y) = > V) @ X" @ T for k> 2,
=0
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Proof. Let us denote by Y*(y) the tensors defined according to (3.11). We prove
that the tensors V¥ referring to this definition solve the cascade of partial differential
equations (3.1), which implies the result by uniqueness. Obviously (3.1) is true for Y*
with £ = 0 or k = 1. Assuming the third equation is true till £k — 1 with k£ > 0 (with
the convention Y~! = 0), we then prove that it still holds at rank k. We compute

k
_Ayk+2 — _AXFtT2 _ Z(_Ayl) ® k=l QI
1=0
= 28ij+1 ® ¢; XTI — X el — 20,0° ® ¢; QX g
k
— Z(Qaijl ® e 4 (yl72 _ yl72*) ® I) ® Xk.il* ® I
1=2
k—1
= 20; <)(k+1 . Zyl ® Xg;flq* ® I) ©e,
1=0
k—2
+ (X’“ QI -—X" oI - Z(yl — Yy Akl ®I®I>
1=0
=0V @e + O =Y @
which implies the result. q

Remark 3.6. Let us comment the consequences of Propositions 3.3 and 3.5. From
(3.11), we have obtained, for any p € N,

p—2
(3.12) X =y Yyt g X e I
=0

Since YP~27* = O(n'~%/2), a simple recursive argument, (3.12) yields the following
asymptotic for the tensors X2** for k > 1:

(2—d) (k+1)

(313) X2k* = WI@I@@I"‘O(??@_CD]C), k‘ 2 1,
———
k times

which is a slight quantitative improvement of the result of [12], Proposition 14. In
our previous works [12, 13], our asymptotics (1.5) to (1.9) were obtained by inserting
the estimate (3.13) into the explicit formula (2.15) for the tensor M*. However this
leads to suboptimal bounds due to the fact that the mean of X2* is growing with k
like XQk* — O(ﬁ_(d_g)(k+1)).

Since from (3.7), Y** has a controlled growth with respect to 1 (namely Y** =
O(n*~%) independently of k), we obtain in the next section improved asymptotic
estimates for the coefficient tensors M* by relying on the ezact identity (3.12). Note
that (3.12) can be interpreted as an asymptotic expansion for XP*, because the terms
YP=272 @ X2 of the expansion have an increasing magnitude O(n~(@=2)(+2)),

3.2. Low-volume fraction asymptotics of the infinite order homoge-
nized equation.

PROPOSITION 3.7. The following identity holds for any k > 1:

k
(3.14) SR ME P = YT

p=0
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with the convention Y~1* = 0.

Proof. Let us multiply (3.12) by M*~? and compute the summation for 0 < p < k:
(3.15)

k k E p—2
ZXp* ® Mkfp _ Zyp* ® Mkfp + ZZyl* ® Xp72fl* ® Mkfp Q1
p=0 p=0 p=0 =0
k k—2 k
_ Zyp* ® Mkfp + Z Z yl* ® Xp72fl* ® Mkfp Q1
p=0 1=0 p=I+2
k k—2 k—1-2
_ Zyp* ® Mk—p + Zyl* ® ( Z XP* ® Mk—l—2—p> Q1
p=0 =0 p=0

Using now (2.14), the second terms of the above equation vanishes except for k—1—2 =
0 where it is equal to one. Since the above quantity is also zero for k > 1, we obtain
therefore, for k > 2:

k k
0= ZXp* ®Mk7p _ Zyp* ® Mlcfp +yk72* ®I
p=0 p=0
which is the result (3.14). d

Identity (3.14) is a recursive formula for the tensors (M*),ey. This allows to obtain
the following asymptotic estimates.
COROLLARY 3.8. The tensors M* satisfy the following asymptotics as n — 0:

(3.16) MO ~ Cap(dT)n?=2
(3.17) M? = —T + o(n??)
(3.18) M%) = o(n®=2) for any k > 2.

Proof. The first asymptotic is already known. For k = 1, (3.14) reads
M2 _ (yo*)—l(_yO* QI — yQ* ® MO) = I+ (M0)2y2*.

Since M° = O(n?~2) and Y** = o(n*~?), we obtain (3.17).
Then for k > 2, we rewrite (3.14) as

k
M2k — _(yO*)—l <y2k—2* QI+ Zy2p* ® M2(k;_p)>

p=1
_ 7MO (y?k:* ® MO + y2k:72* ® (M2 + I) + y2k:74* ® M4 U +y2* ® M2k72) )

Assuming the results holds till the rank k£ — 1, we see that all the terms in the
parenthesis are of order o(1). Therefore, (3.18) follows by induction, since M° =
O(n*=?). 0

Remark 3.9. We now have the full picture of how (2.9) behaves in the low volume
fraction limit. Indeed, we have obtained, as n — 0

(3.19) e 2M° ~ ¥ 2c72Cap(dT)
(3.20) 'M? - -1
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18 F. FEPPON AND W. JING

(3.21) P2 MR = o(e2F2n?72) for k > 2.

Therefore we obtain the coefficient-wise convergence of the infinite order homogenized
equation (2.9) to the three classical limiting equations depending on how 7 compares
with the critical scaling ncyis ~ g2/(d=2)

o if > £2/(4=2) then the zero-th order term remains dominant and the limit-

ing equation for e 29?24, is the zero-th order model

{Cap(aT)u* =finD

(3.22)

u* is D-periodic,
which is the scalar analogue of the Darcy equation (1.10);

e if ) = c£?/(?=2) for some constant ¢ > 0, then e 2M? converges to cCap(9T)
and (2.9) converges coefficient-wisely to the Poisson equation with “strange
term”

(3.23) {—Au* + cCap(0T)u* = f in D

u* is D-periodic.

This is the analogue of the Brinkman regime (1.11).

e Finally, if n = 0(¢2/(4=2)), then e 2M° — 0, M2 — —J and 2*"2M%* — 0
for £ > 2. We obtain therefore the Poisson equation in the homogeneous
domain D as the limit model:

—Au* = fin D,
(3.24) . .
u™ is D—periodic,

which is the analogue of the unperturbed Stokes regime (1.12).

3.3. Low volume fraction asymptotics of the truncated higher order
homogenized equation. We finally terminate this section by showing that the ho-
mogenized model (2.10) of finite order 2K + 2 has the same asymptotic behavior as
(2.9) in the low-volume fraction regime 1 — 0.

According to Definition 2.8, it is sufficient to examine the asymptotic of the
coefficient ]D)%(K+2 only, since D¥ = M* for 0 < k < 2K + 1. From (2.20), this
requires to estimate the tensor N¥(y) defined in (2.16). This can be achieved by
conveniently rewriting N (y) in terms of the tensors (V*(y))ren-

PROPOSITION 3.10. For any k > 0, the tensor N*(y) reads in terms of Y*(y) as

follows:
(3.25)

k
Ny => V() e M* P+ Y 2y o
p=0

=V MO+ Yt M + VP2 (MEP+ D)+ VPR M 4+ 4 )0 @ MP

where V=2 .= 0 for 0 <k <1 by convention.

Proof. The proof is identical to that of Proposition 3.7: it suffices to replace
X*=P(y) with the formula given by (3.11) and to simplify the Cauchy product by
using (2.14). |

Remark 3.11. Tt is visible that the identity (3.14) can also be obtained by com-
puting the average of (3.25) and by using (2.17).
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511  The estimates of Corollary 3.8 finally allow to prove that the truncated homogenized
512 equation (2.10) of order 2K + 2 has the same limiting behavior as the infinite order
513 homogenized equation (2.9) as n — 0.

514 PRrROPOSITION 3.12. We have the following asymptotics for the tensor D%K“ as
515 n —0:

516 (3.26) D2 = —1+0(n*?)

517 (3.27) DT = O(n?2) for K > 1.

519 In particular, for any K € N, the coefficients (DX )o<r<ar+2 of the higher homog-
520 enized equation (2.10) of order 2K + 2 satisfy the same asymptotics as the tensors

21 (MF*) asn — 0:

522 DY ~ Cap(dT)n?=2
523 ]D)%{ = I+ O(nd—2)
334 D2 = O(n=2) for any k > 2.

Proof. Case K = 0: we have

i = (- [ p7Pay) 1
= (= (2 =T + 19 = Y B2y ) IMOF) T
= (1400 )1

526 where the last estimate is a consequence of (3.6).
Case K > 1: we have

|D2K+2| _

/YNK QNE @ Idy‘ < Cr|INF|12 2\ ()

for a constant C'x > 0 which depends only on K. Since N¥ is of average zero for
K > 1, we can rewrite (3.25) as

K
NK — Z(yp - yp*) ®MK7p + (yK72 o yK72*) QI

p=0

_ (yK 7yK*) ®MO+(J}K71 7yK71*) ®M1 +(yK72 7yK72*)®(M2+I)
+ (yK—3 _yK—.?)*) ®M3+ cee (yo _yO*)®MK

Therefore by using again (3.6) and Corollary 3.8, we arrive at

IN®1122(p\ gy = O("72)

527  which yields the result by using (2.20). d
528 Remark 3.13. We lost a bit in terms of speed of convergence: the high order coef-
520 ficients (D% )3<k<ax 12 are only O(n?=2) while (M*);>3 is of order o(n?=2). However,
530 since both quantities converge to zero due to our assumption d > 3, the conclusions of
531  Remark 3.9 remain valid. Therefore the truncated model (2.10) converge as well to ei-
532 ther of the three regimes (3.22)—(3.24) depending on whether 7 is greater, proportional
533  to or lower than the critical size 7¢.it ~ g2/(d=2),
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4. The Stokes case. In this final section, we extend the asymptotic analysis
of the previous section 3 to the Stokes system (1.1). We recall the homogenization
setting reviewed in subsection 2.3, and our goal is to prove the coefficient-wise conver-
gence of both the infinite order and the finite order effective models (1.2) and (1.3).
We recall the Definitions 2.10 and 2.13 of their respective coefficients (M*);en and
(D*)o<k<2rt2-

The asymptotics of these coefficient tensors are obtained in Corollary 4.6 and
Proposition 4.10. The proof follow the lines of section 3; the key ingredient is the in-
troduction of matrix and vector valued cell tensors (V*(y), w® (y))ren with controlled
growth, which generalize the family of scalar valued tensors (V*(y))ren introduced in
subsection 3.1.

4.1. Cell tensors (V*(y),w"(y))ren of controlled growth. Recall the hier-
archy of corrector systems (2 21) (2.23) defining the cell tensors (Xf(y),af(y))keN.

We define the cell tensors (Y (y), w¥(y))ren by an analogous recurrence.

DEFINITION 4.1. For any 1 < j < d, we define a family of vector valued tensors

(yf(y)) and scalar valued tensors (wk(y))keN as the unique solutions in HJ, (Y, R?) X

L2(Y) to the following recursive systems:

€; m Y,

1) —AY) + V!
' div(y?) =0 in Y,

42) —AY] + Vw; = (20Y) —wie) @ e inY,
' div(Y}) = —() — (YN) - es @ e in Y,

3) —AYET? 4 VW = 2005 — Wit le) @ e+ (V- (V) @I, in Y
' dwwk“) ~T - ) e @ in,

supplemented with the following boundary conditions:

/ w;-“dy =0
Y

y;? =0 on 9(nT)
(yf,w;?) is P—periodic

(4.4) Vk > 0.

It is immediate to see that (V¥ (y),wk(y)) and (X} (y), a%(y)) coincide for k = 0, 1.
In what follows, we also set (¥~ (y),w™(y)) = (Xj_l(y), a;l(y)) = 0 by convention,
so that (4.3) becomes valid for k = —1.

Our goal next is to obtain controlled estimates for (yf(y), w¥(y)) that are similar
to those obtained in Proposition 3.3 in the Laplace case. We rely on the following

result which allows to estimate the pressure term.

LEMMA 4.2. Consider h € L*(P\(nT),R%) and g € L*(P\(nT)) a function sat-
isfying fP\(nT) gdr = 0. Let (v,¢) € HY(P\(nT),R?) x L2(P\(nT)) be the unique
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solution to the following Stokes system:

—Av + V¢ =hin P\(nT)
div(v) = g in P\(nT)

(4.5) / ¢pdx =0
P\(nT)
v =0 on d(nT)

v is P-periodic.

There exists a constant C > 0 independent of (v, @), n, h and g such that

(4.6) |IVol|L2(p\ () Rexay + [[@]]L2(P\ (7))
< C(|lh = (B)|| 2\ (yry may + 0 2R + (19l |22 P\ ()))-
Proof. (4.6) is obtained by rescaling the estimates of Lemma 5.3 of [13] from the
growing domain 7! P\T to the perforated cell P\(nT). O

Using this lemma yields the fact that (yf (y),w*(y)) has indeed a magnitude
controlled with respect to k.

PRrOPOSITION 4.3. For any k > 0 and 1 < j < d, there exists a constant Cy > 0
independent of ) such that

(4.7) IVYV¥I 22 o\ () ey + 0 |20\ ryy < Crem* =42,
NV — (V)2 o\ () rey < Crem ™2
Proof. Again, we proceed by induction. Note that it is enough to prove (4.7)

since (4.8) follows from the Poincaré-Wirtinger inequality (3.4).
Case k = 0: applying Lemma 4.2 to (4.1) yields

IV L2 (o) ety + 6| L2y < Ot~ Y/2

since e; = |(e;)| =1 —n¢|T)|.
Case k = 1: since the right-hand side of (4.2) is of zero average, applying Lemma 4.2
yields

IVY] 2P\ () Raxa) + @] | L2\
< CQIVYSllLa\my raxey + W]l z2vmy + I1V5 = VL2 ren)-
é Clnl_d/2~
Case k+2 with k > 0: similarly, the right-hand side of (4.3) is of average zero. There-
fore, assuming (4.7) and (4.8) holds till rank k£ + 1 with & > 0, applying Lemma 4.2
yields
||vy?+2”L2(P\(nT),Rd><d) + ||Wf+2\|L2(P\(nT))
/ k+1 k+1 k k
< CQIVYFT L2y axay + 15T |z pyomyy + 11V5 = Y522 (oA -ty
+HIVF = T L2 (v k)
g Ck+2771_d/2.
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In the sequel, we consider the matrix-valued tensors J* and the vector-valued tensors

wk obtained by gathering the vector valued tensors ());C (y))1<j<a as columns and the

scalar valued components (wf(y))lgjgd as coordinates:

5 W sisca = | Piw) ... Yiw)]|

?

LWy ey, Vk>0.
J

wh(y) == (Wi (Y))1<j<a, YW €Y,  Vk>0.

As before, we introduce the mean matrix tensor Y** defined by
Y= / Y (y)dy.
P\(nT)

By using arguments similar to those of the proof of Proposition 3.4, we can
precise the convergence of the mean Y**. For any 1 < j < d, let us consider the
unique solution (¥, ;) to the exterior Stokes problem

~A¥; +Vo; =0 in RA\T

div(®;) = 0 in R\T
(4.9) WU; =0ondT
¥, —e; at 0o

o; € L*(RN\T).

The existence and uniqueness of a solution to (4.9) is standard by using layer potential
theory [20, 19] or variational arguments in homogeneous Sobolev spaces [14, 25] (also
called Deny-Lions or Beppo-Levi spaces). We denote by F' := (Fj;)1<i j<q the matrix
collecting the drag force components:

(410) Fij = v‘:[’z : V‘I’de = —/ €; - (v‘:[’z - O'lI) . nds7
RI\T oT

where the normal mn is pointing inward T. The matrix F' is the analogue of the
capacity Cap(9T) in the context of the Stokes equation. The following result holds.

PROPOSITION 4.4. The mean matriz valued tensor Y** satisfy the following as-
ymptotic convergences as n — 0:

(4.11) VO ~ 2 FY and YR = o(n*~?) for k > 1.

Proof. The convergence for Y°* is a classical result and a proof can be found in
[3]. The second estimate result from the fact that the right-hand sides of (4.2) and
(4.3) are of zero average. The proof is obtained by repeating arguments similar to
those of Proposition 3.4, see also the proof of Proposition 5.4 in [13]. |

The pairs (V*(y),w"(y)) and (X*(y), a*(y)) are related by Cauchy-product iden-
tities analogous to (3.11).
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PROPOSITION 4.5. The matriz valued tensors (V*(y))ren and (X*(y))ren are re-
lated through the following identities:

Vo) =Xx%(y), «°(y) = (y),

Vi) =X'(y), w'y)=a'(y),
k—2

(4.12) (Y (y) =X () - ) Yy ex"*al, y e P\(nT), k > 2.

=0
k—2

W (y) =t (y) =) (DLl y) e I,
=0

In particular, we have the formula
k-2

(4.13) X)) =YY Vet el
=0

remembering Proposition 2.11 whereby X** is symmetric when k is even and is anti-
symmetric when k is odd.

Proof. The identities for (V¥ (y ), k) = (X*(y),a’(y)), with k& = 1,2, are
obvious from the definitions (4.1) and (4.2). By induction, (4.12) is obtained as soon
as we prove

k
YhH2 — xher Z V) - (X5 @1 =252 -3 (k" 0 DY),
(4.14) -
WA = g2 Z“’ (XY o T = af ST (AE T @ Dwl(y),
=0

for k > 0, assuming these identities hold for lower values of k (remind the symmetry
and antisymmetry properties of Proposition 2.11). Note that we use the implicit
summation convention over the repeated index 1 < ¢ < d. Let (v, ¢) be the right-
hand sides of the above equations. We compute

k
—Av+ V¢ = (—AXE? 4+ Vak?) =N (a1 @ 1) (- AV + Vi)
=0
= (28[X?+1 — Oz?—HEZ) X e + Xk QI — (le;* ®1I)e;

—(ka71*®f)(28 XY —dle,) ®en
Z X @ D20,V —wl ) @ e + (V2= (V) @ 1)

— (zamy;?“ —witlen) @ em + (V) — (V))).

In the last equality, we used the assumption that (4.14) holds when k is replaced by
k —1 or k — 2. By uniqueness of the defining problem for (yf“(y),wfﬂ(y)), we
]

obtain that (4.14) holds.

4.2. Low-volume fraction asymptotic of the infinite order homogenized
Stokes system. We now obtain the asymptotic of the coefficients M* by relating
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24 F. FEPPON AND W. JING

them to the mean tensors Y**. Recall that the recursive definition (2.26) of the tensors
MPF states that

k .
>k M = I itk =0,
0, ifk>1.

p=0

Using this result and repeating the proof of Proposition 3.7, we obtain that the identity
(3.14) remains valid in the present vectorial context:

k

(4.15) STV @ MM = YR @ T for any k > 2.
p=0

This identity implies the following results.

COROLLARY 4.6. Let M* be the tensors defined by (2.26) and F = (Fij)i<i,ja the
drag force matriz defined by (4.10). Then as n — 0,

(4.16) M° ~ =2 F

(4.17) M = o(n?7?)

(4.18) M? = —T + o(n??)

(4.19) M* = o(n?=2) for any k > 2.

Proof. The proof is identical to that of Corollary 3.8, except that some extra
care must be taken because of non-commuting matrix products and non-zero odd
order tensors. The result for MY = (X%*)~! is a restatement of the first asymptotic
convergence of (4.11). For k = 1, we have by definition

M =—Q") oy oM’ =—-M" @Y™ @ M°.

Since Y1* = o(n?*~¢) and M° = O(n?~2), we obtain M! = o(n¢=2). For k = 2, the
identity (4.15) yields

M2+I:—MO® [y1*®Ml+y2*®M0]
which is also of order o(n?~2). Finally, for k > 2, we rewrite (4.15) as

MszMO (yk*®M0+yk71*®M1+yk72*®(M2+I)++y1*®Mk71)

By induction, we deduce from the above relation that M* = o(n?=2?) for all k > 2,
which completes the proof. 0

Remark 4.7. We recall that there is a slight abuse of notation in the notation I
featured in (4.18) because I is here the second-order matrix-valued defined by (2.8)
and not the scalar valued tensor I of the other equations.

Remark 4.8. We have therefore obtained the first main result of the paper, i.e.
the coefficient-wise convergence of the infinite order homogenized Stokes system (1.2)
towards either the Darcy, Brinkman or Stokes regimes (1.10)—(1.12) for the various
scalings of  when compared to the critical size €2/(4=2). Indeed, the coefficients of
(1.2) satisfy as n — 0:

(4.20) e 2MO ~?T 2T
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(4.21) e M = o(e71n472)
(4.22) OM? - —1
(4.23) b M* = o(eFn?=2) for k > 2.

Reasonning as in Remark 3.9 we obtain the coefficient-wise convergence of (1.2) to-
wards the three regimes as ¢ — 0 and 1 — 0 for the three possible scalings of 1. Note
that we also obtain the coefficinet-wise convergence of the infinite order model (1.2)
towards the homogeneous Stokes system (1.12) if € is fixed while n — 0.

4.3. Low-volume fraction asymptotic of the truncated homogenized
Stokes system of order 2K + 2. We now come to the final result concerned with
the coefficient-wise limit of the truncated homogenized model (1.3), or in other words
with the limit of the tensors D% as 7 — 0. Similarly as in subsection 3.3 and by
reading the definition (2.32), we need to find the asymptotic limits of the tensors
N*k(y) and B%(y) of Definition 2.12. Using (4.13), we can represent them using the
controlled tensors Y* and wk, as shown in the next result.

PROPOSITION 4.9. For k > 1 and with the convention Y~2* = Y~1* = 0 and
w2 =w™1 =0, the following identities hold:

k
(4.24) Niy) =D VP e MP+ Y 2(y) oI,  yeY,
p=0
k
(4.25) B y) =D (—)PMP WPy + W Py @, yeY.
p=0

Proof. Both identities are proved following the arguments and computations of
Proposition 3.7. We only provide the proof for the second identity. We left multiply
(4.12) by (—=1)PM? and sum over 0 < p < k:

k
Z(_l)pMp P
p=0
k k k—p—2
=D (1)PMP WP YT N ()M g XTI Wl e T
p=0 p=0 =0
k k—2 k—1—2
=D (C1PMP o @F TP Y ()R YT Mg x| LWl T,
p=0 1=0 p=0

In view of (4.13), the summation in the brackets vanishes unless | = k — 2 when it
sums to I. This leads to

k k
(4.26) BE =) (—1)PMP - P = (—1)PMP PPt wF PR T
p=0 p=0
which is the desired result. ]

With those formulas, we finally obtain the low volume fraction asymptotics of the
tensors (D% )o<r<2r 42 of the high order truncated homogenized Stokes system (1.3).
The analysis requires slightly more work than in the scalar case due to the presence
of the tensors (A’f() K+1<k<2K+1 induced by the divergence constraint.
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PROPOSITION 4.10. We have the following asymptotics for the tensors lD)%(K+2 and
(A];()K_i_lSkSQK_A'_l defined by (2.32) as n — 0:

(4.27) D2 = —1+0(n*?)
(4.28) D2E+2 = O(n?2) for K > 1
(4.29) Ak =O0m®2) for K>0 and K +1 <k < 2K + 1.

Therefore, for any K € N, the matriz-valued coefficient tensors (D% )o<k<oxi2 of
the truncated homogenized Stokes system (1.3) satisfy the following convergences as
n — 0:

(4.30) DY ~ n?2F,

(4.31) D} = 0(n-2),

(4.32) D% = —T+0(n*?),

(4.33) DY = O(n?=2) for any k > 2.

Proof. 1. Asymptotic (4.27). By the definition (2.32) and by using (4.24), we
have

D% = [ NO-NYw ray = —paff [ V¥ ray
Y Y
= — My, My <<3’9n> )= |T)) + /Y(J’%L — (V) - (] - <y?>)dy> ®1,

with implicit summation over the repeated indices 1 < I,m < d. Then, we observe
that MO (YY) = X% Me; = e;, and similarly Ml(;- (V) = e;; this implies

=M My (Vo) - (V)L = nT])) = =61 + O(n).

Finally, using (4.8), (4.16) and the Cauchy-Schwarz inequality allows to obtain

~atgntt ([ 04— 95 0 - @ay) e 1
= 0™ )0 *)0(m*~") = 0(n"™?)

which implies (4.27).
2. Asympotic (4.28). We use (4.24) to rewrite, for any k > 1, NF as

k
N =Y YEreM, + Y 2ol
p=0

k
=S (VET-nINeMEb + (VTP - (V) eI
p=0

= (Vb — (Vi @ Mp, + (Vi — (YY) @ M),
+(VE2 = (Vi) @ (M2 + 6mil)
=R R ME -+ (Y, — (Vo) © M,
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where we used that (N¥) = 0 at the second equality. Therefore the result of Corol-
lary 4.6 and the bound of (4.8) controlling || V¥, — <yfn>||L2(P\(nT)) imply that

INE|l 22\ @)y = O(n™*71) for k > 1.

Then (4.28) follows from the definition (2.32) and the Cauchy-Schwarz inequality.
3. Asymptotics (4.29). By integration by parts, the formula (2.33) for A’f{’ij with
K +1<k<2K +1 can be rewritten as

A= (DX / By F Tt @ div(NS) + (—1)FBF T @ div(INTH) dy.
Y

Therefore we need to control the L? norm of ,6’;c (y) for 0 < k < K and of diva for
any k > 1 and 1 < 4,5 < d. Using (4.24) to compute the divergence, we obtain for
any k> 1

k
divNF =) " divyi P @ M, + divyy e 1
p=0

k
== R =T e wae My, — (Vi =Y e wal
p=0

=[(Vi T =) @ MY, + (Vi — (Vi) @ My,
+ i =) @ (MR + 6l
= R ME -+ (Y, — (Vo) @M e @ ey,

still assuming the summation convention over the repeated index 1 < m < d. By
using the result of Corollary 4.6 and the bound (4.8), we obtain therefore that

divNE || L2 (p\ 1y = O(n¥/?71) for any K € N.

Similarly, (4.24) allows to rewrite ﬁ]k as

k
=Y ke My, ke
p=0

=wh @ M) +wk @M, + Wk @ (M2, + mil)
Fwh P @ME A+ wh, @ M

Therefore, the bound (4.7) controlling ||w;?\|L2(p\(nT)) and Corollary 4.6 yield

||6;§||L2(P\(nT)) = O(’I]d/Q_l) for any k e N.
Hence (4.29) follows by using the Cauchy-Schwarz inequality. ]

The result of Proposition 4.10 implies that the conclusions of Remark 4.8 still hold
for the truncated model (1.3), which converges therefore in the coefficent-wise sense
towards either of the three models (1.10)—(1.12) depending on how the scaling 7
compares to the critical value nept ~ n2/ (d-2) a9 claimed.
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