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Abstract

Certain generalized coherent states, so-called Hagedorn wavepackets, have been

used to numerically solve the standard Schrödinger equation. We generalize this

approach and its recent enhancements to the magnetic Schrödinger equation for a

time-dependent, spatially homogeneous magnetic field. In numerical experiments

we examine the order of convergence and the preservation of norm and energy. We

use this method to simulate a penning trap as proposed in recent work on quantum

computing.

1 Introduction

The generalized coherent states introduced in [8], nowadays known as Hagedorn wavepack-
ets, have been used successfully to design numerical methods for the Schrödinger equation
[4]. The present work adapts the Hagedorn wavepacket approach to the Schrödinger equa-
tion for a (possibly time dependent) homogeneous magnetic field.
In [6] the authors generalize the well-known Fourier grid approach to the same equation.
Using Hagedorn wavepackets we overcome several drawbacks of this Fourier approach:
When charged particles are subject to a magnetic field, they start to spin in circles.
These rotations can not be expressed exactly on the Fourier grid. Unlike the (discrete)
Fourier basis functions, rotated Hagedorn wavepackets are again Hagedorn wavepackets.
The time-propagation under the new magnetic field terms can thus be expressed exactly.
In general, the Fourier grid approach is complementary to the Hagedorn approach in the
following sense: The Fourier method is satisfactory for large values of the model parameter
ε, while the Hagedorn approach improves for small values [4] (here, ε2 plays the role of
reduced Planck constant ~). Moreover, at least for localized (in space and momentum)
solutions, the Hagedorn approach is more efficient in high dimensions [4].
First, we extend the so-called semiclassical splitting [5] to the non-zero magnetic field
case. Recently, this approach has been further improved (for the zero magnetic field
case) in [2] by the use of perturbation-aware splittings and of a modified potential. The
key observation in generalizing these splitting schemes in a simple and efficient way is
the following: The new terms due to the homogeneous magnetic field are infinitesimal
rotations and commute with the rotation invariant Laplace operator. This allows us to
decouple the associated time evolutions. We refer to [6, Sec. 2.1] for a more detailed
explanation. In our simulations we observe the same convergence properties and need
only minor additional effort to treat the new terms in presence of a magnetic field. More
precisely, we only require the solution of an additional, low dimensional ODE.
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Hagedorn wavepackets have been used for instance in [12] to solve the Schrödinger equa-
tion for non-homogeneous magnetic fields. The authors thereof mention the semiclassical
splitting, but do not aim to generalize it to the magnetic Schrödinger equation. Our
work thus differs in the sense that we consider only homogeneous (but time dependent)
magnetic fields and we provide much more efficient methods. In fact, this seems to be the
natural way to generalize the semiclassical splitting and its enhancements.
Homogeneous magnetic fields are used for instance in Penning traps to implement qubits
in experimental quantum computing. We conduct our numerical experiments in this
setting and use (a version of) the Hamiltonian proposed in [9].

2 The Magnetic Schrödinger Equation

Consider an electric potential φ (x, t) and a magnetic potential A(x, t), where x ∈ R
d and

A maps to R
d. We assume that d ≥ 2. For a particle of unit mass and unit charge, the

Hamiltonian reads

Hε = 1
2

(
−iε2∇− A

)2
+ φ

= 1
2

(
−ε4∆+ 2iε2A · ∇+ iε2 (∇ · A) + ‖A‖2

Rd

)
+ φ.

The model parameter ε2 > 0 plays the role of the reduced Planck constant. Now we
consider the special case of an homogeneous magnetic field. It is convenient to describe
the magnetic potential by a 1-form A (x, t) = Al (x, t) dx

l. The magnetic field being
homogeneous then means that the magnetic field 2-form dA is independent of x. Therefore
we choose

A (x, t) := Bjl (t) x
jdxl

where B (t) = (Bjl (t))16j,l6d is a real, skew-symmetric matrix. The corresponding mag-
netic field 2-form is given by

dA (t) = 2
∑

16j<l6d

Bjl (t) dx
j ∧ dxl.

We introduce for j, l ∈ {1, . . . , d} the operators

pεl := −iε2∂l (components of linear momentum)

Lεjl := xjp
ε
l − xlp

ε
j (generalized angular momentum)

and
Hε
B (t) := −

∑

16j<l6d

Bjl (t)L
ε
jl. (2.1)

For this particular vector potential, we have

iε2A · ∇ = Hε
B (t) , (∇ · A) ≡ 0, 1

2
‖A‖2

Rd = 1
2
‖B (t) x‖2

Rd

and our Hamiltonian thus reads

Hε = − ε4

2
∆

︸ ︷︷ ︸
T :=

+Hε
B (t)︸ ︷︷ ︸
M :=

+ 1
2
‖B (t) x‖2

Rd + φ (x, t)
︸ ︷︷ ︸

V :=

. (2.2)

The associated Schrödinger equation is given by

iε2∂tψ (x, t) = Hεψ (x, t) , ψ (x, t0) = ψ0 (x) . (2.3)
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Let us label the separate equations:

iε2∂tψ (x, t) = Tψ (x, t) (T)

iε2∂tψ (x, t) =Mψ (x, t) (M)

iε2∂tψ (x, t) = V ψ (x, t) (V)

Compared to the standard Schrödinger equation (zero magnetic field), only the termHε
B(t)

is new. The time evolution of Equation (M) is simply a rotation of the wave function that
depends on the magnetic field B (t). More precisely, consider the ODE

d
d t
y (t) = B (t) y (t) . (B)

By [11, Thm X.69] there exists a rotation R (t, t0) ∈ SO (d) such that y (t) = R (t, t0) y (t0)
solves (B) and R (t0, t0) = id, that is R (t, t0) is the flow map associated with (B). Then
the wave function

ψ (x, t) = ΦM (t, t0)ψ0 (x) := ψ0

(
RT (t, t0) x

)
(2.4)

solves the magnetic equation (M) [6, Lem 2.1] and the corresponding unitary propagator
is denoted by ΦM (t, t0). Note that the ODE (B) is independent of the model parameter
ε. In our simulations, we approximate the rotation R (t, t0) by a Magnus expansion. See
Section 5 for details. Finally, we observe a crucial structure of our equation

Hε = T +M︸ ︷︷ ︸
commute

+V.

The unitary propagators associated with the Hamiltonians T and M commute [6, Lem
2.3]. The flow map associated with the Hamiltonian T +M thus reads

ΦT+M (t, t0) = ΦT (t, t0) ◦ ΦM (t, t0) = ΦM (t, t0) ◦ ΦT (t, t0) , (2.5)

where
ΦT (t, t0) = e−iε

2(t−t0)(−∆)/2.

3 Hagedorn Wavepackets

We introduce the Hagedorn wavepackets developed in [7] und [8]. However, we use the
more modern notation of [4]. Let q, p ∈ R

d and Q,P ∈ C
d×d with

QTP − P TQ = 0, Q∗P − P ∗Q = 2i id, (3.1)

where Q∗ denotes conjugate-transpose and QT denotes transpose without complex con-
jugation. Moreover, we abbreviate Π := (q, p,Q, P ). Using the vector-valued raising and
lowering operators

Rε [Π] :=
i√
2ε2

(
P ∗ (x− q)−Q∗

(
−iε2∇x − p

))

Lε [Π] := − i√
2ε2

(
P T (x− q)−QT

(
−iε2∇x − p

))

we define for k ∈ N
d
0 the Hagedorn wavepackets ϕεk [Π] recursively by

ϕε0 [Π] (x) :=
(
πε2

)− d
4
√

det (Q) exp
(

i
2ε2

(x− q)T PQ−1 (x− q) + i
ε2
pT (x− q)

)
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and
ϕεk+ej [Π] := Rε

j [Π]ϕ
ε
k [Π] (3.2)

for all k ∈ N
d
0 and all j ∈ {1, . . . , d}. We represent the solution of (2.3) in terms of such

Hagedorn wavepackets multiplied by a phase factor

u (x, t) = eiS(t)/ε
2
∑

k∈K

ck (t)ϕ
ε
k [Π (t)] (x) , (3.3)

where S (t) is a real-valued function and K ⊂ N0 is a multi-index set. In the numerical
simulations of Section 5, we choose [4, Sec.5.4]

K =

{
k ∈ N

d
0 |

d∏

j=1

(1 + kj) ≤ K

}
(3.4)

with some truncation constant K ∈ N. Equation (2.4) asserts that if we can rotate
Hagedorn wavepackets, then we can also propagate them according to (M).

Lemma 3.1. Let Π := (q, p,Q, P ) satisfy (3.1) and let R ∈ SO (d). Then the rotated

parameters

RΠ := (Rq,Rp,RQ,RP )

still satisfy (3.1) and we have

ϕεk [Π]
(
RTx

)
= ϕεk [RΠ] (x) (3.5)

for all ε > 0 and all k ∈ N
d
0.

Proof. We fix R ∈ SO (d) show the formula by induction on k ∈ N
d
0. For k = 0, this is

straightforward to verify. Let ρ (R), be the map that rotates functions by R, i.e.

ρ (R)ϕ (x) = ϕ
(
RTx

)

for all ϕ ∈ L2
(
R
d;C

)
. Then a direct computation yields the relation

ρ (R)Rε [Π] = Rε [RΠ] ρ (R) (3.6)

Finally, we fix j ∈ {1, . . . , d} and compute

ρ (R)ϕεk+ej [Π]
(3.2)
= ρ (R)Rε

jϕ
ε
k [Π]

(3.6)
= Rε

j [RΠ] ρ (R)ϕ
ε
k [Π]

(3.5)
= Rε

j [RΠ]ϕ
ε
k [RΠ]

(3.2)
= ϕεk+ej [RΠ] ,

where we used the induction hypothesis in the third step. This proves (3.5). It is straight
forward to check that the rotated parameter satisfy (3.1).

If we apply this result to R = R (t, t0) as in (2.4), we obtain the time evolution of u (x, t)
in (3.3) under (M). The exact time evolution under (M) as been pointed out in [8, Thm
3.4], but without link to rotations (as it covers a more general case).
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4 Semiclassical Splitting

We extend the semiclassical splitting developed in [4] and [5] to the Hamiltonian (2.2).
We split the Hamiltonian H = A+W into a local quadratic part

A (t) = T +M + U (x, t)

and a remainder W (x, t) at position q = q (t) ∈ R
d, that is

V (x, t) = U (x, t) +W (x, t) ,

where

U (x, t) = V (q, t) +∇V (q, t) · (x− q) + 1
2
(x− q)T ∇2V (q, t) (x− q) .

Here, ∇2V denotes the Hessian of V . The semiclassial splitting for a time step [0, h] is

exp

(
− i

ε2
· h
2
A
(
h
2

))
exp

(
− i

ε2
hW

(
x, h

2

))
exp

(
− i

ε2
· h
2
A (0)

)
.

The exact propagation according to A in terms of Hagedorn wavepackets requires only
propagation of the parameters Π (t) = (q (t) , p (t) , Q (t) , P (t)) and S (t) of the function
u (x, t) defined in (3.3). The coefficients (ck)k∈K remain constant. More precisely, we have

iε2∂tu (x, t) = A (t) u (x, t)

if the parameters solve the ODE

q̇ (t) = p (t) + B (t) q (t)

Q̇ (t) = P (t) + B (t)Q (t)

Ṡ (t) = 1
2
‖p (t)‖2

Rd − U (q (t))

ṗ (t) = −∇U (q (t)) + B (t) p (t)

Ṗ (t) = −∇2U (q (t))Q (t) + B (t)P (t) ,

(4.1)

where B (t) ∈ R
d×d denotes the skew symmetric magnetic field matrix. We split this

ODE into three parts that correspond to Equations (T), (M) and (V) (the latter with
quadratic potential). These separate ODEs can then be solved using the basic time-
propagation properties of Hagedorn wavepackets due to [8, Thm 3.4] and [4]. We only
summarize the propagation steps we use subsequently:

(i) If Π (t) satisfies

q (t) = q (t0) + (t− t0) p (t0)

Q (t) = Q (t0) + (t− t0)P (t0)

S (t) = S (t0) +
1
2
(t− t0) ‖p (t0)‖2Rd .

and all other parameters and the coefficients remain constant, then u (x, t) solves
the kinetic equation (T), i.e.

iε2∂tu (x, t) = Tu (x, t) .

For details, see [4, Prop 2.1].
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(ii) Let R (t, t0) be the flow map associated with the ODE

d
d t
y (t) = B (t) y (t) . (B)

If Π (t) satisfies

q (t) = R (t, t0) q (t0)

p (t) = R (t, t0) p (t0)

Q (t) = R (t, t0)Q (t0)

P (t) = R (t, t0)P (t0)

and S(t) and the coefficients remain constant, then u (x, t) solves the magnetic equa-
tion (M), i.e.

iε2∂tu (x, t) =M (t) u (x, t) .

See Lemma 3.1 and Equation (2.4) for details.

(iii) Let U (x, t) be a quadratic potential and denote its Hessian by ∇2U . If Π (t) satisfies

p (t) = p (t0)− (t− t0)∇U (q (t0) , t0)

P (t) = P (t0)− (t− t0)∇2U (q (t0) , t0) ·Q (t0)

S (t) = S (t0)− (t− t0)U (q (t0) , t0)

and all other parameters and the coefficients remain constant, then u (x, t) solves
the potential equation (V) for V (x, t) = U (x, t0), i.e.

iε2∂tu (x, t) = U (x, t0) u (x, t) .

For details, see [4, Prop 2.2].

(iv) This applies in particular to the quadratic potential 1
2
‖B (t) x‖2

Rd in (2.2). We just
have to substitute

U (x, t) = 1
2
‖B (t) x‖2

Rd , ∇U (x, t) = −B2 (t) x, ∇2U (x, t) ≡ −B2 (t) .

(v) The propagators in (i) and (ii) commute and thus their concatenation yields the
exact propagation for the Hamiltonian T +M (t). As a consequence, we can solve
the system ODEs (4.1) with only one effective splitting (namely between T +M (t)
and U (x, t0)), like in the zero magnetic field case (see [4]). This is just the parameter
version of Equation (2.5).

Note that all these propagation steps leave the coefficients (ck)k∈K unaltered and only
change the parameters Π (t) and S (t). Moreover, by Item (v) the only additional effort
compared to the zero magnetic field case is to solve the low-dimensional ODE (M). For
this inner splitting, we use the same splitting method of order 8 as in [2] to produce
comparable results.
It remains to solve the equation for the remainder with time frozen at t0, that is

iε2∂tu (x, t) = W (x, t0) u (x, t) .

This is done exactly as in the zero magnetic field case, see [4, Sec.2.5]. The Galerkin
matrix of the remainder w.r.t. the Hagedorn wavepacket basis

Fj,k [Π (t0)] =

∫

Rd

ϕεj [Π (t0)] (x)W (x, t0)ϕ
ε
k [Π (t0)] (x) dx, j, k ∈ K,
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yields an ODE for the coefficients (ck (t))k∈K, namely

iε2ċ (t) = F [Π (t0)] c (t) .

A splitting step w.r.t. W therefore reads

c (t) = exp

(
− i

ε2
(t− t0)F [Π (t0)]

)
c (t0)

and the parameters Π (t0) and S (t0) stay unaltered. As in [2], we point out the following:
The remainderW perturbs the solution w.r.t. A by order O (ε3) as ε→ 0 (see [5, Lem. 3]).
This will be used in the next section.

5 Splitting Schemes

We follow the discussion of splitting schemes in [2, Sec. 3] and consider a differential
equation of the form

ẋ = Ax+ Bx, x(0) = x0 ∈ R
d (5.1)

with the (time-independent) vector fields

A =
d∑

j=1

Aj (x) ∂j and B =
d∑

j=1

Bj (x) ∂j.

We denote the corresponding flow maps with time step h ∈ R by

ϕA

h = exp (hA) and ϕB

h = exp (hB) .

For splitting coefficients a, b ∈ R
s, we denote the corresponding splitting scheme by

ϕA

h

(a,b)◦ ϕB

h = ϕA

a1h
◦ ϕB

b1h
◦ · · · ◦ ϕA

ash ◦ ϕB

bsh. (5.2)

Note that the action of the exponentials is in reverse order that they are written. So in
terms of the flow maps ΦA and ΦB of A and B, the splitting method (5.2) reads

ΦB (bsh) ◦ ΦA (ash) ◦ · · · ◦ ΦB (b1h) ◦ ΦA (a1h) .

For a motivation of this notation, we refer to [1, Sec. A.1].

5.1 Splittings for Perturbed Systems

A consistent splitting scheme takes the form

ϕA

h

(a,b)◦ ϕB

h = exp (h (A+ B + E (h))) ,

with remainder

E (h) = hνab [A,B] + h2νaab [A, [A,B]] + h2νbab [B, [A,B]]
+ h3νaaab [A, [A, [A,B]]] + h3νbaab [B, [A, [A,B]]]
+ h3νbbab [B, [B, [A,B]]] +O

(
h4
)
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Suppose now that the vector field B is merely a perturbation of A, say B = εB0 for some
small ε > 0 and a vector field B0 of same scale as A. Then the remainder becomes

E (h, ε) = hενab [A,B0] + h2ενaab [A, [A,B0]] + h2ε2νbab [B0, [A,B0]]

+ h3ενaaab [A, [A, [A,B0]]] + h3ε2νbaab [B0, [A, [A,B0]]]

+ h3ε3νbbab [B0, [B0, [A,B0]]] +O
(
h4
)
.

In this case, we say the method (5.2) is or generalized order (r1, r2, . . . , rm), where r1 ≥
r2 ≥ · · · ≥ rm, if the remainder satisfies

E (h, ε) = O
(
εhr1 + ε2hr2 + · · ·+ εmhrm

)
.

The choice a =
(
1
2
, 1
2

)
and b = (1, 0) leads to the well-known Strang splitting, which

is of order 2. A symmetric, perturbation aware splitting is for example the method of
generalized order (4, 2)

Ψ(4,2) (h) = ea1hAeb1hBea2hAeb1hBea1hA,

with a1 =
1
6

(
3−

√
3
)
, a2 = 1− 2a1, b1 =

1
2
, or the method of generalized order (8, 4)

Ψ(8,4) (h) = ea1hAeb1hBea2hAeb2hBea3hAeb3hBea3hAeb2hBea2hAeb1hBea1hA,

with coefficients given in Table 1.

a1 = 0.0753469602698929 a2 = 0.5179168546882568 a3 =
1
2
− (a1 + a2)

b1 = 0.1902259393736766 b2 = 0.8465240704435263 b3 = 1− 2 (b1 + b2)

Table 1: Coefficients for the (8, 4) symmetric splitting.

5.2 Processed Methods for Perturbed Systems

In this section, we improve our splitting schemes using a pre-processor, i.e. a map πh :
R
d → R

d, such that the method

Ψ̃ (h) = π−1
h ◦Ψ(h) ◦ πh,

is more accurate than Ψ (h). The n-fold concatenation Ψ̃n (h) of the processed method

then satisfies Ψ̃n (h) = π−1
h ◦Ψn (h)◦πh. Thus it is as expensive as the n-fold concatenation

Ψn (h) of the non-processed method and still more accurate. In our simulations, we will
examine the processed method of generalized order (7, 6, 4) given by

Ψ̃(7,6,4) (h) =

(
e−hA

(z,y)◦ e−hB
)
◦
(
ehA

(a,b)◦ ehB
)
◦
(
ehB

(y,z)◦ ehA
)
, (5.3)

with coefficients given in Table 2.
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a1 = 0.5600879810924619 a2 =
1
2
− a1

b1 = 1.5171479707207228 b2 = 1− 2b1

z1 = −0.3346222298730800 z2 = 1.0975679907321640 z3 = −1.0380887460967830

z4 = 0.6234776317921379 z5 = −1.1027532063031910 z6 = −0.0141183222088869

y1 = −1.6218101180868010 y2 = 0.0061709468110142 y3 = 0.8348493592472594

y4 = −0.0511253369989315 y5 = 0.5633782670698199 y6 = −0.5

Table 2: Coefficients for the (7, 6, 4) processed splitting.

5.3 Processed Methods With Modified Potentials for Perturbed
Systems

We split our Hamiltonian of interest (2.2) into a sum of the local quadratic part

A (t) = − i
ε2
(T +M (t) + U (x, t))

and the non-quadratic remainder

B (t) = − i
ε2
W (x, t) ,

where for every fixed t ∈ R, we have V (x, t) = U (x, t) +W (x, t) with U (x, t) the local
quadratic Taylor expansion of V (x, t) at position q (t) ∈ R

d. As mentioned above, W (·, t)
perturbs the solution (w.r.t. A (t)) by O (ε3). Hence the theory of the previous sections
applies, that is we interpret B (t) as a perturbation of of order O (ε). Moreover, we have

[
−iHB (t) ,− i

ε2
W (x, t)

]
= − (HB (t)W (x, t))

and hence [
− i
ε2
W (x, t) ,

[
−iHB (t) ,− i

ε2
W (x, t)

]]
= 0.

On the other hand, we have [2, Sec. 3.4]

[
− i
ε2
W (x, t) ,

[
T + U (x, t) ,− i

ε2
W (x, t)

]]
= − i

ε2
(−∇xW (x, t) · ∇xW (x, t)) .

The last two equations together yield

[B (t) , [A (t) ,B (t)]] = − i

ε2
(−∇xW (x, t) · ∇xW (x, t)) .

This modified potential is exactly the same as in the zero magnetic field case in [2]. We
can thus use the same modified propagator as proposed in [2, Sec. 3.5], namely

ϕh,h/24 = exp

(
hB (t) +

h3

24
[B (t) , [A (t) ,B (t)]]

)
.

Here, we think of the time to be frozen at t. It can be evaluated at a similar computational
cost as ehB, as explained in [2, Sec. 3.4]. Analogous to [2, Eq. (19)], we obtain a method
of generalized order (6, 4) by

Ψ(6,4) (h) =

(
e−hB

(y,z)◦ e−hA
)
◦
(
e

h
2
A ◦ ϕh,h/24 ◦ e

h
2
A

)
◦
(
ehA

(z,y)◦ ehB
)
, (5.4)

with processing coefficients given in Table 3. This is basically a processed Strang splitting.
Consequently, this method is of similar computational cost as the semiclassical splitting,
but provides highly improved accuracy.

9



y1 = −0.1659120515409654 y2 = −0.1237659000825160 y3 = 0.0250397323738759

y4 = 0.2269372219010943

z1 = −0.9125829692505096 z2 = −0.3605243318856133 z3 = 0.7354063037876117

z4 = 0.5

Table 3: Coefficients for the (6, 4) processed splitting.

5.4 Splitting Methods for Non-Autonomous Systems

We apply the same autonomization as proposed in [2, Sec. 3]. Our problem can be written
as a perturbed, non-autonomous system

ψ̇ = A (t)ψ + B (t)ψ, ψ (t0) = ψ0 (5.5)

with
−iA (t) = T +M (t) + U (x, t) and − iB (t) = 1

ε2
W (x, t) ,

where B (t) is a perturbation of A (t) for small model parameters ε > 0. In order to apply
the theory discussed so far, we consider the equivalent autonomous equation for ψ = ψ (t)
and s = s (t) given by

∂t

(
ψ

s

)
=

(
−i 1

ε2
A (s)ψ
1

)
+

(
−i 1

ε2
B (s)ψ
0

)
, ψ (t0) = ψ0, s (t0) = t0.

Furthermore, we introduce the vector fields

Ã = A (s) δ
δψ

+ 1 · δ
δs

and B̃ = B (s) δ
δψ
.

With u = (ψ, s), we can rewrite the above equation as

u̇ = Ã (u) + B̃ (u) .

A short computation yields
[
B̃,

[
Ã, B̃

]]
= − i

ε2
∇xW (x, s) · ∇xW (x, s) δ

δψ
.

Thus we are in the situation of the previous subsections. To summarize, we need to solve
the autonomous equation (W frozen at time t0)

ψ̇ = − i
ε2
W (x, t0)ψ, ψ (t0) = ψ0,

or in case of (5.4) the autonomous equation

ψ̇ = − i

ε2

(
W (x, t0)− h2

24
∇xW (x, t0) · ∇xW (x, t0)

)
, ψ (t0) = ψ0.

Furthermore, we need to solve the non-autonomous equation

ψ̇ = A (t)ψ, ψ (t0) = ψ0 (5.6)

either exact or to high precision. The momentum part T +M (t) needs to be split into

∂t

(
ψ

s

)
=

(
−i 1

ε2
Tψ

0

)
and ∂t

(
ψ

s

)
=

(
−i 1

ε2
M (s)ψ
1

)
. (5.7)

It is crucial to perform the evolution of s (t) together with M (s), so that the exact flow
maps of the two equations commute. Their concatenation then yields the exact flow map
of the momentum equation as in (5.7). Finally, it remains to solve Equation (B) exactly
or to very high accuracy.
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6 Numerical Simulation

In the subsequent simulations we thus use a truncated version of (3.3). The flow map
R (t, t0) ∈ SO (d) of (B), which is needed for ΦM , will be approximated by the fourth-order
commutator-free Magnus expansion in [3]. See [6, Example 2.1] for a detailed explanation
in our case. To verify our method, we plot the energies along the approximate solution
u (t) for unit charge and unit mass:

Eε
kin (t) := 〈u (t) ,− ε4

2
∆u (t)〉L2 (kinetic energy)

Eε
mag (t) := 〈u (t) ,

(
Hε
B (t) + 1

2
‖B (t) x‖2

Rd

)
u (t)〉L2 (magetic energy)

Epot (t) := 〈u (t) , φ (x) u (t)〉L2 (potential energy)

Eε
tot (t) := Eε

kin (t) + Eε
mag (t) + Epot (t) . (total energy)

The inner products for Eε
kin and Eε

mag can be computed only in terms of the coefficients
For a good approximate solution, we expect approximate conservation of total energy.

6.1 Penning Trap (single particle)

We consider a particle of unit mass (m = 1) and unit charge (e = 1) in d = 3 dimensions
in a Penning trap. We use the Hamiltonian proposed in [9], namely the time-independent
Hamiltonian

Hx
trap := − ε4

2
∆+Hε

B + e2

2
‖Bx‖2

R3 + φtrap (x)

with ε = 0.01 and electric potential

φtrap (x) =
1

2

(
x23 −

x21 + x22
2

)
(6.1)

and a magnetic field enclosing the angle Θ = 0.4 with the z-axis

~B = 2



sin (Θ)

0
cos (Θ)


 .

The corresponding vector potential is ~A = 1
2

(
~B × ~x

)
, which is represented by the time-

independent skew-symmetric matrix

B =




0 cos (Θ) 0
− cos (Θ) 0 sin (Θ)

0 − sin (Θ) 0


 . (6.2)

The initial data is given by u (x, 0) = ϕε0 [Π (0)] (x), where Π (0) = (q, p,Q, P ) and

q = (1, 0, 1) , p = (0,−1, 0) , Q = id, P = i · id . (6.3)

Since the potential is quadratic, we only need to propagate the parameters Π (t) and
S (t) in (3.3). Therefore, we choose K = {(0, 0, 0)}. The energies along the approximate
solution by semiclassical splitting are shown in Figure 1.
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Figure 1: Single particle in a Penning trap: Total energy along the computed solution is
conserved.

6.2 Penning Trap (two particles)

We consider two charged particles of unit mass and charge in the same Penning trap as
before. We write x =

(
x(1), x(2)

)
∈ R

3 × R
3 for the coordinates of the particles. The

repulsion between the particles is modeled by a Mie(4,2) potential [10], [6, Sec.3.5]

φrep (x) = 32 ·
(

34

‖x(1) − x(2)‖4
R3

− 32

‖x(1) − x(2)‖2
R3

)
+ 8.

The Hamiltonian on L2 (R6;C) is then given by Hx(1)

trap +Hx(2)

trap + φrep (x) or equivalently

− ε4

2
∆+Hε

B + 1
2
‖Bx‖2

R6 + φ (x) ,

where

φ (x) = φtrap

(
x(1)

)
+ φtrap

(
x(2)

)
+ φrep (x) and B =

(
B(1) 0
0 B(2)

)
,

where B(1) = B(2) are two copies of the matrix in (6.2). The initial data is chosen to be
u (x, 0) = ϕε0 [Π (0)] (x), where Π (0) = (q, p,Q, P ) and

q = (2, 0, 2︸ ︷︷ ︸
q(1)

, 0,−3, 0︸ ︷︷ ︸
q(2)

), p = (0,−1, 0︸ ︷︷ ︸
p(1)

, 0, 0, 1︸ ︷︷ ︸
p(2)

), Q = id, P = i · id .

Since the repulsion φrep (x) is non-quadratic, we have to propagate also the coefficients
(ck (t))k∈K in (3.3). We use the fixed index set K as in (3.4) for d = K = 6. The energies
along the approximate solution are plotted in Figure 2.

6.3 Convergence of the Different Splittings

We analyse the convergence in time and for different model parameters ε > 0. To this
end, we use a single particle in d = 3 dimensions, subject to a Morse potential

φMorse (x) = 8 · (exp (−2 · 0.3 · (‖x‖R3 − 4))− 2 · exp (−0.3 · (‖x‖R3 − 4))) + 8.

the magnetic field is given by

B (t) =




0 cos (πt) 0
− cos (πt) 0 sin (πt)

0 sin (πt) 0


 .
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Figure 2: Two particles in the Penning trap: Total energy along the computed solution
is conserved.

We solve the Schrödinger equation on the time interval [0, 2] with initial data u (x, 0) =
ϕε0 [Π (0)] (x), where Π (0) = (q, p,Q, P ) is the same as in (6.3). The index set K in (3.4) is
truncated by K = 32 for both the approximate and the reference solution. The latter was
computed with the modified potential splitting (5.4) of time steps of size h = 2−6. The
plots below show the L2-difference to reference solution at final time T = 2. The L2-norm
was computed by a scaled and very accurate Gauss-Hermite quadrature as described in [4,
Sec.4.1]. The results are qualitatively the same as for the standard Schrödinger equation
in [5, Fig.5]. In particular, the methods improve for small values of ε.

Figure 3: Semiclassical splitting of order 2 as described in Section 4.
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Figure 4: Perturbation-aware splitting of generalized order (4, 2) as described in Sec-
tion 5.1.

Figure 5: Perturbation-aware splitting of generalized order (8, 4) as described in Sec-
tion 5.1. The splitting coefficients are given in Table 1.

Figure 6: Perturbation-aware processed splitting of generalized order (7, 6, 4) as described
in Section 5.2. The splitting coefficients are given in Table 2.
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Figure 7: Perturbation-aware processed splitting with modified potential of generalized
order (6, 4) as described in Section 5.3. The splitting coefficients are given in Table 3.
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