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1 Introduction

The application of deep neural networks (DNNs) as approximation architecture in numerical solu-
tion methods of partial differential equations (PDEs), possibly on high-dimensional parameter- and
state-spaces, attracted increasing attention in recent years. An incomplete list of recently proposed
algorithmic approaches is [54,11,45,46,52] and references therein. In these works, DNN-based ap-
proaches for the numerical approximation of solutions of elliptic and parabolic boundary value
problems are proposed. Two key ingredients in these approaches are: a) use of DNNs as approx-
imation architecture for the numerical approximation of solutions (thus using DNNs in place of,
e.g., finite element, finite volume or finite difference methods), and b) incorporation of a suitable
weak form of the PDE of interest into the loss function of the DNN training. For example, weak
residuals, least squares or, for variational formulations from continuum mechanics, total potential
energies in variational principles [11] have been proposed.

In the study of NNs as numerical methods for solving PDEs, usually three types of errors are
identified. After fixing a NN architecture and activation function, the approximation error indicates
how well the PDE solution can be approximated by NNs with that architecture. An additional error
is incurred when the NN must be trained on only a finite amount of possibly corrupted data about
the PDE solution. This contribution to the overall error, in particular there where the given data
is uninformative, is the generalization error, and is in addition to further errors that are caused
by the training algorithm, which can be called optimization error. In this paper, we study the
approximation error of deep ReLU neural networks.

One condition for good performance of these computational approaches requires the DNNs to
achieve a high rate of approximation uniformly over the solution set associated with the PDE un-
der consideration. This is analogous to what has been found in the mathematical convergence rate
analysis of, e.g., finite element methods: convergence rate bounds are well-known to be related, via
stability and quasi-optimality, to approximability of solutions sets of PDEs from the finite element
spaces under consideration. Since numerical solutions are (generally oblique) projections of the un-
known solution onto finite-dimensional subspaces, the convergence rates are naturally determined
by approximation rates of the subspace families under consideration within the regularity classes
of PDE. For elliptic boundary and eigenvalue problems, function classes of (weighted) Sobolev or
Besov type are well known to describe both solution regularity and approximation rates.

For functions belonging to a smoothness space of finite differentiation order such as continuously
differentiable, Sobolev-regular, or Besov-regular functions on a bounded domain, upper bounds for
algebraic approximation rates by NNs were established for example in [57,16,58,32,55,10,9]. Here,
we only mentioned results that use the ReLU activation function. Besides, for PDEs, in particular in
high-dimensional domains approximation rates of the solution that go beyond classical smoothness-
based results were established in [12,51,29,5,26]. Again, we confine the list to publications with
approximation rates for NNs with the ReLU activation function (referred to as ReLU NNs below).

In the present paper, we prove that exponential approximation rates are achieved by deep ReLU
NNs for weighted, analytic solution classes of linear and nonlinear elliptic source and eigenvalue
problems on polygonal and polyhedral domains. Mathematical results on weighted analytic regu-
larity [18,19,17,2,6,20,39,8,35,38,24] imply that these classes consist of functions that are analytic
with possible corner, edge, and corner-edge singularities.

In contrast to the previously mentioned approximation results for ReLU NNs, the function class
studied here is special in the sense that it admits extremely high regularity in most parts of the
domain except for designated locations, i.e., the edges and corners of a domain, where the regularity
is assumed to be very low. An approximation scheme to realize the exponential approximation rates
associated with analytic regularity, therefore, hinges on a successful resolution of the singularities.
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We will see that, in addition to emulating local polynomial approximation, the presented scheme
is strongly adapted to the potentially complex geometries of the underlying domains.

Our analysis provides, for the aforementioned functions, approximation errors in Sobolev norms
that decay exponentially in terms of the number of parameters M of the ReLU NNs.

1.1 Contribution

The principal contribution of this work is threefold:

1. We prove, in Theorem 4.3, a general result on the approximation by ReLU NNs of weighted
analytic function classes on Q := (0, 1)d, where d = 2, 3. The analytic regularity of solutions is
quantified via countably normed, analytic classes, based on weighted Sobolev spaces of Kon-
drat’ev type in Q, which admit corner and, in space dimension d = 3, also edge singularities.
Such classes were introduced, e.g., in [6,2,17,18,19,8] and in the references there. We prove
exponential expression rates by ReLU NNs in the sense that for a number M of free parameters
of the NNs, the approximation error is bounded, in the H1-norm, by C exp(−bM1/(2d+1)) for
constants b, C > 0.

2. Based on the ReLU NN approximation rate bound of Theorem 4.3, we establish, in Section 5,
approximation results for solutions of different types of PDEs by NNs with ReLU activation.
Concretely, in Section 5.1.1, we study the reapproximation of solutions of nonlinear Schrödinger
equations with singular potentials in space dimension d = 2, 3. We prove that for solutions which
are contained in weighted, analytic classes in Ω = Rd/(2Z)d, ReLU NNs (whose realizations
are continuous, piecewise affine) with at most M free parameters yield an approximation with
accuracy of the order exp(−bM1/(2d+1)) for some b > 0. Importantly, this convergence is in the
H1(Ω)-norm. In Section 5.1.2, we establish the same exponential approximation rates for the
eigenstates of the Hartree-Fock model with singular potential in R3. This result constitutes the
first, to our knowledge, mathematical underpinning of the recently reported, high efficiency of
various NN-based approaches in variational electron structure computations, e.g., [44,25,21].
In Section 5.2, we demonstrate the same approximation rates also for elliptic boundary value
problems with analytic coefficients and analytic right-hand sides, in plane, polygonal domains
Ω. The approximation error of the NNs is, again, bound in the H1(Ω)-norm. We also infer an
exponential NN expression rate bound for corresponding traces, in H1/2(∂Ω) and for viscous,
incompressible flow.
Finally, in Section 5.3, we obtain the same asymptotic exponential rates for the approximation
of solutions to elliptic boundary value problems, with analytic data, on so-called Fichera-type
domains Ω ⊂ R3 (being, roughly speaking, finite unions of tensorized hexahedra). These solu-
tions exhibit corner, edge and corner-edge singularities.

3. The exponential approximation rates of the ReLU NNs established here are based on emu-
lating corresponding variable grid and degree (“hp”) piecewise polynomial approximations. In
particular, our construction comprises novel tensor product hp-approximations on Cartesian
products of geometric partitions of intervals. In Theorem A.25, we establish novel tensor prod-
uct hp-approximation results for weighted analytic functions on Q of the form ‖u−uhp‖H1(Q) ≤
C exp(−b 2d

√
N) for d = 1, 2, 3, where N is the number of degrees of freedom in the representa-

tion of uhp and C, b > 0 are independent of N (but depend on u). The tensor-product structure
of the piecewise polynomial approximations is essential to facilitating the construction of deep
ReLU neural networks: our constructive proofs exploit approximate tensorization of ReLU NNs
in order to emulate the corresponding piecewise polynomial constructions. The geometric par-
titions employed in Q and the architectures of the constructed ReLU NNs are of tensor product
structure, and generalize to space dimension d > 3.
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Note that hp-approximations based on non-tensor-product, geometric partitions of Q into hex-
ahedra have been studied before e.g. in [47,48] in space dimension d = 3. There, the rate of
‖u− uhp‖H1(Q) . exp(−b 5

√
N) was proved. Being based on tensorization, the present construc-

tion of exponentially convergent, tensorized hp-approximations in Appendix A does not invoke
the rather involved polynomial trace liftings in [47,48], and is interesting in its own right: the
geometric and mathematical simplification comes at the expense of a slightly smaller (still expo-
nential) rate of approximation. We expect that this construction of uhp will allow a rather direct
derivation of rank bounds for tensor structured function approximation of u in Q, generalizing
results in [27,28] and extending [37] from point to edge and corner-edge singularities.

1.2 Neural network approximation of weighted analytic function classes

Deriving exponential approximation rates for weighted analytic functions on general domains re-
quires the combination of three arguments: First, a novel approximation result of weighted analytic
functions on cubes (0, 1)d with corner and/or edge singularities in H1((0, 1)d) by tensor product
hp-finite elements. Second, a reapproximation scheme for high-dimensional hp-finite elements in
W 1,q-norms for q ∈ [1,∞] by ReLU NNs. Third, a ReLU NN-based approximation scheme on
polyhedral domains via a localization method that uses a ReLU NN implementation of a domain-
adapted partition of unity.

First, we specifically design tensorized hp-approximations so that they can be emulated by NNs
by the reapproximation strategy that we outline below. We then prove exponential convergence of
the approximation of weighted analytic functions by the tensorized hp-piecewise polynomials we
constructed. Furthermore, in order to estimate the size of the resulting NNs, we need to bound
the norms of the coefficients of the hp-projections. Those bounds are usually not a concern when
dealing with hp-finite element methods, but they are necessary for our analysis of ReLU NNs. The
construction of the hp-projections, the convergence analysis, and the bounds on the coefficients are
presented in Theorem 2.1 and developed in Appendix A.

We describe the NN emulation of hp-finite element interpolants and their lifting to domains
in more detail: the emulation of hp-finite element approximation by ReLU NNs is fundamentally
based on the approximate multiplication network formalized in [57]. Based on the approximate
multiplication operation and an extension thereof to errors measured with respect to W 1,q-norms,
for q ∈ [1,∞], we established already in [41] a reapproximation theorem of univariate splines of
order p ∈ N on arbitrary meshes with N ∈ N cells. There, we observed that there exists a NN
that reapproximates a variable-order, free-knot spline u in the H1-norm up to an error of ε > 0
with a number of free parameters that scales logarithmically in ε and |u|H1 , linearly in N and
quadratically in p. We recall this result in Proposition 3.7 below.

From this, it is apparent by the triangle inequality that, in univariate approximation problems
where hp-finite elements yield exponential approximation rates, also ReLU NNs achieve exponential
approximation rates (albeit with a possibly smaller exponent, because of the quadratic dependence
on p, see [41, Theorem 5.12]).

The extension of this result to higher dimensions for high-order finite elements that are built
from univariate finite elements by tensorization is based on the underlying compositionality of
NNs. Because of that, it is possible to compose a NN implementing a multiplication of d inputs
with d approximations of univariate finite elements. We introduce a formal framework describing
these operations in Section 3. We can then prove, in Theorem 4.3, approximation rates by ReLU
NNs for weighted analytic function classes in cubes.

With Theorem 4.3 established, the next step is to extend the approximation result from cubes
to general domains. The ReLU NNs of Theorem 4.3 are continuous functions on Rd and we have
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little control over the behavior of these functions outside of the cubes. This implies that even on
unions of disjoint cubes the approximation results of Theorem 4.3 do not directly transfer by taking
sums of the local approximations.

Instead, we first extend Theorem 4.3 to weighted analytic functions defined on Fichera-type
domains (−1, 1)d \ (−1, 0]d for d = 2, 3 by, again, reapproximating a quasi-interpolant on this
domain. To extend the results to general polygonal domains for d = 2, we construct an overlapping
cover of the domain of affinely-transformed cubes or affinely-transformed Fichera-type domains plus
a partition of unity subordinate to this partition (Lemma 5.5). We demonstrate that this partition
of unity can be exactly represented by ReLU NNs. The localization by this partition of unity reduces
the approximation problem locally to one of the previously described approximations on either an
affinely-transformed cube or an affinely-transformed Fichera-type domain. This yields Theorem
5.6 which shows that weighted analytic functions on polygonal domains can be approximated with
exponential accuracy with respect to the number of parameters of the underlying neural network.

1.3 Outline

The manuscript is structured as follows: in Section 2, in particular Section 2.2, we review the
weighted function spaces which will be used to describe the weighted analytic function classes in
polytopes Ω that underlie our approximation results. In Section 2.3, we present an approximation
result by tensor-product hp-finite elements for functions from the weighted analytic class. A proof
of this result is provided in Appendix A. In Section 3, we review definitions of NNs and a “ReLU
calculus” from [12,43] whose operations will be required in the ensuing NN approximation results.

In Section 4, we state and prove the key results of the present paper. In Section 5, we illustrate
our results by deducing novel NN expression rate bounds for solution classes of several concrete
examples of elliptic boundary-value and eigenvalue problems where solutions belong to the weighted
analytic function classes introduced in Section 2. Some of the more technical proofs of Section 5
are deferred to Appendix B. In Section 6, we briefly recapitulate the principal mathematical results
of this paper and indicate possible consequences and further directions.

2 Setting and functional spaces

We start by recalling some general notation that will be used throughout the paper. We also
introduce some tools that are required to describe two and three dimensional domains as well as
the associated weighted Sobolev spaces.

2.1 Notation

For α ∈ Nd0, define |α| := α1 + · · · +αd and |α|∞ := max{α1, . . . , αd}. When we indicate a relation
on |α| or |α|∞ in the subscript of a sum, we mean the sum over all multi-indices that fulfill that
relation: e.g., for a k ∈ N0 ∑

|α|≤k
=

∑

α∈Nd
0

:|α|≤k
.

For a domain Ω ⊂ Rd, k ∈ N0 and for 1 ≤ p ≤ ∞, we indicate by W k,p(Ω) the classical Lp(Ω)-
based Sobolev space of order k. We write Hk(Ω) = W k,2(Ω). We introduce the norms ‖ · ‖W 1,p

mix
(Ω)

as
‖v‖p

W 1,p
mix

(Ω)
:=

∑

|α|∞≤1

‖∂αv‖pLp(Ω),
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with associated spaces

W 1,p
mix(Ω) :=

{
v ∈ Lp(Ω) : ‖v‖W 1,p

mix
(Ω) < ∞

}
.

We denote H1
mix(Ω) = W 1,2

mix(Ω). For Ω = I1 ×· · ·×Id, with bounded intervals Ij ⊂ R, j = 1, . . . , d,
H1

mix(Ω) = H1(I1) ⊗ · · · ⊗ H1(Id) with Hilbertian tensor products. Throughout, C will denote a
generic positive constant whose value may change at each appearance, even within an equation.

The ℓp-norm, 1 ≤ p ≤ ∞, on Rn is denoted by ‖x‖p. The number of nonzero entries of a vector
or matrix x is denoted by ‖x‖0.

Three dimensional domain. Let Ω ⊂ R3 be a bounded, polyhedral domain. Let C denote a set of
isolated points, situated either at the corners of Ω or in the interior of Ω (that we refer to as the
singular corners in either case, for simplicity), and let E be a subset of the edges of Ω (the singular
edges). Furthermore, denote by Ec ⊂ E the set of singular edges abutting at a corner c. For each
c ∈ C and each e ∈ E , we introduce the following weights:

rc(x) := |x− c| = dist(x, c), re(x) := dist(x, e), ρce(x) :=
re(x)

rc(x)
for x ∈ Ω.

For ε > 0, we define edge-, corner-, and corner-edge neighborhoods:

Ωεe :=

{
x ∈ Ω : re(x) < ε and rc(x) > ε,∀c ∈ C

}
,

Ωεc :=

{
x ∈ Ω : rc(x) < ε and ρce(x) > ε,∀e ∈ E

}
,

Ωεce :=

{
x ∈ Ω : rc(x) < ε and ρce(x) < ε

}
.

We fix a value ε̂ > 0 small enough so that Ωε̂c∩Ωε̂c′ = ∅ for all c 6= c′ ∈ C and Ωε̂ce∩Ωε̂ce′ = Ωε̂e∩Ωε̂e′ =
∅ for all singular edges e 6= e′. In the sequel, we omit the dependence of the neighborhoods on ε̂.
Let also

ΩC :=
⋃

c∈C
Ωc, ΩE :=

⋃

e∈E
Ωe, ΩCE :=

⋃

c∈C

⋃

e∈Ec

Ωce,

and
Ω0 := Ω \ (ΩC ∪ΩE ∪ΩCE).

In each subdomain Ωce and Ωe, for any multi-index α ∈ N3
0, we denote by α‖ the multi-index

whose component in the coordinate direction parallel to e is equal to the component of α in the
same direction, and which is zero in every other component. Moreover, we set α⊥ := α− α‖.

Two dimensional domain. Let Ω ⊂ R2 be a polygon. We adopt the convention that E := ∅. For
c ∈ C, we define

Ωεc :=

{
x ∈ Ω : rc(x) < ε

}
.

As in the three dimensional case, we fix a sufficiently small ε̂ > 0 so that Ωε̂c∩Ωε̂c′ = ∅ for c 6= c′ ∈ C
and write Ωc = Ωε̂c . Furthermore, ΩC is defined as for d = 3, and Ω0 := Ω \ΩC .
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2.2 Weighted spaces with nonhomogeneous norms

We introduce classes of weighted, analytic functions in space dimension d = 3, as arise in analytic
regularity theory for linear, elliptic boundary value problems in polyhedra, in the particular form
introduced in [8]. There, the structure of the weights is in terms of Cartesian coordinates which is
particularly suited for the presently adopted, tensorized approximation architectures.

The definition of the corresponding classes when d = 2 is analogous. For a weight exponent
vector γ = {γc, γe : c ∈ C, e ∈ E}, we introduce the nonhomogeneous, weighted Sobolev norms

‖v‖J k
γ (Ω) :=

∑

|α|≤k
‖∂αv‖L2(Ω0) +

∑

c∈C

∑

|α|≤k
‖r(|α|−γc)+

c ∂αv‖L2(Ωc)

+
∑

e∈E

∑

|α|≤k
‖r(|α⊥|−γe)+

e ∂αv‖L2(Ωe)

+
∑

c∈C

∑

e∈Ec

∑

|α|≤k
‖r(|α|−γc)+

c ρ(|α⊥|−γe)+

ce ∂αv‖L2(Ωce)

where (x)+ = max{0, x}. Moreover, we define the associated function space by

J k
γ (Ω; C, E) :=

{
v ∈ L2(Ω) : ‖v‖J k

γ (Ω) < ∞
}
.

Furthermore,

J ∞
γ (Ω; C, E) =

⋂

k∈N0

J k
γ (Ω; C, E).

For A,C > 0, we define the space of weighted analytic functions with nonhomogeneous norm as

J̟
γ (Ω; C, E ;C,A) :=

{
v ∈ J ∞

γ (Ω; C, E) :
∑

|α|=k
‖∂αv‖L2(Ω0) ≤ CAkk!,

∑

|α|=k
‖r(|α|−γc)+

c ∂αv‖L2(Ωc) ≤ CAkk! ∀c ∈ C,

∑

|α|=k
‖r(|α⊥|−γe)+

e ∂αv‖L2(Ωe) ≤ CAkk! ∀e ∈ E ,

∑

|α|=k
‖r(|α|−γc)+

c ρ(|α⊥|−γe)+

ce ∂αv‖L2(Ωce) ≤ CAkk!

∀c ∈ C and ∀e ∈ Ec,∀k ∈ N0

}
.

(2.1)
Finally, we denote

J̟
γ (Ω; C, E) :=

⋃

C,A>0

J̟
γ (Ω; C, E ;C,A).

2.3 Approximation of weighted analytic functions on tensor product geometric meshes

The approximation result of weighted analytic functions via NNs that we present below is based
on emulating an approximation strategy of tensor product hp-finite elements. In this section, we
present this hp-finite element approximation. Let I ⊂ R be an interval. A partition of I into N ∈ N
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intervals is a set G such that |G| = N , all elements of G are disjoint, connected, and open subsets
of I, and ⋃

U∈G
U = I.

We denote, for all p ∈ N0, by Qp(G) the piecewise polynomials of degree p on G.
One specific partition of I = (0, 1) is given by the one dimensional geometrically graded grid,

which for σ ∈ (0, 1/2] and ℓ ∈ N, is given by

Gℓ1 :=
{
Jℓk, k = 0, . . . , ℓ

}
, where Jℓ0 := (0, σℓ) and Jℓk := (σℓ−k+1, σℓ−k), k = 1, . . . , ℓ. (2.2)

Theorem 2.1 Let d ∈ {2, 3} and Q := (0, 1)d. Let C = {c} where c is one of the corners of Q and
let E = Ec contain the edges adjacent to c when d = 3, E = ∅ when d = 2. Further assume given
constants Cf , Af > 0, and

γ = {γc : c ∈ C}, with γc > 1, for all c ∈ C if d = 2,

γ = {γc, γe : c ∈ C, e ∈ E}, with γc > 3/2 and γe > 1, for all c ∈ C and e ∈ E if d = 3.

Then, there exist Cp > 0, CL > 0 such that, for every 0 < ε < 1, there exist p, L ∈ N with

p ≤ Cp(1 + |log(ε)|), L ≤ CL(1 + |log(ε)|),

so that there exist piecewise polynomials on I = (0, 1)

vi ∈ Qp(GL1 ) ∩H1(I), i = 1, . . . , N1d,

with N1d = (L + 1)p + 1, and, for all f ∈ J̟
γ (Q; C, E ;Cf , Af ) there exists a d-dimensional array

of coefficients
c =

{
ci1...id : (i1, . . . , id) ∈ {1, . . . , N1d}d

}

such that

1. For every i = 1, . . . N1d, supp(vi) intersects either a single interval or two neighboring subin-
tervals of GL1 . Furthermore, there exist constants Cv, bv depending only on Cf , Af , σ such
that

‖vi‖L∞(I) ≤ 1, ‖vi‖H1(I) ≤ Cvε
−bv , ∀i = 1, . . . , N1d. (2.3)

2. It holds that
∥∥∥∥∥∥
f −

N1d∑

i1,...,id=1

ci1...idφi1...id

∥∥∥∥∥∥
H1(Q)

≤ ε with φi1...id =

d⊗

j=1

vij , ∀i1, . . . , id = 1, . . . , N1d.

(2.4)
3. ‖c‖∞ ≤ C2(1 + |log(ε)|)d and ‖c‖1 ≤ Cc(1 + |log(ε)|)2d, for C2, Cc > 0 independent of p, L, ε.

We present the proof in Subsection A.9.3 after developing an appropriate framework of hp-approximation
in Section A.
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3 Basic ReLU neural network calculus

In the sequel, we distinguish between a neural network, as a collection of weights, and the associated
realization of the NN. This is a function that is determined through the weights and an activation
function. In this paper, we only consider the so-called ReLU activation:

̺ : R → R : x 7→ max{0, x}.

Definition 3.1 ([43, Definition 2.1]) Let d, L ∈ N. A neural network Φ with input dimension d
and L layers is a sequence of matrix-vector tuples

Φ =
(
(A1, b1), (A2, b2), . . . , (AL, bL)

)
,

where N0 := d and N1, . . . , NL ∈ N, and where Aℓ ∈ RNℓ×Nℓ−1 and bℓ ∈ RNℓ for ℓ = 1, ..., L.
For a NN Φ, we define the associated realization of the NN Φ as

R(Φ) : Rd → RNL : x 7→ xL =: R(Φ)(x),

where the output xL ∈ RNL results from

x0 := x,

xℓ := ̺(Aℓ xℓ−1 + bℓ), for ℓ = 1, . . . , L− 1,

xL := AL xL−1 + bL.

(3.1)

Here ̺ is understood to act component-wise on vector-valued inputs, i.e., for y = (y1, . . . , ym) ∈
Rm, ̺(y) := (̺(y1), . . . , ̺(ym)). We call N(Φ) := d+

∑L
j=1 Nj the number of neurons of the NN Φ,

L(Φ) := L the number of layers or depth, Mj(Φ) := ‖Aj‖0 + ‖bj‖0 the number of nonzero weights

in the j-th layer, and M(Φ) :=
∑L
j=1 Mj(Φ) the number of nonzero weights of Φ, also referred to

as its size. We refer to NL as the dimension of the output layer of Φ.

3.1 Concatenation, parallelization, emulation of identity

An essential component in the ensuing proofs is to construct NNs out of simpler building blocks. For
instance, given two NNs, we would like to identify another NN so that the realization of it equals the
sum or the composition of the first two NNs. To describe these operations precisely, we introduce
a formalism of operations on NNs below. The first of these operations is the concatenation.

Proposition 3.2 (NN concatenation, [43, Remark 2.6]) Let L1, L2 ∈ N, and let Φ1, Φ2 be
two NNs of respective depths L1 and L2 such that N1

0 = N2
L2

=: d, i.e., the input layer of Φ1 has
the same dimension as the output layer of Φ2.

Then, there exists a NN Φ1 ⊙Φ2, called the sparse concatenation of Φ1 and Φ2, such that Φ1 ⊙Φ2

has L1 + L2 layers, R(Φ1 ⊙ Φ2) = R(Φ1) ◦ R(Φ2) and M
(
Φ1 ⊙ Φ2

)
≤ 2 M

(
Φ1
)

+ 2 M
(
Φ2
)
.

The second fundamental operation on NNs is parallelization, achieved with the following construc-
tion.

Proposition 3.3 (NN parallelization, [43, Definition 2.7]) Let L, d ∈ N and let Φ1, Φ2 be
two NNs with L layers and with d-dimensional input each. Then there exists a NN P(Φ1, Φ2) with
d-dimensional input and L layers, which we call the parallelization of Φ1 and Φ2, such that

R
(
P
(
Φ1, Φ2

))
(x) =

(
R
(
Φ1
)

(x),R
(
Φ2
)

(x)
)
, for all x ∈ Rd

and M(P(Φ1, Φ2)) = M(Φ1) + M(Φ2).
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Proposition 3.3 requires two NNs to have the same depth. If two NNs have different depth, then
we can artificially enlarge one of them by concatenating with a NN that implements the identity.
One possible construction of such a NN is presented next.

Proposition 3.4 (NN emulation of Id, [43, Remark 2.4]) For every d, L ∈ N there exists a
NN ΦId

d,L with L(ΦId
d,L) = L and M(ΦId

d,L) ≤ 2dL, such that R(ΦId
d,L) = IdRd .

Finally, we sometimes require a parallelization of NNs that do not share inputs.

Proposition 3.5 (Full parallelization of NNs with distinct inputs, [12, Setting 5.2]) Let
L ∈ N and let

Φ1 =
((
A1

1, b
1
1

)
, . . . ,

(
A1
L, b

1
L

))
, Φ2 =

((
A2

1, b
2
1

)
, . . . ,

(
A2
L, b

2
L

))

be two NNs with L layers each and with input dimensions N1
0 = d1 and N2

0 = d2, respectively.
Then there exists a NN, denoted by FP(Φ1, Φ2), with d-dimensional input where d = (d1 + d2)

and L layers, which we call the full parallelization of Φ1 and Φ2, such that for all x = (x1, x2) ∈ Rd

with xi ∈ Rdi , i = 1, 2

R
(
FP
(
Φ1, Φ2

))
(x1, x2) =

(
R
(
Φ1
)

(x1),R
(
Φ2
)

(x2)
)

and M(FP(Φ1, Φ2)) = M(Φ1) + M(Φ2).

Proof Set FP
(
Φ1, Φ2

)
:=
((
A3

1, b
3
1

)
, . . . ,

(
A3
L, b

3
L

))
where, for j = 1, . . . , L, we define

A3
j :=

(
A1
j 0

0 A2
j

)
and b3

j :=

(
b1
j

b2
j

)
.

All properties of FP
(
Φ1, Φ2

)
claimed in the statement of the proposition follow immediately from

the construction. ⊓⊔

3.2 Emulation of multiplication and piecewise polynomials

In addition to the basic operations above, we use two types of functions that we can approximate
especially efficiently with NNs. These are high dimensional multiplication functions and univariate
piecewise polynomials. We first give the result of an emulation of a multiplication in arbitrary
dimension.

Proposition 3.6 ([16, Lemma C.5], [42, Proposition 2.6]) There exists a constant C > 0
such that, for every 0 < ε < 1, d ∈ N and M ≥ 1 there is a NN Πd

ε,M with d-dimensional input-
and one-dimensional output, so that

∣∣∣∣∣

d∏

ℓ=1

xℓ − R(Πd
ε,M )(x)

∣∣∣∣∣ ≤ ε, for all x = (x1, . . . , xd) ∈ [−M,M ]d,

∣∣∣∣∣
∂

∂xj

d∏

ℓ=1

xℓ − ∂

∂xj
R(Πd

ε,M )(x)

∣∣∣∣∣ ≤ ε,
for almost every x = (x1, . . . , xd) ∈ [−M,M ]d

and all j = 1, . . . , d,

and R(Πd
ε,M )(x) = 0 if

∏d
ℓ=1 xℓ = 0, for all x = (x1, . . . , xd) ∈ Rd. Additionally, Πd

ε,M satisfies

max
{

L
(
Πd
ε,M

)
,M
(
Πd
ε,M

)}
≤ C

(
1 + d log(dMd/ε)

)
.
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In addition to the high-dimensional multiplication, we can efficiently approximate univariate
continuous, piecewise polynomial functions by realizations of NNs with the ReLU activation func-
tion.

Proposition 3.7 ([41, Proposition 5.1]) There exists a constant C > 0 such that, for all Nint ∈
N and p = (pi)i∈{1,...,Nint} ⊂ N, for all partitions T of I = (0, 1) into Nint open, disjoint, connected
subintervals Ii, i = 1, . . . , Nint, for all v ∈ Sp(I, T ) := {v ∈ H1(I) : v|Ii

∈ Ppi
(Ii), i = 1, . . . , Nint},

and for every 0 < ε < 1, there exist NNs {Φv,T ,pε }ε∈(0,1) such that for all 1 ≤ q′ ≤ ∞ it holds that
∥∥v − R

(
Φv,T ,pε

)∥∥
W 1,q′ (I)

≤ ε |v|W 1,q′ (I) ,

L
(
Φv,T ,pε

)
≤C(1 + log(pmax)) (pmax + |log ε|) ,

M
(
Φv,T ,pε

)
≤CNint(1 + log(pmax)) (pmax + |log ε|) + C

Nint∑

i=1

pi (pi + | log ε|) ,

where pmax := max{pi : i = 1, . . . , Nint}. In addition, R
(
Φv,T ,pε

)
(xj) = v(xj) for all j ∈ {0, . . . , Nint},

where {xj}Nint

j=0 are the nodes of T .

Remark 3.8 It is not hard to see that the result holds also for I = (a, b), where a, b ∈ R, with C > 0
depending on (b−a). Indeed, for any v ∈ H1((a, b)) the concatenation of v with the invertible, affine
map T : x 7→ (x− a)/(b− a) is in H1((0, 1)). Applying Proposition 3.7 yields NNs {Φv,T ,pε }ε∈(0,1)

approximating v ◦ T to an appropriate accuracy. Concatenating these networks with the 1-layer
NN (A1, b1), where A1x+ b1 = T−1x yields the result. The explicit dependence of C > 0 on (b−a)
can be deduced from the error bounds in (0, 1) by affine transformation.

4 Exponential approximation rates by realizations of NNs

We now establish several technical results on the exponentially consistent approximation by real-
izations of NNs with ReLU activation of univariate and multivariate tensorized polynomials. These
results will be used to establish Theorem 4.3, which yields exponential approximation rates of NNs
for functions in the weighted, analytic classes introduced in Section 2.2. They are of independent
interest, as they imply that spectral and pseudospectral methods can, in principle, be emulated by
realizations of NNs with ReLU activation.

4.1 NN-based approximation of univariate, piecewise polynomial functions

We start with the following corollary to Proposition 3.7. It quantifies stability and consistency of
realizations of NNs with ReLU activation for the emulation of the univariate, piecewise polynomial
basis functions in Theorem 2.1.

Corollary 4.1 Let I = (a, b) ⊂ R be a bounded interval. Fix Cp > 0, Cv > 0, and bv > 0. Let
0 < εhp < 1 and p,N1d, Nint ∈ N be such that p ≤ Cp(1 + |log εhp|) and let G1d be a partition
of I into Nint open, disjoint, connected subintervals and, for i ∈ {1, . . . , N1d}, let vi ∈ Qp(G1d) ∩
H1(I) be such that supp(vi) intersects either a single interval or two adjacent intervals in G1d and
‖vi‖H1(I) ≤ Cvε

−bv

hp , for all i ∈ {1, . . . , N1d}.
Then, for every 0 < ε1 ≤ εhp, and for every i ∈ {1, . . . , N1d}, there exists a NN Φvi

ε1
such that

∥∥vi − R
(
Φvi
ε1

)∥∥
H1(I)

≤ ε1|vi|H1(I), (4.1)

L
(
Φvi
ε1

)
≤ C4(1 + |log(ε1)|)(1 + log(1 + |log(ε1)|)), (4.2)

M
(
Φvi
ε1

)
≤ C5(1 + |log(ε1)|2), (4.3)
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for constants C4, C5 > 0 depending on Cp > 0, Cv > 0, bv > 0 and (b − a) only. In addition,

R
(
Φvi
ε1

)
(xj) = vi(xj) for all i ∈ {1, . . . , N1d} and j ∈ {0, . . . , Nint}, where {xj}Nint

j=0 are the nodes
of G1d.

Proof Let i = 1, . . . , N1d. For vi as in the assumption of the corollary, we have that either
supp(vi) = J for a unique J ∈ G1d or supp(vi) = J ∪ J ′ for two neighboring intervals J, J ′ ∈ G1d.
Hence, there exists a partition Ti of I of at most four subintervals so that vi ∈ Sp(I, Ti), where
p = (pi)i∈{1,...,4}.

Because of this, an application of Proposition 3.7 with q′ = 2 and Remark 3.8 yields that for
every 0 < ε1 ≤ εhp < 1 there exists a NN Φvi

ε1
:= Φvi,Ti,p

ε1
such that (4.1) holds. In addition, by

invoking p . 1 + |log(εhp)| ≤ 1 + |log(ε1)|, we observe that

L
(
Φvi
ε1

)
≤ C(1 + log(p)) (p+ |log (ε1)|) . 1 + |log(ε1)| (1 + log(1 + |log(ε1)|)).

Therefore, there exists C4 > 0 such that (4.2) holds. Furthermore,

M
(
Φvi
ε1

)
≤ 4C(1 + log(p)) (p+ |log (ε1)|) + C

4∑

i=1

p(p+ |log (ε1)|)

. p2 + |log (ε1)| p+ (1 + log(p)) (p+ |log (ε1)|) .
We use p . 1 + |log(ε1)| and obtain that there exists C5 > 0 such that (4.3) holds. ⊓⊔

4.2 Emulation of functions with singularities in cubic domains by NNs

Below we state a result describing the efficiency of re-approximating continuous, piecewise tensor
product polynomial functions in a cubic domain, as introduced in Theorem 2.1, by realizations of
NNs with the ReLU activation function.

Theorem 4.2 Let d ∈ {2, 3}, let I = (a, b) ⊂ R be a bounded interval, and let Q = Id. Suppose
that there exist constants Cp > 0, CN1d

> 0, Cv > 0, Cc > 0, bv > 0, and, for 0 < ε ≤ 1, assume
there exist p,N1d, Nint ∈ N, and c ∈ RN1d×···×N1d , such that

N1d ≤ CN1d
(1 + |log ε|2), ‖c‖1 ≤ Cc(1 + |log ε|2d), p ≤ Cp(1 + |log ε|).

Further, let G1d be a partition of I into Nint open, disjoint, connected subintervals and let, for all
i ∈ {1, . . . , N1d}, vi ∈ Qp(G1d) ∩H1(I) be such that supp(vi) intersects either a single interval or
two neighboring subintervals of G1d and

‖vi‖H1(I) ≤ Cvε
−bv , ‖vi‖L∞(I) ≤ 1, ∀i ∈ {1, . . . , N1d}.

Then, there exists a NN Φε,c such that
∥∥∥∥∥∥

N1d∑

i1,...,id=1

ci1...id

d⊗

j=1

vij − R (Φε,c)

∥∥∥∥∥∥
H1(Q)

≤ ε. (4.4)

Furthermore, it holds that ‖R (Φε,c)‖L∞(Q) ≤ (2d + 1)Cc(1 + |log ε|2d),

M(Φε,c) ≤ C(1 + |log ε|2d+1
), L(Φε,c) ≤ C(1 + |log ε| log(|log ε|)),

where C > 0 depends on Cp, CN1d
, Cv, Cc, bv, d, and (b− a) only.

Proof Assume I 6= ∅ as otherwise there is nothing to show. Let CI ≥ 1 be such that C−1
I ≤ (b−a) ≤

CI . Let cv,max := max{‖vi‖H1(I) : i ∈ {1, . . . , N1d}} ≤ Cvε
−bv , let ε1 := min{ε/(2 ·d · (cv,max + 1)d ·

‖c‖1), 1/2, C
−1/2
I C−1

v εbv }, and let ε2 := min{ε/(2 · (
√
d+ 1) · Cd/2

I · (cv,max + 1) · ‖c‖1), 1/2}.
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Construction of the neural network. Invoking Corollary 4.1 we choose, for i = 1, . . . , N1d, NNs Φvi
ε1

so that ∥∥R(Φvi
ε1

) − vi
∥∥
H1(I)

≤ ε1|vi|H1(I) ≤ ε1cv,max ≤ Cvε1ε
−bv ≤ 1.

It follows that for all i ∈ {1, . . . , N1d}
∥∥R
(
Φvi
ε1

)∥∥
H1(I)

≤
∥∥R
(
Φvi
ε1

)
− vi

∥∥
H1(I)

+ ‖vi‖H1(I) ≤ 1 + cv,max (4.5)

and that, by Sobolev imbedding,

∥∥R
(
Φvi
ε1

)∥∥
L∞(I)

≤
∥∥R
(
Φvi
ε1

)
− vi

∥∥
L∞(I)

+ ‖vi‖L∞(I) ≤ C
1/2
I

∥∥R
(
Φvi
ε1

)
− vi

∥∥
H1(I)

+ 1

≤ C
1/2
I Cvε1ε

−bv + 1 ≤ 2.
(4.6)

Then, let Φbasis be the NN defined as

Φbasis := FP
(

P(Φv1

ε1
, . . . , Φ

vN1d
ε1

), . . . ,P(Φv1

ε1
, . . . , Φ

vN1d
ε1

)
)
, (4.7)

where the full parallelization is of d copies of P(Φv1
ε1
, . . . , Φ

vN1d
ε1

). Note that Φbasis is a NN with
d-dimensional input and dN1d-dimensional output. Subsequently, we introduce the Nd

1d matrices
E(i1,...,id) ∈ {0, 1}d×dN1d such that, for all (i1, . . . , id) ∈ {1, . . . , N1d}d,

E(i1,...,id)a = {a(j−1)N1d+ij : j = 1, . . . , d}, for all a = (a1, . . . , adN1d
) ∈ RdN1d .

Note that, for all (i1, . . . , id) ∈ {1, . . . , N1d}d,

R(((E(i1,...,id), 0)) ⊙ Φbasis) : (x1, . . . , xd) 7→
{

R(Φ
vij
ε1

)(xj) : j = 1, . . . , d
}
.

Then, we set

Φε := P
(
Πd
ε2,2 ⊙ ((E(i1,...,id), 0)) : (i1, . . . , id) ∈ {1, . . . , N1d}d

)
⊙ Φbasis, (4.8)

where Πd
ε2,2 is according to Proposition 3.6. Note that, by (4.6), the inputs of Πd

ε2,2 are bounded
in absolute value by 2. Finally, we define

Φε,c := ((vec(c)⊤, 0)) ⊙ Φε,

where vec(c) ∈ RN
d
1d is the reshaping defined by, for all (i1, . . . , id) ∈ {1, . . . , N1d}d,

(vec(c))i = ci1...id , with i = 1 +

d∑

j=1

(ij − 1)N j−1
1d . (4.9)

See Figure 4.1 for a schematic representation of the NN Φε,c.
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Fig. 4.1: Schematic representation of the neural network Φε,c, for the case d = 2 con-
structed in the proof of Theorem 4.2. The circles represent subnetworks (i.e., the neural
networks Φvi

ε1
, Πd

ε2,2, and ((vec(c)⊤, 0))). Along some branches, we indicate Φi,k(x1, x2) =

R
(
Π2
ε2,2 ⊙ ((E(i,k), 0)) ⊙ Φbasis

)
(x1, x2).

Approximation accuracy. Let us now analyze if Φε,c has the asserted approximation accuracy.
Define, for all (i1, . . . , id) ∈ {1, . . . , N1d}d

φi1...id =
d⊗

j=1

vij ,

Furthermore, for each (i1, . . . , id) ∈ {1, . . . , N1d}d, let Φi1...id denote the NNs

Φi1...id = Πd
ε2,2 ⊙ ((E(i1,...,id), 0)) ⊙ Φbasis.

We estimate by the triangle inequality that
∥∥∥∥∥∥

N1d∑

i1,...,id=1

ci1...idφi1...id − R(Φε,c)

∥∥∥∥∥∥
H1(Q)

=

∥∥∥∥∥∥

N1d∑

i1,...,id=1

ci1...idφi1...id −
N1d∑

i1,...,id=1

ci1...id R(Φi1...id)

∥∥∥∥∥∥
H1(Q)

≤
N1d∑

i1,...,id=1

|ci1...id | ‖φi1...id − R(Φi1...id)‖H1(Q) .

(4.10)
We have that

‖φi1...id − R(Φi1...id)‖H1(Q) =

∥∥∥∥∥∥

d⊗

j=1

vij − R
(
Πd
ε2,2

)
◦
[
R
(
Φ
vi1
ε1

)
, . . . ,R

(
Φ
vid
ε1

)]
∥∥∥∥∥∥
H1(Q)
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and, by another application of the triangle inequality, we have that

‖φi1...id − R (Φi1...id)‖H1(Q) ≤

∥∥∥∥∥∥

d⊗

j=1

vij −
d⊗

j=1

R
(
Φ
vij
ε1

)
∥∥∥∥∥∥
H1(Q)

+

∥∥∥∥∥∥

d⊗

j=1

R
(
Φ
vij
ε1

)
− R

(
Πd
ε2,2

)
◦
[
R
(
Φ
vi1
ε1

)
, . . . ,R

(
Φ
vid
ε1

)]
∥∥∥∥∥∥
H1(Q)

≤

∥∥∥∥∥∥

d⊗

j=1

vij −
d⊗

j=1

R
(
Φ
vij
ε1

)
∥∥∥∥∥∥
H1(Q)

+ (
√
d+ 1)ε2C

d/2
I (cv,max + 1),

(4.11)

where the last estimate follows from Proposition 3.6 and the chain rule:
∥∥∥∥∥∥

d⊗

j=1

R
(
Φ
vij
ε1

)
− R

(
Πd
ε2,2

)
◦
[
R
(
Φ
vi1
ε1

)
, . . . ,R

(
Φ
vid
ε1

)]
∥∥∥∥∥∥
L2(Q)

≤ ε2C
d/2
I

and
∣∣∣∣∣∣

d⊗

j=1

R
(
Φ
vij
ε1

)
− R

(
Πd
ε2,2

)
◦
[
R
(
Φ
vi1
ε1

)
, . . . ,R

(
Φ
vid
ε1

)]
∣∣∣∣∣∣

2

H1(Q)

=

d∑

k=1

∥∥∥∥∥∥
∂

∂xk

d⊗

j=1

R
(
Φ
vij
ε1

)
− ∂

∂xk
R
(
Πd
ε2,2

)
◦
[
R
(
Φ
vi1
ε1

)
, . . . ,R

(
Φ
vid
ε1

)]
∥∥∥∥∥∥

2

L2(Q)

=

d∑

k=1

∥∥∥∥∥∥∥∥




d⊗

j=1
j 6=k

R
(
Φ
vij
ε1

)
−
(

∂

∂xk
R
(
Πd
ε2,2

))
◦
[
R
(
Φ
vi1
ε1

)
, . . . ,R

(
Φ
vid
ε1

)]


(
∂

∂x
R
(
Φ
vik
ε1

))
∥∥∥∥∥∥∥∥

2

L2(Q)

≤
d∑

k=1

ε2
2C

d−1
I

∥∥∥∥
∂

∂x
R
(
Φ
vik
ε1

)∥∥∥∥
2

L2(I)

≤ dε2
2C

d−1
I (cv,max + 1)2,

where we used (4.5) and the fact that R(Φ
vik
ε1

) depends only on xk. Integrating over the d−1 other
coordinates in Q gives the factor Cd−1

I . We now use (4.6) to bound the first term in (4.11): for
d = 3, we have that, for all (i1, . . . , id) ∈ {1, . . . , N1d}d,

∥∥∥∥∥∥

d⊗

j=1

vij −
d⊗

j=1

R
(
Φ
vij
ε1

)
∥∥∥∥∥∥
H1(Q)

≤

∥∥∥∥∥∥
(vi1 − R(Φ

vi1
ε1

)) ⊗
d⊗

j=2

vij

∥∥∥∥∥∥
H1(Q)

+
∥∥∥R
(
Φ
vij
ε1

)
⊗
(
vi2 − R

(
Φ
vi2
ε1

))
⊗ vid

∥∥∥
H1(Q)

+

∥∥∥∥∥∥

d−1⊗

j=1

R(Φ
vij
ε1

) ⊗ (vid − R(Φ
vid
ε1

))

∥∥∥∥∥∥
H1(Q)

=: (I).
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For d = 2, we end up with a similar estimate with only two terms. By the tensor product structure,
it is clear that (I) ≤ dε1(cv,max + 1)d. We have from (4.10) and the considerations above that
∥∥∥∥∥∥

N1d∑

i1,...,id=1

ci1...idφi1...id − R (Φε,c)

∥∥∥∥∥∥
H1(Q)

≤ ‖c‖1

(
dε1(cv,max + 1)d + (

√
d+ 1)ε2C

d/2
I (cv,max + 1)

)

≤ ε.

This yields (4.4).

Bound on the L∞-norm of the neural network. As we have already shown,
∥∥R
(
Φvi
ε1

)∥∥
L∞(I)

≤ 2.

Therefore, by Proposition 3.6, ‖R (Φε)‖L∞(Q) ≤ 2d + ε2. It follows that

‖R (Φε,c)‖L∞(Q) ≤ ‖c‖1

(
2d + ε2

)
≤ (2d + 1)Cc(1 + |log ε|2d).

Size of the neural network. Bounds on the size and depth of Φε,c follow from Proposition 3.6 and
Corollary 4.1. Specifically, we start by remarking that there exists a constant C1 > 0 depending
on Cv, bv, Cc, CI and d only, such that |log(ε1)| ≤ C1(1 + |log ε|) and |log(ε2)| ≤ C1(1 + |log ε|).
Then, by Corollary 4.1, there exist constants C4, C5 > 0 depending on Cp, Cv, bv, Cc, (b− a), and
d only such that for all i = 1, . . . , N1d,

L
(
Φvi
ε1

)
≤ C4(1 + |log ε|)(1 + log(1 + |log ε|)) and M

(
Φvi
ε1

)
≤ C5(1 + |log ε|2).

Hence, by Propositions 3.5 and 3.3, there exist C6, C7 > 0 depending on Cp, Cv, bv, Cc, (b−a), and
d only such that

L(Φbasis) ≤ C6(1 + |log ε|)(1 + log(1 + |log ε|)) and M(Φbasis) ≤ C7dN1d(1 + |log ε|2).

Then, remarking that for all (i1, . . . , id) ∈ {1, . . . , N1d}d it holds that ‖E(i1,...,id)‖0 = d and, by
Propositions 3.2, 3.6, and 3.3, we have

L(Φε) ≤ C8(1 + |log ε|)(1 + log(1 + |log ε|)), M(Φε) ≤ C9

(
Nd

1d(1 + |log ε|) + M(Φbasis)
)
.

For C8, C9 > 0 depending on Cp, Cv, bv, Cc, (b − a) and d only. Finally, we conclude that there
exists a constant C10 > 0 depending on Cp, Cv, bv, Cc, (b− a) and d only, such that

L(Φε,c) ≤ C10(1 + |log ε|)(1 + log(1 + |log ε|)).

Using also the fact that N1d ≤ CN1d
(1 + |log ε|2) and since d ≥ 2,

M(Φε,c) ≤ C11(1 + |log ε|)2d+1,

for a constant C11 > 0 depending on Cp, CN1d
, Cv, bv, Cc, (b− a) and d only. ⊓⊔

Next, we state our main approximation result, which describes the approximation of singular
functions in (0, 1)d by realizations of NNs.
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Theorem 4.3 Let d ∈ {2, 3} and Q := (0, 1)d. Let C = {c} where c is one of the corners of Q and
let E = Ec contain the edges adjacent to c when d = 3, E = ∅ when d = 2. Assume furthermore
that Cf , Af > 0, and

γ = {γc : c ∈ C}, with γc > 1, for all c ∈ C if d = 2,

γ = {γc, γe : c ∈ C, e ∈ E}, with γc > 3/2 and γe > 1, for all c ∈ C and e ∈ E if d = 3.

Then, for every f ∈ J̟
γ (Q; C, E ;Cf , Af ) and every 0 < ε < 1, there exists a NN Φε,f so that

‖f − R (Φε,f )‖H1(Q) ≤ ε. (4.12)

In addition, ‖ R (Φε,f ) ‖L∞(Q) = O(|log ε|2d) for ε → 0. Also, M(Φε,f ) = O(|log ε|2d+1
) and

L(Φε,f ) = O(|log ε| log(|log ε|)), for ε → 0.

Proof Denote I := (0, 1) and let f ∈ J̟
γ (Q; C, E ;Cf , Af ) and 0 < ε < 1. Then, by Theorem 2.1

(applied with ε/2 instead of ε) there exists N1d ∈ N so that N1d = O((1+|log ε|)2), c ∈ RN1d×···×N1d

with ‖c‖1 ≤ Cc(1 + |log ε|2d), and, for all (i1, . . . , id) ∈ {1, . . . , N1d}d,

φi1...id =

d⊗

j=1

vij ,

such that the hypotheses of Theorem 4.2 are met, and
∥∥∥∥∥∥
f −

N1d∑

i1,...id=1

ci1...idφi1...id

∥∥∥∥∥∥
H1(Q)

≤ ε

2
.

We have, by Theorem 2.1 and the triangle inequality, that for Φε,f := Φε/2,c

‖f − R(Φε,f )‖H1(Q) ≤ ε

2
+

∥∥∥∥∥∥

N1d∑

i1,...,id=1

ci1...idφi1...id − R(Φε/2,c)

∥∥∥∥∥∥
H1(Q)

.

Then, the application of Theorem 4.2 (with ε/2 instead of ε) concludes the proof of (4.12).
Finally, the bounds on L(Φε,f ) = L(Φε/2,c), M(Φε,f ) = M(Φε/2,c), and on ‖ R(Φε,f )‖L∞(Q) =
‖ R(Φε/2,c)‖L∞(Q) follow from the corresponding estimates of Theorem 4.2. ⊓⊔

Theorem 4.3 admits a straightforward generalization to functions with multivariate output, so
that each coordinate is a weighted analytic function with the same regularity. Here, we denote for
a NN Φ with N -dimensional output, N ∈ N, by R(Φ)n the n-th component of the output (where
n ∈ {1, . . . , N}).

Corollary 4.4 Let d ∈ {2, 3} and Q := (0, 1)d. Let C = {c} where c is one of the corners of Q and
let E = Ec contain the edges adjacent to c when d = 3; E = ∅ when d = 2. Let Nf ∈ N. Further
assume that Cf , Af > 0, and

γ = {γc : c ∈ C}, with γc > 1, for all c ∈ C if d = 2,

γ = {γc, γe : c ∈ C, e ∈ E}, with γc > 3/2 and γe > 1, for all c ∈ C and e ∈ E if d = 3.

Then, for all f = (f1, . . . , fNf
) ∈

[
J̟
γ (Q; C, E ;Cf , Af )

]Nf

and every 0 < ε < 1, there exists a NN

Φε,f with d-dimensional input and Nf -dimensional output such that, for all n = 1, . . . , Nf ,
∥∥fn − R (Φε,f )n

∥∥
H1(Q)

≤ ε. (4.13)
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In addition, ‖ R(Φε,f )n‖L∞(Q) = O(|log ε|2d) for every n = {1, . . . , Nf}, M(Φε,f ) = O(|log ε|2d+1
+

Nf |log ε|2d) and L(Φε,f ) = O(|log ε| log(|log ε|)), for ε → 0.

Proof Let Φε be as in (4.8) and let c(n) ∈ RN1d×···×N1d , n = 1, . . . , Nf be the matrices of coefficients
such that, in the notation of the proof of Theorems 4.2 and 4.3, for all n ∈ {1, . . . , Nf},

∥∥∥∥∥∥
fn −

N1d∑

i1,...id=1

c
(n)
i1...id

φi1...id

∥∥∥∥∥∥
H1(Q)

≤ ε

2
.

We define, for vec as defined in (4.9), the NN Φε,f as

Φε,f := P
(

((vec(c(1))⊤, 0)), . . . , ((vec(c(Nf ))⊤, 0))
)

⊙ Φε.

The estimate (4.13) and the L∞-bound then follow from Theorem 4.2. The bound on L(Φε,f )
follows directly from Theorem 4.2 and Proposition 3.2. Finally, the bound on M(Φε,f ) follows by
Theorem 4.2 and Proposition 3.2, as well as, from the observation that

M
(

P
(

((vec(c(1))⊤, 0)), . . . , ((vec(c(Nf ))⊤, 0))
))

≤ NfN
d
1d ≤ CNf (1 + |log ε|2d),

for a constant C > 0 independent of Nf and ε. ⊓⊔

5 Exponential expression rates for weighted analytic solution classes of PDEs

In this section, we develop Theorem 4.3 into several exponentially decreasing upper bounds for the
rates of approximation, by realizations of NNs with ReLU activation, for solution classes to elliptic
PDEs with singular data (such as singular coefficients or domains with nonsmooth boundary).
In particular, we consider elliptic PDEs in two-dimensional general polygonal domains, in three-
dimensional domains that are a union of cubes, and elliptic eigenvalue problems with isolated point
singularities in the potential which arise in models of electron structure in quantum mechanics.

In each class of examples, the solution sets belong to the class of weighted analytic functions
introduced in Subsection 2.2. However, the approximation rates established in Section 4 only hold
on tensor product domains with singularities on the boundary. Therefore, we will first extend the
exponential NN approximation rates to functions which exhibit singularities on a set of isolated
points internal to the domain, arising from singular potentials of nonlinear Schrödinger operators.
In Section 5.2, we demonstrate, using an argument based on a partition of unity, that the approx-
imation problem on general polygonal domains can be reduced to that on tensor product domains
and Fichera-type domains, and establish exponential NN expression rates for linear elliptic source
and eigenvalue problems. In Section 5.3, we show exponential NN expression rates for classes of
weighted analytic functions on two- and three-dimensional Fichera-type domains.

5.1 Nonlinear eigenvalue problems with isolated point singularities

Point singularities emerge in the solutions of elliptic eigenvalue problems, as arise, for example,
for electrostatic interactions between charged particles that are modeled mathematically as point
sources in R3. Other problems that exhibit point singularities appear in general relativity, and for
electron structure models in quantum mechanics. We concentrate here on the expression rate of “ab
initio” NN approximation of the electron density near isolated singularities of the nuclear potential.
Via a ReLU-based partition of unity argument, an exponential approximation rate bound for a
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single, isolated point singularity in Theorem 5.1 is extended in Corollary 5.4 to electron densities
corresponding to potentials with multiple point singularities at a priori known locations, modeling
(static) molecules.

The numerical approximation in ab initio electron structure computations with NNs has been
recently reported to be competitive with other established, methodologies (e.g. [44,25] and the ref-
erences there). The exponential ReLU expression rate bounds obtained here can, in part, underpin
competitive performances of NNs in (static) electron structure computations.

We recall that all NNs are realized with the ReLU activation function, see (3.1).

5.1.1 Nonlinear Schrödinger equations

Let Ω = Rd/(2Z)d, where d ∈ {2, 3}, be a flat torus and let V : Ω → R be a potential such that
V (x) ≥ V0 > 0 for all x ∈ Ω and there exists δ > 0 and AV > 0 such that

‖r2+|α|−δ∂αV ‖L∞(Ω) ≤ A
|α|+1
V |α|!, ∀α ∈ Nd0, (5.1)

where r(x) = dist(x, (0, . . . , 0)). For k ∈ {0, 1, 2}, we introduce the Schrödinger eigenproblem that
consists in finding the smallest eigenvalue λ ∈ R and an associated eigenfunction u ∈ H1(Ω) such
that

(−∆+ V + |u|k)u = λu in Ω, ‖u‖L2(Ω) = 1. (5.2)

The following approximation result holds.

Theorem 5.1 Let k ∈ {0, 1, 2} and (λ, u) ∈ R×H1(Ω)\{0} be a solution of the eigenvalue problem
(5.2) with minimal λ, where V satisfies (5.1).

Then, for every 0 < ε ≤ 1 there exists a NN Φε,u such that

‖u− R (Φε,u)‖H1(Q) ≤ ε. (5.3)

In addition, as ε → 0,

M(Φε,u) = O(| log(ε)|2d+1), L(Φε,u) = O(| log(ε)| log(| log(ε)|)) .

Proof Let C = {(0, . . . , 0)} and E = ∅. The regularity of u is a consequence of [34, Theorem 2] (see
also [35, Corollary 3.2] for the linear case k = 0): there exists γc > d/2 and Cu, Au > 0 such that
u ∈ J̟

γc
(Ω; C, E ;Cu, Au). Here, γc and the constants Cu and Au depend only on V0, AV and δ in

(5.1), and on k in (5.2).
Then, for all 0 < ε ≤ 1, by Theorems 4.2 and A.25, there exists a NN Φε,u such that (5.3)

holds. Furthermore, there exist constants C1, C2 > 0 dependent only on V0, AV , δ, and k, such
that

M(Φε,u) ≤ C1(1 + | log(ε)|2d+1) and L(Φε,u) ≤ C2

(
1 + | log(ε)|

)(
1 + log(1 + | log(ε)|)

)
.

⊓⊔
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5.1.2 Hartree-Fock model

The Hartree-Fock model is an approximation of the full many-body representation of a quantum
system under the Born-Oppenheimer approximation, where the many-body wave function is re-
placed by a sum of Slater determinants. Under this hypothesis, for M,N ∈ N, the Hartree-Fock
energy of a system with N electrons and M nuclei with positive charges Zi at isolated locations
Ri ∈ R3, reads

EHF = inf

{ N∑

i=1

∫

R3

(
|∇ϕi|2 + V |ϕi|2

)
+

1

2

∫

R3

∫

R3

ρ(x)ρ(y)

‖x− y‖2

dxdy − 1

2

∫

R3

∫

R3

τ(x, y)2

‖x− y‖2

dxdy :

(ϕ1, . . . , ϕN ) ∈ H1(R3)N such that

∫

R3

ϕiϕj = δij

}
, (5.4)

where δij is the Kronecker delta, V (x) = −∑M
i=1 Zi/ ‖x−Ri‖2, τ(x, y) =

∑N
i=1 ϕi(x)ϕi(y), and

ρ(x) = τ(x, x), see, e.g., [30,31]. The Euler-Lagrange equations of (5.4) read

(−∆+V (x))ϕi(x)+

∫

R3

ρ(y)

‖x− y‖2

dyϕi(x)−
∫

R3

τ(x, y)

‖x− y‖2

ϕi(y)dy = λiϕi(x), i = 1, . . . , N, and x ∈ R3

(5.5)
with

∫
R3 ϕiϕj = δij .

Remark 5.2 It has been shown in [30] that, if
∑M
k=1 Zk > N − 1, there exists a ground state

ϕ1, . . . , ϕN of (5.4), solution to (5.5).

The following statement gives exponential expression rate bounds of the NN-based approximation
of electronic wave functions in the vicinity of one singularity (corresponding to the location of a
nucleus) of the potential.

Theorem 5.3 Assume that (5.5) has N real eigenvalues λ1, . . . , λN with associated eigenfunctions
ϕ1, . . . , ϕN , such that

∫
R3 ϕiϕj = δij. Fix k ∈ {1, . . . ,M}, let Rk be one of the singularities of V

and let a > 0 such that ‖Rj −Rk‖∞ > 2a for all j ∈ {1, . . . ,M} \ {k}. Let Ωk be the cube
Ωk =

{
x ∈ R3 : ‖x−Rk‖∞ ≤ a

}
.

Then there exists a NN Φε,ϕ such that R(Φε,ϕ) : R3 → RN , satisfies

‖ϕi − R(Φε,ϕ)i‖H1(Ωk) ≤ ε, ∀i ∈ {1, . . . , N}. (5.6)

In addition, as ε → 0, ‖ R(Φε,ϕ)i‖L∞(Ωk) = O(|log ε|6) for every i = {1, . . . , N},

M(Φε,ϕ) = O(|log(ε)|7 +N |log(ε)|6), L(Φε,ϕ) = O(|log(ε)| log(|log(ε)|)).

Proof Let C = {(0, 0, 0)} and E = ∅ and fix k ∈ {1, . . . ,M}. From the regularity result in
[36, Corollary 1], see also [13,14], there exist Cϕ, Aϕ, and γc > 3/2 such that (ϕ1, . . . , ϕN ) ∈[
J̟
γc

(Ωk; C, E ;Cϕ, Aϕ)
]N

. Then, (5.6), the L∞ bound and the depth and size bounds on the NN
Φε,ϕ follow from the hp approximation result in Theorem A.25 (centered in Rk by translation),
from Theorem 4.2, as in Corollary 4.4. ⊓⊔
The arguments in the preceding subsections applied to wave functions for a single, isolated nucleus
with interaction modeled by the singular potential V as in (5.1) can then be extended to give
upper bounds on the approximation rates achieved by realizations of NNs of the wave functions in
a bounded, sufficiently large domain containing all singularities of the nuclear potential in (5.4).
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Corollary 5.4 Assume that (5.5) has N real eigenvalues λ1, . . . , λN with associated eigenfunctions
ϕ1, . . . , ϕN , such that

∫
R3 ϕiϕj = δij. Let ai, bi ∈ R, i = 1, 2, 3, and Ω = ×d

i=1(ai, bi) such that
{Rj}Mj=1 ⊂ Ω. Then, for every 0 < ε < 1, there exists a NN Φε,ϕ such that R(Φε,ϕ) : R3 → RN

and
‖ϕi − R(Φε,ϕ)i‖H1(Ω) ≤ ε, ∀i = 1, . . . , N. (5.7)

Furthermore, as ε → 0 M(Φε,ϕ) = O(|log(ε)|7 +N |log(ε)|6) and L(Φε,ϕ) = O(|log(ε)| log(|log(ε)|)).
Proof The proof is based on a partition of unity argument. We only sketch it at this point, but will
develop it in detail in the proof of Theorem 5.6. Let T be a tetrahedral, regular triangulation of
Ω, and let {κk}Nκ

k=1 be the hat-basis functions associated to it. We suppose that the triangulation

is sufficiently refined to ensure that, for all k ∈ {1, . . . , Nκ}, exists a cube Ω̃k ⊂ Ω such that

supp(κk) ⊂ Ω̃k and that there exists at most one j ∈ {1, . . . ,M} such that Ω̃k ∩Rj 6= ∅.
For all k ∈ {1, . . . , Nκ}, by [23, Theorem 5.2], which is based on [56], there exists a NN Φκk

such that
R(Φκk )(x) = κk(x), ∀x ∈ Ω.

For all 0 < ε < 1, let

ε1 :=
ε

2Nκ
(
maxk∈{1,...,Nκ} ‖κk‖W 1,∞(Ω)

) .

For all k ∈ {1, . . . , Nκ} and i ∈ {1, . . . , N}, it holds that ϕi|Ω̃k
∈ J̟

γ (Ω̃k; {R1, . . . , RM} ∩ Ω̃k,∅).

Then there exists a NN Φkε1,ϕ, as defined in Theorem 5.3, such that

‖ϕi − R(Φkε1,ϕ)i‖H1(Ω̃k)
≤ ε1, ∀i ∈ {1, . . . , N}. (5.8)

Let

C∞ := max
k∈{1,...,Nκ}

sup
ε̂∈(0,1)

‖ R(Φkε̂,ϕ)‖
L∞(Ω̃k)

1 + |log ε̂|6
< ∞

where the finiteness is due to Theorem 5.3. Then, we denote

ε× :=
ε

2Nκ(|Ω|1/2+1 + maxi=1,...,N |ϕi|H1(Ω) + maxk=1,...,Nκ
‖κk‖W 1,∞(Ω)|Ω|1/2)

and M×(ε1) := C∞(1 + |log ε1|6). As detailed in the proof of Theorem 5.6 below, after concate-
nating with identity NNs and possibly after increasing the constants, we assume that L(Φkε1,ϕ) is

independent of k and that the bound on M(Φkε1,ϕ) is independent of k, and that the same holds
for Φκk , k = 1, . . . , Nκ.

Let now, for i ∈ {1, . . . , N}, Ei ∈ {0, 1}2×N+1 be the matrices such that, for all x = (x1, . . . , xN+1),
Eix = (xi, xN+1). Let also A = (IdN×N , . . . , IdN×N ) ∈ RN×NκN be the block matrix comprising
Nκ times the identity matrix IdN×N ∈ RN×N . Then, we introduce the NN

Φε,ϕ = (A, 0) ⊙ P

({
P

({
Π2
ε×,M×(ε1) ⊙ (Ei, 0)

}N
i=1

)
⊙ P(Φkε1,ϕ, Φ

Id
1,L ⊙ Φκk )

}Nκ

k=1

)
, (5.9)

where L ∈ N is such that L(ΦId
1,L ⊙ Φκk ) = L(Φkε1,ϕ), from which it follows that M(ΦId

1,L) ≤
C L(Φkε1,ϕ). It holds, for all i ∈ {1, . . . , N}, that

R(Φε,ϕ)(x)i =

Nκ∑

k=1

R(Π2
ε×,M×(ε1))(R(Φkε1,ϕ)(x)i, κk(x)), ∀x ∈ Ω.
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By the triangle inequality, [40, Theorem 2.1], (5.8), and Proposition 3.6, for all i ∈ {1, . . . , N},

‖ϕi − R(Φε,ϕ)i‖H1(Ω)

≤ ‖ϕi −
Nκ∑

i=1

κk R(Φkε1,ϕ)i‖H1(Ω) +

Nκ∑

k=1

‖ R(Π2
ε×,M×(ε1))

(
R(Φkε1,ϕ)i, κk

)
− κk R(Φkε1,ϕ)i‖H1(Ωk)

≤ Nκ

(
max

k∈{1,...,Nκ}
‖κk‖W 1,∞(Ω)

)
ε1

+Nκ(|Ω|1/2 + 1 + max
i=1,...,N

|ϕi|H1(Ω) + max
k=1,...,Nκ

‖κk‖W 1,∞(Ω)|Ω|1/2)ε×

≤ ε.

The asymptotic bounds on the size and depth of Φε,ϕ can then be derived from (5.9), using Theorem
5.3, as developed in more detail in the proof of Theorem 5.6 below. ⊓⊔

5.2 Elliptic PDEs in polygonal domains

We establish exponential expressivity for realizations of NNs with ReLU activation of solution
classes to elliptic PDEs in polygonal domains Ω, the boundaries ∂Ω of which are Lipschitz and
consist of a finite number of straight line segments. Notably, Ω ⊂ R2 need not be a finite union of
axiparallel rectangles. In the following lemma, we construct a partition of unity in Ω subordinate to
an open covering, of which each element is the affine image of one out of three canonical patches.
Remark that we admit corners with associate angle of aperture π; this will be instrumental, in
Corollaries 5.10 and 5.11, for the imposition of different boundary conditions on ∂Ω. The three
canonical patches that we consider are listed in Lemma 5.5, item [P2]. Affine images of (0, 1)2

are used away from corners of ∂Ω and when the internal angle of a corner is smaller than π.
Affine images of (−1, 1) × (0, 1) are used near corners with internal angle π. PDE solutions may
exhibit point singularities near such corners e.g. if the two neighboring edges have different types
of boundary conditions. Affine images of (−1, 1)2 \ (−1, 0]2 are used near corners with internal
angle larger than π. In the proof of Theorem 5.6, we use on each patch Theorem 4.3 or a result
from Subsection 5.3 below.

A triangulation T of R2 is defined as a partition of R2 into open triangles K such that⋃
K∈T K = R2. A regular triangulation of R2 is a triangulation T of R2 such that, addition-

ally, for any two neighboring elements K1,K2 ∈ T , K1 ∩K2 is either a corner of both K1 and K2

or the closure of an entire edge of both K1 and K2. For a regular triangulation T of R2, we denote
by S1(R2, T ) the space of continuous functions on R2 such that for every K ∈ T , v|K ∈ P1.

We postpone the proof of Lemma 5.5 to Appendix B.1.

Lemma 5.5 Let Ω ⊂ R2 be a polygon with Lipschitz boundary, consisting of straight sides, and
with a finite set C of corners. Then, there exists a regular triangulation T of R2, such that for all
K ∈ T either K ⊂ Ω or K ⊂ Ωc and such that only finitely many K ∈ T satisfy K ⊂ Ω. Moreover,

there exist Np ∈ N, an open cover {Ωi}Np

i=1 of Ω, and a partition of unity {φi}Np

i=1 ∈
[
S1(R2, T )

]Np

on Ω (i.e.
∑Np

i=1 φi(x) = 1 for all x ∈ Ω, but this need not hold for x ∈ Ωc) such that

[P1] supp(φi) ∩Ω ⊂ Ωi for all i = 1, . . . , Np,

[P2] for each i ∈ {1, . . . , Np}, there exists an affine map ψi : R
2 → R2 such that ψ−1

i (Ωi) = Ω̂i for

Ω̂i ∈ {(0, 1)2, (−1, 1) × (0, 1), (−1, 1)2 \ (−1, 0]2},

[P3] C ∩Ωi ⊂ ψi({(0, 0)}) for all i ∈ {1, . . . , Np}.
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The following statement, then, provides expression rates for the NN approximation of functions in
weighted analytic classes in polygonal domains.

We recall that all NNs are realized with the ReLU activation function, see (3.1).

Theorem 5.6 Let Ω ⊂ R2 be a polygon with Lipschitz boundary Γ consisting of straight sides
and with a finite set C of corners. Let γ = {γc : c ∈ C} such that min γ > 1. Then, for all
u ∈ J̟

γ (Ω; C,∅) and for every 0 < ε < 1, there exists a NN Φε,u such that

‖u− R(Φε,u)‖H1(Ω) ≤ ε. (5.10)

In addition, as ε → 0,

M(Φε,u) = O(|log(ε)|5), L(Φε,u) = O(|log(ε)| log(|log(ε)|)).

Proof We introduce, using Lemma 5.5, a regular triangulation T of R2, an open cover {Ωi}Np

i=1 of

Ω, and a partition of unity {φi}Np

i=1 ∈
[
S1(R2, T )

]Np
on Ω such that the properties [P1] – [P3] of

Lemma 5.5 hold.
We define ûi := u|Ωi

◦ ψi : Ω̂i → R. Since u ∈ J̟
γ (Ω; C,∅) with min γ > 1 and since the maps

ψi are affine, we observe that for every i ∈ {1, . . . , Np}, there exists γ such that min γ > 1 and

ûi ∈ J̟
γ (Ω̂i, {(0, 0)},∅), because of [P2] and [P3]. Let

ε1 :=
ε

2Np maxi∈{1,...,Np} ‖φi‖W 1,∞(Ω)

(
‖ detJψi

‖L∞((0,1)2)

(
1 + ‖‖Jψ−1

i
‖2‖2

L∞(Ωi)

))1/2
.

By Theorem 4.3 and by Lemma 5.19 and Theorem 5.14 in the forthcoming Subsection 5.3, there
exist Np NNs Φûi

ε1
, i ∈ {1, . . . , Np}, such that

‖ûi − R(Φûi
ε1

)‖
H1(Ω̂i)

≤ ε1, ∀i ∈ {1, . . . , Np}, (5.11)

and there exists C∞ > 0 independent of ε1 such that, for all i ∈ {1, . . . , Np} and all ε̂ ∈ (0, 1)

‖ R(Φûi

ε̂ )‖
L∞(Ω̂i)

≤ C∞(1 + |log ε̂|4).

The NNs given by Theorem 4.3, Lemma 5.19 and Theorem 5.14, which we here denote by Φ̃ûi
ε1

for
i = 1, . . . , Np, may not have equal depth. Therefore, for all i = 1, . . . , Np and suitable Li ∈ N we

define Φûi
ε1

:= ΦId
1,Li

⊙ Φ̃ûi
ε1

, so that the depth is the same for all i = 1, . . . , Np. To estimate the size
of the enlarged NNs, we use the fact that the size of a NN is not smaller than the depth unless the
associated realization is constant. In the latter case, we could replace the NN by a NN with one non-
zero weight without changing the realization. By this argument, we obtain for all i = 1, . . . , Np that

M(Φûi
ε1

) ≤ 2 M(ΦId
1,Li

) + 2 M(Φ̃ûi
ε1

) ≤ C maxj=1,...,Np
L(Φ̃

ûj
ε1

) + C M(Φ̃ûi
ε1

) ≤ C maxj=1,...,Np
M(Φ̃

ûj
ε1

).

Furthermore, as shown in [23], there exist NNs Φφi , i ∈ {1, . . . , Np}, such that

R(Φφi)(x) = φi(x), ∀x ∈ Ω, ∀i ∈ {1, . . . , Np}.

Here we use that T is a partition of R2, so that φi is defined on all of R2 and [23, Theorem 5.2]
applies, which itself is based on [56].

Possibly after concatenating with identity networks in the same way as just described for Φûi
ε1

,
we can assume that Φφi for i = 1, . . . , Np all have equal depth and that the size of Φφi is bounded
independent of i.
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Since by [P2] the mappings ψi are affine and invertible, it follows that ψ−1
i is affine for every

i ∈ {1, . . . , Np}. Thus, there exist NNs Φψ
−1

i , i ∈ {1, . . . , Np}, of depth 1, such that

R(Φψ
−1

i )(x) = ψ−1
i (x), ∀x ∈ Ωi, ∀i ∈ {1, . . . , Np}. (5.12)

Next, we define

ε× :=
ε

2Np(|Ω|1/2 + 1 + |u|H1(Ω) + maxi=1,...,Np
‖φi‖W 1,∞(Ω)|Ω|1/2)

and M×(ε1) := C∞(1 + |log ε1|4). Finally, we set

Φε,u := ((1, . . . , 1︸ ︷︷ ︸
Np times

), 0) ⊙ P

({
Π2
ε×,M×(ε1) ⊙ P(Φûi

ε1
⊙ Φψ

−1

i , ΦId
1,L ⊙ Φφi)

}Np

i=1

)
, (5.13)

where L ∈ N is such that L(Φû1
ε1

⊙Φψ−1

1 ) = L(ΦId
1,L⊙Φφ1), which yields M(ΦId

1,L) ≤ C L(Φû1
ε1

⊙Φψ−1

1 ).

Approximation accuracy. By (5.13), we have for all x ∈ Ω,

R(Φε,u)(x) =

Np∑

i=1

R(Π2
ε×,M×(ε1))

(
R(Φûi

ε1
⊙ Φψ

−1

i )(x),R(Φφi)(x)
)
.

Therefore,

‖u− R(Φε,u)‖H1(Ω) ≤

∥∥∥∥∥∥
u−

Np∑

i=1

φi R(Φûi
ε1

⊙ Φψ
−1

i )

∥∥∥∥∥∥
H1(Ω)

+

Np∑

i=1

∥∥∥R(Π2
ε×,M×(ε1))

(
R(Φûi

ε1
⊙ Φψ

−1

i ), φi

)
− φi R(Φûi

ε1
⊙ Φψ

−1

i )
∥∥∥
H1(Ω)

= (I) + (II).
(5.14)

We start by considering term (I). For each i ∈ {1, . . . , Np}, thanks to (5.11) and denoting by
‖Jψ−1

i
‖2

2 the square of the matrix 2-norm of the Jacobian of ψ−1
i , it holds that

‖u− R(Φûi
ε1

⊙ Φψ
−1

i )‖H1(Ωi)

= ‖ûi ◦ ψ−1
i − R(Φûi

ε1
) ◦ ψ−1

i ‖H1(Ωi)

=

(∫

Ω̂i

(∣∣ûi − R(Φûi
ε1

)
∣∣2 +

∥∥∥∇
(
ûi − R(Φûi

ε1
)
)
Jψ−1

i

∥∥∥
2

2

)
| det Jψi |dx

)1/2

≤ ε1

(
‖ det Jψi‖L∞(Ω̂i)

+ ‖ det Jψi‖L∞(Ω̂i)
‖‖Jψ−1

i
‖2

2‖L∞(Ωi)

)1/2

≤ ε2 := ε1 max
i∈{1,...,Np}

(
‖ det Jψi

‖
L∞(Ω̂i)

+ ‖ detJψi
‖
L∞(Ω̂i)

‖‖Jψ−1

i
‖2

2‖L∞(Ωi)

)1/2

.

(5.15)

By [40, Theorem 2.1],

(I) ≤ Npε2 max
i∈{1,...,Np}

‖φi‖W 1,∞(Ω) ≤ ε

2
. (5.16)
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We now consider term (II) in (5.14). By Theorem 4.3 and (5.12), it holds that

‖ R(Φûi
ε1

⊙ Φψ
−1

i )‖L∞(Ωi) = ‖ R(Φûi
ε1

)‖
L∞(Ω̂i)

≤ C∞(1 + |log ε1|4)

for all i ∈ {1, . . . , Np}. Furthermore, by [P1], φi(x) = 0 for all x ∈ Ω \Ωi and, by Proposition 3.6,

R(Π2
ε×,M×(ε1))

(
R(Φûi

ε1
⊙ Φψ

−1

i )(x), φi(x)
)

= 0, ∀x ∈ Ω \Ωi.

From (5.15), we also have

| R(Φûi
ε1

⊙ Φψ
−1

i )|H1(Ωi) ≤ |u|H1(Ωi) + ‖u− R(Φûi
ε1

⊙ Φψ
−1

i )‖H1(Ωi) ≤ 1 + |u|H1(Ωi).

Hence,

(II) =

Np∑

i=1

‖ R(Π2
ε×,M×(ε1))

(
R(Φûi

ε1
⊙ Φψ

−1

i ), φi

)
− φi R(Φûi

ε1
⊙ Φψ

−1

i )‖H1(Ωi)

≤
Np∑

i=1

(
‖ R(Π2

ε×,M×(ε1))(a, b) − ab‖W 1,∞([−M×(ε1),M×(ε1)]2)

·
(

|Ω|1/2 + | R(Φûi
ε1

⊙ Φψ
−1

i )|H1(Ωi) + |φi|H1(Ωi)

))

≤ Npε×

(
|Ω|1/2 + 1 + |u|H1(Ωi) + |Ω|1/2 max

i=1,...,Np

‖φi‖W 1,∞(Ω)

)

≤ ε

2
.

(5.17)

The asserted approximation accuracy follows by combining (5.14), (5.16), and (5.17).

Size of the neural network. To bound the size of the NN, we remark that Np and the sizes of Φψ
−1

i

and of Φφi only depend on the domain Ω. Furthermore, there exist constants CΩ,i, i = 1, 2, 3, that
depend only on Ω and u such that

|log ε1| ≤ CΩ,1(1 + |log ε|), |log ε×| ≤ CΩ,2(1 + |log ε|),
|logM×(ε1)| ≤ CΩ,3(1 + log(1 + |log ε|)). (5.18)

From Theorem 4.3 and Proposition 3.6, in addition, there exist constants CLû , C
M
û , C× > 0 such

that, for all 0 < ε1, ε× ≤ 1,

L(Φûi
ε1

) ≤ CLû (1 + |log ε1|)(1 + log(1 + |log ε1|)), M(Φûi
ε1

) ≤ CMû (1 + |log ε1|5),

max(M(Π2
ε×,M×(ε1)),L(Π2

ε×,M×(ε1))) ≤ C×(1 + log(M×(ε1)2/ε×)).
(5.19)

Then, by (5.13), we have

L(Φε,u) = 1 + L(Π2
ε×,M×(ε1)) + max

i=1,...,Np

(
L(Φûi

ε1
) + L(Φψ

−1

i )
)
,

M(Φε,u) ≤ C


Np +Np M(Π2

ε×,M×(ε1)) +

Np∑

i=1

(
M(Φûi

ε1
) + M(Φψ

−1

i ) + M(ΦId
1,L) + M(Φφi)

)

 .

(5.20)
The desired depth and size bounds follow from (5.18), (5.19), and (5.20). This concludes the proof.

⊓⊔
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The exponential expression rate for the class of weighted, analytic functions in Ω by realizations of
NNs with ReLU activation in the H1(Ω)-norm established in Theorem 5.6 implies an exponential
expression rate bound on ∂Ω, via the trace map and the fact that ∂Ω can be exactly parametrized
by the realization of a shallow NN with ReLU activation. This is relevant for NN-based solution of
boundary integral equations.

Corollary 5.7 (NN expression of Dirichlet traces) Let Ω ⊂ R2 be a polygon with Lipschitz bound-
ary Γ and a finite set C of corners. Let γ = {γc : c ∈ C} such that min γ > 1. For any connected
component Γ of ∂Ω, let ℓΓ > 0 be the length of Γ , such that there exists a continuous, piecewise
affine parametrization θ : [0, ℓΓ ] → R2 : t 7→ θ(t) of Γ with finitely many affine linear pieces and∥∥ d
dtθ
∥∥

2
= 1 for almost all t ∈ [0, ℓΓ ].

Then, for all u ∈ J̟
γ (Ω; C,∅) and for all 0 < ε < 1, there exists a NN Φε,u,θ approximating

the trace Tu := u|Γ
such that

‖Tu− R(Φε,u,θ) ◦ θ−1‖H1/2(Γ ) ≤ ε. (5.21)

In addition, as ε → 0,

M(Φε,u,θ) = O(|log(ε)|5), L(Φε,u,θ) = O(|log(ε)| log(|log(ε)|)).
Proof We note that both components of θ are continuous, piecewise affine functions on [0, ℓΓ ], thus
they can be represented exactly as realization of a NN of depth two, with the ReLU activation
function. Moreover, the number of weights of these NNs is of the order of the number of affine
linear pieces of θ. We denote the parallelization of the NNs emulating exactly the two components
of θ by Φθ.

By continuity of the trace operator T : H1(Ω) → H1/2(∂Ω) (e.g. [15,7]), there exists a constant
CΓ > 0 such that for all v ∈ H1(Ω) it holds ‖Tv‖H1/2(Γ ) ≤ CΓ ‖v‖H1(Ω) , and without loss of
generality we may assume CΓ ≥ 1.

Next, for any ε ∈ (0, 1), let Φε/CΓ,u be as given by Theorem 5.6. Define Φε,u,θ := Φε/CΓ,u ⊙Φθ.
It follows that
∥∥Tu− R(Φε,u,θ) ◦ θ−1

∥∥
H1/2(Γ )

=
∥∥T
(
u− R(Φε/CΓ,u)

)∥∥
H1/2(Γ )

≤ CΓ

∥∥u− R(Φε/CΓ,u)
∥∥
H1(Ω)

≤ ε.

The bounds on its depth and size follow directly from Proposition 3.2, Theorem 5.6, and the fact
that the depth and size of Φθ are independent of ε. This finishes the proof. ⊓⊔
Remark 5.8 The exponent 5 in the bound on the NN size M(Φε,u,θ) in Corollary 5.7 is likely not
optimal, due to it being transferred from the NN rate in Ω.

The proof of Theorem 5.6 established exponential expressivity of realizations of NNs with
ReLU activation for the analytic class J̟

γ (Ω; C,∅) in Ω. This implies that realizations of NNs can

approximate, with exponential expressivity, solution classes of elliptic PDEs in polygonal domains
Ω. We illustrate this by formulating concrete results for three problem classes: second order, linear,
elliptic source and eigenvalue problems in Ω, and viscous, incompressible flow. To formulate the
results, we specify the assumptions on Ω.

Definition 5.9 (Linear, second order, elliptic divergence-form differential operator with
analytic coefficients) Let d ∈ {2, 3} and let Ω ⊂ Rd be a bounded domain. Let the coef-
ficient functions aij , bi, c : Ω → R be real analytic in Ω, and such that the matrix function
A = (aij)1≤i,j≤d : Ω → Rd×d is symmetric and uniformly positive definite in Ω. With these func-
tions, we define the linear, second order, elliptic divergence-form differential operator L acting on
w ∈ C∞

0 (Ω) via (summation over repeated indices i, j ∈ {1, . . . , d})

(Lw)(x) := −∂i(aij(x)∂jw(x)) + bj(x)∂jw(x) + c(x)w(x) , x ∈ Ω .
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Setting 1 We assume that Ω ⊂ R2 is an open, bounded polygon with boundary ∂Ω that is Lipschitz
and connected. In addition, ∂Ω is the closure of a finite number J ≥ 3 of straight, open sides Γj,
i.e., Γi ∩Γj = ∅ for i 6= j and ∂Ω =

⋃
1≤j≤J Γj. We assume the enumeration of the sides Γj to be

J- cyclic, i.e. ΓJ+1 = Γ1.
By nj, we denote the exterior unit normal vector to Ω on side Γj and by cj := Γj−1 ∩ Γj the

corner j of Ω.
With L as in Definition 5.9, we associate on boundary segment Γj a boundary operator Bj ∈

{γj0, γj1}, i.e. either the Dirichlet trace γ0 or the distributional (co-)normal derivative operator γ1,
acting on w ∈ C1(Ω) via

γj0w := w|Γj , γj1w := (A∇w) · nj |Γj , j = 1, ..., J . (5.22)

We collect the boundary operators Bj in B := {Bj}Jj=1.
The first corollary addresses exponential ReLU expressibility of solutions of the source problem
corresponding to (L,B).

Corollary 5.10 Let Ω, L, and B be as in Setting 1 with d = 2. For f analytic in Ω, let u denote
a solution to the boundary value problem

Lu = f in Ω, Bu = 0 on ∂Ω . (5.23)

Then, for every 0 < ε < 1, there exists a NN Φε,u such that

‖u− R(Φε,u)‖H1(Ω) ≤ ε. (5.24)

In addition, M(Φε,u) = O(|log(ε)|5) and L(Φε,u) = O(|log(ε)| log(|log(ε)|)), as ε → 0.

Proof The proof is obtained by verifying weighted, analytic regularity of solutions. By [3, Theorem
3.1] there exists γ such that min γ > 1 and u ∈ J̟

γ (Ω; C,∅). Then, the application of Theorem

5.6 concludes the proof. ⊓⊔
Next, we address NN expression rates for eigenfunctions of (L,B).

Corollary 5.11 Let Ω, L, B be as in Setting 1 with d = 2, and bi = 0 in Definition 5.9, and let
0 6= w ∈ H1(Ω) be an eigenfunction of the elliptic eigenvalue problem

Lw = λw in Ω, Bw = 0 on ∂Ω. (5.25)

Then, for every 0 < ε < 1, there exists a NN Φε,w such that

‖w − R(Φε,w)‖H1(Ω) ≤ ε. (5.26)

In addition, M(Φε,w) = O(|log(ε)|5) and L(Φε,w) = O(|log(ε)| log(|log(ε)|)), as ε → 0.

Proof The statement follows from the regularity result [4, Theorem 3.1], and Theorem 5.6 as in
Corollary 5.10. ⊓⊔

The analytic regularity of solutions u in the proof of Theorem 5.6 also holds for certain nonlinear,
elliptic PDEs. We illustrate it for the velocity field of viscous, incompressible flow in Ω.
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Fig. 5.1: Example of Fichera-type corner domain.

Corollary 5.12 Let Ω ⊂ R2 be as in Setting 1. Let ν > 0 and let u ∈ H1
0 (Ω)2 be the velocity field of

the Leray solutions of the viscous, incompressible Navier-Stokes equations in Ω, with homogeneous
Dirichlet (“no slip”) boundary conditions

− ν∆u + (u · ∇)u + ∇p = f in Ω, ∇ · u = 0 in Ω, u = 0 on ∂Ω, (5.27)

where the components of f are analytic in Ω and such that ‖f‖H−1(Ω)/ν
2 is small enough so that

u is unique.
Then, for every 0 < ε < 1, there exists a NN Φε,u with two-dimensional output such that

‖u − R(Φε,u)‖H1(Ω) ≤ ε. (5.28)

In addition, M(Φε,u) = O(|log(ε)|5) and L(Φε,u) = O(|log(ε)| log(|log(ε)|)), as ε → 0.

Proof The velocity fields of Leray solutions of the Navier-Stokes equations inΩ satisfy the weighted,

analytic regularity u ∈
[
J̟
γ (Ω; C,∅)

]2
, with min γ > 1, see [38,24]. Then, the application of

Theorem 5.6 concludes the proof. ⊓⊔

5.3 Elliptic PDEs in Fichera-type polyhedral domains

Fichera-type polyhedral domains Ω ⊂ R3 are, loosely speaking, closures of finite, disjoint unions
of (possibly affinely mapped) axiparallel hexahedra with ∂Ω Lipschitz. In Fichera-type domains,
analytic regularity of solutions of linear, elliptic boundary value problems from acoustics and linear
elasticity in displacement formulation has been established in [8]. As an example of a boundary
value problem covered by [8] and our theory, consider Ω := (−1, 1)d\(−1, 0]d for d = 2, 3, displayed
for d = 3 in Figure 5.1.

We recall that all NNs are realized with the ReLU activation function, see (3.1).
We introduce the setting for elliptic problems with analytic coefficients in Ω. Note that the

boundary of Ω is composed of 6 edges when d = 2 and of 9 faces when d = 3.
Setting 2 We assume that L is an elliptic operator as in Definition 5.9. When d = 3, we assume
furthermore that the diffusion coefficient A ∈ R3×3 is a symmectric, positive matrix and bi = c = 0.
On each edge (if d = 2) or face (if d = 3) Γj ⊂ ∂Ω, j ∈ {1, . . . , 3d}, we introduce the boundary
operator Bj ∈ {γ0, γ1}, where γ0 and γ1 are defined as in (5.22). We collect the boundary operators
Bj in B := {Bj}3d

j=1.
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For a right hand side f , the elliptic boundary value problem we consider in this section is then

Lu = f in Ω, Bu = 0 on ∂Ω. (5.29)

The following extension lemma will be useful for the approximation of the solution to (5.29) by
NNs. We postpone its proof to Appendix B.2.

Lemma 5.13 Let d ∈ {2, 3} and u ∈ W 1,1
mix(Ω). Then, there exists a function v ∈ W 1,1

mix((−1, 1)d)
such that v|Ω = u. The extension is stable with respect to the W 1,1

mix-norm.

We denote the set containing all corners of Ω (including the re-entrant one) as

C = {−1, 0, 1}d \ (−1, . . . ,−1).

When d = 3, for all c ∈ C, then we denote by Ec the set of edges abutting at c and we denote
E :=

⋃
c∈C Ec.

Theorem 5.14 Let u ∈ J̟
γ (Ω; C, E) with

γ = {γc : c ∈ C}, with γc > 1, for all c ∈ C if d = 2,

γ = {γc, γe : c ∈ C, e ∈ E}, with γc > 3/2 and γe > 1, for all c ∈ C and e ∈ E if d = 3.

Then, for any 0 < ε < 1 there exists a NN Φε,u so that

‖u− R (Φε,u)‖H1(Ω) ≤ ε. (5.30)

In addition, ‖ R (Φε,u) ‖L∞(Ω) = O(1 + |log ε|2d), as ε → 0. Also, M(Φε,u) = O(| log(ε)|2d+1) and
L(Φε,u) = O(| log(ε)| log(| log(ε)|)), as ε → 0.

Proof By Lemma 5.13, we extend the function u to a function ũ such that

ũ ∈ W 1,1
mix((−1, 1)d) and ũ|Ω = u.

Note that, by the stability of the extension, there exists a constant Cext > 0 independent of u such
that

‖ũ‖W 1,1

mix
((−1,1)d) ≤ Cext‖u‖W 1,1

mix
(Ω). (5.31)

Since u ∈ J̟
γ (Ω; C, E), it follows that u ∈ J̟

γ (S; CS , ES) for all

S ∈
{

d×
j=1

(aj , aj + 1/2) : (a1, . . . , ad) ∈ {−1,−1/2, 0, 1/2}d
}

such that S ∩Ω 6= ∅ (5.32)

with CS = S ∩ C and ES = {e ∈ E : e ⊂ S}. Since S ⊂ Ω and ũ|Ω = u|Ω , we also have

ũ ∈ J̟
γ (S; CS , ES) for all S satisfying (5.32).

By Theorem A.25 exist Cp > 0, C
Ñ1d

> 0, C
Ñint

> 0, Cṽ > 0, C
c̃
> 0, and bṽ > 0 such

that, for all 0 < ε ≤ 1, there exists p ∈ N, a partition G1d of (−1, 1) into Ñint open, disjoint,

connected subintervals, a d-dimensional array c̃ ∈ RÑ1d×···×Ñ1d , and piecewise polynomials ṽi ∈
Qp(G1d) ∩H1((−1, 1)), i = 1, . . . , Ñ1d, such that

Ñ1d ≤ C
Ñ1d

(1+ |log ε|2), Ñint ≤ C
Ñint

(1+ |log ε|), ‖c̃‖1 ≤ C
c̃
(1+ |log ε|2d), p ≤ Cp(1+ |log ε|)
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and
‖ṽi‖H1(I) ≤ Cṽε

−bṽ , ‖ṽi‖L∞(I) ≤ 1, ∀i ∈ {1, . . . , Ñ1d}.
Furthermore,

‖u− vhp‖H1(Ω) = ‖ũ− vhp‖H1(Ω) ≤ ε

2
, vhp =

Ñ1d∑

i1,...,id=1

c̃i1...id

d⊗

j=1

ṽij .

From the stability (5.31) and from Lemmas A.21 and A.22 it follows that

‖c̃‖1 ≤ CN2d
int‖u‖J d

γ (Ω),

i.e., the bound on the coefficients c̃ is independent of the extension ũ of u. By Theorem 4.2, there
exists a NN Φε,u with the stated approximation properties and asymptotic size bounds. The bound
on the L∞(Ω)-norm of the realization of Φε,u follows as in the proof of Theorem 4.3. ⊓⊔
Remark 5.15 Arguing as in Corollary 5.7, a NN with ReLU activation and two-dimensional input
can be constructed so that its realization approximates the Dirichlet trace of solutions to (5.29) in
H1/2(∂Ω) at an exponential rate in terms of the NN size M.

The following statement now gives expression rate bounds for the approximation of solutions
to the Fichera problem (5.29) by realizations of NNs with the ReLU activation function.

Corollary 5.16 Let f be an analytic function on Ω and let u be a solution to (5.29) with operators
L and B as in Setting 2 and with source term f . Then, for any 0 < ε < 1 there exists a NN Φε,u
so that

‖u− R (Φε,u)‖H1(Ω) ≤ ε. (5.33)

In addition, M(Φε,u) = O(| log(ε)|2d+1) and L(Φε,u) = O(| log(ε)| log(| log(ε)|)), for ε → 0.

Proof By [8, Corollary 7.1, Theorems 7.3 and 7.4] if d = 3 and [3, Theorem 3.1] if d = 2, there
exists γ such that γc − d/2 > 0 for all c ∈ C and γe > 1 for all e ∈ E such that u ∈ J̟

γ (Ω; C, E).

An application of Theorem 5.14 concludes the proof. ⊓⊔
Remark 5.17 By [8, Corollary 7.1 and Theorem 7.4], Corollary 5.16 holds verbatim also under the
hypothesis that the right-hand side f is weighted analytic, with singularities at the corners/edges
of the domain; specifically, (5.33) and the size bounds on the NN Φε,u hold under the assumption
that there exists γ such that γc − d/2 > 0 for all c ∈ C and γe > 1 for all e ∈ E such that

f ∈ J̟
γ−2(Ω; C, E).

Remark 5.18 The numerical approximation of solutions for (5.29) with a NN in two dimensions
has been investigated e.g. in [33] using the so-called ‘PINNs’ methodology. There, the loss function
was based on minimization of the residual of the NN approximation in the strong form of the PDE.
Evidently, a different (smoother) activation than the ReLU activations considered here had to be
used. Starting from the approximation of products by NNs with smoother activation functions
introduced in [51, Sec.3.3] and following the same line of reasoning as in the present paper, the
results we obtain for ReLU-based realizations of NNs can be extended to large classes of NNs with
smoother activations and similar architecture.

Furthermore, in [11, Section 3.1], a slightly different elliptic boundary value problem is nu-
merically approximated by realizations of NNs. Its solutions exhibit the same weighted, analytic
regularity as considered in this paper. The presently obtained approximation rates by NN realiza-
tions extend also to the approximation of solutions for the problem considered in [11].
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In the proof of Theorem 5.6, we require in particular the approximation of weighted analytic
functions on (−1, 1) × (0, 1) with a corner singularity at the origin. For convenient reference, we
detail the argument in this case.

Lemma 5.19 Let d = 2 and ΩDN := (−1, 1) × (0, 1). Denote CDN = {−1, 0, 1} × {0, 1}. Let
u ∈ J̟

γ (ΩDN ; CDN ,∅) with γ = {γc : c ∈ CDN}, with γc > 1 for all c ∈ CDN .

Then, for any 0 < ε < 1 there exists a NN Φε,u so that

‖u− R (Φε,u)‖H1(ΩDN ) ≤ ε. (5.34)

In addition, ‖ R (Φε,u) ‖L∞(ΩDN ) = O(1 + |log ε|4) , for ε → 0. Also, M(Φε,u) = O(| log(ε)|5) and
L(Φε,u) = O(| log(ε)| log(| log(ε)|)), for ε → 0.

Proof Let ũ ∈ W 1,1
mix((−1, 1)2) be defined by
{
ũ(x1, x2) = u(x1, x2) for all (x1, x2) ∈ (−1, 1) × [0, 1),

ũ(x1, x2) = u(x1, 0) for all (x1, x2) ∈ (−1, 1) × (−1, 0),

such that ũ|ΩDN
= u. Here we used that there exist continuous imbeddings J̟

γ (ΩDN ; CDN ,∅) →֒
W 1,1

mix(ΩDN ) →֒ C0(ΩDN ) (see Lemma A.22 for the first imbedding), i.e. u can be extended to a
continuous function on ΩDN .

As in the proof of Lemma 5.13, this extension is stable, i.e. there exists a constant Cext > 0
independent of u such that

‖ũ‖W 1,1

mix
((−1,1)d) ≤ Cext‖u‖W 1,1

mix
(ΩDN ). (5.35)

Because u ∈ J̟
γ (ΩDN ; CDN ,∅), it holds with CS = S ∩ CDN that u ∈ J̟

γ (S; CS ,∅) for all

S ∈
{

×
j=1,2

(aj , aj + 1/2) : (a1, a2) ∈ {−1,−1/2, 0, 1/2} × {0, 1/2}
}
.

The remaining steps are the same as those in the proof of Theorem 5.14. ⊓⊔

6 Conclusions and extensions

We review the main findings of the present paper and outline extensions of the present results, and
perspectives for further research.

6.1 Principal mathematical results

We established exponential expressivity of realizations of NNs with the ReLU activation function
in the Sobolev norm H1 for functions which belong to certain countably normed, weighted analytic
function spaces in cubes Q = (0, 1)d of dimension d = 2, 3. The admissible function classes comprise
functions which are real analytic at points x ∈ Q, and which admit analytic extensions to the open
sides F ⊂ ∂Q, but may have singularities at corners and (in space dimension d = 3) edges of Q.
We have also extended this result to cover exponential expressivity of realizations of NNs with
ReLU activation for solution classes of linear, second order elliptic PDEs in divergence form in
plane, polygonal domains and of elliptic, nonlinear eigenvalue problems with singular potentials
in three space dimensions. Being essentially an approximation result, the DNN expression rate
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bound in Theorem 5.6 will apply to any elliptic boundary value problem in polygonal domains
where weighted, analytic regularity is available. Apart from the source and eigenvalue problems,
such regularity is in space dimension d = 2 also available for linearized elastostatics, Stokes flow
and general elliptic systems [17,20,8].

The established approximation rates of realizations of NNs with ReLU activation are fundamen-
tally based on a novel exponential upper bound on approximation of weighted analytic functions
via tensorized hp approximations on multi-patch configurations in finite unions of axiparallel rect-
angles/hexahedra. The hp approximation result is presented in Theorem A.25 and of independent
interest in the numerical analysis of spectral elements.

The proofs of exponential expressivity of NN realizations are, in principle, constructive. They
are based on explicit bounds on the coefficients of hp projections and on corresponding emulation
rate bounds for the (re)approximation of modal hp bases.

6.2 Extensions and future work

The tensor structure of the hp approximation considered here limited geometries of domains that
are admissible for our results. Curvilinear, mapped domains with analytic domain maps will al-
low corresponding approximation rates, with the NN approximations obtained by composing the
present constructions with NN emulations of the domain maps and the fact that compositions of
NNs are again NNs.

The only activation function considered in this work is the ReLU. Following the same proof
strategy, exponential expression rate bounds can be obtained for functions with smoother, nonlinear
activation functions. We refer to Remark 5.18 and to the discussion in [51, Sec. 3.3].

The principal results in Section 5.1 prove exponential expressivity of realizations of deep NNs
with ReLU activation on solutions sets of singular eigenvalue problems with multiple, isolated point
singularities and analytic potentials as arise in electron-structure models for static molecules with
known loci of the nuclei. Inspection of our proofs reveals that the expression rate bounds are robust
with respect to perturbations of the nuclei sites; only interatomic distances enter the constants
in the expression rate bounds of Section 5.1.2. Given the closedness of NNs under composition,
obtaining similar expression rates also for solutions of the vibrational Schrödinger equation appears
in principle possible.

The presently proved deep ReLU NN expression rate bounds can, in connection with recently
proposed, residual-based DNN training methodologies (see, e.g., [53,1,22] and the references there)
imply exponential convergence rates of numerical NN approximations of PDE solutions based on
machine learning approaches.

A Tensor product hp approximation

In this section, we construct the hp tensor product approximation which will then be emulated to
obtain the NN expression rate estimates. The main result, Theorem A.25, is an exponential con-
vergence bound for piecewise polynomial approximations with patch-wise tensor product structure
in polyhedral domains Ω, in dimension d = 2, 3, which consist of a finite number of cuboids. It is
used to prove the NN approximation results in Section 5, but it is also of independent interest.

We denote the reference cube Q = (0, 1)d, d ∈ {2, 3} and introduce the set containing one of
its corners C,

C =

{{
(0, 0)

}
if d = 2,{

(0, 0, 0)
}

if d = 3,
(A.1)
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and the set of adjacent edges E ,

E =

{
∅ if d = 2,{

{0} × {0} × (0, 1), {0} × (0, 1) × {0}, (0, 1) × {0} × {0}
}

if d = 3.
(A.2)

The results in this section extend, by rotation or reflection, to the case where C contains any of
the corners of Q and E is the set of the adjacent edges when d = 3. Most of the section addresses
the construction of exponentially consistent hp-quasiinterpolants in the reference cube (0, 1)d; in
Section A.10 the analysis will be extended to domains which are specific finite unions of such
patches.

A.1 Product geometric mesh and tensor product hp space

We fix a geometric mesh grading factor σ ∈ (0, 1/2]. Furthermore, let

Jℓ0 = (0, σℓ) and Jℓk = (σℓ−k+1, σℓ−k), k = 1, . . . , ℓ.

In (0, 1), the geometric mesh with ℓ layers is Gℓ1 =
{
Jℓk : k = 0, . . . , ℓ

}
. Moreover, we denote the

nodes of Gℓ1 by xℓ0 = 0 and xℓk = σℓ−k+1 for k = 1, . . . , ℓ + 1. In (0, 1)d, the d-dimensional tensor
product geometric mesh is1

Gℓd =

{
d×
i=1

Ki, for all K1, . . . ,Kd ∈ Gℓ1

}
.

For an element K = ×d
i=1 J

ℓ
ki

, ki ∈ {0, . . . , ℓ}, we denote by dKc the distance from the singular

corner, and dKe the distance from the closest singular edge. We observe that

dKc =

(
d∑

i=1

σ2(ℓ−ki+1)

)1/2

(A.3)

and

dKe = min
(i1,i2)∈{1,2,3}2


 ∑

i∈{i1,i2}
σ2(ℓ−ki+1)




1/2

. (A.4)

The hp tensor product space is defined as

Xℓ,p
hp,d := {v ∈ H1(Q) : v|K

∈ Qp(K), for all K ∈ Gℓd},

where Qp(K) := span
{∏d

i=1(xi)
ki : ki ≤ p, i = 1, . . . , d

}
. Note that, by construction, Xℓ,p

hp,d =
⊗d

i=1 X
ℓ,p
hp,1.

For positive integers p and s such that 1 ≤ s ≤ p, we will write

Ψp,s :=
(p− s)!

(p+ s)!
. (A.5)

Additionally, we will denote, for all σ ∈ (0, 1/2],

τσ :=
1 − σ

σ
∈ [1,∞). (A.6)

1 We assume isotropic tensorization, i.e. the same σ and the same number of geometric mesh layers in each
coordinate direction; all approximation results remain valid (with possibly better numerical values for the constants
in the error bounds) for anisotropic, co-ordinate dependent choices of ℓ and of σ.
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A.2 Local projector

We denote the reference interval by I = (−1, 1) and the reference cube by K̂ = (−1, 1)d. We

also write H1
mix(K̂) =

⊗d
i=1 H

1(I) ⊃ Hd(K̂). Let p ≥ 1: we introduce the univariate projectors
π̂p : H1(I) → Pp(I) as

(π̂pv̂) (x) = v̂(−1) +

p−1∑

n=0

(
v̂′,

2n+ 1

2
Ln

)∫ x

−1

Ln(ξ)dξ

= v̂(−1)

(
1 − x

2

)
+ v̂(1)

(
1 + x

2

)
+

p−1∑

n=1

(
v̂′,

2n+ 1

2
Ln

)∫ x

−1

Ln(ξ)dξ,

(A.7)

where Ln is the nth Legendre polynomial, L∞-normalized, and (·, ·) is the scalar product of
L2((−1, 1)). Note that

(π̂pv̂) (±1) = v̂(±1), ∀v̂ ∈ H1(I). (A.8)

For (p1 . . . pd) ∈ Nd, we introduce the projection on the reference element K̂ as Π̂p1...pd
=
⊗d

i=1 π̂pi .
For all K ∈ Gℓd, we introduce an affine transformation from K to the reference element

ΦK : K → K̂ such that ΦK(K) = K̂. (A.9)

Remark that since the elements are axiparallel, the affine transformation can be written as a d-fold
product of one dimensional affine transformations φk : Jℓk → I, i.e., supposing that K =×d

i=1 J
ℓ
ki

,
it holds that

ΦK =

d⊗

i=1

φki
.

Let K ∈ Gℓd and let ki, i = 1, . . . , d be the indices such that K =×d
i=1 J

ℓ
ki

. Define, for w ∈ H1(Jℓki
),

πki
pi
w =

(
π̂pi

(w ◦ φ−1
ki

)
)

◦ φki
.

For v defined on K such that v ◦Φ−1
K ∈ H1

mix(K̂) and for (p1, . . . , pd) ∈ Nd, we introduce the local
projection operator

ΠK
p1...pd

=

d⊗

i=1

πki
pi
. (A.10)

We also write Π̂p = Π̂p...p and

ΠK
p v = ΠK

p...pv =
(
Π̂p(v ◦ Φ−1

K )
)

◦ ΦK . (A.11)

For later reference, we note the following property of ΠK
p1...pd

v:

Lemma A.1 Let K1,K2 ⊂ Rd, d = 2, 3 be two axiparallel hypercubes that share one regular face
F if d = 3 and a regular edge F if d = 2 (i.e., if d = 3, F is an entire face of both K1 and K2,
and if d = 2 it is an entire edge). Then, for v ∈ H1

mix(int (K1 ∪ K2)) and (p1, . . . , pd) ∈ Nd, the
piecewise polynomial

ΠK1∪K2

p1...pd
v =

{
ΠK1
p1...pd

v in K1,

ΠK2
p1...pd

v in K2

is continuous across F .

Proof This follows directly from (A.8). ⊓⊔
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A.3 Global projectors

We introduce, for ℓ, p ∈ N, the univariate projector πℓ,php : H1((0, 1)) → Xℓ,p
hp,1 as

(
πℓ,php u

)
(x) =

{(
π0

1u
)

(x) if x ∈ Jℓ0,(
πkpu

)
(x) if x ∈ Jℓk, k ∈ {1, . . . , ℓ}. (A.12)

Note that for all ℓ ∈ N, for x ∈ Jℓ0
(
π0

1u
)

(x) = u(0) + σ−ℓ (u(σℓ) − u(0)
)
x.

The d-variate hp quasi-interpolant is then obtained by tensorization, i.e.

Πℓ,p
hp,d :=

d⊗

i=1

πℓ,php . (A.13)

Remark A.2 By the nodal exactness of the projectors, the operator Πℓ,p
hp,d is continuous across

interelement interfaces (see Lemma A.1), hence its image is contained in H1((0, 1)d). The continuity
can also be observed from the expansion in terms of continuous, globally defined basis functions
given in Proposition A.24.

Remark A.3 The projector Πℓ,p
hp,d is defined on a larger space than H1

mix(Q) as specified below (e.g.
Remark A.20).

A.4 Preliminary estimates

The projector on K̂ given by

Π̂p1...pd
:=

d⊗

i=1

π̂pi
(A.14)

has the following property.

Lemma A.4 ([50, Propositions 5.2 and 5.3]) Let d = 3, (p1, p2, p3) ∈ N3, and (s1, s2, s3) ∈ N3

with 1 ≤ si ≤ pi. Then the projector Π̂p1p2p3
: H1

mix(K̂) → Qp1,p2,p3
(K̂) satisfies that

‖v − Π̂p1p2p3
v‖2

H1(K̂)
≤ Cappx1

(
Ψp1,s1

∑

α1,α2≤1

‖∂(s1+1,α1,α2)v‖2

L2(K̂)

+ Ψp2,s2

∑

α1,α2≤1

‖∂(α1,s2+1,α2)v‖2

L2(K̂)

+ Ψp3,s3

∑

α1,α2≤1

‖∂(α1,α2,s3+1)v‖2

L2(K̂)

)
,

(A.15)

for all v ∈ Hs1+1(I) ⊗ Hs2+1(I) ⊗ Hs3+1(I) and for Ψpi,si
defined in (A.5). Here, Cappx1 is

independent of (p1, p2, p3), (s1, s2, s3) and v.

Remark A.5 In space dimension d = 2, a result analogous to Lemma A.4 holds, see [50].
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Lemma A.6 Let d = 3, (p1, p2, p3) ∈ N3, and (s1, s2, s3) ∈ N3 with 1 ≤ si ≤ pi. Further,

let {i, j, k} be a permutation of {1, 2, 3}. Then, the projector Π̂p1p2p3
: H1

mix(K̂) → Qp1,p2,p3
(K̂)

satisfies

∥∥∥∂xi

(
v − Π̂p1p2p3

v
)∥∥∥

2

L2(K̂)
≤ Cappx2

(
Ψpi,si

∑

α1,α2≤1

‖∂si+1
xi

∂α1

xj
∂α2

xk
v‖2

L2(K̂)

+ Ψpj ,sj

∑

α1≤1

‖∂xi
∂sj+1
xj

∂α1

xk
v‖2

L2(K̂)

+ Ψpk,sk

∑

α1≤1

‖∂xi
∂α1

xj
∂sk+1
xk

v‖2

L2(K̂)

)
,

(A.16)

for all v ∈ Hs1+1(I) ⊗ Hs2+1(I) ⊗ Hs3+1(I). Here, Cappx2 > 0 is independent of (p1, p2, p3),
(s1, s2, s3), and v.

Proof Let (p1, p2, p3) ∈ N3, and (s1, s2, s3) ∈ N3, be as in the statement of the lemma. Also, let
i ∈ {1, 2, 3} and {j, k} = {1, 2, 3} \ {i}. By Lemma A.4, it holds that

‖∂xi
(v − Π̂p1p2p3

v)‖2

L2(K̂)
≤ Cappx1

(
Ψp1,s1

∑

α1,α2≤1

‖∂(s1+1,α1,α2)v‖2

L2(K̂)

+ Ψp2,s2

∑

α1,α2≤1

‖∂(α1,s2+1,α2)v‖2

L2(K̂)

+ Ψp3,s3

∑

α1,α2≤1

‖∂(α1,α2,s3+1)v‖2

L2(K̂)

)
.

(A.17)

With a Cappx1 > 0 independent of (p1, p2, p3), (s1, s2, s3), and v. Let now vi : K̂ → R be such that,
when i = 1,

v1(x1, x2, x3) =

∫

I

v(t, x2, x3)dt, ∀(x1, x2, x3) ∈ K̂,

and let v2 and v3 be defined analogously. We denote by ṽ the function such that ṽ := v − vi and,
remarking that ∂xi

vi = ∂xi
Π̂p1p2p3

vi = 0, we apply (A.17) to ṽ, so that

‖∂xi(v − Π̂p1p2p3
v)‖2

L2(K̂)
≤ C

(
Ψp1,s1

∑

α1,α2≤1

‖∂(s1+1,α1,α2)ṽ‖2

L2(K̂)

+ Ψp2,s2

∑

α1,α2≤1

‖∂(α1,s2+1,α2)ṽ‖2

L2(K̂)

+ Ψp3,s3

∑

α1,α2≤1

‖∂(α1,α2,s3+1)ṽ‖2

L2(K̂)

)
.

(A.18)

By the Poincaré inequality, it holds for all α1 ∈ {0, 1} that

‖∂sj+1
xj

∂α1

xk
ṽ‖2

L2(K̂)
≤ C‖∂xi

∂sj+1
xj

∂α1

xk
v‖2

L2(K̂)
and ‖∂α1

xj
∂sk+1
xk

ṽ‖2

L2(K̂)
≤ C‖∂xi

∂α1

xj
∂sk+1
xk

v‖2

L2(K̂)
.

Using the fact that ∂xi ṽ = ∂xiv in the remaining terms of (A.18) concludes the proof. ⊓⊔
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A.4.1 One dimensional estimate

The following result is a consequence of, e.g., [48, Lemma 8.1] and scaling.

Lemma A.7 There exists C > 0 such that for all ℓ ∈ N, all integer 0 < k ≤ ℓ, all integers
1 ≤ s ≤ p, all γ > 0, and all v ∈ Hs+1(Jℓk)

h−2‖v − πkpv‖2
L2(Jℓ

k
) + ‖∇(v − πkpv)‖2

L2(Jℓ
k

) ≤ Cτ2(s+1)
σ Ψp,sh

2(min{γ−1,s})‖|x|(s+1−γ)+v(s+1)‖2
L2(Jℓ

k
)

(A.19)
where h = |Jℓk| ≃ σℓ−k and for τσ as defined in (A.6).

Proof From [48, Lemma 8.1], there exists C > 0 independent of p, k, s, and v such that

h−2‖v − πkpv‖2
L2(Jℓ

k
) + ‖∇(v − πkpv)‖2

L2(Jℓ
k

) ≤ CΨp,sh
2s‖v(s+1)‖2

L2(Jℓ
k

).

In addition, for all k = 1, . . . , ℓ, it holds that x|Jℓ
k

≥ σ
1−σh. Hence, for all γ < s+ 1,

h2s‖v(s+1)‖2
L2(Jℓ

k
) ≤ τ2(s+1−γ)

σ h2γ−2‖xs+1−γv(s+1)‖2
L2(Jℓ

k
).

This concludes the proof. ⊓⊔

A.4.2 Estimate at a corner in dimension d = 2

We consider now a setting with a two dimensional corner singularity. Let β ∈ R, K = Jℓ0 × Jℓ0,
r(x) = |x− x0| with x0 = (0, 0), and define the corner-weighted norm ‖v‖J 2

β
(K) by

‖v‖2
J 2

β
(K) :=

∑

|α|≤2

‖r(|α|−β)+∂αv‖2
L2(K).

Lemma A.8 Let d = 2, β ∈ (1, 2). There exists C1, C2 > 0 such that for all v ∈ J 2
β (K)

∑

α∈N2
0
:|α|≤1

‖∂α(π0
1 ⊗ π0

1)v‖L2(K) ≤ C1


‖v‖H1(K) +

∑

α∈N2
0
:|α|=2

σ(β−1)ℓ‖r2−β∂αv‖L2(K)


 (A.20)

and
∑

α∈N2
0
:|α|≤1

σ−ℓ(1−|α|)‖∂α(v − (π0
1 ⊗ π0

1)v)‖L2(K) ≤ C2σ
ℓ(β−1)

∑

α∈N2
0
:|α|=2

‖r2−β∂αv‖L2(K). (A.21)

Proof Denote by ci, i = 1, . . . , 4 the corners of K and by ψi, i = 1, . . . , 4 the bilinear functions such
that ψi(cj) = δij . Then,

(π0
1 ⊗ π0

1)v =

4∑

i=1

v(ci)ψi.

Therefore, writing h = σℓ, we have

‖(π0
1 ⊗ π0

1)v‖L2(K) ≤
∑

i=1,...,4

|v(ci)|‖ψi‖L2(K) ≤ 4‖v‖L∞(K)|K|1/2 ≤ 4h‖v‖L∞(K). (A.22)
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With the imbedding J 2
β ((0, 1)2) →֒ L∞((0, 1)2) which is valid for β > 1 (which follows e.g. from

Lemma A.22 and W 1,1
mix((0, 1)2) →֒ L∞((0, 1)2)), a scaling argument gives

h2‖v‖2
L∞(K) ≤ Ch2


h−2‖v‖2

L2(K) + |v|2H1(K) +
∑

|α|=2

h2β−2‖r2−β∂αv‖2
L2(K)


 ,

so that we obtain

‖(π0
1 ⊗ π0

1)v‖2
L2(K) ≤ C


‖v‖2

L2(K) + h2|v|2H1(K) +
∑

|α|=2

h2β‖r2−β∂αv‖2
L2(K)


 . (A.23)

For any |α| = 1, denoting v0 = v(0, 0) and using the fact that (π0
1⊗π0

1)v0 = v0 hence ∂α(π0
1⊗π0

1)v0 =
0,

‖∂α(π0
1 ⊗ π0

1)v‖L2(K) = ‖∂α(π0
1 ⊗ π0

1)(v − v0)‖L2(K)

≤
∑

i=1,...,4

|(v − v0)(ci)|‖∂αψi‖L2(K)

≤ C‖v − v0‖L∞(K). (A.24)

With the imbedding J 2
β ((0, 1)2) →֒ L∞((0, 1)2), Poincaré’s inequality, and rescaling we obtain

‖∂α(π0
1 ⊗ π0

1)v‖2
L2(K) ≤ C


|v|2H1(K) +

∑

|α|=2

h2β−2‖r2−β∂αv‖2
L2(K)


 ,

which finishes the proof of (A.20). To prove (A.21), note that v ∈ W 2,1(K), as shown in the final
estimate of this proof. By the Sobolev imbedding of W 2,1(K) into H1(K) and by scaling, we have

∑

|α|≤1

h|α|−1‖∂α(v − (π0
1 ⊗ π0

1)v)‖L2(K) ≤ C
∑

|α|≤2

h|α|−2‖∂α(v − (π0
1 ⊗ π0

1)v)‖L1(K).

By classical interpolation estimates [7, Theorem 4.4.4], we additionally conclude that

∑

|α|≤2

h|α|−2‖∂α(v − (π0
1 ⊗ π0

1)v)‖L1(K) ≤ C|v|W 2,1(K).

Using the Cauchy-Schwarz inequality,
∑

|α|≤1

h|α|−1‖∂α(v − (π0
1 ⊗ π0

1)v)‖L2(K) ≤ C
∑

|α|=2

‖∂αv‖L1(K)

≤ C
∑

|α|=2

‖r−2+β‖L2(K)‖r2−β∂αv‖L2(K)

≤ C
∑

|α|=2

hβ−1‖r2−β∂αv‖L2(K)

where we also have used, in the last step, the facts that r(x) ≤
√

2h for all x ∈ K and that β > 1.
⊓⊔
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A.5 Interior estimates

The following lemmas give the estimate of the approximation error on the elements not belonging
to edge or corner layers. For d = 3, all ℓ ∈ N, all k1, k2, k3 ∈ {0, . . . , ℓ} and all K = Jℓk1

×Jℓk2
×Jℓk3

,
we denote, by h‖ the length of K in the direction parallel to the closest singular edge, and by h⊥,1
and h⊥,2 the lengths of K in the other two directions. If an element has multiple closest singular
edges, we choose one of those and consider it as “closest edge” for all points in that element. When
considering functions from J d

γ (Q), γe will refer to the weight of this closest edge. Similarly, we

denote by ∂‖ (resp. ∂⊥,1 and ∂⊥,2) the derivatives in the direction parallel (resp. perpendicular) to
the closest singular edge.

Lemma A.9 Let d = 3, ℓ ∈ N and K = Jℓk1
× Jℓk2

× Jℓk3
for 0 < k1, k2, k3 ≤ ℓ. Let also v ∈

J̟
γ (Q; C, E ;Cv, Av) with γc ∈ (3/2, 5/2), γe ∈ (1, 2). Then, there exists C > 0 dependent only on

σ, Cappx2, Cv and A > 0 dependent only on σ, Av such that for all 1 ≤ s ≤ p

‖∂‖(v −ΠK
p v)‖2

L2(K) ≤ CΨp,sA
2s+6

(
(dKc )2 + (dKc )2(γc−1)

)
((s+ 3)!)2, (A.25)

where ∂‖ is the derivative in the direction parallel to the closest singular edge.

Proof We write da = dKa , a ∈ {c, e}. It holds that

d2
c =

(
σ

1 − σ

)2

(h2
‖ + h2

⊥,1 + h2
⊥,2), d2

e =

(
σ

1 − σ

)2

(h2
⊥,1 + h2

⊥,2).

Denoting v̂ = v ◦Φ−1
K and Π̂pv̂ = (ΠK

p v) ◦Φ−1
K = Π̂p(v ◦Φ−1

K ), using the result of Lemma A.6 and
rescaling, we have

‖∂̂‖(v̂ − Π̂pv̂)‖2

L2(K̂)
≤ Cappx2Ψp,s

h‖
h⊥,1h⊥,2


 ∑

α1,α2≤1

h2s
‖ h

2α1

⊥,1h
2α2

⊥,2‖∂s+1
‖ ∂α1

⊥,1∂
α2

⊥,2v‖2
L2(K)

+
∑

α1≤1

h2s+2
⊥,1 h2α1

⊥,2‖∂‖∂
s+1
⊥,1 ∂

α1

⊥,2v‖2
L2(K)

+
∑

α1≤1

h2α1

⊥,1h
2s+2
⊥,2 ‖∂‖∂

α1

⊥,1∂
s+1
⊥,2 v‖2

L2(K)




= Cappx2Ψp,s
h‖

h⊥,1h⊥,2

(
(I) + (II) + (III)

)
.

(A.26)

Denote Kc = K ∩Qc, Ke = K ∩Qe, Kce = K ∩Qce, and K0 = K ∩Q0. Furthermore, we indicate

(I)c =
∑

α1,α2≤1

h2s
‖ h

2α1

⊥,1h
2α2

⊥,2‖∂s+1
‖ ∂α1

⊥,1∂
α2

⊥,2v‖2
L2(Kc),

and do similarly for the other terms of the sum (II) and (III) and the other subscripts e, ce, 0.
Remark also that ri|K

≥ di, i ∈ {c, e}, and that for a, b ∈ R holds rac r
b
e = ra+b

c ρbce.
We will also write γ̃ = γc − γe. We start by considering the term (I)ce. Let α1 = α2 = 1; then,

h2s
‖ h

2
⊥,1h

2
⊥,2‖∂s+1

‖ ∂⊥,1∂⊥,2v‖2
L2(Kce) ≤ τ2s+4

σ d2s
c d

4
e‖∂s+1

‖ ∂⊥,1∂⊥,2v‖2
L2(Kce)

≤ τ2s+4
σ d2γ̃−2

c d2γe
e ‖rs+3−γc

c ρ2−γe
ce ∂s+1

‖ ∂⊥,1∂⊥,2v‖2
L2(Kce) ,
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where τσ is as in (A.6). Furthermore, if α1 + α2 ≤ 1 and s+ 1 + α1 + α2 − γc ≥ 0,

h2s
‖ h

2α1

⊥,1h
2α2

⊥,2‖∂s+1
‖ ∂α1

⊥,1∂
α2

⊥,2v‖2
L2(Kce) ≤ τ2s+2(α1+α2)

σ d2s
c d

2(α1+α2)
e ‖∂s+1

‖ ∂α1

⊥,1∂
α2

⊥,2v‖2
L2(Kce)

≤ τ2s+2(α1+α2)
σ d2γc−2

c ‖rs+1+α1+α2−γc
c ∂s+1

‖ ∂α1

⊥,1∂
α2

⊥,2v‖2
L2(Kce),

where we have also used de ≤ dc. Therefore,

(I)ce ≤ τ2s+4
σ d2γc−2

c

∑

α1,α2≤1

‖rs+1+α1+α2−γc
c ρ(α1+α2−γe)+

ce ∂s+1
‖ ∂α1

⊥,1∂
α2

⊥,2v‖2
L2(Kce).

If s+ 1 + α1 + α2 − γc < 0, then s = 1 and α1 = α2 = 0, thus

(I)ce ≤ τ2s+4
σ d2

c‖r(s+1+α1+α2−γc)+

c ρ(α1+α2−γe)+

ce ∂s+1
‖ ∂α1

⊥,1∂
α2

⊥,2v‖2
L2(Kce).

Then, if s+ 1 + α1 + α2 − γc ≥ 0

(I)c =
∑

α1,α2≤1

h2s
‖ h

2α1

⊥,1h
2α2

⊥,2‖∂s+1
‖ ∂α1

⊥,1∂
α2

⊥,2v‖2
L2(Kc)

≤ τ2s+4
σ

∑

α1,α2≤1

d2s
c d

2(α1+α2)
e ‖∂s+1

‖ ∂α1

⊥,1∂
α2

⊥,2v‖2
L2(Kc)

≤ τ2s+4
σ d2γc−2

c

∑

α1,α2≤1

‖r(s+1+α1+α2−γc)+

c ∂s+1
‖ ∂α1

⊥,1∂
α2

⊥,2v‖2
L2(Kc)

where the last inequality follows also from de ≤ dc. If s + 1 + α1 + α2 − γc < 0, then the same
bound holds with d2γc−2

c replaced by d2
c . Similarly,

(I)e =
∑

α1,α2≤1

h2s
‖ h

2α1

⊥,1h
2α2

⊥,2‖∂s+1
‖ ∂α1

⊥,1∂
α2

⊥,2v‖2
L2(Ke)

≤ τ2s+4
σ

∑

α1,α2≤1

d2s
c d

2α1+2α2−2(α1+α2−γe)+

e ‖r(α1+α2−γe)+

e ∂s+1
‖ ∂α1

⊥,1∂
α2

⊥,2v‖2
L2(Ke)

≤ τ2s+4
σ d2s

c

∑

α1,α2≤1

‖r(α1+α2−γe)+

e ∂s+1
‖ ∂α1

⊥,1∂
α2

⊥,2v‖2
L2(Ke),

where we used that de ≤ 1. The bound on (I)0 follows directly from the definition:

(I)0 =
∑

α1,α2≤1

h2s
‖ h

2α1

⊥,1h
2α2

⊥,2‖∂s+1
‖ ∂α1

⊥,1∂
α2

⊥,2v‖2
L2(K0) ≤ τ2s+4

σ d2s
c

∑

α1,α2≤1

‖∂s+1
‖ ∂α1

⊥,1∂
α2

⊥,2v‖2
L2(K0).

Using (2.1), there exists C > 0 dependent only on Cv and σ and A > 0 dependent only on Av and
σ such that

(I) ≤ CA2s+6((s+ 3)!)2
(
d2
c + d2γc−2

c

)
. (A.27)

We then apply the same argument to the terms (II) and (III). Indeed,

(II)ce =
∑

α1≤1

h2s+2
⊥,1 h2α1

⊥,2‖∂‖∂
s+1
⊥,1 ∂

α1

⊥,2v‖2
L2(Kce)

≤ τ2s+4
σ

∑

α1≤1

d2s+2+2α1

e ‖∂‖∂
s+1
⊥,1 ∂

α1

⊥,2v‖2
L2(Kce)

≤ τ2s+4
σ

∑

α1≤1

d2γ̃−2
c d2γe

e ‖rs+2+α1−γc
c ρs+1+α1−γe

ce ∂‖∂
s+1
⊥,1 ∂

α1

⊥,2v‖2
L2(Kce)
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and the estimate for (III)ce follows by exchanging h⊥,1 and ∂⊥,1 with h⊥,2 and ∂⊥,2 in the
inequality above. The estimates for (II)c,e,0 and (III)c,e,0 can be obtained as for (I)c,e,0:

(II)c ≤ τ2s+4
σ

∑

α1≤1

d2γc−2
c ‖rs+2+α1−γc

c ∂‖∂
s+1
⊥,1 ∂

α1

⊥,2v‖2
L2(Kc),

(II)e ≤ τ2s+4
σ

∑

α1≤1

d2γe
e ‖rs+1+α1−γe

e ∂‖∂
s+1
⊥,1 ∂

α1

⊥,2v‖2
L2(Ke),

(II)0 ≤ τ2s+4
σ

∑

α1≤1

d2s+2
e ‖∂‖∂

s+1
⊥,1 ∂

α1

⊥,2v‖2
L2(K0).

Therefore, we have
(II), (III) ≤ CA2s+6(d2

c + d2γc−2
c )((s+ 3)!)2. (A.28)

We obtain, from (A.26), (A.27), and (A.28) that there exists C > 0 (dependent only on σ, Cappx2,
Cv and A > 0 (dependent only on σ, Av) such that

‖∂̂‖(v̂ − Π̂pv̂)‖2

L2(K̂)
≤ C

h‖
h⊥,1h⊥,2

Ψp,sA
2s+6(d2

c + d2γc−2
c )((s+ 3)!)2.

Considering that

‖∂‖(v −Πpv)‖2
L2(K) ≤ h⊥,1h⊥,2

h‖
‖∂̂‖(v̂ − Π̂pv̂)‖2

L2(K̂)

completes the proof. ⊓⊔
Lemma A.10 Let d = 3, ℓ ∈ N and K = Jℓk1

× Jℓk2
× Jℓk3

for 0 < k1, k2, k3 ≤ ℓ. Let also
v ∈ J̟

γ (Q; C, E ;Cv, Av) with γc ∈ (3/2, 5/2), γe ∈ (1, 2). Then, there exists C > 0 dependent only

on σ, Cappx2, Cv and A > 0 dependent only on σ, Av such that for all p ∈ N and all 1 ≤ s ≤ p

‖∂⊥,1(v −ΠK
p v)‖2

L2(K) + ‖∂⊥,2(v −ΠK
p v)‖2

L2(K)

≤ CΨp,sA
2s+6

(
(dKc )2(γc−1) + (dKc )2(γe−1)

)
((s+ 3)!)2, (A.29)

where ∂⊥,1, ∂⊥,2 are the derivatives in the directions perpendicular to the closest singular edge.

Proof The proof follows closely that of Lemma A.9 and we use the same notation. From Lemma
A.6 and rescaling, we have

‖∂̂⊥,1(v̂ − Π̂pv̂)‖2

L2(K̂)
≤ Cappx2Ψp,s

h⊥,1
h‖h⊥,2


∑

α1≤1

h2s+2
‖ h2α1

⊥,2‖∂s+1
‖ ∂⊥,1∂

α1

⊥,2v‖2
L2(K)

+
∑

α1,α2≤1

h2α1

‖ h2s
⊥,1h

2α2

⊥,2‖∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2
L2(K)

+
∑

α1≤1

h2α1

‖ h2s+2
⊥,2 ‖∂α1

‖ ∂⊥,1∂
s+1
⊥,2 v‖2

L2(K)




= Cappx2Ψp,s
h⊥,1
h‖h⊥,2

(
(I) + (II) + (III)

)
.

(A.30)

As before, we will write γ̃ = γc − γe. We start by considering the term (I)ce. When α1 = 1,

h2s+2
‖ h2

⊥,2‖∂s+1
‖ ∂⊥,1∂⊥,2v‖2

L2(Kce) ≤ τ2s+4
σ d2s+2

c d2
e‖∂s+1

‖ ∂⊥,1∂⊥,2v‖2
L2(Kce)

≤ τ2s+4
σ d2γ̃

c d
2γe−2
e ‖rs+3−γc

c ρ2−γe
ce ∂s+1

‖ ∂⊥,1∂⊥,2v‖2
L2(Kce),
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where d2γ̃
c d

2γe−2
e ≤ d2γc−2

c . Furthermore, if α1 = 0,

h2s+2
‖ ‖∂s+1

‖ ∂⊥,1v‖2
L2(Kce) ≤ τ2s+2

σ d2s+2
c ‖∂s+1

‖ ∂⊥,1v‖2
L2(Kce)

≤ τ2s+2
σ d2γc−2

c ‖rs+2−γc
c ∂s+1

‖ ∂⊥,1v‖2
L2(Kce).

Therefore,

(I)ce ≤ τ2s+4
σ d2γc−2

c

∑

α1≤1

‖rs+2+α1−γc
c ρ(1+α1−γe)+

ce ∂s+1
‖ ∂⊥,1∂

α1

⊥,2v‖2
L2(Kce).

The estimates for (I)c,e,0 follow from the same technique:

(I)e ≤
∑

α1≤1

τ2s+4
σ d2s+2

c ‖r(1+α1−γe)+

e ∂s+1
‖ ∂⊥,1∂

α1

⊥,2v‖2
L2(Ke),

(I)c ≤
∑

α1≤1

τ2s+4
σ d2γc−2

c ‖rs+2+α1−γc
c ∂s+1

‖ ∂⊥,1∂
α1

⊥,2v‖2
L2(Kc),

(I)0 ≤
∑

α1≤1

τ2s+4
σ d2s+2

c ‖∂s+1
‖ ∂⊥,1∂

α1

⊥,2v‖2
L2(K0).

Hence, from (2.1), there exists C > 0 dependent only on Cv and σ and A > 0 dependent only on
Av and σ such that

(I) ≤ CA2s+6((s+ 3)!)2d2γc−2
c . (A.31)

We then apply the same argument to the terms (II) and (III). Indeed, if s+ 1 +α1 +α2 − γc ≥ 0

(II)ce =
∑

α1,α2≤1

h2α1

‖ h2s
⊥,1h

2α2

⊥,2‖∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2
L2(Kce)

≤ τ2s+4
σ

∑

α1,α2≤1

d2α1

c d2s+2α2

e ‖∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2
L2(Kce)

≤ τ2s+4
σ

∑

α1≤1

d2γ̃
c d

2γe−2
e ‖rs+1+α1+α2−γc

c ρs+1+α2−γe
ce ∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2
L2(Kce)

≤ τ2s+4
σ

∑

α1≤1

d2γc−2
c ‖rs+1+α1+α2−γc

c ρs+1+α2−γe
ce ∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2
L2(Kce),

where in the last step we have used that γe > 1 and de ≤ dc. If s+ 1 + α1 + α2 − γc < 0, then

(II)ce =
∑

α1,α2≤1

h2α1

‖ h2s
⊥,1h

2α2

⊥,2‖∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2
L2(Kce)

≤ τ2s+4
σ

∑

α1,α2≤1

d2α1

c d2s+2α2

e ‖∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2
L2(Kce)

≤ τ2s+4
σ

∑

α1≤1

d2α1

c d2s+2α2

e (de/dc)
−2s−2−2α2+2γe‖ρs+1+α2−γe

ce ∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2
L2(Kce)

≤ τ2s+4
σ

∑

α1≤1

d2s+2−2γe
c d2γe−2

e ‖ρs+1+α2−γe
ce ∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2
L2(Kce).

Thus, using de ≤ dc,

(II)ce ≤ τ2s+4
σ

∑

α1≤1

(d2s
c + d2γc−2

c )‖r(s+1+α1+α2−γc)+

c ρs+1+α2−γe
ce ∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2
L2(Kce).
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The estimates for (II)c,e,0 and (III)ce,c,e,0 can be obtained as above:

(II)e ≤ τ2s+4
σ

∑

α1≤1

d2γe−2
e ‖rs+1+α2−γe

e ∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2
L2(Ke),

if s+ 1 + α1 + α2 − γc ≥ 0, then

(II)c ≤ τ2s+4
σ

∑

α1≤1

d2γc−2
c ‖rs+1+α1+α2−γc

c ∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2
L2(Kc),

if s+ 1 + α1 + α2 − γc < 0, then

(II)c ≤ τ2s+4
σ

∑

α1≤1

d2s
c ‖∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2
L2(Kc),

so that

(II)c ≤ τ2s+4
σ

∑

α1≤1

(d2s
c + d2γc−2

c )‖r(s+1+α1+α2−γc)+

c ∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2
L2(Kc),

(II)0 ≤ τ2s+4
σ

∑

α1≤1

d2s
c ‖∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2
L2(K0),

(III)ce ≤ τ2s+4
σ

∑

α1≤1

d2γc−2
c ‖rs+2+α1−γc

c ρs+2−γe
ce ∂α1

‖ ∂⊥,1∂
s+1
⊥,2 v‖2

L2(Kce),

(III)e ≤ τ2s+4
σ

∑

α1≤1

d2γe−2
e ‖rs+2−γe

e ∂α1

‖ ∂⊥,1∂
s+1
⊥,2 v‖2

L2(Ke),

(III)c ≤ τ2s+4
σ

∑

α1≤1

d2γc−2
c ‖rs+2+α1−γc

c ∂α1

‖ ∂⊥,1∂
s+1
⊥,2 v‖2

L2(Kc),

(III)0 ≤ τ2s+4
σ

∑

α1≤1

d2s+2
e ‖∂α1

‖ ∂⊥,1∂
s+1
⊥,2 v‖2

L2(K0).

Therefore, we have

(II) + (III) ≤ CA2s+6(d2γc−2
c + d2γe−2

c )((s+ 3)!)2. (A.32)

We obtain, from (A.30), (A.31), and (A.32) that there exists C > 0 dependent only on σ, Cappx2,
Cv and A > 0 dependent only on σ, Av such that

‖∂̂⊥,1(v̂ − Π̂pv̂)‖2

L2(K̂)
≤ C

h⊥,1
h‖h⊥,2

Ψp,sA
2s+6

(
d2(γc−1)
c + d2(γe−1)

c

)
((s+ 3)!)2.

Considering that

‖∂⊥,1(v −ΠK
p v)‖2

L2(K) ≤ h‖h⊥,2
h⊥,1

‖∂̂⊥,1(v̂ − Π̂pv̂)‖2

L2(K̂)

and considering that the estimate for the other term on the left-hand side of (A.29) is obtained by
exchanging {h, ∂}⊥,1 with {h, ∂}⊥,2 completes the proof. ⊓⊔
Lemma A.11 Let d = 3, ℓ ∈ N and K = Jℓk1

× Jℓk2
× Jℓk3

for 0 < k1, k2, k3 ≤ ℓ. Let also
v ∈ J̟

γ (Q; C, E ;Cv, Av) with γc ∈ (3/2, 5/2), γe ∈ (1, 2). Then, there exists C > 0 dependent only

on σ, Cappx1, Cv and A > 0 dependent only on σ, Av such that for all p ∈ N and all 1 ≤ s ≤ p

‖v −ΠK
p v‖2

L2(K) ≤ CΨp,sA
2s+6

(
(dKc )2(γc−1) + (dKc )2(γe−1)

)
((s+ 3)!)2. (A.33)
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Proof The proof follows closely that of Lemmas A.9 and A.10; we use the same notation. From
Lemma A.4 and rescaling, we have

‖v̂ − Π̂pv̂‖2

L2(K̂)
≤ Cappx1Ψp,s

1

h‖h⊥,1h⊥,2


 ∑

α1,α2≤1

h2s+2
‖ h2α1

⊥,1h
2α2

⊥,2‖∂s+1
‖ ∂α1

⊥,1∂
α2

⊥,2v‖2
L2(K)

+
∑

α1,α2≤1

h2α1

‖ h2s+2
⊥,1 h2α2

⊥,2‖∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2
L2(K)

+
∑

α1,α2≤1

h2α1

‖ h2α2

⊥,1h
2s+2
⊥,2 ‖∂α1

‖ ∂α2

⊥,1∂
s+1
⊥,2 v‖2

L2(K)


 .

(A.34)

Most terms on the right-hand side above have already been considered in the proofs of Lemmas
A.9 and A.10, and the terms with α1 = α2 = 0 can be estimated similarly; the observation that

‖v −ΠK
p v‖2

L2(K) ≤ h‖h⊥,1h⊥,2‖v̂ − Π̂pv̂‖2

L2(K̂)

concludes the proof. ⊓⊔
We summarize Lemmas A.9 to A.11 in the following result.

Lemma A.12 Let d = 3, ℓ ∈ N and K = Jℓk1
× Jℓk2

× Jℓk3
such that 0 < k1, k2, k3 ≤ ℓ. Let also

v ∈ J̟
γ (Q; C, E ;Cv, Av) with γc ∈ (3/2, 5/2), γe ∈ (1, 2). Then, there exists C > 0 dependent only

on σ, Cappx1, Cappx2, Cv and A > 0 dependent only on σ, Av such that for all p ∈ N and all
1 ≤ s ≤ p

‖v −ΠK
p v‖2

H1(K) ≤ CΨp,sA
2s+6

(
(dKc )2(γc−1) + (dKc )2(γe−1)

)
((s+ 3)!)2. (A.35)

We then consider elements on the faces (but not abutting edges) of Q.

Lemma A.13 Let d = 3, ℓ ∈ N and K = Jℓk1
× Jℓk2

× Jℓk3
such that kj = 0 for one j ∈ {1, 2, 3}

and 0 < ki ≤ ℓ for i 6= j. For all p ∈ N and all 1 ≤ s ≤ p, let pj = 1 and pi = p ∈ N for i 6= j. Let
also v ∈ J̟

γ (Q; C, E ;Cv, Av) with γc ∈ (3/2, 5/2), γe ∈ (1, 2). Then, there exists C > 0 dependent

only on σ, Cappx1, Cappx2, Cv and A > 0 dependent only on σ, Av such that

‖v −ΠK
p1p2p3

v‖2
H1(K) ≤ C

(
Ψp,sA

2s+6(dKc )2(min(γc,γe)−1)((s+ 3)!)2 + (dKe )2(min(γc,γe)−2)σ2ℓA8
)
.

(A.36)

Proof We write da = dKa , a ∈ {c, e}. Suppose, for ease of notation, that j = 3, i.e. k3 = 0. The
projector is then given by ΠK

pp1 = πk1
p ⊗ πk2

p ⊗ π0
1 . Also, we denote h⊥,2 = σℓ and ∂⊥,2 = ∂x3

. By
(A.16),

‖∂‖(v −ΠK
pp1v)‖2

L2(K) ≤ Cappx2


Ψp,s

( ∑

α1,α2≤1

h2s
‖ h

2α1

⊥,1h
2α2

⊥,2‖∂s+1
‖ ∂α1

⊥,1∂
α2

⊥,2v‖2
L2(K)

+
∑

α1≤1

h2s+2
⊥,1 h2α1

⊥,2‖∂‖∂
s+1
⊥,1 ∂

α1

⊥,2v‖2
L2(K)

)

+
∑

α1≤1

h2α1

⊥,1h
4
⊥,2‖∂‖∂

α1

⊥,1∂
2
⊥,2v‖2

L2(K)




= Cappx2

(
(I) + (II) + (III)

)
.
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The bounds on the terms (I) and (II) can be derived as in Lemma A.9, and give

(I) + (II) ≤ CΨp,sA
2s+6

(
(dKc )2 + (dKc )2(γc−1)

)
((s+ 3)!)2.

We consider then term (III): with the usual notation, writing γ̃ = γc − γe,

(III)ce =
∑

α1≤1

h2α1

⊥,1h
4
⊥,2‖∂‖∂

α1

⊥,1∂
2
⊥,2v‖2

L2(Kce)

≤
∑

α1≤1

τ4+2α1

σ d2γ̃−2
c d2γe−4

e σ4ℓ‖r3+α1−γc
c ρ2+α1−γe

ce ∂‖∂
α1

⊥,1∂
2
⊥,2v‖2

L2(Kce)

≤ Cτ6
σd

2γ̃−2
c d2γe−4

e σ4ℓA8.

(A.37)

Note that dc ≥ de and

dγ̃cd
γe
e ≤

{
1γ̃dγe

e if γ̃ ≥ 0

dγ̃ed
γe
e if γ̃ < 0

≤ dmin(γc,γe)
e , (A.38)

where we have also used that dc ≤ 1. Hence,

(III)ce ≤ Cτ6
σd

2 min(γe,γc)−6
e σ4ℓA8 ≤ Cτ6

σd
2 min(γe,γc)−4
e σ2ℓA8. (A.39)

The bounds on the terms (III)c,e,0 follow by the same argument:

(III)e ≤ Cτ6
σd

2γe−4
e σ4ℓA8,

(III)c ≤ Cτ6
σd

2γc−6
c σ4ℓA8 ≤ Cτ6

σd
2γc−4
e σ2ℓA8,

(III)0 ≤ Cτ6
σσ

4ℓA8.

Then,

‖∂⊥,1(v −ΠK
pp1v)‖2

L2(K) ≤ Cappx2


Ψp,s

( ∑

α1≤1

h2s+2
‖ h2α1

⊥,2‖∂s+1
‖ ∂⊥,1∂

α1

⊥,2v‖2
L2(K)

+
∑

α1,α2≤1

h2α1

‖ h2s
⊥,1h

2α2

⊥,2‖∂α1

‖ ∂s+1
⊥,1 ∂

α2

⊥,2v‖2
L2(K)

)

+
∑

α1≤1

h2α1

‖ h4
⊥,2‖∂α1

‖ ∂⊥,1∂
2
⊥,2v‖2

L2(K)




≤ Cappx2

(
(I) + (II) + (III)

)
.

The bounds on the first two terms in the right-hand side above can be obtained as in Lemma A.10:

(I) + (II) ≤ CΨp,sA
2s+6

(
(dKc )2(γc−1) + (dKc )2(γe−1)

)
((s+ 3)!)2,

while the last term can be bounded as in (A.39),

(III)ce ≤ τ6
σd

2γ̃
c d

2γe−6
e σ4ℓA8 ≤ Cτ6

σd
2 min(γc,γe)−4
e σ2ℓA8,

(III)e ≤ τ6
σd

2γe−6
e σ4ℓA8 ≤ Cτ6

σd
2γe−4
e σ2ℓA8,

(III)c ≤ τ6
σd

2γc−6
c σ4ℓA8 ≤ Cτ6

σd
2γc−4
e σ2ℓA8,

(III)0 ≤ τ6
σσ

4ℓA8,
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so that ∑

α1≤1

h2α1

‖ h4
⊥,2‖∂α1

‖ ∂⊥,1∂
2
⊥,2v‖2

L2(K) ≤ Cd2 min(γc,γe)−4
e σ2ℓA8.

The same holds true for the last term of the gradient of the approximation error, given by

‖∂⊥,2(v −ΠK
pp1v)‖2

L2(K) ≤ Cappx2


Ψp,s

( ∑

α1≤1

h2s+2
‖ h2α1

⊥,1‖∂s+1
‖ ∂α1

⊥,1∂⊥,2v‖2
L2(K)

+
∑

α1≤1

h2α1

‖ h2s+2
⊥,1 ‖∂α1

‖ ∂s+1
⊥,1 ∂⊥,2v‖2

L2(K)

)

+
∑

α1,α2≤1

h2α1

‖ h2α2

⊥,1h
2
⊥,2‖∂α1

‖ ∂α2

⊥,1∂
2
⊥,2v‖2

L2(K)




≤ Cappx2

(
(I) + (II) + (III)

)
.

From Lemma A.10, we obtain

(I) + (II) ≤ CΨp,sA
2s+6

(
(dKc )2(γc−1) + (dKc )2(γe−1)

)
((s+ 3)!)2,

whereas for the third term, it holds that if α1 + α2 + 2 − γc ≥ 0

(III)ce ≤ τ6
σd

2γ̃
c d

2γe−4
e σ2ℓA8 ≤ Cτ6

σd
2 min(γc,γe)−4
e σ2ℓA8, (III)c ≤ τ6

σd
2γc−4
c σ2ℓA8,

and if α1 + α2 + 2 − γc < 0, then

(III)ce ≤ τ6
σd

2γe−4
e σ2ℓA8, (III)c ≤ τ6

σσ
2ℓA8,

and for all α1 + α2 + 2 − γc ∈ R, (III)e and (III)0 satisfy the bounds that (III)ce and (III)c
satisfy in case α1 + α2 + 2 − γc < 0, so that

‖∂⊥,2(v −ΠK
pp1v)‖2

L2(K) ≤ C
(
Ψp,sA

2s+6((s+ 3)!)2d2(min(γc,γe)−1)
c +A8d2(min(γc,γe)−2)

e σ2ℓ
)
.

Finally, the bound on the L2(K)-norm of the approximation error can be obtained by a combination
of the estimates above. ⊓⊔
The exponential convergence of the approximation in internal elements (i.e., elements not abutting
a singular edge or corner) follows, from Lemmas A.9 to A.13.

Lemma A.14 Let d = 3 and v ∈ J̟
γ (Q; C, E) with γc > 3/2, γe > 1. There exists a constant

C0 > 0 such that if p ≥ C0ℓ, there exist constants C, b > 0 such that for every ℓ ∈ N holds
∑

K:dK
e >0

‖v −Πℓ,p
hp,dv‖2

H1(K) ≤ Ce−bℓ.

Proof We suppose, without loss of generality, that γc ∈ (3/2, 5/2), and γe ∈ (1, 2). The general
case follows from the inclusion J̟

γ
1

(Q; C, E) ⊂ J̟
γ

2

(Q; C, E), valid for γ
1

≥ γ
2
. Fix any C0 > 0 and

choose p ≥ C0ℓ. For all A > 0 there exist C1, b1 > 0 such that (see, e.g., [50, Lemma 5.9])

∀p ∈ N : min
1≤s≤p

Ψp,sA
2s(s!)2 ≤ C1e

−b1p.
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From (A.35) and (A.36), it follows that

∑

K:dK
e >0

‖v −Πℓ,p
hp,dv‖2

H1(K)

≤ C2




∑

K:dK
e >0

e−b1ℓ(dKc )2(min(γc,γe)−1) +
∑

K:dK
e >0,dK

f
=0

(dKe )2(min(γe,γc)−2)σ2ℓ




= C2

(
(I) + (II)

)
,

where dKf indicates the distance of an element K to one of the faces of Q. We have directly

(I) ≤ Cℓ2e−b1ℓ. Furthermore, because (min(γc, γe) − 2) < 0,

(II) ≤ 6σ2ℓ
ℓ∑

k1=1

k1∑

k2=1

σ2(ℓ−k2)(min(γe,γc)−2) ≤ Cσ2ℓ
ℓ∑

k1=1

σ2ℓ(min(γc,γe)−2) ≤ Cℓσ2(min(γc,γe)−1)ℓ.

Adjusting the constants in the exponent to absorb the terms in ℓ and ℓ2, we obtain the desired
estimate. ⊓⊔
A similar statement holds when d = 2, and the proof follows along the same lines.

Lemma A.15 Let d = 2 and v ∈ J̟
γ (Q; C, E) with γc > 1. There exists a constant C0 > 0 such

that if p ≥ C0ℓ, there exist constants C, b > 0 such that
∑

K:dK
c >0

‖v −Πℓ,p
hp,dv‖2

H1(K) ≤ Ce−bℓ, ∀ℓ ∈ N.

A.6 Estimates on elements along an edge in three dimensions

In the following lemma, we consider the elements K along one edge, but separated from the singular
corner.

Lemma A.16 Let d = 3, e ∈ E and let K ∈ Gℓ3 be such that dKc > 0 for all c ∈ C and dKe = 0. Let
Cv, Av > 0. Then, if v ∈ J̟

γ (Q; C, E ;Cv, Av) with γc ∈ (3/2, 5/2), γe ∈ (1, 2), there exist C,A > 0

such that for all p ∈ N and all 1 ≤ s ≤ p, with (p1, p2, p3) ∈ N3 such that p‖ = p, p⊥,1 = 1 = p⊥,2,

‖v −ΠK
p1p2p3

v‖2
H1(K) ≤ C

(
σ2 min{γc−1,s}(ℓ−k)Ψp,sA

2s((s+ 3)!)2 + σ2(min(γe,γc)−1)ℓ
)
, (A.40)

where k ∈ {1, . . . , ℓ} is such that dKc = σℓ−k+1.

Proof We suppose that K = Jℓk × Jℓ0 × Jℓ0 for some k ∈ {1, . . . , ℓ}, the elements along other edges
follow by symmetry. This implies that the singular edge is parallel to the first coordinate direction.
Furthermore, we denote

ΠK
p11 = πkp ⊗ (π0

1 ⊗ π0
1) = π‖ ⊗ π⊥.

For α = (α1, α2, α3) ∈ N3
0, we write α‖ = (α1, 0, 0) and α⊥ = (0, α2, α3). Also,

h‖ = |Jℓk| = σℓ−k(1 − σ), h⊥ = σℓ.

We have
v −ΠK

p11v = v − π⊥v + π⊥
(
v − π‖v

)
. (A.41)
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We start by considering the first terms on the right-hand side of the above equation. We also
compute the norms over Kce = K ∩ Qce; the estimate on the norms over Kc = K ∩ Qc and
Ke = K ∩Qe follow by similar or simpler arguments. By (A.21) from Lemma A.8, we have that if
γc < 2
∑

|α⊥|≤1

h
−2(1−|α⊥|)
⊥ ‖∂α⊥(v − π⊥v)‖2

L2(Kce) . h
2(γe−1)
⊥

∑

|α⊥|=2

‖r2−γe
e ∂α⊥v‖2

L2(Kce)

. h
2(γc−γe)
‖ h

2(γe−1)
⊥

∑

|α⊥|=2

‖r(2−γc)+

c ρ2−γe
ce ∂α⊥v‖2

L2(Kce)

. σ2k(γe−1)σ2(ℓ−k)(γc−1)A4 . σ2ℓ(min{γc,γe}−1)A4,
(A.42a)

whereas for γc ≥ 2
∑

|α⊥|≤1

h
−2(1−|α⊥|)
⊥ ‖∂α⊥(v − π⊥v)‖2

L2(Kce) . h
2(γe−1)
⊥

∑

|α⊥|=2

‖r2−γe
e ∂α⊥v‖2

L2(Kce)

. σ2ℓ(γe−1)A4. (A.42b)

On Ke, the same bound holds as on Kce for γc ≥ 2, and on Kc the same bounds hold as on Kce

for γc < 2. By the same argument, for |α‖| = 1,

‖∂α‖(v − π⊥v)‖2
L2(Kce) = ‖(∂α‖v) − π⊥(∂α‖v)‖2

L2(Kce)

. h2γe

⊥
∑

|α⊥|=2

‖r2−γe
e ∂α⊥∂α‖v‖2

L2(Kce)

. h2γ̃−2
‖ h2γe

⊥
∑

|α⊥|=2

‖r3−γc
c ρ2−γe

ce ∂αv‖2
L2(Kce)

. σ2(ℓ−k)(γc−1)σ2k(γe−1)A6 . σ2ℓ(min{γc,γe}−1)A6,

(A.43a)

and

‖(∂α‖v) − π⊥(∂α‖v)‖2
L2(Ke) . σ2ℓγeA6, (A.43b)

‖(∂α‖v) − π⊥(∂α‖v)‖2
L2(Kc) . σ2(ℓ−k)(γc−1)σ2k(γe−1)A6 . σ2ℓ(min{γc,γe}−1)A6. (A.43c)

We now turn to the second part of the right-hand side of (A.41). We use (A.20) from Lemma A.8
so that

∑

|α⊥|≤1

‖∂α⊥π⊥(v − π‖v)‖2
L2(K)

.
∑

|α⊥|≤1

‖∂α⊥(v − π‖v)‖2
L2(K) +

∑

|α⊥|=2

h
2(γe−1)
⊥ ‖r2−γe

e ∂α⊥(v − π‖v)‖2
L2(K).

(A.44)

By Lemma A.7 we have, recalling that α‖ = s+ 1 and 1 ≤ s ≤ p, for all |α⊥| ≤ 1,

‖∂α⊥(v − π‖v)‖2
L2(K) = ‖(∂α⊥v) − π‖(∂α⊥v)‖2

L2(K)

. τ2s+2
σ h

2 min{γc,s+1}
‖ Ψp,s‖|x1|(s+1−γc)+∂α‖∂α⊥v)‖2

L2(K),
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and, for all |α⊥| = 2, using that π‖ and multiplication by re commute, because re does not depend
on x1,

‖r2−γe
e ∂α⊥(v − π‖v)‖2

L2(K) = ‖(r2−γe
e ∂α⊥v) − π‖(r2−γe

e ∂α⊥v)‖2
L2(K)

. τ2s+2
σ h

2 min{γc,s+1}
‖ Ψp,s‖|x1|(s+1−γc)+r2−γe

e ∂α‖∂α⊥v)‖2
L2(K).

Then, remarking that |x1| . rc . |x1|, combining (A.44) with the two inequalities above we obtain
∑

|α⊥|≤1

‖∂α⊥π⊥(v − π‖v)‖2
L2(K)

. τ2s+2
σ Ψp,sh

2 min{γc−1,s}
‖ h2

‖


 ∑

|α⊥|≤1

‖r(s+1−γc)+

c ∂αv‖2
L2(K)

+
∑

|α⊥|=2

h
2(γe−1)
⊥ ‖r(s+1−γc)+

c r2−γe
e ∂αv‖2

L2(K)


 .

Adjusting the exponent of the weights, replacing h‖ and h⊥ with their definition, we find that
there exists A > 0 depending only on σ and Av such that
∑

|α⊥|≤1

‖∂α⊥π⊥(v − π‖v)‖2
L2(Kce)

. τ2s+2
σ Ψp,sh

2 min{γc−1,s}
‖ h2

‖


 ∑

|α⊥|≤1

h
−2|α⊥|
‖ ‖r(s+1+|α⊥|−γc)+

c ∂αv‖2
L2(Kce)

+
∑

|α⊥|=2

h
2(γe−1)
⊥ h−2γe

‖ ‖rs+3−γc
c ρ2−γe

ce ∂αv‖2
L2(Kce)




. σ2(ℓ−k) min{γc−1,s}Ψp,sA
2s+4((s+ 3)!)2,

(A.45a)
and similarly

∑

|α⊥|≤1

‖∂α⊥π⊥(v − π‖v)‖2
L2(Ke) . σ2(ℓ−k) min{γc,s+1}Ψp,sA

2s+4((s+ 3)!)2, (A.45b)

and the estimate on Kc is the same as that on Kce. Similarly to (A.44), using first (A.23) from the
proof of Lemma A.8, and then Lemma A.7
∑

|α‖|≤1

‖∂α‖π⊥(v − π‖v)‖2
L2(K)

.
∑

|α‖|≤1


 ∑

|α⊥|≤1

h
2|α⊥|
⊥ ‖∂α⊥∂α‖(v − π‖v)‖2

L2(K) +
∑

|α⊥|=2

h2γe

⊥ ‖r2−γe
e ∂α⊥∂α‖(v − π‖v)‖2

L2(K)




. τ2s+2
σ Ψp,sh

2 min{γc−1,s}
‖


 ∑

|α‖|=s+1

∑

|α⊥|≤1

h
2|α⊥|
⊥ ‖r(s+1−γc)+

c ∂α‖∂α⊥v‖2
L2(K)

+
∑

|α‖|=s+1

∑

|α⊥|=2

h2γe

⊥ ‖r2−γe
e r(s+1−γc)+

c ∂α‖∂α⊥v‖2
L2(K)


 .
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As before, there exists A > 0 depending only on σ and Av such that
∑

|α‖|≤1

‖∂α‖π⊥(v − π‖v)‖2
L2(Kce)

. τ2s+2
σ Ψp,sh

2 min{γc−1,s}
‖


 ∑

|α‖|=s+1

∑

|α⊥|≤1

h
2|α⊥|
⊥ h

−2|α⊥|
‖ ‖r(s+1+|α⊥|−γc)+

c ∂αv‖2
L2(Kce)

+
∑

|α‖|=s+1

∑

|α⊥|=2

h2γe

⊥ h−2γe

‖ ‖rs+3−γc
c ρ2−γe

ce ∂αv‖2
L2(Kce)




. σ2(ℓ−k) min{γc−1,s}Ψp,sA
2s+4((s+ 3)!)2,

(A.46a)
and
∑

|α‖|≤1

‖∂α‖π⊥(v − π‖v)‖2
L2(Ke)

. τ2s+2
σ Ψp,sh

2 min{γc−1,s}
‖


 ∑

|α‖|=s+1

∑

|α⊥|≤1

h
2|α⊥|
⊥ ‖r(s+1−γc)+

c ∂αv‖2
L2(Ke)

+
∑

|α‖|=s+1

∑

|α⊥|=2

h2γe

⊥ ‖r(s+1−γc)+

c r2−γe
e ∂αv‖2

L2(Ke)




. σ2(ℓ−k) min{γc−1,s}Ψp,sA
2s+4((s+ 3)!)2,

(A.46b)
and the estimate on Kc is the same as that on Kce. The assertion now follows from (A.42), (A.43),
(A.45), and (A.46), upon possibly adjusting the value of the constant A. ⊓⊔
Lemma A.17 Let d = 3 and v ∈ J̟

γ (Q; C, E) with γc > 3/2, γe > 1. There exists a constant

C0 > 0 such that if p ≥ C0ℓ, there exist constants C, b > 0 such that
∑

K:dK
c >0,

dK
e =0

‖v −Πℓ,p
hp,dv‖H1(K) ≤ Ce−bℓ, ∀ℓ ∈ N.

Proof As in the proof of Lemma A.14, we may assume that γc ∈ (3/2, 5/2) and γe ∈ (1, 2). The
proof of the statement follows by summing over the right-hand side of (A.40), i.e.,

∑

K:dK
c >0,

dK
e =0

‖v −Πℓ,p
hp,dv‖2

H1(K) ≤ C

(
ℓ∑

k=1

σ2 min{γc−1,s}(ℓ−k)Ψp,sA
2s((s+ 3)!)2 + σ2(min(γc,γe)−1)ℓ

)

= C((I) + (II)).

We have (II) . ℓσ2(min(γc,γe)−1)ℓ. To bound (I), we observe that for all A > 0 there exist C1, b1 > 0
such that

min
1≤s≤p

Ψp,s((s+ 3)!)2A2s ≤ C1e
−b1p,

(see, e.g., [50, Lemma 5.9]). Combining with p ≥ C0ℓ concludes the proof. ⊓⊔



Exponential ReLU NN Approximation Rates for Point and Edge Singularities 51

A.7 Estimates at the corner

The lemma below follows from classic low-order finite element approximation results and from the
embedding J 2

γ (Q; C, E) ⊂ H1+θ(Q), valid for a θ > 0 if γc − d/2 > 0, for all c ∈ C, and, when

d = 3, γe > 1 for all e ∈ E (see, e.g., [48, Remark 2.3]).

Lemma A.18 Let d ∈ {2, 3}, K =×d
i=1 J

ℓ
0. Then, if v ∈ J̟

γ (Q; C, E) with

γc > 1, for all c ∈ C, if d = 2,

γc > 3/2 and γe > 1, for all c ∈ C and e ∈ E , if d = 3,

there exists a constant C0 > 0 independent of ℓ such that if p ≥ C0ℓ, there exist constants C, b > 0
such that

‖v −Πℓ,p
hp,dv‖H1(K) ≤ Ce−bℓ.

A.8 Exponential convergence

The exponential convergence of the approximation in the full domain Q follows then from Lemmas
A.14, A.15, A.17, and A.18.

Proposition A.19 Let d ∈ {2, 3}, v ∈ J̟
γ (Q; C, E) with

γc > 1, for all c ∈ C, if d = 2,

γc > 3/2 and γe > 1, for all c ∈ C and e ∈ E , if d = 3.

Then, there exist constants cp > 0 and C, b > 0 such that, for all ℓ ∈ N,

‖v −Π
ℓ,cpℓ
hp,d v‖H1(Q) ≤ Ce−bℓ.

With respect to the dimension of the discrete space Ndof = dim(X
ℓ,cpℓ
hp,d ), the above bound reads

‖v −Π
ℓ,cpℓ
hp,d v‖H1(Q) ≤ C exp(−bN1/(2d)

dof ).

A.9 Explicit representation of the approximant in terms of continuous basis functions

Let p ∈ N. Let ζ̂1(x) = (1 + x)/2 and ζ̂2 = (1 − x)/2. Let also ζ̂n(x) = 1
2

∫ x
−1
Ln−2(ξ)dξ, for

n = 3, . . . , p + 1, where Ln−2 denotes the L∞((−1, 1))-normalized Legendre polynomial of degree

n − 2 introduced in Section A.2. Then, fix ℓ ∈ N and write ζkn = ζ̂n ◦ φk, n = 1, . . . , p + 1 and
k = 0, . . . , ℓ, with the affine map φk : Jℓk → (−1, 1) introduced in Section A.2. We construct those
functions explicitly: denoting Jℓk = (xℓk, x

ℓ
k+1) and hk = |xℓk+1 − xℓk|, we have, for x ∈ Jℓk,

ζk1 (x) =
1

hk
(x− xℓk), ζk2 (x) =

1

hk
(xℓk+1 − x), (A.47)

and

ζkn(x) =
1

hk

∫ x

xℓ
k

Ln−2(φk(η))dη, n = 3, . . . , p+ 1. (A.48)
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Let d = 3. Then, for any element K ∈ Gℓ3, with K = Jℓk1
× Jℓk2

× Jℓk3
, there exist coefficients cKi1...id

such that

Πℓ,p
hp,du|K

(x1, x2, x3) =

p+1∑

i1,i2,i3=1

cKi1...idζ
k1

i1
(x1)ζk2

i2
(x2)ζk3

i3
(x3), ∀(x1, x2, x3) ∈ K (A.49)

by construction. We remark that, whenever ij > 2 for all j = 1, 2, 3, the basis functions vanish on
the boundary of the element:

(
ζk1

i1
ζk2

i2
ζk3

i3

)
|∂K

= 0 if ij ≥ 3, j = 1, 2, 3.

Furthermore, write
ψKi1...id(x1, x2, x3) = ζk1

i1
(x1)ζk2

i2
(x2)ζk3

i3
(x3)

and consider ti1...id = #{ij ≤ 2, j = 1, 2, 3}. We have

– if ti1...id = 1, then ψKi1...id is not zero only on one face of the boundary of K,

– if ti1...id = 2, then ψKi1...id is not zero only on one edge and neighboring faces of the boundary
of K,

– if ti1...id = 3, then ψKi1...id is not zero only on one corner and neighboring edges and faces of the
boundary of K.

Similar arguments hold when d = 2.

A.9.1 Explicit bounds on the coefficients

We derive here a bound on the coefficients of the local projectors with respect to the norms of the
projected function. We will use that

‖Li ◦ φk‖L2(Jℓ
k

) =

(
hk
2

)1/2

‖Li‖L2((−1,1)) =

(
hk

2i+ 1

)1/2

, ∀i ∈ N0, ∀k ∈ {0, . . . , ℓ}. (A.50)

Remark A.20 As mentioned in Remark A.3, the hp-projector Πℓ,p
hp,d can be defined for more general

functions than u ∈ H1
mix(Q). As follows from Equations (A.53), (A.57), (A.61) and (A.64) below,

the projector is also defined for u ∈ W 1,1
mix(Q).

Lemma A.21 There exist constants C1, C2 such that, for all u ∈ W 1,1
mix(Q), all ℓ ∈ N, all p ∈ N

|cKi1...id | ≤ C




d∏

j=1

ij


 ‖u‖W 1,1

mix
(Q), ∀K ∈ Gℓd, ∀(i1, . . . , id) ∈ {1, . . . , p+ 1}d (A.51)

and for all (i1, . . . , id) ∈ {1, . . . , p+ 1}d

∑

K∈Gℓ
3

|cKi1...id | ≤ C‖u‖W 1,1

mix
(Q)





(∏d
j=1 ij

)
if ti1...id = 0,

(ℓ+ 1)
(∑d

j1=1

∑d
j2=j1+1 ij1

ij2

)
if ti1...id = 1,

(ℓ+ 1)2
(∑d

j=1 ij

)
if ti1...id = 2,

(ℓ+ 1)d if ti1...id = 3.

(A.52)
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Proof Let d = 3 and K = Jℓk1
× Jℓk2

× Jℓk3
∈ Gℓ3.

Internal modes. We start by considering the case of the coefficients of internal modes, i.e., cKi1,i2,i3
as defined in (A.49) for in ≥ 3, n = 1, 2, 3. Let then i1, i2, i3 ∈ {3, . . . , p+1} and write Lkn = Ln◦φk:
it follows that

cKi1,i2,i3 = (2i1 − 3)(2i2 − 3)(2i3 − 3)
∫

K

(∂x1
∂x2

∂x3
u(x1, x2, x3))Lk1

i1−2(x1)Lk2

i2−2(x2)Lk3

i3−2(x3)dx1dx2dx3. (A.53)

If u ∈ W 1,1
mix(K), since ‖Ln‖L∞(−1,1) = 1 for all n, we have

|cKi1...id | ≤ (2i1 − 3)(2i2 − 3)(2i3 − 3)‖∂x1
∂x2

∂x3
u‖L1(K), in ≥ 3, n = 1, 2, 3, (A.54)

hence,
∑

K∈Gℓ
3

|cKi1...id | ≤ (2i1 − 3)(2i2 − 3)(2i3 − 3)‖∂x1
∂x2

∂x3
u‖L1(Q), in ≥ 3, n = 1, 2, 3. (A.55)

Face modes. We continue with face modes and fix, for ease of notation, i1 = 1. We also denote
F = Jℓk2

× Jℓk3
. The estimates will then also hold for i1 = 2 and for any permutation of the indices

by symmetry. We introduce the trace inequality constant CT,1, independent of K, such that, for
all v ∈ W 1,1(Q) and x̂ ∈ (0, 1),

‖v(x̂, ·, ·)‖L1(F ) ≤ ‖v(x̂, ·, ·)‖L1((0,1)2) ≤ CT,1
(
‖v‖L1(Q) + ‖∂x1

v‖L1(Q)

)
. (A.56)

This follows from the trace estimate in [49, Lemma 4.2] and from the fact that

‖v(x̂, ·, ·)‖L1((0,1)2) ≤ C min

{
1

|1 − x̂| ‖v‖L1((x̂,1)×(0,1)2) + ‖∂x1
v‖L1((x̂,1)×(0,1)2),

1

|x̂| ‖v‖L1((0,x̂)×(0,1)2) + ‖∂x1
v‖L1((0,x̂)×(0,1)2)

}
.

For i2, i3 ∈ {3, . . . , p+ 1},

cK1,i2,i3 = (2i2 − 3)(2i3 − 3)

∫

F

(
∂x2

∂x3
u(xℓk1+1, x2, x3)

)
Lk2

i2−2(x2)Lk3

i3−2(x3)dx2dx3. (A.57)

Since the Legendre polynomials are L∞-normalized and using the trace inequality (A.56),

|cK1,i2,i3 | ≤ (2i2−3)(2i3−3)‖(∂x2
∂x3

u)(xℓk1+1, ·, ·)‖L1(F ) ≤ CT,1(2i2−3)(2i3−3)‖u‖W 1,1

mix
(Q). (A.58)

Summing over all internal faces, furthermore,

∑

K∈Gℓ
3

|cK1,i2,i3 | ≤ (2i2 − 3)(2i3 − 3)

ℓ∑

k1=0

‖(∂x2
∂x3

u)(xℓk1+1, ·, ·)‖L1((0,1)2)

≤ CT,1(ℓ+ 1)(2i2 − 3)(2i3 − 3)‖u‖W 1,1

mix
(Q).

(A.59)

Edge modes. We now consider edge modes. Fix for ease of notation i1 = i2 = 1; as before,
the estimates will hold for (i1, i2) ∈ {1, 2}2 and for any permutation of the indices. By the same
arguments as for (A.56), there exists a trace constant CT,2 such that, denoting e = Jℓk3

, for all
v ∈ W 1,1((0, 1)2) and for all x̂ ∈ (0, 1),

‖v(x̂, ·)‖L1(e) ≤ ‖v(x̂, ·)‖L1((0,1)) ≤ CT,2
(
‖u‖L1((0,1)2) + ‖∂x2

u‖L1((0,1)2)

)
. (A.60)
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By definition,

cK1,1,i3 = (2i3 − 3)

∫

e

(
∂x3

u(xℓk1+1, x
ℓ
k2+1, x3)

)
Lk3

i3−2(x3)dx3. (A.61)

Using (A.56) and (A.60)

|cK1,1,i3 | ≤ (2i3 − 3)‖(∂x3
u)(xℓk1+1, x

ℓ
k2+1, ·)‖L1(e) ≤ CT,1CT,2(2i3 − 3)‖u‖W 1,1

mix
(Q). (A.62)

Summing over edges, in addition,

∑

K∈Gℓ
3

|cK1,1,i3 | ≤ (2i3 − 3)

ℓ∑

k1=0

ℓ∑

k2=0

‖(∂x3
u)(xℓk1+1, x

ℓ
k2+1, ·)‖L1((0,1))

≤ CT,1CT,2(ℓ+ 1)2(2i3 − 3)‖u‖W 1,1

mix
(Q).

(A.63)

Node modes. Finally, we consider the coefficients of nodal modes, i.e., cKi1,i2,i3 for i1, i2, i3 ∈ {1, 2},
which by construction equal function values of u, e.g.

c111 = u(xℓk1+1, x
ℓ
k2+1, x

ℓ
k3+1). (A.64)

The Sobolev imbedding W 1,1
mix(Q) →֒ L∞(Q) and scaling implies the existence of a uniform constant

Cimb such that, for any v ∈ W 1,1
mix(Q)

‖v‖L∞(K) ≤ ‖v‖L∞(Q) ≤ Cimb‖v‖W 1,1

mix
(Q).

Then, by construction,

|cKi1,i2,i3 | ≤ ‖u‖L∞(K) ≤ Cimb‖u‖W 1,1

mix
(Q), ∀i1, i2, i3 ∈ {1, 2}. (A.65)

Summing over nodes, it follows directly that
∑

K∈Gℓ
3

|cKi1,i2,i3 | ≤
∑

K∈Gℓ
3

‖u‖L∞(K) ≤ Cimb(ℓ+ 1)3‖u‖W 1,1

mix
(Q), ∀i1, i2, i3 ∈ {1, 2}. (A.66)

We obtain (A.51) from (A.54), (A.58), (A.62), and (A.65). Furthermore, (A.52) follows from (A.55),
(A.59), (A.63), and (A.66). The estimates for the case d = 2 follow from the same argument. ⊓⊔
The following lemma shows the continuous imbedding of J d

γ (Q; C, E) into W 1,1
mix(Q), given suffi-

ciently large weights γ.

Lemma A.22 Let d ∈ {2, 3}. Let γ be such that γc > d/2, for all c ∈ C and (if d = 3) γe > 1 for

all e ∈ E. There exists a constant C > 0 such that, for all u ∈ J d
γ (Q; C, E),

‖u‖W 1,1

mix
(Q) ≤ C‖u‖J d

γ (Q).

Proof We recall the decomposition of Q as

Q = Q0 ∪QC ∪QE ∪QCE ,

where QE = QCE = ∅ if d = 2. First,

‖u‖W 1,1

mix
(Q0) ≤ C|Q0|1/2‖u‖Hd(Q0) ≤ C|Q0|1/2‖u‖J d

γ (Q). (A.67)
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We now consider the subdomain Qc, for any c ∈ C. We have, with a constant C that depends only
on γc and on |Qc|,

‖u‖W 1,1

mix
(Qc) = ‖u‖W 1,1(Qc) +

∑

2≤|α|≤d
|α|∞≤1

‖∂αu‖L1(Qc)

≤ C|Qc|1/2‖u‖H1(Qc) + C
∑

2≤|α|≤d
|α|∞≤1

‖r−(|α|−γc)+

c ‖L2(Qc)‖r(|α|−γc)+

c ∂αu‖L2(Qc)

≤ C‖u‖J d
γ (Q),

(A.68)

where the last inequality follows from the fact that γc > d/2, hence the norm ‖r−(|α|−γc)+

c ‖L2(Qc)

is bounded for all |α| ≤ d. Consider then d = 3 and any e ∈ E . Suppose also, without loss of
generality, that γc − γe > 1/2 and γe < 2 (otherwise, it is sufficient to replace γe by a smaller γ̃e
such that 1 < γ̃e < γc − 1/2 and γ̃e < 2 and remark that J d

γ (Q; C, E) ⊂ J d

γ̃
(Q; C, E) if γ̃e < γe).

Since γe > 1, then ‖r−|α⊥|+γe
e ‖L2(Qe) is bounded by a constant depending only on γe and |Qe| as

long as α is such that |α⊥| ≤ 2. Hence, denoting by ∂‖ the derivative in the direction parallel to e,

‖u‖W 1,1

mix
(Qe) = ‖u‖W 1,1(Qe) +

∑

|α⊥|=1

‖∂‖∂
α⊥u‖L1(Qe) +

∑

α1=0,1

‖∂α1

‖ ∂⊥,1∂⊥,2u‖L1(Qe)

≤ C|Qe|1/2


‖u‖H1(Qe) +

∑

|α⊥|=1

‖∂‖∂
α⊥v‖L2(Qe)




+ C
∑

α1=0,1

‖r−2+γe
e ‖L2(Qe)‖r2−γe

e ∂α1

‖ ∂⊥,1∂⊥,2u‖L2(Qe)

≤ C‖u‖J 3
γ (Q).

(A.69)

Since x‖ ≤ rc(x) ≤ ε̂ for all x ∈ Qce and ε̂ defined in Section 2.1, and because Qce ⊂
{
x‖ ∈ (0, ε̂),

(x⊥,1, x⊥,2) ∈ (0, ε̂2)2
}

, it follows that

‖r−(γe+1−γc)+

c r−2+γe
e ‖L2(Qce) ≤ ‖x−(γe+1−γc)+

‖ ‖L2((0,ε̂))‖r−2+γe
e ‖

L2((0,ε̂2)2)
≤ C,

for a constant C that depends only on ε̂, γc, and γe. Hence,

‖u‖W 1,1

mix
(Qce) = ‖u‖W 1,1(Qce) +

∑

|α⊥|=1

‖∂‖∂
α⊥u‖L1(Qce) +

∑

α1=0,1

‖∂α1

‖ ∂⊥,1∂⊥,2u‖L1(Qce)

≤ C|Qce|1/2‖u‖H1(Qe) + C
∑

|α⊥|=1

‖r−(2−γc)+

c ‖L2(Qce)‖r(2−γc)+

c ∂‖∂
α⊥u‖L2(Qce)

+ C
∑

α1=0,1

‖r−(α1+γe−γc)+

c r−2+γe
e ‖L2(Qce)‖r(α1+2−γc)+

c ρ2−γe
ce ∂α1

‖ ∂⊥,1∂⊥,2u‖L2(Qce)

≤ C‖u‖J 3
γ (Q),

(A.70)
with C independent of u. Combining inequalities (A.67) to (A.70) concludes the proof. ⊓⊔
The following statement is a direct consequence of Lemmas A.21 and A.22 above and the fact that∥∥ψKi1...id

∥∥
L∞(K)

≤ 1 for all K ∈ Gℓ3 and all i1, . . . , id ∈ {1, . . . , p+ 1}.
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Corollary A.23 Let γ be such that γc − d/2 > 0, for all c ∈ C and, if d = 3, γe > 1 for all e ∈ E.

There exists a constant C > 0 such that for all ℓ, p ∈ N and for all u ∈ J d
γ (Q; C, E),

‖Πℓ,p
hp,du‖L∞(Q) ≤ Cp2d‖u‖J d

γ (Q).

A.9.2 Basis of continuous functions with compact support

It is possible to construct a basis for Πℓ,p
hp,d in Q such that all basis functions are continuous and

have compact support. For all ℓ ∈ N and all p ∈ N, extend to zero outside of their domain of
definition the functions ζkn defined in (A.47) and (A.48), for k = 0, . . . , ℓ and n = 1, . . . , p+ 1. We
introduce the univariate functions with compact support vj : (0, 1) → R, for j = 1, . . . , (ℓ+ 1)p+ 1
so that v1 = ζ0

2 , vℓ+2 = ζℓ1,

vk = ζk−2
1 + ζk−1

2 , for all k = 2, . . . , ℓ+ 1 (A.71)

and
vℓ+2+k(p−1)+n = ζkn+2, for all k = 0, . . . , ℓ and n = 1, . . . , p− 1.

Proposition A.24 Let ℓ ∈ N and p ∈ N. Furthermore, let u ∈ J d
γ (Q; C, E) with γ such that

γc − d/2 > 0 and, if d = 3, γe > 1. Let N1d = (ℓ+ 1)p+ 1. There exists an array of coefficients

c =
{
ci1...id : (i1, . . . , id) ∈ {1, . . . , N1d}d

}

such that

(
Πℓ,p

hp,du
)

(x1, . . . , xd) =

N1d∑

i1,...,id=1

ci1...id

d∏

j=1

vij (xj), ∀(x1, . . . , xd) ∈ Q. (A.72)

Furthermore, there exist constants C1, C2 > 0 independent of ℓ, p, and u, such that

|ci1...id | ≤ C1(p+ 1)d‖u‖J d
γ (Q), ∀i1, . . . , id ∈ {1, . . . , N1d}d

and
N1d∑

i1,...,id=1

|ci1...id | ≤ C2

(
d∑

t=0

(ℓ+ 1)t(p+ 1)2(d−t)
)

‖u‖J d
γ (Q).

Proof The statement follows directly from the construction of the projector, see (A.49), and from
the bounds in Lemmas A.21 and A.22. In particular, (A.72) holds because the element-wise coeffi-
cients related to ζk−1

2 and to ζk−2
1 are equal: it follows from Equations (A.57), (A.61) and (A.64)

that cK1i2...id = cK
′

2i2...id
for all i2, . . . , id ∈ {1, . . . , p + 1}, all K = Jℓk1

× Jℓk2
× Jℓk3

∈ Gℓ3 satisfying

k1 < ℓ and K ′ = Jℓk1+1 × Jℓk2
× Jℓk3

∈ Gℓ3. The same holds for permutations of i1, . . . , id. Because

(vk)
(ℓ+1)p+1
k=1 are continuous, this again shows continuity of Πℓ,p

hp,du (Remark A.2). The last estimate
is obtained with (A.52):

N1d∑

i1,...,id=1

|ci1...id | ≤
d∑

t=0

p+1∑

i1,...,id=1
ti1...id

=t


 ∑

K∈Gℓ
d

|ci1...id |


 ≤ C2

(
d∑

t=0

(ℓ+ 1)t(p+ 1)2(d−t)
)

‖u‖J d
γ (Q).

⊓⊔
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A.9.3 Proof of Theorem 2.1

Proof (of Theorem 2.1) Fix Af , Cf , and γ as in the hypotheses. Then, by Proposition A.19, there
exist cp, Chp, bhp > 0 such that for every ℓ ∈ N and for all v ∈ J̟

γ (Q; C, E ;Cf , Af ), there exists

vℓhp ∈ X
ℓ,cpℓ
hp,d such that (see Section A.1 for the definition of the space X

ℓ,cpℓ
hp,d )

‖v − vℓhp‖H1(Q) ≤ Chpe
−bhpℓ.

For ε > 0, we choose

L :=

⌈
1

bhp

|log(ε/Chp)|
⌉
, (A.73)

so that
‖v − vLhp‖H1(Q) ≤ ε.

Furthermore, vLhp =
∑N1d

i1,...,id
ci1...idφi1...id and, for all (i1, . . . , id) ∈ {1, . . . , N1d}d, there exists vij ,

j = 1, . . . , d such that φi1...id =
⊗d

j=1 vij , see Section A.9.2 and Proposition A.24. By construction
of vi in (A.71), and by using (A.47) and (A.48), we observe that ‖vi‖L∞(I) ≤ 1 for all i = 1, . . . , N1d.
In addition, (A.50), demonstrates that

‖vi‖H1(I) ≤ 2

|supp(vi)|1/2
deg(vi)1/2

≤ 2σ−L/2, ∀i ∈ {1, . . . , N1d}.

Then, since (A.73) implies L ≤ 1 + 1
bhp

|log(ε/Chp)|,

σ−L ≤ σ
−1− 1

bhp
log(Chp)

ε
− 1

bhp
log(1/σ)

.

This concludes the proof of Items 1 and 2. Finally, Item 3 follows from Proposition A.24 and the
fact that p ≤ Cp (1 + |log(ε)|) for a constant Cp > 0 independent of ε. ⊓⊔

A.10 Combination of multiple patches

The approximation results in the domain Q = (0, 1)d can be generalized to include the combination
of multiple patches. We give here an example, relevant for the PDEs considered in Section 5. For
the sake of conciseness, we show a single construction that takes into account all singularities of
the problems in Section 5. We will then use this construction to prove expression rate bounds for
realizations of NNs.

Let a > 0 and Ω = (−a, a)d. Denote the set of corners

CΩ =
d×
j=1

{−a, 0, a}, (A.74)

and the set of edges EΩ = ∅, if d = 2, and, if d = 3,

EΩ =

d⋃

j=1

j−1×
k=1

{−a, 0, a} × {(−a,−a/2), (−a/2, 0), (0, a/2), (a/2, a)} ×
d×

k=j+1

{−a, 0, a}. (A.75)

We introduce the affine transformations ψ1,+ : (0, 1) → (0, a/2), ψ2,+ : (0, 1) → (a/2, a), ψ1,− :
(0, 1) → (−a/2, 0), ψ2,− : (0, 1) → (−a,−a/2) such that

ψ1,±(x) = ±a

2
x, ψ2,±(x) = ±

(
a− a

2
x
)
.
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Fig. A.1: Multipatch geometric tensor product meshes G̃ℓd, for d = 2 (left) and d = 3 (right).

For all ℓ ∈ N, define then

G̃ℓ1 =
⋃

i∈{1,2},⋆∈{+,−}
ψi,⋆(Gℓ1).

Consequently, for d = 2, 3, denote G̃ℓd = {×d
i=1 Ki : K1, . . . ,Kd ∈ G̃ℓ1}, see Figure A.1. The hp space

in Ω = (−a, a)d is then given by

X̃ℓ,p
hp,d = {v ∈ H1(Ω) : v|K

∈ Qp(K), for all K ∈ G̃ℓd}.

Finally, recall the definition of πℓ,php from (A.12) and construct

π̃ℓ,php : W 1,1((−a, a)) → X̃ℓ,p
hp,1

such that, for all v ∈ W 1,1((−a, a)),
(
π̃ℓ,php v

)
|(0, a

2
) =

(
πℓ,php (v|(0, a

2
) ◦ ψ1,+)

)
◦ ψ−1

1,+,
(
π̃ℓ,php v

)
|( a

2
,a) =

(
πℓ,php (v|( a

2
,a) ◦ ψ2,+)

)
◦ ψ−1

2,+,
(
π̃ℓ,php v

)
|(− a

2
,0) =

(
πℓ,php (v|(− a

2
,0) ◦ ψ1,−

)
◦ ψ−1

1,−,
(
π̃ℓ,php v

)
|(−a,− a

2
) =

(
πℓ,php (v|(−a,− a

2
) ◦ ψ2,−)

)
◦ ψ−1

2,−.

(A.76)

Then, the global hp projection operator Π̃ℓ,p
hp,d : W 1,1

mix(Ω) → X̃ℓ,p
hp,d is defined as

Π̃ℓ,p
hp,d =

d⊗

i=1

π̃ℓ,php .

Theorem A.25 For a > 0, let Ω = (−a, a)d, d = 2, 3. Denote by Ωk, k = 1, . . . , 4d the patches
composing Ω, i.e., the sets Ωk = ×d

j=1(akj , a
k
j + a/2) with akj ∈ {−a,−a/2, 0, a/2}. Denote also

Ck = CΩ ∩Ω
k

and Ek = {e ∈ EΩ : e ⊂ Ω
k}, which contain one singular corner, and three singular

edges abutting that corner, as in (A.1) and (A.2).
Let I ⊂ {1, . . . , 4d} and let v ∈ W 1,1

mix(Ω) be such that, for all k ∈ I, it holds that v|Ωk ∈
J̟
γk (Ωk; Ck, Ek) with

γkc > 1, for all c ∈ Ck, if d = 2,

γkc > 3/2 and γke > 1, for all c ∈ Ck and e ∈ Ek, if d = 3.
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Then, there exist constants cp > 0 and C, b > 0 such that, for all ℓ ∈ N, with p = cpℓ,

‖v − Π̃ℓ,p
hp,dv‖H1(Ωk) ≤ Ce−bℓ ≤ C exp(−b 2d

√
Ndof), for all k ∈ I. (A.77)

Here, Ndof = O(ℓ2d) denotes the overall number of degrees of freedom in the piecewise polynomial

approximation. Furthermore, writing Ñ1d = 4(ℓ+ 1)p+ 1, there exists an array of coefficients

c̃ =
{
c̃i1...id : (i1, . . . , id) ∈ {1, . . . , Ñ1d}d

}

such that

(
Π̃ℓ,p

hp,dv
)

(x1, . . . , xd) =

Ñ1d∑

i1,...,id=1

c̃i1...id

d∏

j=1

ṽij (xj), ∀(x1, . . . , xd) ∈ Ω,

where for all j = 1, . . . , d and ij = 1, . . . , Ñ1d, ṽij ∈ X̃ℓ,p
hp,1 with support in at most two, neighboring

elements of G̃ℓ1. Finally, there exist constants C1, C2 > 0 independent of ℓ such that

‖ṽi‖L∞((−a,a)) ≤ 1, ‖ṽi‖H1((−a,a)) ≤ C1σ
−ℓ/2, ∀i = 1, . . . , Ñ1d, (A.78)

and
Ñ1d∑

i1,...,id=1

|c̃i1...id | ≤ C2

d∑

j=0

(ℓ+ 1)j(p+ 1)2(d−j)‖v‖W 1,1

mix
(Ω). (A.79)

Proof The statement is a direct consequence of Propositions A.19 and A.24. We start the proof
by showing that for any function v ∈ W 1,1

mix(Ω), the approximation Π̃ℓ,p
hp,dv is continuous; the rest

of the theorem will then follow from the results in each sub-patch. Let now w ∈ W 1,1((−a, a)).

Then, it holds that
(
π̃ℓ,php w

)
|I ∈ C(I), for all I ∈ {(0, a/2), (a/2, a), (−a/2, 0), (−a,−a/2)}, by

definition (A.76). Furthermore, it follows from the nodal exactness of the local projectors that, for
x̃ ∈ {−a/2, 0, a/2},

lim
x→x̃−

(π̃ℓ,php w)(x) = w(x̃) = lim
x→x̃+

(π̃ℓ,php w)(x),

implying then that π̃ℓ,php w is continuous. Since Π̃ℓ,p
hp,d =

⊗d
j=1 π̃

ℓ,p
hp , this implies that Π̃ℓ,p

hp,dv is

continuous for all v ∈ W 1,1
mix(Ω). Fix k ∈ {1, . . . , 4d} such that v ∈ J̟

γk (Ωk; Ck, Ek). There exist

then, by Proposition A.19, constants C, b, cp > 0 such that for all ℓ ∈ N

‖v − Π̃
ℓ,cpℓ
hp,d ‖H1(Ωk) ≤ Ce−bℓ.

Equation (A.77) follows. The bounds (A.78) and (A.79) follow from the construction of the basis
functions (A.47)–(A.48) and from the application of Lemma A.21 in each patch, respectively. ⊓⊔

B Proofs of Section 5

B.1 Proof of Lemma 5.5

Proof (of Lemma 5.5)
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Notation. For any two nonempty sets X,Y ⊂ Ω, we denote by distΩ(X,Y ) the infimum of
Euclidean lengths of paths in Ω connecting an element of X with one of Y . We introduce sev-
eral domain-dependent quantities to be used in the construction of the triangulation T with the
properties stated in the lemma.

Let E denote the set of edges of the polygon Ω. For each corner c ∈ C at which the interior
angle of Ω is smaller than π (below called convex corner), we fix a parallelogram Gc ⊂ Ω and a
bijective, affine transformation Fc : (0, 1)2 → Gc such that

– Fc((0, 0)) = c,
– two edges of Gc coincide partially with the edges of Ω abutting at the corner c, such that
Gc ∩ C = c.

If at c ∈ C the interior angle of Ω is greater than or equal to π (both are referred to by slight
abuse of terminology as nonconvex corner), we fix a bijective, affine transformation Fc with the
same properties, such that Fc : (−1, 1) × (0, 1) → Gc if the interior angle equals π, and Fc :
(−1, 1)2 \ (−1, 0]2 → Gc else, and with Gc having the corresponding shape.

Let now
dc,1 := sup{r > 0 : Br(c) ∩Ω ⊂ Gc}, dC,1 := min

c∈C
dc,1.

Then, for each c ∈ C, let e1 and e2 be the edges abutting c, and define

dc,2 := distΩ

(
e1 ∩

(
B √

2√
2+1

dC,1
(c)

)c
, e2 ∩

(
B √

2√
2+1

dC,1
(c)

)c)
, dC,2 := min

c∈C
dc,2.

Furthermore, for each e ∈ E , denote de := ∞ if Ω is a triangle, otherwise

de := min {distΩ(e, e1) : e1 ∈ E and e ∩ e1 = ∅} , dE = min
e∈E

de.

Finally, for all x in the polygon Ω, let the number of closest edges to x be

ne(x) := #{e1, e2, . . . ∈ E : distΩ(x, ∂Ω) = distΩ(x, e1) = distΩ(x, e2) = . . . }.

Then, in case Ω is a triangle, let d0 be half of the radius of the inscribed circle, else let d0 := 1
3dE <

1
2dE . It holds that

distΩ({x ∈ Ω : ne(x) ≥ 3}, ∂Ω) ≥ d0 > 0.

For any shape regular triangulation T of R2, such that for all K ∈ T , K ∩ ∂Ω = ∅, denote
TΩ = {K ∈ T : K ⊂ Ω} and h(TΩ) = maxK∈TΩ

h(K), where h(K) denotes the diameter of K.
Denote by NΩ the set of nodes of T that are in Ω. For any n ∈ NΩ , define

patch(n) := int


 ⋃

K∈T :n∈K

K


 .

Partition of unity. Let T be a triangulation of R2 such that

h(TΩ) ≤ min

(
d0√

2
,
dC,1√
2 + 1

,
dC,2
2
√

2
,
dE

2
√

2

)
, (B.1)

and such that for all K ∈ T it holds K ∩ ∂Ω = ∅.
The hat-function basis {φn}n∈NΩ

is a basis for S1(Ω, TΩ) such that supp(φn) ⊂ patch(n) for
all n ∈ NΩ , and it is a partition of unity on Ω.
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(a) (b) (c) (d)

Fig. B.1: Patches Ωn for nodes near a convex corner (a), near a nonconvex corner (b), for nodes
in the interior of Ω (c), and for nodes near an edge (d).

Strategy of the remainder of the proof. We will show that, for each n ∈ NΩ , there exists a
subdomain Ωn, which is either an affinely mapped square or an affinely mapped L-shaped domain,
such that patch(n) ∩ Ω ⊂ Ωn. We point to Figure B.1 for an illustration of the patches Ωn that
will be introduced in the proof, for various sets of nodes.

Verification of [P1], [P2], and [P3]. For each c ∈ C, let N̂c = {n ∈ NΩ : patch(n)∩Ω ⊂ Gc}.
Then,

Nc := {n ∈ NΩ : distΩ(n, c) ≤ dC,1 − h(TΩ)} ⊂ N̂c.

Therefore, all the nodes n ∈ Nc are such that patch(n) ∩Ω ⊂ Gc =: Ωn. Denote then

NC =
⋃

c∈C
Nc.

Note that, due to (B.1), we have
√

2h(TΩ) ≤
√

2√
2+1

dC,1 ≤ dC,1 − h(TΩ).

We consider the nodes in N \ NC . First, consider the nodes in

N0 := {n ∈ N \ NC : distΩ(n, ∂Ω) ≥
√

2h(TΩ)}.

For all n ∈ N0, there exists a square Qn such that

patch(n) ⊂ Bh(TΩ)(n) ⊂ Qn ⊂ B√
2h(TΩ)(n) ⊂ Ω,

see Figure B.1c. Hence, for all n ∈ N0, we take Ωn := Qn. Define

NE := N \ (N0 ∪ NC)

=
{
n ∈ N : distΩ(n, c) > dC,1 − h(TΩ),∀c ∈ C, and distΩ(n, ∂Ω) <

√
2h(TΩ)

}
.

For all n ∈ NE , from (B.1) it follows that distΩ(n, ∂Ω) <
√

2h(TΩ) ≤ d0, hence ne(n) ≤ 2.
Furthermore, suppose there exists n ∈ NE such that ne(n) = 2. Let the two closest edges to
n be denoted by e1 and e2, so that distΩ(n, e1) = distΩ(n, e2) = distΩ(n, ∂Ω) <

√
2h(TΩ). If

e1 ∩ e2 = ∅, there must hold distΩ(n, e1) + distΩ(n, e2) ≥ dE , which is a contradiction with
distΩ(n, ∂Ω) <

√
2h(TΩ) ≤ dE/2. If instead there exists c ∈ C such that e1 ∩ e2 = {c}, then n is

on the bisector of the angle between e1 and e2. Using that 2
√

2h(TΩ) ≤ dC,2, we now show that
all such nodes belong either to NC or to N0, which is a contradiction to n ∈ NE . Let x0 ∈ Ω be
the intersection of ∂B √

2√
2+1

dC,1
(c) and the bisector. To show that n ∈ NC ∪ N0, it suffices to show

that dist(x0, ei) ≥
√

2h(TΩ) for i = 1, 2. Because
√

2√
2+1

dC,1 ≤ dC,1 − h(TΩ), it a fortiori holds for
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Fig. B.2: Situation near a convex corner c.

all points y in Ω on the bisector intersected with
(
BdC,1−h(TΩ)(c)

)c
, that dist(y, ei) ≥

√
2h(TΩ),

which shows that if distΩ(n, c) ≥ dC,1 − h(TΩ), then n ∈ N0. If c is a nonconvex corner, then

dist(x0, ei) ≥
√

2h(TΩ) for i = 1, 2 follows immediately from dist(x0, ei) = dist(x0, c) =
√

2√
2+1

dC,1

and (B.1). To show that dist(x0, ei) ≥
√

2h(TΩ), i = 1, 2 in case c is a convex corner, we make the
following definitions (see Figure B.2):

– For i = 1, 2, let xi be the intersection of ei and ∂B √
2√

2+1
dC,1

(c),

– let x3 be the intersection of x1x2 with the bisector,
– and for i = 1, 2, let xi+3 be the orthogonal projection of x0 onto ei, which is an element of ei

because c is a convex corner.

Then dc,2 = |x1x2| = |x1x3|+ |x3x2| = 2|xix3|. Because the triangle cx0xi+3 is congruent to cx1x3,
it follows that dist(x0, ei) = |x0xi+3| = |xix3| = 1

2dc,2 ≥
√

2h(TΩ). We can conclude with (B.1)
that ne(n) = 1 for all n ∈ NE and denote the edge closest to n by en. Let then Sn be the square
with two edges parallel to en such that

patch(n) ⊂ Bh(TΩ)(n) ⊂ Sn ⊂ B√
2h(TΩ)(n),

see Figure B.1d, i.e. Sn has center n and sides of length 2h(TΩ). For each n ∈ NE , the connected
component of Sn ∩Ω containing n is a rectangle:

(i) Note that for all edges e such that e ∩ en = ∅, it holds that Sn ∩ e ⊂ B√
2h(TΩ)(n) ∩ e = ∅.

The latter holds because 2
√

2h(TΩ) ≤ dE ≤ distΩ(e, en) ≤ distΩ(e, n) + distΩ(n, en) and
distΩ(n, en) <

√
2h(TΩ) imply distΩ(n, e) ≥

√
2h(TΩ).

(ii) We next show that for both corners c of en there is no x ∈ Ω\B √
2√

2+1
dC,1

(c) for which dist(x, en) <
√

2h(TΩ) and such that for another edge e it holds en ∩ e = {c} and dist(x, e) <
√

2h(TΩ).
We give a proof by contradiction. Assume that there exist x ∈ Ω \B √

2√
2+1

dC,1
(c) and an edge e

with en ∩ e = {c}, dist(x, en) <
√

2h(TΩ) and dist(x, e) <
√

2h(TΩ). Now dist(x, c) ≥
√

2h(TΩ)
together with the previous two inequalities implies that both the angle between e and xc and
the angle between en and xc are smaller than π/2, and thus that c is convex. Let x6 be the point

on xc which satisfies dist(x6, c) =
√

2√
2+1

dC,1 and let x0 be the intersection of ∂B √
2√

2+1
dC,1

(c) and

the bisector of c, for which we have previously shown that dist(x0, e) = dist(x0, en) ≥
√

2h(TΩ)
(we then denoted en and e by e1 and e2). We detail the remainder of the argument for the case
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that the angle between x6c and e is at least as large as the angle between x0c and e, i.e. the
bisector x0c lies between x6 and e (in the other case the same argument applies but with the
roles of e and en interchanged). This assumption, combined with dist(x6, c) = dist(x0, c) and
the sine rule, gives that dist(x6, e) ≥ dist(x0, e) and hence

√
2h(TΩ) > dist(x, e) ≥ dist(x6, e) ≥

dist(x0, e) = dist(x0, en), which gives a contradiction. Using the proved claim for x = n shows
that for the edges e neighboring en dist(n, e) ≥

√
2h(TΩ) and thus Sn∩∂Ω ⊂ en or Sn∩∂Ω = ∅.

Thus, the connected component of Sn ∩Ω containing n is a rectangle, which we define to be Ωn.
Setting Np := #NΩ and {Ωi}i=1,...,Np = {Ωn}n∈NΩ

concludes the proof. ⊓⊔

B.2 Proof of Lemma 5.13

Proof (of Lemma 5.13) Let d = 3 and denote R = (−1, 0)3. Denote by O the origin, and let
E = {e1, e2, e3} denote the set of edges of R abutting the origin. Let also F = {f1, f2, f3} denote
the set of faces of R abutting the origin, i.e., the faces of R such that fi ⊂ R ∩Ω, i = 1, 2, 3. Let,
finally, for each f ∈ F , Ef = {e ∈ E : e ⊂ f} denote the subset of E containing the two edges
neighboring f .

For each e ∈ E, define ue to be the lifting of u|e into R, i.e., the function such that ue|e = ue and
ue is constant in the two coordinate directions perpendicular to e. Similarly, let, for each f ∈ F ,
uf be such that uf |f = u|f and uf is constant in the direction perpendicular to f .

We define w : R → R as

w = u0 +
∑

e∈E

(
ue − u0

)
+
∑

f∈F

(
uf − u0 −

∑

e∈Ef

(ue − u0)
)

= u0 −
∑

e∈E
ue +

∑

f∈F
uf , (B.2)

where u0 = u(O). Since u|e ∈ W 1,1(e), u|f ∈ W 1,1
mix(f) for all e ∈ E and f ∈ F , it holds that

ue ∈ W 1,1
mix(R) and uf ∈ W 1,1

mix(R) for all e ∈ E and f ∈ F (cf. Equations (A.56) and (A.60)), hence

w ∈ W 1,1
mix(R). Furthermore, note that

(
ue − u0

)
|̃
e

= 0, for all E ∋ ẽ 6= e

and that (
uf − u0 −

∑

e∈Ef

(ue − u0)
)
|
f̃

= 0, for all F ∋ f̃ 6= f.

From the first equality in (B.2), then, it follows that, for all f ∈ F ,

w|f = u0 +
∑

e∈Ef

(
ue|f − u0

)
+ uf |f − u0 −

∑

e∈Ef

(
ue|f − u0

)
= u|f .

Let the function v be defined as
v|R = w, v|Ω = u. (B.3)

Then, v is continuous in (−1, 1)3 and v ∈ W 1,1
mix((−1, 1)3). Now, for all α ∈ N3

0 such that |α|∞ ≤ 1,

‖∂αue‖L1(R) = ‖∂αe
‖ue‖L1(R) = ‖∂αe

‖u‖L1(e), ∀e ∈ E,

where αe‖ denotes the index in the coordinate direction parallel to e, and

‖∂αuf‖L1(R) = ‖∂α
f

‖,1∂
αf

‖,2uf‖L1(R) = ‖∂α
f

‖,1∂
αf

‖,2u‖L1(f), ∀f ∈ F,
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where αf‖,j , j = 1, 2 denote the indices in the coordinate directions parallel to f . Then, by a trace

inequality (see [49, Lemma 4.2]), there exists a constant C > 0 independent of u such that

‖ue‖W 1,1

mix
(R) ≤ C‖u‖W 1,1

mix
(Ω), ‖uf‖W 1,1

mix
(R) ≤ C‖u‖W 1,1

mix
(Ω),

for all e ∈ E, f ∈ F . Then, by (B.2) and (B.3),

‖v‖W 1,1

mix
((−1,1)d) ≤ C‖u‖W 1,1

mix
(Ω),

for an updated constant C independent of u. This concludes the proof when d = 3. The case d = 2
can be treated by the same argument. ⊓⊔
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19. Guo, B., Babuška, I.: Regularity of the solutions for elliptic problems on nonsmooth domains in R3. II.
Regularity in neighbourhoods of edges. Proc. Roy. Soc. Edinburgh Sect. A 127(3), 517–545 (1997). DOI
10.1017/S0308210500029899. URL https://doi.org/10.1017/S0308210500029899

20. Guo, B., Schwab, C.: Analytic regularity of Stokes flow on polygonal domains in countably weighted Sobolev
spaces. J. Comput. Appl. Math. 190(1-2), 487–519 (2006). DOI 10.1016/j.cam.2005.02.018. URL https:

//doi.org/10.1016/j.cam.2005.02.018

21. Han, J., Zhang, L., E, W.: Solving many-electron Schrödinger equation using deep neural networks. J. Comput.
Phys. 399, 108929, 8 (2019). DOI 10.1016/j.jcp.2019.108929. URL https://doi.org/10.1016/j.jcp.2019.

108929

22. Hao, W., Jin, X., Siegel, J.W., Xu, J.: An efficient greedy training algorithm for neural networks and applications
in PDEs (2021). URL https://arxiv.org/abs/2107.04466. ArXiv: 2107.04466

23. He, J., Li, L., Xu, J., Zheng, C.: ReLU deep neural networks and linear finite elements. J. Comp. Math. 38

(2020). DOI 10.4208/jcm.1901-m2018-0160. URL https://doi.org/10.4208/jcm.1901-m2018-0160

24. He, Y., Marcati, C., Schwab, C.: Analytic regularity for the Navier-Stokes equations in polygons with mixed
boundary conditions. Tech. Rep. 2021-29, Seminar for Applied Mathematics, ETH Zürich, Switzerland (2021).
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