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Abstract

Certain generalized coherent states, so-called Hagedorn wavepackets, have been
used to numerically solve the standard Schrödinger equation. We extend this ap-
proach and its recent enhancements to the magnetic Schrödinger equation for a
time-dependent, spatially homogeneous magnetic field. We explain why Hagedorn
wavepackets are naturally compatible with the aforementioned physical system. In
numerical experiments we examine the order of convergence and the preservation of
norm and energy. We use this method to simulate a Penning trap as proposed in
recent work on quantum computing.

1 Introduction

The generalized coherent states introduced in [14], nowadays known as Hagedorn wavepack-
ets, have been used successfully to design numerical methods for the Schrödinger equation
[9]. The present work adapts the Hagedorn wavepacket approach to the time-dependent
Schrödinger equation for a (possibly time dependent) homogeneous magnetic field. More
precisely, we extend the recently developed semiclassical splitting methods [11] and its
enhancements of high order convergence [3]. We split the original equation into three
separate equations. The new part due to the homogeneous magnetic field involves an
infinitesimal rotation of the wave function. Then we make two key observations. First,
this infinitesimal rotation commutes with the Laplace operator, and thus allows us to
decouple the associated time evolutions [12, Sec. 2.1]. Second, the time evolution of the
infinitesimal rotation, which is simply a rotation of the wave function, can be expressed
naturally in terms of Hagedorn wavepackets. We can retain the high order convergence
rates of the zero-field case and need only minor additional effort to treat the new terms
in presence of a homogeneous magnetic field. More precisely, we only require the solution
of an additional, low dimensional ODE.
Quantum dynamics in presence of magnetic fields is particularly challenging for the space
discretisations based on grids. In [12] the authors generalize for instance the well-known
Fourier grid approach to the same equation. When charged particles are subject to a
homogeneous magnetic field, they start to spin in circles. These rotations can not be
expressed exactly on the Fourier grid. However, Hagedorn wavepackets give rise to grid-
free methods and can thus overcome this drawback. Additionally, unlike the (discrete)
Fourier basis functions, rotated Hagedorn wavepackets are again Hagedorn wavepackets.
The time-propagation under the new magnetic field terms can thus be expressed exactly.
In general, the Fourier grid approach is complementary to the Hagedorn approach in the
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following sense. The Fourier method is satisfactory for large values of the model parameter
ε2, which plays the role of the reduced Planck constant ~. In contrast, the Hagedorn
approach improves for small values of ε2, i.e. in the semiclassical limit [9]. Moreover, at
least for localized (in space and momentum) solutions, the Hagedorn approach is more
efficient in high dimensions [9].
Hagedorn wavepackets have been used in [26] to solve the Schrödinger equation for non-
homogeneous magnetic fields. The authors thereof mention the semiclassical splitting, but
do not aim to generalize it to the magnetic Schrödinger equation. Our work thus differs
in the sense that we consider only homogeneous but time dependent magnetic fields and
we provide much more efficient methods. In fact, this seems to be the natural way to
generalize the semiclassical splitting and its enhancements. For the nonlinear Schrödinger
equation, magnetic fields are considered in [10], with a focus on magnetic traps and the
rotation they induce.
Homogeneous magnetic fields are used for instance in Penning traps [23, 6, 7] to implement
qubits in experimental quantum computing. For instance in [17], the authors consider a
Penning trap with a particular homogeneous magnetic field to circumvent some experi-
mental issues. We use this example and (a version of) the Hamiltonian proposed in [17] to
conduct our simulations. Thereby we confirm the expected convergence rates of very high
order. These simulations involve one or two particles in three dimensions. All our sim-
ulation codes are accessible in the repository https://gitlab.math.ethz.ch/gvasile/

WaveBlocksND.git.

2 The Magnetic Schrödinger Equation

Consider an electric potential φ (x, t) and a magnetic potential A(x, t), where x ∈ R
d and

A maps to R
d. We assume that d ≥ 2. For a spinless1 particle of unit mass and unit

charge, the Hamiltonian reads

Hε = 1
2

(
−iε2∇− A

)2
+ φ

= 1
2

(
−ε4∆+ 2iε2A · ∇+ iε2 (∇ · A) + ‖A‖2

Rd

)
+ φ.

The model parameter ε2 > 0 plays the role of the reduced Planck constant. Now we
consider the special case of a homogeneous magnetic field. It is convenient to describe
the magnetic potential by a 1-form A (x, t) = Al (x, t) dx

l. The magnetic field being
homogeneous then means that the magnetic field 2-form dA is independent of x. Therefore
we choose

A (x, t) := Bjl (t) x
jdxl

where B (t) = (Bjl (t))16j,l6d is a real, skew-symmetric matrix. The corresponding mag-
netic field 2-form is given by

dA (t) = 2
∑

16j<l6d

Bjl (t) dx
j ∧ dxl.

We introduce for j, l ∈ {1, . . . , d} the operators

pεl := −iε2∂l (components of linear momentum)

Lεjl := xjp
ε
l − xlp

ε
j (generalized angular momentum)

1We treat only spinless particles and refer to [12, Sec. 3.1] for an explaination on how to add spin in
the case of a single particle in a homogenous magnetic field.
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and
Hε
B (t) := −

∑

16j<l6d

Bjl (t)L
ε
jl. (2.1)

For this particular vector potential, we have

iε2A · ∇ = Hε
B (t) , (∇ · A) ≡ 0, 1

2
‖A‖2

Rd = 1
2
‖B (t) x‖2

Rd

and our Hamiltonian thus reads [22]

Hε = − ε4

2
∆

︸ ︷︷ ︸
T :=

+Hε
B (t)︸ ︷︷ ︸
M :=

+ 1
2
‖B (t) x‖2

Rd + φ (x, t)
︸ ︷︷ ︸

V :=

. (2.2)

The associated Schrödinger equation is given by

iε2∂tψ (x, t) = Hεψ (x, t) , ψ (x, t0) = ψ0 (x) . (2.3)

Let us label the separate equations:

iε2∂tψ (x, t) = Tψ (x, t) (T)

iε2∂tψ (x, t) =Mψ (x, t) (M)

iε2∂tψ (x, t) = V ψ (x, t) (V)

Compared to the standard Schrödinger equation (zero magnetic field), we get an additional
quadratic potential term and an advection term Hε

B(t). The time evolution of Equation
(M) is simply a rotation of the wave function that depends on the magnetic field B (t).
More precisely, consider the ODE

d
d t
y (t) = B (t) y (t) . (B)

By [24, Thm X.69] there exists a rotation R (t, t0) ∈ SO (d) such that y (t) = R (t, t0) y (t0)
solves (B) and R (t0, t0) = id, that is R (t, t0) is the flow map associated with (B). Then
the wave function

ψ (x, t) = ΦM (t, t0)ψ0 (x) := ψ0

(
RT (t, t0) x

)
(2.4)

solves the magnetic equation (M) [12, Lem 2.1] and the corresponding unitary propagator
is denoted by ΦM (t, t0). Note that the ODE (B) is independent of the model parameter
ε. In our simulations, we approximate the rotation R (t, t0) by a truncated Magnus ex-
pansion. See Section 5.5 for the precise method. Finally, we observe a crucial structure
of our equation

Hε = T +M︸ ︷︷ ︸
commute

+V.

The unitary propagators associated with the Hamiltonians T and M commute [12, Lem
2.3]. The flow map associated with the Hamiltonian T +M thus reads

ΦT+M (t, t0) = ΦT (t, t0) ◦ ΦM (t, t0) = ΦM (t, t0) ◦ ΦT (t, t0) , (2.5)

where
ΦT (t, t0) = e−iε

2(t−t0)(−∆)/2.
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3 Hagedorn Wavepackets

In [12], a Fourier grid approach is used to numerically solve Equation (2.3). It uses dense
grids and thus becomes very expensive for dimensions d > 3. The Hagedorn wavepackets
are sparser and thus better suited in high dimensions. Moreover, as Equation (2.4) indi-
cates, suitiable basis functions should be compatible with rotations. While this is not the
case for the Fourier basis functions, Lemma 1 below asserts that Hagedorn wavepackets
can be rotated naturally, and thus motivates their use in the context of magnetic fields.
The Hagedorn wavepackets were developed in [13] and [14]. However, we use the notation
of [9]. Let q, p ∈ R

d and Q,P ∈ C
d×d with

QTP − P TQ = 0, Q∗P − P ∗Q = 2i id, (3.1)

where Q∗ denotes conjugate-transpose and QT denotes transpose without complex con-
jugation. Moreover, we abbreviate Π := (q, p,Q, P ). Using the vector-valued raising and
lowering operators

Rε [Π] :=
i√
2ε2

(
P ∗ (x− q)−Q∗ (−iε2∇x − p

))

Lε [Π] := − i√
2ε2

(
P T (x− q)−QT

(
−iε2∇x − p

))

we define for k ∈ N
d
0 the Hagedorn wavepackets ϕεk [Π] recursively by

ϕε0 [Π] (x) :=
(
πε2
)− d

4 (detQ)−
1
2 exp

(
i

2ε2
(x− q)T PQ−1 (x− q) + i

ε2
pT (x− q)

)

and
ϕεk+ej [Π] :=

1√
kj+1

Rε
j [Π]ϕ

ε
k [Π] (3.2)

for all k ∈ N
d
0 and all j ∈ {1, . . . , d}. The functions obtained in this way form an

orthonormal basis of L2
(
R
d
)
, see [14]. To get familiar with the notation, we consider an

example in d = 2 dimensions.

Example 1. The parameters Π0 := (q0, p0, Q0, P0) with

q0 = (0, 0), p0 = (0, 0), Q0 = idR2 , P0 = i idR2

satisfy the condition (3.1). We have

ϕε(0,0) [Π0] (x) =
(
πε2
)− 1

2 e−
1

2ε2
xT x

and the j-th component of the raising operator Rε [Π0] reads

Rε
j [Π0] =

i√
2ε2

(
−ixj + iε2∂j

)
.

Using this expression with j = 1 we arrive at

ϕε(1,0) [Π0] (x) = Rε
1 [Π0]ϕ

ε
(0,0) [Π0] (x) =

2√
2πε2

x1e
− 1

2ε2
xT x.

Similarly, one can compute

ϕε(0,1) [Π0] (x) = Rε
2 [Π0]ϕ

ε
(0,0) [Π0] (x) =

2√
2πε2

x2e
− 1

2ε2
xT x

ϕε(1,1) [Π0] (x) = Rε
2 [Π0]ϕ

ε
(1,0) [Π0] (x) =

2√
πε3
x1x2e

− 1
2ε2

xT x

ϕε(2,1) [Π0] (x) =
1√
2
Rε

1 [Π0]ϕ
ε
(1,1) [Π0] (x) =

1√
πε4

(
2x21 − ε2

)
x2e

− 1
2ε2

xT x.
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We represent the solution of (2.3) in terms of such Hagedorn wavepackets multiplied by
a phase factor

ψ (x, t) = eiS(t)/ε
2
∑

k∈K
ck (t)ϕ

ε
k [Π (t)] (x) , (3.3)

where S (t) is a real-valued function and K ⊂ N0 is a multi-index set. In the numerical
simulations of Section 5, we choose [9, Sec.5.4]

K =

{
k ∈ N

d
0 |

d∏

j=1

(1 + kj) ≤ K

}
(3.4)

with some truncation constant K ∈ N. Equation (2.4) asserts that if we can rotate
Hagedorn wavepackets, then we can also propagate them according to (M).

Lemma 1. Let Π := (q, p,Q, P ) satisfy (3.1) and let R ∈ SO (d). Then the rotated
parameters

RΠ := (Rq,Rp,RQ,RP )

still satisfy (3.1) and we have

ϕεk [Π]
(
RTx

)
= ϕεk [RΠ] (x) (3.5)

for all ε > 0 and all k ∈ N
d
0.

Proof. We fix R ∈ SO (d) and show the formula by induction on k ∈ N
d
0. For k = 0, this

is straightforward to verify. Let ρ (R), be the map that rotates functions by R, i.e.

ρ (R)ϕ (x) = ϕ
(
RTx

)

for all ϕ ∈ L2
(
R
d;C
)
. The next step is to show that

ρ (R)Rε [Π] = Rε [RΠ] ρ (R) . (3.6)

To this end, let ϕ : Rd → C be a smooth function. By chain rule, we have

∇x

(
ϕ
(
RTx

))
= R (∇xϕ)

(
RTx

)
.

It follows that
(
Q∗ (−iε2∇x − p

)
ϕ
) (
RTx

)
= (RQ)∗

(
−iε2∇x −Rp

)
ϕ
(
RTx

)
.

Together with
P ∗ (RTx− q

)
ϕ
(
RTx

)
= (RP )∗ (x−Rq)ϕ

(
RTx

)
,

this proves (3.6). Finally, we fix j ∈ {1, . . . , d} and compute

√
kj + 1ρ (R)ϕεk+ej [Π]

(3.2)
= ρ (R)Rε

j [Π]ϕ
ε
k [Π]

(3.6)
= Rε

j [RΠ] ρ (R)ϕ
ε
k [Π]

(3.5)
= Rε

j [RΠ]ϕ
ε
k [RΠ]

(3.2)
=
√
kj + 1ϕεk+ej [RΠ] ,

where we used the induction hypothesis in the third step. This proves (3.5). It is straight
forward to check that the rotated parameters satisfy (3.1).

If we apply this result to R = R (t, t0) as in (2.4), we obtain the time evolution of ψ (x, t)
in (3.3) under (M). The exact time evolution under (M) has been pointed out in [14,
Thm 3.4], but without link to rotations (as it covers a more general case).
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4 Semiclassical Splitting

We extend the semiclassical splitting developed in [9] and [11] to the Hamiltonian (2.2).
We represent our approximate solution ψ (t) by a Hagedorn wavepacket as in (3.3). Prop-
agating ψ (t) means propagating its parameters S (t) ,Π(t) := (q (t) , p (t) , Q (t) , P (t))
and its coefficients ck (t) , k ∈ K. The precise algorithm for this propagation goes as fol-
lows. We assume for simplicity that our Hamiltonian (2.2) is time-independent, i.e. that
M and V are time-independent. In Section 5.4 we extend all the schemes discussed below
to the non-autonomous case. We split the Schrödinger equation into two parts

ψ̇ (t) = A (t)ψ (t) + B (t)ψ (t) , ψ (0) = ψ0 (4.1)

with
A (t) = − i

ε2
(T +M + U (x, t)) and B (t) = − i

ε2
W (x, t) .

Here, we have
V (x, t) = U (x, t) +W (x, t) ,

where U (x, t) is the local quadratic Taylor expansion of V (x) at position q = q (t), and
W (x, t) is the non-quadratic remainder. More precisely, we have

U (x, t) = V (q) +∇V (q) · (x− q) + 1
2
(x− q)T ∇2V (q) (x− q) ,

where ∇2V denotes the Hessian of V , and

W (x, t) = V (x)− U (x, t) .

The semiclassial splitting for a time step [0, h] is

exp
(
h
2
A
(
h
2

))
exp

(
hB
(
h
2

))
exp

(
h
2
A (0)

)
. (4.2)

In the next two sections, we specify how these exponentials act on ψ0, i.e. on its parameters
and coefficients. See also the pseudo code in Algorithm 1 below.

4.1 Propagation with Respect to A
To solve the equation

ψ̇ (t) = A (t)ψ (t) , ψ (0) = ψ0, (4.3)

we split it into

ψ̇ (t) = − i
ε2
(T +M)ψ (t) and ψ̇ (t) = − i

ε2
U (x, t)ψ (t) . (4.4)

Both of these equations can be solved exactly.

Remark 1. The exact time evolution under each of these equations preserves the Hage-
dorn wavepackets in the following sense. Suppose we take as initial data just a single
Hagedorn basis function

eiS(0)/ε
2

ϕεj [Π (0)]

for some multi-index j ∈ N
d
0. Then the solution according to both equations will be of the

form
eiS(t)/ε

2

ϕεj [Π (t)]

for all times t > 0, where the parameters S and Π satisfy a certain ODE to be specified
below. In particular, the coefficients ck in the basis expansion (3.3) remain constant under
these time evolutions.
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This result is due to [14]. The assumption that the magnetic field is homogeneous (but
possibly time-dependent) is crucial for this property. Below, we give these ODEs and
their exact solutions for the parameters. We then concatenate these exact solutions to an
approximate solution of (4.3) by a splitting. We call this the inner splitting.

(i) The Hagedorn wavepacket ψ solves the first equation in (4.4) if its coefficients remain
constant and its parameters satisfy the ODE [14]

q̇ (t) = p (t) + Bq (t)

ṗ (t) = Bp (t)

Q̇ (t) = P (t) + BQ (t)

Ṗ (t) = BP (t)

Ṡ (t) = 1
2
‖p (t)‖2

Rd .

(4.5)

The exact solution for a time step δt is given by

q (δt) = exp (δt · B) (q (0) + δt · p (0))
p (δt) = exp (δt · B) p (0)

Q (δt) = exp (δt · B) (Q (0) + δt · P (0))

P (δt) = exp (δt · B)P (0)

S (δt) = S (0) + δt · 1
2
‖p (0)‖2

Rd .

Note that this is just a concatenation of the flow maps associated with T and M ,
which in turn is just Equation (2.5) on the level of parameters. Since we assume
that B is time-independent, the matrix R (t, t0) in (2.4) corresponds to R (δt, 0) =
exp (δt · B).

(ii) The Hagedorn wavepacket ψ solves the second equation in (4.4) if its coefficients
remain constant and its parameters satisfy the ODE [14]

q̇ (t) = 0

ṗ (t) = −∇U (q (t) , t)

Q̇ (t) = 0

Ṗ (t) = −∇2U (q (t) , t)Q (t)

Ṡ (t) = −U (q (t) , t)

The exact solution for a time step δt is given by

q (δt) = q (0)

p (δt) = p (0)− δt · ∇U (q (0) , 0)

Q (δt) = Q (0)

P (δt) = P (0)− δt · ∇2U (q (0) , 0)Q (0)

S (δt) = S (0)− δt · U (q (0) , 0) .

We concatenate the exact propagations (i) and (ii) to an approximate the solution of (4.2)
using N steps of the splitting of order 8 from [18], see also [15, Eq. 3.14]. For details on
this splitting, see Algorithm 2 and Table 1 below. The size of a single step of this inner
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splitting is δt = h/N , where h is the external time step from (4.2). The number of inner
time steps for the semiclassical splitting is [11]

N = 1 +
⌊
ε−

3
8h

3
4

⌋
. (4.6)

This choice results in a convergence rate of εh2 for the overall method (4.2) as explained
in Section 4.3.

4.2 Propagation with Respect to B
It remains to solve the equation of the non-quadratic remainder, that is

ψ̇ (t) = B (t)ψ (t) , ψ (0) = ψ0, (4.7)

or equivalently
ψ̇ (x, t) = − i

ε2
W (x, t)ψ (x, t) , ψ (0) = ψ0.

This is done exactly as in the zero magnetic field case, see [9, Sec.2.5]. We compute the
Galerkin matrix of W (x, 0) w.r.t. the Hagedorn wavepacket basis

Fj,k [Π (0)] =

∫

Rd

ϕεj [Π (0)] (x)W (x, 0)ϕεk [Π (0)] (x) dx, j, k ∈ K. (4.8)

This yields an ODE for the coefficients (ck (t))k∈K, namely

iε2ċ (t) = F [Π (0)] c (t) .

An approximate time step [0, h] according (4.7) then reads

c (h) = exp

(
− i

ε2
hF [Π (0)]

)
c (0)

and the parameters Π (t) and S (t) stay unaltered. As in [3], we point out the following:
The remainder W perturbs the solution w.r.t. A by order O (ε3) as ε → 0 (see [11,
Lem. 3]). This will be used in Section 5.

Algorithm 1 semiclassical splitting

Input: final time t; number of outer time steps n; initial parameters Π, S; initial coeffi-
cients c = (ck)k∈K;
Output: Parameters Π, S and coefficients c at final time;

1: h := t/n
2: for j = 0 to n− 1 do
3: Π, S = inner splitting (h/2,Π, S)
4: F [Π] = Galerkin matrix in (4.8)
5: c = exp

(
− ih
ε2
F [Π]

)
c

6: Π, S = inner splitting (h/2,Π, S)
7: end for
8: return Π, S, c

8



Algorithm 2 inner splitting

Input: final time h; initial parameters Π, S
Output: Parameters Π, S at final time δt ·N ;

1: N := ⌈1 + ε−
3
4

√
h
⌉

2: δt := h/N
3: L := 18
4: Set a1, . . . , aL and b1, . . . , bL as in Table 1
5: for j = 0 to N − 1 do
6: for l = 1 to L do
7: Π, S = Exact propagation of (Π, S) by al · δt using (i)
8: Π, S = Exact propagation of (Π, S) by bl · δt using (ii)
9: end for

10: end for
11: return Π, S

a1 = 0 a2 = 0.13020248308889007 a3 = 0.5611629817751084

a4 = −0.38947496264484727 a5 = 0.1588419065551556 a6 = −0.39590389413323757

a7 = 0.1845396409783157 a8 = 0.25837438768632204 a9 = 0.2950117236093103

a10 = −0.6055085338300346 a11 = 0.2950117236093103 a12 = 0.25837438768632204

a13 = 0.1845396409783157 a14 = −0.39590389413323757 a15 = 0.1588419065551556

a16 = −0.38947496264484727 a17 = 0.5611629817751084 a18 = 0.13020248308889007

b1 = 0.06510124154444503 b2 = 0.3456827324319992 b3 = 0.08584400956513055

b4 = −0.11531652804484582 b5 = −0.118530993789041 b6 = −0.1056821265774609

b7 = 0.22145701433231887 b8 = 0.27669305564781616 b9 = −0.15524840511036214

b10 = −0.15524840511036214 b11 = 0.27669305564781616 b12 = 0.22145701433231887

b13 = −0.1056821265774609 b14 = −0.118530993789041 b15 = −0.11531652804484582

b16 = 0.08584400956513055 b17 = 0.3456827324319992 b18 = 0.06510124154444503

Table 1: Coefficients for the splitting of order 8 from [18].

4.3 Convergence Estimates and the Choice of N

The choice of the number of inner time steps N in (4.6) is motivated by the convergence
estimates from [11, Sec. 3] for the zero magnetic field case. However, [11] only covers
the case d = 1 (dimension one). This rules out the magnetic field since the only skew-
symmetric 1 × 1 matrix is B = 0, which results in M = 0. The estimates in [11, Sec. 3]
remain valid in higher dimensions, but the computations are much more involved. On the
other hand, the presence of a magnetic field does not affect the arguments in [11, Sec. 3].
The reason is that the magnetic field only affects the ODEs in Items (i) and (ii) and these
can still be solved exactly. In fact, we could replace these ODEs with any other. As
long as we can solve both of them exactly, the estimates in [11, Sec. 3] remain valid. In
Theorem 1 below, we formulate the convergence estimates for the semiclassical splitting
in the presence of a magnetic field and in dimensions d ≥ 2. But for the sake of brevity,
we will only outline the proof. Suppose that ψ (t) ∈ L2

(
R
d
)
is the exact solution of the
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initial value problem (4.1) at time t, that is

ψ (x, t) = eiS(t)/ε
2
∑

k∈Nd
0

ck (t)ϕ
ε
k [Π (t)] (x) ,

where S (t) ,Π(t) and c (t) are now the parameters and coefficients of the exact solution
at time t. Moreover, we introduce the K-truncation of the exact solution (see (3.4))

u (x, t) = eiS(t)/ε
2
∑

k∈K
ck (t)ϕ

ε
k [Π (t)] (x) .

The parameters and coefficients of the approximate solution ũ according to the semiclas-
sical splitting (4.2) are denoted with a tilde superscript, i.e.

ũ (x, t) = eiS̃(t)/ε
2
∑

k∈K
c̃k (t)ϕ

ε
k

[
Π̃ (t)

]
(x) .

We assume that the initial parameters agree, that is S (0) = S̃ (0) and Π (0) = Π̃ (0).

Theorem 1. As above, let ψ, u and ũ denote the exact, the K-truncated and the approxi-
mate solution to the initial value problem (4.1). Then for all t > 0, there exists a constant
C > 0 such that

‖ψ (t)− ũ (t)‖L2 ≤ ‖ψ (t)− u (t)‖L2 + Cεh2,

where h is the outer time step size in (4.2). The constant C does not depend on h, δt or
ε, but depends on the truncation constant K and on the time interval [0, t].

Sketch of proof. Using the triangle inequality, we find

‖ψ (t)− ũ (t)‖L2 ≤ ‖ψ (t)− u (t)‖L2 + ‖u (t)− ũ (t)‖L2 .

To estimate the second term on the right-hand side, we focus on a single outer time step
h and introduce the intermediate solution

u1 (x, h) = eiS(h)/ε
2
∑

k∈K
c1k (h)ϕ

ε
k [Π (h)] (x) ,

where Π1 := Π
(
h
2

)
and

iε2ċ1 = F
[
Π1
]
c1.

Hence u1 has the exact parameters but only approximate coefficients. The triangle in-
equality yields

‖u (h)− ũ (h)‖L2 ≤ ‖u (h)− u1 (h)‖L2 + ‖u1 (h)− ũ (h)‖L2 .

We estimate the two terms on the left-hand side by Theorem 3 and the right-hand side
by Lemma 4 in [11] and obtain

‖u (h)− u1 (h)‖L2 ≤ C1εh
3 and ‖u1 (h)− ũ (h)‖L2 ≤ C2

(δt)8

ε2
h, (4.9)

where δt denotes the inner time step. If we choose N like in (4.6), we have

δt ≤ ε
3
8h

1
4

10



and consequently

‖u1 (h)− ũ (h)‖L2 ≤ C2
(δt)8

ε2
h ≤ C2εh

3. (4.10)

By a standard Lady Windermere’s fan argument, we obtain [11, Thm. 1]

‖ψ (t)− ũ (t)‖L2 ≤ ‖ψ (t)− u (t)‖L2 + Cεh2.

Remark 2. The choice of N in (4.6) is adapted to the semiclassical splitting. The higher
order splittings of the next section require a different choice of N . In order to achieve the
bound

‖u1 (h)− ũ (h)‖L2 ≤ C2ε
αhβ+1,

we need to choose [11]

N = 1 +
⌊(h8−β

ε2+α

) 1
8 ⌋
. (4.11)

For example, we used α = 1 and β = 2 above to match the two error bounds in (4.9).

Remark 3. The truncation error ‖ψ (t)− u (t)‖L2 in Theorem 1 can be made arbitrarily
small by choosing K sufficiently large. In the simulations, one has to a priori guess
an appropriate value for K, so that the K-truncated Hagedorn basis contains the exact
solution over the whole simulation time. The truncation error is then not visible in the
convergence plot, see Section 6 for some examples. In general, the larger ε and the more
the solution is spread out in phase space, the larger we need to choose K.

5 Higher Order Splitting Schemes

In [3, Sec. 3], the authors present several improvements of the semiclassical splitting for
the standard Schrödinger equation, i.e. without magnetic field. The goal of this section
is to explain how all of these improvements can be naturally generalized to the case with
magnetic field. We closely follow [3, Sec. 3] and consider a differential equation of the
form

ψ̇ = Aψ + Bψ, ψ (t0) = ψ0

with the (time-independent) vector fields A and B. We denote the corresponding flow
maps with time step h ∈ R by ehA and ehB. Moreover, we slightly abuse this notation
and keep writing exponentials for the flow maps even if the operators A and B depend on
time. For splitting coefficients a, b ∈ R

s, we denote the corresponding splitting scheme by

ehB
(b,a)◦ ehA = ebshB ◦ eashA ◦ · · · ◦ eb1hB ◦ ea1hA. (5.1)

In the context of Lie-operators, one sometimes follows the convention that the operators
are applied in the reverse order than they are written, see for example [1, Sec. A.1]. But
we will not follow this convention. For example in (5.1), the rightmost operator is applied
first.

11



5.1 Splittings for Perturbed Systems

A consistent splitting scheme takes the form

ehB
(b,a)◦ ehA = exp (h (A+ B + E (h))) ,

with remainder

E (h) = hνab [A,B] + h2νaab [A, [A,B]] + h2νbab [B, [A,B]]
+ h3νaaab [A, [A, [A,B]]] + h3νbaab [B, [A, [A,B]]]
+ h3νbbab [B, [B, [A,B]]] +O

(
h4
)

Suppose now that the vector field B is merely a perturbation of A, say B = εB0 for some
small ε > 0 and a vector field B0 of same scale as A. Then the remainder becomes

E (h, ε) = hενab [A,B0] + h2ενaab [A, [A,B0]] + h2ε2νbab [B0, [A,B0]]

+ h3ενaaab [A, [A, [A,B0]]] + h3ε2νbaab [B0, [A, [A,B0]]]

+ h3ε3νbbab [B0, [B0, [A,B0]]] +O
(
h4
)
.

As in [20], we say the method (5.1) is of generalized order (r1, r2, . . . , rm), where r1 ≥
r2 ≥ · · · ≥ rm, if the remainder satisfies

E (h, ε) = O
(
εhr1 + ε2hr2 + · · ·+ εmhrm

)
.

The choice a =
(
1
2
, 1
2

)
and b = (1, 0) leads to the well-known Strang splitting [25], which is

of order 2. Now we give two examples of perturbation aware splittings, both taken from
[20]. First, we consider the symmetric, splitting of generalized order (4, 2)

Ψ(4,2) (h) = ea1hAeb1hBea2hAeb1hBea1hA, (5.2)

with a1 = 1
6

(
3−

√
3
)
, a2 = 1 − 2a1, b1 = 1

2
. In Remark 2 we choose α = 2 and β = 2,

which yields for the number of inner time steps

N = 1 +
⌊
ε−

1
2h

3
4

⌋
.

This yields the desired generalized convergence rate (4, 2). Second, we consider the method
of generalized order (8, 4) given by

Ψ(8,4) (h) = ea1hAeb1hBea2hAeb2hBea3hAeb3hBea3hAeb2hBea2hAeb1hBea1hA, (5.3)

with coefficients given in Table 2. In Remark 2 we choose α = 2 and β = 4, which yields

a1 = 0.0753469602698929 a2 = 0.5179168546882568 a3 =
1
2
− (a1 + a2)

b1 = 0.1902259393736766 b2 = 0.8465240704435263 b3 = 1− 2 (b1 + b2)

Table 2: Coefficients for the (8, 4) symmetric splitting [20].

for the number of inner time steps

N = 1 +
⌊√

h
ε

⌋
.

This yields the desired generalized convergence rate (8, 4).
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5.2 Processed Methods for Perturbed Systems

In this section, we improve our splitting schemes using a pre-processor. This is a map
πh : L

2
(
R
d
)
→ L2

(
R
d
)
, such that the method

Ψ̃ (h) = πh ◦Ψ(h) ◦ π−1
h ,

is more accurate than Ψ (h). The n-fold concatenation Ψ̃n (h) of the processed method

then satisfies Ψ̃n (h) = πh◦Ψn (h)◦π−1
h . Thus it is as expensive as the n-fold concatenation

Ψn (h) of the non-processed method and still more accurate. In our simulations, we will
examine the processed method of generalized order (7, 6, 4) from [2] given by

Ψ̃(7,6,4) (h) =

(
ehA

(z,y)◦ ehB
)
◦
(
ehB

(b,a)◦ ehA
)
◦
(
e−hB

(y,z)◦ e−hA
)
, (5.4)

with coefficients given in Table 3. In Remark 2 we choose α = 3 and β = 4, which yields

a1 = 0.5600879810924619 a2 =
1
2
− a1

b1 = 1.5171479707207228 b2 = 1− 2b1

z1 = −0.3346222298730800 z2 = 1.0975679907321640 z3 = −1.0380887460967830

z4 = 0.6234776317921379 z5 = −1.1027532063031910 z6 = −0.0141183222088869

y1 = −1.6218101180868010 y2 = 0.0061709468110142 y3 = 0.8348493592472594

y4 = −0.0511253369989315 y5 = 0.5633782670698199 y6 = −0.5

Table 3: Coefficients for the (7, 6, 4) processed splitting [2].

for the number of inner time steps

N = 1 +
⌊
ε−

5
8

√
h
⌋
.

This yields the desired generalized convergence rate (7, 6, 4).

5.3 Processed Methods With Modified Potentials for Perturbed
Systems

We split our Hamiltonian of interest (2.2) into a sum of the local quadratic part

A (t) = − i
ε2
(T +M + U (x, t))

at a position q (t) ∈ R
d, and the non-quadratic remainder

B (t) = − i
ε2
W (x, t) .

This means, that for every fixed t ∈ R, we have V (x, t) = U (x, t) +W (x, t) with U (x, t)
the local quadratic Taylor expansion of V (x, t) around q (t). As mentioned above, W (·, t)
perturbs the solution (w.r.t. A (t)) by O (ε3). Hence the theory of the previous sections
applies, that is we interpret B (t) as a perturbation of order O (ε). Moreover, we have

[M (t) ,W (x, t)]ψ (x) = (M (t)W (x, t)) · ψ (x)

for all smooth functions ψ : Rd → C and hence
[
− i
ε2
W (x, t) ,

[
− i
ε2
M (t) ,− i

ε2
W (x, t)

]]
= 0. (5.5)
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On the other hand, we have [3, Sec. 3.4]
[
− i
ε2
W (x, t) ,

[
− i
ε2
(T + U (x, t)) ,− i

ε2
W (x, t)

]]
= − i

ε2
(−∇xW (x, t) · ∇xW (x, t)) .

The last two equations together yield

[B (t) , [A (t) ,B (t)]] = − i
ε2
(−∇xW (x, t) · ∇xW (x, t)) .

This modified potential is exactly the same as in the zero magnetic field case in [3]. We
can thus use the same modified propagator as proposed in [3, Sec. 3.5], namely

ϕh,h/24 = exp

(
hB (t) +

h3

24
[B (t) , [A (t) ,B (t)]]

)
.

Here, we think of the time to be frozen at t. It can be evaluated at a similar computational
cost as ehB, as explained in [3, Sec. 3.4]. Analogous to [3, Eq. (19)], we consider the method
of generalized order (6, 4) from [2] given by

Ψ(6,4) (h) =

(
ehB

(y,z)◦ ehA
)
◦
(
e

h
2
A ◦ ϕh,h/24 ◦ e

h
2
A
)
◦
(
e−hA

(z,y)◦ e−hB
)
, (5.6)

with processing coefficients given in Table 4. This is basically a processed Strang splitting.

y1 = −0.1659120515409654 y2 = −0.1237659000825160 y3 = 0.0250397323738759

y4 = 0.2269372219010943

z1 = −0.9125829692505096 z2 = −0.3605243318856133 z3 = 0.7354063037876117

z4 = 0.5

Table 4: Coefficients for the (6, 4) processed splitting [2].

Consequently, this method is of similar computational cost as the semiclassical splitting,
but provides highly improved accuracy. In Remark 2 we choose α = 2 and β = 4, which
yields for the number of inner time steps

N = 1 +
⌊√

h
ε

⌋
.

This yields the desired generalized convergence rate (6, 4).

5.4 Splitting Methods for Non-Autonomous Systems

Our problem can be written as a perturbed, non-autonomous system

ψ̇ (t) = A (t)ψ (t) + B (t)ψ (t) , ψ (t0) = ψ0

with
A (t) = − i

ε2
(T +M (t) + U (x, t)) and B (t) = − i

ε2
W (x, t) ,

where B (t) is a perturbation of A (t) for small model parameters ε > 0. In order to apply
the theory discussed so far, we formulate an equivalent autonomous system by adding an
additional component [3, Sec. 3]. This equivalent autonomous equation for ψ = ψ (t) and
s = s (t) is given by

∂t

(
ψ
s

)
=

(
A (s)ψ

1

)
+

(
B (s)ψ

0

)
, ψ (t0) = ψ0, s (t0) = t0.
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With u = (ψ, s), we can rewrite the above evolution equation as

u̇ = Ã (u) + B̃ (u) ,

where we introduce the vector fields

Ã = A (s) δ
δψ

+ 1 · δ
δs

and B̃ = B (s) δ
δψ
,

which act on functions f (ψ, s), where δ
δψ

and δ
δs

denote the (functional) derivatives with
respect to the first and second argument of f . Our goal is to show that the commutator
equations from the last subsection carry over to this extended setting, and thus also apply
to the non-autonomous case. More precisely, we want to show that

[
B̃,
[
Ã, B̃

]]
= − i

ε2
(−∇xW (x, s) · ∇xW (x, s)) δ

δψ
. (5.7)

Fortunately, [3, Page 9] already yields
[
B̃,
[
− i
ε2
(T + U (x, s)) δ

δψ
, B̃
]]

= − i
ε2
(−∇xW (x, s) · ∇xW (x, s)) δ

δψ

and thus we only have to show
[
B̃,
[
− i
ε2
M(s) δ

δψ
, B̃
]]

= 0.

Indeed, for all suitable f : C∞ (
R
d
)
× R → C, we have

[
B̃,
[
− i
ε2
M(s) δ

δψ
, B̃
]]
f (ψ, s) =

[
− i
ε2
W (x, t) ,

[
− i
ε2
M (t) ,− i

ε2
W (x, t)

]]
δ3

δψ3f (ψ, s) = 0,

where we used (5.5) for the last step. This proves (5.7). To summarize, we need to solve
the autonomous equation (W frozen at time t0)

ψ̇ = − i
ε2
W (x, t0)ψ, ψ (t0) = ψ0,

or in case of (5.6) the autonomous equation

ψ̇ = − i

ε2

(
W (x, t0)− h2

24
∇xW (x, t0) · ∇xW (x, t0)

)
ψ, ψ (t0) = ψ0.

Furthermore, we need to solve the non-autonomous equation

ψ̇ = A (t)ψ, ψ (t0) = ψ0 (5.8)

either exact or to high precision. The momentum part T +M (t) needs to be split into

∂t

(
ψ
s

)
=

(
− i
ε2
Tψ
0

)
and ∂t

(
ψ
s

)
=

(
− i
ε2
M (s)ψ
1

)
. (5.9)

It is crucial to perform the evolution of s (t) together with M (s), so that the exact flow
maps of the two equations commute. Their concatenation then yields the exact flow map
of the momentum equation as in (5.9). The first equation in (5.9) is equivalent to (T) and
the solution in terms of Hagedorn wavepackets can be computed explicitly, see Section 4,
Item (i). It remains to approximate the solution of the second equation in (5.9), which is
equivalent to Equation (M). This time, it cannot be solved by a simple matrix exponential
due to the time dependence of B (t). Instead, we apply a matrix expansion as explained
in the next subsection.
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5.5 Magnus Expansion for the Non-Autonomous Equation (M)

We recall that the PDE (M) can be reduced to the ODE

d
d t
y (t) = B (t) y (t) . (B)

We approximate the exact flow R (t, t0) ∈ SO (d) of (B) by a truncated Magnus expansion
(see [19] or [16, Ch IV.7]). More precisely, we use in all subsequent simulations the
following fourth order commutator free Magnus integrator from Example 1 in [5]. With
nodes and weights

c :=

(
1
2
−

√
3
6

1
2
+

√
3
6

)
, α :=

(
1
4
−

√
3
6

1
4
+

√
3
6

)
.

and for a sufficiently small time step δt > 0, we define the orthogonal matrix

R̃(δt+ t0, t0) := exp(α1 δtB1 + α2 δtB2) · exp(α2 δtB1 + α1 δtB2), Bj := B(cj δt+ t0).

To solve (B) on a time interval [t0, t], we apply J steps of this scheme. More precisely, for
a uniform time grid tj := t0 + j δt, where j ∈ {0, . . . , J} and t = tJ , we have

R(t, t0) =
J∏

j=1

R̃(tj, tj−1) +O
(
(δt)5

)
.

As pointed out in [5], the fourth order convergence is due to [4, Eq (12)]. However, we
want to avoid that the overall order of our splitting methods are dominated by this order
4 method. Since this truncated Magnus expansion is still much cheaper than the propaga-
tion w.r.t. B, we can afford to solve (B) up to machine precision. For our simulations, this
is done by choosing J = 4096 for all examples. Other examples might require different
tuning. Just like in (2.4), we obtain an approximate solution of the PDE (M) by

ψ (x, t) = ψ0

(
RT (t, t0) x

)
≈ ψ0

(
R̃T (t, t0) x

)
. (5.10)

The approximation R̃ (t, t0) lies in SO (d), which has two consequences [12]. First, this
approximate time evolution is unitary. Second, it commutes with the kinetic operator
T . Thus not only the exact, but even the approximate evolution operators factor like in
(2.5).

6 Numerical Simulation

In the subsequent simulations we use a truncated Hagedorn wavepacket as in (3.3). The
flow map R (t, t0) ∈ SO (d) of (B), which is needed to solve (M), is approximated by the
fourth-order commutator-free Magnus expansion as explained in Section 5.5. We plot the
energies along the approximate solution ũ (t) for unit charge and unit mass:

Eε
kin (t) := 〈ũ (t) ,− ε4

2
∆ũ (t)〉L2 (kinetic energy)

Eε
mag (t) := 〈ũ (t) ,

(
Hε
B (t) + 1

2
‖B (t) x‖2

Rd

)
ũ (t)〉L2 (magetic energy)

Epot (t) := 〈ũ (t) , φ (x) ũ (t)〉L2 (potential energy)

Eε
tot (t) := Eε

kin (t) + Eε
mag (t) + Epot (t) . (total energy)

The inner products in the definition of Eε
kin and E

ε
mag can be computed just in terms of the

coefficients. In case of a good approximate solution, we expect approximate conservation
of total energy.
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6.1 Penning Trap (single particle)

The following example is motivated by [17], where the authors propose a two-dimensional
Penning trap [23, 6, 7] to implement qubits for experimental quantum computing. More
precisely, their Penning trap confines ions in the plane spanned by the standard basis
vectors ~e1, ~e2 ∈ R

3, which normally requires a homogeneous magnetic field perpendicular
to this plane, i.e. parallel to ~e3 ∈ R

3. But in the actual experiment, this renders laser
cooling infeasible. As a trade-off, one can choose the magnetic field to enclose a small
angle Θ > 0 with ~e3, see (6.2), so that laser cooling becomes feasible, while the magnetic
field still traps the ions in the plane.2 In our numerical experiments, we consider a particle
of unit mass (m = 1) and unit charge (e = 1) in d = 3 dimensions. We use the time-
independent Hamiltonian proposed in [17], namely

Hx
trap := − ε4

2
∆+Hε

B + e2

2
‖Bx‖2

R3 + φtrap (x)

with ε = 0.01 and electric potential

φtrap (x) =
1

2

(
x23 −

x21 + x22
2

)
(6.1)

and a magnetic field ~B (now as vectorfield) enclosing the angle Θ = 0.4 with ~e3, namely3

~B = 2



sin (Θ)

0
cos (Θ)


 . (6.2)

The corresponding vector potential is ~A = 1
2

(
~B × ~x

)
, which is represented by the time-

independent skew-symmetric matrix

B =




0 cos (Θ) 0
− cos (Θ) 0 sin (Θ)

0 − sin (Θ) 0


 . (6.3)

The initial data is given by u (x, 0) = ϕε0 [Π (0)] (x), where Π (0) = (q, p,Q, P ) and

q = (1, 0, 1) , p = (0,−1, 0) , Q = id, P = i · id . (6.4)

This corresponds to a particle that has, with high probability, a position near q and a
momentum near p. In particular, it lies out of the equilibrium position of the trap (with
high probability). Since the potential is quadratic, this corresponds to A = − i

ε2
Hx

trap and
B = 0 in the notation of the previous sections. It follows that we only need to propagate
the parameters Π (t) and S (t), while the coefficients ck remain constant. Therefore, we
can choose K = {(0, 0, 0)} in (3.3). We use the semiclassical splitting from Section 4,
i.e. Equation (4.2), with time step size h = 0.01. The energies along the approximate
solution are shown in Figure 1. Note that the separate energies oscillate roughly between
−2 and 2, while the energy drift varies at the scale of 10−4. This means that the energy
is conserved up to a small error.

2This explanation is simplified. For details, we refer to [17].
3Note that if Θ = 0, the Hamiltonian Hx

trap can be separated into a (x1, x2)-part and a x3-part. Thus
the condition Θ > 0 really renders the problem more complex.
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Figure 1: Single particle in a Penning trap. The total energy along the computed solution
is approximately conserved. The separate energies Eε

kin, Epot, E
ε
mag, E

ε
tot are defined at

the beginning of Section 6. The solution was computed by the semiclassical splitting
from Section 4. To reproduce the figure, see examples/penning trap energies/ in the
repository https://gitlab.math.ethz.ch/gvasile/WaveBlocksND.git.

6.2 Penning Trap (two particles)

We consider two charged particles of unit mass and charge in the same Penning trap
as before. Thus we solve the Schrödinger equation in d = 6 dimensions. We write
x =

(
x(1), x(2)

)
∈ R

3 ×R
3 for the coordinates of the particles. The repulsion between the

particles is modeled by a Mie(4,2) potential [21], [12, Sec.3.5]

φrep (x) = 32 ·
(

34

‖x(1) − x(2)‖4
R3

− 32

‖x(1) − x(2)‖2
R3

)
+ 8.

The Hamiltonian on L2 (R6;C) is then given by Hx(1)

trap +Hx(2)

trap + φrep (x) or equivalently

− ε4

2
∆+Hε

B + 1
2
‖Bx‖2

R6 + φ (x) ,

where

φ (x) = φtrap

(
x(1)
)
+ φtrap

(
x(2)
)
+ φrep (x) and B =

(
B(1) 0
0 B(2)

)
,

where B(1) = B(2) are two copies of the matrix in (6.3). The initial data is chosen to be
ψ0 (x) = ϕε0 [Π (0)] (x), where Π (0) = (q, p,Q, P ) and

q = (2, 0, 2︸ ︷︷ ︸
q(1)

, 0,−3, 0︸ ︷︷ ︸
q(2)

), p = (0,−1, 0︸ ︷︷ ︸
p(1)

, 0, 0, 1︸ ︷︷ ︸
p(2)

), Q = id, P = i · id .

Since the repulsion φrep (x) is non-quadratic, we have to propagate also the coefficients
(ck (t))k∈K in (3.3). We use the fixed index set K as in (3.4) with K = 6. As before,
we use the semiclassical splitting from Section 4, i.e. Equation (4.2), with time step size
h = 0.01. The energies along the approximate solution are shown in Figure 2.
Note that the energy conservation is accurate at the beginning, but suddenly starts to
worsen (at the scale of 10−4 though). This is a sign that the truncation constant K = 6
was chosen too small. Opposed to the previous example, we now have a non-quadratic
remainder, i.e. the operator B does not vanish. It is also this operator that describes
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Figure 2: Two particles in the Penning trap. The total energy along the computed solution
is approximately conserved. The separate energies Eε

kin, Epot, E
ε
mag, E

ε
tot are defined at

the beginning of Section 6. The solution was computed by the semiclassical splitting
from Section 4. To reproduce the figure, see examples/penning trap energies/ in the
repository https://gitlab.math.ethz.ch/gvasile/WaveBlocksND.git.

the non-classical part of the time evolution. Beyond a certain time, the propagated
wavefunction will deviate so much from the classical evolution that the coefficients ck, k ∈
K cannot account for this deviation anymore. Put differently, the solution flows out of
the subspace of L2

(
R
d
)
spanned by the ϕεk, k ∈ K. This maximal propagation time can

be extended by choosing a larger truncation constant K. For an error plot for different
values of K we refer to [11, Fig. 5]. This issue is also closely related to the Ehrenfest time
[8].

6.3 Convergence of the Different Splittings

We analyse the convergence in time and for different model parameters ε > 0. Moreover,
we summarize the theoretical considerations from Section 5 in Table 5. The latter is
exactly the same as Table 3 in [3], since even with the new magnetic terms, the bottleneck
of all methods is still the propagation according to the non-quadratic remainder (the
operator B in the notation of Section 5).

Method Type Cost Order
(4.2) semiclassical 1 εh2

(5.2) perturbed 2 εh4 + ε2h4

(5.3) perturbed 5 εh8 + ε2h4

(5.4) perturbed, processor 3 εh7 + ε2h6 + ε3h4

(5.6) perturbed, processor, modification 1 εh6 + ε2h4

Table 5: Comparison of the different splitting methods.

For the convergence plots below, we use a single particle in d = 3 dimensions, subject to
a Morse potential

φMorse (x) = 8 · (exp (−2 · 0.3 · (‖x‖R3 − 4))− 2 · exp (−0.3 · (‖x‖R3 − 4))) + 8.
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the magnetic field is given by

B (t) =




0 cos (πt) 0
− cos (πt) 0 sin (πt)

0 sin (πt) 0


 .

We solve the Schrödinger equation on the time interval [0, 2] with initial data ψ0 (x) =
ϕε0 [Π (0)] (x), where Π (0) = (q, p,Q, P ) is the same as in (6.4). The index set K in (3.4) is
truncated by K = 32 for both the approximate and the reference solution. The latter was
computed with the modified potential splitting (5.6) of time steps of size h = 2−6. The
plots in Figures 3, 4, 5, 6, 7 show the L2-difference to reference solution at final time T = 2.
The L2-norm was computed by a scaled and very accurate Gauss-Hermite quadrature
as described in [9, Sec.4.1]. The results are qualitatively the same as for the standard
Schrödinger equation in [11, Fig.5]. In particular, the methods improve for small values
of ε. To reproduce the figures, run the files in examples/penning trap convergence/ in
the repository https://gitlab.math.ethz.ch/gvasile/WaveBlocksND.git.
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Figure 3: Semiclassical splitting of order 2 as described in Section 4.
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Figure 4: Perturbation-aware splitting of generalized order (4, 2) as described in Sec-
tion 5.1.
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Figure 5: Perturbation-aware splitting of generalized order (8, 4) as described in Sec-
tion 5.1. The splitting coefficients are given in Table 2.
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Figure 6: Perturbation-aware processed splitting of generalized order (7, 6, 4) as described
in Section 5.2. The splitting coefficients are given in Table 3.
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Figure 7: Perturbation-aware processed splitting with modified potential of generalized
order (6, 4) as described in Section 5.3. The splitting coefficients are given in Table 4.

21



References

[1] Sergio Blanes and Fernando Casas. A concise introduction to geometric numerical
integration. Chapman & Hall/CRCMonographs and Research Notes in Mathematics.
CRC Press, 2017.

[2] Sergio Blanes, Fernando Casas, and J. Ros. Processing symplectic methods for near-
integrable Hamiltonian systems. Celestial Mechanics and Dynamical Astronomy,
77:17–36, 07 2000.

[3] Sergio Blanes and Vasile Gradinaru. High order efficient splittings for the semi-
classical time–dependent Schrödinger equation. Journal of Computational Physics,
405:109157, 2020.

[4] Sergio Blanes and Per Christian Moan. Splitting methods for the time-dependent
Schrödinger equation. Physics Letters A, 265(1):35 – 42, 2000.

[5] Sergio Blanes and Per Christian Moan. Fourth- and sixth-order commutator-free
Magnus integrators for linear and non-linear dynamical systems. Applied Numerical
Mathematics, 56(12):1519 – 1537, 2006.

[6] Lowell S. Brown and Gerald Gabrielse. Geonium theory: Physics of a single electron
or ion in a Penning trap. Rev. Mod. Phys., 58:233–311, Jan 1986.

[7] Hans Dehmelt. A single atomic particle forever floating at rest in free space: New
value for electron radius. Physica Scripta, T22:102–110, jan 1988.

[8] P. Ehrenfest. Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik
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