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Abstract

We propose a novel machine learning algorithm for simulating radiative transfer. Our algorithm
is based on physics informed neural networks (PINNs), which are trained by minimizing the residual
of the underlying radiative tranfer equations. We present extensive experiments and theoretical error
estimates to demonstrate that PINNs provide a very easy to implement, fast, robust and accurate
method for simulating radiative transfer. We also present a PINN based algorithm for simulating
inverse problems for radiative transfer efficiently.

1 Introduction

The study of radiative transfer is of vital importance in many fields of science and engineering including
astrophysics, climate dynamics, meteorology, nuclear engineering and medical imaging [30]. The funda-
mental equation describing radiative transfer is a linear partial integro-differential equation, termed as
the radiative transfer equation. Under the assumption of a static underlying medium, it has the following
form [30],

1

c
ut + ω · ∇xu+ ku+ σ

(

u− 1

sd

∫

Λ

∫

S

Φ(ω, ω′, ν, ν′)u(t, x, ω′, ν′)dω′dν′

)

=f, (1.1)

with time variable t ∈ [0, T ], space variable x ∈ D ⊂ R
d (and DT = [0, T ] × D), angle ω ∈ S = S

d−1

i.e. the d-dimensional sphere and frequency (or group energy) ν ∈ Λ ⊂ R. The constants in (1.1) are
the speed of light c and the surface area sd of the d-dimensional unit sphere. The unknown of interest
in (1.1) is the so-called radiative intensity u : DT × S × Λ 7→ R, while k = k(x, ν) : D × Λ 7→ R+

is the absorption coefficient and σ = σ(x, ν) : D × Λ 7→ R+ is the scattering coefficient. The integral
term in (1.1) involves the so-called scattering kernel Φ : S × S × Λ × Λ 7→ R, which is normalized as
∫

S×Λ
Φ(·, ω′, ·, ν′)dω′dν′ = 1, in order to account for the conservation of photons during scattering.

The dynamics of radiative transfer are driven by a source (emission) term f = f(x, ν) : D × Λ 7→ R.
Although the radiative transfer equation (1.1) is linear, explicit solution formulas are only available

in very special cases [30]. Hence, numerical methods are essential for the simulation of the radiative
intensity in (1.1). However, the design of efficient numerical methods is considered to be very challening
[15, 16, 30]. This is on account of the high-dimensionality of the radiative transfer equation (1.1), where
in the most general case of three space dimensions, the radiative intensity is a function of 7 variables
(4 for space-time, 2 for angle and 1 for frequency). Traditional grid-based numerical methods such as
finite elements or finite differences, which involve N ℓ degrees of freedom (for ℓ dimensions, with N being
the number of points in each dimension), require massive computational resources to be able to simulate
radiative transfer accurately [15, 16]. Moreover in practice, one has to encounter media with very different
optical properties characterized by different scales in the absorption and scattering coefficients and in the
emission term in (1.1), which further complicates the design of robust and efficient numerical methods.
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In spite of the aforementioned challenges, several types of numerical methods have been proposed in
the literature for simulating radiative transfer, see [9, 12, 15, 30] and references therein for a detalied
overview. These include Monte Carlo ray-tracing type particle methods [41], which do not suffer from
the curse of dimensionality and are easy to parallelize but are characterized by slow convergence (with
respect to number of particles) and are mostly limited to media with fairly uniform optical properties.
Discrete Ordinate Methods (DOM), are based on the discretization of the angular domain S with a
number of fixed directions and the resulting systems of spatio-temporal PDEs is solved by finite element
or finite difference methods. Although easy to implement, these methods can be very expensive and
also suffer from the so-called ray effects in optically thin media [20]. Spherical harmonics, based on a
series expansion in the angle, have been widely used in radiative transfer [30]. Although shown to exhibit
spectral convergence for smooth solutions [13], these methods are well-known to still suffer from the curse
of dimensionality, see [12, 31]. A particular variant of the spherical harmonics, the so-called P1 method,
is an example of a class of flux limited diffusion methods [9], which are widely used for optically thick
media.

Moment based methods lead to another class of numerical methods for simulating radiative transfer,
see [9] and references therein. For these methods, one derives a PDE for the so-called incident radiation
by integrating (1.1) over the angular domain S. The evolution of the incident radiation is determined
by the heat (radiation) flux, which is also the first angular moment. The evolution of the heat flux has
to be determined from the second angular moment of u, which is termed as the pressure tensor. These
hierarchy of moments have to be closed by suitable closure relations (see [9] and references therein) and
the resulting PDEs are discretized by finite elements or finite differences. These moment based methods
can lead to inaccurate approximation of the incident radiation, particularly when suitable closures are
not available. Finally in recent years, several attempts have been made to design efficient finite element
methods for the radiative transfer equation, such as those based on sparse grids [43] or sparse tensor
product finite element spaces [15, 43]. Although these methods can alleviate the curse of dimensionality
in certain cases, they are rather complicated to implement and can still be computationally expensive,
particularly when higher-order elements are used [12].

Summarizing the above discussion, it is fair to conclude that all the proposed methods have some
deficiencies, in particular in their computational cost for simulating realistic problems. Thus, there is a
pressing need to design a numerical method that is accurate, fast (in terms of computational time), easy
to use and able to deal with the high dimensions and optical heterogeneity of the underlying radiative
transfer equation (1.1). We aim to propose such a numerical method in this article.

Our proposed numerical method is based on deep neural networks [10], i.e. functions formed by
concatenated compositions of affine transformations and scalar non-linear activation functions. Deep
neural networks have been extremely successful at diverse tasks in science and engineering [21] such as
at image and text classification, computer vision, text and speech recognition, autonomous systems and
robotics, game intelligence and even protein folding [7]. They are being increasingly used in the context
of scientific computing, particularly for different aspects of numerical solutions of PDEs [6, 14, 24, 25]
and references therein.

As deep neural networks possess the so-called universal approximation property or ability to accurately
approximate any continuous (even measurable) function [1], they can be used as ansatz (search) spaces for
solutions of PDEs. This property lays the foundation for the so-called Physics informed neural networks
(PINNs) which collocate the PDE residual on training points of the approximating deep neural network.
First proposed in [18, 19], PINNs been revived and developed in significantly greater detail recently in
the pioneering contributions of Karniadakis and collaborators. PINNs have been successfully applied
to simulate a variety of forward and inverse problems for PDEs, see [5, 22, 23, 26, 33, 36, 37, 38] and
references therein.

In recent papers [27] (for the forward problem) and [28] (for the inverse problem), the authors an-
alyzed PINNs and provide a rigorous explanation for the efficiency of PINNs, based on stability of the
underlying PDEs. A surprising observation in [27, 28] was the ability of PINNs to overcome the curse
of dimensionality, at least for some PDEs. This observation, together with the well-documented ability
of PINNs to approximate PDEs is a starting point of this paper where we adapt PINNs to solve the
radiative transfer equation (1.1). The main contributions of the current paper are as follows,

• We present a novel algorithm for approximating the radiative transfer equation (1.1) in a very
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general setting. Our algorithm is based on suitable physics informed neural networks (PINNs).

• We analyze the proposed algorithm by rigorously proving an estimate on the so-called generalization
error of the PINN. This estimate shows that as long as the PINN is trained well, it approximates
the solution of (1.1) to high accuracy.

• We present a suite of numerical experiments to illustrate the accuracy and efficiency of the proposed
algorithm.

• A major advantage of PINNs is their ability to approximate inverse problems (with the same level
of complexity as the forward problem). Hence, we will also modify PINNs to approximate an
inverse problem for radiative transfer, namely determining the unknown absorption or scattering
coefficients in (1.1) from measurements of moments of the radiative intensity.

Thus, we present a novel, fast, robust, accurate and easy to code and implement algorithm for simulating
the general form of the radiative transfer equations (1.1) and provide analysis and numerical experiments
to demonstrate that this algorithm efficiently approximates both forward and inverse problems for radia-
tive transfer. The rest of the paper is organized as follows, in section 2, we describe the PINNs algorithm
and provide an estimate on the underlying generalization error. Numerical experiments are presented in
section 3, PINNs for inverse problems are described in section 4 and the proposed method and results
are discussed in section 5.

2 Physics informed neural networks for approximating (1.1)

In this section, we describe the PINNs algorithm for simulating radiative transfer. We start by elaborating
on the underlying PDE (1.1).

2.1 The model.

We model radiative transfer in a static medium by the evolution equation (1.1) for the radiative intensity
u. This partial integro-differential equation is supplemented with the initial condition,

u(0, x, ω, ν) = u0(x, ω, ν), (x, ω, ν) ∈ D × S × Λ, (2.1)

for some initial datum u0 : D × S × Λ 7→ R.
Given that the radiative transfer equation (1.1) is a transport equation, the boundary conditions are

imposed on the so-called inflow boundary given by,

Γ− = {(t, x, ω, ν) ∈ [0, T ]× ∂D × S × Λ : ω · n(x) < 0} (2.2)

with n(x) denoting the unit outward normal at any point x ∈ ∂D (the boundary of the spatial domain
D). We specific the following boundary condition,

u(t, x, ω, ν) = ub(t, x, ω, ν), (t, x, ω, ν) ∈ Γ−, (2.3)

for some boundary datum ub : Γ− 7→ R.
Given that the radiative intensity is a function of 2d + 1-variables, it is essential to find suitable

low-dimensional functionals (observables) to visualize and interpret it. To this end, one often considers
physically interesting angular-moments such as the incident radiation (zeroth angular moment) and heat
flux (first angular moment) given by,

G(t, x, ν) =

∫

S

u(t, x, ω, ν)dω (2.4)

F (t, x, ν) =

∫

S

u(t, x, ω, ν)ωdω (2.5)

We note that for many applications of radiative transfer, it is common to consider the steady (time-
independent) version of the radiative transfer equation (1.1), which formally results from setting c → ∞
and dropping the time-derivative term in the left hand side of (1.1).
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2.2 Quadrature rules and Training points

Quadrature i.e numerical approximation of integrals, is essential for simulating the radiative transfer
equation (1.1) with PINNs. It is needed for approximating the integral with the scattering kernel in
(1.1). Moreover, we follow [27], where quadrature points were used as training points for PINNs.

Given any domain D and an integrable function g : D 7→ R, we need to specify quadrature points
zi ∈ D for 1 6 i 6 N , and quadrature weights wi in order to perform the following approximation,

∫

D

g(z)dz ≈
N
∑

i=1

wig(zi). (2.6)

For our specific integrals, we consider Gauss-Legendre quadrature rules [42] for approximating the
scattering kernel integral in (1.1). To this end, we choose points zSi = (ωS

i , ν
S
i ), for 1 6 i 6 NS , with

ωS
i ∈ S and νSi ∈ Λ as the Gauss-Legendre quadrature points and the weights wS

i are the corresponding
quadrature weights for a Gauss-Legendre quadrature rule of order s > 1.

We also need the following training points for the PINNs algorithm,

2.2.1 Interior training points.

We set Sint = {zintj }, for 1 6 j 6 Nint, and zintj = (tintj , xint
j , ωint

j , νintj ) with tintj ∈ [0, T ], xint
j ∈ D,ωint

j ∈
S, νintj ∈ Λ, for all j. These points are the quadrature points of a suitable quadrature rule with weights

wint
j .

If the underlying spatial domain D ⊂ R
d can be mapped to a d-dimensional rectangle, either entirely

or in patches, then we can set the training points zintj as a low-discrepancy Sobol sequence [40] in [0, 1]2d+1,
by rescaling the relevant domains. Sobol sequences arise in the context of Quasi-Monte Carlo integration
[2] and the corresponding quadrature weights are wint

j ≡ 1
Nint

, for all j. Note that the QMC quadrature
rule does not suffer from the curse of dimensionality (see section 2.5 for details). In case the geometry
of the domain is very complicated, one has simply choose random points, independent and identically
distributed with the underlying uniform distribution, as training points.

2.2.2 Temporal boundary training points.

We denote Stb = {ztbj }, for 1 6 j 6 Ntb, and ztbj = (xtb
j , ω

tb
j , νtbj ) with xtb

j ∈ D,ωtb
j ∈ S, νtbj ∈ Λ, for all

j. These points are the quadrature points of a suitable quadrature rule with weights wtb
j . We can choose

Sobol points for logically rectangular domains D or random points to constitute this training set.

2.2.3 Spatial boundary training points.

We denote Ssb = {zsbj }, for 1 6 j 6 Nsb, and zsbj = (ttbj , x
tb
j , ω

tb
j , νtbj ) with ttbj ∈ [0, T ], xtb

j ∈ ∂D, ωtb
j ∈

S, νtbj ∈ Λ, for all j. These points are the quadrature points of a suitable quadrature rule with weights

wsb
j . As before, we can choose Sobol points for logically rectangular domains D or random points to

constitute this training set.

2.3 Neural Networks

PINNs are neural networks i.e. given an input y = (t, x, ω, ν) ∈ D = DT × S × Λ, a feedforward neural
network (also termed as a multi-layer perceptron), shown in figure 1, transforms it to an output, through
a layers of units (neurons) which compose of either affine-linear maps between units (in successive layers)
or scalar non-linear activation functions within layers [10], resulting in the representation,

uθ(y) = CK ◦A ◦ CK−1 . . . . . . . . . ◦A ◦ C2 ◦A ◦ C1(y). (2.7)

Here, ◦ refers to the composition of functions and A is a scalar (non-linear) activation function (applied
to vectors componentwise). A large variety of activation functions have been considered in the machine
learning literature [10]. Popular choices for the activation function A in (2.7) include the sigmoid function,
the hyperbolic tangent function and the ReLU function.
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The affine map in the k-layer is given by,

Ckzk = Wkzk + bk, for Wk ∈ R
dk+1×dk , zk ∈ R

dk , bk ∈ R
dk+1 . (2.8)

For consistency of notation, we set d1 = d̄ = 2d+ 1, for d-space dimensions and dK = 1.
Thus in the terminology of machine learning (see also figure 1), our neural network (2.7) consists of

an input layer, an output layer and (K − 1) hidden layers for some 1 < K ∈ N. The k-th hidden layer
(with dk neurons) is given an input vector zk ∈ R

dk and transforms it first by an affine linear map Ck

(2.8) and then by a nonlinear (component wise) activation σ. A straightforward addition shows that our

network contains

(

2d+ 2 +
K−1
∑

k=2

dk

)

neurons. We also denote,

θ = {Wk, bk}, θW = {Wk} ∀ 1 6 k 6 K, (2.9)

to be the concatenated set of (tunable) weights for our network. It is straightforward to check that
θ ∈ Θ ⊂ R

M with

M =

K−1
∑

k=1

(dk + 1)dk+1. (2.10)

Figure 1: An illustration of a (fully connected) deep neural network. The red neurons represent the inputs to the network
and the blue neurons denote the output layer. They are connected by hidden layers with yellow neurons. Each hidden unit
(neuron) is connected by affine linear maps between units in different layers and then with nonlinear (scalar) activation
functions within units.

2.4 Training PINNs: Loss functions and optimization

The neural network uθ (2.7) depends on the tuning parameter θ ∈ Θ of weights and biases. Within the
standard paradigm of deep learning [10], one trains the network by finding tuning parameters θ such that
the loss (error, mismatch, regret) between the neural network and the underlying target is minimized.
Our target is the solution u of the radiative transfer equation (1.1) and we wish to find the tuning
parameters θ such that the resulting neural network uθ approximates u.

To do so, we follow [19, 36, 27] and define the following PDE residual Rint,θ = Rint,θ(t, x, ω, ν), for
all (t, x, ω, ν) ∈ DT × S × Λ,

Rint,θ :=
1

c
∂tuθ + ω · ∇xuθ + kuθ + σ

(

uθ −
1

sd

NS
∑

i=1

wS
i Φ(ω, ω

S
i , ν, ν

S
i )uθ(t, x, ω

S
i , ν

S
i )

)

− f. (2.11)

Here, k, σ, f are defined from (1.1) and (ωS
i , ν

S
i ) are the Gauss-Legendre quadrature points, with quadra-

ture weights wi of order S.
We also need the following residuals for the initial and boundary conditions,

Rtb = Rtb,θ := uθ − u0, ∀(x, ω, ν) ∈ D × S × Λ,

Rsb = Rsb,θ := uθ − ub, ∀(t, x, ω, ν) ∈ Γ−.
(2.12)
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The strategy of PINNs, following [36, 27], is to minimize the residuals (2.11) (2.12), simultaneously
over the admissible set of tuning parameters θ ∈ Θ i.e

Find θ∗ ∈ Θ : θ∗ = argmin
θ∈Θ

(

‖Rint,θ‖2L2(DT×S×Λ) + ‖Rsb,θ‖2L2(Γ−) + ‖Rtb,θ‖2L2(D×S×Λ)

)

. (2.13)

However, the L2 norms in (2.13) involve integrals that cannot be computed exactly and need to
be approximated by suitable quadrature rules. It is exactly the place to recall the different training
sets, introduced in section 2.2. As these precisely correspond to the quadrature points of an underlying
quadrature rule, we approximate the integrals in (2.13) with the corresponding quadrature rule to define
the following loss function,

J(θ) :=

Nsb
∑

j=1

wsb
j |Rsb,θ(z

sb
j )|2 +

Ntb
∑

j=1

wtb
j |Rtb,θ(z

tb
j )|2 + λ

Nint
∑

j=1

wint
j |Rint,θ(z

int
j )|2 (2.14)

with the residuals Rsb,Rtb and Rint defined in (2.12), (2.11), and wsb, zsb, wsb, zsb, wint, zint being the
quadrature weights and training points, defined in section 2.2. Furthermore, λ is a hyperparameter for
balancing the residuals, on account of the PDE and the initial and boundary data, respectively.

It is common in machine learning [10] to regularize the minimization problem for the loss function i.e
we seek to find,

θ∗ = argmin
θ∈Θ

(J(θ) + λregJreg(θ)) . (2.15)

Here, Jreg : Θ → R is a weight regularization (penalization) term. A popular choice is to set Jreg(θ) =
‖θW ‖qq for either q = 1 (to induce sparsity) or q = 2. The parameter 0 6 λreg ≪ 1 balances the
regularization term with the actual loss J (2.14).

The above minimization problem amounts to finding a minimum of a possibly non-convex function
over a subset of RM for possibly very large M . We will follow standard practice in machine learning
and solving this minimization problem approximately by either (first-order) stochastic gradient descent
methods such as ADAM [17] or even higher-order optimization methods such as different variants of the
LBFGS algorithm [8].

For notational simplicity, we denote the (approximate, local) minimum in (2.15) as θ∗ and the under-
lying deep neural network u∗ = uθ∗ will be our physics-informed neural network (PINN) approximation
for the solution u of the PDE (1.1). We summarize the PINN algorithm for approximating radiative
transfer below,

Algorithm 2.1. Finding a physics informed neural network (PINN) to approximate the radiative inten-
sity u solving (1.1).

Inputs: Underlying domain DT × S × Λ, coefficients and data for the radiative transfer equation (1.1),
quadrature points and weights for underlying quadrature rules, non-convex gradient based optimiza-
tion algorithms.

Goal: Find PINN u∗ = uθ∗ for approximating the solution u of (1.1) .

Step 1: Choose the training sets as described in section 2.2.

Step 2: For an initial value of the weight vector θ ∈ Θ, evaluate the neural network uθ (2.7), the PDE
residual (2.11), the boundary residuals (2.12), the loss function (2.15) and its gradients to initialize
the underlying optimization algorithm.

Step 3: Run the optimization algorithm till an approximate local minimum θ∗ of (2.15) is reached. The map
u∗ = uθ∗ is the desired PINN for approximating the solution u of the radiative transfer equation.

2.5 Estimates on the generalization error

For the sake of definiteness and simplicity, we consider the spatial domain as D = [0, 1]d, with d being

the spatial dimension. Any rectangular domain
d
∏

i=1

[ai, bi], with ai < bi, for any ai, bi ∈ R can be mapped
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to [0, 1]d by rescaling. Similarly, logically (patch or block) cartesian domains can be transformed to
(0, 1)d by combinations of coordinate transforms. We also rescale time and frequency to set T = 1 and
Λ = [0, 1]. Finally, the angular domains can be mapped onto to [0, 1]d−1 by rescaling the underlying
polar coordinates. Hence, the underlying domain is D = DT × S × Λ = [0, 1]2d+1. Thus, we can choose
our interior training points Sint, temporal boundary training points Stb and spatial boundary training
points Ssb as low-discrepancy Sobol points [2].

Our aim in this section is to derive a rigorous estimate on the so-called generalization error (or
approximation error) for the trained neural network u∗ = uθ∗ , which is the output of the PINNs algorithm
2.1. This error is of the form,

EG = EG(θ
∗) :=





∫

D

|u(t, x, ω, ν)− u∗(t, x, ω, ν)|2dz





1
2

, (2.16)

with dz = dxdtdωdν denoting the volume measure on D.
We follow the recent paper [27] and estimate the generalization error (2.16), in terms of training

errors,

E
sb
T :=





Nsb
∑

j=1

wsb
j |Rsb,θ∗(zsbj )|2





1
2

, E
tb
T :=





Ntb
∑

j=1

wtb
j |Rtb,θ∗(ztbj )|2





1
2

, E
int
T :=





Nint
∑

j=1

wint
j |Rint,θ∗(zintj )|2





1
2

(2.17)
Note that the training errors, defined above, correspond to a local minimizer θ∗ of (2.15) and are readily
computable from the loss function (2.15), during and at the end of the training process.

The detailed estimate on the generalization error in Lemma A.1, together with the assumptions on
the underlying coefficients, functions and neural network, is presented and proved in Appendix A. We
direct the interested reader to the appendix and focus on the following form of the error estimate (A.3),

(EG)
2
6 C1

(

(Etb
T )

2 + c(Esb
T )2 + c(Eint

T )2
)

+ C2

(

(log(Ntb))
2d

Ntb

+ c
(log(Nsb))

2d

Nsb

+ c
(log(Nint))

2d+1

Nint

+ cN−2s
S

)

,
(2.18)

with finite constants C1 = C, C2 = CC∗ defined in (A.4). The following remarks about the bound (2.18)
are in order,

Remark 2.2. The estimate (2.18) bounds the generalization error in terms of the training errors defined
in (2.17) and the number of training points Nint,sb,tb as well as quadrature points NS for approximating
the scattering integral in (1.1). Although we have no apriori estimate on the training errors, as argued
in [27], these errors can readily calculated after the training process has completed. Thus, the estimate
(2.18) tells us that under the assumptions that the constants appearing in (2.18) are finite, as long as
the PINN is trained well, it generalizes well. This is exactly in the spirit of generalization results in
theoretical machine learning [32]. �

Remark 2.3. We see from the right hand side of the bound (2.18) that the dimensional dependence of
the upper bound is only a logarithmic factor. This is not a severe restriction in this case, as the spatial
dimension d is atmost 3. It is well known [2] that the logarithmic factor in the rhs of (2.18) starts affecting
the rate of decay only when Nint < 22d+1. Thus as long as Nint > 128 and Ntb, Ntb > 64, we should see a
linear decay in the error contributions of the Sobol points in (2.18). Hence, we claim that as long as the
training errors do not depend on the underlying dimension, the estimate (2.18) suggests that the PINNs
algorithm 2.1 will not suffer from a curse of dimensionality. �

Remark 2.4. The estimate (2.18) brings out the role of the speed of light c very clearly. As long as c is
finite, we can rescale time to set c = 1. Nevertheless, the constant C in (2.18) grows exponentially with
the rescaled time, deteriorating the control on the error provided by the bound (2.18). Thus, this bound
is not suitable for steady-state problems (formally) obtained by letting c → ∞. Nevertheless, a modified
error estimate can be derived for the steady state case and we present it in the appendix B. �
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3 Numerical Experiments

3.1 Implementation

The PINNs algorithm 2.1 has been implemented within the PyTorch framework [34] and the code can
be downloaded from https://github.com/mroberto166/RadiativeTransportPinns. As is well doc-
umented [36, 37, 27], the coding and implementation of PINNs is extremely simple, particularly when
compared to standard methods such as finite elements. Only a few lines of Python code suffice for this
purpose. All the numerical experiments were performed on a single GeForce GTX1080 GPU.

The PINNs algorithm has the following hyperparameters, the number of hidden layers K − 1, the
width of each hidden layer dk ≡ d̃ in (2.7), the specific activation function A, the parameter λ in the loss
function (2.14), the regularization parameter λreg in the cumulative loss function (2.15) and the specific
gradient descent algorithm for approximating the optimization problem (2.15). We use the hyperbolic
tangent tanh activation function, thus ensuring that all the smoothness hypothesis on the resulting neural
networks, as required in lemmas A.1 and B.1 are satisfied. Moreover, we use the second-order LBFGS
method [8] as the optimizer. We follow the ensemble training procedure of [25] in order to choose the
remaining hyperparameters. To this end, we consider a range of values, shown in Table 1, for the number
of hidden layers, the depth of each hidden layer, the parameter λ and the regularization parameter λreg.
For each configuration in the ensemble, the resulting model is retrained (in parallel) nθ times with different
random starting values of the trainable weights in the optimization algorithm and the one yielding the
smallest value of the training loss is selected.

K − 1 d̃ λ λreg nθ

Example 3.2, 3.3 4, 8 16, 20, 24 0.1, 1, 10 0 5

Example 3.4 4, 8 16, 20 0.1, 1 0, 10−6, 10−5 10

Example 3.5 4, 8, 12, 16, 20 16, 20, 24, 28, 32, 36, 40 0.1, 1 0 20

Example 4.2 4, 8 16, 20, 24 1, 10 0 5

Table 1: Hyperparameter configurations and number of retrainings employed in the ensemble training of PINNs for the
radiative transfer equation (1.1)

3.2 Monochromatic stationary radiative transfer in one space dimension

We begin with the much simpler case of steady state radiative transfer in the one space dimension, also
referred to as slab geometry [9]. In this case, the radiative transfer equations (1.1) simplify to,

µ
∂

∂x
u(x, µ) +

(

σ(x) + k(x)
)

u(x, µ) =
σ(x)

2

∫ 1

−1

Φ(µ, µ′)u(z, µ)dµ′, µ = cos(θ), (x, µ) ∈ [0, 1]× [−1, 1].

(3.1)
We follow the setup of [35] where the authors benchmarked least squares finite element methods for
one-dimensional radiative transfer on this problem. As in [35], the following inflow boundary conditions
are imposed:

u(0, µ) = 1, µ ∈ (0, 1],

u(1, µ) = 0, µ ∈ [−1, 0).
(3.2)

Note that the boundary conditions allow for possible discontinuities at µ = 0. The coefficients and
scattering kernel are,

σ(x) = x, k(x) = 0, Φ(µ′, µ) =
L
∑

ℓ=0

dℓPℓ(µ)Pℓ(µ
′), d0 = 1, (3.3)

with Pℓ(µ) denoting the Legendre polynomial of order ℓ. We employ the sequence of coefficients dℓ =
{1.0, 1.98398, 1.50823, 0.70075, 0.23489, 0.05133, 0.00760, 0.00048}, proposed in [35]. Although only in 2
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Nint Nsb K − 1 d̃ λ ET ||u− − u∗

−
||L2 ||u+ − u∗

+
||L2 Training Time

8192 2048 8 24 0.1 0.00016 0.07 % 0.29 % 57 min

Table 2: Results for monochromatic stationary radiative transfer in one space dimension.

dimensions, this problem is nevertheless considered rather challenging on account of the possible presence
of discontinuities.

We use the PINNs algorithm 2.1 to approximate (3.1), with Sobol points for the interior training
set Sint and spatial boundary training set Ssb. Similarly, a Gauss-Legendre quadrature rule of order
20 is used for approximating the integral with the scattering kernel. We set Nint = 8192, Nsb = 2048
and NS = 10, for this experiment. The hyperparameters that resulted from the ensemble training are
presented in Table 2. As seen from the table, a very low training error is obtained in this case. A contour
plot of the resulting radiative intensity in (x, µ)-plane is presented in figure 2. The results are very similar
to those obtained with a least squares finite element method in [35] (compare figure 2 with figure 3 of
[35]). It is interesting to note that this very good qualitative match with the least-squares finite element
method is obtained with a training time of slightly less than 1 hour.

Figure 2: Contour plot of the radiative intensity u(x, µ) for the 1D monochromatic experiment

Another attractive feature of this simplified problem lies in the fact that the authors in [4] obtained
an exact analytical solution for it. Although it is very complicated to evaluate this solution for the
whole (x, µ)-plane, its values on the boundaries can be readily evaluated i.e. we can readily compute
u−(µ) = u(0, µ) and u+(µ) = u(1, µ). We do so and compare the exact solution with the trained PINN,
denoted by u∗

±. These results are plotted in figure 3. We see from this figure that the PINN is able to very
accurately approximate the discontinuous exact solution at the boundary. A quantitative comparison in
performed by computed the errors u± − u∗

± in L2-norm. These errors, presented in table 2, are very
small for both boundaries and further demonstrate that the PINN is able to approximate the underlying
discontinuous solution to high-accuracy, at very low computational cost.
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Figure 3: Comparison of the analytical and PINNN radiative intensity at the physical domain boundaries for the stationary
monochromatic radiative transfer in one-space dimension.

3.3 Monochromatic stationary radiative transfer in three space dimensions

Next, we consider a monochromatic and stationary version of the general radiative transfer equations
(1.1), but in three space dimensions. Already, this problem is in 5 dimensions and is challenging on account
of possibly high computational cost. We use the same setup as in [12] (section 8.2, experiment 3) and
consider the problem in the unit cube D = [0, 1]3 where a source, located at the center c = (0.5, 0.5, 0.5),
radiates into the surrounding medium. We consider no further radiation entering the domain (zero
Dirichlet boundary conditions). The source term f is given by

f(x) = k(x)Ib(x), Ib(x) =

{

0.5− r, r 6 0.5
0, otherwise

(3.4)

with r = |x − c|. The absorption coefficient is k(x) = Ib(x) and isotropic scattering Φ = 1, with unit
scattering coefficient σ(x) = 1 is considered.

As before, we use Sobol points for the interior training set Sint and boundary training set Ssb. Quadra-
ture points, corresponding to a Gauss quadrature rule of order 20 are also used. We set Nint = 16384,
Nsb = 12288 and NS = 100. The hyperparameters, corresponding to the best performing networks, that
result from ensemble training are presented in Table 3. We see from this table that this hyperparameter
configuration resulted in a very low (total) training error of 4.4 × 10−4, which is comparable to those
obtained in the one-space dimension case (see table 2).

Nint Nsb K − 1 d̃ λ ET Training Time

16384 12288 8 24 0.1 0.00044 1 hr 9 min

Table 3: Results of the ensemble training for the stationary monochromatic radiative transfer in three space dimensions.

As there is no analytical solution available for the radiative intensity in this case, we cannot compute
generalization errors. However, based on the theory (see estimate (A.3)) and on the comparison with
the one-dimensional case, we expect very low generalization errors when the training errors are this low.
Moreover, we can perform qualitative comparisons with the results obtained in [12] with an efficient
discrete ordinate method. To this end, we plot three-dimensional volume plot for the incident radiation
G(x) (see the first equation in (2.4) for definition) in figure 4. We see from this figure that the results with
PINN are very similar to the results with the discrete ordinate method, shown in [12] (figure 8.12, page
126). Thus, we are able to approximate the incident radiation to the same accuracy as a discrete ordinate
method. The main differences lies in the simplicity of implementation and very low computational cost.
We observe from table 3 that the PINN was trained in approximately 70 minutes on a single GPU.
This should be contrasted with the very intricate parallel algorithm of [12], which required considerably
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more computational time as the method resulted in very number of degrees of freedom ranging from
200000− 600000.

Figure 4: Contour plot of the incident radiation G(x) for the 3D monochromatic experiment

3.4 Polychromatic stationary radiative transfer in three space dimensions

Next, we consider the most general case of the steady state radiative transfer equation (B.1) by following
the setup of [39] and references therein, where (B.1) is considered in the unit cube D = [0, 1]3 and in the
frequency domain Λ = [−6, 6], with normalization of energy groups. Furthermore, we consider a simple
case of zero absorption, isotropic kernel, zero Dirichlet boundary conditions and spherical symmetry.
Under the assumptions, by integrating equation (B.1) over the unit sphere S, we arrive at the following
ordinary differential equation for the radial flux i.e the incident heat flux (2.4) along the radius,

∇ · Fr =
1

r2
d

dr
r2Fr = 4πf(r, ν) (3.5)

with r = |x− (0.5, 0.5, 0.5)| (see also [39] and references therein).
An exact solution for the above ODE can be easily obtained. In particular, with the source term:

f(x, ν) =

{√
πϕ(ν)

(

1− 2r
)

if r 6 0.5,

0 otherwise,
ϕ(ν) =

1√
π
exp

(

− ν2
)

, (3.6)

the radial flux Fr results in

Fr =

{

4
√
π3ϕ(ν)

(

r
3 − r2

2

)

if r 6 0.5,

4
√
π3ϕ(ν) 1

96r2 otherwise.
(3.7)

As in the previous numerical experiment, we use Sobol points for the interior and boundary training sets
and Gauss quadrature points for integrating the scattering kernel, with Nint = 16384, Nsb = 12288 and
NS = 100. The hyperparameters used in the ensemble trainig are reported in table 1 and the resulting
best performing configuration is shown in table 4. We observe from this table that the resulting training
error is 1.6 × 10−3, which is about three times higher than the training error with the monochromatic
experiment (see table 3). This is not surprising as the underlying problem is more complicated on account
of introducing frequency as an additional variable and resulting in a 6-dimensional problem.
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As no analytical solution is available for the radiative intensity, we cannot compute the generalization
error (B.4). However, we can compute the error between the analytical radial flux (3.7) and the PINN
approximation (computed from the intensity with a Gauss-Legendre quadrature rule). We show the
resulting L2-norm of the error in table 4. We see from this table that the error for the flux is quite low
at approximately 2% relative error, even for this rather complicated underlying problem. Moreover, the
training time is only one hour. Thus, PINNs are able to approximate the underlying solution to high
accuracy at low computational cost for this 6-dimensional problem.

Nint Nsb K − 1 d̃ λ ET ||Fr − F ∗

r ||L2 Training Time

16384 12288 8 20 0.1 0.0016 2.1 % 1 hr 6 min

Table 4: Results for steady polychromatic radiative transfer in three space dimensions
.

3.5 Polychromatic time-dependent Radiative transfer in three space dimen-

sions

For the final numerical experiment, we consider the configuration proposed in [11], which is widely used in
benchmarking the radiative transport modules in production codes for radiation-(magneto)hydrodynamics,
in the context of Astrophysics [44]. The setup is as follows; a sphere with radius Ri and fixed temperature
TS is surrounded by a cold static medium at temperature Tm < TS . The experiment might represent, for
instance, the model of a star radiating in the surrounding atmosphere. It is assumed that the sphere, as
well as the surrounding medium, are emitting with a Planckian distribution

B(T, ν) =
2hν3

c2
1

e
hν

kbT − 1
(3.8)

with h and kb being the Planck and Boltzmann constant, and c the speed of light.
To make the problem tractable, the authors of [11] neglect scattering entirely by setting σ ≡ 0.

Moreover, the absorption coefficient is modeled by k(x, ν) = kν , with ν being the frequency. The emission
term is modeled by f(x, ν) = kνB(Tm, ν), resulting in the following form of the radiative transfer equation
(1.1),

1

c

∂u

∂t
+ ω · ∇xu = kν(B(Tm, ν)− u), (t, x, n, ν) ∈ DT × S × Λ. (3.9)

In the context of radiation-(magneto)hydrodynamics, one is mostly interested in the angular moments
of the radiative intensity that naturally arise in calculating the contridbution of radiation to the total
energy of the fluid (plasma). Hence, it is customary to integrate (3.9) over the sphere S to derive the
following PDE for incident radiation (2.4):

1

c

∂

∂t
G+∇x · F = kν

(

b(Tm, ν)−G
)

, (t, x, ν) ∈ DT × Λ. (3.10)

with b(T, ν) = 4πB(T, ν).
However, the PDE (3.10) is not closed and one needs a closure for the flux F in terms of the incident

radiation G. It is common practice in astrophysics to use the so-called diffusion approximation of the
flux [3]:

F (t, x, ν) = − 1

3kν
∇G(t, x, ν), (3.11)

resulting in the following PDE,

1

c

∂

∂t
G− 1

3kν
∆G = kν

(

b(Tm, ν)−G
)

, (t, x, ν) ∈ DT × Λ. (3.12)

Defining the Knudsen number K = Lkν (with L being a characteristic length scale), it is well known that
the diffusion approximation is justified in the limit of K → ∞.
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kν Nint Nsb Ntb K − 1 d̃ λ ET Training Time

1 16384 12288 12288 4 40 0.1 0.0028 3 hr 25 min

10 16384 12288 12288 4 40 0.1 0.012 2 hr 15 min

Table 5: Results for polychromatic time-dependent radiative transfer in three space dimensions.

Although the PDE (3.12) is simpler than the full radiative transfer equation (1.1), efficient numerical
approximation of (3.12) is still quite challenging as the incident radiation is a function of 5 variables. As
it happens, PINNs provide an efficient method for approximating high-dimensional parabolic equations
such as (3.12), see [27] section 3 for details.

However, by assuming radial symmetry and with the flux approximation given in (3.11), the differential
equation (3.12) admits an analytical solution satisfying the initial and boundary conditions

G(0, r, ν) = b(Tm, ν),

G(t, r → ∞, ν) = b(Tm, ν),

G(0, Ri, ν) = b(Ts, ν).

(3.13)

The exact solution for (3.12) then reads [11],

G(t, r, ν) =b(Tm, ν) +
Ri

r

(

b(Ts, ν)− b(Tm, ν)
)

F (t, r, ν),

F (t, r, ν) =
1

2
exp (−3kν(r −R))

{

Erfc

(

√

3kν
4ct

(r −R)−
√

kνct

)

+ Erfc

(

√

3kν
4ct

(r −R) +
√

kνct

)

}

.

(3.14)
For this numerical experiment, we will approximate the full time-dependent radiative transfer equa-

tions (3.9) with the PINNs algorithm 2.1. To this end, we consider (3.9) in the spatial domain D enclosed
between two spheres with radii Ri = 2 and Re = 4. Moreover, we introduce an auxiliary temporal vari-
able τ = ct to rescale time to [0, 1], whereas the energy group ranges between 1015 and 1018. We set
Ts = 150eV and Tm = 120eV .

The PINNs algorithm 2.1 employs Sobol points in the interior, spatial and temporal boundary training
sets and we set Nint = 16384, Nsb = Ntb = 12228. Moreover, we solve this problem for two different
values of the (constant in frequency) absorption coefficient i.e kν = 1 and kν = 10, resulting in two
different Knudsen numbers of K = 2 and K = 20, respectively. Given the challenging nature of this
problem, we choose slightly different ranges of the hyperparameters, presented in tabel 1 for ensemble
training and also use 20 retrainings, corresponding to different random starting values for the weights
and biases in the training procedure. The resulting best performing configurations are reported in table
5. We observe from this table that PINNs provide a very low training error of 2.8× 10−3, for the K = 2
case. This training error is comparable to the training errors for the previous two examples. The training
error increases by a factor of 4 for the K = 20 case, but still remains relatively low.

As we do not have exact analytical formulas for the full radiative intensity, it is not possible to compute
generalization errors. However to ascertain the quality of the solution, we compare with the exact solution
(3.14) of the diffusion equation (3.12) for the incident radiation. This comparison is shown as contour
plots for the incident radiation in the (r, ν)-plane (with r denoting the radial direction) in figure 5 as
well as one-dimensional cross-sections for different values of the radius r in figure 6. As seen from both
these figures, there is good agreement between the incident radiation, computed by a Gauss quadrature
of the PINN approximation to the radiative intensity in (3.9), and the analytical solution of the diffusion
approximation (3.12) for the K = 20 case. This is not unexpected as the diffusion approximation is
accurate for large Knudsen numbers. On the other hand, there is a significant difference between the
the incident radiation, computed by a Gauss quadrature of the PINN approximation to the radiative
intensity in (3.9), and the analytical solution of the diffusion approximation (3.12) for the K = 2 case.
This follows from the fact that the diffusion approximation will provide a poor approximation of (3.9)
for low Knudsen numbers. On the other hand, given the relatively low training error as well as the error
estimate (A.3), coupled with the results of the previous numerical experiments, we argue that the PINN
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(a) Exact solution of (3.12) for kν = 1 (b) PINN for kν = 1

(c) Exact solution of (3.12) for kν = 10 (d) PINN at τ = 1 for kν = 10

Figure 5: Comparison of incident radiationn with respect to the exact solution of the diffusion approximation (3.12) and
PINN approximation of the full radiative transfer equation (3.9) at rescaled time τ = 1 for two different values of the
absorption coefficient kν = 1, 10

provides a much more accurate approximation to the underlying radiative intensity (and its moments)
than the diffusion approximation will do, atleast for low to moderate Knudsen numbers. Hence, PINNs
provide a viable and accurate method for competing radiative transfer in media with different optical
properties. Moreover, the runtime for even this very complicated problem was reasonably small, ranging
from two to three and half hours on a single GPU.

4 PINNs for the Inverse problem for radiative transfer

One of the most notable features of PINNs is their ability to approximate solutions of inverse problems,
with the same accuracy and computational cost as that of forward problems for PDEs. Moreover, the
code for inverse problems ends up being a very minor modification to the code for forward problems,
which makes PINNs extremely attractive for various applications [37, 38] and references therein.

Here, we focus on the following inverse problem for radiative transfer. We consider the full time-
dependent version on the radiative transfer equation (1.1), with initial and boundary conditions (2.3).
The inverse problem is to compute unknown absorption coefficients k, scattering coefficients σ, scattering
kernel Φ or emission term f , given measurements of either the full radiative intensity u or its angular
moments, such as the incident radiation G or heat flux F (2.4). For simplicity of exposition, we choose
the following concrete inverse problem;
Given measurements of the incident radiation G(t, x, ν), find the unknown absorption coefficient k =
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(a) Solution of (3.9) and (3.10) for kν = 1 (b) Solution of (3.9) and (3.10) for kν = 10

Figure 6: Comparison of exact solutions of the diffusion approximation (3.12) with the PINN approximation of the full
radiative transfer equation (3.9) for two different values of the absorption coefficient kν = 1, 10 at different radial locations
and at rescaled time τ = 1

k(x, ν) and the resulting radiative intensity u(t, x, ω, ν) which solves the radiative transfer equation (1.1)
with initial and boundary conditions (2.3).

Other combinations of the measured and unknown quantities can be similarly considered. Clearly this
inverse problem is ill-posed as multiple absorption coefficients might lead to the same incident radiation.
However, we will aim to obtain one of the possible absorption coefficients, consistent with the measured
incident radiation.

To this end, we slightly modify the PINNs algorithm as described below,

4.1 PINNs for the inverse problem

Following [37, 28], we seek to find the deep neural networks kθk : D×Λ 7→ R+ and uθu : DT ×S×Λ 7→ R,
with the concatenated parameter vector θ = {θk, θu} ∈ Θ, approximating the absorption coefficient and
radiative intensity, respectively.

In addition to the interior training set Sint, spatial boundary training set Ssb and temporal boundary
training set Stb, defined in section 2, we also required the so-called data training set Sd = {ydj }, for

1 6 j 6 Nd, and ydj ∈ DT × Λ.
The residuals for initial and boundary conditions are given by Rtb,Rsb (2.12). We slightly modify the

PDE residual (2.11) to,

Rint,θ :=
1

c
∂tuθu + ω · ∇xuθu + kθkuθu + σ

(

uθu − 1

sd

NS
∑

i=1

wS
i Φ(ω, ω

S
i , ν, ν

S
i )uθu(t, x, ω

S
i , ν

S
i )

)

− f. (4.1)

We also need the data residual,

Rd,θ := G (uθu)− Ḡ(t, x, ν), ∀(t, x, ν) ∈ DT × Λ, (4.2)

with G being the incident radiation calculated from (2.4) with a Gauss quadrature approximation of the
angular integral and Ḡ being the measured incident radiation.

The resulting loss function is,

J(θ) :=

Nd
∑

j=1

wd
j |Rd,θ(y

d
j )|2 +

Nsb
∑

j=1

wsb
j |Rsb,θ(z

sb
j )|2 +

Ntb
∑

j=1

wtb
j |Rtb,θ(z

tb
j )|2 + λ

Nint
∑

j=1

wint
j |Rint,θ(z

int
j )|2 (4.3)

with the residuals Rd,Rsb,Rtb and Rint defined in (4.2), (2.12) ,(2.11), and wd, yd, wsb, zsb, wsb, zsb,
wint, zint being the quadrature weights and training points, corresponding to the data, boundary and
interior training sets.

15



The PINNs algorithm for the inverse problem is summarized as,

Algorithm 4.1. Finding physics informed neural network (PINNs) to approximate the absorption co-
efficient k and radiative intensity u solving the radiative transfer equation (1.1), and consistent with
measured data Ḡ for the incident radiation

Inputs: Underlying domain DT × S × Λ, coefficients and data for the radiative transfer equation (1.1),
measured incident radiation G, quadrature points and weights for underlying quadrature rules, non-
convex gradient based optimization algorithms.

Goal: Find PINN (k∗, u∗) =
(

kθ∗

k
, uθ∗

u

)

for approximating the inverse problem for radiative transfer

Step 1: Choose the training sets as described in section 2.2 and in this subsection.

Step 2: For an initial value of the weight vector θ ∈ Θ, evaluate the neural networks uθu
, kθk

(2.7), the
PDE residual (4.1), the data residual (4.2), the boundary residuals (2.12), the loss function (4.3)
and its gradients to initialize the underlying optimization algorithm.

Step 3: Run the optimization algorithm till an approximate local minimum θ∗ of (4.3) is reached. The map
u∗ = uθ∗

u
is the desired PINN for approximating the solution u of the radiative transfer equation

and the map k∗ = kθ∗

k
is the corresponding absorption coefficient.

Nint Nd K − 1 d̃ λ ET ||u− u∗||L2 ||k − k∗||L2 ||G−G∗||L2 Training Time

16384 4096 8 20 1.0 0.00094 0.65 % 2.8 % 0.073% 1 hr 44 min

Table 6: Results for the inverse problem for radiative transfer.

4.2 A Numerical Experiment.

The monochromatic stationary version of the radiative transfer equation (1.1) in three space dimensions,
is used in this numerical experiment. The spatial domain is the unit cube D = [0, 1]3, with scattering
coefficient σ = 0.5, scattering kernel Φ ≡ 1. The source term f and boundary term ub are generated
using the following synthetic absorption coefficient and exact solution,

k(x) =

3
∏

i=1

x2
i , u(x, ω) =

3

16π
(1 + (ω · ω′)2)

3
∏

i=1

xi(xi − 1), n′ =
( 1√

3
,
1√
3
,
1√
3

)T

(4.4)

The measured incident radiation Ḡ in (4.2) is calculated from the radiative intensity u above by using
the formula (2.4).

For this numerical experiment, we also impose boundary conditions on the neural network approx-
imating the absorption coefficient kθk to approximately match the values of k, defined in (4.4) on the
boundary of D, leading to an additional term in (4.3). Finally, in order to ensure uniqueness of the
absorption coefficient, we include in the loss function, the so-called Tikhonov regularization:

JT (θ) = λk||∇kθ||22, λk = 0.001. (4.5)

We use Sobol points for the interior training points and uniformly distributed random points are used
as data training points, with Nint = 16384, Nd = 4096. The resulting best performing hyperparameter
configuration after ensemble training is presented in Table 6.

In figure 7 we plot the incident radiation G and the absorption coefficient k, along the diagonal
of the unit cube, computed with the PINNs algorithm 4.1. As observed from this figure, the incident
radiation is almost identical to the measured data Ḡ. This is further verified from table 6, from which
we observe a very low L2-error for the incident radiation. On the other hand, the absorption coefficient
agrees reasonably well with the ground truth in (4.4), with an error of less than 3%. Also the radiative
intensity is approximated to very high accuracy, with a generalization error below 1%. This is even more
impressive if one consider that the problem is solved with a computational time of approximately 100
minutes.
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(a) Incident radiation G (b) Absorption Coefficient k

Figure 7: Results for the PINNs algorithm 4.1 for the inverse problem for radiative transfer. The PINNs approximation
to the incident radiation and absorption coefficient are plotted along the diagonal of the unit cube and compared with the
measured data Ḡ and ground truth absorption coefficient k given by (4.4).

5 Discussion

Accurate numerical approximation of the radiative transfer equations (1.1) is considered very challenging
as the underlying problem is high-dimensional, with 7-dimensions in the most general case. Moreover,
the presence of different physical effects such as emission, absorption and scattering as well as varying
optical parameters in the surrounding medium further complicates design of efficient numerical algo-
rithms. As discussed in the introduction, existing numerical methods can suffer from the so-called curse
of dimensionality and require very large amount of computational resources to achieve desired accuracy.

Hence, there is a need for designing algorithms for simulating radiative transfer, that are easy to
implement and fast (in terms of computational run time) while still being accurate. We proposed such
an algorithm in this article. Our algorithm 2.1 is based on physics informed neural networks (PINNs)
i.e. deep neural networks for approximating the radiative intensity in (1.1). The deep neural network
is trained by using a gradient descent method to minimize a loss function (2.15), that consists of the
PDE residual, resulting from the neural network being plugged into the radiative transfer equation (1.1).
Mismatches with respect to the initial and boundary conditions also contribute to the loss function. The
residuals are collocated at training points, which correspond to quadrature points with respect to an
underlying quadrature rule. We chose Sobol low-discrepancy sequences as training points in order to
alleviate the curse of dimensionality.

The resulting algorithm is extremely simple to code within standard machine learning frameworks
such as TensorFlow and Pytorch. We presented a suite of numerical experiments ranging from the
simplest monchromatic stationary radiative transfer in one space dimension (3.1) to the most general
time-dependent polychromatic radiative transfer in three space dimensions. PINNs performed very well
on all the numerical experiments, leading to low errors with small run (training) times. In particular, the
results were qualitatively and quantitatively comparable to published results, but possibly at a fraction
of the cost. The experimental results were supplemented with rigorous error estimates that bounded
the generalization error (2.16) in terms of computable training errors (2.17) and number of quadrature
points, independent of the underlying dimension, see bounds (A.3) for details. The predictions of the
error estimates were validated by the experiments.

Hence, we claim that the PINNs algorithm 2.1 is a general purpose, simple to implement, fast and
accurate simulator for radiative transfer. Moreover, we also presented a (very) slighly modified version
of the PINN algorithm to efficiently simulate a class of inverse problems for radiative transfer. In this
problem, the objective is to compute the unknown absorption coefficient from measurements of the
incident radiation. To this end, we proposed the deep neural network based algorithm 4.1, which added
a data fidelity term (4.2) to the underlying loss function (4.3). This algorithm was also found to be both
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fast and accurate in numerical experiments. Thus, we provide novel machine learning algorithms which
are fast, easy to implement and accurate for efficiently simulating different aspects of radiative transfer.

This article should be considered as a first step in adapting machine learning algorithms for simulating
radiative transfer. The proposed algorithm lends itself readily to be extended in the following directions,

• The quantities of interest in many applications of radiative transfer, particularly in astrophysics, are
angular moments such as the incident radiationG and heat flux F , defined in (2.4) as these quantities
define the contribution of radiation to the total energy. Thus, in radiation hydrodynamics, one often
resorts to using moment models. However, these moment models require closure relations, which
might either be expensive to compute and/or inaccurate (see section 3.5 for a simple diffusion based
closure). Given the computational speed of PINNs, one can readily employ algorithm 2.1 as the
radiation module in a hydrodynamics code, with angular moments and the resulting energy being
computed from the neural network approximation of the radiative intensity. Another option would
be to leverage the ability of PINNs to directly perform hydrodynamic simulations (see [38, 27]) and
have a full PINN simulation of radiation hydrodynamics. Both approaches should be developed
and tested.

• We covered the inverse problem for radiative transfer briefly in section 4. Algorithm 4.1 can be
readily extended to many other inverse problems involving radiative transfer, for instance finding
emission and scattering coefficients from measurements of incident radiation and heat fluxes at a
few points. A careful exposition and analysis of the resulting algorithms and their application in
practical contexts will be the basis of future papers.
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A Estimates on the generalization error for the radiative trans-

fer equation (1.1)

In order to derive an error estimate for the PINNs algorithm, we need to make some assumptions on the
scattering kernel Φ in (1.1). We follow standard practice and assume that it is symmetric Φ(ω, ω′, ν, ν′) =
Φ(ω′, ω, ν′, ν). Moreover, the following function,

Ψ(ω, ν) =

∫

S×Λ

Φ(ω, ω′, ν, ν′)dω′dν′, (A.1)

is essentially bounded i.e. Ψ ∈ L∞(S × Λ). We have the following estimate on the generalization error
(2.16),

Lemma A.1. Let u ∈ L2(D) be the unique weak solution of the radiative transfer equation (1.1), with
absorption coefficient 0 6 k ∈ L∞(D × Λ), scattering coefficient 0 6 σ ∈ L∞(D × Λ) and a symmetric
scattering kernel Φ ∈ Cℓ(S × Λ× S × Λ), for some ℓ > 1, such that the function Ψ (defined in (A.1)) is
in L∞(S × Λ). Let u∗ = uθ∗ ∈ Cℓ(D) be the output of the PINNs algorithm 2.1 for approximating the
radiative transfer equation (1.1), such that

max{VHK(u∗), VHK (Rint,θ∗)} < +∞, (A.2)

with VHK being the so-called Hardy-Krause variation (see [2, 29] for the precise definition). We also
assume that the initial data u0 and boundary data ub are of bounded Hardy-Krause variation. Then,
under the assumption that Sobol points are used as the training points Sint, Ssb, Stb in algorithm 2.1 and
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Guass-quadrature rule of order s = s(ℓ) is used in approximating the scattering kernel in the residual
(2.11), we have the following estimate on the generalization error,

(EG)
2
6 C

(

(Etb
T )

2 + c(Esb
T )2 + c(Eint

T )2
)

+ CC∗

(

(log(Ntb))
2d

Ntb

+ c
(log(Nsb))

2d

Nsb

+ c
(log(Nint))

2d+1

Nint

+ cN−2s
S

)

(A.3)

with constants defined as,

C = T + cĈT 2ecĈT , Ĉ = 2 +
2(‖σ‖L∞ + ‖Ψ‖L∞)

sd

C∗ = max
{

VHK

(

(R∗
tb)

2
)

, VHK

(

(R∗
sb)

2
)

, VHK

(

(R∗
int)

2
)

, C
}

C = C (|D|, ‖Φ‖Cℓ , ‖u∗‖Cℓ)

(A.4)

Proof. We drop the θ∗ dependence in the residuals (2.11), (2.12), for notational convenience and denote
the residuals as R∗

int,R
∗
sb,R

∗
tb. Define,

E(u∗,Φ) :=

NS
∑

i=1

wS
i Φ(ω, ω

S
i , ν, ν

S
i )u

∗(t, x, ωS
i , ν

S
i )−

∫

Λ

∫

S

Φ(ω, ω′, ν, ν′)u∗(t, x, ω′, ν′)dω′dν′. (A.5)

It is straightforward to derive from the radiative transfer equation (1.1) and the definition of residuals
(2.11), (2.12), that the error û = u∗ − u, satisfies the following integro-differential equation,

1

c
ût + ω · ∇xû = −(k + σ)û+

σ

sd

∫

Λ

∫

S

Φ(ω, ω′, ν, ν′)û(t, x, ω′, ν′)dω′dν′

+ R
∗
int + E(u∗,Φ).

û(0, x, ω, ν) = R
∗
tb, (x, ω, ν) ∈ D × S × Λ,

û(t, x, ω, ν) = R
∗
sb, (t, x, ω, ν) ∈ Γ− × Λ.

(A.6)

Multiplying û on both sides of the first equation in (A.6), we obtain,

1

2c

d(û2)

dt
+ ω · ∇x(

û2

2
) = −(k + σ)û2 +

σ

sd

∫

Λ

∫

S

Φ(ω, ω′, ν, ν′)û(t, x, ω′, ν′)û(t, x, ω, ν)dω′dν′

+ R
∗
intû+ E(u∗,Φ)û

(A.7)

Integrating the above over D × S × ν, integrating by parts and using the Cauchy’s inequality and the
fact that k, σ > 0, we obtain for any t ∈ (0, T ],

1

2c

d

dt

∫

D×S×Λ

û2(t, x, ω, ν)dxdωdν 6

∫

D×S×Λ

û2(t, x, ω, ν)dxdωdν −
∫

(∂D×S×Λ)−

(ω · n(x)) û
2(t, x, ω, ν)

2
ds(x)dωdν

+

∫

D×S×Λ

σ

sd

∫

Λ

∫

S

Φ(ω, ω′, ν, ν′)û(t, x, ω′, ν′)û(t, x, ω, ν)dω′dν′dνdωdx,

+

∫

D×S×Λ

(R∗
int(t, x, ω, ν))

2

2
dνdωdx+

∫

D×S×Λ

(E(u∗,Φ)(t, x, ω, ν))2

2
dνdωdx

(A.8)
Here ds(x) denotes the surface measure on ∂D and we define

(∂D × S × Λ)− := {(x, ω, ν) ∈ ∂D × S × Λ : ω · n(x) 6 0},

with n(x) being the unit outward normal at x ∈ ∂D.
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We fix any T̄ ∈ (0, T ] and integrate (A.8) over (0, T̄ ) and estimate the result to obtain,

∫

D×S×Λ

û2(T̄ , x, ω, ν)dxdωdν 6

∫

D×S×Λ

û2(0, x, ω, ν)dxdωdν + 2c

T̄
∫

0

∫

D×S×Λ

û2(t, x, ω, ν)dtdxdωdν

+ c

∫

Γ−

|ω · n|û2(t, x, ω, ν)dtds(x)dωdν + I + c

∫

D

(R∗
int)

2dz + c

∫

D

(E(u∗,Φ))2dz.

(A.9)
Here, the term I in (A.9), is defined and estimated by successive applications of Cauchy-Schwatrz in-
equality as,

I = 2c

T̄
∫

0

∫

D×S×Λ

σ

sd

∫

Λ

∫

S

Φ(ω, ω′, ν, ν′)û(t, x, ω′, ν′)û(t, x, ω, ν)dω′dν′dνdωdxdt,

6
2c(‖σ‖L∞ + ‖Ψ‖L∞)

sd

T̄
∫

0

∫

D×S×Λ

û2(t, x, ω, ν)dtdxdωdν.

By identifying constant Ĉ from (A.4), we obtain from (A.9) and (A.6) that,
∫

D×S×Λ

û2(T̄ , x, ω, ν)dxdωdν 6

∫

D×S×Λ

(R∗
tb)

2dxdωdν + c

∫

Γ−

(R∗
sb)

2dtds(x)dωdν

+ c

∫

D

(R∗
int)

2dz + c

∫

D

(E(u∗,Φ))2dz

+ cĈ

T̄
∫

0

∫

D×S×Λ

û2(t, x, ω, ν)dtdxdωdν.

(A.10)

Applying the integral form of Grönwall’s inequality to (A.10), we obtain for any 0 < T̄ 6 T ,

∫

D×S×Λ

û2(T̄ , x, ω, ν)dxdωdν 6

(

1 + cĈT̄ ecĈT̄
)







∫

D×S×Λ

(R∗
tb)

2dxdωdν + c

∫

Γ−

(R∗
sb)

2dtds(x)dωdν







+
(

1 + cĈT̄ ecĈT̄
)



c

∫

D

(R∗
int)

2dz + c

∫

D

(E(u∗,Φ))2dz





(A.11)
Integrating (A.11) over (0, T ) yields,

(EG)
2 :=

∫

D

û2(t, x, ω, ν)dz 6

(

T + cĈT 2ecĈT
)







∫

D×S×Λ

(R∗
tb)

2dxdωdν + c

∫

Γ−

(R∗
sb)

2dtds(x)dωdν







+
(

T + cĈT 2ecĈT
)



c

∫

D

(R∗
int)

2dz + c

∫

D

(E(u∗,Φ))2dz





(A.12)
As the training points in Stb are the Sobol quadrature points, we realize that the training error (Etb

T )
2

(2.17) is the quasi-Monte Carlo quadrature for the first integral in (A.12). Hence by the well-known
Koksma-Hlawka inequality [2], we obtain the following estimate,

∫

D×S×Λ

(R∗
tb)

2dxdωdν 6 (Etb
T )

2 + VHK

(

(R∗
tb)

2
) (log(Ntb))

2d

Ntb

. (A.13)
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By a similar argument, we can estimate,

∫

Γ−

(R∗
sb)

2dtds(x)dωdν 6 (Esb
T )2 + VHK

(

(R∗
sb)

2
) (log(Nsb))

2d

Nsb

,

∫

D

(R∗
int)

2dz 6 (Eint
T )2 + VHK

(

(R∗
int)

2
) (log(Nint))

2d+1

Nint

,

(A.14)

As ωS
i , ν

S
i , for 1 6 i 6 NS are Gauss-quadrature points, we follow [42] and readily estimate E defined in

(A.5) by the error for an s-th order accurate Gauss quadrature rule with s = s(ℓ) as,

∫

D

(E(u∗,Φ))2dz 6 CN−2s
S , (A.15)

with constant C defined in (A.4) By plugging in the estimates (A.13), (A.14), (A.15) in (A.12) and
identifying constants, we derive the desired estimate (A.3) on the generalization error (2.16).

B Estimates on the generalization error in the steady case

The steady-state (time-independent) version of the radiative transfer equation (1.1) is obtained by letting
the speed of light c → ∞ and resulting in,

(k + σ)u = −ω · ∇xu+
σ

sd

∫

Λ

∫

S

Φ(ω, ω′, ν, ν′)u(x, ω′, ν′)dω′dν′ + f, (B.1)

with all the coefficients and sources as defined before. We also impose the inflow boundary condition,

u(x, ω, ν) = ub(x, ω, ν), (t, x, ω, ν) ∈ Γs
, (B.2)

with inflow boundary defined by,

Γs
− = {(x, ω, ν) ∈ ∂D × S × Λ : ω · n(x) < 0} (B.3)

with n(x) denoting the unit outward normal at any point x ∈ ∂D.
The PINNs algorithm 2.1 can be readily adpated to this case by simply (formally) neglecting the

temporal dependence in the residuals (2.11), (2.12) and loss functions and the underlying definitions
of neural networks. We omit detailing this procedure here. Our objective is to bound the resulting
generalization error,

E
s
G = E

s
G(θ

∗) :=





∫

D×S×Λ

|u(x, ω, ν)− u∗(x, ω, ν)|2dz





1
2

, (B.4)

with dz = dxdωdν denoting the underlying volume measure. As in lemma A.1, we will bound the
generalization error in terms of the training errors,

E
sb
T :=





Nsb
∑

j=1

wsb
j |Rsb,θ∗(zsbj )|2





1
2

, E
int
T :=





Nint
∑

j=1

wint
j |Rint,θ∗(zintj )|2





1
2

(B.5)

Here, zintj and zsbj are the interior and spatial boundary training points.
We have the following estimate on the generalization error,
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Lemma B.1. Let u ∈ L2(D×S×Λ) be the unique weak solution of the radiative transfer equation (B.1),
with absorption coefficient 0 < kmin 6 k(x, ν) 6 kmax < ∞, scattering coefficient 0 < σmin 6 σ(x, ν) 6
σmax < ∞, for almost every x ∈ D, ν ∈ Λ and a symmetric scattering kernel Φ ∈ Cℓ(S ×Λ×S ×Λ), for
some ℓ > 1, such that the function Ψ (defined in (A.1)) is in L∞(S × Λ). We further assume that the
absorption and scattering coefficients are related in the following manner, there exists a κ > 0, such that

kmin + σmin − σmax + ‖Ψ‖L∞

sd
> κ (B.6)

Let u∗ = uθ∗ ∈ Cℓ(D×S×Λ) be the output of the PINNs algorithm 2.1 for approximating the stationary
radiative transfer equation (B.1), such that

max{VHK(u∗), VHK (Rint,θ∗)} < +∞, (B.7)

with VHK being the Hardy-Krause variation. We also assume that the boundary data ub is of bounded
Hardy-Krause variation. Then, under the assumption that Sobol points are used as the training points
Sint, Ssb in algorithm 2.1 and Guass-quadrature rule of order s = s(ℓ) is used in approximating the
scattering kernel in the residual (2.11), we have the following estimate on the generalization error,

(Es
G)

2
6 C

(

(Esb
T )2 + (Eint

T )2 +
(log(Nsb))

2d−1

Nsb

+
(log(Nint))

2d

Nint

+N−2s
S

)

(B.8)

with constants defined as,

C = max

{

2

κ
,
2

κ
VHK

(

(R∗
sb)

2
)

,
2Cε

κ

(

(R∗
int)

2
)

,
2Cε

κ
CN−2s

S

}

, (B.9)

where C is defined in (A.4). Here, Cε is a constant that depends on κ and is defined in (B.14).

Proof. We drop the θ∗ dependence in the residuals (2.11), (2.12), for notational convenience and denote
the residuals as R∗

int,R
∗
sb. Define,

Es(u
∗,Φ) :=

NS
∑

i=1

wS
i Φ(ω, ω

S
i , ν, ν

S
i )u

∗(x, ωS
i , ν

S
i )−

∫

Λ

∫

S

Φ(ω, ω′, ν, ν′)u∗(x, ω′, ν′)dω′dν′. (B.10)

It is straightforward to derive from the radiative transfer equation (B.1) and the definition of residuals
(2.11), (2.12), that the error û = u∗ − u, satisfies the following integro-differential equation,

(k + σ)û = −ω · ∇xû+
σ

sd

∫

Λ

∫

S

Φ(ω, ω′, ν, ν′)û(t, x, ω′, ν′)dω′dν′ + R
∗
int + Es(u

∗,Φ),

û(t, x, ω, ν) = R
∗
sb, (x, ω, ν) ∈ Γs

−

(B.11)

Multiplying û on both sides of the first equation in (B.11), we obtain,

(k + σ)û2 = −ω · ∇x(
û2

2
) +

σ

sd

∫

Λ

∫

S

Φ(ω, ω′, ν, ν′)û(t, x, ω′, ν′)û(t, x, ω, ν)dω′dν′

+ R
∗
intû+ Es(u

∗,Φ)û

(B.12)

Integrating the above over D × S × ν, integrating by parts, using the assumed lower and upper bounds
on k, σ, we obtain,

(kmin + σmin)

∫

D×S×ν

û2dz 6

∫

Γs

−

(R∗
sb)

2ds(x)dωdν + I +

∫

D×S×ν

(R∗
intû+ Es(u

∗,Φ)û)dz,
(B.13)
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with term I defined and estimated by,

I =

∫

D×S×Λ

σ

sd

∫

Λ

∫

S

Φ(ω, ω′, ν, ν′)û(x, ω′, ν′)û(x, ω, ν)dω′dν′dνdωdx,

6
σmax + ‖Ψ‖L∞

sd

∫

D×S×Λ

û2(x, ω, ν)dz.

From the assumption (B.6), there exists an ε > 0 such that kmin + σmin − σmax+‖Ψ‖L∞

sd
− 2ε > κ

2 , we use
the ε-version of Cauchy’s inequality,

ab 6 εa2 + Cεb
2, (B.14)

to further estimate (B.13) as,

∫

D×S×Λ

û2dz 6
2

κ

∫

Γs

−

(R∗
sb)

2ds(x)dωdν +
2Cε

κ





∫

D×S×ν

(R∗
int)

2 + (Es(u
∗,Φ))2dz



 (B.15)

By using the estimates (A.14) and (A.15) and identifying constants, we obtain the desired bound (B.8)
on the generalization error (B.4).

As for the time-dependent case, the bound (B.8) should be considered in the sense of if the PINN is
trained well, it generalizes well. Moreover, the bound, and consequently, the PINN does not suffer from
a curse of dimensionality by the same argument as in the time-dependent case. Infact, the logarithmic
corrections to the linear decay of the rhs in (B.8) can be ignored at an even smaller number of training
points.

The assumption (B.6) plays a key role in the derivation of the bound (B.8). A careful inspection of
this assumption reveals that the scattering coefficient is not allowed to vary over a large range, unless
there is enough absorption in the medium. However, there is no restriction on the range of scales over
which the absorption coefficient can vary.
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