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Abstract

We consider the recovery of square-integrable signals from discrete, equidistant samples of
their Gabor transform magnitude and show that, in general, signals can not be recovered from
such samples. In particular, we show that for any lattice, one can construct functions in L

2(R)
which do not agree up to global phase but whose Gabor transform magnitudes sampled on the
lattice agree. These functions can be constructed to be either real-valued or complex-valued
and have good concentration in both time and frequency.

1 Introduction

Let us consider the Gaussian φ(t) = e−πt
2

, for t ∈ R. We may define the Gabor transform of a
signal f ∈ L2(R) via

Vφf(x, ω) =
∫

R

f(t)φ(t− x)e−2πitω dt, (x, ω) ∈ R
2.

In this note, we are interested in the uniqueness question of the Gabor phase retrieval problem which
consists of recovering a function f ∈ L2(R) from the magnitude measurements

|Vφf(x, ω)| , (x, ω) ∈ S, (1)

where S is a subset of R2. We say that f is uniquely determined (up to a global phase factor) by
the measurements (1) if for any g ∈ L2(R),

|Vφf(x, ω)| = |Vφg(x, ω)| for all (x, ω) ∈ S,

implies that
f = eiµg,

for some µ ∈ R. When S = R
2, it is well-known that Gabor phase retrieval is uniquely solvable. In

fact, this result holds true for any window function ψ for which Vψψ is non-zero almost everywhere
on R

2. However, when S is a true subset of R2, the answer is less clear. In particular, measurements
can only be collected on discrete sets S in applications. Thus, the question of uniqueness for Gabor
phase retrieval is specifically interesting when S is discrete.

In recent work [1], we were able to show that real-valued, bandlimited signals in L2(R) are
uniquely determined up to global phase from Gabor magnitude measurements (1) sampled on the
discrete set S = (4B)−1

Z× {0}, where B > 0 is such that the bandwidth of the signal is contained
in [−B,B].

It is worth noting that while working on this paper, work by Grohs and Liehr [3] appeared
showing that it is possible to recover compactly supported signals in L4([−C/2, C/2]) up to global
phase from Gabor magnitude measurements (1) sampled on the discrete set S = Z× (2C)−1

Z.
In this paper, we focus on the general uniqueness question for Gabor phase retrieval:

Question 1.1. Is there any lattice S = aZ × bZ, a, b > 0, such that all functions in L2(R) are
uniquely determined up to global phase from Gabor magnitude measurements (1) sampled on S?
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The main contribution of this paper is that we answer this question negatively: In particular, no
matter how fine-grained the sampling set S, one will not be able to recover all functions in L2(R)
from Gabor magnitude measurements (1).

In addition, our answer to Question 1.1 is constructive in the sense that we are able to explicitly
give functions f, g ∈ L2(R) which do not agree up to global phase but which satisfy

|Vφf(x, ω)| = |Vφg(x, ω)| , for all (x, ω) ∈ aZ× bZ.

In particular, we show that there are such functions f, g ∈ L2(R) that are real-valued and well
concentrated in both time and frequency. Moreover, reducing the signal class from L2(R) to the
modulation spaceMp,q

m (R) or even to the class of real-valued signals in the modulation spaceMp,q
m (R)

will not allow one to answer Question 1.1 positively.
To construct the functions f, g ∈ L2(R), we exploit the well-known relation of the Gabor and

the Bargmann transform [2] and Hadamard’s factorisation theorem.

Outline Section 1.1 introduces some basic notation. In Section 2.1, we show that for any set
S of infinitely many equidistant parallel lines in the time-frequency plane, there exist functions
f, g ∈ L2(R) which do not agree up to global phase but whose Gabor transform magnitudes agree
on S. In Section 2.2, we apply the results from the previous section to show that functions in L2

cannot be recovered from Gabor transform magnitudes sampled on the set aZ× bZ, where a, b > 0,
and thereby answer Question 1.1. In addition, we show that the same holds when we replace L2 by
any modulation space with exponentially growing weight function or even when only considering the
real-valued functions in said modulation space. The proofs for our results can be found in Appendix
A.

1.1 Basic notions

We want to emphasise that the notation φ is reserved for the Gaussian φ(t) = e−πt
2

, for t ∈ R,
throughout this paper.

In addition, as is standard in the literature, we will denote by S(R) the Schwartz space of smooth
functions with rapid decrease and by S ′(R) its dual, the space of tempered distributions. It is natural
to extend the definition of the Gabor transform on L2(R) to the space of tempered distributions
S ′(R) by making use of the dual pairing 〈·, ·〉 on S ′(R)× S(R):

VφT (x, ω) =
〈

T, φ(· − x)e−2πi·ω〉 , (x, ω) ∈ R
2.

We will encounter the modulation spaces which can be used to quantify the decay of the Gabor
transform of signals [2]:

Definition 1.2. Let 1 ≤ p, q ≤ ∞ and let m : R2 → [0,∞). The modulation space Mp,q
m (R) is given

by






T ∈ S ′(R) ;

(

∫

R

(
∫

R

|VφT (x, ω)|pm(x, ω)p dx

)q/p

dω

)1/q

<∞







.

Finally, we will say that a weight function m : R2 → [0,∞) grows at most exponentially if there
exist constants σ0, σ1 > 0 such that for all (x, ω) ∈ R

2,

m(x, ω) ≤ σ0e
σ1

√
x2+ω2

.

2 Counterexamples and what to learn from them

2.1 Examples in semidiscrete settings

Using the relation of the Gabor transform and the Bargmann transform [2] as well as Hadamard’s
factorisation theorem, allows us to come up with functions f, g ∈ L2(R) which do not agree up to
global phase but which do generate measurements (1) that agree when S ⊂ R

2 is chosen to be any
set of infinitely many equidistant parallel lines in the time-frequency plane. In the following, we will
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Figure 1: The set S is defined by the angle α, and the distances τ as well as c.

work with α ∈ R, c ∈ (0,∞) as well as τ ∈ [0, c) and model the infinitude of equidistant parallel
lines in the time-frequency plane by

S =

{(

cosα
sinα

)

t+

(

− sinα
cosα

)

(τ + kc) ; t ∈ R, k ∈ Z

}

=

(

cosα
sinα

)

R+

(

− sinα
cosα

)

(τ + cZ). (2)

Let us consider the signals

f(t) = e−πt
2

(

cosh

(

πeiαt

c
+
πiτ

2c

)

+ i sinh

(

πeiαt

c
+
πiτ

2c

))

, (3)

g(t) = e−πt
2

(

cosh

(

πeiαt

c
+
πiτ

2c

)

− i sinh

(

πeiαt

c
+
πiτ

2c

))

, (4)

for t ∈ R, which are both in L2(R). In the following, we will show that while f and g do not agree
up to global phase, it holds that

|Vφf(x, ω)| = |Vφg(x, ω)| , for all (x, ω) ∈ S. (5)

Remark 2.1. The functions f and g were constructed by considering what equation (5) implies
for the Bargmann transforms of f and g in the complex plane. In particular, it is possible to apply
Hadamard’s factorisation theorem to the Bargmann transform of f and g and then follow ideas
similar to the ones presented in [4, 5].

Let us start by computing the Gabor transforms of f and g:

Lemma 2.2. Let α ∈ R, c ∈ (0,∞), τ ∈ [0, c), and let f, g ∈ L2(R) be defined as in equations (3)
and (4). Then, we have

Vφf(x,−ω) =
1√
2
e−

π
2
|z|2+πixω+πe

2iα

8c2

(

cosh
( π

2c

(

eiαz + iτ
)

)

+ i sinh
( π

2c

(

eiαz + iτ
)

))

,

Vφg(x,−ω) =
1√
2
e−

π
2
|z|2+πixω+πe

2iα

8c2

(

cosh
( π

2c

(

eiαz + iτ
)

)

− i sinh
( π

2c

(

eiαz + iτ
)

))

,
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for (x, ω) ∈ R
2 and z = x+ iω.

Proof. See Appendix A.

With this, we can show that Vφf and Vφg do not agree up to global phase:

Proposition 2.3. Let α ∈ R, c ∈ (0,∞), τ ∈ [0, c), and let f, g ∈ L2(R) be defined as in equations
(3) and (4). Then, the roots of Vφf are given by {(2ck − c

2 + τ) · (− sinα, cosα) ; k ∈ Z} and the
roots of Vφg are given by {(2ck + c

2 + τ) · (− sinα, cosα) ; k ∈ Z}.

Proof. For (x, ω) ∈ R
2, let us consider Vφf which consists of two factors: The first factor

1√
2
e−

π
2 (x

2+ω2)+πixω+πe
2iα

8c2

is non-zero. The second factor

cosh
( π

2c

(

eiα(x− iω) + iτ
)

)

+ i sinh
( π

2c

(

eiα(x− iω) + iτ
)

)

might alternatively be written as

cos

(

πi

2c

(

eiα(x− iω) + iτ
)

)

+ sin

(

πi

2c

(

eiα(x− iω) + iτ
)

)

.

The latter is zero if and only if

πi

2c

(

eiα(x− iω) + iτ
)

= πk − π

4
,

for some k ∈ Z. The equation above is equivalent to

ω + ix =
(

2ck − c

2
+ τ
)

e−iα

and thus the root set of Vφf must have the form {(2ck − c
2 + τ) · (− sinα, cosα) ; k ∈ Z}. The

argument for Vφg is similar.

Having that Vφf and Vφg do not agree up to global phase and the Gabor transform is a linear
operator, it follows that also f and g do not agree up to global phase.

Finally, we can show that the Gabor transforms of f and g agree on the parallel lines S as
parametrised in equation (2):

Theorem 2.4 (Main result). Let α ∈ R, c ∈ (0,∞), τ ∈ [0, c) and let S ⊂ R
2 be defined as in

equation (2). Furthermore we define f, g ∈ L2(R) as in equations (3) and (4). Then, for all µ ∈ R

f 6= eiµg

while
|Vφf(x, ω)| = |Vφg(x, ω)| , for all (x, ω) ∈ S.

Proof. See Appendix A.

2.2 The fully discrete setting

Next, we consider the fully discrete setting, i.e. measurements on the sampling set aZ× bZ, where
a, b > 0. Based on the examples constructed in Subsection 2.1, there are two ways of finding
f, g ∈ L2(R) that do not agree up to global phase but such that

|Vφf(x, ω)| = |Vφg(x, ω)| , for all (x, ω) ∈ aZ× bZ.

First, one could consider α = 0, c = b and τ = 0. In this case, we have

f(t) = e−πt
2

(

cosh

(

πt

b

)

+ i sinh

(

πt

b

))

,
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Figure 2: The functions defined in equations (6) and (7) with a = 1.

g(t) = e−πt
2

(

cosh

(

πt

b

)

− i sinh

(

πt

b

))

,

for t ∈ R, and by Lemma 2.2, we find that the Gabor transform magnitudes of f and g agree on
S = R× bZ and thus, in particular, on aZ× bZ.

Secondly, one could also take α = π
2 , c = a and τ = 0 resulting in

f(t) = e−πt
2

(

cos

(

πt

a

)

− sin

(

πt

a

))

, (6)

g(t) = e−πt
2

(

cos

(

πt

a

)

+ sin

(

πt

a

))

, (7)

for t ∈ R (see Figures 2 and 3 for visualisations of f , g and the magnitudes of their Gabor transforms,
respectively). As in the previous case, Lemma 2.2 implies that the Gabor transform magnitudes of
f and g are equal on S = aZ× R and hence also on aZ× bZ.

This second example is particularly nice, since both f and g are real-valued. In addition, both
f and g are well concentrated in time and frequency:

Proposition 2.5. Let a > 0 and let f, g ∈ L2(R) be defined by equations (6) and (7). Then, for all
1 ≤ p, q ≤ ∞ and all m : R2 → [0,∞) that grow at most exponentially, one has that f, g ∈Mp,q

m (R).

Proof. See Appendix A.

Remark 2.6. The attentive reader will note that one can also prove the above proposition under
even weaker assumptions on the weight function m. To be precise, the growth condition

m(x, ω) ≤ Ce(
π
2
−ǫ)(x2+ω2), for all (x, ω) ∈ R

2,

where C, ǫ > 0 are constants, is sufficient for the above proposition to hold.

We summarise our results in the following theorem:

Theorem 2.7. Let a, b > 0, let 1 ≤ p, q ≤ ∞ and let m : R2 → [0,∞) grow at most exponentially.
The following three statements are true:
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Figure 3: Spectrograms of the functions defined in equations (6) and (7) with a = 1.
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1. There exist complex-valued f, g ∈ L2(R) which do not agree up to global phase but for which

|Vφf(x, ω)| = |Vφg(x, ω)| , for all (x, ω) ∈ aZ× bZ, (8)

holds.

2. There exist real-valued f, g ∈ L2(R) which do not agree up to global sign but for which equation
(8) holds.

3. The above statements remain true if L2(R) is replaced by Mp,q
m (R).

Acknowledgements The authors acknowledge funding through SNF Grant 200021 184698.

A Proofs

To prove Lemma 2.2, it is useful to show the following proposition first.

Proposition A.1. Let a, b ∈ R and

h(t) = e−πt
2

e2π(a+ib)t, t ∈ R.

Then, it holds that

Vφh(x, ω) =
1√
2
e−

π
2 (x

2+ω2)−πixω+π
2
(a+ib)2+π(a+ib)(x−iω), (x, ω) ∈ R

2.

Proof. Let (x, ω) ∈ R
2. We compute

Vφh(x, ω) =
∫

R

e−πt
2

e2π(a+ib)te−π(t−x)
2

e−2πitω dt =

∫

R

e−π(t
2+(t−x)2−2at)e−2πit(ω−b) dt

=

∫

R

e
−2π

(

t2−(x+a)t+ x2

2

)

e−2πit(ω−b) dt =

∫

R

e
−2π

(

(t− 1

2
(x+a))

2
+ x2

4
− ax

2
− a2

4

)

e−2πit(ω−b) dt

=
1√
2
e−

π
2
x2+πax+π

2
a2
∫

R

e−πs
2

e
−2πi

(

s
√

2
+ 1

2
(x+a)

)

(ω−b)
ds

=
1√
2
e−

π
2
x2+πax+π

2
a2−πi(x+a)(ω−b)

∫

R

e−πs
2

e
−2πisω−b

√

2 ds

=
1√
2
e−

π
2
x2−πixω+π(a+ib)x+πiab−πiaω+π

2
a2−π

2
(ω−b)2

=
1√
2
e−

π
2 (x

2+ω2)−πixω+π
2 (a

2−b2+2iab)+π(a+ib)x−π(ia−b)ω

=
1√
2
e−

π
2 (x

2+ω2)−πixω+π
2
(a+ib)2+π(a+ib)(x−iω).

Proof of Lemma 2.2. Let (x, ω) ∈ R
2. By definition of cosh and sinh and the linearity of the Gabor

transform, it follows that we can assemble the Gabor transforms of f and g by summing Gabor
transforms of functions of the form

h(t) = e−πt
2

e2π(a+ib)t, t ∈ R,

where a, b ∈ R. Therefore, we can make use of proposition A.1 here. In particular, we find that

cosh

(

πeiαt

c
+
πiτ

2c

)

= cosh

(

πeiαt

c

)

cosh

(

πiτ

2c

)

+ sinh

(

πeiαt

c

)

sinh

(

πiτ

2c

)

=
cosh

(

πiτ
2c

)

2

(

e
πe

iαt
c + e−

πe
iαt
c

)

+
sinh

(

πiτ
2c

)

2

(

e
πe

iαt
c − e−

πe
iαt
c

)
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along with

sinh

(

πeiαt

c
+
πiτ

2c

)

=
cosh

(

πiτ
2c

)

2

(

e
πe

iαt
c − e−

πe
iαt
c

)

+
sinh

(

πiτ
2c

)

2

(

e
πe

iαt
c + e−

πe
iαt
c

)

.

Therefore, we have

Vφf(x, ω) =
1 + i

2

(

cosh

(

πiτ

2c

)

+ sinh

(

πiτ

2c

))

Vφe−π·
2

e
πe

iα
·

c (x, ω)

+
1− i

2

(

cosh

(

πiτ

2c

)

− sinh

(

πiτ

2c

))

Vφe−π·
2

e−
πe

iα
·

c (x, ω)

=
1√
2
e−

π
2 (x

2+ω2)−πixω+πe
2iα

8c2

(

1 + i

2

(

cosh

(

πiτ

2c

)

+ sinh

(

πiτ

2c

))

e
πe

iα

2c
(x−iω)

+
1− i

2

(

cosh

(

πiτ

2c

)

− sinh

(

πiτ

2c

))

e−
πe

iα

2c
(x−iω)

)

=
1√
2
e−

π
2 (x

2+ω2)−πixω+πe
2iα

8c2

(

cosh

(

πeiα

2c
(x− iω) +

πiτ

2c

)

+ i sinh

(

πeiα

2c
(x− iω) +

πiτ

2c

))

.

Similarly, we can compute

Vφg(x, ω) =
1√
2
e−

π
2 (x

2+ω2)−πixω+πe
2iα

8c2

(

cosh

(

πeiα

2c
(x− iω) +

πiτ

2c

)

− i sinh

(

πeiα

2c
(x− iω) +

πiτ

2c

))

.

Proof of Lemma 2.4. From Lemma 2.2, it is clear that it suffices to show

∣

∣

∣

∣

cosh

(

πeiα

2c
(x− iω) +

πiτ

2c

)

+ i sinh

(

πeiα

2c
(x− iω) +

πiτ

2c

)
∣

∣

∣

∣

=

∣

∣

∣

∣

cosh

(

πeiα

2c
(x− iω) +

πiτ

2c

)

− i sinh

(

πeiα

2c
(x− iω) +

πiτ

2c

)
∣

∣

∣

∣

,

for (x, ω) ∈ S. Hence, let t ∈ R and k ∈ Z be arbitrary but fixed and consider

(

x
ω

)

=

(

cosα
sinα

)

t+

(

− sinα
cosα

)

(τ + kc).

Then, we have
πeiα

2c
(x− iω) +

πiτ

2c
=
πt

2c
− πik

2

and therefore also
∣

∣

∣

∣

cosh

(

πeiα

2c
(x− iω) +

πiτ

2c

)

+ i sinh

(

πeiα

2c
(x− iω) +

πiτ

2c

)∣

∣

∣

∣

=

∣

∣

∣

∣

cosh

(

πt

2c
− πik

2

)

+ i sinh

(

πt

2c
− πik

2

)
∣

∣

∣

∣

=

∣

∣

∣

∣

cosh

(

πik

2

)(

cosh

(

πt

2c

)

+ i sinh

(

πt

2c

))

− sinh

(

πik

2

)(

sinh

(

πt

2c

)

+ i cosh

(

πt

2c

))∣

∣

∣

∣

=

∣

∣

∣

∣

cos

(

πk

2

)(

cosh

(

πt

2c

)

+ i sinh

(

πt

2c

))

− sin

(

πk

2

)(

i sinh

(

πt

2c

)

− cosh

(

πt

2c

))
∣

∣

∣

∣

.
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Next, we note that either the summand involving cos(πk2 ) or the summand involving sin(πk2 ) is
non-zero. Therefore, we can use that |z| = |z|, for z ∈ C, to see that

∣

∣

∣

∣

cosh

(

πeiα

2c
(x− iω)− πiτ

2c

)

+ i sinh

(

πeiα

2c
(x− iω)− πiτ

2c

)∣

∣

∣

∣

=

∣

∣

∣

∣

cos

(

πk

2

)(

cosh

(

πt

2c

)

− i sinh

(

πt

2c

))

− sin

(

πk

2

)(

i sinh

(

πt

2c

)

+ cosh

(

πt

2c

))∣

∣

∣

∣

=

∣

∣

∣

∣

cosh

(

πik

2

)(

cosh

(

πt

2c

)

− i sinh

(

πt

2c

))

− sinh

(

πik

2

)(

sinh

(

πt

2c

)

− i cosh

(

πt

2c

))
∣

∣

∣

∣

=

∣

∣

∣

∣

cosh

(

πt

2c
− πik

2

)

− i sinh

(

πt

2c
− πik

2

)∣

∣

∣

∣

=

∣

∣

∣

∣

cosh

(

πeiα

2c
(x− iω) +

πiτ

2c

)

− i sinh

(

πeiα

2c
(x− iω) +

πiτ

2c

)
∣

∣

∣

∣

.

Proof of Proposition 2.5. Let 1 ≤ p, q < ∞ (the cases in which p or q are infinite are similar) and
let m : R2 → [0,∞) grow at most exponentially. Let us start by noting that according to Lemma
2.2, we have that

|Vφf(x, ω)| =
1√
2
e−

π

8a2

∣

∣

∣
cos
( π

2a
(x− iω)

)

− sin
( π

2a
(x− iω)

)∣

∣

∣
e−

π
2 (x

2+ω2),

for (x, ω) ∈ R
2. We can now use |cos(z)| ≤ e|Im z| and |sin(z)| ≤ e|Im z|, for z ∈ C, to see that

|Vφf(x, ω)| ≤
√
2e−

π

8a2 e
π
2a

|ω|e−
π
2 (x

2+ω2).

According to the above inequality and because m grows at most exponentially which implies that
there must exist σ0, σ1 > 0 such that

m(x, ω) ≤ σ0e
σ1(|x|+|ω|), (x, ω) ∈ R

2,

we have that

∫

R

(
∫

R

|Vφf(x, ω)|pm(x, ω)p dx

)q/p

dω

≤
√
2
q
σq0e

− πq

8a2

∫

R

(

e(σ1+
π
2a )|ω|−π

2
ω2

∫

R

(

eσ1|x|−π
2
x2
)p

dx

)q/p

dω <∞.

Therefore, f ∈Mp,q
m (R). The same arguments can be employed to deduce that g ∈Mp,q

m (R).
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