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ADAPTIVE APPROXIMATION OF SHAPES
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Abstract. We consider scalar-valued shape functionals on sets of shapes which are small per-
turbations of a reference shape. The shapes are described by parameterizations and their closeness
is induced by a Hilbert space structure on the parameter domain. We justify a heuristic for find-
ing the best low-dimensional parameter subspace with respect to uniformly approximating a given
shape functional. We also propose an adaptive algorithm for achieving a prescribed accuracy when
representing the shape functional with a small number of shape parameters.
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1. Shape Model Reduction for Shape Functionals.

1.1. Shape functionals. Write A for a set of admissible domains, for instance,

A :=
{
Ω ⊂ D : ∂Ω is of class C1,1

}
,

where D ⊂ R
d, d ∈ N, is a simple bounded domain, the so-called hold-all domain.

A shape functional J is a real-valued mapping J : A → R [9, Section 2.5]. In this
work it represents the principal quantity of interest. A simple example is the domain
integral functional

Jf (Ω) :=

∫

Ω

f(x) dx for fixed f ∈ L1(D) .(1.1)

More complicated examples involve quantities depending on the solution of a bound-
ary value problem on Ω and those play a central role in PDE-constrained shape
optimization [9, Section 2.6], but in this note we keep an exclusive focus on the simple
choice (1.1).

1.2. Small shape perturbations. We consider the shape functional J on “slight
perturbations” of a reference domain Ω0 ∈ A. To quantify the notion of a “slight per-
turbation”, we assume that A is endowed with a parameterization, that is, there is a
mapping Π : U ⊂ X → A from a subset U of a vector space X onto A: A = Π(U).
We endow X with a norm ‖·‖, choose the parameterization Π such that Π(0) = Ω0

and, for “small” ǫ > 0, define the set of ǫ-perturbations of Ω0 as

Aǫ := {Ω = Π(v) : ‖v‖ < ǫ} ⊂ A .(1.2)

We give two examples of commonly used parameterizations assuming sufficient
smoothness of ∂Ω0:

(i) Parameterization by displacement vectorfield1: For X =
(
C1

0 (D
)d

we can
define

Π(ξ) := {x ∈ D : x = x0 + ξ(x0), x0 ∈ Ω0)} , ξ ∈ X .(1.3)

If ‖ξ‖C1(D) is small, this will yield a valid Π(ξ) ∈ A.

∗MNS, EPF Lausanne, Switzerland, annalisa.buffa@epfl.ch
†SAM, ETH Zurich, hiptmair@sam.math.ethz.ch
‡SAM, ETH Zurich, panchal@sam.math.ethz.ch
1We write Ck

0
for spaces of k-times continuously differentiable functions with compact support.

A subscript ’per’ indicates that the functions are assumed to be periodic
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(ii) Parameterization by normal displacement [5, (14)]: Writing n : ∂Ω0 → R
d

for the exterior unit normal vectorfield of Ω0, we set X := C1(∂Ω), and define
Π(ξ), ξ ∈ X , as the domain with boundary

∂Π(ξ) := {x ∈ R
d : x = x0 + ξ(x0)n(x0), x0 ∈ ∂Ω0} .(1.4)

This is meaningful, Π(ξ) ∈ A, for sufficiently small ‖ξ‖C1(∂Ω).

Other options are the description of ∂Ω by closed (spline/trigonometric) curves or
deformations governed by velocity fields [1, Chapter 4].

In any case, parameterization takes us to the more conventional setting of studying
the functional

Ĵ := J ◦Π : U ⊂ X → R ,(1.5)

defined on a subset U of a normed vector space X and, in light of (1.2), that subset
specifically is an ǫ-ball around 0 in X .

1.3. Optimal shape representation. Our main concern is an efficient repre-
sentation of domains in Aǫ := {Ω = Π(v) : ‖v‖ < ǫ} as regards the evaluation of a
shape functional J : Given a dimension bound n ∈ N we would like to find

Xn := argmin
dim Wn=n

Wn⊂X

sup
v∈X

‖v‖<ǫ

inf
w∈Wn
‖w‖<ǫ

|Ĵ(v)− Ĵ(w)| ,(1.6)

where “Wn ⊂ X” should be read as “Wn is a subspace of X”. In words, among the
n-dimensional subspaces of X we seek those that yield the best approximation of J
inside the ǫ-ball of X .

In order to render the optimization problem (1.6) tractable, we first need to resort
to more structure on X .

Assumption 1.1. The space (X, ‖·‖) is a Hilbert space with inner product (·, ·)X .

Secondly, we relax the optimization problem and seek – existence taken for granted –

Xn := argmin
dim Wn=n

Wn⊂X

sup
v∈X

‖v‖<ǫ

|Ĵ(v)− Ĵ(Pnv)| ,(1.7)

where Pn : X → Wn designates the orthogonal projection onto Wn. It is important
that the projection is orthogonal, because this ensures Pnv ∈ Aǫ.

Remark 1.2. Note the importance of the constraint ‖w‖ ≤ ǫ in (1.6). If it was
absent, simple scaling arguments reveal that we could simply choose one-dimensional
spaces Xn in many cases: consider homogeneous functionals Ĵ .

Remark 1.3. Obviously, the “natural” spaces of Ck-functions for parameteriza-
tion are not compatible with Assumption 1.1. We have to abandon them for the sake
of tractability of the problem.

Remark 1.4. Inevitably, in computations the dimension of X will be finite: N :=
dimX < ∞. Then solving (1.7) amounts to finding a maximally efficient reduced
model for the representation of a given shape functional on the set Aǫ of perturbed
domains.
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2. Low-Rank Approximation of Quadratic Functionals. Throughout this
section we study the case that Ĵ := J ◦Π : U ⊂ X → R is the restriction of a quadratic
functional on the Hilbert space X to a subset U ⊂ X . More precisely, we study Ĵ of
the form

Ĵ(v) = 1
2a(v, v) + ℓ(v) + γ , v ∈ X ,(2.1)

with a symmetric bilinear form a : X ×X → R, a linear form ℓ : X → R, and γ ∈ R.

2.1. Finite-dimensional setting. To elucidate ideas, we consider X = R
N and

its inner product given by a symmetric positive definite (s.p.d.) matrix M ∈ R
N,N .

The quadratic functional has the representation

Ĵ(x) = 1
2x

⊤Ax+ p⊤x+ γ , x ∈ R
N .(2.2)

with a symmetric matrix A = A⊤ ∈ R
N,N , a vector p ∈ R

N , and γ ∈ R. In the
simplest case p = 0, γ = 0, that is, for a homogeneous quadratic functional, we
can find an explicit solution of the optimization problem (1.7). A key tool is the
generalized eigenvalue problem for the matrix pair (A,M):

u ∈ R
N \ {0}, λ ∈ R : Au = λMu .(2.3)

In the sequel we call generalized eigenvectors of a matrix pair (A,M) the components
of an M-orthonormal N -tuple (u1, . . . ,uN ) ∈ XN that solve (2.3) and whose associ-
ated eigenvalues λj are sorted in descending order (in modulus): |λ1| ≥ |λ2| ≥ · · · ≥
|λN |.

Remark 2.1. A priori, the matrices A and M are completely independent of
each other and represent different aspects of a mathematical model, with A linked
to the shape functional under consideration, and M to the metric chosen for shape
deformations.

Theorem 2.2. For X := R
N with norm ‖x‖2 := x⊤Mx, M ∈ R

N,N s.p.d., and
fixed dimension n < N , a solution of

Xn := argmin
dim Wn=n

Wn⊂X

sup
x∈X

‖x‖<ǫ

|x⊤Ax− (Pnx)
⊤A(Pnx)| ,(2.4)

Pn the orthogonal projection onto Wn, is the span of n generalized eigenvectors for
(A,M) belonging to n largest (in modulus) generalized eigenvalues.

Proof. By homogeneity, we need consider only the case ǫ = 1 and, after switching
to an M-orthonormal basis of R

N , without loss of generality we may even assume
M = IN (the N × N identity matrix), which means that ‖·‖ boils down to the
Euclidean norm ‖·‖2 on R

N .
Recall that for every symmetric matrix T ∈ R

N,N , T = T⊤, the diagonalization
theorem immediately confirms

sup
‖x‖2≤1

|x⊤Tx| = ‖T‖2 = sup
‖x‖2≤1

‖Tx‖2(2.5)

The singular-value decomposition (SVD) of A is given by

A =

N∑

k=1

|λk|ukv
⊤
k , vk := sgn(λk)uk ,(2.6)
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where (u1, . . . ,uN) are orthonormal eigenvectors of A with associated eigenvalues
λk, k = 1, . . . , N , sorted such that |λk| ≥ |λk+1|. The SVD provides the best rank-n
approximation of A [6, Thm. 2.4.8]

argmin{‖A−An‖2 : rank(An) ≤ n} =

n∑

k=1

|λk|ukv
⊤
k =

n∑

k=1

λkuku
⊤
k := A∗

n .(2.7)

By virtue of orthonormality of (u1, . . . ,uN ), the orthogonal projection onto span{u1, . . . ,un}
has the matrix representation

Pn ∼
n∑

k=1

uku
⊤
k ,(2.8)

which, together with (2.6), implies

(Pnx)
⊤A(Pnx) =

n∑

k=1

λk(u
⊤
k x)

2 = x⊤A∗
nx .(2.9)

Finally, from (2.7) we conclude

sup
‖x‖2≤1

|x⊤Ax− x⊤A∗
nx| = min{ sup

‖x‖2≤1

|x⊤Ax− x⊤Anx| : rank(An) ≤ n} .(2.10)

Since every expression x 7→ (Px)⊤A(Px), where P is a projection onto an n-dimensional
subspace of RN , can be written as x 7→ x⊤Anx

⊤ with a symmetric matrix An of rank
≤ n, (2.10) gives the assertion of the theorem.

A closer scrutiny of the proof reveals that the generalized eigenvalues λk of (A,M)
allow to predict the model reduction error [6, (2.4.4)]:

min
dimWn=n

Wn⊂X

sup
x∈X

‖x‖<ǫ

|x⊤Ax− (Pnx)
⊤A(Pnx)| = ǫ2λn+1 .(2.11)

Another special case is that of a purely linear functional: A = O, p 6= 0 in (2.2),

that is, Ĵ(x) = p⊤x. The obvious solution in this case is

Xn := span{q} , q := M−1p ∈ R
N ,(2.12)

because the M-orthogonal projection Pn onto that Xn is

Pn(x) = q
p⊤x

q⊤p
, x ∈ R

N ,(2.13)

and simple algebra yields

Ĵ(Pnx) = p⊤x = Ĵ(x) ∀x ∈ R
N .(2.14)

Moreover, (2.13) still holds, if only q ∈ Xn.
Now, let us discuss the generic case. Unfortunately, apparently there is no algo-

rithm to determine solutions for (1.7) for Ĵ from (2.2) with p 6= 0 and A 6= O. Our
heuristic appeals to the observation that the leading term is linear

Ĵ(x) = p⊤x+ γ +O(‖x‖2) for x → 0 .
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We conclude that we have to capture the linear term. The considerations of the
previous paragraph suggest that we make sure that q ∈ Xn a priori. Then, at worst,
we are off the optimal choice of the subspace by one dimension. In fact, demanding
q ∈ Xn already ensures

Ĵ(x)− Ĵ(Pnx) = O(‖x‖2) for x → 0 .

On the M-orthogonal complement of q we face a homogeneous quadratic functional.
Thus, we can take the cue from Theorem 2.2 and propose the following choice of Xn

in the finite-dimensional setting, for the quadratic functional J from (2.2) with q 6= 0.

Xn = span{q,u1, . . . ,un−1} ,(2.15)

where u1,u2, . . . ,uN ∈ R
N are generalized eigenvectorsa of the matrix pair

(Ã,M) and Ã ∈ R
N,N is the projected matrix

Ã :=

(
I−

qp⊤

q⊤p

)⊤

A

(
I−

qp⊤

q⊤p

)
.(2.16)

aGeneralized eigenvectors have been introduced in (2.3).

Recall that the uj are non-zero solutions of Ãu = λMu, λ ∈ R, sorted by
descending modulus of the associated generalized eigenvalues λ1, λ2, . . . , 0. For the
choice (2.15) the eigenvalues provide some information about the model reduction
error, because for Xn, n ≥ 2, according to (2.15) and Pn : RN → Xn the M-orthogonal
projection, we can bound

sup
x∈X, x⊥q

‖x‖<ǫ

∣∣∣Ĵ(x)− Ĵ(Pnx)
∣∣∣ = ǫ2|λn| ∀ǫ ≥ 0 .(2.17)

It is crucial to note the M-orthogonality to q in the supremum; the estimate does not
cover the full set of small perturbations.

2.2. Infinite-dimensional (function-space) setting. Having dealt with the
case of finite-dimensional spaces X , our insights carry over to dimX = ∞ provided
that the quadratic functional Ĵ from (2.1) has a “finite-dimensional flavor”. This
motivates the following assumption.

Assumption 2.3. We assume that the bilinear form a : X ×X → R is bounded
and compact.

Recall, that a bounded bilinear form c on a Hilbert space X is called compact,
when the bounded linear operator T : X → X defined by (Tx, y)X = c(x, y), x, y ∈ X ,
is compact [10, II.3].

For a compact symmetric bilinear form c : X × X → R Riesz-Schauder spec-
tral theory for compact operators [10, Theorem VI.3.2] gives us the existence of an
orthonormal basis (uj)j∈N of X and of a sequence of real numbers λj ∈ R, with

|λj | ≥ |λj+1| and c(uj, v) = λj (uj, v)X ∀v ∈ X .(2.18)

This is the infinite-dimensional counterpart of the generalized eigenvalue problem for
matrices as introduced in (2.3). We remind that lim

j→∞
λj = 0.
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In order to generalize the construction (2.15), we let q ∈ X be the Riesz repre-
sentative of the continuous linear form ℓ : X → R: (q, x)X = ℓ(x) for all x ∈ X . We
suppose ℓ 6= 0, equivalently q 6= 0, and introduce the projected bilinear form

ã(w, v) := a

(
w − q

(q, w)X
(q, q)X

, v − q
(q, v)X
(q, q)X

)
, w, v ∈ X ,(2.19)

which is a rank-1 modification of a and, thus, inherits compactness from a. This paves
the way for adapting the construction (2.15):

As reduced space we choose

Xn := span{q, u1, . . . , un−1} ,(2.20)

with an orthonormal basis (uj)j∈N of X provided by a sequence of eigenvectors
for the generalized eigenvalue problem

λj ∈ R, uj ∈ X \ {0} : ã(uj , v) = λj (uj, v)X ∀v ∈ X , j ∈ N ,(2.21)

sorted such that |λj | ≥ |λj+1|.

A partial error estimate analogous to (2.17) holds:

sup
x∈X, x⊥q

‖x‖<ǫ

∣∣∣Ĵ(x)− Ĵ(Pnx)
∣∣∣ = ǫ2λn ∀ǫ ≥ 0 .(2.22)

2.3. Adaptive algorithm. Shifting focus, we may also tackle the following task
of efficient representation of the quadratic functional Ĵ from (2.1) with Riesz repre-
sentative q ∈ X for the linear functional ℓ:

Given ǫ > 0, δ > 0, seek a subspace Xδ ⊂ X of finite minimal dimension such
that q ∈ Xδ and

sup
x∈X

‖x‖<ǫ

∣∣∣Ĵ(x)− Ĵ(Pδx)
∣∣∣ ≤ δ ,(2.23)

where Pδ : X → Xδ is the orthogonal projection onto Xδ.

The heuristic considerations of the previous section, in particular (2.20) and
(2.22), offer clear guidance: Choose Xδ as the span of q and all those generalized
eigenfunctions uj of (2.21) for which ǫ2|λj | > δ.

For computing the eigenfunctions belonging to the largest (in modulus) eigenval-
ues we propose an algorithm based on subspace power iterations. Remember that the
simple power iteration for a generalized eigenvalue problem (2.21) boils down to the
following recursion for j = 0, 1, 2, . . . [6, Sect. 8.2.1]:

ũ ∈ X : (ũ, v)X := ã(u(j), v) ∀v ∈ X , u(j+1) :=
ũ

‖ũ‖
,(2.24)

generating a sequence u(j) starting with some, usually random, initial guess u(0). Bar-
ring higher multiplicity of the largest (in modulus) generalized eigenvalue, it converges
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to an associated eigenvector. The iteration is terminated once the relative or absolute
change of the approximate eigenvalue

λ(j)
max :=

ã(u(j), u(j))(
u(j), u(j)

)
X

, j ∈ N0 ,(2.25)

drops below a prescribed threshold τrel > 0:

STOP, when
|λ

(j)
max − λ

(j−1)
max |

|λ
(j)
max|

< τrel .(2.26)

If an orthonormal system of eigenvectors belonging to m of the largest eigenvalues
is desired, the power iteration can be extended to subspaces [6, Sect. 8.2]. The j-th
step of that subspace version starts from m ∈ N orthonormal approximate eigenvectors

u
(j)
1 , . . . , u

(j)
m ∈ X and, as in (2.24), first computes

ũi ∈ X : (ũi, v)X := ã(u
(j)
i , v) ∀v ∈ X , i = 1, . . . ,m .(2.27)

The simple normalization step in (2.24) is replaced with the solution of a more com-
plicated projected eigenvalue problem the so-called Rayleigh-Ritz step that can be
viewed as the Ritz-Galerkin discretization of (2.21) on span{ũ1, . . . , ũm}. Based on
the Galerkin matrices

Am := [ã(ũk, ũl)]
m
k,l=1 ∈ R

m,m ,(2.28)

Mm := [(ũk, ũl)X ]
m

k,l=1 ∈ R
m,m ,(2.29)

we solve the m×m generalized matrix eigenvalue problem

W ∈ R
m,m : AmW = MmW



λ1

. . .

λm


 , W⊤MmW = Im ,(2.30)

where we assume that the real eigenvalues λ1, . . . , λm are sorted in descending order:
|λ1| ≥ |λ2| ≥ · · · ≥ |λm|. The entries of the eigenvector matrix W give the weights of
the linear combinations yielding the new approximate eigenvectors

u
(j+1)
i =

m∑

k=1

(W)k,i ũk , i = 1, . . . ,m , ũk from (2.27).(2.31)

Note that the λi ∈ R as obtained in (2.30) also provide approximations of the eigen-
values, for m = 1 we recover (2.24). Therefore they can be used as input for a
termination criterion analogous to (2.26). We also point out that it is recommended
to choose m larger than the number of eigenvectors/eigenvalues that one is actually
interested in.

Algorithm 1: Adaptive resolution of a quadratic functional

1 function adapt ( r e a l ǫ , r e a l δ ,
2 r e a l τrel , r e a l τabs ) {
3 Start with orthonormal set {q, u1, u2} ⊂ X .
4 L := 0 ;
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5 do {
6 L := L+ 1 ; // Current dimension of subspace Xδ

7 m := L+ 2 ; // Dimension of slightly enlarged subspace

8 D := O ∈ R
m,m ; // Zero matrix

9 j := 0 ;
10 set_random := f a l s e ; // Flag for random reshuffling

11 do {
12 cont_loop := f a l s e ;
13 j := j + 1 ; // step counter for subspace power iteration

14 Compute ũi ∈ X : (ũi, v)X = ã(ui, v) ∀v ∈ X , i = 1, . . . ,m ; // (2.27)

15 Compute Am := [ã(ũk, ũℓ)]
m
k,ℓ=1 ∈ R

m,m ; // (2.28)

16 Compute Mm := [(ũk, ũℓ)X ]
m

k,ℓ=1 ∈ R
m,m ; // (2.29)

17 Dold := D ;
18 Rayleigh-Ritz step: solve (2.30), set D := diag(λ1, . . . , λm) ;

19 Compute ui :=
m∑

k=1

(W)k,i ũk , i = 1, . . . ,m ; // (2.31)

20 Z := {j ∈ {1, . . . ,m} : |λj/λ1| ≤ 0.01 · δ} ;
21 i f (Z 6= ∅) {
22 i f ( ! set_random) { // random reshuffling only once

23 Replace uj , j ∈ Z, with random vectors
24 such that {u1, . . . , um} is M-orthonormal
25 set_random := t r u e ;
26 cont_loop := t r u e ;
27 }
28 else {
29 low_rank := t r u e ; // low numerical rank of a

30 L := m− ♯Z ; // detect effective rank

31 }
32 }

33 drel := max
i∈{1,...,L}

|(D)i,i − (Dold)i,i|

|(D)i,i|
; // relative change

34 dabs := max
i∈{1,...,L}

|(D)i,i − (Dold)i,i| ; // absolute change

35 }
36 while ( cont_loop o r ( ! low_rank and dabs > τabs and

drel > τrel)) ;
37 // Enlarge subspace

38 Choose (random) um+1 ∈ X , ‖um+1‖ = 1, um+1⊥ span{u1, u2, . . . , um} ;
39 }
40 while ( ! low_rank and ǫ2|(D)L,L| > δ ) ;
41 return (u1, . . . , uL) ;
42 }

Algorithm 1 calls for additional explanations. Since ã need not be definite, some
of the Ritz values may be very close to zero. In this case we reset the power iteration
by replacing the associated Ritz vectors with random directions, see line 22 of the
pseudo-code. We terminate the inner power iteration upon detecting a small relative
or absolute change of the Ritz values. We also stop the power iteration, once Ritz
values become very small despite a random reshuffling of the subspace. This hints at
Am having low (numerical) rank, and in this case we should quit the entire iteration
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and return the Ritz vectors found so far, which will span a subspace orthogonal to
the (effective) nullspace of a.

Remark 2.4. The symmetric Lanczos process [6, Sect. 10.1-10.3] could be an al-
ternative to subspace power iteration, because, when applied to the generalized eigen-
value problem (2.21), after > k iterations it will have assembled a subspace that is
close to the subspace spanned by u1, u2, . . . , uk.

3. Quadratic Approximation of Shape Functionals. The methods of sec-
tion 2 are confined to quadratic functional on X of the form (2.1). Yet, most relevant

shape functionals Ĵ will not be quadratic. Our idea is to apply the techniques of
section 2 to a quadratic approximation of the shape functional Ĵ from (1.5). This
approximation can be computed as third-order “shape Taylor approximation of J at
Ω0” using the tools of shape calculus. The validity of this approximation hinges on
the assumption of small perturbations as discussed in subsection 1.2.

We adopt the setting of subsection 1.1. As already announced there, our focus is
on domain integral shape functionals Jf : A → R as in (1.1) assuming that the inte-
grand f is piecewise smooth: f ∈ C1

pw(D). We adopt the perturbation of identity ap-
proach of shape calculus [2]. Temporarily, we fix a compactly supported perturbation
vectorfield V ∈ (W 1,∞

0 (D))d, and define a one-parameter family of diffeomorphisms.

φt : D 7→ D , |t| < τ , φt(x) = φ(t,x) := x+ tV(x) ,(3.1)

where τ > 0 is sufficiently small.
As in subsection 1.2 we choose a reference domain Ω0 and consider the shape

functional along a “curve in shape space”:

JV(t) := Jf (φ
t(Ω0)) =

∫

φt(Ω0)

f(x) dx =

∫

Ω0

f(φ(t,x))ω(t,x) dx , |t| < τ ,(3.2)

with the (positive) Gram determinant (metric factor)

ω(t,x) := det
∂φ

∂x
(t,x) , x ∈ Ω0 , |t| < τ .(3.3)

Apart from the straightforward derviatives

∂φ

∂t
(t,x) = V(x) ,

∂2φ

∂t2
(t,x) = 0 ,

∂φ

∂x
(t,x) = I + tDV(x) ,(3.4)

where DV is the Jacobian of the vectorfied V, from [8, Sect. 2.2] we learn

∂ω

∂t
(0,x) = divV(x) ,(3.5)

∂2ω

∂t2
(0,x) =

(
divV(x)

)2
− Tr

(
DV(x)⊤DV(x)

)
.(3.6)

The first directional shape derivative of Jf in the direction of V evaluates to

〈
dJf
dΩ

(Ω0);V

〉
:=

dJV

dt
(0) =

∫

Ω0

∂

∂t
{f(φ(t,x))ω(t,x)}

∣∣∣∣
t=0

dx

=

∫

Ω0

∂(f ◦ φ)

∂t
(0,x)ω(0,x) + f(φ(0,x))

∂ω

∂t
(0,x) dx

=

∫

Ω0

∇f(x) · V(x) + f(x) divV(x) dx =

∫

∂Ω0

f(x)V(x) · n(x) dS(x) .
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The final expression is the so-called Hadamard form of the directional shape gradient,
involving only the normal component of V on ∂Ω0. Similar though more complicated
manipulations yield the directional shape Hessian [8, Sect. 4.2]:

〈
d2Jf
dΩ2

;V,V

〉
:=

d2JV

dt2
(0) =

d2

dt2

∫

Ω0

f(φ(t,x))ω(t,x) dx

∣∣∣∣
t=0

=
d

dt

∫

Ω0

∇f(φ(t,x)) ·V(x)ω(t,x) + f(φ(t,x))
∂ω

∂t
(t,x) dx

∣∣∣∣
t=0

=

∫

Ω0

{ 〈
D

2f(x);V(x),V(x)
〉
+ 2∇f(x) · V(x) divV(x)+

f(x)
∂2ω

∂t2
(0,x)

}
dx

=

∫

Ω0

{ 〈
D

2f(x);V(x),V(x)
〉
+ 2∇f(x) · V(x) divV(x)+

f(x)
(
divV(x)2 − Tr

(
DV(x)⊤DV(x)

))}
dx

=

∫

Ω0

div (f(x)(divV(x))I− DV(x))V(x) + (∇f(x) ·V(x))V(x)) dx

=

∫

∂Ω0

V(x) · n(x) (f(x) divV(x) +∇f(x))− f(x)V(x)⊤DV(x)V(x) dS(x) .

Note that for both shape derivatives V has to be known only in an open neighbourhood
of ∂Ω0.

We focus on the special case of deformation of Ω0 by normal displacement of the
boundary according to (1.4). This can be modeled by a perturbation vector field

V(x) = ξ(Nx)n(Nx) , dist(x, ∂Ω0) < δ ,(3.7)

for δ > 0 sufficiently small, ξ ∈ C1(∂Ω0), and N the projection onto ∂Ω0 in normal
direction. For this special choice we find for x ∈ ∂Ω0

DV(x)V(x) = 0 and f(x) divV(x) +∇f(x) · V(x) = ∇f(x) · n(x) + κ(x)f(x) ,

with κ(x) the additive curvature of ∂Ω0 in x. The C1-smoothness of ∂Ω0 is essential
in all these manipulations. The final formulas for the directional shape derivatives,
expressed in terms of the size ξ of the normal deformation, are

〈
dJf
dΩ

(Ω0); ξ

〉
=

∫

∂Ω0

ξ(x) f(x) dS(x) ,(3.8)

〈
d2Jf
dΩ

(Ω0); ξ, ξ

〉
=

∫

∂Ω0

ξ2(x) (∇f(x) · n(x) + κ(x)f(x)) dS(x) .(3.9)

They enter the third-order Taylor approximation

(3.10) J(Π(ξ)) ≈ J(Ω0) +

∫

∂Ω0

ξ(x) f(x) dS(x)+

1

2

∫

∂Ω0

ξ2(x) (∇f(x) · n(x) + κ(x)f(x)) dS(x) .
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This suggests that we replace Ĵ := J ◦Π with the following quadratic functional in ξ:

(3.11) J̃(ξ) :=
1

2

∫

∂Ω0

ξ2(x) (∇f(x) · n(x) + κ(x)f(x)) dS(x)

︸ ︷︷ ︸
=:a(ξ,ξ)

+

∫

∂Ω0

ξ(x) f(x) dS(x)

︸ ︷︷ ︸
=:ℓ(ξ)

+ J(Ω0)︸ ︷︷ ︸
=:γ

,

which we related to the formula (2.1). For smooth f and ∂Ω0 we expect the asymptotic
accuracy

|Ĵ(ξ)− J̃(ξ)| = O(‖ξ‖3∞) for ξ → 0 .(3.12)

It remains to establish a function space framework compliant with subsection 2.2.
Both a and ℓ from (3.11) are bounded on L2(∂Ω). Owing to the Rellich embedding
theorem [7, Theorem 3.27], choosing X as the Sobolev space H1(∂Ω0) [7, Pp. 96],
X := H1(∂Ω0), makes Assumption 2.3 hold. The generalized eigenvalue problem
(2.21) is exlicitly given by: seek µ ∈ H1(∂Ω0) \ {0}, λ ∈ R, such that

(3.13)

∫

∂Ω0

µ(x)ν(x) (∇f(x) · n(x) + κ(x)f(x)) dS(x)

= λ (µ, ν)H1(∂Ω0)
:= λ

∫

∂Ω0

∇Γµ(x) · ∇Γν(x) + ν(x)ν(x) dS(x)

for all ν ∈ H1(∂Ω0), where ∇Γ is the tangential gradient.

4. Numerical Experiments. Lacking a complete rigorous theory we demon-
strate the performance of the approximations and algorithms in a few two-dimensional
(d = 2) test cases. As model reference domain Ω0 we use a “kite-shaped” domain dis-
played in Figure 1, whose boundary can be parameterized as follows

γ(θ) :=

[
3.5 cos(θ) + 1.625 cos(2θ)

3.5 sin(θ)

]
, θ ∈ [0, 2π[ .

4.1. Discretization. We equip the parameter interval [0, 2π] with a mesh M
consisting of N ∈ N equi-sized cells and write S0

1,per(M) ⊂ H1(0, 2π) for the classical
finite-element space of M-piecewise linear continuous 2π-periodic functions [0, 2π] →
R: dimS0

1,per(M) = N . We define N -dimensional subspaces of H1(∂Ω0) by pullback
under the parameterization γ

XN := {ν : ∂Ω0 → R : γ∗ν ∈ S0
1,per(M)} .(4.1)

As basis {b1N , . . . , bNN} for XN we use the locally supported functions whose pullbacks

γ∗bjN are the usual nodal basis functions (“tent functions”) of S0
1,per(M). Thus we

can introduce the Galerkin matrices and vectors

AN :=
[
a(biN , bjN)

]N
i,j=1

∈ R
N,N ,(4.2)

MN :=

[(
biN , bjN

)
H1(∂Ω0)

]N

i,j=1

∈ R
N,N ,(4.3)

qN :=
[
ℓ(biN )

]N
i=1

∈ R
N ,(4.4)
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for a and ℓ as introduced in (3.11). All occurring integrals were evaluated by means of
“overkill” numerical quadrature using the Gauss Legendre quadrature rule of order 16.
After these steps we have arrived at the setting of subsection 2.1; the notations should
make clear the relationship. In particular, the discrete version of the generalized
eigenvalue problem (3.13), the counterpart of (2.3), becomes

u ∈ R
N \ {0}, λ ∈ R : ANu = λMNu .(4.5)

As functions f in the definition of the domain functionals Jf we selected di-
vergences of known vectorfields: f(x) = divF(x), for some F : R

2 → R
2. Thus

integration can be reduced to the boundary

Jf (Ω) =

∫

Ω

f(x) dx =

∫

∂Ω

F(x) · n dS(x) ,

and that latter integral can be computed approximately by pullback to the parameter
domain [0, 2π[ and “overkill” numerical quadrature.

Concretely, our numerical tests rely on the following four integrands (x = [ x1
x2

]),
rendered in Figure 1:

1. f1(x) := 3 ‖x‖2, a rotationally symmetric function, globally supported,
2. f2(x) := 3x2

1 + 2x2, a globally supported anisotropic function,

3. f3(x) := −2(x1+x2−5)e−((x1−5)2+x2
2), a smooth, effectively locally supported

function

4. f4(x) :=

{
1 + cos(πr) − rπ

2 sin(πr) , if r ≤ 1 ,

0 elsewhere
, r :=

(
(x1 − 5)2 + x2

2

) 1
2 ,

non-smooth and locally supported.

4.2. Error of quadratic approximation. In this section we investigate the
quadratic approximation errors

EQ(ǫ) := sup
‖ξ‖H1(∂Ω0)≤ǫ

|Ĵ(ξ)− J̃(ξ)| ,

with Ĵ defined in (1.5) and J̃ in (3.11). We approximate the supremum by randomly
sampling from {ξ : ‖ξ‖H1(∂Ω0)

≤ ǫ}. We construct samples by (rescaled) (i) random

combinations of generalized eigenfunctions (solutions of (2.3)) and (ii) random com-
binations of “tent functions”. The combination weights are drawn from uniform dis-
tributions on [−1, 1]. The estimated errors EQ are reported in Figure 2 for f1, . . . , f4
and mesh resolutions N = 100, 200, 400.

For smooth integrands, that is, for f1, f2, and f3, we observe the expected al-
gebraic convergence EQ(ǫ) = O(ǫ3) as ǫ → 0. The function f4 is just continuous
and piecewise smooth and this obviously reduces the convergence of the quadratic
approximation: asymptotically we observe EQ(ǫ) = O(ǫ).

4.3. Model reduction error. In this section we examine the low rank ap-
proximation error and the full model reduction error (which includes both quadratic
approximation and low rank approximation)

E(ǫ) := sup
‖ξ‖H1(∂Ω0)≤ǫ

|Ĵ(ξ)− J̃(Pnξ)| ,

with Pn as defined in section 2 based on (2.15) and (2.16).
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Fig. 1: Contour plots of the sample functions f1, . . . , f4. The black line shows the
boundary of the “kite-shaped” domain Ω0.

We compute the errors for perturbations of a fixed size ǫ = 0.1 by means of the
same random sampling approach as introduced in subsection 4.2. Concerning low-rank
approximation, we monitor the error for reduced models of dimension n ∈ {1, . . . , 20}.
The experiment is performed for different mesh resolutions, for N = 100, 200, 400
panels. In each case we also report the moduli of the generalized eigenvalues for
Ã and M, see (2.16), because their decay determines the behavior of the low-rank
approximation error, cf. (2.17).

For ǫ = 0.1 we observe a quadratic approximation error ≈ 10−3, which is a lower
bound for the total error. For integrands f1 and f2 the bilinear form a boils down
to a weighted L2(∂Ω)-type pairing. Thus, by Weyl’s law we expect a decay of the
generalized eigenvalues like λℓ ∼ ℓ−2, which we see in Figure 3 and Figure 4. This
behavior carries over to the model reduction errors. The localized integrands f3 and
f4 lead to many practically vanishing generalized eigenvalues, because the supports of
many basis functions cover only regions where the integrand is very small or even zero.
Thus, the low-rank approximation error virtually disappears for moderate values of
n and the full error reflects the quadratic approximation error. However, the large
eigenvalues, of which there will be more and more on fine meshes, still reveal a decay
according to Weyl’s law.

In Figure 7–10 we visualize the generalized eigenfunctions for the largest (in mod-
ulus) generalized eigenvalues for N = 200 panels. These functions form a basis of the
reduced parameter space Xn. For integrands f3 and f4 these functions are well local-
ized in the vicinity of the (practical) support of the integrands.
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Fig. 2: Estimated errors EQ = EQ(ǫ) for different functions and mesh resolutions
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Fig. 3: Model reduction for kite-shaped domain, Jf with integrand f1

4.4. Performance of the adaptive algorithm. We retain the setting of the
previous sections: For the kite-shaped domain and the shape functionals Jf , f =
f1, . . . , f4, we report the performance of the adaptive Algorithm 1 introduced in sub-
section 2.3. For all the results that are presented in this section, we set ǫ = 0.1.
Throughout, the control parameters for the termination of the inner iteration are
fixed at τrel = 0.01 and τabs = 0.0001.

In Figure 11, we report all the eigenvalues obtained from Algorithm 1 in the first
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Fig. 4: Model reduction for kite-shaped domain, Jf with integrand f2
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Fig. 5: Model reduction for kite-shaped domain, Jf with integrand f3

30 steps. We use a mesh with 400 panels and δ = 10−8. For each step of the outer
iteration the moduli of the obtained Ritz values are plotted vertically. The modulus
|λL| of the smallest Ritz value of interest is marked in red. Grey lines indicate the
moduli of the exact generalized eigenvalues. Obviously, they are well approximated
by the Ritz values.

Next, we study the total number of inner iterations and the number of outer
iterations in the adaptive algorithm. The number of outer iterations is one less than
the dimension of obtained space in case of normal termination and two less in case
of low rank termination. Computations are done at for three different tolerances:
δ = 10−3, 10−4, 10−5.

The tables send the expected message that tightening the tolerance δ entails
computing more eigenfunctions, in particular for integrands f1 and f2, where the
generalized eigenvalues decay according to Weyl’s law. Setting δ = 10−5 for f1/f2
essentially enforces full approximation, whereas for the localized integrands f3/f4 we
still gain from low-rank approximation. The rather large numbers of inner iterations
suggest that there is probably much room for relaxing or improving the termination
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Fig. 6: Model reduction for kite-shaped domain, Jf with integrand f4

Linear term Quadratic mode 1 Quadratic mode 2 Quadratic mode 3 Quadratic mode 4

Quadratic mode 5 Quadratic mode 6 Quadratic mode 7 Quadratic mode 8 Quadratic mode 9

Fig. 7: Integrand f1, kite-shaped Ω0: generalized eigenfunctions

criteria used in Algorithm 1.
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Fig. 8: Integrand f2, kite-shaped Ω0: generalized eigenfunctions
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Fig. 9: Integrand f3, kite-shaped Ω0: generalized eigenfunctions
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Fig. 10: Integrand f4, kite-shaped Ω0: generalized eigenfunctions
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Fig. 11: Generalized eigenvalues as computed during a run of the adaptive algorithm
from subsection 2.3, ǫ = 0.1, N = 400, δ = 10−8, τrel = 10−2, τabs = 10−4

f1 f2 f3 f4

100 767 864 15 22
200 1072 945 20 18
400 1108 1121 23 24

(a) Total no. of inner iterations

f1 f2 f3 f4

100 86 68 3 3
200 115 82 3 3
400 125 87 3 3

(b) No. of outer iterations

Table 1: Total no. of inner and outer iterations for kite domain (δ = 10−3)

f1 f2 f3 f4

100 827 1251 80 40
200 1682 2304 88 61
400 2756 3130 91 62

(a) Total no. of inner iterations

f1 f2 f3 f4

100 98 98 10 7
200 190 174 11 8
400 317 234 11 8

(b) No. of outer iterations

Table 2: Total no. of inner and outer iterations for kite domain (δ = 10−4)
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f1 f2 f3 f4

100 827 1251 108 46
200 1712 2573 174 103
400 3195 4385 204 120

(a) Total no. of inner iterations

f1 f2 f3 f4

100 98 98 17 9
200 198 198 28 17
400 398 389 34 21

(b) No. of outer iterations

Table 3: Total no. of inner and outer iterations for kite domain (δ = 10−5)
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5. Conclusions. We have explored a combined quadratic approximation and
adaptive low-rank approximation strategy for model reduction in shape representation
with respect to a given shape functional. We focused on a particular model problem
for which we observed a rather disappointing efficacy of low-rank approximation that
we could attribute it to a merely algebraic decay of singular values of the shape Hessian
in a chosen Sobolev space framework.

The question is whether relevant shape functionals share this awkward trait of our
model problem. Results by Eppler and Harbrecht [3, 4, 5] indicate that shape Hessians
for so-called Bernoulli problems and shape optimization problems based on tracking-
type functionals are continuous and sometimes even coercive in Sobolev spaces Hs(Γ)
for suitable 0 < s ≤ 1. Consequently a slow algebraic decay of singular values can
again be expected when using some Sobolev space Hm(Γ), m > s, as space X of
parameterizations.

Couldn’t we expect an exponential decay of the eigenvalues in an Hm-setting
for far-field-type shape functionals? Unfortunately not: use the line segment Γ0 =
[0, 1]× {0} ⊂ R

2 as the reference shape, and let Γ stand for another open C1 Jordan
curve with endpoints [ 00 ] and [ 10 ]. The reader may view it as the variable part of the
boundary of some domain Ω. Let us consider the “far field” shape functional

J(Γ) :=

∫

Γ

G(x,y) dS(y) , x 6∈ Γ0 fixed , G(x,y) = exp(−‖x− y‖2) .

We employ a normal displacement parameterization of the shape space of “perturbed
line segments”

Π(ξ) :=

{[
t

ξ(t)

]
, 0 ≤ t ≤ 1

}
, ξ ∈ X := C1

0 ([0, 1]) .

This satisfies Π(0) = Γ0 and yields the mapped functional (ξ̇ = dξ
dt

)

Ĵ(ξ) := J(Π(ξ)) =

∫ 1

0

G
(
x,

[
t

ξ(t)

]) √
1 + |ξ̇(t)|2 dt , ξ ∈ X .

We can plug in the Taylor expansions

G
(
x,

[
t

ξ(t)

])
= G (x, [ t0 ]) +

∂G

∂y2
(x, [ t0 ]) ξ(t) +

1

2

∂2G

∂y22
(x, [ t0 ]) ξ(t)

2 +O(‖ξ‖3X) ,

√
1 + |ξ̇(t)|2 = 1 + 1

2 ξ̇(t)
2 +O(‖ξ‖4X) ,

for ξ → 0. The terms that are quadratic in ξ give us the second derivative

〈
d2Ĵ

dξ2
(0); ξ, η

〉
=

1∫

0

1
2G (x, [ t0 ]) ξ̇(t)η̇(t) +

1
2

∂2G

∂y22
(x, [ t0 ]) ξ(t)η(t) dt .

Up to a compact perturbation the induced bilinear form is continuous in H1(]0, 1[)
and its generalized eigenvalues with respect to an Hm-inner product, m > 1, will
decay only algebraically.

However, there is a “sleight of hand” ensuring exponential decay of the generalized
eigenvalues and it exploits the freedom of choosing the space X , whose norm effects
an implicit regularization. For instance, for d = 2 and using a normal displacement
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parameterization according to (1.4) based on a space of 2π-periodic functions, we may
resort to the norm

‖ξ‖2X :=
∑

j∈Z

c|j||ξ̂j |
2 , ξ̂j =̂ Fourier coeffcicients of ξ,

with c > 1. This means that we insist on analytic normal displacements. In this case,
the generalized eigenvalues of any shape Hessian inducing an Hs(Γ)-type norm will
asymptotically decay exponentially.

Acknowledgment. The first and the second author would like to thank the
Isaac Newton Institute (INI), Cambridge, UK, for inviting them in the framework of
the 2019 programme on Geometry, compatibility and structure preservation in com-
putational differential equations. Seminal discussions for this work took place at INI.

REFERENCES

[1] M. C. Delfour and J.-P. Zolésio, Shapes and geometries, vol. 22 of Advances in Design
and Control, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
second ed., 2011. Metrics, analysis, differential calculus, and optimization.

[2] K. Eppler, Fréchet-differentiability and sufficient optimality conditions for shape functionals,
in Optimal control of partial differential equations (Chemnitz, 1998), vol. 133 of Internat.
Ser. Numer. Math., Birkha̋user, Basel, 1999, pp. 133–143.

[3] K. Eppler and H. Harbrecht, Coupling of FEM and BEM in shape optimization, Numer.
Math., 104 (2006), pp. 47–68.

[4] K. Eppler and H. Harbrecht, Tracking Neumann data for stationary free boundary prob-

lems, SIAM J. Control Optim., 48 (2009/10), pp. 2901–2916.
[5] K. Eppler and H. Harbrecht, Shape optimization for free boundary problems—analysis

and numerics, in Constrained optimization and optimal control for partial differential
equations, vol. 160 of Internat. Ser. Numer. Math., Birkhäuser/Springer Basel AG, Basel,
2012, pp. 277–288.

[6] G. H. Golub and C. F. Van Loan, Matrix computations, Johns Hopkins Studies in the
Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, fourth ed., 2013.

[7] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge Univer-
sity Press, Cambridge, UK, 2000.

[8] A. Schiela and J. Ortiz, Second order directional shape derivatives of integrals on subman-

ifolds, Preprint urn:nbn:de:bvb:703-epub-3251-1, EPub Bayreuth, 2017.
[9] J. Sokolowski and J.-P. Zolesio, Introduction to shape optimization, vol. 16 of Springer

Series in Computational Mathematics, Springer, Berlin, 1992.
[10] D. Werner, Funktionalanalysis, Springer, Berlin, 1995.

Appendix A. Code. The C++ codes with which all numerical experiments
reported in this article have been conducted can be accessed through the Git repos-
itory https://gitlab.ethz.ch/ppanchal/adaptiveshapeapprox.git. The accompanying
README.md file explains installation and use of these codes.
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