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1 Introduction

The application of deep neural networks (DNNs) as approximation architecture in numerical solu-
tion methods of partial differential equations (PDEs), possibly on high-dimensional parameter- and
state-spaces, attracted increasing attention in recent years. An incomplete list of recently proposed
algorithmic approaches is [54,11,45,46,52] and references therein. In these works, DNN-based ap-
proaches for the numerical approximation of solutions of elliptic and parabolic boundary value
problems are proposed. Two key ingredients in these approaches are: a) use of DNNs as approz-
imation architecture for the numerical approximation of solutions (thus using DNNs in place of,
e.g., finite element, finite volume or finite difference methods), and b) incorporation of a suitable
weak form of the PDE of interest into the loss function of the DNN training. For example, weak
residuals, least squares or, for variational formulations from continuum mechanics, total potential
energies in variational principles [11] have been proposed.

In the study of NNs as numerical methods for solving PDEs, usually three types of errors are
identified. After fixing a NN architecture and activation function, the approximation error indicates
how well the PDE solution can be approximated by NNs with that architecture. An additional error
is incurred when the NN must be trained on only a finite amount of possibly corrupted data about
the PDE solution. This contribution to the overall error, in particular there where the given data
is uninformative, is the generalization error, and is in addition to further errors that are caused
by the training algorithm, which can be called optimization error. In this paper, we study the
approximation error of deep ReLLU neural networks.

One condition for good performance of these computational approaches requires the DNNs to
achieve a high rate of approximation uniformly over the solution set associated with the PDE un-
der consideration. This is analogous to what has been found in the mathematical convergence rate
analysis of, e.g., finite element methods: convergence rate bounds are well-known to be related, via
stability and quasi-optimality, to approximability of solutions sets of PDEs from the finite element
spaces under consideration. Since numerical solutions are (generally oblique) projections of the un-
known solution onto finite-dimensional subspaces, the convergence rates are naturally determined
by approximation rates of the subspace families under consideration within the regularity classes
of PDE. For elliptic boundary and eigenvalue problems, function classes of (weighted) Sobolev or
Besov type are well known to describe both solution regularity and approximation rates.

For functions belonging to a smoothness space of finite differentiation order such as continuously
differentiable, Sobolev-regular, or Besov-regular functions on a bounded domain, upper bounds for
algebraic approzimation rates by NNs were established for example in [57,16,58,32,55,10,9]. Here,
we only mentioned results that use the ReLLU activation function. Besides, for PDEs, in particular in
high-dimensional domains approximation rates of the solution that go beyond classical smoothness-
based results were established in [12,51,29,5,26]. Again, we confine the list to publications with
approximation rates for NNs with the ReLU activation function (referred to as ReLU NNs below).

In the present paper, we prove that exponential approximation rates are achieved by deep ReLLU
NNs for weighted, analytic solution classes of linear and nonlinear elliptic source and eigenvalue
problems on polygonal and polyhedral domains. Mathematical results on weighted analytic regu-
larity [18,19,17,2,6,20,39,8,35,38,24] imply that these classes consist of functions that are analytic
with possible corner, edge, and corner-edge singularities.

In contrast to the previously mentioned approximation results for ReLU NNs, the function class
studied here is special in the sense that it admits extremely high regularity in most parts of the
domain except for designated locations, i.e., the edges and corners of a domain, where the regularity
is assumed to be very low. An approximation scheme to realize the exponential approximation rates
associated with analytic regularity, therefore, hinges on a successful resolution of the singularities.
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We will see that, in addition to emulating local polynomial approximation, the presented scheme
is strongly adapted to the potentially complex geometries of the underlying domains.

Our analysis provides, for the aforementioned functions, approximation errors in Sobolev norms
that decay exponentially in terms of the number of parameters M of the ReLU NNs.

1.1 Contribution

The principal contribution of this work is threefold:

1. We prove, in Theorem 4.3, a general result on the approximation by ReLU NNs of weighted
analytic function classes on @ := (0,1)¢, where d = 2, 3. The analytic regularity of solutions is
quantified via countably normed, analytic classes, based on weighted Sobolev spaces of Kon-
drat’ev type in @, which admit corner and, in space dimension d = 3, also edge singularities.
Such classes were introduced, e.g., in [6,2,17,18,19,8] and in the references there. We prove
exponential expression rates by ReLU NNs in the sense that for a number M of free parameters
of the NNs, the approximation error is bounded, in the H'-norm, by C exp(—bM"/(24+1)) for
constants b, C' > 0.

2. Based on the ReLU NN approximation rate bound of Theorem 4.3, we establish, in Section 5,

approximation results for solutions of different types of PDEs by NNs with ReLU activation.
Concretely, in Section 5.1.1, we study the reapproximation of solutions of nonlinear Schrédinger
equations with singular potentials in space dimension d = 2, 3. We prove that for solutions which
are contained in weighted, analytic classes in 2 = R?/(2Z)%, ReLU NNs (whose realizations
are continuous, piecewise affine) with at most M free parameters yield an approximation with
accuracy of the order exp(—bM 1 (2d+1)) for some b > 0. Importantly, this convergence is in the
H'($2)-norm. In Section 5.1.2, we establish the same exponential approximation rates for the
eigenstates of the Hartree-Fock model with singular potential in R3. This result constitutes the
first, to our knowledge, mathematical underpinning of the recently reported, high efficiency of
various NN-based approaches in variational electron structure computations, e.g., [44,25,21].
In Section 5.2, we demonstrate the same approximation rates also for elliptic boundary value
problems with analytic coefficients and analytic right-hand sides, in plane, polygonal domains
2. The approximation error of the NNs is, again, bound in the H!(§2)-norm. We also infer an
exponential NN expression rate bound for corresponding traces, in H'/?(92) and for viscous,
incompressible flow.
Finally, in Section 5.3, we obtain the same asymptotic exponential rates for the approximation
of solutions to elliptic boundary value problems, with analytic data, on so-called Fichera-type
domains 2 C R? (being, roughly speaking, finite unions of tensorized hexahedra). These solu-
tions exhibit corner, edge and corner-edge singularities.

3. The exponential approximation rates of the ReLU NNs established here are based on emu-
lating corresponding variable grid and degree (“hp”) piecewise polynomial approximations. In
particular, our construction comprises novel tensor product hp-approximations on Cartesian
products of geometric partitions of intervals. In Theorem A.25, we establish novel tensor prod-
uct hp-approvimation results for weighted analytic functions on @ of the form ||u —unp|| 1) <
Cexp(—b*/N) for d =1,2,3, where N is the number of degrees of freedom in the representa-
tion of un, and C,b > 0 are independent of N (but depend on u). The tensor-product structure
of the piecewise polynomial approximations is essential to facilitating the construction of deep
ReLU neural networks: our constructive proofs exploit approximate tensorization of ReLLU NNs
in order to emulate the corresponding piecewise polynomial constructions. The geometric par-
titions employed in @ and the architectures of the constructed ReLLU NNs are of tensor product
structure, and generalize to space dimension d > 3.
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Note that hp-approzimations based on non-tensor-product, geometric partitions of Q into hex-
ahedra have been studied before e.g. in [47,48] in space dimension d = 3. There, the rate of
lu—unpll a1 (@) S exp(—bv/N) was proved. Being based on tensorization, the present construc-
tion of exponentially convergent, tensorized hp-approximations in Appendix A does not invoke
the rather involved polynomial trace liftings in [47,48], and is interesting in its own right: the
geometric and mathematical simplification comes at the expense of a slightly smaller (still expo-
nential) rate of approximation. We expect that this construction of up, will allow a rather direct
derivation of rank bounds for tensor structured function approximation of w in @), generalizing
results in [27,28] and extending [37] from point to edge and corner-edge singularities.

1.2 Neural network approximation of weighted analytic function classes

Deriving exponential approximation rates for weighted analytic functions on general domains re-
quires the combination of three arguments: First, a novel approximation result of weighted analytic
functions on cubes (0,1)¢ with corner and/or edge singularities in H'((0,1)%) by tensor product
hp-finite elements. Second, a reapproximation scheme for high-dimensional hp-finite elements in
Whanorms for ¢ € [1,00] by ReLU NNs. Third, a ReLU NN-based approximation scheme on
polyhedral domains via a localization method that uses a ReLU NN implementation of a domain-
adapted partition of unity.

First, we specifically design tensorized hp-approximations so that they can be emulated by NNs
by the reapproximation strategy that we outline below. We then prove exponential convergence of
the approximation of weighted analytic functions by the tensorized hp-piecewise polynomials we
constructed. Furthermore, in order to estimate the size of the resulting NNs, we need to bound
the norms of the coefficients of the hp-projections. Those bounds are usually not a concern when
dealing with hp-finite element methods, but they are necessary for our analysis of ReLU NNs. The
construction of the hp-projections, the convergence analysis, and the bounds on the coefficients are
presented in Theorem 2.1 and developed in Appendix A.

We describe the NN emulation of hp-finite element interpolants and their lifting to domains
in more detail: the emulation of hp-finite element approximation by ReLU NNs is fundamentally
based on the approximate multiplication network formalized in [57]. Based on the approximate
multiplication operation and an extension thereof to errors measured with respect to W' 9-norms,
for ¢ € [1,00], we established already in [41] a reapproximation theorem of univariate splines of
order p € N on arbitrary meshes with N € N cells. There, we observed that there exists a NN
that reapproximates a variable-order, free-knot spline u in the H'-norm up to an error of ¢ > 0
with a number of free parameters that scales logarithmically in & and |u|g1, linearly in N and
quadratically in p. We recall this result in Proposition 3.7 below.

From this, it is apparent by the triangle inequality that, in univariate approximation problems
where hp-finite elements yield exponential approximation rates, also ReLU NNs achieve exponential
approximation rates (albeit with a possibly smaller exponent, because of the quadratic dependence
on p, see [41, Theorem 5.12]).

The extension of this result to higher dimensions for high-order finite elements that are built
from univariate finite elements by tensorization is based on the underlying compositionality of
NNs. Because of that, it is possible to compose a NN implementing a multiplication of d inputs
with d approximations of univariate finite elements. We introduce a formal framework describing
these operations in Section 3. We can then prove, in Theorem 4.3, approximation rates by ReLU
NNs for weighted analytic function classes in cubes.

With Theorem 4.3 established, the next step is to extend the approximation result from cubes
to general domains. The ReLU NNs of Theorem 4.3 are continuous functions on R? and we have
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little control over the behavior of these functions outside of the cubes. This implies that even on
unions of disjoint cubes the approximation results of Theorem 4.3 do not directly transfer by taking
sums of the local approximations.

Instead, we first extend Theorem 4.3 to weighted analytic functions defined on Fichera-type
domains (—1,1)%\ (—~1,0]¢ for d = 2,3 by, again, reapproximating a quasi-interpolant on this
domain. To extend the results to general polygonal domains for d = 2, we construct an overlapping
cover of the domain of affinely-transformed cubes or affinely-transformed Fichera-type domains plus
a partition of unity subordinate to this partition (Lemma 5.5). We demonstrate that this partition
of unity can be exactly represented by ReLLU NNs. The localization by this partition of unity reduces
the approximation problem locally to one of the previously described approximations on either an
affinely-transformed cube or an affinely-transformed Fichera-type domain. This yields Theorem
5.6 which shows that weighted analytic functions on polygonal domains can be approximated with
exponential accuracy with respect to the number of parameters of the underlying neural network.

1.3 Outline

The manuscript is structured as follows: in Section 2, in particular Section 2.2, we review the
weighted function spaces which will be used to describe the weighted analytic function classes in
polytopes {2 that underlie our approximation results. In Section 2.3, we present an approximation
result by tensor-product hp-finite elements for functions from the weighted analytic class. A proof
of this result is provided in Appendix A. In Section 3, we review definitions of NNs and a “ReL.U
calculus” from [12,43] whose operations will be required in the ensuing NN approximation results.

In Section 4, we state and prove the key results of the present paper. In Section 5, we illustrate
our results by deducing novel NN expression rate bounds for solution classes of several concrete
examples of elliptic boundary-value and eigenvalue problems where solutions belong to the weighted
analytic function classes introduced in Section 2. Some of the more technical proofs of Section 5
are deferred to Appendix B. In Section 6, we briefly recapitulate the principal mathematical results
of this paper and indicate possible consequences and further directions.

2 Setting and functional spaces

We start by recalling some general notation that will be used throughout the paper. We also
introduce some tools that are required to describe two and three dimensional domains as well as
the associated weighted Sobolev spaces.

2.1 Notation

For a € N¢, define |a| := oy + -+ + a4 and |a|s = max{ay,...,aq}. When we indicate a relation
on |a] or |afs in the subscript of a sum, we mean the sum over all multi-indices that fulfill that

relation: e.g., for a k € Ny

lo|<k  aeNd:|a|<k

For a domain 2 C R%, k € Ng and for 1 < p < oo, we indicate by W*P(£2) the classical LP(£2)-
based Sobolev space of order k. We write H*(£2) = W*2(£2). We introduce the norms || - [,

as
||’U||€Vi“i(9) = Z ||8av||ip(_())a

laloo <1
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with associated spaces
Wk (2) = {v € L(Q) s [ollyie o) < o0}

We denote H}, (£2) = W12 (). For 2 = I x - - - x I, with bounded intervals IicR,j=1,....d,

HL. (2)=HY(I1)® - @ H'(I4) with Hilbertian tensor products. Throughout, C' will denote a

generic positive constant whose value may change at each appearance, even within an equation.
The ¢P-norm, 1 < p < oo, on R” is denoted by ||x||p The number of nonzero entries of a vector

or matrix z is denoted by ||z]|o.

Three dimensional domain. Let £2 C R? be a bounded, polyhedral domain. Let C denote a set of
isolated points, situated either at the corners of {2 or in the interior of {2 (that we refer to as the
singular corners in either case, for simplicity), and let £ be a subset of the edges of 2 (the singular
edges). Furthermore, denote by &£. C £ the set of singular edges abutting at a corner c. For each
c € C and each e € £, we introduce the following weights:

re(z) == |z — | = dist(z, ¢), re(z) = dist(z,e), Pee(T) = for x € £2.
For € > 0, we define edge-, corner-, and corner-edge neighborhoods:
= {x €N:r.(x) <eandr.(z)>eVee C},
= {x € 2 :r.(x) <eand pe(x) >e,Ve € 5},
05, = {x € :r.(z) <eand pe(x) < 5}.

We fix a value ¢ > 0 small enough so that 25005, = @ forall ¢ # ¢/ € Cand 25, N2, = QN0E

e/ T

@ for all singular edges e # €’. In the sequel, we omit the dependence of the neighborhoods on £.

Let also
Q=2 =% 2= 2.
ceC ecf ceCe€cl,

and

2y =1 \ (Qc Uf2e U .ch).

In each subdomain (2., and 2., for any multi-index a € Ng, we denote by o the multi-index
whose component in the coordinate direction parallel to e is equal to the component of « in the
same direction, and which is zero in every other component. Moreover, we set o = a — o).

Two dimensional domain. Let 2 C R? be a polygon. We adopt the convention that £ := @&. For
c € C, we define

Qi::{xe!):rc(x)<5}.

As in the three dimensional case, we fix a sufficiently small £ > 0 so that 25N§2% = @ forc# ¢ €C
and write £2. = £2¢. Furthermore, §2¢ is defined as for d = 3, and 2y := 2\ 2.
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2.2 Weighted spaces with nonhomogeneous norms

We introduce classes of weighted, analytic functions in space dimension d = 3, as arise in analytic
regularity theory for linear, elliptic boundary value problems in polyhedra, in the particular form
introduced in [8]. There, the structure of the weights is in terms of Cartesian coordinates which is
particularly suited for the presently adopted, tensorized approximation architectures.

The definition of the corresponding classes when d = 2 is analogous. For a weight exponent
vector v = {Ye,Ye : ¢ € C,e € £}, we introduce the nonhomogeneous, weighted Sobolev norms

[vllzp2) = >0z + Y] > el 0% 2

la| <k ceC |a|<k

+ Z Z ||T£‘QL‘_75)+3O‘U||L2(Q€)

e€l |a|<k

£33 el e 9 9% g

ceC e€&. |a|<k

where (z); = max{0, 2}. Moreover, we define the associated function space by

7406 = {o e L) llggeon < oo}

Furthermore,
Tee.e) = (| Jy(c.e).

keNy

For A,C > 0, we define the space of weighted analytic functions with nonhomogeneous norm as

T (2;C,EC, A) = {v € (20,8 Y (0%l 120y < CAFRY,

la|=k

S e+ 0% 2,y < CAFRL Ve e,
la|=k

D Il 9% 1o, < CAFEL Ve € €,
|a|=k

D et plen =194 9% 2, < CAFRY
la|=k

Ve € C and Ve € E.,Vk € No}.

Finally, we denote
TZ(2;C,8) = | TF(2C.EC,A).
B C,A>0

2.3 Approximation of weighted analytic functions on tensor product geometric meshes
The approximation result of weighted analytic functions via NNs that we present below is based

on emulating an approximation strategy of tensor product hp-finite elements. In this section, we
present this hp-finite element approximation. Let I C R be an interval. A partition of I into N € N
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intervals is a set G such that |G| = N, all elements of G are disjoint, connected, and open subsets

of I, and
Jo-=1
veg

We denote, for all p € Ny, by Q,(G) the piecewise polynomials of degree p on G.
One specific partition of I = (0,1) is given by the one dimensional geometrically graded grid,
which for o € (0,1/2] and ¢ € N, is given by

Gt ={J, k=0,....¢}, where J§ = (0,0) and Ji:= (""" " o) k=1,....0 (22

Theorem 2.1 Let d € {2,3} and Q == (0,1)?. Let C = {c} where c is one of the corners of Q and
let &€ = &, contain the edges adjacent to ¢ when d = 3, £ = & when d = 2. Further assume given
constants Cy, Ay > 0, and

7 ={Y:ceCl}, with v, > 1, for all c € C if d=2,
Y={Ve,ve:ce€Cec &}, withy.>3/2 and . > 1, forallceC andec & ifd=3.
Then, there exist C, > 0, Cr, > 0 such that, for every 0 < ¢ <1, there exist p, L € N with

p < Cp(l+flog(e)]), L <CL(1+[log(e)]),
so that there exist piecewise polynomials on I = (0,1)

viEQp(gf)ﬂHl(I), iZl,...,Nld,

with Nyg = (L+ 1)p+ 1, and, for oll f € Jf(Q;QE;C’f?Af) there exists a d-dimensional array
of coefficients

c= {cil,,,id (i, ...,0q) €{1,. .., Nld}d}
such that

1. For every i = 1,... N4, supp(v;) intersects either a single interval or two neighboring subin-
tervals of GF. Furthermore, there exist constants C,,, b, depending only on Ct, Ay, o such
that

Hm”Loo(]) <1, HUiHHl(I) ché‘ib”, Vi=1,...,Nq. (23)
2. It holds that
Nia d
F= > Ciia®iria <e with ¢ iy =QQuvi;, Vir, .. ia=1,..., Nia.
T1 ey iqg=1 Hl(Q) j=1
(2.4)

3. lefloe < Ca(1 + |log(e)])? and |c|ly < C.(1 + [log(e)|)??, for Ca,C. > 0 independent of p, L, €.

We present the proof in Subsection A.9.3 after developing an appropriate framework of hp-approximation
in Section A.
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3 Basic ReLLU neural network calculus

In the sequel, we distinguish between a neural network, as a collection of weights, and the associated
realization of the NN. This is a function that is determined through the weights and an activation
function. In this paper, we only consider the so-called ReLLU activation:

0:R—=R: 2z~ max{0,z}.

Definition 3.1 ([43, Definition 2.1]) Let d, L € N. A neural network & with input dimension d
and L layers is a sequence of matrix-vector tuples

@ = ((A1,b1), (Ag,b2), ..., (Ap,br)),

where Ny :==d and Ni,..., Ny € N, and where A, € RVexNe—1 and by e RN for ¢ =1, ..., L.
For a NN @, we define the associated realization of the NN & as

R(®) : RY — RV : 2 vz, = R(P)(x),
where the output 7, € RVt results from

Tog =X,
xg = 0(Agxo_1 + by), fore=1,...,L -1, (3.1)

xr = Apxr_1+bp.

Here ¢ is understood to act component-wise on vector-valued inputs, i.e., for y = (y%,...,y™) €
R™, o(y) := (o(y'), ..., 0(y™)). We call N(P) := d+Zf=1 N; the number of neurons of the NN &,
L(®) := L the number of layers or depth, M;(®) = ||Ajllo + ||bjllo the number of nonzero weights
in the j-th layer, and M(P) = Z;‘:l M;(®) the number of nonzero weights of ®, also referred to
as its size. We refer to Ny, as the dimension of the output layer of ®.

3.1 Concatenation, parallelization, emulation of identity

An essential component in the ensuing proofs is to construct NNs out of simpler building blocks. For
instance, given two NNs, we would like to identify another NN so that the realization of it equals the
sum or the composition of the first two NNs. To describe these operations precisely, we introduce
a formalism of operations on NNs below. The first of these operations is the concatenation.

Proposition 3.2 (NN concatenation, [43, Remark 2.6]) Let L1, Ly € N, and let &1, &> be
two NNs of respective depths Ly and Lo such that N} = NEZ =:d, i.e., the input layer of ®' has
the same dimension as the output layer of ®>.

Then, there exists a NN ' ©P?, called the sparse concatenation of @1 and &2, such that $* © P>
has L1 + Ly layers, R(®* © &%) = R(P') o R($?) and M (' © $?) < 2M (P') + 2M (9?).
The second fundamental operation on NNs is parallelization, achieved with the following construc-
tion.

Proposition 3.3 (NN parallelization, [43, Definition 2.7]) Let L,d € N and let ', ®* be
two NNs with L layers and with d-dimensional input each. Then there exists a NN P(®', ®?) with
d-dimensional input and L layers, which we call the parallelization of &' and $?, such that

R (P (2',9%)) (z) = (R (2") (2),R (2?) (z)), for all z € R
and M(P(®',$%)) = M(P') + M(2?).
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Proposition 3.3 requires two NNs to have the same depth. If two NNs have different depth, then
we can artificially enlarge one of them by concatenating with a NN that implements the identity.
One possible construction of such a NN is presented next.

Proposition 3.4 (NN emulation of Id, [43, Remark 2.4]) For every d, L € N there exists a
NN & with L($y',) = L and M(®y'}) < 2dL, such that R(Py') = Idga.

Finally, we sometimes require a parallelization of NNs that do not share inputs.

Proposition 3.5 (Full parallelization of NNs with distinct inputs, [12, Setting 5.2]) Let
L € N and let

o' = ((ALB) .o (AR0E)) . @2 = ((AR0D) .., (43,82))

be two NNs with L layers each and with input dimensions Ng = dy and N = da, respectively.

Then there exists a NN, denoted by FP(®1, &), with d-dimensional input where d = (dy + dz)
and L layers, which we call the full parallelization of @' and &2, such that for all x = (1, 13) € R?
with z; € R% i =1,2

R (FP (®',9%)) (z1,22) = (R (@) (z1),R (2?) (22))
and M(FP(®!,82)) = M(®!) + M(#2).
Proof Set FP (91,®?) := ((A$,63),..., (A%,b3)) where, for j =1,..., L, we define

Al 0 bl
A??::( J ) and b??::(]).
J 0 A? J b?

All properties of FP (¢!, ®?) claimed in the statement of the proposition follow immediately from
the construction. O

3.2 Emulation of multiplication and piecewise polynomials

In addition to the basic operations above, we use two types of functions that we can approximate
especially efficiently with NNs. These are high dimensional multiplication functions and univariate
piecewise polynomials. We first give the result of an emulation of a multiplication in arbitrary
dimension.

Proposition 3.6 ([16, Lemma C.5], [42, Proposition 2.6]) There exists a constant C > 0
such that, for every 0 < e <1,d € N and M > 1 there is a NN HgM with d-dimensional input-
and one-dimenstonal output, so that

d
Hl’g - R(HgM)(a?) <eg, forall x = (x1,...,2q4) € [-M, M]%,
{=1
d d
0 0 for almost every x = (z1,...,1q) € [-M, M|
a0 Llve— 5~ (I 5p) ()| <, o
Tj 0 T and all j=1,...,d,

and R(HgM)(as) =0 if H?:l 2 =0, for all x = (x1,...,24) € R Additionally, HgM satisfies

max {L (I1¢ ;) ;M (1T /) } < C (14 dlog(dM?/e)) .
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In addition to the high-dimensional multiplication, we can efficiently approximate univariate
continuous, piecewise polynomial functions by realizations of NNs with the ReLLU activation func-
tion.

Proposition 3.7 ([41, Proposition 5.1]) There exists a constant C' > 0 such that, for all Niy, €
N and p = (pi)ic(1,... . Ny} C N, for all partitions T of I = (0,1) into Ning open, disjoint, connected
subintervals I;, i = 1,..., Nint, for allv € Sp(I,T) = {ve H'(I):v|, € Py, (L;),i=1,..., Nint },
and for every 0 < e < 1, there exist NNs {@?T’p}ee(o,l) such that for all 1 < ¢’ < oo it holds that

[o =R (@27 P) | iy & Plwrarry

L (2277) <C(1+ 10g(Pmax)) (Pmax + [loge])
Nint
M (27P) < C'Nigt (1 +10g(Pmax)) (Pmax + [loge]) + C > p; (pi + |logel) ,
i=1
where Pmax = max{p;: i = 1,..., Nint }. In addition, R (@};fﬂp) (xj) =v(z;) forallj € {0,..., Nint },
where {xj}év:rg are the nodes of T .
Remark 3.8 1t is not hard to see that the result holds also for I = (a,b), where a,b € R, with C' > 0
depending on (b—a). Indeed, for any v € H!((a, b)) the concatenation of v with the invertible, affine
map T: 2 +— (x —a)/(b—a) is in H*((0,1)). Applying Proposition 3.7 yields NNs {QS?T’?’}EG(OJ)
approximating v o T' to an appropriate accuracy. Concatenating these networks with the 1-layer
NN (Ay,by), where Ajx+b; = T~ a yields the result. The explicit dependence of C' > 0 on (b—a)
can be deduced from the error bounds in (0, 1) by affine transformation.

4 Exponential approximation rates by realizations of NNs

We now establish several technical results on the exponentially consistent approximation by real-
izations of NNs with ReLLU activation of univariate and multivariate tensorized polynomials. These
results will be used to establish Theorem 4.3, which yields exponential approximation rates of NNs
for functions in the weighted, analytic classes introduced in Section 2.2. They are of independent
interest, as they imply that spectral and pseudospectral methods can, in principle, be emulated by
realizations of NNs with ReLU activation.

4.1 NN-based approximation of univariate, piecewise polynomial functions

We start with the following corollary to Proposition 3.7. It quantifies stability and consistency of
realizations of NNs with ReLLU activation for the emulation of the univariate, piecewise polynomial
basis functions in Theorem 2.1.

Corollary 4.1 Let I = (a,b) C R be a bounded interval. Fiz C, > 0, C,, > 0, and b, > 0. Let
0 < enp < 1 and p, N14, Nint € N be such that p < Cp(1 + logeny|) and let Giq be a partition
of I into Niny open, disjoint, connected subintervals and, for i € {1,...,N1a}, let v; € Qu(G1a) N
HY(I) be such that supp(v;) intersects either a single interval or two adjacent intervals in Gi1q and
[vill i1 (1) < Cugny®s for alli € {1,..., Nia}.

Then, for every 0 < ey < enp, and for every i € {1,..., Niq}, there exists a NN &Y such that

[[vi = RALE) |2 1) < Exloil iy (4.1)
L (02) < Ca(1 + [log(e1)[)(1 + log(1 + [log(e1)])), (4.2)
M (@%) < C5(1 + [log(e1)*), (4.3)
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for constants Cy,Cs > 0 depending on C, > 0, C, > 0, b, > 0 and (b — a) only. In addition,
R (9Y) (z;) = vi(z;) for alli € {1,...,Nia} and j € {0,..., Nins}, where {x]}jvz”‘g are the nodes
of Gia-
Proof Let © = 1,...,N1q. For v; as in the assumption of the corollary, we have that either
supp(v;) = J for a unique J € Giq or supp(v;) = J U J’ for two neighboring intervals .J, J' € Gi4.
Hence, there exists a partition 7; of I of at most four subintervals so that v; € Sp(I,7;), where
b= (pi)ie{l,...,4}~

Because of this, an application of Proposition 3.7 with ¢’ = 2 and Remark 3.8 yields that for
every 0 < &1 < epp < 1 there exists a NN @i := Q)“E’i’Ti’p such that (4.1) holds. In addition, by
invoking p < 1+ |log(enp)| < 1 + |log(e1)], we observe that

L (%) < C(1+1log(p)) (p+ [log (e1)]) S 1+ [log(e1)] (1 + log(1 + [log(e1)])-
Therefore, there exists Cy > 0 such that (4.2) holds. Furthermore,

M (€%) <4C(1 + log(p)) (p+ [log (e1)]) + C Y p(p + |log (1))

i=1
<p* + [log (1) p + (1 +log(p)) (p + [log (1)) -
We use p S 1+ |log(e1)] and obtain that there exists C5 > 0 such that (4.3) holds. O

4.2 Emulation of functions with singularities in cubic domains by NNs

Below we state a result describing the efficiency of re-approximating continuous, piecewise tensor
product polynomial functions in a cubic domain, as introduced in Theorem 2.1, by realizations of
NNs with the ReLU activation function.

Theorem 4.2 Let d € {2,3}, let I = (a,b) C R be a bounded interval, and let Q = I?. Suppose
that there exist constants Cp, > 0, Cn,, >0, C, >0, C. > 0, b, > 0, and, for 0 <e < 1, assume
there exist p, Nig, Nint € N, and ¢ € RNwXXNia - gych that

Nig < Oy (14 Jlogel®),  lels < Ce(1+ [logel®),  p < Cp(1+ [loge]).

Further, let Giq be a partition of I into Ny, open, disjoint, connected subintervals and let, for all
i €{1,...,Nia}, vi € Qy(Gia) N H'(I) be such that supp(v;) intersects either a single interval or
two neighboring subintervals of G4 and

||UiHH1(I) ch6_b", ||UiHLoo(I) <1, Vi € {1,...,N1d}.
Then, there exists a NN @, . such that

Nld d
Z Ci1...id ®Uz‘j — R (és,c) S E. (44)
11,0y td=1 j=1

HY(Q)
Furthermore, it holds that ||R (Pz o)l o () < (24 + 1)Co(1 + |log e,

M(®..) < C(1+|loge[**h),  L(®..) < C(1 + |loge|log(|logel)),
where C' > 0 depends on Cp, Cn,,, Cy, Cq, by, d, and (b — a) only.

Proof Assume I # @ as otherwise there is nothing to show. Let C7 > 1 be such that C;l < (b—a) <
Cr. Let ¢y max = max{||vi|| g1 (ny: i € {1,..., Nia}} < Cpe™, let e1 = min{e/(2-d- (Co,max +1)*-

lell1),1/2,C72C5 e}, and let ey = min{e/(2 - (VA + 1) - C%* - (comax + 1) - lcll1), 1/2}.
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Construction of the neural network. Invoking Corollary 4.1 we choose, for i = 1,..., N1q, NNs @
so that
IR(PL) = il oy < exlvilmny < €160 max < Cocre™™ < 1.
It follows that for all 4 € {1,..., N1q}
IR (Qgi)HHl(I) <|r(2) - UiHHl(I) F lvill g1 () < 1+ Co.max (4.5)

and that, by Sobolev imbedding,

IR (@) | wry < IR (B2) = vill e gy + Ioill ey < CF [R(2L) = i oy + 1 (4.6)
< C}/zC’Usls*b” +1<2.
Then, let @p,sis be the NN defined as
Piasis = FP (P(BLL,..., 0L, PO, 8L, (4.7)

where the full parallelization is of d copies of P(@gi, . ,@gfld). Note that @p,gs is a NN with
d-dimensional input and dNi4-dimensional output. Subsequently, we introduce the N{id matrices
Eliia) € {0, 1}9%4Na guch that, for all (i1, .. .,44) € {1,..., N1a}%,

BOviag = {a;_1)nypi, 15 =1,...,d}, for all a = (ay,...,aqn,,) € RN,
Note that, for all (iy,...,iq) € {1,..., N1a}%,
R(((E0) 0)) © Ppasis) © (1, ..., Ta) > {R(@Z;‘j)(xj) j=1,.. .,d} .
Then, we set
& =P (ngz © (BW10) 0)) : (i1, ..., iq) € {1,... ,Nld}d) © Bpasis, (4.8)

where Hgd%Q is according to Proposition 3.6. Note that, by (4.6), the inputs of HgQ’Q are bounded
in absolute value by 2. Finally, we define

Do = ((vec(c),0)) © 2,

where vec(c) € R4 is the reshaping defined by, for all (iy,...,i4) € {1,..., Niq}?,
d .
(vec(e)i = ciy.igy  withi=1+Y (i; — )N{;". (4.9)
j=1

See Figure 4.1 for a schematic representation of the NN &, ..
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Niq

Z Ciyin @iy in (T1,72)

i1,i2=1

J

Fig. 4.1: Schematic representation of the neural network &.., for the case d = 2 con-
structed in the proof of Theorem 4.2. The circles represent subnetworks (i.e., the neural

networks @Y1, ng,za and ((vec(c)",0))). Along some branches, we indicate ®;(71,22) =

R (H€22,2 © ((E(i)k)7 0)) © dsbasis) (xh x2)'

Approzimation accuracy. Let us now analyze if @, . has the asserted approximation accuracy.
Define, for all (iy,...,iq) € {1,..., Niq}¢

d
Biy.ig = ® Vij,
Jj=1

Furthermore, for each (iy,...,iq) € {1,..., Niq}?, let ®;, ..i, denote the NNs
Dy ig = ng,2 © ((E(il’m’id)a 0)) © Phasis-

We estimate by the triangle inequality that

Niq Nia Nia
g Ciy.oig®Piy.ia — R(Pec) = E Ciyig@ir.iq — E Ciy..ig R(DPi, i)
i1y dg=1 i1edg=1 i1yedy=1
1 d HY(Q) 1 d 1 d HY(Q)
Nia

< Z |Ci1---id| ||¢i1--~id - R(¢i1~-»id>”H1(Q) .

i1, 0,8a=1

We have that

d
[6irecia = R@ireci) Ly = | @i, — R (T 2) o [R (@2 . R (0211
j=1
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and, by another application of the triangle inequality, we have that

d d
[6ireis = R @il < | v, ~ QR (22
=t =t HY(Q)
d
@ (@81 ) ~R (114 ,) 0 [R (@51),... R (@Zjd)}
=t HY(Q)
d d )
< ®vi1 - ®R (Q)Z:J) + (\/E + 1)520}1/2(Cv,max +1),
7=t =t HY(Q)
(4.11)
where the last estimate follows from Proposition 3.6 and the chain rule:
®R (87) ~R () o [R(2) R (2h) ][] < ey
12(Q)
and
d 2
QR (25) ~R (o) 0 [R(22),... R (2L )]
=1 HY(Q)
il a & v, 0 . P
=> |5 QR (27) - o BT, ) 0 R (@), R (28]
ht =t 12(Q)
2

:Zd: ®R< ) (aikR( 5272)>o[R(gsgjl),...,R(@gid)] (%R(@Z@))

ﬁek L2(Q)
d 2
<3 odcf | R (o)

L2(I)
where we used (4.5) and the fact that R(®e.*) depends only on zy. Integrating over the d — 1 other
coordinates in @ gives the factor C%4~!. We now use (4.6) to bound the first term in (4.11): for
d = 3, we have that, for all (iy,...,iq) € {1,..., N1q}¢,

d d d
® Vi — ® R (@g?) < || (v, = R(d)gil ) ® ®Uij
j=1 j=1 H(Q) i=2 HY(Q)
+ HR (égi") ® (vi, — R (P22)) ® vy,
d—1 N _
+ | Q@R(@:) @ (i, —R(@e))| = (1),

g=1 HY(Q)

< de20 (Cpmax + 1),

HY(Q)
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For d = 2, we end up with a similar estimate with only two terms. By the tensor product structure,
it is clear that (I) < de1(cy max + 1)%. We have from (4.10) and the considerations above that

Nia
> Cheiadiis—R@0)| el (de1(Cumax + 1)+ (VA + 1220 Comax +1))
Feta=l HY(Q)
<e.

This yields (4.4).

Bound on the L>®-norm of the neural network. As we have already shown, ||R (@g;) < 2.

Therefore, by Proposition 3.6, |R (0:) gy < 27 + 2. It follows that

|L°°(I)

IR (@e.c)ll gy < llelln (27 4+ £2) < (2 + 1)C.(1 + log ).

Size of the neural network. Bounds on the size and depth of @, . follow from Proposition 3.6 and
Corollary 4.1. Specifically, we start by remarking that there exists a constant C; > 0 depending
on Cy, by, C¢, C; and d only, such that [log(e1)] < C1(1 + [loge|) and [log(e2)| < Ci(1 + |logel).
Then, by Corollary 4.1, there exist constants C4, C5 > 0 depending on C,, Cy, by, C., (b — a), and
d only such that for alli =1,..., Niq,

L (®L) < Cy(1 + |loge|)(1 + log(1 + [logel)) and M (9Y) < Cs(1 + logel?).

Hence, by Propositions 3.5 and 3.3, there exist Cg, C7 > 0 depending on C,, C, by, Ce, (b—a), and
d only such that

L(ébasis) < 06(1 + |10g€|)(1 + log(l + |10g€|)) and M(dsbasis) < C"TdJ\/vld(l + \10g6|2)-

Then, remarking that for all (iy,...,iq) € {1,..., Niq}? it holds that ||[E()|y = d and, by
Propositions 3.2, 3.6, and 3.3, we have

L(®.) < Cs(1 + |loge|)(1 + log(1 + |logel)), M(®.) < Cy (N{id(l + loge|) + M(@basis)) )

For Cg,Cy > 0 depending on C,, Cy, by, Ce, (b — a) and d only. Finally, we conclude that there
exists a constant C1p > 0 depending on Cp, Cy, by, Ce, (b — a) and d only, such that

L(®.c) < Cio(1+ [logel])(1 + log(1 + |logel)).
Using also the fact that Nig < C,, (1 + [loge|*) and since d > 2,
M(®. ) < Ci1(1 + [loge|)**,
for a constant C11 > 0 depending on Cp, Cn,,, Cy, by, Ce, (b — a) and d only. O

Next, we state our main approximation result, which describes the approximation of singular
functions in (0,1)¢ by realizations of NNs.
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Theorem 4.3 Letd € {2,3} and Q = (0,1)%. Let C = {c} where c is one of the corners of Q and
let £ = &, contain the edges adjacent to ¢ when d = 3, £ = & when d = 2. Assume furthermore
that C¢, Ay > 0, and

7 ={1:cel}, with v, > 1, for all c € C if d =2,
Y={VeVe:ce€Cec &}, withy.>3/2 and~.>1, forallceC andec & ifd=3.
Then, for every f € JT7(Q;C,E;Cy, Ay) and every 0 < e < 1, there exists a NN & y so that

Hf - R(Qé,f)Hﬂl(Q) <e. (4.12)

In addition, | R (D.5)|r=) = O(llogel*?) for e — 0. Also, M(.;) = O([loge[**") and
L(®.,r) = O(|loge|log(|logel)), for e = 0.
Proof Denote I := (0,1) and let f € J7(Q;C,E;Cf, Ay) and 0 < & < 1. Then, by Theorem 2.1

(applied with £/2 instead of €) there exists N1q € Nso that Nyg = O((1+]logel)?), c € RNax-xNia
with |lcll; < C.(1 + [loge|*®), and, for all (i1,...,iq) € {1,..., Niq}<,

d
Giy..iia = ® Vi
Jj=1

such that the hypotheses of Theorem 4.2 are met, and

Niq c
f- ' Z,lcilu'id@lmid <3
ot H'(Q)

We have, by Theorem 2.1 and the triangle inequality, that for . ; := &, /5 .

Nia
€
”f - R(@s,f)”Hl(Q) < 5 + E Cil--~id¢i1»--id - R(Qje/zc)
01 yeeyig=1

HY(Q)

Then, the application of Theorem 4.2 (with €/2 instead of €) concludes the proof of (4.12).
Finally, the bounds on L(®. ) = L(®./2,.), M(®c ) = M(®./2.), and on ||R(P 1)l 1) =
| R(®</2,c) |l Lo (@) follow from the corresponding estimates of Theorem 4.2. ]

Theorem 4.3 admits a straightforward generalization to functions with multivariate output, so
that each coordinate is a weighted analytic function with the same regularity. Here, we denote for
a NN @ with N-dimensional output, N € N, by R(®),, the n-th component of the output (where
ne{l,...,N}).

Corollary 4.4 Letd € {2,3} and Q = (0,1)%. Let C = {c} where c is one of the corners of Q and
let & = E. contain the edges adjacent to ¢ when d = 3; € = & when d = 2. Let Ny € N. Further
assume that C'y, Ay >0, and

7 ={Y:ceCl}, with v. > 1, for allc€C if d=2,
T={Ve,ve:c€Cec &}, withy.>3/2 and . > 1, forallceC andec & ifd=3.

N
Then, for all f = (f1,...,fn,) € {Jf(Q;C,g;Cf,Af)} " and every 0 < e < 1, there exists a NN
D, ¢ with d-dimensional input and ]\E-dimensional output such that, for alln =1,..., Ny,

H-f”_R(¢5>f)nHH1(Q) <e. (4.13)
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In addition, || R(Pe #)n|lL=(q) = O(llog e|*®) for everyn = {1,.. ., Ns}, M(D. ) = O([loge* ™ +
Ny loge|*?) and L(®..¢) = O(|loge|log(|logel)), for e — 0.

Proof Let ®. be as in (4.8) and let ¢(™ € RNwxxNia p — 1 , Nt be the matrices of coefficients
such that, in the notation of the proof of Theorems 4.2 and 4.3, for all n € {1,..., Ny},

©w
n
fo = Z Ciy iy Pinia <

i1,..0q=1 Q)

| ™

We define, for vec as defined in (4.9), the NN &, ¢ as
P.y:=P (((vec(c(l))T, 0)), ..., ((vec(c V)T, O))) © P..

The estimate (4.13) and the L*°-bound then follow from Theorem 4.2. The bound on L(®. f)
follows directly from Theorem 4.2 and Proposition 3.2. Finally, the bound on M(®. ¢) follows by
Theorem 4.2 and Proposition 3.2, as well as, from the observation that

M (P (((vee(c™)T,0)), ... ((vee(e™))T,0))) ) < NyN{y < CNy(1 + [loge]™),

for a constant C' > 0 independent of Ny and e. O

5 Exponential expression rates for weighted analytic solution classes of PDEs

In this section, we develop Theorem 4.3 into several exponentially decreasing upper bounds for the
rates of approximation, by realizations of NNs with ReL'U activation, for solution classes to elliptic
PDEs with singular data (such as singular coefficients or domains with nonsmooth boundary).
In particular, we consider elliptic PDEs in two-dimensional general polygonal domains, in three-
dimensional domains that are a union of cubes, and elliptic eigenvalue problems with isolated point
singularities in the potential which arise in models of electron structure in quantum mechanics.

In each class of examples, the solution sets belong to the class of weighted analytic functions
introduced in Subsection 2.2. However, the approximation rates established in Section 4 only hold
on tensor product domains with singularities on the boundary. Therefore, we will first extend the
exponential NN approximation rates to functions which exhibit singularities on a set of isolated
points internal to the domain, arising from singular potentials of nonlinear Schrédinger operators.
In Section 5.2, we demonstrate, using an argument based on a partition of unity, that the approx-
imation problem on general polygonal domains can be reduced to that on tensor product domains
and Fichera-type domains, and establish exponential NN expression rates for linear elliptic source
and eigenvalue problems. In Section 5.3, we show exponential NN expression rates for classes of
weighted analytic functions on two- and three-dimensional Fichera-type domains.

5.1 Nonlinear eigenvalue problems with isolated point singularities

Point singularities emerge in the solutions of elliptic eigenvalue problems, as arise, for example,
for electrostatic interactions between charged particles that are modeled mathematically as point
sources in R3. Other problems that exhibit point singularities appear in general relativity, and for
electron structure models in quantum mechanics. We concentrate here on the expression rate of “ab
initio” NN approximation of the electron density near isolated singularities of the nuclear potential.
Via a ReLU-based partition of unity argument, an exponential approximation rate bound for a
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single, isolated point singularity in Theorem 5.1 is extended in Corollary 5.4 to electron densities
corresponding to potentials with multiple point singularities at a priori known locations, modeling
(static) molecules.

The numerical approximation in ab initio electron structure computations with NNs has been
recently reported to be competitive with other established, methodologies (e.g. [44,25] and the ref-
erences there). The exponential ReLU expression rate bounds obtained here can, in part, underpin
competitive performances of NNs in (static) electron structure computations.

We recall that all NNs are realized with the ReLU activation function, see (3.1).

5.1.1 Nonlinear Schriodinger equations

Let 2 = R?/(2Z)%, where d € {2,3}, be a flat torus and let V : £2 — R be a potential such that
V(z) > Vp > 0 for all z € 2 and there exists § > 0 and Ay > 0 such that

2411000V | oy < AR alt, Vo e N, (5.1)

where r(z) = dist(z, (0,...,0)). For k € {0, 1,2}, we introduce the Schrodinger eigenproblem that
consists in finding the smallest eigenvalue A\ € R and an associated eigenfunction u € H'(£2) such
that

(A+V+uf u= I in2, |u]q =1 (5.2)

The following approximation result holds.

Theorem 5.1 Letk € {0,1,2} and (\,u) € Rx HY(£2)\{0} be a solution of the eigenvalue problem
(5.2) with minimal X\, where V satisfies (5.1).
Then, for every 0 < e <1 there exists a NN &, ,, such that

HU_R(QSa,u)”Hl(Q) <e. (5.3)

In addition, as € — 0,
M(®...) = O(|log(e)***"),  L(®..) = O(|log(e)|log(| log(e)])) -

Proof Let C = {(0,...,0)} and & = @. The regularity of u is a consequence of [34, Theorem 2] (see
also [35, Corollary 3.2] for the linear case k = 0): there exists v. > d/2 and C,, A, > 0 such that
u € J;f((?;&é‘; Cu, Ay). Here, . and the constants C,, and A, depend only on Vj, Ay and ¢ in
(5.1), and on k in (5.2).

Then, for all 0 < ¢ < 1, by Theorems 4.2 and A.25, there exists a NN &, , such that (5.3)
holds. Furthermore, there exist constants C7, Co > 0 dependent only on Vj, Ay, J, and k, such
that

M(®. ) < Ci(1+ |log(€)|2d+1) and L(®. ) < 02(1 + |1og(€)|) (1 +log(1 + |log(6)|)).

O
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5.1.2 Hartree-Fock model

The Hartree-Fock model is an approximation of the full many-body representation of a quantum
system under the Born-Oppenheimer approximation, where the many-body wave function is re-
placed by a sum of Slater determinants. Under this hypothesis, for M, N € N, the Hartree-Fock
energy of a system with NV electrons and M nuclei with positive charges Z; at isolated locations
R; € R3, reads

FEyr = inf / V%Q—!—V@l // dd —7// da:dy
e {Z (Ve +71 MR NR=
(1,5 on) € HY(RHN suchthat/ @i@jzdij}a (5.4)
R3

where §;; is the Kronecker delta, V(z) = — Zf\il Zi/ |lx — Rilly, T(z,y) = 22111 vi(z)pi(y), and
p(x) = 7(x,x), see, e.g., [30,31]. The Euler-Lagrange equations of (5.4) read

AV o) [ LYoo [ TEY o dy = \on(@), i = and z € B?
(arvENao [ et [ TRy = dipi(@), 1= 1, d(;j

Remark 5.2 It has been shown in [30] that, if 224:1 Zp > N — 1, there exists a ground state
©1,...,pn of (5.4), solution to (5.5).

The following statement gives exponential expression rate bounds of the NN-based approximation
of electronic wave functions in the vicinity of one singularity (corresponding to the location of a
nucleus) of the potential.

Theorem 5.3 Assume that (5.5) has N real eigenvalues A1, ..., \y with associated eigenfunctions
@15, N, such that [o pip; = 0;5. Fiz k € {1,...,M}, let Ry, be one of the singularities of V
and let a > 0 such that |R; — Ry|| . > 2a for all j € {1,...,M} \ {k}. Let {2 be the cube
2y ={z€R3: ||z — Ril| < a}.

Then there exists a NN &, , such that R(®. ) : R — RN satisfies

i = R(Pep)ill i (o) <& Vie{l,...,N}. (5.6)
In addition, as € — 0, || R(Pc y)ill oo (2,) = O(lloge|®) for everyi={1,...,N},

M(@.,,) = O(log(e)|" + Nlog(e)|"),  L(®e,,) = O(llog(e)|log([log(e)1)-

Proof Let C = {(0,0,0)} and £ = @ and fix k£ € {1,...,M}. From the regularity result in
[36, Corollary 1], see also [13,14], there exist C,, Ay, and 7. > 3/2 such that (p1,...,on) €

[Jx(!)k;ﬁg; Cop, A¢)]N. Then, (5.6), the L> bound and the depth and size bounds on the NN
P, , follow from the hp approximation result in Theorem A.25 (centered in Ry by translation),
from Theorem 4.2, as in Corollary 4.4. |

The arguments in the preceding subsections applied to wave functions for a single, isolated nucleus
with interaction modeled by the singular potential V' as in (5.1) can then be extended to give
upper bounds on the approximation rates achieved by realizations of NNs of the wave functions in
a bounded, sufficiently large domain containing all singularities of the nuclear potential in (5.4).
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Corollary 5.4 Assume that (5.5) has N real eigenvalues A1, ..., Ay with associated eigenfunctions
@1, 9N, such that o5 pip; = 0. Let a;,b; € R, i = 1,2,3, and 2 = szl(ai,bi) such that
{R;})L, C £2. Then, for every 0 < e < 1, there exists a NN ®. , such that R(P. ;) : R® — RY
and

o = R(®ep)ill iy <& Vi=1,...,N. (5.7)
Furthermore, as e — 0 M(®, ) = O(|log(e)|” + N [log(¢)|®) and L(®. ) = O([log(e)| log(|log(¢)]))-

Proof The proof is based on a partition of unity argument. We only sketch it at this point, but will
develop it in detail in the proof of Theorem 5.6. Let T be a tetrahedral, regular triangulation of
2, and let {/sk},ivz"l be the hat-basis functions associated to it. We suppose that the triangulation

is sufficiently refined to ensure that, for all k € {1,..., Ny}, exists a cube 2 C £ such that
supp(kg) C ), and that there exists at most one je{l,..., M} such that 24N R; #+ @.
For all k € {1,..., N}, by [23, Theorem 5.2], which is based on [56], there exists a NN @&
such that
R(®")(x) = ri(x), Vo € {2.

For all 0 < e < 1, let
€

- 2N, (maxgeqy,... .3 Fellwree o)

€1 ¢

Forall k€ {1,...,N,} and i € {1,..., N}, it holds that <pi|!~2k € jf(ék; {Ri1,...,Rm} ﬂﬁk,g).
Then there exists a NN @F as defined in Theorem 5.3, such that

€1,

llpi = R(® e, Vie{l,...,N} (5.8)

k
517@)i||H1(§k) S
Let
IREE e
Cx = max sup N3
ke{l,..Nu}ec01) 1+ [logé]

where the finiteness is due to Theorem 5.3. Then, we denote
_ €
QNH(‘QP/?'F]. + maX;=1,.. N |(PZ‘H1(Q) + maXg=1,.. N, ||Iik||W1,oo(Q)|Q|1/2)

Ex

and M, (e1) = Cso(1 + |loge1|®). As detailed in the proof of Theorem 5.6 below, after concate-
nating with identity NNs and possibly after increasing the constants, we assume that L(@’;I,@) is
independent of k£ and that the bound on M(@’;hw) is independent of k, and that the same holds
for @ k=1,..., N,.

Let now, fori € {1,..., N}, E; € {0,1}2*N+! be the matrices such that, for all x = (z1,...,Zn+1),
Eixr = (z5,2n41). Let also A = (Idyxn, ..., Idyxy) € RVXN<N be the block matrix comprising
N, times the identity matrix Idyxn € RV*YN. Then, we introduce the NN

N N
Pep= (A,0) 0P ({P ({22 @ B0} Y ori@t, ot 00| ) 69)

k=1

where L € N is such that L(®19, © @) = L(&* ), from which it follows that M(@IfL) <

s £€1,¥

CL(®E, ). It holds, for all i € {1,..., N}, that

N,
R(ep)(@)i = D RUIZ o) (R(PE, ) (@)is mi(2), V€ Q.
k

=1
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By the triangle inequality, [40, Theorem 2.1}, (5.8), and Proposition 3.6, for all i € {1,..., N},

llps — R(Pep)illz (2)

N N,
< i = > meR(PE illme) + D INRUATZ or, ery) R(PE, )i i) — 5 R(PE, )ill i )

=1 k=1

+ Ne(1212 14 max lgilm o)+ maxmelws )| 2")ex

K

<e.

The asymptotic bounds on the size and depth of @, ,, can then be derived from (5.9), using Theorem
5.3, as developed in more detail in the proof of Theorem 5.6 below. a

5.2 Elliptic PDEs in polygonal domains

We establish exponential expressivity for realizations of NNs with ReLLU activation of solution
classes to elliptic PDEs in polygonal domains (2, the boundaries 02 of which are Lipschitz and
consist of a finite number of straight line segments. Notably, £2 C R? need not be a finite union of
axiparallel rectangles. In the following lemma, we construct a partition of unity in {2 subordinate to
an open covering, of which each element is the affine image of one out of three canonical patches.
Remark that we admit corners with associate angle of aperture 7; this will be instrumental, in
Corollaries 5.10 and 5.11, for the imposition of different boundary conditions on 9f2. The three
canonical patches that we consider are listed in Lemma 5.5, item [P2]. Affine images of (0,1)?
are used away from corners of 0f2 and when the internal angle of a corner is smaller than .
Affine images of (—1,1) x (0,1) are used near corners with internal angle m. PDE solutions may
exhibit point singularities near such corners e.g. if the two neighboring edges have different types
of boundary conditions. Affine images of (—1,1)?\ (—1,0]% are used near corners with internal
angle larger than 7. In the proof of Theorem 5.6, we use on each patch Theorem 4.3 or a result
from Subsection 5.3 below.

A triangulation 7 of R? is defined as a partition of R? into open triangles K such that
U KETF = R2. A regular triangulation of R? is a triangulation 7 of R? such that, addition-
ally, for any two neighboring elements K, Ko € T, K1 N K is either a corner of both K; and K,
or the closure of an entire edge of both K; and Ks. For a regular triangulation 7 of R?, we denote
by S1(R?,T) the space of continuous functions on R? such that for every K € T, v|x € Py.

We postpone the proof of Lemma 5.5 to Appendix B.1.

Lemma 5.5 Let 2 C R? be a polygon with Lipschitz boundary, consisting of straight sides, and
with a finite set C of corners. Then, there exists a reqular triangulation T of R?, such that for all
K €T either K C 2 or K C 2° and such that only finitely many K € T satisfy K C 2. Moreover,

there exist N, € N, an open cover {_Qz}f\;”l of 2, and a partition of unity {gi)i}i\]:pl €[S (RQ,T)]NP
on 2 (i.e. ZZV:PI oi(x) =1 for all x € 2, but this need not hold for x € 02°) such that
[P1] supp(¢;) N2 C {2 foralli=1,...,Np,
[P2] for eachi € {1,...,N,}, there evists an affine map v;: R? — R? such that ;' (£2;) = §2; for
20 € {(0,1)%, (=1,1) x (0,1), (=1,1)*\ (=1,0]%},
[P3] CN2; Ci({(0,0)}) for allie {1,...,N,}.
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The following statement, then, provides expression rates for the NN approximation of functions in
weighted analytic classes in polygonal domains.
We recall that all NNs are realized with the ReLU activation function, see (3.1).

Theorem 5.6 Let 2 C R? be a polygon with Lipschitz boundary I' consisting of straight sides
and with a finite set C of corners. Let v = {7, : ¢ € C} such that miny > 1. Then, for all
u € Jf(Q;C, @) and for every 0 < e < 1, there exists a NN &, ,, such that

lu = R(Peu) || () < e (5.10)
In addition, as € — 0,
M(®..) = O(log(e)"),  L(®.) = O(|log(e)| log([log(e)])).

Proof We introduce, using Lemma 5.5, a regular triangulation 7~ of R?, an open cover {.Ql-}fv:”l of
2, and a partition of unity {(bi}f\;pl € [S1(R?%, T)]N” on {2 such that the properties [P1] — [P3] of
Lemma 5.5 hold. R

We define @; == uj,, o¢;: £2; — R. Since u € J7(£2;C, @) with miny > 1 and since the maps
¢, are affine, we observe that for every ¢ € {1,...,N,}, there exists v such that miny > 1 and
a; € va(f\?i? {(0,0)}, @), because of [P2] and [P3]. Let

€

€1 = 12"
2N, maxicqu,...x,) [9illw @) (et Ju,llie o) (14 11y ol o)) )

By Theorem 4.3 and by Lemma 5.19 and Theorem 5.14 in the forthcoming Subsection 5.3, there
exist N, NNs % i € {1,...,N,}, such that

€1

i = R(PE ) S€12 Vi€l . Ny}, (5.11)

and there exists Cos > 0 independent of ; such that, for all i € {1,...,N,} and all &€ € (0, 1)

IR, 5, < Cool1 4 flog el").

The NNs given by Theorem 4.3, Lemma 5.19 and Theorem 5.14, which we here denote by 5?1 for
¢ =1,..., Ny, may not have equal depth. Therefore, for all ¢ = 1,..., N, and suitable L; € N we
define % := P19, © 5?1, so that the depth is the same for all i = 1,..., N,. To estimate the size
of the enlarged NNs, we use the fact that the size of a NN is not smaller than the depth unless the
associated realization is constant. In the latter case, we could replace the NN by a NN with one non-
zero weight without changing the realization. By this argument, we obtain forall¢ =1,..., N, that
M(Q'ng) < 2M(Q311‘}Li) +2 M(@gl) < Cmaxj—1,. N, L(®:7) + C’M(@"gl) < Cmax;=1 . N, M(&:7).
Furthermore, as shown in [23], there exist NNs %, i € {1,..., N, }, such that

R(P%)(x) = ¢i(x), Vo € 2, Vie{l,...,N,}.

Here we use that 7 is a partition of R?, so that ¢; is defined on all of R? and [23, Theorem 5.2]
applies, which itself is based on [56].
Possibly after concatenating with identity networks in the same way as just described for @gli,

we can assume that % for i = 1,..., N, all have equal depth and that the size of &% is bounded
independent of 3.
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Since by [P2] the mappings 1; are affine and invertible, it follows that v, ! is affine for every
i €{1,...,N,}. Thus, there exist NNs @wfl, i€ {l,...,N,}, of depth 1, such that
R(V Y(z) = (x), Voe, Vie{l,...,N,} (5.12)

Next, we define

£
2N, (212 + 1+ |ul ) + maxi—q,.. N, |65l lwee () 2]1/2)

Ex :

and M, (e1) = Coo(1 + [log£1|*). Finally, we set

o -1 X Np
. =((1,...,1),000P ({HfX’MX () OP@E 0¥ Y o @@)}i_l) , (5.13)
N, times

where L € N is such that L(#% ©@¥1 ') = L(#l9, ©$¢1), which yields M(#10,) < CL(% 0d%1 ).
Approzimation accuracy. By (5.13), we have for all © € (2,
Np
7 -1 .
R(P.0)(@) = Y RUT y, (o,)) (RIPE © @%) (@), R(@7)(@))
i=1

Therefore,

NP
. S
lu = R(Peu) |1 () < |ju— E d:R(DL 0PV )
= H(@)

R(I2, o1 er)) (R@g; O% ), ¢i) — i R(®% © o¥i )HH ©

NP
+2
— (1) + (1),

(5.14)

We start by considering term (I). For each ¢ € {1,...,N,}, thanks to (5.11) and denoting by
(A |2 the square of the matrix 2-norm of the Jacobian of ¢; ', it holds that

lu = R(PL © D% )|l m1 (e
= [t o, ' = R(PE) o ¥ M1 ()

= </ﬁ (Im - R(L)

5 1/2
2) | det Jy, |dx>

||V @ - R@E) Ty

(5.15)
/
<er (et T oy + 1 det Tyl o 1Ty B3l )
/
— 2
Sepi=e ze{Ilr,laD,(Np} (” det Jy, Loo(2;) + ” det J'(/)i LOO(EZ\,i)HHJdJ;l ||2HL°°(Q¢)) .
By [40, Theorem 2.1],
5
()< Nyea_max 61w ey < 5. (5.16)
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We now consider term (I7) in (5.14). By Theorem 4.3 and (5.12), it holds that
U ot _ 0 4
IR(®Z; © D% )| poe() = I R(PE oo 5,y < Cooll + [logen]*)

for all ¢ € {1,..., N, }. Furthermore, by [P1], ¢;(z) = 0 for all z € 2\ £2; and, by Proposition 3.6,
. —1
RO o, () (RO% © 0% )(@),0:(2)) =0, Voe 2\
From (5.15), we also have
s o @i -1
IR(PL © 2 im0, < lulmi(ay) + lu = R(PL © 2 )|, < L+ [ulmi(a,)-
Hence,
N,
. —1 ; —1
= L IRT ) (R@@% 0 8¥),6,) — 6 R@% © 8% )| (e
%
<3 (n ROTZ, yr, (0))(0:5) — bl (-t e )

o (5.17)
(1020172 + 1R © 8T iy + 6y )

< Npex (|Q|1/2+1+ ul () + [£2]1/2 _max_ ||¢iW1,w(Q))

IA
l\D.\ [0

The asserted approximation accuracy follows by combining (5.14), (5.16), and (5.17).

Size of the neural network. To bound the size of the NN, we remark that IV, and the sizes of v
and of ®? only depend on the domain (2. Furthermore, there exist constants Cpi,1=1,2,3, that
depend only on {2 and u such that

logei| < Cqna(1+ |logel), logex| < Cn2(1+ |logel),

5.18
[log M (£1)| < C,3(1 +log(1 + [logel)). (>15)

From Theorem 4.3 and Proposition 3.6, in addition, there exist constants CZ,CM Cy > 0 such
that, for all 0 < e1,ex <1,
L(€%) < CF (1 + loger|)(1 +log(1 + [logei)), M(@%) < O (1 + loged[”),
max(M(ITZ | o o)) LUIZ v o)) < Ox (14 log(My (e1)?/ex).

Then, by (5.13), we have

(5.19)

L(@eu) = 1+ LUT (o) + _max (L(@%) +L(@" ),

i=1,...,Np

NP
M(@.) < C | Ny + Ny M2y )+ D0 (M@5) + M(@") + M(@k,) + M(@*))
i=1
(5.20)
The desired depth and size bounds follow from (5.18), (5.19), and (5.20). This concludes the proof.
O
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The exponential expression rate for the class of weighted, analytic functions in {2 by realizations of
NNs with ReLU activation in the H'(§2)-norm established in Theorem 5.6 implies an exponential
expression rate bound on 9f2, via the trace map and the fact that 0f2 can be exactly parametrized
by the realization of a shallow NN with ReLU activation. This is relevant for NN-based solution of
boundary integral equations.

Corollary 5.7 (NN expression of Dirichlet traces) Let 2 C R? be a polygon with Lipschitz bound-
ary I' and a finite set C of corners. Let v = {v. : ¢ € C} such that min~y > 1. For any connected
component I' of 012, let L1 > 0 be the length of ', such that there exists a continuous, piecewise
affine parametrization 0 : [0,4r] — R% : t +— O(t) of I' with finitely many affine linear pieces and
H%GHZ =1 for almost all t € [0,4p].

Then, for all u € Jf(Q;C,Q) and for all 0 < € < 1, there exists a NN P, 9 approximating

the trace Tu := u|,. such that
||TU — R(éa,u,e) o 9_1 ||H1/2(F) <e. (521)
In addition, as € — 0,

M(®.00) = O(log(e)),  L(Pe,u0) = O(|log(e)| log([log(e)])-

Proof We note that both components of § are continuous, piecewise affine functions on [0, £], thus
they can be represented exactly as realization of a NN of depth two, with the ReLU activation
function. Moreover, the number of weights of these NNs is of the order of the number of affine
linear pieces of 6. We denote the parallelization of the NNs emulating exactly the two components
of 6 by ¢°.

By continuity of the trace operator T': H(§2) — H'?(912) (e.g. [15,7]), there exists a constant
Cr > 0 such that for all v € H(£2) it holds [T[ g1r2(ry < Cr 0]l 1) and without loss of
generality we may assume Cp > 1.

Next, for any ¢ € (0,1), let @ /¢, be as given by Theorem 5.6. Define @, ., 9 := P. /00 © @Y.
It follows that

[T = R(®<u0) © 0_1HH1/2(I‘) = |7 (u = R(Pc/cy.0)) HH1/2(F) < Crllu- R(Qpe/Crvu)HHl(Q) se

The bounds on its depth and size follow directly from Proposition 3.2, Theorem 5.6, and the fact
that the depth and size of #? are independent of ¢. This finishes the proof. O

Remark 5.8 The exponent 5 in the bound on the NN size M(®, ,9) in Corollary 5.7 is likely not
optimal, due to it being transferred from the NN rate in 2.

The proof of Theorem 5.6 established exponential expressivity of realizations of NNs with
ReLU activation for the analytic class J77(£2;C, @) in £2. This implies that realizations of NNs can
approximate, with exponential expressivity, solution classes of elliptic PDEs in polygonal domains
2. We illustrate this by formulating concrete results for three problem classes: second order, linear,
elliptic source and eigenvalue problems in {2, and viscous, incompressible flow. To formulate the
results, we specify the assumptions on (2.

Definition 5.9 (Linear, second order, elliptic divergence-form differential operator with
analytic coefficients) Let d € {2,3} and let £2 C R? be a bounded domain. Let the coef-
ficient functions a;j,b;,c¢ : 2 — R be real analytic in {2, and such that the matrix function
A = (aij)i<ij<a s 2 — R%*4 is symmetric and uniformly positive definite in 2. With these func-
tions, we define the linear, second order, elliptic divergence-form differential operator £ acting on

w € C§°(£2) via (summation over repeated indices 4, j € {1,...,d})

(Lw)(z) == —0i(ai;j(x)0jw(x)) + bj(z)0jw(z) + c(zv)w(z), x€ 2.
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Setting 1 We assume that 2 C R? is an open, bounded polygon with boundary 012 that is Lipschitz
and connected. In addition, 02 is the closure of a finite number J > 3 of straight, open sides I},
ie, NI =@ fori#j and 082 = UlSjSJFj' We assume the enumeration of the sides I'; to be
J- cyclic, i.e. Iy =17.

By nj, we denote the exterior unit normal vector to £2 on side I'; and by c; := ? N Tj the
corner j of £2.

With £ as in Definition 5.9, we associate on boundary segment I'; a boundary operator B; €

{7877{}, i.e. either the Dirichlet trace o or the distributional (co-)normal derivative operator 71,
acting on w € CY(2) via

Yow = wlr, ~Yw = (AVw) nilr, j=1,..,J. (5.22)

We collect the boundary operators B; in B := {Bj}le,
The first corollary addresses exponential ReLU expressibility of solutions of the source problem
corresponding to (£, B).

Corollary 5.10 Let £2, £, and B be as in Setting 1 with d = 2. For f analytic in {2, let v denote
a solution to the boundary value problem

Lu=f in §2, Bu=0 on 0. (5.23)
Then, for every 0 < e < 1, there exists a NN @, ,, such that
Ju —R(Peu) |1 (2) <€ (5.24)

In addition, M(®. ) = O(|log(e)|°) and L(®. ) = O(|log(e)| log(|log(¢)])), as € — 0.

Proof The proof is obtained by verifying weighted, analytic regularity of solutions. By [3, Theorem
3.1] there exists v such that miny > 1 and v € J;7(£2;C, ). Then, the application of Theorem

5.6 concludes the proof. O
Next, we address NN expression rates for eigenfunctions of (£, B).

Corollary 5.11 Let 2, L, B be as in Setting 1 with d = 2, and b; = 0 in Definition 5.9, and let
0# w e HY(N2) be an eigenfunction of the elliptic eigenvalue problem

Lw = dw in {2, Bw =0 on 012. (5.25)
Then, for every 0 < e < 1, there exists a NN @, ,, such that
|w =R (Pe,w)llH1(02) < e (5.26)
In addition, M(®. ,,) = O([log(e)|’) and L(P...,) = O(Jlog(e)|log([log(e)])), as € — 0.

Proof The statement follows from the regularity result [4, Theorem 3.1], and Theorem 5.6 as in
Corollary 5.10. O

The analytic regularity of solutions u in the proof of Theorem 5.6 also holds for certain nonlinear,
elliptic PDEs. We illustrate it for the velocity field of viscous, incompressible flow in (2.
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Fig. 5.1: Example of Fichera-type corner domain.

Corollary 5.12 Let 2 C R? be as in Setting 1. Let v > 0 and let w € Hg(£2)? be the velocity field of
the Leray solutions of the viscous, incompressible Navier-Stokes equations in {2, with homogeneous
Dirichlet (“no slip”) boundary conditions

—vAu+ (u-V)u+ Vp=f in 2, V-u=0in {2, u =0 on 012, (5.27)

where the components of f are analytic in 2 and such that || f|| -1 (o) /v? is small enough so that
U 1S unique.
Then, for every 0 < ¢ < 1, there exists a NN @, ,, with two-dimensional output such that

[ —R(Peu)l| 1) < e (5.28)

In addition, M(®P. o) = O(|log(e)|°) and L(®Pc +) = O(|log(e)|1log(|log(e)])), as e — 0.

Proof The velocity fields of Leray solutions of the Navier-Stokes equations in {2 satisfy the weighted,
analytic regularity u € [j,;”(!?;&@)f, with miny > 1, see [38,24]. Then, the application of
Theorem 5.6 concludes the proof. a

5.3 Elliptic PDEs in Fichera-type polyhedral domains

Fichera-type polyhedral domains {2 C R? are, loosely speaking, closures of finite, disjoint unions
of (possibly affinely mapped) axiparallel hexahedra with 92 Lipschitz. In Fichera-type domains,
analytic regularity of solutions of linear, elliptic boundary value problems from acoustics and linear
elasticity in displacement formulation has been established in [8]. As an example of a boundary
value problem covered by [8] and our theory, consider £2 = (—1,1)¢\ (—1,0]? for d = 2, 3, displayed
for d = 3 in Figure 5.1.

We recall that all NNs are realized with the ReLU activation function, see (3.1).

We introduce the setting for elliptic problems with analytic coefficients in §2. Note that the
boundary of {2 is composed of 6 edges when d = 2 and of 9 faces when d = 3.
Setting 2 We assume that L is an elliptic operator as in Definition 5.9. When d = 3, we assume
furthermore that the diffusion coefficient A € R3*3 is a symmectric, positive matriz and b; = ¢ = 0.
On each edge (if d = 2) or face (if d =3) I} C 002, j € {1,...,3d}, we introduce the boundary
operator B; € {0, 71}, where o and 1 are defined as in (5.22). We collect the boundary operators
B; in B := {Bj}?il.
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For a right hand side f, the elliptic boundary value problem we consider in this section is then
Lu= fin £, Bu =0 on 012. (5.29)

The following extension lemma will be useful for the approximation of the solution to (5.29) by
NNs. We postpone its proof to Appendix B.2.

Lemma 5.13 Let d € {2,3} and u € WL (02). Then, there exists a function v € Wil ((—=1,1)%)

mix mix

such that v|o = u. The extension is stable with respect to the Wri’ii-norm.
We denote the set containing all corners of {2 (including the re-entrant one) as
C={-1,0,1}4\ (~1,...,-1).
When d = 3, for all ¢ € C, then we denote by &, the set of edges abutting at ¢ and we denote
&= U,cc e
Theorem 5.14 Let u € J77(£2;C, E) with

v ={7Y:ceCl}, with v, > 1, for all c € C if d=2,
T={Ve,Ve:c€Cec &}, withy.>3/2 and e > 1, forallceC andec & ifd=3.
Then, for any 0 < e < 1 there exists a NN &, ,, so that

J[u—R (¢6,u)‘|H1(Q) <e (5.30)

In addition, | R ($..4) ||z~ (0) = O(1 + |logel*?), as & — 0. Also, M(®.,,) = O(|log(e)[***1) and
L(®c ) = O(|log(e)[log(|log(e)])), as & — 0.

Proof By Lemma 5.13, we extend the function u to a function @ such that

aewhi((-1,1)% and il = u.
Note that, by the stability of the extension, there exists a constant Cey; > 0 independent of u such
that

w10 < Collullwze (o)- (5.31)
Since u € J77(§2;C, ), it follows that u € J7(5;Cs, Es) for all

d
S e {X(aj,aj +1/2): (a1,...,aq) € {-1,-1/2,0, I/Q}d} such that SN 2 # @ (5.32)

j=1
with Cs = SNCand Es = {e € £:e C S}. Since S C N2 and |, = u|n, we also have
u € J;7(S;Cs, Es) for all S satisfying (5.32).

By Theorem A.25 exist C}, > 0, Cﬁld > 0, Cﬁ

int

> 0, C; > 0, C; > 0, and by > 0 such

that, for all 0 < & < 1, there exists p € N, a partition Gi4 of (—1,1) into Nint open, disjoint,

connected subintervals, a d-dimensional array ¢ € RNaX:xNia

Qu(Gra) NHY((-1,1)),i=1,..., ]\71d, such that

, and piecewise polynomials v; €

Nia < Cg (1+[logel’), Nuw < O (1+flogel), [l < Cx(1+loge*), p < Cy(1+[logel)

1t
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and
il (1) < Cye™ b, 10|l o (ry < 1, Vi € {1,...,]\71(1}.
Furthermore,
Nia d
lu — vhplla1(2) = 1T — Vnpll 1 (02) < g, Vhp = Z Ciy..ig ®1717
i1yenyig=1 j=1

From the stability (5.31) and from Lemmas A.21 and A.22 it follows that

n

el < ONEull e,

i.e., the bound on the coeflicients ¢ is independent of the extension @ of u. By Theorem 4.2, there
exists a NN &, , with the stated approximation properties and asymptotic size bounds. The bound
on the L (£2)-norm of the realization of @, , follows as in the proof of Theorem 4.3. |

Remark 5.15 Arguing as in Corollary 5.7, a NN with ReLLU activation and two-dimensional input
can be constructed so that its realization approximates the Dirichlet trace of solutions to (5.29) in
H'2(912) at an exponential rate in terms of the NN size M.

The following statement now gives expression rate bounds for the approximation of solutions
to the Fichera problem (5.29) by realizations of NNs with the ReLU activation function.

Corollary 5.16 Let f be an analytic function on 2 and let u be a solution to (5.29) with operators
L and B as in Setting 2 and with source term f. Then, for any 0 < € < 1 there exists a NN @,
so that

lu—R (@E,u)HHl(Q) <e. (5.33)

In addition, M(®. ,,) = O(|log(e)|?¢*1) and L(P. ,) = O(|log(e)|log(|log(¢)])), for e — 0.

Proof By [8, Corollary 7.1, Theorems 7.3 and 7.4] if d = 3 and [3, Theorem 3.1] if d = 2, there
exists v such that 7. —d/2 > 0 for all ¢ € C and 7. > 1 for all e € £ such that u € J7(£2;C,E).

An application of Theorem 5.14 concludes the proof. O

Remark 5.17 By [8, Corollary 7.1 and Theorem 7.4], Corollary 5.16 holds verbatim also under the
hypothesis that the right-hand side f is weighted analytic, with singularities at the corners/edges
of the domain; specifically, (5.33) and the size bounds on the NN &, ,, hold under the assumption
that there exists v such that 7. — d/2 > 0 for all ¢ € C and ~, > 1 for all e € £ such that

f € TZA(2C.E).

Remark 5.18 The numerical approximation of solutions for (5.29) with a NN in two dimensions
has been investigated e.g. in [33] using the so-called ‘PINNs’ methodology. There, the loss function
was based on minimization of the residual of the NN approximation in the strong form of the PDE.
Evidently, a different (smoother) activation than the ReLU activations considered here had to be
used. Starting from the approximation of products by NNs with smoother activation functions
introduced in [51, Sec.3.3] and following the same line of reasoning as in the present paper, the
results we obtain for ReLU-based realizations of NNs can be extended to large classes of NNs with
smoother activations and similar architecture.

Furthermore, in [11, Section 3.1], a slightly different elliptic boundary value problem is nu-
merically approximated by realizations of NNs. Its solutions exhibit the same weighted, analytic
regularity as considered in this paper. The presently obtained approximation rates by NN realiza-
tions extend also to the approximation of solutions for the problem considered in [11].
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In the proof of Theorem 5.6, we require in particular the approximation of weighted analytic
functions on (—1,1) x (0,1) with a corner singularity at the origin. For convenient reference, we
detail the argument in this case.

Lemma 5.19 Let d = 2 and 2pn = (—1,1) x (0,1). Denote Cpy = {—1,0,1} x {0,1}. Let
u € j;”(QDN;CDN, @) with v = {yc: ¢ € Cpn}, with . > 1 for all c € Cpy.
Then, for any 0 < e < 1 there exists a NN b, ., so that

||U_R’(¢E7u)||H1(QDN) <e. (5.34)
In addition, || R (Pc.u) ||=(2py) = O(1 + [logel") , for e = 0. Also, M(®.,,) = O(|log(e)|") and
L(®. ) = O(]log(e)| log(] log()])), for e = 0.
Proof Let @ € W (—1,1)2) be defined by

mix

(xy1,x2) = u(xy,x2) for all (x1,22) € (=1,1) x [0,1),
a(x1,xe) = u(x1,0)  for all (z1,2z2) € (—1,1) x (—1,0),

such that @|go,, = u. Here we used that there exist continuous imbeddings jf’(QDN; Cpn, D) <
Wl (Qpy) = CO(2pn) (see Lemma A.22 for the first imbedding), i.e. u can be extended to a

continuous function on 2py.
As in the proof of Lemma 5.13, this extension is stable, i.e. there exists a constant Ceyy > 0

independent of w such that

||ﬂ|‘w‘;’ii((71,1)d) < CeXt”uHWX;’ii(QDN)' (5.35)

Because u € J7(£2pn;Cpn, D), it holds with Cs = SNCpy that u € J7(8;Cs, @) for all

Se { X (aj,a; +1/2) : (a1,a2) € {—1,-1/2,0,1/2} x {0,1/2}} .

7j=1,2

The remaining steps are the same as those in the proof of Theorem 5.14. g

6 Conclusions and extensions

We review the main findings of the present paper and outline extensions of the present results, and
perspectives for further research.

6.1 Principal mathematical results

We established exponential expressivity of realizations of NNs with the ReLLU activation function
in the Sobolev norm H' for functions which belong to certain countably normed, weighted analytic
function spaces in cubes @ = (0, 1)¢ of dimension d = 2, 3. The admissible function classes comprise
functions which are real analytic at points z € @, and which admit analytic extensions to the open
sides F' C 0Q, but may have singularities at corners and (in space dimension d = 3) edges of Q.
We have also extended this result to cover exponential expressivity of realizations of NNs with
ReLU activation for solution classes of linear, second order elliptic PDEs in divergence form in
plane, polygonal domains and of elliptic, nonlinear eigenvalue problems with singular potentials
in three space dimensions. Being essentially an approximation result, the DNN expression rate
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bound in Theorem 5.6 will apply to any elliptic boundary value problem in polygonal domains
where weighted, analytic regularity is available. Apart from the source and eigenvalue problems,
such regularity is in space dimension d = 2 also available for linearized elastostatics, Stokes flow
and general elliptic systems [17,20,8].

The established approximation rates of realizations of NNs with ReLLU activation are fundamen-
tally based on a novel exponential upper bound on approximation of weighted analytic functions
via tensorized hp approximations on multi-patch configurations in finite unions of axiparallel rect-
angles/hexahedra. The hp approximation result is presented in Theorem A.25 and of independent
interest in the numerical analysis of spectral elements.

The proofs of exponential expressivity of NN realizations are, in principle, constructive. They
are based on explicit bounds on the coefficients of hp projections and on corresponding emulation
rate bounds for the (re)approximation of modal hp bases.

6.2 Extensions and future work

The tensor structure of the hp approximation considered here limited geometries of domains that
are admissible for our results. Curvilinear, mapped domains with analytic domain maps will al-
low corresponding approximation rates, with the NN approximations obtained by composing the
present constructions with NN emulations of the domain maps and the fact that compositions of
NNs are again NNs.

The only activation function considered in this work is the ReLU. Following the same proof
strategy, exponential expression rate bounds can be obtained for functions with smoother, nonlinear
activation functions. We refer to Remark 5.18 and to the discussion in [51, Sec. 3.3].

The principal results in Section 5.1 prove exponential expressivity of realizations of deep NNs
with ReLLU activation on solutions sets of singular eigenvalue problems with multiple, isolated point
singularities and analytic potentials as arise in electron-structure models for static molecules with
known loci of the nuclei. Inspection of our proofs reveals that the expression rate bounds are robust
with respect to perturbations of the nuclei sites; only interatomic distances enter the constants
in the expression rate bounds of Section 5.1.2. Given the closedness of NNs under composition,
obtaining similar expression rates also for solutions of the vibrational Schrédinger equation appears
in principle possible.

The presently proved deep ReLLU NN expression rate bounds can, in connection with recently
proposed, residual-based DNN training methodologies (see, e.g., [53,1,22] and the references there)
imply exponential convergence rates of numerical NN approximations of PDE solutions based on
machine learning approaches.

A Tensor product hp approximation

In this section, we construct the hp tensor product approximation which will then be emulated to
obtain the NN expression rate estimates. The main result, Theorem A.25, is an exponential con-
vergence bound for piecewise polynomial approximations with patch-wise tensor product structure
in polyhedral domains {2, in dimension d = 2,3, which consist of a finite number of cuboids. It is
used to prove the NN approximation results in Section 5, but it is also of independent interest.
We denote the reference cube Q = (0,1)¢, d € {2,3} and introduce the set containing one of

its corners C,
- {(0,0)} %fd:2, (A1)
{(0,0,0)} ifd =3,
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and the set of adjacent edges &,
%) ifd=2,
€= {{{0} x {0} % (0,1),{0} x (0,1) x {0}, (0,1) x {0} x {0}} ifd=3. (4.2

The results in this section extend, by rotation or reflection, to the case where C contains any of
the corners of @ and £ is the set of the adjacent edges when d = 3. Most of the section addresses
the construction of exponentially consistent hp-quasiinterpolants in the reference cube (0,1)%; in
Section A.10 the analysis will be extended to domains which are specific finite unions of such
patches.

A.1 Product geometric mesh and tensor product hp space

We fix a geometric mesh grading factor o € (0,1/2]. Furthermore, let
JE=(0,0") and  JL= ("R ot k) k=1,... L.

In (0,1), the geometric mesh with ¢ layers is G{ = {Jﬁ :k=0,... ,E}. Moreover, we denote the
nodes of G{ by z§ = 0 and zf = o **! for k = 1,...,£+ 1. In (0,1)%, the d-dimensional tensor
product geometric mesh is

d
gf;: {XK“ for all K1,..., Ky Ggf}'
i=1

For an element K = ngl J,i7 k; € {0,...,¢}, we denote by d¥ the distance from the singular
corner, and d¥ the distance from the closest singular edge. We observe that

d 1/2
df = (Z 02“’%“)) (A.3)
i=1

1/2

d¥ = i 2(£—kit+1) . A4
¢ (il,izfg}?,z,3}2 , Z 7 (A-4)
i€{i1,92}

and

The hp tensor product space is defined as
Xf;f”d ={ve H(Q): v € Qp(K), for all K € Gi},

where Q,(K) = span {Hle(:ci)ki: ki<pi=1,.. .,d}. Note that, by construction, Xf;,pd =

d L,p
®i:1 th,l'
For positive integers p and s such that 1 < s < p, we will write

(p—s)!
U, = —— L, A5
D, (p+5)! ( )
Additionally, we will denote, for all o € (0,1/2],
1_
To =~ 7 e [1, 00). (A.6)

1 We assume isotropic tensorization, i.e. the same o and the same number of geometric mesh layers in each
coordinate direction; all approximation results remain valid (with possibly better numerical values for the constants
in the error bounds) for anisotropic, co-ordinate dependent choices of £ and of o.
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A.2 Local projector

We denote the reference interval by I = (—1,1) and the reference cube by K = (—1,1)%. We
also write HL, (K) = ®?:1 HY(I) > HYK). Let p > 1: we introduce the univariate projectors
7p: HY(I) — Py(I) as

(Tp0) (z) = +Z<” il )
i e .

n=1

(A7)

where L, is the nth Legendre polynomial, L*°-normalized, and (-,-) is the scalar product of
L?((—1,1)). Note that
(Fpd) (£1) = d(£1), Vo e HY(I). (A.8)

For (p1 ... pa) € N, we introduce the projection on the reference element K as ﬁpl.,_pd = ®f:1 Tps-
For all K € gg, we introduce an affine transformation from K to the reference element

Dy : K — K such that @K(K):I?. (A.9)

Remark that since the elements are axiparallel, the affine transformation can be written as a d-fold
product of one dimensional affine transformations ¢y, : J,f — 1, i.e., supposing that K = Xg:l Jli’

it holds that J
Dy = ® bk,

Let K € G4 and let k;, i = 1,...,d be the indices such that K = x¢_, Jt. . Define, for w € H*(J}),
ﬂgjw = (Fp,(wo gb,;_l)) o ¢, -

For v defined on K such that vo (15}_(1 € H!

mlx(f(\') and for (p1,...,ps) € N, we introduce the local
projection operator

pl -Pd ®7r1)1 (A.IO)

We also write ﬁp = ]AYp,__p and

e = 1K v = (Hp(vodil_(l)> obp. (A.11)
For later reference, we note the following property of II p1 R

Lemma A.1 Let K1, K, C R, d = 2,3 be two azxiparallel hypercubes that share one reqular face
F if d = 3 and a regular edge F if d = 2 (i.e., if d = 3, F is an entire face of both K; and K,
and if d = 2 it is an entire edge). Then, for v € Hrlmx(mt (K1UK3)) and (p1,...,pa) € N¢, the
piecewise polynomial

K; .
HKlUKz,U _ le paV M K,
P1---Pd K ;
;2 , v in Ky

is continuous across F'.

Proof This follows directly from (A.8). O



Exponential ReLU NN Approximation Rates for Point and Edge Singularities 35

A.3 Global projectors

We introduce, for £,p € N, the univariate projector wﬁl"op : HY((0,1)) — Xf;)pl as

wu) (z) if x € J§,
(Wfo) (z) = E ' ) ) y (A.12)
mhu) (z) ifxe Jf, ke{l,....(}
Note that for all £ € N, for z € J§
(m9u) (z) = w(0) + o~ * (u(c®) — u(0)) z.
The d-variate hp quasi-interpolant is then obtained by tensorization, i.e.
d
Lp . L,
7 = Q)" (A.13)
i=1

Remark A.2 By the nodal exactness of the projectors, the operator Hf;) 4 is continuous across

interelement interfaces (see Lemma A.1), hence its image is contained in H'((0, 1)¢). The continuity
can also be observed from the expansion in terms of continuous, globally defined basis functions
given in Proposition A.24.

Remark A.3 The projector I1, fpp , is defined on a larger space than H}; (Q) as specified below (e.g.
Remark A.20).

A .4 Preliminary estimates

The projector on K given by
d
Iy, . p, = ®7?p1 (A.14)
i=1

has the following property.

Lemma A.4 ([50, Propositions 5.2 and 5.3]) Letd = 3, (p1,p2,p3) € N2, and (s1, s2, s3) € N3
with 1 < s; < p;. Then the projector Iy, p,ps + Hr i (K) = Qpy po.ps (K) satisfies that

mix

v — Hp1p2p3v||21(f() < Cappx1 <Wp1,sl > Ha(lerl,al,az)vHiz(E)

ay,a<1

+Wp2’82 Z ||a(a1,82+1,(x2)1}||iz(§) (A15)

ay,02<1

+Wp3753 Z ||a(a1’a2,83+1)v||12(f{\)>3

a1,az<1

for all v € HST(I) @ H2TYI) ® H*T(I) and for W, s, defined in (A.5). Here, Cappx1 is
independent of (p1,pa,p3), (s1,52,83) and v.

Remark A.5 In space dimension d = 2, a result analogous to Lemma A.4 holds, see [50].
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Lemma A.6 Let d = 3, (p1,p2,p3) € N2, and (s1, 52, 83) € N3 with 1 < s; i Further

<
let {i,j,k} be a permutation of {1,2,3}. Then, the projector lemm HY(K) = Qpy pops (K K)
satisfies

~ 2
aﬂﬂi (U - HPIPQT’SU) ’ L2(I?)

< Cappx2 (mesi Z ||85 +18(1180421’”

a1,az<1

+Wp]‘75j Z ||a 85J+18alv||L2(K) (AIG)

a1 <1

K)

Ty 3 1005057012, 2 )

a1<1

for all v € HSFY(I) @ H*2TY(I) @ H%TY(I). Here, Cappxa > 0 is independent of (p1,p2,ps),
(81,82,83), and v.

Proof Let (p1,p2,p3) € N3, and (s1,52,53) € N2, be as in the statement of the lemma. Also, let
i €{1,2,3} and {j,k} = {1,2,3} \ {i}. By Lemma A.4, it holds that

”8331 (’U — Hp1p2p311)”i2(§) < Cappxl <WP1,S1 Z ||6(51+1,a1,a2)v||L2(K)

a1,a2<1

+¢’p2,52 Z ||a(a1,82+1;042)v||i

- 2(K) (A.17)
Q1,2
aq,09,53+1
e 3 [ g ).
Q1,02

With a Cyppx1 > 0 independent of (p1, pe2, ps), (s1, 52, $3), and v. Let now v; : K — R be such that,
when i =1,

Uy (21,22, 23) = /v(th,zs)dt, V(21 w9, 13) € K,
I

and let D2 and U3 be defined analogously. We denote by © the function such that v :== v —v; and,
remarking that 0,,7; = 0y, Il p,p, Ui = 0, we apply (A.17) to 7, so that

100,00 = By )Py < C (B 3 0500002,

ag,az<l1

D S R

» 2(K) (A.18)
Q1,02

(a1,a2,83+1)
e 3 e P )

By the Poincaré inequality, it holds for all a; € {0,1} that

10251050117 2y < 0w 02T OG0T, ) and 05105 TH0N, ) < Cl0k,07) 050l

Using the fact that 0,,0 = 9,,v in the remaining terms of (A.18) concludes the proof. O

L2(K)’
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A.4.1 One dimensional estimate

The following result is a consequence of, e.g., [48, Lemma 8.1] and scaling.

Lemma A.7 There exists C > 0 such that for all £ € N, all integer 0 < k < £, all integers
1<s<p,ally>0, and allv € H*1(J})

h=2|v—m v||L2 ik V(v — ng)”%"‘(J,ﬁ) < Cﬁ(sﬂ)@wh2(min{771,s})H‘x|(s+177)+v(s+1)H%Q(J’i)

(A.19)
where h = |J| ~ o'=* and for 7, as defined in (A.6).
Proof From [48, Lemma 8.1], there exists C' > 0 independent of p, k, s, and v such that
2o — ﬂ];vH%Z(Ji) + V(v — ﬂﬁu)”izuﬁ) < C’;[/nsthHU(erl)Hizué)_
In addition, for all K =1,...,¢, it holds that x| J¢ 2 725N Hence, forall y < s+1,
h2$||”(s+1)||2L2(Jﬁ) < Tg(sﬂ—w)hm—zHxs+1—vv(s+1) ||2L2(J,ﬁ)'
This concludes the proof. a

A.4.2 Estimate at a corner in dimension d = 2

We consider now a setting with a two dimensional corner singularity. Let g € R, 8 = Jg X Jg ,
r(z) = | — 0| with 2o = (0,0), and define the corner-weighted norm ||vH\7§<R> by

ol = 3 0= 0%0| 2 .

lal<2

Lemma A.8 Letd =2, § € (1,2). There exists Cy,Cqy > 0 such that for all v € jg(ﬁ)

Z ||3a(771 X 7T1) ||L2(k < Cl ||UHH1(R) + Z J(ﬁfl)eHT’Q*Baa’UHLQ(R) (A20)

a€eNZ:|a|<1 a€NZ:|a|=2
and

> oo w — (r) @ 70)0) | 2my < Co™ P YT [P0 o). (A21)

a€eNZ:|a|<1 aeNZ:|a|=2

Proof Denote by ¢;, i = 1,...,4 the corners of R and by ;, 7 = 1,...,4 the bilinear functions such
that 1/}7((3]) = 6lj Then,

4
7T1 & 7r1 E u(
i=1
Therefore, writing h = o, we have

(7 @ 7 vllamy < D olea)llvillzacsy < 4llvll e )l &IY? < 4hlJv]| L ()- (A.22)

i=1,...,4
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With the imbedding J3((0,1)%) < L°°(( 1)?) which is valid for 8 > 1 (which follows e.g. from
Lemma A.22 and W11 ((0,1)2) < L°°((0,1)?)), a scaling argument, gives

mix

h2||v]| o ) < C ( lollFey + g + Y BP0 |
|a|=2
so that we obtain
(7Y @ 79)vl|72 () < C (Ilvllm @ Pl + D RT3 | - (A.23)
|a]=2

For any |a| = 1, denoting vg = v(0,0) and using the fact that (7{@7)vy = vy hence d%(r)@7Y)vg =
0,

10%(x} @ 7l L2 () = 0% () ®@ 70) (v — vo) [l L2(w)
< > 1w = o)) 10%ill L2 ()
i=1,..,4
< Cllv = vol| Loe () (A.24)

With the imbedding JZ((0,1)%) < L>°((0,1)?), Poincaré’s inequality, and rescaling we obtain

[0%(7} @ 7)ol T2 (qy < O | 0lina) + Z W20 22 gy |
|a]=2

which finishes the proof of (A.20). To prove (A.21), note that v € W21(8), as shown in the final
estimate of this proof. By the Sobolev imbedding of W2!(&) into H! (&) and by scaling, we have

> A0 — (m) @ af))ll ey < C Y AIT20% (0 — (xf @ 7))l )

lee|<1 lor|<2

By classical interpolation estimates [7, Theorem 4.4.4], we additionally conclude that

Z h'““QHaa(v — (71'? ®7T:?)’U)||L1(ﬁ) S C|'U|W2,1(R)-

|| <2

Using the Cauchy-Schwarz inequality,

> 02w — () @ 7)v)ll 2wy < C D 1070l (s

la]<1 o =2
<C Z 17728 | L2y Ir? 20| L2y
|a]=2
<C Z R P 0% | Lo sy
|a]=2

where we also have used, in the last step, the facts that r(z) < v/2h for all 2 € & and that 8 > 1.
O
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A.5 Interior estimates

The following lemmas give the estimate of the approximation error on the elements not belonging
to edge or corner layers. For d = 3, all £ € N, all k1, ko, k3 € {0,...,¢} and all K = J,ﬁl X J,gz X JﬁB,
we denote, by h the length of K in the direction parallel to the closest singular edge, and by hy 1
and h o the lengths of K in the other two directions. If an element has multiple closest singular
edges, we choose one of those and consider it as “closest edge” for all points in that element. When
considering functions from jj(Q)7 e will refer to the weight of this closest edge. Similarly, we

denote by ) (resp. 0.1 and ) | 2) the derivatives in the direction parallel (resp. perpendicular) to
the closest singular edge.

Lemma A.9 Letd =3, ¢ € N and K = Jfl X Jfg X J,ﬁs for 0 < ky,ko, ks < L. Let also v €
TI7(Q;C, & Cy, Ay) with . € (3/2,5/2), ve € (1,2). Then, there exists C > 0 dependent only on
afcapp,@, C, and A > 0 dependent only on o, A, such that for all1 <s<p

10y (0 = TTE0) [Fagaey < OBy A2 (@) + (@ 20D) (s +3))% (A.25)

where Q) is the derivative in the direction parallel to the closest singular edge.

Proof We write d, = dX, a € {c,e}. It holds that

2 2
o 1%
2= (15) wentiait,), 2= () e+
Denoting 9 = v o 5" and ﬁpﬁ = (IIfv)o Pt = ﬁp(v o @), using the result of Lemma A.6 and
rescaling, we have

hy

9(6 — I,,0)| ]2 R
190 — ,0)] T

2512011 2002 s+1qa1 oz 2
L(R) S Cappx2¥p, Z hPh T h 3107 0T 0% vl T (k)

ay,az<1
2s+27 20 s+1 qaq 2
+ E et R 000771 01 vl T2 (k)

a1<1

(A.26)

+ Y RRTRR10108 0T il
a1 <1
hy
hiihis
Denote K. = KNQ., Ko = KNQe, Kee = KN Qee, and Ky = K N Qg. Furthermore, we indicate
(I)c = Z hﬁshioji hio,[; ||aﬁ+laiflajf2v”%2(l{c)a

ag,a2<1

:Ca x2!p s
PP b,

<(I) (1) + (m)).

and do similarly for the other terms of the sum (/1) and (III) and the other subscripts e, ce, 0.
Remark also that 7;,. > d;, i € {c,e}, and that for a,b € R holds r&r? = r2+0pb .
We will also write ¥ = . — 7.. We start by considering the term (I).. Let oy = ag = 1; then,

MR 4B 107001 a0 ) < 72O 01 000 0l

2544 12y —2 12 $+3—7e 2—ve 9s+1 2
< To dcv de’Ye Hrc ’chce ’Yeau 8J—,18J-,20||L2(ch) ;
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where 7, is as in (A.6). Furthermore, if a1 + a3 <1land s+ 1+ a; +as — 7. > 0,
257120 7,200 s+1 a1 qas 2 2s+2(a1+a2) 325 2(a1+az) || 9s+1 gar gaz 2
hu hL,th,QIIGH 1,1 L,2U||L2(Kce) <7, d;’dg Hau 1,1 L,2v||L2(KCE)
25+2(a1+a2) 27 —2|| .5+ 1+a1+az—7. 9s+1 g1 qaz 2
< 2t d2 e “0, 107502k
where we have also used d. < d.. Therefore,

2s+4 j2v.—2 § s+l+artaz—ve (a1+az—7ve)+ s+l gar gaz 2
(I)CE < Te dc ”Tc Pee a“ aL,l L,2v||L2(Kce)'

ag,a2<1
Ifs+14+a;+as—7. <0, then s=1and a; = as =0, thus

2s+4 32 stl+ari+taz—7c) a+as—7e s+1 a1 oo 2
(Dee <75 dc”rg preeTe +P£el 2 e)+a\| oY L,szLQ(KCC)'

Then, if s+1+a; +as—7v. >0

(De=" D" KW RS0 00010 Fa i,

041704231
2s5+4 2s 12(a1tas) s+1 a1 gas 2
ST E d:°d; ||a\| aJ_,laj_gU”L?(Kc)
ag,a2<1
2s+4 j2v.—2 (s+1+art+az—ve)+ 9s+1lgar qaz 2
<77 § [[re 3H ¢,15¢,2”||L2(Kc)

o1,a2<1

where the last inequality follows also from d. < d.. If s + 1+ a1 + as — 7. < 0, then the same
bound holds with d?7=2 replaced by d2. Similarly,
257 201 7.2 s+1 2
(I)e= Z hushﬁihﬁé\laﬁ i11 i?g'UHL?(Ke)
ay,az<1
< 2s+4 d23d2a1 +2a2—2(a1t+az—ve)+ || ,.(1+a2—7e) + aerlaal 52 2
=75 c Ye ||re I 1,1 L,QU”LQ(KC)
ar,a2<1
STtz Ny iR ort ot 01 T k),

ay,a<1

where we used that d, < 1. The bound on (I)g follows directly from the definition:

201 1,2 ’
(I)o = Z hﬁshﬁihﬁ%IWﬁ“ il1 fz”H%Z(KO) §T§S+4d35 Z Haﬁ—H ill ?_?2“”%2(1(0)-

ay,a2<1 ay,a2<1

Using (2.1), there exists C' > 0 dependent only on C,, and ¢ and A > 0 dependent only on A, and
o such that
(I) < CA**O((s+3))? (d2 + d2*2). (A.27)

We then apply the same argument to the terms (I7) and (I11). Indeed,
(IMee = Y BT R310)07H 07 50]Fs k..
a1<1

s+1
ST At 9,07 0T ol 3 k)
algl

2s+4 2:;72 29e [0 S+2+ 1 —e ,SH1+a1—7e s+1 qaq 2
<75 § dg de ”Tc Pce a\laj_,l 81_72’U||L2(Kce)
algl
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and the estimate for (I1I).. follows by exchanging h, ; and 9,1 with hj o and 9, 2 in the
inequality above. The estimates for (I1)¢e0 and (I11).e,0 can be obtained as for (I)c.. o

(ID)e < 7ot Y7 d2re 2 |re P2 e 2e g 07 00 o,

a1 <1
(ID)e < 72504 d2ve st =720 07 0% o)l T2 k.
a1 Sl
(I1)o < 7'33+4 Z d53+2Hal\ajjllaifzv‘&?(xo)-
(5] Sl
Therefore, we have
(IT),(IIT) < CA%T5(d? + d*=2)((s + 3))2 (A.28)

We obtain, from (A.26), (A.27), and (A.28) that there exists C' > 0 (dependent only on o, Cappx2,
C, and A > 0 (dependent only on o, A,) such that

~ ~ h
A N I 2546 ( 72 2y —2 12
Haﬂ(v HP,U)HLz(]?) S ChL,th,Z WP’SA (dc +dc )((S+3)) .
Considering that
hiihioe
il
completes the proof. O

Lemma A.10 Let d = 3, ¢ € N and K = J,ﬁl X J,ﬁz X J,g3 for 0 < ky, ko, ks < L. Let also
v e J7(Q;C, & Cy, Ay) with e € (3/2,5/2), ve € (1,2). Then, there exists C > 0 dependent only

on 0, Cappx2, C, and A > 0 dependent only on o, A, such that for allp € N and all1 <s<p

10y (v = ITp)l[72 sy < 10)(0 — I,0)]1;

L2(K)

[01,1(v— Hf”)“%%m + 0L 2(v — H;(”)H%z(x)
< O, AP0 (@200 4 ()20 ) (s 4 3)1)%, (A.29)

where 01 1, 01 2 are the derivatives in the directions perpendicular to the closest singular edge.

Proof The proof follows closely that of Lemma A.9 and we use the same notation. From Lemma
A.6 and rescaling, we have

Y P hia 2
10.1,1(0 = )7, ) < Cappra¥, “hyhis S AR08 0L 109013
’ a1<1

2c1 1,258 2a2 a1 9s+1 qag 2
+ E 0 hL,th,QHaH O 05072k
ag,02<1

(A.30)
+ 3 A0 0. 10T vl k)

O[lgl

h
— Cupety = () + (10 + (11D ).
hihiz2

As before, we will write ¥ = . — 7.. We start by considering the term (I)s.. When oy =1,
BEF22 101010 0B ey < TG00 101 02

2544 127 127e—2,.5+3—Ye 2—~e qs+1 2
<7 dc de ”Tc Pce 8” 8l716l72v||L2(Kce)7
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where d?7d?7e=2 < d*7=2. Furthermore, if a; = 0,
2542 gs+1 2 2542 12542 9s+1 2
h ||(“)” L avllze (k. < 75°777dz ||3\| A1 vllz2 (k..
2542 j2v.—2 s+2—7. 9s+1 2
< T ”Tc 6” al,lU”L%Kce)'

Therefore,

2s+4 j2v.—2 s+24a1—ve ,(1+a1—7e) s+1 aq 2
(I)CE < T dc Z ||Tc ! Pee ! +8H aJ—alaJ_,QUHLZ(Kce)'
(11§1

The estimates for (I)¢,e,0 follow from the same technique:

(De < Y w2 |r{ o=+ 01710, 107 vl

a1§1

(I)c < Z Tgs+4dz’}’c—2|‘,,,z+2+041—’Ycaﬁ+lal’1ai12v”i2(Kc)’
a1 <1

(Io < Z 735+4d35+2||8ﬁ+13l718i32v||%2(K0).
O[lgl

Hence, from (2.1), there exists C' > 0 dependent only on C,, and ¢ and A > 0 dependent only on
A, and o such that
(I) < CA%*TE((s 4 3)1)2d27=—2. (A.31)

We then apply the same argument to the terms (I7) and (I17). Indeed, if s+14+a3 +as—7. >0

(e = 3 2003 12500 07050l 3 e

ay,a<1
2s+4 2a1 j25+2as a1 qs+1 qag 2
<7 E d:"td; Han T 012k
a,az<1
2s+4 2:7 29e =2 ||+ 1+tar1+a2—vc s+1+az—ve 9a1 9s+1 qaz 2
STO’ E dc de ||Tc Pce a|| aj_,l 8J_,2U||L2(Kce)
algl
2544 29c—2||,.5+1+ar1+a2—vc ,s+1+az—ve Qa1 9s+1 qae 2
STO’ E dc ¢ ||’rc “Pee 66” aL,l l,Qq}”Lz(ch)?
a1<1

where in the last step we have used that 7. > 1 and d. < d.. If s+ 1+ a3 + as — 7. < 0, then

(IDee =Y hi™ b3 A0 07H 09%0 72 k..

a1,a2<1
2544 21 125+2a a1 s+1 qas 2
<75 E d:"tdg 2||8|\ a¢,1 8L,2'UHL2(KCE)
a1,a2<1
2s+4 § 201 125+2a —25—2—2a5+2 s+14+ao— a1 s+1 qas 2
S TO’ dC 1de 2(de/dc> 2 'Ye”pce 2 ’yeaH aJ_J 8L72U|‘L2(Kce)
041§1
2544 2542—27¢ 327 —2 s+1l+as—ve Qo1 Qs+1 qa 2
< T E dc B de’y ||pce = a” 18L,1 8L?ZUHL2(KC€)'
a1 <1

Thus, using d. < d.,

2s+4 2s 29 —2 (s+1+art+az—ve) s+1+az—ve Qa1 9s+1 qas 2
(II)CG < To E (dc + dc ¢ )Hrc ! ¢ +pce eau aj_,l aJ_,QUHLQ(Kce)'
a1§1
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The estimates for (11)ce,0 and (I11)ce,c.e,0 can be obtained as above:

( 29+4 Z d2%_2||7“9+1+a2 'ypaalas—i-laa 2U||L2(K »
a1<1

if s+14+ a1 +as—7.>0, then

(II) < 7_2‘;—i-4 Z d2'yc—2||rs+1+a1+oz2 'ycaalas+18ag2v‘|L2(K)
a1<1

ifs+14+a;+as—v. <0, then

(11 T2t Z d26||3a135+18a22v||2L2(Kc)a

a1<1
so that

(ID)e < 724 Y7 (d2e + d2e 2 ||l et o=l gm o 0T 0 o i,

a1<1
( 2s+4 Z d2s|‘aa183+1aa 2UHL2(KO)7

a1<1

(ITT)ee < 704N 7 d2e 2 rgt3Hea e ps 27700 011077, 0l T2 i,
a1<1

(1) < 72274 Y 22 |re 27000 010107 ol k.,
a1<1

(III 29+4 Z d2'yp—2||,rs+2+a1 ’YC@alaL,laj_-‘:_21/U||%2(KC)7
a1<1

(III)O 23+4 Z d23+2H80z18J_ 165+1UHL2(K0)
a1 <1

Therefore, we have
(IT) + (ITT) < CA?F(d?7e=2 4 @27 =2)((s + 3)1)%. (A.32)

We obtain, from (A.30), (A.31), and (A.32) that there exists C > 0 dependent only on o, Cappx2,
C, and A > 0 dependent only on o, A, such that

) A A hia 2546  72(ve—1
< s Ye—1) 2(ye—1) 2.
181200 = )3 g, < O BP0 (070 + 200) (54 3))

Considering that
hu L2

10010 = L) ey < S4=2100.0(0 = )2,

and considering that the estimate for the other term on the left-hand side of (A.29) is obtained by
exchanging {h, 0} 1 with {h,0}, » completes the proof. 0

Lemma A.11 Let d = 3, / € N and K = J,fl X J,i X J,i for 0 < kyi,ko, ks < £. Let also
v e J7(Q;C, & Cy, Ay) with e € (3/2,5/2), ve € (1,2). Then, there exists C > 0 dependent only
on U;,Caprb Cy and A > 0 dependent only on o, A, such that for allp e N and all 1 <s<p

o — va”%;(K) < pr,sA2s+6 ((df)Z(%_l) + (dﬁ()Q(ve—l)) ((s + 3)!)2. (A.33)
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Proof The proof follows closely that of Lemmas A.9 and A.10; we use the same notation. From
Lemma A.4 and rescaling, we have

~ 1
~ A2 2542712 2 5+1 2
”U - HPUHLQ([A{) < C(appxlgp »S hHhJ_ 1hy o Z hH‘S hJ_CTth_()f§|‘aﬁ 8?_}16?_?2UHL2(K)
’ ’ ay,a2<1
2 2c ¢
+ Y R RETR R0 0T 0730 Ta (A.34)

ag,az<1

21 1,202 1. 25+2 a1 Qo qs+1 2
+ E h " hTIhT ||8\| 97075 v 12k
ay,az<1

Most terms on the right-hand side above have already been considered in the proofs of Lemmas
A.9 and A.10, and the terms with a; = as = 0 can be estimated similarly; the observation that

||U - HfUH%Q(K) < hHhJ_,th_,Z”@ - HPﬁHi2(1’})

concludes the proof. O
We summarize Lemmas A.9 to A.11 in the following result.

Lemma A.12 Letd=3,¢ € N and K = J,ﬁl X J,fQ X J,fs such that 0 < ky,ke, ks < £. Let also
v e J7(Q;C, & Cy, Ay) with e € (3/2,5/2), ve € (1,2). Then, there exists C > 0 dependent only
on 0,7Cappx1, Cappx2, Cy and A > 0 dependent only on o, A, such that for all p € N and all
I1<s<p

H,U _ Hgf(U”%Il(K) < CWP)SA2S+6 ((df)Q(%_l) + (d§)2(7e—1)) ((S +3)|)2 (A35)

We then consider elements on the faces (but not abutting edges) of Q.

Lemma A.13 Letd =3, € N and K = J,fl X Jé x Ji, such that k; = 0 for one j € {1,2,3}
and 0 < k; <Ll fori#j. ForallpeNand all1 <s<p, letp; =1 andp;=p €N fori#j. Let
also v € J7(Q;C, &;Cy, Ay) with ve € (3/2,5/2), ve € (1,2). Then, there exists C > 0 dependent
only on J,iCappxl, Cappx2; Cv and A > 0 dependent only on o, A, such that

||lv — Hlffmpsv\@p(m <C (Lpp,SA25+6(d({()Q(min(’Ycﬁe)*l)((S + 3)!)2 + (df)z(min(%we)—z)azzAs '
(A.36)

Proof We write d, = dX, a € {c,e}. Suppose, for ease of notation, that j = 3, i.e. k3 = 0. The
projector is then given by Héfﬂ = 7r]’§1 ® w;f? ® 7. Also, we denote hio= ot and 01,2 = O,. By
(A.16),

2 2 <
10y (v = Ty 0) [ Zaiey < Cappwz | s D AT HIRIS1I0; 105, 0% 0] T2 )

a1,az<1

2 s
+ Z his,—fzhLCfé HaH 8jj11 3?.12” ‘ | %2 (K)>

O(lgl

2
+ Z R hi s ||5'H3if16i,2”||2L2(K)

Oélgl

= Cappx2 <(I) +(II) + (HI)).
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The bounds on the terms (I) and (I7) can be derived as in Lemma A.9, and give
(1) + (1) < Oy (AP (df)? o+ (df 200 ) (5 + 3)1)°.
We consider then term (I17): with the usual notation, writing 5 = . — e,

(I11)ee = Z hicfihia||a\|‘9flai,2v||%2(f<ce)

a1<1

44201 292 27e—4 4L}, 3+ a1 —ve 241 —Te a1 92 2
< 37 e g2 g i ten e 2 e g g 2 |2, (A.37)
011§1

< CTﬁdﬂ—zdzye —4 546 48
— o C e °
Note that d. > d. and

:; Ye if ¥ > .
d’yd% 17dge ity >0 < gmin(reve), (A.38)
CIVdVE ifvy<0

where we have also used that d. < 1. Hence,
(IT1)ee < CT8@2mn0ree) =654 A8 < 078 g2min(yeve) =4 526 48, (A.39)
The bounds on the terms (I11)¢ o follow by the same argument:
(I11), < Crld2=*o* A%,
(IT1). < C72d2 00" A® < Crld2 o™ A%,
(IIT)g < Cla* A8,
Then,

1021 (v = T5510) 32 a6y < Cappx2 &”( > BRSO 0L 10T vl e

OqSl

Z h2a1h25 2a2 |6a1as+1aa2v|L2(K)>

ay,as<1

+ D B 10710010% 0l k)

a1 <1
< Cappea (1) + (I1) + (ITD)).
The bounds on the first two terms in the right-hand side above can be obtained as in Lemma A.10:
(1) + (I1) < Oy A5 ((dI2000) 4+ (@B)20:70) (5 + 3)1)2,

while the last term can be bounded as in (A.39),

(I11)ee < 76d2’;d2%76 4l g8 < CT6d2 min(%,%)7402£As7

(II1), < 78327054 A8 < C78d2 =452 A8,

(II1), < 78427854 A8 < OrSd2re452 A8,

(I11) < T80 A8,

| /\
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so that 4
S AL G001 408 g0l By < CaZ g2

a1§1

The same holds true for the last term of the gradient of the approximation error, given by

102 2(v = I )| 72 16) < Cappse ( D AR 000 01 a0l[72 )
a1<1
+ Z h2“1h25+2||8°‘185+18L Q'UHL2(K )
a1<1

+ Z hmlhmzh 2||aﬁ16f1ai,2””%2(1()

a,ap<1

< Cuppa (D) + (I1) + (ITD)).

From Lemma A.10, we obtain
(1) + (IT) < €, AZ+6 (@200 4 (@200 (s + 3)1)2,
whereas for the third term, it holds that if oy + g +2 —7. >0
(IT1)e < 7802702702 AS < OrSa2™mena) 462 48 (IIT), < 78427 "0 A°,
and if a1 + ag + 2 — 7. < 0, then
(IT1)ee < 18027152 A8, (IT1). < 780 A8,

and for all oy + ag +2 — 7. € R, (I1I), and ([II), satisfy the bounds that (I11). and (III),
satisfy in case a3 + as +2 — . < 0, so that

||8L,2(’U o H£10)||2L2 < C ( A2s+6((8 + 3)!)2d2(min(%ﬁe)*1) + Agdz(miﬂ(’hﬁe)*mo—%) .

Finally, the bound on the L?(K)-norm of the approximation error can be obtained by a combination
of the estimates above. O

The exponential convergence of the approximation in internal elements (i.e., elements not abutting
a singular edge or corner) follows, from Lemmas A.9 to A.13.

Lemma A.14 Let d = 3 and v € J7(Q;C,E) with 7. > 3/2, ve > 1. There exists a constant
Co > 0 such that if p > Col, there exist constants C,b > 0 such that for every £ € N holds

l, —bl
> o= Il e < Ce™
K:dEK>0

Proof We suppose, without loss of generality, that v. € (3/2,5/2), and 7. € (1,2). The general
case follows from the inclusion JW(Q C,&) C I7(Q;C,€), valid for v, > v,. Fix any Co > 0 and
2

choose p > Cypl. For all A > 0 there exist C4,b1 > 0 such that (see, e.g., [50, Lemma 5.9])

VpeN: min ¥, A% (s!)? < Cre P,
1<s<p
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From (A.35) and (A.36), it follows that

‘,
Z v — th,d””%ﬂ (K)

<O, Z e—ble(d§)2(min(7m’)’e)_1) + Z (d§)2(min(ve7%)—2)02€
K:dK>0 K:dK >0,d% =0

= Ca2((1) + (1)),

where dff indicates the distance of an element K to one of the faces of (). We have directly
(I) < C%e~"*. Furthermore, because (min(ve,vy.) —2) < 0,

£ k1 £
(IT) < 652 Z Z o2U=k2)(min(ve,7e)-2) < 052! Z g 2Umin(re,70)=2) < Cpg2(min(ye,ve)=1)¢,
k1=1ka=1 k1=1

Adjusting the constants in the exponent to absorb the terms in ¢ and £?, we obtain the desired
estimate. a

A similar statement holds when d = 2, and the proof follows along the same lines.

Lemma A.15 Let d =2 and v € J7(Q;C, &) with v, > 1. There exists a constant Cy > 0 such
that if p > Col, there exist constants C,b > 0 such that

’, _
Z ||U — th’jd””%{l(K) S Ce be, Ve € N.

A.6 Estimates on elements along an edge in three dimensions

In the following lemma, we consider the elements K along one edge, but separated from the singular
corner.

Lemma A.16 Letd =3, e € £ and let K € G§ be such that dX > 0 for allc € C and dX = 0. Let
Cy, Ay > 0. Then, if v e J7(Q;C, &;Cy, Ay) with . € (3/2,5/2), v € (1,2), there exist C,A >0

such that for all p € N and all 1 < s < p, with (p1,p2,p3) € N® such that Py =0 pL1=1=pLa,
[0 = 11 vl gy < © (02010 Rg, 423 (5 4 3)1)? 4 020009 D) | (A.40)

where k € {1,...,0} is such that d¥ = o*~F+1,

Proof We suppose that K = Ji. x J§ x J& for some k € {1,...,/}, the elements along other edges
follow by symmetry. This implies that the singular edge is parallel to the first coordinate direction.
Furthermore, we denote

Hﬁl :w;f ® (¢ @ 7?) =T Q@mL.

For o = (a1, ap, 3) € N, we write ) = (@1,0,0) and a = (0, az, a3). Also,
h” :|J£|:O'Zik(170'), hl:O'Z.

We have

U—Hﬁlvzv—m_v—i—m_ (v—mv). (A.41)
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We start by considering the first terms on the right-hand side of the above equation. We also
compute the norms over K., = K N @Q..; the estimate on the norms over K. = K N Q. and
K. = KNQ. follow by similar or simpler arguments. By (A.21) from Lemma A.8, we have that if
Ve < 2

> 20l gas — 1) Bk S R0 D 7l [P

lar|<1 locy|=2

< 0TI pA0 TN 2 2o gesy |2,

lai|=2

< g2k(ve—1) f2(¢=k)(ye—1) g4 < 02€(min{%,ve}fl)A4,

(A.42a)
whereas for v, > 2
—2(1—| « 2(ye—1 e
SR 00 (o — )2y S BTV ST 200
las|<1 o 1=2
< o2t(ve=1) g4 (A.42b)

On K., the same bound holds as on K., for 7. > 2, and on K. the same bounds hold as on K,
for 7. < 2. By the same argument, for |oy| =1,

101 (v = wL0) 122 (k,..y = 1(010) = wL(9*10) |2,

Shi% Z ||r§_768aLaa||1}||%2(ch)

lay|=2

29—2,2 _ _
SR ST e g2 000 B

lay|=2

(A.43a)

< G2(0=R)(e=1) ;2k(1e=1) A6 < 2e(min{ree}=1) 46

and
1(0%10) = L (8%10) |72,y S 02 A, (A.43D)
[(0%1v) — 7y (9% U)”?LQ(KC) < g2(=k)(ve—1) ;2k(ve—1) 46 < g2t(min{ve,ve}—1) 46 (A.43c)

We now turn to the second part of the right-hand side of (A.41). We use (A.20) from Lemma A.8
so that

om0 = mpo)llia i)
lay|<1

2(ve—1 —e
< N 0w —m) ey + D ATV 1200 (0 — )2 e -

e [<1 leca [=2

(A.44)

By Lemma A.7 we have, recalling that oy = s+ 1 and 1 < s <p, for all |ay| <1,

10°4 (v = m) L2 sy = 107+ v) = (0 V)| 2

S raerzpumn et g, gy [(H1290 921 90 ) |, o,
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and, for all |, | = 2, using that m and multiplication by r. commute, because r, does not depend
on 1,

Ir27<0% (v — myo) 122 () = 127720 v) — my (rZ 0%+ v) |2y

S 7_35+2hﬁ min{'yms+1}wp7s|| |$1 |(s+1—'yc)+rg—'ye Fo il 8(11_,0)”%2(1{).

Then, remarking that |z1| < r. < |#1], combining (A.44) with the two inequalities above we obtain

> 0L (v = 7o)l 7e

lar|<1

< TgSJng/p,sh? min{'yc—l,s}hﬁ Z ”r£s+1~yc)+3a,u”2L2(K)

~ I
lar|<1

D D St R S A P

laL|=2

Adjusting the exponent of the weights, replacing h and h, with their definition, we find that
there exists A > 0 depending only on ¢ and A, such that

Z 0%+ (v — 7T||U)||%2(Kw)

lar|<1

2542 2min{yc—1,5} 72 =2lar](stit|ar]=ve)+ gay, |2
STe Wy, sh hj h e 0|12 (k..
lar|<1

2 6_1 —27e e Ve
+ 3 BT IR s e g2 0% B

‘OU“ZQ
< G2(t=F) min{’chl,s}wp SA25+4((S + 3)!)27
(A.45a)
and similarly
S 1w — ) S 02 e, AP (s ), (Adsb)

lay <1

and the estimate on K, is the same as that on K. Similarly to (A.44), using first (A.23) from the
proof of Lemma A.8, and then Lemma A.7

> lo%m (v —m)l 7y

Jo|<1

2| o o e —Ye Q@ le%
< ST LY e ot o — mp) By + Y B2 0 0% (v — )2

lo <1 \Jaor|<1 lar]=2

< T§S+2Wp,shﬁ min{y.—1,s} Z Z hilou_l ”rgerlf%)JraaH 8‘)&’0“%2(1()

lov|=s+1]aL|<1

P

IO(H |:S+1 IQLIZQ

2—Ye . (s+1—7c ) Qo 2
Te Tg ”3 o l'U||L2(K')
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As before, there exists A > 0 depending only on ¢ and A, such that

> Jovimy (v — )ik,

[o|<1

2542 2min{y.—1,s} 2|y =2laL], (s+1+|as|—7e)+ 9o, (2
ST @y shy E E hi ™ hy lIre 012 (k..

laj|=s+1]aL|<1

279e 1,—2%e ||,.8+3—Ye 2—7e Q@
+ Z Z R hy 78277 2o 0% |72 ..
‘(X”|:S+1 |O[L|:2
< F2(=Fk) min{%il’s}wp,SA25+4((S Jrg)!)27
(A.46a)
and

> N0 (v — )7y

loy <1

57.38+2wp75h|2‘min{%*1,5} Z Z hi‘a”||r£‘“+1_7°)+8%||2m(1<5)

le|=s+1 s |<1

+ Z Z e ||7°£s+1_%)+7”5_%‘9%“%2(1(6)
laj|=s+1]oL|=2
< o2(t=k) mill{’yc—l,s}gpp’sA2$+4((s + 3)!)27
(A.46D)
and the estimate on K, is the same as that on K... The assertion now follows from (A.42), (A.43),
(A.45), and (A.46), upon possibly adjusting the value of the constant A. O

Lemma A.17 Let d = 3 and v € J7(Q;C, &) with v. > 3/2, 7. > 1. There exists a constant
Co > 0 such that if p > Col, there exist constants C,b > 0 such that

ool — Il < Ce™,  VLEN.

K:dX >0,
K_
ak=o

Proof As in the proof of Lemma A.14, we may assume that . € (3/2,5/2) and v, € (1,2). The
proof of the statement follows by summing over the right-hand side of (A.40), i.e.,

)4
> o= ISl <€ (Z o2 ML, (s +3)1)° + o“min(%v%)—l”)
k=1

K _
dgt =0

— O((1) + (I1)).

We have (IT) < fo?(min(ve7e)=1Df To hound (I), we observe that for all A > 0 there exist Cy,b; > 0
such that

min ¥, ,((s + 3)1)2A% < Cre 0P,

1<s<p

(see, e.g., [50, Lemma 5.9]). Combining with p > Cy¢ concludes the proof. O
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A.7 Estimates at the corner

The lemma below follows from classic low-order finite element approximation results and from the
embedding j,yz(Q;C,E) C H''(Q), valid for a § > 0 if 7. — d/2 > 0, for all ¢ € C, and, when

d=3,7 >1forallee& (see, e.g., [48, Remark 2.3]).

Lemma A.18 Letd € {2,3}, K = Xflzl J§. Then, ifv e TI7(Q;C,E) with
Ve > 1, for allceC, ifd=2,
Ye>3/2 and e > 1, forallceC ande € &, ifd=3,

there exists a constant Cy > 0 independent of £ such that if p > Cyl, there exist constants C,b > 0
such that
¢ _
v — I vl (k) < Ce ot

A.8 Exponential convergence

The exponential convergence of the approximation in the full domain @ follows then from Lemmas
A.14, A.15, A.17, and A.18.

Proposition A.19 Letd € {2,3}, v € J7(Q;C, &) with
Ve > 1, for allceC, ifd=2,
Ye>3/2 andye > 1, forallceC ande€ &, ifd=3.

Then, there exist constants c¢, > 0 and C,b > 0 such that, for all { € N,
_ bt < Ce Y
[[v hpa VllE1(Q) < Ce™

With respect to the dimension of the discrete space Ngof = dim(X:F’fZe), the above bound reads

l,cpl 1/(2d
lv — Iy ol g < C exp(—bN,/ Py

A.9 Explicit representation of the approximant in terms of continuous basis functions

Let p € N. Let (i(z) = (1 +2)/2 and ¢ = (1 — 2)/2. Let also (,(x) = 2[5 Ly—o(8)de, for
n=3,...,p+ 1, where L,_o denotes the L>°((—1, 1))-normalized Legendre polynomial of degree
n — 2 introduced in Section A.2. Then, fix £ € N and write (¥ = (fn o¢g,n=1,...,p+ 1 and
k=0,...,¢, with the affine map ¢y : J,ﬁ — (—1,1) introduced in Section A.2. We construct those
functions explicitly: denoting J¢ = (mﬁ,xiﬂ) and hy = |xi+1 — xt|, we have, for z € J{,

E(a) = hikcc —al), ) = hik(xf;ﬂ ), (AAT)

and ) .
S =i [ Loalonmldn,  n=3...p+1 (A1)
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Let d = 3. Then, for any element K € G, with K = J,fl X J,fZ X J,fs, there exist coefficients ¢/
such that

g

p+1
P (o, 20, 03) = Y el L C (@) (22)Cf (2),  V(w1,20,23) €K (AA9)

i1,%2,13=1

by construction. We remark that, whenever 7; > 2 for all j = 1,2, 3, the basis functions vanish on
the boundary of the element:

(chreiet), =0 =312
oK

Furthermore, write
OE (@1, w2, 15) = (7 (1) (22) ¢ (a3)
and consider ¢;, ;, = #{i; <2, j =1,2,3}. We have

— if t;,. s, = 1, then X . is not zero only on one face of the boundary of K,

21...14
— if t;,..4, = 2, then will(...id is not zero only on one edge and neighboring faces of the boundary
of K,
— if ¢;,...i, = 3, then ¢i11(...id is not zero only on one corner and neighboring edges and faces of the

boundary of K.

Similar arguments hold when d = 2.

A.9.1 Explicit bounds on the coefficients

We derive here a bound on the coefficients of the local projectors with respect to the norms of the
projected function. We will use that

B\ 2 e\ V2
I1Li © Grll L2ty = <2> ILillL2((=1,1)) = (22—1—1) ; Vi € No, Vk € {0,...,£}. (A.50)

Remark A.20 As mentioned in Remark A.3, the hp-projector Hfgj , can be defined for more general
functions than u € HL. (Q). As follows from Equations (A.53), (A.57), (A.61) and (A.64) below,
the projector is also defined for v € W (Q).

mix

Lemma A.21 There exist constants C1,Cy such that, for all u € whl (Q), allt eN, allpeN

mix

d
el <O 1L | lullwin g YK € G4, Y(in,-.via) € {1,...,p+ 1} (A.51)
j=1

and for all (iy,...,iq) € {1,...,p+ 1}¢

d . .
(Hj:l Zj) Zf Liy.ig = 0,

Z |Cf1(_“id| < C”“HW&]&(Q) ( )2 Zjldfl .Z:J27J1+1 Lj1 25, Zf i1...%4 (A.52)
K (+1? (S50 45) it 5 =2,
(£+1)4 if tiy. iy = 3.
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Proof Let d =3 and K = J,fl X J,fz X J,fa € gk

Internal modes. We start by considering the case of the coefficients of internal modes, i.e., c{f iz i
as defined in (A.49) for i, > 3, n = 1,2, 3. Let then iy, 49,43 € {3,...,p+1} and write L* = L, 0¢;:
it follows that

O iy = (201 — 3) (202 — 3)(2i3 — 3)
/(8mlaz2813u(xl’x2’x3))L§11—2(Il)LZQ—Q(x2)L§;—2(xB)d$1dC€2d$3~ (A.53)
K
If u e Whi (K), since | Ll oo (—1,1) = 1 for all n, we have
iy iy < (201 = 3) (242 = 3)(2i3 — 3)[100, 00, O ull 1110y, in 23,0 =1,2,3, (A.54)
hence,

ek Ll < (201 = 3)(2in — 3) (265 — 3)]|00, 0, Orsttll (@), in = 3,m=1,2,3.  (A.55)
Keg

Face modes. We continue with face modes and fix, for ease of notation, i; = 1. We also denote
F = Ji, x Ji,. The estimates will then also hold for i; = 2 and for any permutation of the indices

by symmetry. We introduce the trace inequality constant CT!, independent of K, such that, for
all v € WH(Q) and 2 € (0,1),

[0(@, -, Merry < No@, - )lleonz < CT (Iolle@) + 105, vllm1@)) - (A.56)
This follows from the trace estimate in [49, Lemma 4.2] and from the fact that

. , 1
[v(Z, )1 (0,1)2) < Cmin {M||U|L1<<f,1>x<o,1>2> + 102,01 ((2,1)x (0,1)2)

1
m\lvllu((o,i)x(o;)z) + 10z, v[[ L1 ((0.8) % (0,1)2) ¢-

For ig,i3 € {3,...,p+ 1},
cfiz’i3 = (21 — 3)(2i3 — 3) /F (8I28$3u(1‘£1+1, a:g,xg)) Lf;Q(mg)Lf3372(x3)dx2dx3. (A.57)

Since the Legendre polynomials are L°°-normalized and using the trace inequality (A.56),
ef el < (202 -3) 20 3)[[(Dea Dy ) (1.2 )2y < O (22— 3) (23 —3)Jull s - (A58)

Summing over all internal faces, furthermore,

1

> el il < (22 = 3)(2i5 = 3) Y [[(9ry Oy ) (h, 115 ) L1 (0,1)2)
Kegt k1=0 (A.59)

< O (04 1)(2i2 — 3)(2i5 — el (-

Edge modes. We now consider edge modes. Fix for ease of notation i; = iy = 1; as before,
the estimates will hold for (i1,42) € {1,2}? and for any permutation of the indices. By the same
arguments as for (A.56), there exists a trace constant C7*? such that, denoting e = J,gg, for all
v € W1((0,1)?) and for all £ € (0, 1),

[o(2, M) < @ )1y < CT2 (lullpro,1)2) + 10zoullL1(0,1)2)) - (A.60)
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By definition,
C{(,l,is = (2i3 — 3) /e (8$3u(x£1+1,$i2+1,x3)) L§;72(£3)d$3. (A.61)
Using (A.56) and (A.60)
|Cfl,i3| < (2i3 — )||(813U)(37k1+1795k2+17 ')||L1 (e) < o 1C'T2(223 - 3)||UHW,},;(Q) (A.62)

Summing over edges, in addition,

4 4
4 4
Z |01123| < (2i3—3 Z Z [0z u) (T 115 Thyg1s )l L1 (0,1
k1= =0

Kegi (A.63)
< OTICT2(E 4 12 (205 — 3)lully 1 g
Node modes. Finally, we consider the coefficients of nodal modes, i.e., cff in.is 10T 11,12,13 € {1,2},
which by construction equal function values of u, e.g.
111 = W(&hy 415 Thy s 15 Thy 11)- (A.64)

The Sobolev imbedding W,\! (Q) — L*°(Q) and scaling implies the existence of a uniform constant

mix

Cimp such that, for any v € Wk (Q)

mix
[0l (k) < Nlvllzee (@) < Cimbllvllyr (q)-
Then, by construction,
|65 ipis| < Nlull oo (x) < Cimbllullywia gy Vir,iz,is € {1,2}. (A.65)

Summing over nodes, it follows directly that

Z | 11712,13| = Z ||u||L°°(K) < C'imb(é_k 1)3Hu||wil=ii(Q)a VZ.172.2’Z.3 € {172}' (A66)
Kegi Kegi

We obtain (A.51) from (A.54), (A.58), (A.62), and (A.65). Furthermore, (A.52) follows from (A.55),
(A.59), (A.63), and (A.66). The estimates for the case d = 2 follow from the same argument. O

The following lemma shows the continuous imbedding of Jj(Q;C,E) into Wl (Q), given suffi-

mix

ciently large weights .

Lemma A.22 Let d € {2,3}. Let v be such that v. > d/2, for all c € C and (if d=3) v, > 1 for
all e € £. There exists a constant C' > 0 such that, for all u € J;l(Q;C,E),

lullwi @) < Cllul7¢(@)-
Proof We recall the decomposition of @) as

Q=QoUQcUQsUQce,
where Q¢ = Qce = @ if d = 2. First,

lallw () < ClQoI"?lull gy < ClQoY?ull 72(0)- (A.67)
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We now consider the subdomain @, for any ¢ € C. We have, with a constant C' that depends only
on 7. and on |Q.|,

lullws o) = illweaen + 3 18%ullzsan)

2<|al<d
|afoe <1
< Qe llullry +C Y e 19 o Irl 7 0%l 12,y (A-68)
2<|a|<d
lafeo <1
< Cllull 7g(@)
where the last inequality follows from the fact that v, > d/2, hence the norm ||r. (ol =ve)+ 20,

is bounded for all |o| < d. Consider then d = 3 and any e € £. Suppose also, without loss of
generality, that v. — 7. > 1/2 and v, < 2 (otherwise, it is sufficient to replace 7. by a smaller 7,
such that 1 < 7, < 7. —1/2 and 7. < 2 and remark that jf(Q;C,E) C Jg(Q;C,é’) if Yo < ve)-
Since 7. > 1, then |re o L|+%HL2(QC) is bounded by a constant depending only on 7, and |Q.| as
long as a is buch that [a1 | < 2. Hence, denoting by 9 the derivative in the direction parallel to e,

lullywa o) = lullwiao + D 1940 ullign + Y 197101101 2ullriq.)

‘OU“ 1 a1=0,1

<l | Nl + Y 11949*+llL2(q.)

oy |=1

+C D e e 07 01,001 2ull 120
a1=0,1

(A.69)

< Cllullzz@)-

Since x| < 7e(x

) < & for all x € Q. and € defined in Section 2.1, and because Q.. C {zH € (0,8),
(z11,712) € (0,8%)°

} it follows that

”T (Ye+1— %)+T 2+, (Yet+1—7e) | e

<C,

||L2(ch) < ”‘T ((O,é))”T HLZ((O c2)2) =

for a constant C' that depends only on £, ., and .. Hence,

el g = lullwirguy + D 1010 ulpigun + D 19701,101 0ull 1.0

g |=1 a1=0,1
<ClQeel?ullmi@ny +C D e | 2o 78779+ 0) 0 ull 12 ..
lar|=1
+C Y e 2 pa g i ETI p2 00 01001 pul 12 @0
a1=0,1
< Cllullzz @
(A.70)
with C' independent of w. Combining inequalities (A.67) to (A.70) concludes the proof. O

The following statement is a direct consequence of Lemmas A.21 and A.22 above and the fact that
[0F il oo sy < Lfor all K € G§ and all iy, ... ig € {1,...,p+1}.
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Corollary A.23 Let vy be such that v. —d/2 >0, for allc € C and, ifd =3, v. > 1 for alle € £.
There exists a constant C > 0 such that for all £,p € N and for all u € Jj(Q;C,E),

P

‘
11, gull e @) < Cp2d||u||.71d(Q)'

A.9.2 Basis of continuous functions with compact support

It is possible to construct a basis for Hfl’f ; in @ such that all basis functions are continuous and
have compact support. For all £ € N and all p € N, extend to zero outside of their domain of
definition the functions ¢* defined in (A.47) and (A.48), for k=0,...,fand n=1,...,p+ 1. We
introduce the univariate functions with compact support v; : (0,1) = R, for j =1,...,({+1)p+1
so that v1 = CQO, Vpto = Cf,

op=CF2 4t forallk=2,... 041 (A.71)

and
Vototk(p—1)+n = (’;JFQ, forall k=0,...,/andn=1,...,p—1.

Proposition A.24 Let £ € N and p € N. Furthermore, let u € Jj(Q;C,E) with v such that
Ye—d/2>0 and, ifd=3, . > 1. Let Nig = ({+ 1)p+ 1. There exists an array of coefficients

c= {Ci1...id, : (il,...77;d) € {1,...,N1d}d}

such that
Niq d
(Hf;fdu> (T1,...,2q) = Z Ciy iy Hvii (xj), V(x1,...,xq) € Q. (A.72)
i1yeeig=1 j=1

Furthermore, there exist constants Cy,Co > 0 independent of £, p, and u, such that

|Ci1...id| < Cl(p + 1)d||u||‘73(Q)7 Vii1,...,1q € {1, RN Nld}d

and
Nld d
> e il <0y (Z(@ + 1) p+ 1)“‘“) lull7ec)-
i1,eeyig=1 t=0 B

Proof The statement follows directly from the construction of the projector, see (A.49), and from
the bounds in Lemmas A.21 and A.22. In particular, (A.72) holds because the element-wise coeffi-
cients related to ¢¥71 and to ¢F~% are equal: it follows from Equations (A.57), (A.61) and (A.64)
that cff, . = cK/“_id for all i, ...,iq € {1,...,p+ 1}, all K = J{ x Ji x Jf € Gf satisfying

219
ki1 < {and K' = J£1+1 X J,fz X J,gs S gg. The same holds for permutations of iy, ...,4i,. Because
(vk),(fill)p *1 are continuous, this again shows continuity of I7, fpp ,u (Remark A.2). The last estimate

is obtained with (A.52):

Nia d p+1 d
SEES S S SR s (zwwwnw) .
Pl gennsy ig=1 t=041,..., 1q=1 Keg{’; t=0 -
t =t
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A.9.3 Proof of Theorem 2.1

Proof (of Theorem 2.1) Fix Ay, Cy, and v as in the hypotheses. Then, by Proposition A.19, there
exist ¢p, Chp, bnp > 0 such that for every £ € N and for all v € J7(Q;C,E; Cy, Ay), there exists

vﬁp € X:;)C,Ze such that (see Section A.1 for the definition of the space X:;)C,Ze)

v = vppll (@) < Chpe ™"

For € > 0, we choose

1
L= L) |log(5/Chp)|—‘ , (A.73)
hp
so that
llv — v,prHl(Q) <e.
Furthermore, Uth = Zf\fldw Ciy.vig®is..iq and, for all (i1,...,iq) € {1,..., N1q}?, there exists v;,,

j=1,...,dsuch that ¢;, ;, = ®?:1 v;;, see Section A.9.2 and Proposition A.24. By construction
of v; in (A.71), and by using (A.47) and (A.48), we observe that ||v; ey < 1foralli=1,..., Niq.
In addition, (A.50), demonstrates that

2
S 20_—L/2
[supp(v;)|"/* deg (v;)1/2

Then, since (A.73) implies L <1+ b%,, [log(g/Chp)|,

il a2 () < , Vie{l,..., N}

oL < O—I—ﬁ log(Chp)E—b—:‘p log(l/a).
This concludes the proof of Items 1 and 2. Finally, Item 3 follows from Proposition A.24 and the
fact that p < Cp (1 + |log(e)]) for a constant C, > 0 independent of . |

A.10 Combination of multiple patches

The approximation results in the domain Q = (0,1)? can be generalized to include the combination
of multiple patches. We give here an example, relevant for the PDEs considered in Section 5. For
the sake of conciseness, we show a single construction that takes into account all singularities of
the problems in Section 5. We will then use this construction to prove expression rate bounds for
realizations of NNs.

Let a > 0 and 2 = (—a,a)?. Denote the set of corners

d
CQ = >< {_a7 Oa a}? (A74)
j=1
and the set of edges £n = 9, if d = 2, and, if d = 3,
d j—1 d
€0 = J X{=a,0,a} x {(=a,~a/2),(=a/2,0),(0,a/2),(a/2,a)} x X {-a,0,a}. (A.75)
j=1k=1 k=j+1

We introduce the affine transformations ¢ + : (0,1) — (0,a/2), 24 : (0,1) — (a/2,a), ¥1,— :
(0,1) = (—a/2,0), Y2 _ : (0,1) = (—a, —a/2) such that

P1x(7) = ig% P+ () =% (a - %x) )
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a a
3 0 5 a —a -5 0

Fig. A.1: Multipatch geometric tensor product meshes ég, for d = 2 (left) and d = 3 (right).

For all ¢ € N, define then
gf - U ¢i,*(gf)~

i€{1,2} xe{+,—}

Consequently, for d = 2, 3, denote C:ﬁ = {)(2-1:1 K, :Ky,....K € 5{}, see Figure A.1. The hp space
in 2 = (—a,a)? is then given by

XyPy={ve H () v, € Qy(K), for all K € Gi}.
Finally, recall the definition of Wﬁ’pp from (A.12) and construct
T WH(—a,a) = X7y
such that, for all v € Wh1((—a,a)),
(Farv) o) = (T @lopy o vr)) o vtk (Fedv) gy = (o (Wlg.) 0 ¥2.4)) 0 ¥k,

(7o) l-go = (meg @logoy 0 va-) 0wty (Fado) lcamg) = (mid 0l i-amg) 0 ¥2,)) 0.
(A.76)

mix
rlp ~£,p
o= ® Thp -

Theorem A.25 Fora > 0, let 2 = (—a ) d = 2,3. Denote by 2%, k =1,...,4¢ the patches
composing £2, i.e., the sets Q% = X?Zl( aj,a; —l—a/2) with a% € {—a,—a/2,0,a/2}. Denote also

Then, the global hp projection operator ﬁf[f,)d o (2) — )N(f;fd is defined as

Cck =Cg N 2" and &F = {e€ép:eC Qk}, which contain one singular corner, and three singular
edges abutting that corner, as in (A.1) and (A.2).

Let T C {1,...,4% and let v € WL () be such that, for all k € I, it holds that v|gr €
Jﬁ(ﬁk;ck,gk) with

7§ > 1, for all ¢ € C*, ifd=2,
vk >3/2 and 4% > 1, for allc € C* and e € E*,  if d = 3.
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Then, there exist constants c, > 0 and C,b > 0 such that, for all £ € N, with p = cp/,
lv — ﬁf;deHHl(m) < Ce ™ < Cexp(—b %/ Naot), for allk € L. (A.7TT7)

Here, Ngot = O(£??) denotes the overall number of degrees of freedom in the piecewise polynomial
approzimation. Furthermore, writing N1g = 4(¢ 4+ 1)p + 1, there exists an array of coefficients

E= {E (it ... ig) € {1,...,N1d}d}

such that
Nia d
~, ~ .
(Hh”fdv) (1,...,2q) = Z cilmideij(ij V(z1,...,xq) € 12,
11,..,8a=1 j=1
where forallj =1,...,d andi; =1,... ,ﬁld, U, € )?fl’fl with support in at most two, neighboring

elements of éf Finally, there exist constants Cq,Co > 0 independent of £ such that

Hﬁi”Loo((,a’a)) <1, H'Di”Hl((—a,a)) < CIU—£/27 Vi = 1,...,N1d, (A.78)
and _
Nia d . .
S5 i < O S (o 1D ol s g (A7)
i1yeiu=1 i=0

Proof The statement is a direct consequence of Propositions A.19 and A.24. We start the proof
by showing that for any function v € W;ni(()), the approximation Hf;)p 4V is continuous; the rest
of the theorem will then follow from the results in each sub-patch. Let now w € Whl((—a,a)).
Then, it holds that (7~rf’ppw> |r € C(I), for all I € {(0,a/2),(a/2,a),(—a/2,0),(—a,—a/2)}, by
definition (A.76). Furthermore, it follows from the nodal exactness of the local projectors that, for
z € {—a/2,0,a/2},
. ~1, _ A ~,
i (TJw)(2) = w(@) = lim (77w)(),

. . ~0,p . . . 7L,p _ d ~0,p . . . 74, p .
implying then that m"w is continuous. Since II,2", = @;_; 7, , this implies that IT,'" v is

continuous for all v € Wl (2). Fix k € {1,...,49} such that v € TR (2%;C*,EF). There exist

mix

then, by Proposition A.19, constants C, b, c, > 0 such that for all £ € N
~L,cpl —
[o = I || omy < Ce™™.
Equation (A.77) follows. The bounds (A.78) and (A.79) follow from the construction of the basis
functions (A.47)—(A.48) and from the application of Lemma A.21 in each patch, respectively. 0O
B Proofs of Section 5
B.1 Proof of Lemma 5.5

Proof (of Lemma 5.5)
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Notation. For any two nonempty sets X,Y C 2, we denote by dist,(X,Y) the infimum of
Euclidean lengths of paths in (2 connecting an element of X with one of Y. We introduce sev-
eral domain-dependent quantities to be used in the construction of the triangulation 7 with the
properties stated in the lemma.

Let £ denote the set of edges of the polygon (2. For each corner ¢ € C at which the interior
angle of (2 is smaller than 7 (below called convex corner), we fix a parallelogram G. C {2 and a
bijective, affine transformation F, : (0,1)? — G.. such that

— F((0,0)) =<,
— two edges of G, coincide partially with the edges of (2 abutting at the corner ¢, such that

G.NC=c.
If at ¢ € C the interior angle of (2 is greater than or equal to 7 (both are referred to by slight
abuse of terminology as nonconvex corner), we fix a bijective, affine transformation F, with the
same properties, such that F. : (—1,1) x (0,1) — G, if the interior angle equals 7, and F, :
(—1,1)2\ (=1,0)2 = G, else, and with G, having the corresponding shape.

Let now

deq =sup{r >0:B.(c)N N2 CG.l, deq = rgg(rjl de1.

Then, for each ¢ € C, let e; and es be the edges abutting ¢, and define

c C
deo = diste (ern (B n{B ez =10l ez
.2 st <61 ( fﬁldc‘l(C)) ) €2 < fﬁldc’1(0)> )7 C,2 rcnel(lfl c,2

Furthermore, for each e € £, denote d, := oo if {2 is a triangle, otherwise

de = min {distp(e,e1) : e € £ and eNey = T}, de = mi?de.
ec

Finally, for all z in the polygon {2, let the number of closest edges to x be
ne(x) == #{e1,e2,... € € : distp(z,002) = distp(x,e1) = disto(z,e2) = ... }.

Then, in case {2 is a triangle, let dy be half of the radius of the inscribed circle, else let dy := %dg <
%dg. It holds that
disto({z € 2 : ne(x) > 3},002) > dy > 0.

For any shape regular triangulation 7~ of R2, such that for all K € T, K N 92 = @, denote
To ={K €T : K C 2} and h(Tn) = maxgeT, h(K), where h(K) denotes the diameter of K.
Denote by Ny, the set of nodes of 7 that are in £2. For any n € Ny, define

patch(n) = int U K
KeTmmeK

Partition of unity. Let T be a triangulation of R? such that

h(Tn)Smin<d0 dey  des ds), (B.1)

V2 V2417227 2v2

and such that for all K € T it holds K N 02 = @.
The hat-function basis {¢, }nen, is a basis for S1(§2, Tp) such that supp(¢,) C patch(n) for
all n € Np, and it is a partition of unity on 2.
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Fig. B.1: Patches (2, for nodes near a convex corner (a), near a nonconvex corner (b), for nodes
in the interior of {2 (c), and for nodes near an edge (d).

Strategy of the remainder of the proof. We will show that, for each n € Ny, there exists a
subdomain (2,,, which is either an affinely mapped square or an affinely mapped L-shaped domain,
such that patch(n) N 2 C 2,,. We point to Figure B.1 for an illustration of the patches {2,, that
will be introduced in the proof, for various sets of nodes.

Verification of [P1], [P2], and [P3]. For cach c € C, let N.. = {n € Ny, : patch(n)N 2 C G.}.
Then,
N, = {n € Np : disto(n,c) <dc1 —h(Ta)} C Ne.

Therefore, all the nodes n € N, are such that patch(n) N2 C G, =: £2,,. Denote then

Ne = [N

ceC

Note that, due to (B.1), we have v2h(Tp) < \/‘ﬁldal <dci—h(Ta).

We consider the nodes in N\ M¢. First, consider the nodes in

Mo ={n e N\ N¢ : disto(n,002) > \/ih(TQ)}.

For all n € Ny, there exists a square Q,, such that
patch(n) C Bpr,)(n) C Qn C B g7, (1) C 12,
see Figure B.1c. Hence, for all n € Ny, we take 2, := @,,. Define
Ne =N\ (Mo UNe)
= {n e N :distp(n,¢) > de1 — h(Tga),Ve € C, and distp(n,d82) < \/ﬁh(Tg)} .

For all n € Ng, from (B.1) it follows that disto(n,082) < V2h(Tn) < do, hence n.(n) < 2.
Furthermore, suppose there exists n € Ng such that n.(n) = 2. Let the two closest edges to
n be denoted by e; and ep, so that distgo(n,e;) = disto(n,es) = disto(n,002) < V2h(Tg). If
e1 Nez = o, there must hold distp(n,er) + disto(n,es) > dg, which is a contradiction with
disto(n,002) < V2h(Tg) < dg/2. If instead there exists ¢ € C such that ey Ne; = {c}, then n is
on the bisector of the angle between e; and es. Using that 2\/§h(7}3) < dc,2, we now show that
all such nodes belong either to Nz or to N, which is a contradiction to n € Ng. Let zg € {2 be

the intersection of 0B 5 , (c) and the bisector. To show that n € Mg U N, it suffices to show
Va1l oo

that dist(zg,e;) > v2h(Tp) for i = 1,2. Because

Zodey < dey — h(Ta), it a fortiori holds for
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V2h(Ta)
B e

€1 T1 X4 c

Fig. B.2: Situation near a convex corner c.

all points y in 2 on the bisector intersected with (Bdc’l_h(TQ)(c))c, that dist(y,e;) > v2h(Ta),
which shows that if disto(n,c) > de1 — h(Tg), then n € Np. If ¢ is a nonconvex corner, then

dist(z9,e;) > V2h(Tg) for i = 1,2 follows immediately from dist(zg,e;) = dist(zg,c) = ﬁdcﬂ

and (B.1). To show that dist(zo, e;) > v/2h(Tg), i = 1,2 in case c is a convex corner, we make the
following definitions (see Figure B.2):
— For i =1,2, let z; be the intersection of ¢; and 9B 5 , (c),

V21 C,1
— let z3 be the intersection of T1x3 with the bisector,

— and for ¢ = 1,2, let x;13 be the orthogonal projection of zy onto e;, which is an element of e;
because ¢ is a convex corner.

Then d. o = [T1@2| = |T1%3| + |T372| = 2|TiT3]. Because the triangle czoz;43 is congruent to cxixs,
it follows that dist(xo,e;) = |ToTits| = |Tiz3] = %dc,g > V2h(Tq). We can conclude with (B.1)
that ne(n) = 1 for all n € Ng and denote the edge closest to n by e,. Let then S,, be the square
with two edges parallel to e, such that

patch(n) C Bpr,)(n) € Sn C B g1, (1),

see Figure B.1d, i.e. S,, has center n and sides of length 2h(7g;). For each n € Ng, the connected
component of S;,, N {2 containing n is a rectangle:

(i) Note that for all edges e such that eNe, = @, it holds that S, Ne C B 5,1, (n) Ne = 2.
The latter holds because 2v/2h(T) < de < distp(e,e,) < distg(e,n) + disto(n,e,) and
disto(n, e,) < V2h(Tp) imply disto(n,e) > v2h(Tg).

(ii) We next show that for both corners c of e,, there isno x € Q\Bﬁdc .
Va1 e

V2h(Tg) and such that for another edge e it holds &, Ne = {c} and dist(z,e) < v2h(Tp).

We give a proof by contradiction. Assume that there exist x € 2\ B 5 dos (c) and an edge e
V241 C

with &, Ne = {c}, dist(z, e,) < V2h(Tg) and dist(z, e) < V2h(Tg). Now dist(z, c) > v2h(T5)
together with the previous two inequalities implies that both the angle between e and zc and
the angle between e,, and xc are smaller than 7/2, and thus that ¢ is convex. Let z¢ be the point

V3 . .
o) de.1 and let z¢ be the intersection of 0B f\z/ildc'l (c) and

the bisector of ¢, for which we have previously shown that dist(zg, e) = dist(zg, e,) > v2h(T5)
(we then denoted e, and e by e; and e3). We detail the remainder of the argument for the case

(¢) for which dist(x, e,) <

on zc¢ which satisfies dist(xg, c) =
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that the angle between xgc and e is at least as large as the angle between xyc and e, i.e. the
bisector zgc lies between xg and e (in the other case the same argument applies but with the
roles of e and e, interchanged). This assumption, combined with dist(zg, ¢) = dist(xg,c) and
the sine rule, gives that dist(zg,e) > dist(zg,e) and hence v/2h(Tg) > dist(x, e) > dist(xe, €) >
dist(xo, €) = dist(zo, e, ), which gives a contradiction. Using the proved claim for x = n shows
that for the edges e neighboring e,, dist(n, e) > v/2h(Tg) and thus S,,NAS2 C e, or S,,NIS2 = @.

Thus, the connected component of S, N {2 containing n is a rectangle, which we define to be (2,,.
Setting N, := #Np, and {2:}i=1,...N, = {20 }nen, concludes the proof. m]

B.2 Proof of Lemma 5.13

Proof (of Lemma 5.13) Let d = 3 and denote R = (—1,0)3. Denote by O the origin, and let
E = {e1,e2,e3} denote the set of edges of R abutting the origin. Let also F' = {f1, fa, f3} denote
the set of faces of R abutting the origin, i.e., the faces of R such that f; C RN 2, i=1,2,3. Let,
finally, for each f € F, E; = {e € E : e C f} denote the subset of E containing the two edges
neighboring f.

For each e € E, define u, to be the lifting of u|. into R, i.e., the function such that u.|. = u. and
ue is constant in the two coordinate directions perpendicular to e. Similarly, let, for each f € F,
us be such that uy|; = u|; and uy is constant in the direction perpendicular to f.

We define w: R — R as

w:u0+2(ue—uo)+2(uf—uo— Z(ue—uo)):uo—Zue—l—Zuf, (B.2)

eck feFr ecEy ecE feF

where ug = u(0). Since ul, € Wh(e), uly € Whi(f) for all e € E and f € F, it holds that

mix

ue € Wit (R) and uy € WhL(R) forall e € E and f € F (cf. Equations (A.56) and (A.60)), hence

w € Wk (R). Furthermore, note that
(ue—uo)b:O, forall Ese#e
and that _
(up —uo — Z(ue—uo))|]7:07 forall > f # f.

EGEf
From the first equality in (B.2), then, it follows that, for all f € F,
w|f = ug + Z (ue|f —Uo) +Uf|f —Ug — Z (ue\f —UO) = u|f.
EEEf eeEf

Let the function v be defined as
v|r = w, v|o = u. (B.3)
Then, v is continuous in (—1,1)% and v € WL ((—=1,1)3). Now, for all a € N3 such that |a|s < 1,

||8aue||L1(R) = H(‘)O‘ﬁueHLl(R) = H(‘)O‘ﬁuHLl(e), Ve e FE,

where aﬁ denotes the index in the coordinate direction parallel to e, and

Fooof oF ot
[0%ugllLrry = 107120120 | L1 gy = [|0%1:20 12| 14y, VfeF,
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where ozlf i j = 1,2 denote the indices in the coordinate directions parallel to f. Then, by a trace

inequality (see [49, Lemma 4.2]), there exists a constant C' > 0 independent of u such that

lellwysmy < Clulwii@y Turllwzie < Cllullwy )

foralle € E, f € F. Then, by (B.2) and (B.3),

H’U”W;}i((,l’l)d) < CHUHW11 Q)

mix

for an updated constant C' independent of w. This concludes the proof when d = 3. The case d = 2

can be treated by the same argument. O
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