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DEEP RELU NETWORK EXPRESSION RATES FOR OPTION PRICES

IN HIGH-DIMENSIONAL, EXPONENTIAL LÉVY MODELS

LUKAS GONON AND CHRISTOPH SCHWAB

Abstract. We study the expression rates of deep neural networks (DNNs for short) for option
prices written on baskets of d risky assets, whose log-returns are modelled by a multivariate Lévy
process with general correlation structure of jumps. We establish sufficient conditions on the charac-
teristic triplet of the Lévy process X that ensure ε error of DNN expressed option prices with DNNs
of size that grows polynomially with respect to O(ε−1), and with constants implied in O(·) which
grow polynomially with respect d, thereby overcoming the curse of dimensionality and justifying
the use of DNNs in financial modelling of large baskets in markets with jumps.

In addition, we exploit parabolic smoothing of Kolmogorov partial integrodifferential equations
for certain multivariate Lévy processes to present alternative architectures of ReLU DNNs that
provide ε expression error in DNN size O(| log(ε)|a) with exponent a ∼ d, however, with constants
implied in O(·) growing exponentially with respect to d. Under stronger, dimension-uniform non-
degeneracy conditions on the Lévy symbol, we obtain algebraic expression rates of option prices in
exponential Lévy models which are free from the curse of dimensionality. In this case the ReLU
DNN expression rates of prices depend on certain sparsity conditions on the characteristic Lévy
triplet. We indicate several consequences and possible extensions of the present results.
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1. Introduction

Recent years have seen a dynamic development in applications of deep neural networks (DNNs
for short) in expressing high-dimensional input-output relations. This development was driven
mainly by the need for quantitative modelling of input-output relationships subject to large sets
of observation data. Rather naturally, therefore, DNNs have found a large number of applications
in computational finance and in financial engineering. We refer to the survey [RW19] and to the
references there. Without going into details, we only state that the majority of activity addresses
techniques to employ DNNs in demanding tasks in computational finance. The often striking
efficient computational performance of DNN based algorithms raises naturally the question for
theoretical, in particular mathematical, underpinning of successful algorithms. Recent years have
seen progress, in particular in the context of option pricing for Black–Scholes type models, for DNN
based numerical approximation of diffusion models on possibly large baskets (see, e.g. [BGJ20b,
EGJS18] and [IRZ19, RZ20] for game-type options). These references prove that DNN based
approximations of option prices on possibly large baskets of risky assets can overcome the so-called
curse of dimensionality in the context of affine diffusion models for the dynamics of the (log-)prices
of the underlying risky assets. These results could be viewed also as particular instances of DNN
expression rates of certain PDEs on high-dimensional state spaces, and indeed corresponding DNN
expressive power results have been shown for their solution sets in [GHJvW18], [GGJ+19] and the
references there.
Since the turn of the century, models beyond the classical diffusion setting have been employed
increasingly in financial engineering. In particular, Lévy processes and their nonstationary gener-
alizations such as Feller-Lévy processes (see, e.g., [BSW13] and the references there) have received
wide attention. This can in part be explained by their ability to account for heavy tails of finan-
cial data and by Lévy–based models constituting hierarchies of models, comprising in particular
classical diffusion (“Black–Scholes”) models with constant volatility that are still widely used in
computational finance as a benchmark. Therefore, all results for geometric Lévy processes in the
present paper apply in particular to the Black–Scholes model.
The “Feynman Kac correspondence” which relates conditional expectations of sufficiently regular
functionals over diffusions to (viscosity) solutions of corresponding Kolmogorov PDEs, extends
to multivariate Lévy processes. We mention only [NS01, CT04, CV05b, Gla16], [EK19, Chap.
5.4] and the references there. The Kolmogorov PDE (“Black–Scholes equation”) in the diffusion
case is then replaced by a so-called Partial Integrodifferential Equation (PIDE) where the fractional
integrodifferential operator accounting for the jumps is related in a one-to-one fashion with the Lévy
measure νd of the LP Xd ⊂ Rd. In particular, Lévy type models for (log-)returns of risky assets
result in nonlocal partial integrodifferential equations for the option price, which generalize the linear
parabolic differential equations which arise in classical diffusion models. We refer to [Ber96, Sat99]
for fundamentals on Lévy processes and to [BSW13] for extensions to certain nonstationary settings.
For the use of Lévy processes in financial modelling we refer to [CT04, EK19] and to the references
there. We refer to [CV05b, CV05a, MvPS04, HRSW13]for a presentation and for numerical methods
for option pricing in Lévy models.
The results on DNNs in the context of option pricing mentioned above are exclusively concerned
with models with continuous price processes. This naturally raises the question whether DNN based
approximations are still capable of overcoming the curse of dimensionality in high-dimensional
financial models with jumps, which have a much richer mathematical structure. This question is
precisely the subject of this article. We study the expression rates of DNNs for prices of options
(and the associated PIDEs) written on possibly large baskets of risky assets, whose log-returns are
modelled by a multivariate Lévy process with general correlation structure of jumps. In particular,
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we establish sufficient conditions on the characteristic triplet of the Lévy process Xd that ensure
ε error of DNN expressed option prices with DNNs of size O(ε−2), and with constants implied in
O(·) which grow polynomially with respect d. This shows that DNNs are capable to overcome the
curse of dimensionality also for general exponential Lévy models.
Scope of results. The DNN expression rate results proved here give a theoretical justification for
neural network based non-parametric option pricing methods. These have become very popular
recently, see for instance the recent survey [RW19]. Our results show that if option prices result
from an exponential Lévy model, as described e.g. in [EK19, Chap.3.7], under mild conditions
on the Lévy-triplets these prices can be expressed efficiently by (ReLU) neural networks, also for
high dimensions. The result covers, in particular, rather general, multivariate correlation structure
in the jump part of the Lévy process, for example parametrized by a so-called Lévy copula, see
[KT06, FRS07] [EK19, Chap.8.1] and the references there. This extends, at least to some extent,
the theoretical foundation to the widely used neural network based non-parametric option pricing
methodologies to market models with jumps.
We prove two types of results on DNN expression rate bounds for European options in exponential
Lévy models, with one probabilistic and one “deterministic” proof. The former one is based on
concepts from statistical learning theory, and provides for relevant payoffs (baskets, call on max,
. . . ) an expression error O(ε) with DNN sizes of O(ε−2), whereas the latter is based on parabolic
smoothing of the Kolmogorov equation, and allows us to prove exponential expressivity of prices
for positive maturities.
For the latter approach certain non-degeneracy is required on the symbol of the underlying Lévy
process. The probabilistic proof of DNN approximation rate results, on the other hand, does not
require any such assumptions. It only relies on the additive structure of the semigroup associated to
the Lévy process and existence of moments. Thus, the results proved here are specifically tailored to
the class of option pricing functions (or more generally expectations of exponential Lévy processes)
under European style, plain vanilla payoffs.
The structure of this paper is as follows. In Section 2 we review terminology, basic results, and
financial modelling with exponential Lévy processes. In particular, we also recapitulate the corre-
sponding fractional, partial integrodifferential Kolmogorov equations which generalize the classical
Black–Scholes equations to Lévy models. Section 3 recapitulates notation and basic terminology
for deep neural networks to the extent required in the ensuing expression rate analysis. We focus
mainly on so-called ReLU DNNs, but add that corresponding definitions and also results do hold
for more general activation functions. In Section 4 we present a first set of DNN expression rate
results, still in the univariate case. This is, on the one hand, for presentation purposes, as this
setting allows for lighter notation, and to introduce mathematical concepts which will be used sub-
sequently also for contracts on possibly large basket of Lévy-driven risky assets. We also present an
application of the results to neural-network based call option pricing. Section 5 then has the main
results of the present paper: expression rate bounds for ReLU DNNs for multivariate, exponential
Lévy models. We identify sufficient conditions to obtain expression rates which are free from the
curse of dimensionality via mathematical tools from statistical learning theory. We also develop
a second argument based on parabolic Gevrey regularity with quantified derivative bounds, which
even yield exponential expressivity of ReLU DNNs, albeit with constants that generally depend on
the basket size in a possibly exponential way. Finally, we develop an argument based on quantified
sparsity in polynomial chaos expansions and corresponding ReLU expression rates from [SZ19] to
prove high algebraic expression rates for ReLU DNNs, with constants that are independent of the
basket size. We also provide a brief discussion of recent, related results. We conclude in Section 6
and indicate several possible generalizations of the present results.
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2. Exponential Lévy models and PIDEs

2.1. Lévy processes. Fix a complete probability space (Ω,F ,P) on which all random elements
are defined.
We start with the univariate case. We recall that an R-valued continuous-time process (Xt)t≥0 is
called a Lévy process if it is stochastically continuous, it has almost surely RCLL sample paths,
it satisfies X0 = 0 almost surely, and it has stationary and independent increments. See, e.g.
[Ber96, Sat99] for discussion and for detailed statements of definitions.
It is shown in these references that a Lévy process (LP for short) X ⊂ R is characterized by its
so-called Lévy triplet (σ2, γ, ν), where σ ≥ 0, γ ∈ R and where ν is a measure on (R,B(R)) with
ν({0}) = 0, the so-called jump-measure, or Lévy-measure of the LP X which satisfies

∫
R
(x2 ∧

1) ν(dx) <∞. For more details on both, univariate LPs X ⊂ R, and for the multivariate situation
we refer to [Sat99].
As in the univariate case, multivariate LPsXd ⊂ Rd are completely described by their characteristic
triplet (Ad, γd, νd) where γd ∈ Rd is a drift vector, Ad ∈ Rd×d is a symmetric, nonnegative definite
matrix denoting the covariance matrix of the Brownian motion part of Xd, and νd is the Lévy
measure describing the jump structure of Xd.
To characterize the dependence structure of a Lévy process the drift parameter γd does not play
a role. The dependence structure of the diffusion part of Xd is characterized by Ad. Since the
continuous part and the jump part of Xd are stochastically independent, the dependence structure
of the jump part of Xd is characterized by the Lévy measure νd.
In [KT06], a characterization of admissible jump measures νd of the LP Xd ⊂ Rd has been obtained
as superposition of marginal, univariate Lévy measures with a so-called Lévy copula function.

2.2. Exponential Lévy models. In this article we are interested in estimating expression rates
of deep neural networks for approximating the function s 7→ E[ϕ(sST )], where S is an exponential
of a d-dimensional Lévy process and ϕ : Rd → R an appropriate function. The key motivation
for studying such expectations comes from the context of option valuation. Thus, we now outline
this relation and we will always use the language of option pricing, i.e., refer to these expectations
as option prices and to ϕ as the payoff. This interpretation is justified if S is a local (hence
true) martingale and we state below the conditions on the Lévy process that guarantee this. We
emphasize, however, that (St)t≥0 does not need to be a (local) martingale for the results proved in
this article to hold.
In a widely used class of financial models, log-returns of risky assets are modelled by LPs. This leads
to price processes which are exponential Lévy models, generalizing geometric Brownian motion.
Let the stochastic process (St)t∈[0,T ] ⊂ R model the price of one risky financial asset. Here T ∈
(0,∞) is a fixed, finite time horizon. An exponential Lévy model assumes that St = S0e

rt+Xt ,
t ∈ [0, T ], where r ∈ R denotes the (constant) interest rate. The model could be specified either
under a real-world measure or directly under a risk-neutral measure (constructed using the general
change of measure result in [Sat99, Theorems 33.1 and 33.2] of which the Esscher transform [GS94]
is a particular case, or by minimizing certain functionals over the family of equivalent martingale
measures, see for instance [JKM07],[ES05] and the references therein). The latter situation means
that (Ste

−rt)t∈[0,T ] is a martingale, which is equivalent to the following condition on the Lévy triplet
of X (e.g. [HRSW13, Lem. 10.1.5])

(2.1) γ = −σ
2

2
−
∫

R

(ey − 1− y ✶{|y|≤1})ν(dy),

∫

{|y|>1}
eyν(dy) <∞.
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For a d-dimensional Lévy process Xd, [Sat99, Theorems 25.17] shows that the multivariate geo-

metric Lévy process (eX
d
t,1 , . . . , eX

d
t,d)t≥0 is a martingale if and only if

(2.2)

∫

{‖y‖>1}
eyiνd(dy) <∞, for i = 1, . . . , d,

γdi = −A
d
ii

2
−
∫

Rd

(eyi − 1− yi✶{‖y‖≤1})ν
d(dy), for i = 1, . . . , d.

This condition ensures that the functions defined in (2.3) and (5.1) below represent option prices.
However, the condition is not needed for the proof of the results later, so we do not need to impose
(2.1) or (2.2) in any of the results proved in the article. We will, however, impose certain moment
or regularity conditions.
For more details on exponential Lévy models, with particular attention to their use in financial
modelling, we refer to [CT04], [LM08], and [EK19] and the references there.

2.3. PIDEs for option prices. Let us first discuss the case of a univariate exponential Lévy
model. For the multivariate case we refer to Section 5 (cf. (5.1) and (5.16) below).
Consider a European style option with payoff function ϕ : (0,∞)→ [0,∞) and at most polynomial
(p-th order) growth at infinity. Assume for this subsection that (2.1) is satisfied.
The value of the option (under the chosen risk-neutral measure) at time t ∈ [0, T ] is given as the

conditional expectation Ct = E[e−r(T−t)ϕ(ST )|Ft] with Ft = σ(Sv : v ∈ [0, t]). By the Markov
property Ct = C(t, St) and so, switching to time-to-maturity τ = T − t, u(τ, s) = C(T − τ, s) we
can rewrite the option price as follows:

(2.3) u(τ, s) = E[e−rτϕ(ST )|St = s] = E[e−rτϕ(s exp(rτ +Xτ ))]

for τ ∈ [0, T ], s ∈ (0,∞), where the second step uses that XT − Xt is independent of Xt and
has the same distribution as XT−t. If the payoff function ϕ is Lipschitz-continuous on R and the
Lévy process fulfils either σ > 0 or a certain non-degeneracy condition on ν, then u is contin-
uous on [0, T ) × (0,∞), it is C1,2 on (0, T ) × (0,∞) and it satisfies the linear, parabolic partial
integrodifferential equation (PIDE for short)

(2.4)

∂u

∂τ
(τ, s)− rs∂u

∂s
(τ, s)− σ2s2

2

∂2u

∂s2
(τ, s)− ru(τ, s)

−
∫

R

[
u(τ, sey)− u(τ, s)− s(ey − 1)

∂u

∂s
(τ, s)

]
ν(dy) = 0

on [0, T ) × (0,∞) with initial condition u(0, ·) = ϕ, see for instance Proposition 2 in [CV05b]. If
the non-degeneracy condition on ν is dropped, one can still characterize u (transformed to log-price
variables) as the unique viscosity solution to the PIDE above. This is established e.g. in [CV05b]
(see also Proposition 3.3 in [CV05a]). For our purposes the representation (2.3) is more suitable.
However, by using this characterization (also called Feynman-Kac representation for viscosity-
solutions of PIDEs, see [BBP97]) the results formulated below also provide DNN approximations
for PIDEs. Finally, note that the interest rate r may also be directly modelled as a part of X
by modifying γ. To simplify the notation we set r = 0 in what follows. We also remark that all
expression rate results hold verbatim for assets with a constant dividend payment (see, e.g., [LM08,
Eqn. (3.1)] for the functional form of the exponential Lévy model in that case).
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3. Deep neural networks (DNNs)

This article is concerned with establishing expression rate bounds of deep neural networks (DNNs)
for prices of options (and the associated PIDEs) written on possibly large baskets of risky assets,
whose log-returns are modelled by a multivariate Lévy process with general correlation structure
of jumps. The term “expression rate” denotes the rate of convergence to 0 of the error between
the option price and its DNN approximation. This rate can be directly translated to quantify the
DNN size required to achieve a given approximation accuracy. For instance, in Theorem 5.1 below
an expression rate of q−1 is established and one may even choose q = 2 in many relevant cases. We
now give a brief introduction to DNNs.
Roughly speaking, a deep neural network (DNN for short) is a function built by multiple concate-
nations of affine transformations with a (typically non-linear) activation function. This gives rise
to a parametrized family of nonlinear maps, see for instance [PV18] or [BGTW19, Section 4.1] and
the references there.
Here we follow current practice and refer to the collection of parameters Φ as “the neural net-
work” and denote by R(Φ) its realization, that is, the function defined by these parameters. More
specifically, we use the following terminology (see for instance Section 2 in [OPS20]): firstly, we fix
a function ̺ : R → R (referred to as the activation function) which is applied componentwise to
vector-valued inputs.

Definition 3.1. Let d, L ∈ N. A neural network (with L layers and d-dimensional input) is a
collection

Φ = ((A1, b1), . . . , (AL, bL)),

where N0=d, Ni ∈ N, Ai ∈ RNi×Ni−1 , bi ∈ RNi for i = 1, . . . , L and (Ai, bi) are referred to as the
weights of the i-th layer of the NN.
The associated realization of Φ is the mapping

R(Φ): Rd → RN
L
, x 7→ R(Φ)(x) = ALxL−1 + bL

where xL−1 is given as

x0=x, xl = ̺(Alxl−1 + bl) for l = 1, . . . , L− 1.

We call Mj(Φ) = ‖Aj‖0 + ‖bj‖0 the number of (non-zero) weights in the j-th layer and M(Φ) =∑L
j=1Mj(Φ) the number of weights of the neural network Φ. We also refer to M(Φ) as the size of

the neural network, write L(Φ) = L for the number of layers of Φ and refer to No(Φ) = NL as the
output dimension.

We refer to Section 2 in [OPS20] for further details.
The following lemma shows that concatenating n affine transformations with distinct neural net-
works and taking their weighted average can itself be represented as a neural network. The number
of non-zero weights in the resulting neural network can be controlled by the number of non-zero
weights in the original neural networks. The proof of the lemma is based on a simple extension
of the full parallelization operation for neural networks (see [OPS20, Proposition 2.5]) and refines
[GHJvW18, Lemma 3.8].

Lemma 3.2. Let d, L, n ∈ N and let Φ1, . . . ,Φn be neural networks with L layers, d-dimensional in-
put and equal output dimensions. Let D1, . . . , Dn be d×d-matrices, c1, . . . , cn ∈ Rd and w1, . . . , wn ∈
R.
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Then there exists a neural network ψ such that

(3.1) R(ψ)(x) =
n∑

i=1

wiR(Φ
i)(Dix+ ci) for all x ∈ Rd

and Mj(ψ) ≤
∑n

i=1Mj(Φ
i) for j = 2, . . . , L. If, in addition, D1, . . . , Dn are diagonal matrices and

c1 = · · · = cn = 0, then M(ψ) ≤∑n
i=1M(Φi).

Proof. Write for i = 1, . . . , n
Φi = ((Ai1, b

i
1), . . . , (A

i
L, b

i
L))

and define the block matrices

An+1
1 =



A1

1D1
...

An1Dn


 , bn+1

1 =



A1

1c1 + b11
...

An1cn + bn1


 ,

An+1
j =



A1
j 0

. . .

0 Anj


 , bn+1

j =



b1j
...
bnj


 for j = 2, . . . , L− 1,

An+1
L =

(
w1A

1
L · · · wnA

n
L

)
and bn+1

L = w1b
1
L + · · ·+ wnb

n
L.

Set ψ = ((An+1
1 , bn+1

1 ), . . . , (An+1
L , bn+1

L )). Then, for l = 1, . . . , L−1 and x ∈ Rd, it is straightforward
to verify that xl has a block structure (with subscripts indicating the layers and superscripts
indicating the blocks)

xl =



x1l
...
xnl


 ,

with xi1 = ̺(Ai1(Dix+ ci) + bi1), x
i
l = ̺(Ailx

i
l−1 + bil) for l = 2, . . . , L− 1 and

R(ψ)(x) = An+1
L xL−1 + bn+1

L =
n∑

i=1

wi[A
i
Lx

i
L−1 + biL].

Hence, (3.1) is satisfied and

Mj(ψ) =Mj(Φ
1) + · · ·+Mj(Φ

n) for j = 2, . . . , L− 1,

ML(ψ) ≤ML(Φ
1)✶{w1 6=0} + · · ·+ML(Φ

n)✶{wn 6=0}.

If in addition D1, . . . , Dn are diagonal matrices and c1 = · · · = cn = 0, then ‖Ai1Di‖0 = ‖Ai1‖0
and therefore M1(ψ) = M1(Φ

1) + · · · +M1(Φ
n). Thus, in this situation, M(ψ) =

∑L
j=1Mj(ψ) ≤∑L

j=1

∑n
i=1Mj(Φ

i) =
∑n

i=1M(Φi), as claimed. �

4. DNN approximations for univariate Lévy models

We study DNN expression rates for option prices under (geometric) Lévy models for asset prices,
initially here in one spatial dimension. We present two expression rate estimates for ReLU DNNs,
which are based on distinct mathematical arguments: the first, probabilistic argument builds on
ideas used in recent works [GGJ+19, BGJ20a] and the references there. However, for the key step of
the proof a different technique is used, which is based on the Ledoux-Talagrand contraction principle
(Theorem 4.12 in [LT11]) and statistical learning. This new approach is not only technically less
involved (in comparison to, e.g., the techniques used in [GGJ+19]), but it also allows for weaker
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assumptions on the activation function, see Proposition 4.1 below. Alternatively, under slightly
different hypotheses on the activation function one can also rely on [GGJ+19, Lemma 2.16], see
Proposition 4.4 below. The probabilistic arguments result in, essentially, ε-complexity of DNN
expression of order ε−2. The second argument draws on parabolic (analytic) regularity furnished
by the corresponding Kolmorov equations, and results in far stronger, exponential expression rates,
i.e., with an ε-complexity of DNN expression scaling, essentially, polylogarithmic with respect to
0 < ε < 1. As we shall see in the next section, however, the latter argument is in general subject
to the curse of dimensionality.

4.1. DNN expression rates: probabilistic argument. We fix 0 < a < b < ∞ and measure
the approximation error in the uniform norm on [a, b]. Recall that M(Φ) denotes the number of
(non-zero) weights of a neural network Φ and R(Φ) is the realization of Φ. Consider the following
exponential integrability condition on the Lévy measure ν: for some p ≥ 2,

(4.1)

∫

{|y|>1}
epyν(dy) <∞.

Furthermore, for any function g we denote by Lip(g) the best Lipschitz constant for g.

Proposition 4.1. Suppose the moment condition (4.1) holds. Suppose further the payoff ϕ can be
approximated by neural networks, that is, given a payoff function s 7→ ϕ(s) there exists constants
c > 0, q ≥ 0 such that for any ε ∈ (0, 1] there exists a neural network φε with

|ϕ(s)− R(φε)(s)| ≤ εc(1 + |s|), s ∈ (0,∞),(4.2)

M(φε) ≤ cε−q,(4.3)

Lip(R(φε)) ≤ c.(4.4)

Then there exists κ ∈ [c,∞) (depending on the interval [a, b]) and neural networks ψε, ε ∈ (0, 1],
such that for any target accuracy ε ∈ (0, 1] the number of weights is bounded by M(ψε) ≤ κε−2−q

and the approximation error between the neural network ψε and the option price is at most ε, that
is,

sup
s∈[a,b]

|u(T, s)− R(ψε)(s)| ≤ ε.

Remark 4.2. In relevant examples such as, e.g., plain vanilla European options, the initial condition
can be represented exactly as a neural network φ. Then one can choose φε = φ for all ε ∈ (0, 1] and
so (4.2)–(4.4) is satisfied with q = 0, c = max(M(φ),Lip(R(φ))). Examples include call options,
straddles, and butterfly payoff functions (when ̺ is the ReLU activation function x 7→ max(x, 0)).

Remark 4.3. In Proposition 4.1 the time horizon T > 0 is finite and fixed. As evident from the
proof, the constant κ depends on T .

Proof. Let ε ∈ (0, 1] be the given target accuracy and fix ε̄ ∈ (0, 1] (to be specified later). Denote
φ = φε̄ Firstly, (4.2) and (4.4) show that for any s ∈ (0,∞)

|ϕ(s)| ≤ |ϕ(s)− R(φ)(s)|+ |R(φ)(s)− R(φ)(0)|+ |R(φ)(0)|
≤ ε̄c(1 + |s|) + c|s|+ |R(φ)(0)|.

Thus, ϕ is at most linearly growing at ∞ and so we obtain E[ϕ(seXT )] <∞, since even the second
exponential moment is finite, i.e.,

(4.5) E[e2XT ] <∞,
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due to the assumed integrability (4.1) of the Lévy measure and [Sat99, Theorem 25.17].
Now recall that

u(T, s) = E[ϕ(seXT )].

Combining this with assumption (4.2) yields for all s ∈ [a, b]

(4.6) |u(T, s)− E[R(φ)(seXT )]| ≤ E[|ϕ(seXT )− R(φ)(seXT )|] ≤ ε̄c(1 + |s|E[eXT ]) ≤ ε̄c1
with the constant c1 = c(1 + bE[eXT ]) being finite due to (4.5).
In the second step, let X1, . . . , Xn denote n i.i.d. copies of X and introduce an independent collec-
tion of Rademacher random variables ε1, . . . , εn. Write f(s) = R(φ)(s) − R(φ)(0). Note that the
mapping Rn × Rn ∋ (x, y) 7→ sups∈[a,b] |

∑n
k=1 ykf(se

xk)| is Borel-measurable, because the supre-

mum over s ∈ [a, b] equals the supremum over s ∈ [a, b]∩◗ due to continuity of f and the pointwise
supremum of a countable collection of measurable functions is itself measurable. The same reason-
ing guarantees that the suprema over s ∈ [a, b] in (4.7) below are indeed random variables, because
they are equal to the respective suprema over s ∈ [a, b] ∩◗.
Using independence and symmetrization (see for instance [BLM13, Lemma 11.4]) in the first step,
elementary properties of conditional expectations in the second step, and Theorem 4.12 in [LT11]
(with Tx1,...,xn = {t ∈ Rn : t1 = sex1 , . . . , tn = sexn for some s ∈ [a, b]}) in the third step shows that

(4.7)

E

[
sup
s∈[a,b]

∣∣∣∣∣E[R(φ)(se
XT )]− 1

n

n∑

k=1

R(φ)(seX
k
T )

∣∣∣∣∣

]

≤ 2E

[
sup
s∈[a,b]

∣∣∣∣∣
1

n

n∑

k=1

εkf(se
Xk

T )

∣∣∣∣∣

]

=
2

n
E


E

[
sup

t∈Tx1,...,xn

∣∣∣∣∣

n∑

k=1

εkf(tk)

∣∣∣∣∣

]∣∣∣∣∣
x1=X1

T ,...,xn=X
n
T




≤ 4

n
Lip(R(φ))E


E

[
sup

t∈Tx1,...,xn

∣∣∣∣∣

n∑

k=1

εktk

∣∣∣∣∣

]∣∣∣∣∣
x1=X1

T ,...,xn=X
n
T




=
4

n
Lip(R(φ))E

[
sup
s∈[a,b]

∣∣∣∣∣

n∑

k=1

εkse
Xk

T

∣∣∣∣∣

]

≤ 4b

n
Lip(R(φ))E

[∣∣∣∣∣

n∑

k=1

εke
Xk

T

∣∣∣∣∣

]
.

On the other hand, one may apply Jensen’s inequality, independence and E[εkεl] = δk,l to estimate

E

[∣∣∣∣∣

n∑

k=1

εke
Xk

T

∣∣∣∣∣

]
≤ E



∣∣∣∣∣

n∑

k=1

εke
Xk

T

∣∣∣∣∣

2


1/2

=

(
n∑

k=1

E

[
e2X

k
T

])1/2

=
√
nE
[
e2XT

]1/2
.

Combining this with the previous estimate (4.7) and the hypothesis on the Lipschitz-constant of
the neural network (4.4) we obtain that

(4.8) E

[
sup
s∈[a,b]

∣∣∣∣∣E[R(φ)(se
XT )]− 1

n

n∑

k=1

R(φ)(seX
k
T )

∣∣∣∣∣

]
≤ c2√

n
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with c2 = 4bcE
[
e2XT

]1/2
, which is finite again due to the existence of exponential moments (4.5).

In a third step we can now apply Markov’s inequality for the first estimate and then insert (4.8) to
estimate

(4.9)

P

(
sup
s∈[a,b]

∣∣∣∣∣E[R(φ)(se
XT )]− 1

n

n∑

k=1

R(φ)(seX
k
T )

∣∣∣∣∣ ≥
3c2
2
√
n

)

≤ 2
√
n

3c2
E

[
sup
s∈[a,b]

∣∣∣∣∣E[R(φ)(se
XT )]− 1

n

n∑

k=1

R(φ)(seX
k
T )

∣∣∣∣∣

]

≤ 2

3
.

This proves in particular that

(4.10) P

(
sup
s∈[a,b]

∣∣∣∣∣E[R(φ)(se
XT )]− 1

n

n∑

k=1

R(φ)(seX
k
T )

∣∣∣∣∣ ≤
2c2√
n

)
> 0 .

Therefore (as A ∈ F with P(A) > 0 necessarily needs to satisfy A 6= ∅) there exists ω ∈ Ω with

(4.11) sup
s∈[a,b]

∣∣∣∣∣E[R(φ)(se
XT )]− 1

n

n∑

k=1

R(φ)(seX
k
T (ω))

∣∣∣∣∣ ≤
2c2√
n
.

Lemma 3.2 proves that s 7→ 1
n

∑n
k=1R(φ)(se

Xk
T (ω)) is itself the realization of a neural network ψ̃

with M(ψ̃) ≤ nM(φ) and hence we have proved the existence of a neural network ψ̃ with

(4.12) sup
s∈[a,b]

∣∣∣E[R(φ)(seXT )]− R(ψ̃)(s)
∣∣∣ ≤ 2c2√

n
.

The final step consists in selecting ε̄ = ε(c1 + 1)−1, choosing n = ⌈(2c2ε̄−1)2⌉, setting ψε = ψ̃,
noting (with κ = c(1 + 4c22)(c1 + 1)2+q)

M(ψε) =M(ψ̃) ≤ nM(φ) ≤ (1 + (2c2ε̄
−1)2)cε̄−q ≤ c(1 + 4c22)ε̄

−2−q = κε−2−q

and combining (4.12) with (4.6) to estimate

sup
s∈[a,b]

|u(T, s)− R(ψε)(s)|

≤ sup
s∈[a,b]

|u(T, s)− E[R(φ)(seXT )]|+ sup
s∈[a,b]

|E[R(φ)(seXT )]− R(ψ̃)(s)|

≤ ε̄(c1 + 1) = ε.

�

Proposition 4.4. Consider the setting of Proposition 4.1, but instead of (4.4) assume that R(φε)
is C1 and there is a constant c > 0 such that for every s ∈ (0,∞) holds

(4.13) |R(φε)′(s)| ≤ c.
Then the assertion of Proposition 4.1 remains valid.

Proof. This result is a corollary of Proposition 4.1. For the ease of the reader we provide an
alternative proof. First, let us verify that (4.13) and (4.2) yield a linear growth condition for R(φε).
Indeed, we may use the triangle inequality to estimate for any ε ∈ (0, 1], s ∈ (0,∞),

(4.14) |R(φε)(s)| ≤ |R(φε)(s)− R(φε)(0)|+ |R(φε)(0)− ϕ(0)|+ |ϕ(0)| ≤ max(c, |ϕ(0)|)(1 + |s|).
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Now the same proof as for Proposition 4.1 applies, only the second step needs to be adapted. In
other words, we prove the estimate (4.8) with a different constant c2 by using a different technique.
To do this, again we let X1, . . . , Xn denote n i.i.d. copies of X. Applying Lemma 2.16 in [GGJ+19]

(with random fields ξk(s, ω) = R(φ)(seX
k
T (ω)), k = 1, . . . , n, which satisfy the hypotheses of

Lemma 2.16 in [GGJ+19] thanks to (4.5) and (4.13)) in the first inequality and using (4.13) and
(4.14) for the second inequality then proves that

(4.15)

E

[
sup
s∈[a,b]

∣∣∣∣∣E[R(φ)(se
XT )]− 1

n

n∑

k=1

R(φ)(seX
k
T )

∣∣∣∣∣

]

≤ 32
√
e√
n

sup
s∈[a,b]

[
E[|R(φ)(seXT )|2]1/2 + (b− a)E[|R(φ)′(seXT )eXT |2]1/2

]

≤ 32max(c, |ϕ(0)|)√e√
n

[
1 + bE[e2XT ]1/2 + (b− a)E[e2XT ]1/2

]
,

which is a bound as in (4.8) with constant

c2 = 32max(c, |ϕ(0)|)√e
[
1 + bE[e2XT ]1/2 + (b− a)E[e2XT ]1/2

]
.

�

Remark 4.5. The architecture of the neural network approximations constructed using probabilistic
arguments in Proposition 4.1, Proposition 4.4 and also Theorem 5.1 ahead differ from architectures
obtained by analytic arguments, see Proposition 4.8 and Theorem 5.4 ahead. While the neural
networks in the latter results are deep in any situation, the architecture of the neural networks in the
former situation depends heavily on the architecture of the neural network φε used to approximate
the payoff function ϕ. Therefore, in certain simple situations, the approximating neural network
ψε may be a shallow neural network, that is, a neural network with only L = 2 layers. E.g., by
(4.6) or (2.3) the function ϕ is specified in the variable s > 0, and not in log-return variable x.
This implies, e.g., for a plain-vanilla European call that ϕ(s) = (s −K)+ must be emulated by a
ReLU NN, which can be done using the simple 2-layer neural network φ0 = ((1,−K), (1, 0)), that
is, R(φ0) = ϕ.

4.2. DNN expression of European calls. In this section we illustrate how the results of Propo-
sition 4.1 can be used to bound DNN expression rates of call options on exponential Lévy models.
Suppose we observe call option prices for a fixed maturity T and N different strikesK1, . . . ,KN > 0.
Denote these prices by Ĉ(T,K1), . . . , Ĉ(T,KN ). A task frequently encountered in practice is to
extrapolate from these prices to prices corresponding to unobserved maturities or to learn a non-
parametric option pricing function. A widely used approach is to solve

(4.16) min
φ∈H

1

N

N∑

i=1

[
Ĉ(T,Ki)

Ki
− φ(S0/Ki)

]2
.

Here H is a suitable collection of (realizations of) neural networks, for instance all networks with an
a-priori fixed architecture. In fact, many of the papers listed in the recent review [RW19] use this
approach or a variation of it, where for instance an absolute value is inserted instead of a square
or Ĉ(T,Ki)/Ki is replaced by Ĉ(T,Ki) and S/Ki by Ki.
In this section we assume that the observed call prices are generated from an (assumed unknown)
exponential Lévy model and H consists of ReLU networks. Then we show that the error in (4.16)
can be controlled and we can give bounds on the number of non-zero parameters of the minimizing
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neural network. The following result is a direct consequence of Proposition 4.1. It shows that
O(ε−1) weights suffice to achieve an error of at most ε in (4.16).

Proposition 4.6. Assume that

Ĉ(T,Ki) = E[(ST −Ki)
+], for i = 1, . . . , N,

with ST = S0 exp(XT ) and X an (unknown) Lévy process satisfying (4.1). For any κ > 0, ε ∈ (0, 1]
we let Hκ,ε denote the set of all (realizations of) neural networks with at most κε−1 non-zero weights
and choose ̺(x) = max(x, 0) as activation function. Then there exists κ ∈ (0,∞) such that for all
ε ∈ (0, 1]

min
φ∈Hκ,ε

1

N

N∑

i=1

[
Ĉ(T,Ki)

Ki
− φ(S0/Ki)

]2
≤ ε.

Proof. Firstly, choose the interval [a, b] by setting a = min{S0/K1, . . . , S0/KN} and b = max{S0/K1, . . . , S0/KN}.
We note that the function ϕ(s) = (s − 1)+ can be represented by the 2-layer neural network
φ0 = ((1,−1), (1, 0)), that is, R(φ0) = ϕ. Thus, Proposition 4.1 can be applied (with φε = φ0 for
all ε ∈ (0, 1] and q = 0, c = 3) and so there exists κ ∈ [3,∞) and neural networks ψδ, δ ∈ (0, 1],
such that for any δ ∈ (0, 1] we have M(ψδ) ≤ κδ−2 and

sup
s∈[a,b]

|u(T, s)− R(ψδ)(s)| ≤ δ

with u(T, s) = E[(seXT − 1)+]. Therefore,

1

N

N∑

i=1

[
Ĉ(T,Ki)

Ki
− R(ψδ)(S0/Ki)

]2
=

1

N

N∑

i=1

[u(T, S0/Ki)− R(ψδ)(S0/Ki)]
2

≤ δ2.
Setting ε = δ2 and noting R(ψδ) ∈ Hκ,ε then finishes the proof. �

Remark 4.7. The proof shows that κ is independent of N . This can also be seen by observing
that the result directly generalizes to an infinite number of call options with strikes in a compact
interval K = [K,K] with K > 0, K <∞. Indeed, let µ be a probability measure on (K,B(K)), then
choosing ψδ, δ = ε2 as in the proof of Proposition 4.6 and a = S0/K, b = S0/K yields R(ψδ) ∈ Hκ,ε
and

∫

K

[
Ĉ(T,K)

K
− R(ψδ)(S0/K)

]2
µ(dK) =

∫

K
[u(T, S0/K)− R(ψδ)(S0/K)]2 µ(dK) ≤ ε.

4.3. ReLU DNN exponential expressivity. We now develop a second argument for bounding
the expressivity of ReLU DNNs for the option price u(τ, s) solution of (2.4), subject to the initial
condition u(0, s) = ϕ(s). In particular, in this subsection we choose ̺(x) = max(x, 0) as activation
function.
As in the preceding, probabilistic argument, we consider the DNN expression error in a bounded
interval [a, b] with 0 < a < s < b < ∞. The second argument is based on parabolic smoothing
of the linear, parabolic PIDE (2.4). This, in turn, ensures smoothness of s 7→ u(τ, s) at positive
times τ > 0, i.e. smoothness in the “spatial” variables s ∈ [a, b] resp. in the log-return variable
x = log(s) ∈ [log(a), log(b)], even for nonsmooth payoff functions ϕ (so, in particular, binary
options with discontinuous payoffs ϕ are admissible, albeit at the cost of non-uniformity of derivative



RELU DNN EXPRESSION RATES FOR OPTION PRICES IN HIGH-DIMENSIONAL, EXP-LÉVY MODELS 13

bounds at τ ↓ 0). It is a classical result that this implies spectral, possibly exponential convergence
of polynomial approximations of u(τ, ·)|[a,b] in L∞([a, b]). As we observed in [OSZ19, Section 3.2],
this exponential polynomial convergence rate implies also exponential expressivity of ReLU DNNs
of u(τ, ·)|[a,b] in L∞([a, b]) for any τ > 0.
To ensure smoothing properties of the solution operator of the PIDE, we require additional as-
sumptions (see (4.18) below) on the Lévy triplet (σ2, γ, ν). To formulate these, we recall the Lévy
symbol ψ of the LP X ⊂ R

(4.17) ψ(ξ) =
σ2

2
ξ2 − iγξ −

∫

R

[
eiξx − 1− iξx✶{|x|≤1}

]
ν(dx), ξ ∈ R .

Proposition 4.8. Suppose that the symbol ψ of the LP X is such that there exists ρ ∈ (0, 1] and
constants Ci > 0, i = 1, 2, 3 such that for all ξ ∈ R holds

(4.18) ℜψ(ξ) ≥ C1|ξ|2ρ, |ψ(ξ)| ≤ C2|ξ|2ρ + C3 .

Then, for every v0 such that v0 = ϕ ◦ exp ∈ L2(R), and for every 0 < τ ≤ T < ∞, and for every
0 < a < b < ∞, and for every 0 < ε < 1/2 exist neural networks ψuε which express the solution
u(τ, ·)|[a,b] to accuracy ε, i.e.,

sup
s∈[a,b]

|u(τ, s)− R(ψuε )(s)| ≤ ε .

Furthermore, there exists a constant C ′ > 0 such that with δ=1/min{1, 2ρ} ≥ 1 holds

M(ψuε ) ≤ C ′| log(ε)|2δ , L(ψuε ) ≤ C ′| log(ε)|δ| log(| log(ε)|)| .
Remark 4.9. A sufficient condition on the Lévy triplet which ensures (4.18) is as follows. Let X
be a Lévy process with characteristic triplet (σ2, γ, ν) and Lévy density k(z) where ν(dz) = k(z)dz
satisfies

(1) There are constants β− > 0, β+ > 1 and C > 0 such that

(4.19) k(z) ≤ C
{
e−β−|z|, z < −1,
e−β+z, z > 1.

(2) Furthermore, there exist constants 0 < α < 2 and C+ > 0 such that

(4.20) k(z) ≤ C+
1

|z|1+α
, 0 < |z| < 1.

(3) If σ = 0, we assume additionally that there is a C− > 0 such that

(4.21)
1

2
(k(z) + k(−z)) ≥ C−

1

|z|1+α
, 0 < |z| < 1.

Then (4.18) is satisfied (see [HRSW13, Lemma 10.4.2]). Here, ρ=1 if σ > 0 and otherwise ρ=α/2.

Proof. The proof proceeds in several steps: first, we apply the change of variables x = log(s) ∈ R in
order to leverage the stationarity of the LPX for obtaining a constant coefficient Kolmogorov PIDE.
Assumptions (4.18) then ensure well-posedness of the PIDE in a suitable variational framework.
We then exploit that stationarity of the LP X facilitates the use of Fourier transformation; the
lower bound on ψ in (4.18) will allow to derive sharp, explicit bounds on high spatial derivatives of
(variational) solutions of the PIDE which imply Gevrey-regularity1 of these solutions on bounded

1For δ ≥ 1, a smooth function x 7→ f(x) is Gevrey-δ regular in an open subset D ⊂ R
d if f ∈ C∞(D) and if for

every compact set κ ⊂⊂ D exists Cκ > 0 such that for all α ∈ N
d
0 and for every x ∈ κ holds |Dα

x f(x)| ≤ C
|α|+1
κ (α!)δ.

Note that δ = 1 implies that f is real analytic in κ. We refer to [Rod93, Section 1.4] for details, examples and further
references.
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intervals [a, b] ⊂ (0,∞). These, in turn, imply exponential rates of convergence of polynomial and
deep ReLU NN approximations of s 7→ u(τ, s) for τ > 0 whence we obtain the assertion of the
theorem.
We change coordinates to x = log(s) ∈ (−∞,∞) so that v(τ, x) = u(τ, exp(x)). Then, the PIDE
(2.4) takes the form (e.g. [MvPS04, Section 3], [LM08, Section 3.1])

(4.22)
∂v

∂τ
− σ2

2

∂2v

∂x2
− (γ + r)

∂v

∂x
+A[v] + rv = 0 in (0, T )× R

where A denotes the integrodifferential operator

A[f ](x)=−
∫

R

{f(x+ y)− f(x)− yf ′(x)✶{|y|≤1}} ν(dy)

together with the initial condition

(4.23) v|τ=0 = ϕ(ex) = (ϕ ◦ exp)(x).
Then C(t, s)=v(T − t, ln(s)) satisfies

(4.24) C(t, St) = E[er(t−T )ϕ(ST )|Ft].
Conversely, if C(t, s) in (4.24) is sufficiently regular, then v(τ, x)=C(T − τ, ex) is solution of (4.22),
(4.23) (recall that we assume r = 0 for notational simplicity).
The Lévy-Khintchine formula describes the LP X ⊂ R by the log-characteristic function ψ of the
RV X1. From the time-homogeneity of the LP X,

(4.25) ∀t > 0 : E[eiξXt ] = e−tψ(ξ) .

The Lévy exponent ψ of the LP X admits the explicit representation (4.17).
The Lévy exponent ψ is the symbol of the pseudo-differential operator −L, where L is the infini-
tesimal generator of the semi-group of the LP X. A= − L is the spatial operator in (4.22) given
by

(4.26) A[f ](x)=− σ2

2

d2f

dx2
(x)− γ df

dx
(x) +A[f ](x).

For f, g ∈ C∞
0 (R) we associate with operator A the bilinear form

(4.27) a(f, g)=

∫

R

A[f ](x)g(x)dx.

The translation invariance of the operator A (implied by stationarity of the LP X) in (4.26) and
Parseval’s equality (see [HRSW13, Remark 10.4.1]) imply that ψ is the symbol of A, i.e.

∀f, g ∈ C∞
0 (R) : a(f, g) =

∫

R

ψ(ξ)f̂(ξ)ĝ(ξ)dξ .

The assumption (4.18) on ψ implies continuity and coercivity of the bilinear form a(·, ·) onHρ/2(R)×
Hρ/2(R), so that for v0 ∈ L2(R) there exists a unique variational solution v ∈ C([0, T ];L2(R)) ∩
L2(0, T ;Hρ/2(R)) of the PIDE (4.22) with the initial condition (4.23), see, e.g. [EG14].
Fix 0 < τ ≤ T <∞, x ∈ R arbitrary. The variational solution v of (4.22), (4.23) satisfies

v(τ, x) =
1√
2π

∫

R

exp(ixξ)v̂(τ, ξ)dξ =
1√
2π

∫

R

exp(ixξ) exp(−τψ(ξ))ϕ̂ ◦ exp(ξ)dξ .
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For every k ∈ N0, Parseval’s equality implies with the lower bound in (4.18)
∫

R

|(Dk
xv)(τ, x)|2dx =

∫

R

|ξ|2k| exp(−2τψ(ξ))||ϕ̂ ◦ exp(ξ)|2dξ

≤
∫

R

|ξ|2k exp(−2τC1|ξ|2ρ)|ϕ̂ ◦ exp(ξ)|2dξ .

An elementary calculation shows that for any m,κ, µ > 0 holds

(4.28) max
η>0
{ηm exp(−κηµ)} =

(
m

κµe

)m/µ
.

We employ (4.28) with m = 2k, κ = 2τC1, µ = 2ρ and η = |ξ| to obtain

(4.29) ‖(Dk
xv)(τ, ·)‖2L2(R) ≤

(
k

2τC1ρe

)k/ρ
‖v0‖2L2(R) .

Taking square roots and using the (rough) Stirling bound kk ≤ k!ek valid for all k ∈ N, we obtain

(4.30) ∀τ > 0, ∀k ∈ N : ‖(Dk
xv)(τ, ·)‖L2(R) ≤

[(
1

2τC1ρ

)1/(2ρ)
]k

(k!)1/(2ρ)‖v0‖L2(R) .

This implies, with the Sobolev embedding, that for any bounded interval I = [x−, x+] ⊂ R,
−∞ < x− < x+ < ∞, and for every fixed τ > 0, there exist constants C = C(x+, x−) > 0 and
A(τ, ρ) > 0 such that

(4.31) ∀k ∈ N : sup
x∈I
|(Dk

xv)(τ, x)| ≤ C(A(τ, ρ))k(k!)1/min{1,2ρ} .

I.e., v(τ, ·)|I is Gevrey-δ regular with δ = 1/min{1, 2ρ}.
To construct the DNNs ψuε in the claim, we proceed in several steps: we first use a (analytic, in
the bounded interval I = [x−, x+] ⊂ R) change of variables s = exp(x) and the fact that Gevrey
regularity is preserved under analytic changes of variables to infer Gevrey regularity in [a, b] ⊂ R>0

of s 7→ u(τ, s), for every fixed τ > 0.
This, in turn, implies the existence of a sequence {up(s)}p≥1 of polynomials of degree p ∈ N in

[a, b] converging in W 1,∞([a, b]) to u(τ, ·) for τ > 0 at rate exp(−b′p1/δ) for some constant b′ > 0
depending on a, b and on δ ≥ 1, but independent of p. The asserted DNNs are then obtained by
approximately expressing the up through ReLU DNNs, again at exponential rates, with [OSZ19].
The interval s ∈ [a, b] in the assertion corresponds to x ∈ [log(a), log(b)] under the analytic (in
the bounded interval [a, b]) change of variables x = log(s). As Gevrey regularity is preserved
under analytic changes of variables (e.g. [Rod93, Proposition 1.4.6]), also u(τ, s)|s∈[a,b] is Gevrey-δ
regular, with the same index δ = 1/min{1, 2ρ} ≥ 1 and with constants in the derivative bounds
which depend on 0 < a < b < ∞, ρ ∈ (0, 1], τ > 0. In particular, for ρ ≥ 1/2, u(τ, s)|s∈[a,b] is real
analytic in [a, b].
With Gevrey-δ regularity of s 7→ u(τ, s) for s ∈ [a, b] established, we may invoke expression rate
bounds for deep ReLU NNs for such functions: in [OSZ19, Proposition 4.1], it was shown that for
such functions in space dimension d = 1 there exist constants C ′ > 0, β′ > 0 such that for every
N ∈ N there exists a deep ReLU NN ũN with

M(ũN ) ≤ N , L(ũN ) ≤ C ′Nmin
{
1
2 ,

1
d+1/δ

}

log(N ),

‖u− R(ũN )‖W 1,∞([−1,1]d) ≤ C ′ exp

(
−β′Nmin

{
1
2δ ,

1
dδ+1

})
.
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This implies that for every 0 < ε < 1/2, a pointwise error of O(ε) in [a, b] can be achieved by some
ReLU NN ψuε of depth O(| log(ε)|δ| log(| log(ε)|)|) and of size O(| log(ε)|2δ).
This completes the proof. �

4.4. Summary and Discussion. For prices of derivative contracts on one risky asset, whose log-
returns are modelled by a LP X, we have analyzed the expression rate of deep ReLU NNs. We
provided two mathematically distinct approaches to the analysis of the expressive power of deep
ReLU NNs. The first, probabilistic approach furnished algebraic expression rates, i.e. pointwise
accuracy ε > 0 on a bounded interval [a, b] was furnished with DNNs of size O(ε−q) with suit-
able q ≥ 0. The argument is based on approximating the option price by Monte Carlo sampling,
estimating the uniform error on [a, b] and then emulating the resulting average by a DNN. The
second, “analytic” approach, leveraged regularity of (variational) solutions of the corresponding
Kolmogorov partial integrodifferential equations, and furnished exponential rates of DNN expres-
sion. That is, expression error ε > 0 is achieved with DNNs of size O(| log(ε)|a) for suitable a > 0.
Key in the second approach were stronger conditions (4.18) on the characteristic exponent of the LP
X, which imply, as we showed, Gevrey-δ regularity of the map s 7→ u(τ, s) for suitable τ > 0. This
regularity implies, in turn, exponential rates of polynomial approximation (in the uniform norm on
[a, b]) of s 7→ u(τ, s), which is a result of independent interest and, subsequently, by emulation of
polynomials with deep ReLU NNs, the corresponding exponential rates.
We remark that in the particular case δ = 1, the derivative bounds (4.30) imply analyticity of the
map s 7→ u(τ, s) for s ∈ [a, b] which implies the assertion also with the exponential expression rate
bound for analytic functions in [OSZ19].
We also remark that the smoothing of the solution operator in Proposition 4.8 accommodated
payoff functions which belong merely to L2, as arise e.g. in particular binary contracts. This is
a consequence of the assumption (4.18) which, on the other hand, excludes Lévy processes with
one-sided jumps. Such processes are covered by Proposition 4.1.

5. DNN approximation rates for multivariate Lévy models

We now turn to DNN expression rates for multivariate geometric Lévy models. This is a typical
situation when option prices on baskets of d risky assets are of interest, whose log-returns are
modelled by multivariate Lévy processes. We admit rather general jump measures with, in partic-
ular, fully correlated jumps in the marginals, as provided, for example, by so-called Lévy copula
constructions in [KT06].
As in the univariate case, we prove two results on ReLU DNN expression rates of option prices
for European style contracts. The first argument is developed in Section 5.1 below and overcomes,
in particular, the curse of dimensionality. Its proof is again based on probabilistic arguments
from statistical learning theory. As exponential LPs Xd generalize geometric Brownian motions,
Theorem 5.1 generalizes several results from the classical Black–Scholes setting and we comment
on the relation of Theorem 5.1 to these recent results in Section 5.2. Owing to the method of
proof, the DNN expression rate in Theorem 5.1 will deliver an ε-complexity of O(ε−2), achieved
with potentially shallow DNNs, see Remark 4.5.
The second argument is based on parabolic regularity of the deterministic Kolmogorov PIDE as-
sociated to the LP Xd. We show in Theorem 5.4 that polylogarithmic in ε expression rate bounds
can be achieved by allowing DNN depth to increase essentially as O(| log ε|). The result in Theorem
5.4 is, however, prone to the curse of dimensionality: constants implied in the O(·) bounds may
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(and, generally, will) depend exponentially on d. We also show that under a hypothesis on suffi-
ciently large time t > 0, parabolic smoothing will allow to overcome the curse of dimension, with
dimension-independent expression rate bounds which are possibly larger than the rates furnished
by the probabilistic argument (which is, however, valid uniformly for all t > 0).

5.1. DNN expression rate bounds via probabilistic argument. We start by remarking that
in this subsection, there is no need to assume ReLU activation.
The following result proves that neural networks are capable of approximating option prices in mul-
tivariate exponential Lévy models without the curse of dimensionality given that the corresponding
Lévy triplets (Ad, γd, νd) are bounded uniformly with respect to the dimension d.
For any dimension d ∈ N we assume given a payoff ϕd : R

d → R, a d-variate LP Xd and we denote
the option price in time-to-maturity by

(5.1) ud(τ, s) = E[ϕd(s1 exp(X
d
τ,1), . . . , sd exp(X

d
τ,d))], τ ∈ [0, T ], s ∈ (0,∞)d.

We refer to [Sat99] for more details on multivariate Lévy processes and to [CT04, EK19] for more
details on multivariate geometric Lévy models in finance.
The next theorem is a main result of the present paper. It states that DNNs can efficiently express
prices on possibly large baskets of risky assets whose dynamics are driven by multivariate Lévy
processes with general jump correlation structure. The expression rate bounds are polynomial
in the number d of assets and, therefore, not prone to the curse of dimensionality. This result
generalizes earlier work on DNN expression rates for diffusion models in [EGJS18, GHJvW18].

Theorem 5.1. Assume that for any d ∈ N, the payoff ϕd : R
d → R can be approximated well by

neural networks, that is, there exists constants c > 0, p ≥ 2, q̃, q ≥ 0 and, for all ε ∈ (0, 1], d ∈ N,
there exists a neural network φε,d with

|ϕd(s)− R(φε,d)(s)| ≤ εcdq̃(1 + ‖s‖p), for all s ∈ (0,∞)d,(5.2)

M(φε,d) ≤ cdq̃ε−q,(5.3)

Lip(R(φε,d)) ≤ cdq̃.(5.4)

In addition, assume that the Lévy triplets (Ad, γd, νd) of Xd are bounded in the dimension, that is,
there exists a constant B > 0 such that for each d ∈ N, i, j = 1, . . . , d,

(5.5) max

(
Adij , γ

d
i ,

∫

{‖y‖>1}
epyiνd(dy),

∫

{‖y‖≤1}
y2i ν

d(dy)

)
≤ B.

Then there exist constants κ, p, q ∈ [0,∞) and neural networks ψε,d, ε ∈ (0, 1], d ∈ N such that for
any target accuracy ε ∈ (0, 1] and for any d ∈ N the number of weights grows only polynomially
M(ψε,d) ≤ κdpε−q and the approximation error between the neural network ψε,d and the option
price is at most ε, that is,

sup
s∈[a,b]d

|ud(T, s)− R(ψε,d)(s)| ≤ ε.

Remark 5.2. The statement of Theorem 5.1 is still valid, if we admit logarithmic growth of B with
d in (5.5).

Remark 5.3. As in the univariate case (cf. Remark 4.2), in relevant examples of options written on
d > 1 underlyings (such as basket options, call on max/min options, put on max/min options, . . . )
the payoff can be represented exactly as a ReLU DNN and so, we may choose q = 0 in (5.3) and
obtain q = 2 in Theorem 5.1 (cf. (5.14)).
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Proof. Let ε ∈ (0, 1] be the given target accuracy and consider ε̄ ∈ (0, 1] (to be selected later). To
simplify notation we write for s ∈ [a, b]d

seX
d
T = (s1 exp(X

d
T,1), . . . , sd exp(X

d
T,d)).

The proof consists in four steps:

• Step 1 bounds the error that arises when the payoff ϕd is replaced by the neural network
approximation φε̄,d. As a part of Step 1 we also prove that the p-th exponential moments

of the components Xd
T,i of the Lévy process are bounded uniformly in the dimension d.

• Step 2 is a technical step that is required for Step 3; it bounds the error that arises when the
Lévy process is capped at a threshold D > 0. If we assumed in addition that the output of
the neural network φε̄,d were bounded (this is for instance the case if the activation function
̺ is bounded), then Step 2 could be omitted.
• Step 3 is the key step in the proof. We introduce n i.i.d. copies of (the capped version
of) Xd

T and use statistical learning techniques (symmetrization, Gaussian and Rademacher
complexities) to estimate the expected maximum difference between the option price (with
neural network payoff) and its sample average. This is then used to construct the approxi-
mating neural networks.
• Step 4 combines the estimates from Steps 1-3 and concludes the proof.

Step 1: Assumption (5.2) and Hölder’s inequality yield for all s ∈ [a, b]d

(5.6)

|ud(T, s)− E[R(φε̄,d)(se
Xd

T )]| ≤ E[|ϕd(seX
d
T )− R(φε̄,d)(se

Xd
T )|]

≤ ε̄cdq̃(1 + E[‖seXd
T ‖p])

= ε̄cdq̃


1 + E



(

d∑

i=1

s2i e
2Xd

T,i

)p/2




≤ ε̄cdq̃
(
1 + bpE

[
d(p−1)/2(

d∑

i=1

e2pX
d
T,i)1/2

])

≤ ε̄c1dq̃+
1

2
p+ 1

2

with the constant c1 = cmax(1, bp)(1 + supd,i E[e
pXd

T,i ]) and we used ‖ · ‖ ≤ ‖ · ‖1 in the last step.

To see that c1 is indeed finite, note that (5.5) and [Sat99, Theorem 25.17] (with the vector w ∈ Rd

in that result being pei) imply that for any d ∈ N, i = 1, . . . , d, the exponential moment can be
bounded as

(5.7)

E[epX
d
T,i ] = exp

(
T

[
p2

2
Adii +

∫

Rd

(epyi − 1− pyi✶{‖y‖≤1})ν
d(dy) + pγdi

])

≤ exp
(
T
[3p2

2
B +

∫

{‖y‖≤1}
(epyi − 1− pyi)νd(dy)

+

∫

{‖y‖>1}
(epyi − 1)νd(dy)

])

≤ exp

(
T

[
5p2

2
B + p2ep

∫

{‖y‖≤1}
y2i ν

d(dy)

])

≤ exp

(
T

[
5p2

2
B + p2epB

])
,
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where in the second inequality we used that |ez − 1− z| ≤ z2ep for all z ∈ [−p, p] which can be seen
e.g. from the (mean value form of the) Taylor remainder formula.
Step 2: Before proceeding with the key step of the proof, we need to introduce a cut-off in order
to ensure that the neural network output is bounded. Let D > 0 and consider the random vari-

able Xd,D
T = min(Xd

T , D), where the minimum is understood componentwise. Then the Lipschitz
property (5.4) implies

(5.8)

|E[R(φε̄,d)(seX
d
T )]− E[R(φε̄,d)(se

Xd,D
T )]|

≤ cdq̃E[‖seXd
T − seXd,D

T ‖]

≤ bcdq̃E
[

d∑

i=1

|eXd
T,i − eX

d,D
T,i |
]

≤ bcdq̃
d∑

i=1

E

[
2eX

d
T,i✶{Xd

T,i>D}

]

≤ 2bcdq̃
d∑

i=1

E[e2X
d
T,i ]1/2P(Xd

T,i > D)1/2

≤ 2e−Dbcdq̃
d∑

i=1

E[e2X
d
T,i ]

≤ c̃1e−Ddq̃+1,

where c̃1 = 2bc exp(5TpB + 2TeppB) and we used ‖ · ‖ ≤ ‖ · ‖1, Hölder’s inequality, Chernoff’s
bound and finally again Hölder’s inequality and (5.7).

Step 3: Let X1, . . . , Xn denote n i.i.d. copies of the random vector Xd,D
T and let Z1, . . . , Zn denote

i.i.d. standard normal variables, independent of X1, . . . , Xn. For any separable class of functions
H ⊂ C(Rd,R) define the random variable (the so-called empirical Gaussian complexity)

Ĝn(H) = E

[
sup
f∈H

∣∣∣∣∣
2

n

n∑

k=1

Zkf(Xk)

∣∣∣∣∣ |X1, . . . , Xn

]
.

Consider now for i = 1, . . . , d the function classes

Hi = {(−∞, D]d ∋ x 7→ s exp(xi) : s ∈ [a, b]}

and, with the notation s exp(x) = (s1 exp(x1), . . . , sd exp(xd)), the class

H = {(−∞, D]d ∋ x 7→ R(φε̄,d)(s exp(x))− R(φε̄,d)(0) : s ∈ [a, b]d}.

Denoting by H̃ ⊂ C((−∞, D]d,Rd) the direct sum of H1, . . . ,Hd, we have that

H = φ(H̃)

where φ = R(φε̄,d)(·) − R(φε̄,d)(0) is a Lipschitz-function with Lipschitz-constant cdq̃ (due to hy-
pothesis on the Lipschitz-constant of the neural network (5.4)) and φ satisfies φ(0) = 0 and φ is

bounded on the range of H̃ (which is contained in [0, b exp(D)]d).
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Consequently, Theorem 14 in [BM02] implies that

(5.9) Ĝn(H) ≤ 2cdq̃
d∑

i=1

Ĝn(Hi).

Therefore, denoting by ε1, . . . , εn an independent collection of Rademacher random variables, we
estimate

(5.10)

E

[
sup

s∈[a,b]d

∣∣∣∣∣E[R(φε̄,d)(se
Xd,D

T )]− 1

n

n∑

k=1

R(φε̄,d)(se
Xk)

∣∣∣∣∣

]

≤ 2E

[
sup

s∈[a,b]d

∣∣∣∣∣
1

n

n∑

k=1

εkφ(se
Xk)

∣∣∣∣∣

]

≤ c̃2E
[

sup
s∈[a,b]d

∣∣∣∣∣
2

n

n∑

k=1

Zkφ(se
Xk)

∣∣∣∣∣

]

= c̃2E

[
sup
f∈H

∣∣∣∣∣
2

n

n∑

k=1

Zkf(Xk)

∣∣∣∣∣

]

≤ 2c̃2cd
q̃

d∑

i=1

E[Ĝn(Hi)]

≤ 4c̃2cd
q̃b

n

d∑

i=1

E

[∣∣∣∣∣

n∑

k=1

Zke
Xk,i

∣∣∣∣∣

]
,

where the first inequality follows by symmetrization (see for instance [BLM13, Lemma 11.4]), the
second inequality follows from the comparison results on Gaussian and Rademacher complexities
(see for instance [BM02, Lemma 4]) with some absolute constant c̃2 and the third inequality uses
(5.9).

In fact, it is possible to prove that c̃2 may be chosen as c̃2 = 1/E[|Z1|] =
√
π/2. Indeed, setting

G = σ(ε1, . . . , εn, X1, . . . , Xn) and using independence yields

E[|Z1|]E
[

sup
s∈[a,b]d

∣∣∣∣∣
1

n

n∑

k=1

εkφ(se
Xk)

∣∣∣∣∣

]

= E

[
sup

s∈[a,b]d

∣∣∣∣∣
1

n

n∑

k=1

E[|Zk||G]εkφ(seXk)

∣∣∣∣∣

]

= E

[
sup

s∈[a,b]d

∣∣∣∣∣E
[
1

n

n∑

k=1

|Zk|εkφ(seXk)

∣∣∣∣∣G
]∣∣∣∣∣

]

≤ E

[
E

[
sup

s∈[a,b]d

∣∣ 1
n

n∑

k=1

|Zk|εkφ(seXk)
∣∣
∣∣∣∣∣G
]]

= E

[
sup

s∈[a,b]d

∣∣∣∣∣
1

n

n∑

k=1

Zkφ(se
Xk)

∣∣∣∣∣

]
.
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To further simplify (5.10) we now apply Jensen’s inequality and use independence and E[ZkZl] = δk,l
to derive for i = 1, . . . , d

E

[∣∣∣∣∣

n∑

k=1

Zke
Xk,i

∣∣∣∣∣

]
≤ E



∣∣∣∣∣

n∑

k=1

Zke
Xk,i

∣∣∣∣∣

2


1/2

=

(
n∑

k=1

E[e2Xk,i ]

)1/2

≤ √nE[e2Xd
T,i ]1/2 ≤ √nE[epXd

T,i ]1/p.

Combining this with the previous estimate (5.10) and with the exponential moment estimate (5.7)
we obtain that

(5.11) E

[
sup

s∈[a,b]d

∣∣∣∣∣E[R(φε̄,d)(se
Xd,D

T )]− 1

n

n∑

k=1

R(φε̄,d)(se
Xk)

∣∣∣∣∣

]
≤ c2d

q̃+1

√
n

with c2 = 4
√
π/2cb exp (5BTp/2 +BTpep). By applying Markov’s inequality (see (4.9)-(4.11)) this

proves that there exists ω ∈ Ω with

(5.12) sup
s∈[a,b]d

∣∣∣∣∣E[R(φε̄,d)(se
Xd,D

T )]− 1

n

n∑

k=1

R(φε̄,d)(se
Xk(ω))

∣∣∣∣∣ ≤
2c2d

q̃+1

√
n

.

Using that s 7→ 1
n

∑n
k=1R(φε̄,d)(se

Xk(ω)) is the realization of a neural network ψ̃ε̄,d with M(ψ̃ε̄,d) ≤
nM(φε̄,d) (see Lemma 3.2) we have therefore proved that there exists a neural network ψ̃ε̄,d with

(5.13) sup
s∈[a,b]d

∣∣∣E[R(φε̄,d)(seX
d,D
T )]− R(ψ̃ε̄,d)(s)

∣∣∣ ≤ 2c2d
q̃+1

√
n

.

Step 4: In the final step we now provide appropriate choices of the hyperparameters. We select

ε̄ = ε(c1d
q̃+ 1

2
p+ 1

2 + 2)−1, choose n = ⌈(2c2dq̃+1ε̄−1)2⌉, D = log(ε̄−1dq̃+1c̃1) and set ψε,d = ψ̃ε̄,d.
Then the total number of parameters of the approximating neural network can be estimated using
assumption (5.3) as

(5.14)

M(ψε,d) =M(ψ̃ε̄,d) ≤ nM(φε̄,d)

≤ (1 + (2c2d
q̃+1ε̄−1)2)cdq̃ ε̄−q

≤ (1 + 4c22)cd
3q̃+2ε̄−2−q

≤ [(1 + 4c22)c(c1 + 2)2+q]d(q̃+
1

2
p+ 1

2
)(2+q)+3q̃+2ε−2−q,

which shows the number of weights to be bounded polynomially in d and ε−1, as claimed.
Finally, we combine (5.6), (5.8) and (5.13) to estimate the approximation error as

sup
s∈[a,b]d

|ud(T, s)− R(ψε,d)(s)|

≤ sup
s∈[a,b]d

{
|ud(T, s)− E[R(φε̄,d)(se

Xd
T )]||

+ |E[R(φε̄,d)(seX
d
T )]− E[R(φε̄,d)(se

Xd,D
T )]|

+ |E[R(φε̄,d)(seX
d,D
T )]− R(ψ̃ε̄,d)(s)|

}

≤ ε̄c1dq̃+
1

2
p+ 1

2 + c̃1e
−Ddq̃+1 +

2c2d
q̃+1

√
n

≤ ε̄(c1dq̃+
1

2
p+ 1

2 + 2) = ε,
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as claimed. �

5.2. Discussion of related results. As recently there have been several results on DNN expres-
sion rates in high dimensional diffusion models, a discussion on the relation of the multivariate
DNN expression rate result, Thm.5.1, to other recent mathematical results on DNN expression
rate bounds is in order. Given that geometric diffusion models are particular cases of the presently
considered models (corresponding to νd = 0 in the Lévy triplet), it is of interest to consider to
which extent the DNN expression error bound Thm.5.1 relates to these results.
Firstly, we note that with the exception of [GGJ+19] and [EGJS18], previous results in the liter-
ature which are concerned with DNN approximation rates for Kolmogorov equations for diffusion
processes (see, e.g., [GGJ+19, GHJZ19, BGJ20b, EGJS18, GHJvW18, RZ20] and the references
therein) study approximation with respect to the Lp-norm (p <∞), whereas in Thm.5.1 we study
approximation with respect to the L∞-norm, which requires entirely different techniques. While
the results in [EGJS18] rely on specific structure of the payoff, the proof of the expression rates in
[GGJ+19] has some similarities with the proof of Thm.5.1. However, the novelty in the proof of
Thm.5.1 is the use of statistical learning techniques (symmetrization, Gaussian and Rademacher
complexities) which allow for weaker assumptions on the activation function than in [GGJ+19]. In
addition, the class of PDEs considered in [GGJ+19] (heat equation and related) is different than
the one considered in Thm.5.1 (Black–Scholes PDE and Lévy PIDE).
Secondly, Thm.5.1 is the first result on ReLU DNN expression rates for option prices in models
with jumps or, equivalently, for partial-integrodifferential equations in non-divergence form

(5.15)
∂tvd(τ, x) = 1

2Trace(A
dD2

xvd(τ, x)) +Dxvd(τ, x)γ
d

+
∫
Rd

[
vd(τ, x+ y)− vd(τ, x)−Dxvd(τ, x)y✶{‖y‖≤1}

]
νd(dy),

vd(0, x) = (ϕd ◦ exp)(x)

for x ∈ Rd, τ > 0 or, when transformed from log-price variables xi to actual price variables si via
(s1, . . . , sd) = (exp(x1), . . . , exp(xd)) (and with sey=(s1e

y1 , . . . , sde
yd))

(5.16)

∂tud(τ, s) = 1
2

∑d
i,j=1A

d
i,jsisj∂si∂sjud(τ, s) +

∑d
i=1 siγ

d
i ∂siud(τ, s)

+
∫
Rd

[
ud(τ, se

y)− ud(τ, s)−
∑d

i=1 si(e
yi − 1)∂siud(τ, s)

]
νd(dy),

ud(0, s) = ϕd(s)

for s ∈ (0,∞)d, τ > 0 (see for instance [HRSW09, Theorem 4.1]). As in our assumptions also
Ad = 0 is admissible under suitable conditions on νd, the present ReLU DNN expression rates are
not mere generalizations of the diffusion case, but cover indeed the case of pure jump models both
for finite and for infinite activity Lévy processes.
In the case of X being a diffusion with drift, i.e. for νd = 0, the Lévy PIDE reduces to a Black–
Scholes PDE. In this particular case, we may compare the result in Thm.5.1 to the recent results
e.g. in [GHJvW18]. The results in the latter article are specialized to the Black–Scholes case
in Section 4 [GHJvW18], where Setting 4.1 specifies the coefficients (Ad)i,j (in our notation) as

βdi β
d
j (B

d(Bd)⊤)i,j for some βd ∈ Rd, Bd ∈ Rd×d satisfying (Bd(Bd)⊤)k,k = 1 for all d ∈ N, i, j, k =

1, . . . , d and supd,i |βdi | < ∞. The coefficient γd is chosen as αd satisfying supd,i |αdi | < ∞. Using

that Σ = (Bd(Bd)⊤) is symmetric, positive definite we obtain Σi,j ≤
√
Σi,iΣj,j = 1 and hence

these assumptions imply that (5.5) is satisfied. Therefore, the DNN expression rate results from
Section 4 in [GHJvW18] can also be deduced from Thm.5.1, here in the case when the probability
measure used to quantify the Lp-error in [GHJvW18] is compactly supported, as in that case the
L∞-bounds proved here imply the Lp-bounds proved in [GHJvW18].
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5.3. Exponential ReLU DNN expression rates via PIDE. We now extend the univariate
case discussed in Section 4.3, and prove an exponential expression rate bound similar to Proposition
4.8 for baskets of d ≥ 2 Lévy-driven assets. In this subsection we assume ReLU activation func-
tion ̺(x) = max(x, 0). As in Section 5.1, we admit general correlation structure of the marginal
processes’ jumps. To prove DNN expression rate bounds, we exploit once more the fact that the
stationarity and homogeneity of the LP Xd ⊂ Rd imply that the Kolmogorov equation (5.15) has
constant coefficients. Under the provision that in (5.15) holds vd(0, ·) ∈ L2(Rd), this allows to write
for every τ > 0 the Fourier transform Fx→ξvd(τ, ·) = v̂d(τ, ξ) as

(5.17) v̂d(τ, ξ) = exp(−τψ(ξ))v̂d(0, ξ) , ξ ∈ Rd .

Here, for ξ ∈ Rd the symbol ψ(ξ) = exp(−ix⊤ξ)A(∂x) exp(ix⊤ξ) with A(∂x) denoting the constant
coefficient spatial integrodifferential operator in (5.15) by Courrège’s 2nd Theorem (see,e.g. [App09,
Thm. 3.5.5]), and (4.25) becomes

(5.18) E[exp(iξ⊤Xd
τ )] = exp(−τψ(ξ)) , ξ ∈ Rd .

In fact, ψ can be expressed in terms of the characteristic triplet (Ad, γd, νd) of the LP Xd as

(5.19) ψ(ξ) =
1

2
ξ⊤Adξ − iξ⊤γd −

∫

Rd

[
eiξ

⊤y − 1− iξ⊤y✶{‖y‖≤1}

]
νd(dy) , ξ ∈ Rd .

We impose again the strong ellipticity assumption (4.18), however now with |ξ| understood as
|ξ|2 = ξ⊤ξ for ξ ∈ Rd. Then reasoning exactly as in the proof of Proposition 4.8 we obtain with
C1 > 0 as in (4.18) for every τ > 0 for the variational solution vd of (5.15) the bound

(5.20) ∀k ∈ N0 : ‖(Dk
xvd)(τ, ·)‖2L2(Rd) ≤

(
k

2τC1ρe

)k/ρ
‖vd(0, ·)‖2L2(Rd) .

Here, Dk
x denotes any weak derivative of total order k ∈ N0 with respect to x ∈ Rd.

With the Sobolev embedding we again obtain for any bounded cube Id=[x−, x+]
d ⊂ Rd with

−∞ < x− < x+ < ∞, and for every fixed τ > 0, that there exist constants C(d) > 0 and
A(τ, ρ) > 0 such that

(5.21) ∀k ∈ N : sup
x∈Id
|(Dk

xvd)(τ, x)| ≤ C(d)(A(τ, ρ))k(k!)1/min{1,2ρ} .

The constant C(d) is independent of x−, x+, but depends in general exponentially on the basket size

(resp. the dimension) d ≥ 2, and the constant A(τ, ρ) = (2τC1ρ)
−1/(2ρ) denotes the constant from

(5.20) and Stirling’s bound. If ρ = 1 (which corresponds to the case of non-degenerate diffusion)

and if τ > 0 is sufficiently large (so that (2τC1)
1/(2ρ) ≥ 1) then the constant is bounded uniformly

w.r. to the dimension d .
The derivative bound (5.21) implies that vd(τ, ·)|Id is Gevrey-δ-regular with δ = 1/min{1, 2ρ}. In
particular, for δ = 1, i.e. when ρ ≥ 1/2, for every fixed τ > 0, x 7→ vd(τ, x) is real analytic in Id,
which is the case we consider first.
In this case, we perform an affine change of coordinates to transform vd(τ, ·) to the real analytic
function [−1, 1]d ∋ x̂ 7→ vc(τ, x̂). This function admits a holomorphic extension to some open set
O ⊂ Cd containing [−1, 1]d. By choosing ¯̺ > 1 (the “semiaxis sums”) sufficiently close to 1, we
obtain E ¯̺ ⊂ O, i.e., vc(τ, ·) admits a holomorphic extension to E ¯̺, where the Bernstein polyellipse

E ¯̺ ⊂ Cd is defined as d-fold Cartesian product of the Bernstein ellipse {(z + z−1)/2: z ∈ C, 1 ≤
|z| < ¯̺}. More precisely, x 7→ vd(τ, x) admits, with respect to each co-ordinate xi ∈ [x−, x+] of x,
a holomorphic extension to an open neighborhood of [x−, x+] in C (see, e.g., [KP92, Section 1.2]).
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By Hartogs’ theorem (see, e.g., [H6̈6, Theorem 2.2.8]), for every fixed τ > 0, x 7→ vd(τ, x) admits a
holomorphic extension to a polyellipse in Cd with foci at x−, x+ or, in normalized coordinates

(5.22) x̂i = (T−1(x))i=2[xi − (x− + x+)/2]/(x+ − x−), i = 1, ..., d,

the map [−1, 1]d ∋ x̂ 7→ vd(τ, T (x̂))=vc(τ, x̂) admits a holomorphic extension to a Bernstein polyel-
lipse E ¯̺ ⊂ Cd with foci at x̂i = ±1, and semiaxis sums 1 < ¯̺ = O(A(τ, ρ)−1). As τ 7→ A(τ, ρ)−1

is increasing for every fixed value of ρ, for ρ ≥ 1/2 parabolic smoothing increases the domain of
holomorphy with τ .
In the general case δ = 1/min{1, 2ρ} with ρ > 0 as in (4.18), ReLU DNN expression rates of
multivariate holomorphic (if ρ ≥ 1/2) and Gevrey-regular (if 0 < ρ < 1/2) functions such as
x̂ 7→ vc(τ, x̂) have been studied in [OSZ19].
The holomorphy or Gevrey-regularity [depending on δ] of the map x̂ 7→ vc(τ, x̂) implies, with
[OSZ19, Theorem 3.6, Proposition 4.1] that there exist constants β′ = β′(¯̺, d) > 0 and C =
C(ud, ¯̺, d) > 0, and for every N ∈ N there exists a ReLU DNN ũN : [−1, 1]d → R such that

(5.23) M(ũN ) ≤ N , L(ũN ) ≤ CNmin{ 1

2
, 1

d+1/δ
}
log(N )

and such that the error bound

‖vc(τ, ·)− ũN (·)‖W 1,∞([−1,1]d) ≤ C exp
(
−β′Nmin{ 1

2δ
, 1

δd+1
}
)

(5.24)

holds. Reverting the affine change of variables (5.22) in the input layer, we obtain the following
result on the ε-complexity of the ReLU DNN expression error for x 7→ vd(τ, x) at fixed 0 < τ ≤ T .
Theorem 5.4. Assume that the symbol ψ of the LP Xd ⊂ Rd satisfies (4.18) with |ξ|2 = ξ⊤ξ and
with some ρ ∈ (0, 1].
Then, for every ϕd with vd(0, ·) = ϕd◦exp ∈ L2(Rd), for every τ > 0 and with δ = 1/min{1, 2ρ} ≥ 1,
on every closed, bounded cube Id = [x−, x+]

d ⊂ Rd and, resp., Jd = [s−, s+]
d ⊂ (0,∞)d with s± =

exp(x±) the variational solutions vd of the Kolmogorov PIDE (5.15) at τ and ud(τ, s) = vd(τ, log(s))
can be expressed on Id, Jd by ReLU DNNs ṽd,ε, ũd,ε at exponential rate.
Specifically, there exists a constant C = C(x−, x+, δ, d, τ) > 0 such that for every 0 < ε ≤ 1/2 exist
ReLU DNNs ṽd,ε, ũd,ε for which there holds

sup
x∈Id
|vd(τ, x)− R(ṽd,ε)(x)|, sup

s∈Jd

|ud(τ, s)− R(ũd,ε)(s)| ≤ ε ,

and,
M(ṽd,ε) +M(ũd,ε) ≤ C| log(ε)|max{2δ,δd+1} ,

L(ṽd,ε) + L(ũd,ε) ≤ C| log(ε)|δ| log(| log(ε)|)| .
Here, the constants C = C(δ, d, τ) > 0 depend on I and J and, generally, exponentially on the
basket size d.

Proof. The asserted bounds for R(ṽd,ε) follow by elementary manipulations from insisting that the
expression error bound (5.24) equal ε ∈ (0, 1/2] and subsequently inserting the resulting expression

N ≃ | log(ε)|max{2δ,δd+1} into the bounds (5.23) for the DNN size and depth.
The bounds for R(ũd,ε) are then deduced from those for R(ṽd,ε) and the fact that the transformation

log(·) : Jd → Id (understood component-wise) is real analytic. Hence, it admits a holomorphic
extension to an open neighbourhood of Jd in Cd. Then [OSZ19, Thm. 3.6], combined with the
affine transformation T : [−1, 1]d → Jd, implies that there are constants C, β′ > 0 such that for

every N ∈ N exists a ReLU DNN l̃ogN such that

(5.25) M(l̃ogN (·)) ≤ N , L(l̃ogN (·)) ≤ CN 1

d+1 log2(N )
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and the error bound

(5.26)
∥∥∥(log ◦T )(·)− R(l̃ogN ) ◦ T (·)

∥∥∥
W 1,∞([−1,1]d)

≤ C exp
(
−β′N 1

d+1

)
.

Due to (5.26), for every N ∈ N the set Ĩd=R(l̃ogN )(Jd) ∪ log(Jd) ⊂ (−∞,∞)d is compact. For

given ε ∈ (0, 1/2], we choose N ∈ N as before. Using that Nmin{ 1

2δ
, 1

δd+1
} ≤ N 1

d+1 , this choice

guarantees in (5.26) that C exp
(
−β′N 1

d+1

)
≤ ε. Then we define ũd(τ, ·) = R(ṽd,ε)(·) ◦ R(l̃ogN )(·)

and estimate

sups∈Jd |ud(τ, s) − ũd(τ, s)|
= sup

s∈Jd

|vd(τ, ·) ◦ log(s)− ũd(τ, s)|

≤ sup
s∈Jd

|vd(τ, ·) ◦ log(s)− vd(τ, ·) ◦ R(l̃ogN )(s)|

+ sup
s∈Jd

|vd(τ, ·) ◦ R(l̃ogN )(s)− R(ṽd,ε)(·) ◦ R(l̃ogN )(s)|

≤ ‖vd(τ, ·)‖W 1,∞(Ĩd)
sup
s∈Jd

| log(s)− R(l̃ogN )(s)|
+ sup
x∈Ĩd

|vd(τ, x)− R(ṽd,ε)(x)|

≤ Cε .

Since the DNN size and DNN depth are additive under composition of ReLU DNNs, the assertion
for ũd,ε follows (possibly adjusting the value of the constant C). �

Remark 5.5. Some sufficient conditions on the characteristic triplet (Ad, γd, νd) that ensure (4.18)
in the multivariate setting are as follows. Consider first the case when the diffusion component is
non-degenerate, i.e. Ad is positive definite. Then

ℜψ(ξ) = 1

2
ξ⊤Adξ −

∫

Rd

[
cos(ξ⊤y)− 1

]
νd(dy) ≥ C1|ξ|2

|ψ(ξ)| ≤ 1

2
|ξ⊤Adξ|+ |ξ⊤γd|+

∫

{‖y‖≤1}

∣∣∣eiξ⊤y − 1− iξ⊤y
∣∣∣ νd(dy) + 2

∫

{‖y‖>1}
νd(dy) ≤ C2|ξ|2 + C3

for suitable choices of C1, C2, C3 > 0.
In the case when Ad is not positive definite, we refer for instance to [EG14, Section 7] and [HRSW13,
Lemma 14.5.1] for sufficient conditions.

5.4. Breaking the Curse of Dimensionality. The result Theorem 5.1 demonstrated DNN ex-
pression rates that are polynomial in ε−1 for European style options in multivariate, exponential
Lévy models, with constants that depend polynomially on the number d of assets. In particular,
in Theorem 5.1 the curse of dimensionality was proved to be overcome for a market model with
jumps: a DNN expression rate was shown that is algebraic in terms of the target accuracy ε > 0
with constants that depend polynomially on the dimension d. The rates p, q ∈ [0,∞) can be read
off the proof of Theorem 5.1; however, these constants could be large, thereby affording only low
DNN expression rates.
Theorem 5.4, on the other hand, stated exponential expressivity of deep ReLU NNs, i.e. maximum
expression error at time τ > 0 with accuracy ε > 0 can be attained by a deep ReLU NN of size and
depth which grow polylogarithmically with respect to | log(ε)|. This exponential expression rate
bound was, however, still prone to the curse of dimensionality.
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In the present section we further address alternative mathematical arguments on how DNNs can
overcome the CoD in the presently considered jump-diffusion models. Specifically, two mathemati-
cal arguments in addition to the probabilistic arguments in Section 5.1 are presented. Both exploit
stationarity of the LP Xd which implies (5.17), (5.18), to obtain DNN expression rates free from
the curse of dimensionality.

5.4.1. Barron Space Analysis. The first alternative approach to Theorem 5.1 is based on verifying,
using (5.17), (5.18), regularity of option prices in the so-called Barron space introduced in the
fundamental work [Bar93]. It will provide DNN expression error bounds with explicit values for
p and q, however, only for DNNs with sigmoidal activation functions ̺; similar results for ReLU
activations are asserted in [EW20]. For simplicity, we consider here a subset B of Barron space.
An integrable function f : Rd → R belongs to B if

(5.27) ‖f‖B=
∫

Rd

|ξ||f̂(ξ)|dξ <∞ .

The explicit appearance of the Fourier transform f̂ renders the norm ‖ ◦ ‖B in (5.27) particularly
suitable for our purposes due to (5.17)-(5.19). As was pointed out in [Bar93, EW20], the relevance
of the Barron norm ‖ ◦ ‖B stems from it being sufficient for dimension-robust DNN approximation
rates. For m ∈ N, consider the two-layer neural networks fm which are given be

(5.28) fm : Rd → R, x 7→ 1

m

m∑

i=1

ai̺(w
⊤
i x+ bi)

with parameters (ai, wi, bi) ∈ R×Rd ×R. Their relevance stems from the following result: assume
that ̺ is sigmoidal, i.e., bounded, measurable and ̺(z)→ 1 as z →∞, ̺(z)→ 0 as z → −∞. Then
for f ∈ B, and for every R > 0, d ∈ N, and for every m ∈ N exist parameters {(ai, wi, bi)}mi=1 such
that for the corresponding DNN fm as in (5.28) holds

(5.29) ‖f − fm‖L2([−R,R]d;π) ≤
√
dmax{1, R}m−1/2‖f‖B .

Here, π denotes a probability measure on [−R,R]d. This bound follows from [Bar93, Theorem 1],
see also [EW20, Eqns. (1.1)-(1.3)]. The bound in (5.29) is free from the CoD: the number N

of parameters in the DNN grows as O(md) so that m−1/2 ≤ CN−1/2d1/2 with absolute constant
C > 0.
With (5.17), (5.18), for every τ ≥ 0, sufficient conditions for x 7→ vd(τ, x) to belong to B can be
verified. With (5.29), DNN expression rate bounds follow.

Proposition 5.6. Assume that ̺ is sigmoidal. Assume furthermore that the payoff in log-variables,
vd(0, ·), belongs to B.
Then, for every τ ≥ 0, the price x 7→ vd(τ, x) can be expressed by a NN x 7→ ṽd(τ, x) of depth 2
and size m(d+ 2) with m ∈ N and error bound

(5.30) ‖vd(τ, ·)− ṽd(τ, ·)‖L2([−R,R]d;π) ≤
√
dmax{1, R}m−1/2‖vd(0, ·)‖B .

Proof. Firstly, we observe that for every ξ ∈ Rd the identity (5.18) with τ = 1 shows that

exp(−ℜψXd(ξ)) = | exp(−ψXd(ξ))| = |E[exp(iξ⊤Xd
1 )]| ≤ 1

and therefore ℜψXd(ξ) ≥ 0. From (5.17), (5.18) we obtain for τ ≥ 0

∀ξ ∈ Rd : |v̂d(τ, ξ)| = | exp(−τψXd(ξ))v̂d(0, ξ)| = exp(−τℜψXd(ξ))|v̂d(0, ξ)| .
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The payoff in log-price, vd(0, ξ), belonging to B implies ‖vd(0, ·)‖B < ∞. Using ℜψXd(ξ) ≥ 0, we
find for every τ ≥ 0 and for every ξ ∈ Rd that |v̂d(τ, ξ)| ≤ |v̂d(0, ξ)|. This implies that for every
τ ≥ 0, ‖vd(τ, ·)‖B ≤ ‖vd(0, ·)‖B. The approximation bound (5.29) implies the assertion. �

5.4.2. Parabolic Smoothing and Sparsity of Chaos Expansions. The second non-probabilistic ap-
proach to Theorem 5.1 towards DNN expression error rates not subject to the CoD is based on
dimension-explicit derivative bounds of option prices, which allow in turn to establish summa-
bility bounds for generalized polynomial chaos (gpc for short) expansions of these prices. Good
summability of gpc coefficient sequences is well known to imply high, dimension-independent rates
of approximation by sparse, multivariate polynomials. This, in turn, implies corresponding ex-
pression rates by suitable DNNs [SZ19, Thm. 3.9]. Key in this approach is to exploit parabolic
smoothing of the Kolmogorov PDE. The corresponding dimension-independent expression rate re-
sults will generally be higher than those based on probabilistic or Barron space analysis, but will
hold only for sufficiently large τ > 0.
We start by discussing more precisely the dependence of the constants in the proof of Theorem 5.4
on the dimension d.

Remark 5.7. The constant C(d) =C(τ,d) in the derivative bound (5.21) need not be exponential in
d. To see it, we bound (5.21) by the inverse Fourier transform and the Cauchy-Schwarz inequality.

For α ∈ Nd0 with |α| = ∑d
i=1 αi = k, we find with the Cauchy-Schwarz inequality and with the

lower bound (4.18)

(5.31)

sup
x∈Id
|(Dα

xvd)(τ, x)|

= sup
x∈Id

∣∣∣∣
1

(2π)d/2

∫

Rd

(iξ)α exp(ix⊤ξ) exp(−τψ(ξ))v̂d(0, ξ)dξ
∣∣∣∣

≤ 1

(2π)d/2

∫

Rd

|ξ|k| exp(−τψ(ξ))||v̂d(0, ξ)|dξ

≤ 1

(2π)d/2

(∫

Rd

exp(−2τC1|ξ|2ρ)dξ
)1/2

·
(∫

Rd

|ξ|2k exp(−2τC1|ξ|2ρ)|v̂d(0, ξ)|2dξ
)1/2

.

The last factor can be bounded precisely by the square-root of the right hand side of (5.20) (by
using (4.28)) and so, using kk ≤ k!ek we obtain the bound (5.21) as

(5.32) sup
x∈Id
|(Dα

xvd)(τ, x)| ≤ C(d, τ)(A(τ, ρ))k(k!)1/min{1,2ρ}‖vd(0, ·)‖L2(Rd)
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with constant A(τ, ρ) = (2τC1ρ)
−1/(2ρ) and the explicit constant

(5.33)

C(d, τ) =
1

(2π)d/2

(∫

Rd

exp(−2τC1|ξ|2ρ)dξ
)1/2

=
1

(2π)d/2

(
2
π

d
ωd

∫ ∞

0
rd−1 exp(−2τC1r

2ρ)dr

)1/2

=
1

(2π)d/2

(
π

ρd

1

(2τC1)d/(2ρ)
ωdΓ(

d

2ρ
)

)1/2

=
1

(2π)d/2

(
π

ρd

1

(2τC1)d/(2ρ)

πd/2Γ( d2ρ)

Γ(d2 + 1)

)1/2

,

where ωd denotes the volume of the unit ball in Rd. Inspecting the constant C(d, τ) in (5.33), we
observe that e.g. for ρ = 1 and τ0 = τ0(C1) = 1/(8πC1), τ ≥ τ0 > 0 sufficiently large implies that
the constant C(d, τ) is bounded independent of τ and d.

Remark 5.8. In certain cases, the parabolic smoothing implied by the ellipticity assumption (4.18)
on the generator A entails that the constant C in the regularity estimates (5.21) grows only polyno-
mially with respect to d. For instance, in Remark 5.7 we provided sufficient conditions which ensure
that the constant C in the regularity estimates (5.21) is even bounded with respect to d. This
allows to derive an explicit and dimension-independent bound on the series of Taylor coefficients.
This, in turn, allows to obtain bounds on the constant in (5.24) which scale polynomially with
respect to d. Consider, for example, ρ = 1 (i.e. non-degenerate diffusion) and assume that τ > 0

is sufficiently large: specifically, (2τC1)
1/(2ρ) ≥ 1 and dA(τ, ρ) < 1, where A(τ, ρ) = (2ρτC1)

−1/(2ρ)

denotes the constant in the [·] parentheses of (4.30). This holds if

(5.34) τ >
d2ρ

2ρC1
.

With (5.34) and using
∑

α∈Nd
0
,|α|=k

(
k
α

)
= dk, we may estimate with the multinomial theorem

∑

α∈Nd
0

supx∈Id |(Dα
xvd)(τ, x)|

α!
≤ C(d, τ)

∑

α∈Nd
0

A(τ, ρ)|α|(|α|)!
α!

= C(d, τ)

∞∑

k=0

[dA(τ, ρ)]k = C(d, τ)
1

1− dA(τ, ρ) .

By Remark 5.7, (5.34) implies that C(d, τ) in (5.33) is bounded uniformly with respect to d. Thus,
in this case one may obtain bounds on the constant in (5.24) which scale polynomially with respect
to d. However, the DNN size still grows polylogarithmically with respect to the dimension d, in
terms of | log(ε)| (i.e., at least as O(| log(ε)|d)), so that the curse of dimensionality is not overcome.

The constant C > 0 in the exponential expression rate bounds established in Theorem 5.4 depends
in general exponentially on the basket size d, resp. on the dimension of the solution space of
the PIDE (5.15), due to the reliance on the ReLU DNN expression rate analysis in [OSZ19].
Furthermore, the DNN size grows polylogarithmically with respect to the dimension d, in terms
of | log(ε)|. Considering exponential expression rate bounds, this exponential dependence on d
in terms of | log(ε)| seems, in general, not avoidable, as can be seen from [OSZ19, Theorem 3.5].
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Nevertheless, in Remark 5.8 we already hinted at parabolic smoothing implying sufficient regularity
(under the d-dependent provision (5.34) on τ) for polynomial w.r. to d constants in DNN expression
rate bounds.
In the following paragraphs, we settle for algebraic DNN expression rates and overcome exponential
dependence on d in ReLU DNN expression error bounds under certain sparsity assumptions on
polynomial chaos expansions, as shown in [SZ19], [CDS10] and the references there. We develop a
variation of the results in [SZ19] in the present context.
We impose the following hypothesis, which takes the place of the lower bound in (4.18). We still
impose |ψ(ξ)| ≤ C2|ξ|2ρ + C3, i.e., the second condition in (4.18) holds for each d ∈ N (but C2, C3

and ρ in that condition are allowed to depend on d).

Assumption 1. There exists a constant C1 > 0 and (ρj)j∈N with 1
2 < ρj ≤ 1, such that for each

d ∈ N, the symbol ψXd of the LP Xd satisfies that

(5.35) ∀ξ ∈ Rd : ℜψXd(ξ) ≥ C1

d∑

j=1

|ξj |2ρj .

Furthermore,

(5.36) ρ= inf
j∈N

ρj >
1

2
.

The payoff function ϕd in (5.15) is such that vd(0, ·) = ϕd ◦ exp ∈ L2(Rd).

In comparison to the lower bound in (4.18) the condition (5.35) is restricted to the case ρ > 1
2 . On

the other hand, different exponents ρj are allowed along each component. Furthermore, note that
Assumption 1 imposes that C1 does not depend on the dimension d.

Remark 5.9. Consider the pure diffusion case, i.e., when the characteristic triplet is (Ad, 0, 0) with
a symmetric, positive definite diffusion matrix Ad and Lévy-symbol ψXd : Rd → R : ξ 7→ ξ⊤Adξ.
A sufficient condition for assumption (5.35) to hold is that the eigenvalues (λdi )i=1,...,d of Ad be
lower bounded away from zero,

(5.37) C1= inf
i,d
λdi > 0.

To see this, write Q⊤AdQ = D for a diagonal matrix D containing the eigenvalues of Ad and an
orthogonal matrix Q. Then we obtain for arbitrary ξ ∈ Rd

ψXd(ξ) = ξ⊤Adξ = (ξ⊤)QDQ⊤ξ =

d∑

i=1

λi(Q
⊤ξ)2i ≥

[
min
i
λi

]
|Q⊤ξ|2

=

[
min
i
λi

]
|ξ|2.

Therefore condition (5.35) is satisfied with C1 as in (5.37) and ρj = 1 for all j ∈ N.
This condition imposes, in applications, that different assets (modelled by different components of
the LP Xd) should not become asymptotically (perfectly) dependent as the dimension grows.

Remark 5.10. Consider characteristic triplets (Ad, γd, νd) and the more general case of non-degenerate
diffusion, i.e. with Ad satisfying the condition (5.37) formulated in Remark 5.9. Then the real part
of the Lévy symbol ψXd of Xd satisfies for all ξ ∈ Rd

ℜψXd(ξ) =
1

2
ξ⊤Adξ −

∫

Rd

[
cos(ξ⊤y)− 1

]
νd(dy) ≥ 1

2
ξ⊤Adξ ≥ C1|ξ|2
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with C1 as in (5.37). Hence, Assumption 1 is satisfied also in this more general situation. Fur-
ther examples of LP satisfying Assumption 1 are based on stable-like processes and copula-based
constructions as e.g. in [FRS07].

As we shall see below, Assumption 1 ensures good “separation” and “anisotropy” properties of the
symbol (5.19) of the corresponding Lévy process Xd.
For τ > 0 satisfying (5.34), we analyze the regularity of the map x 7→ vd(τ, x). From Assumption 1
we find that for every τ > 0, x 7→ vd(τ, x) ∈ L2(Rd) and that its Fourier transform has the explicit
form

(5.38) v̂d(τ, ξ) = Fx→ξvd(τ, ·) = exp(−τψXd(ξ))v̂d(0, ξ) .

For a multi-index ν = (ν1, ..., νd) ∈ Nd0, denote by ∂νx the mixed partial derivative of total order
|ν| = ν1 + ...+ νd with respect to x ∈ Rd. Formula (5.38) and Assumption 1 can be used to show
that for every τ > 0, x 7→ vd(τ, x) is analytic at any x ∈ Rd. This is of course the well-known
smoothing property of the generator of certain non-degenerate Lévy processes. To address the
curse of dimensionality, we quantify the smoothing effect in a d-explicit fashion.
To this end, with Assumption 1 we calculate for any ν ∈ Nd0 at x = 0 (by stationarity, the same
bounds hold for the Taylor coefficients at any x ∈ Rd)

(2π)d/2|∂νx vd(τ, 0)| =
∣∣∣∣
∫

ξ∈Rd

(iξ)ν v̂d(τ, ξ)dξ

∣∣∣∣ ≤
∫

ξ∈Rd

|v̂d(0, ξ)|
d∏

j=1

|ξj |νj exp(−τC1|ξj |2ρj )dξ .

We use (4.28) with m← νj , κ← C1τ , µ = 2ρj to bound the product as

d∏

j=1

|ξj |νj exp(−τC1|ξj |2ρj ) ≤
d∏

j=1

(
νj

2ρjτC1e

)νj/(2ρj)
.

We arrive at the following bound for the Taylor coefficient of order ν ∈ Nd0 of vd(t, ·) at x = 0:

(5.39) |tν | =
∣∣∣∣
1

ν!
∂νx vd(τ, x) |x=0

∣∣∣∣ ≤
1

(2π)d/2
‖v̂d(0, ·)‖L1(Rd)

d∏

j=1

1

νj !

(
νj

2ρjτC1e

)νj/(2ρj)
.

Stirling’s inequality

(5.40) ∀n ∈ N : n! ≥ nne−n
√
2πn ≥ nne−n

implies in (5.39) the bound

(5.41) ∀ν ∈ Nd0 : |tν | ≤
1

(2π)d/2
‖v̂d(0, ·)‖L1(Rd)

(
(ν!)−1

b
ν
)ρ′

.

Here, ρ′ = 1− 1
2ρ > 0 and the positive weight sequence b = (bj)j≥1 is given by bj=(2ρjτC1)

−1/(2ρjρ
′),

j = 1, 2, ... and multi-index notation is employed: ν
−ν=(νν11 ν

ν2
2 ...)

−1, b
ν = bν11 b

ν2
2 ... and ν! =

ν1!ν2!..., with the convention 0!=1 and 00=1.
We raise (5.41) to a power q > 0, with q < 1/ρ′ and sum the resulting inequality over all ν ∈ Nd0
to estimate (generously)

∑

ν∈Nd
0

|tν |q ≤
‖v̂d(0, ·)‖qL1(Rd)

(2π)dq/2

∑

ν∈Nd
0

(
1

ν!
b
ν

)qρ′
≤
‖v̂d(0, ·)‖qL1(Rd)

(2π)dq/2

∑

ν∈Nd
0

( |ν|!
ν!

b
ν

)qρ′
.

To obtain the estimate (5.41), one could also use the L2-bound with explicit constant derived in
(5.32), (5.33).
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Under hypothesis (5.35) and for τ > 0 satisfying (5.34), q-summability of the Taylor coefficients
follows.

∑

ν∈Nd
0

|tν |q ≤
‖v̂d(0, ·)‖qL1(Rd)

(2π)dq/2

∑

ν∈Nd
0

( |ν|!
ν!

b
ν

)qρ′

≤
‖v̂d(0, ·)‖qL1(Rd)

(2π)dq/2

∞∑

k=0

∑

ν∈Nd
0
:|ν|=k

( |ν|!
ν!

(2ρτC1)
−k/(2ρρ′)

)qρ′

≤
‖v̂d(0, ·)‖qL1(Rd)

(2π)dq/2

∞∑

k=0

(2ρτC1)
−qk/(2ρ)

∑

ν∈Nd
0
:|ν|=k

( |ν|!
ν!

)qρ′
.

Using that |ν|! ≥ ν! and that 1 ≥ qρ′ > 0 we obtain with the multinomial theorem

∑

ν∈Nd
0
:|ν|=k

( |ν|!
ν!

)qρ′
≤

∑

ν∈Nd
0
:|ν|=k

|ν|!
ν!

= dk

and so, provided that

(5.42) τ > τ0(d) with τ0(d)=
d2ρ/q

2ρC1
,

it follows that

(5.43) ‖{tν}‖qℓq(Nd
0
)
=
∑

ν∈Nd
0

|tν |q ≤
‖v̂d(0, ·)‖qL1(Rd)

(2π)dq/2
1

1− d(2ρτC1)−q/(2ρ)
.

Therefore, we have proved q-summability of the Taylor coefficients of x 7→ vd(τ, x) at x = 0 for
any τ > τ0(d) as in (5.42). The q-norm ‖{tν}‖ℓq(Nd

0
) is bounded independently of d, provided that

τ > τ0(d) and ‖v̂d(0, ·)‖L1(Rd)(2π)
−d/2 is bounded independently of d.

The q-summability (5.43) of the Taylor coefficients of x 7→ vd(τ, x) at x = 0 with q = 1 implies for
τ > τ0(d) absolute, pointwise convergence in the cube [−1, 1]d of

(5.44) vd(τ, x) =
∑

ν∈Nd
0

tνx
ν , xν=xν11 x

ν2
2 ....

Furthermore, as was shown in [SZ19, Lemma 2.8], the fact that the sequence {tν} is q-summable
for some 0 < q < 1 and the coefficient bound (5.41) imply that for τ > τ0(d) exists a sequence
{Λn}n≥1 ⊂ Nd0 of nested, downward closed multi-index sets2 Λn ⊂ Nd0 with #(Λn) ≤ n such that
general polynomial chaos (gpc for short) approximations given by the partial sums

(5.45) vΛn
d (τ, x)=

∑

ν∈Λn

tνx
ν

converge at dimension-independent rate r = 1/q − 1 (see, e.g., [CDS10, Lemma 5.5])

(5.46) sup
x∈[−1,1]d

|vd(τ, x)− vΛn
d (τ, x)| ≤

∑

ν∈Nd
0
\Λn

|tν | ≤ n−(1/q−1)‖{tν}‖ℓq(Nd
0
) .

2I.e., if ej ∈ Λn then ei ∈ Λn for all 0 ≤ i ≤ j.
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The summability (5.43) of the coefficients in the Taylor gpc expansion (5.44) also implies quantita-
tive bounds on the expression rates of ReLU DNNs. With [SZ19, Thm.2.7, (ii)], we find that there
exists a constant C > 0 independent of d such that

sup
ν∈Λn

|ν|1 ≤ C(1 + log(n)) .

We now refer to [SZ19, Thm. 3.9] (with q in place of p in the statement of that result) and, observing
that in the proof of that theorem, only the p-summability of the Taylor coefficient sequence {tν} was
used, we conclude that for τ > 0 satisfying (5.42) there exists a constant C > 0 that is independent
of d and, for every n ∈ N exists a ReLU DNN ṽnd with input dimension d, such that

(5.47)

M(ṽnd ) ≤ C(1 + n log(n) log(log(n))) , L(ṽnd ) ≤ C(1 + log(n) log(log(n))) ,

sup
x∈[−1,1]d

|vd(τ, x)− R(ṽnd )(x)| ≤ Cn−(1/q−1) .

6. Conclusion and Generalizations

We proved that prices of European style derivative contracts on baskets of d ≥ 1 asset in exponential
Lévy models can be expressed by ReLU DNNs to accuracy ε > 0 with DNN size polynomially
growing in ε−1 and d, thereby overcoming the curse of dimensionality. The technique of proof was
based on probabilistic arguments and provides expression rate bounds that scale algebraically in
terms of the DNN size. We then also provided an alternative, analytic argument, that allows to
prove exponential expressivity of ReLU DNNs of the option price, i.e. of the map s 7→ u(t, s) at any
fixed time 0 < t < T , with DNN size growing polynomially w.r. to log(ε) to achieve accuracy ε > 0.
For sufficiently large t > 0, based on analytic arguments involving parabolic smoothing and sparsity
of generalized polynomial chaos expansions, we established in (5.47) a second, algebraic expression
rate bound for ReLU DNNs that is free from the curse of dimensionality. In a forthcoming work
[GS] we address PIDEs (5.15) with non-constant coefficients. In addition, the main result of the
present paper, Thm. 5.1, could be extended in the following directions.
First, the expression rates are, almost certainly, not optimal in general; for high-dimensional dif-
fusions, which are a particular case with Ad = I and νd = 0, in [EGJS18] we established for
particular payoff functions a spectral expression rate in terms of the DNN size, free from the curse
of dimensionality.
Solving Hamilton-Jacobi partial integrodifferential equations (HJPIDEs for short) by DNNs: it is
classical that the Kolmogorov equation for the exponential LP Xd in Section 2.2 is, in fact, a special
case of a HJPIDE (e.g. [BBP97, BI08]). In a forthcoming work [GS] we aim at proving that the
expression rate bounds obtained in Section 5 imply corresponding expression rate bounds for ReLU
DNNs which are free from the curse of dimensionality for viscosity solutions of general HJPIDEs
associated to the LP Xd and for its exponential counterparts.
Barriers: We considered payoff functions corresponding to European style contracts. Here, the
stationarity of the LP Xd and exponential Lévy modelling allowed to reduce our analysis to Cauchy
problems of the Kolmogorov equations of Xd in Rd. In Lévy models in the presence of barriers,
option prices generally exhibit singularities at the barriers. More involved versions of the Fourier
transform based representations are available (involving a so-called Wiener-Hopf factorization of
the Fourier symbol, see, e.g., [BL02]). For LPs Xd with bounded exponential moments, the present
regularity analysis may be localized to compact subsets, well separated from the barriers, subject
to an exponentially small localization error term; see [HRSW13, Chap. 10.5]. Here, the semiheavy
tails of the LPs Xd enter crucially in the analysis. We therefore expect the present DNN expression
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rate bounds to remain valid also for barrier contracts, at least far from the barriers, for the LPs
Xd considered here.
Dividends: We assumed throughout that contracts do not pay dividends; however, including a
dividend stream (with constant over (0, T ] rate) on the underlying does not change the mathematical
arguments; we refer to [LM08, Section 3.1] for a complete statement of exponential Lévy models
with constant dividend payment rate δ > 0, and for the corresponding pricing of European and
American style contracts for such models.
American style contracts: Deep learning based algorithms for the numerical solution of optimal
stopping problems for Markovian models have been recently proposed in [BCJ19]. For the particular
case of American style contracts in exponential Lévy models, [LM08] provide an analysis in the
univariate case, and establish qualitative properties of the exercise boundary {(b(t), t) : 0 < t < T}.
Here, for geometric Lévy models, in certain situations (d = 1, i.e. single risky asset, monotonic,
piecewise analytic payoff function) the option price, as a function of x ∈ R at fixed 0 < t < T ,
is shown in [LM08] to be a piecewise analytic function which is, globally, Hölder continuous with
a possibly algebraic singularity at the exercise boundary b(t). This holds, likewise, for the price
expressed in the logarithmic coordinate x = log(s). The ReLU DNN expression rate of such
functions has been analyzed in [OPS20, Section 5.4]. In higher dimensions d > 1, recently also
higher Hölder regularity of the price in symmetric, stable Lévy models has been obtained for
smooth payoffs in [BFRO18].
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Mathematics, ETH Zürich, Switzerland, 2019, to appear in IMA J. Num. Anal.

[GHJvW18] Philipp Grohs, Fabian Hornung, Arnulf Jentzen, and Philippe von Wurstemberger, A proof that artificial

neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes

partial differential equations, To appear in Mem. Amer. Math. Soc.; arXiv:1809.02362 (2018), 124 pages.
[GHJZ19] Philipp Grohs, Fabian Hornung, Arnulf Jentzen, and Philipp Zimmermann, Space-time error estimates

for deep neural network approximations for differential equations, arXiv:1908.03833 (2019), 86 pages.
[Gla16] Kathrin Glau, A Feynman-Kac-type formula for Lévy processes with discontinuous killing rates, Finance
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nential Lévy processes, Ann. Appl. Probab. 17 (2007), no. 5-6, 1615–1638. MR 2358636
[KP92] Steven G. Krantz and Harold R. Parks, A primer of real analytic functions, Basler Lehrbücher [Basel
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