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Abstract

Systems exhibiting degeneracies known as exceptional points have remarkable properties
with powerful applications, particularly in sensor design. These degeneracies are formed when
eigenstates coincide, and the remarkable effects are exaggerated by increasing the order of
the exceptional point (that is, the number of coinciding eigenstates). In this work, we use
asymptotic techniques to study P7-symmetric arrays of many subwavelength resonators and
search for high-order exceptional points. This analysis reveals the range of different config-
urations that can give rise to high-order exceptional points and provides efficient techniques
to compute them. We also show how systems exhibiting high-order exceptional points can be
used for sensitivity enhancement.

Mathematics Subject Classification (MSC2000): 35J05, 35C20, 35P20.
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1 Introduction

The behaviour of subwavelength resonators, which are particles interacting strongly with waves at
subwavelength scales, is strongly influenced by even very small perturbations. Here, subwavelength
scales refers to length scales which are significantly smaller than the resonant structure. Due to this,
subwavelength resonators are ideal candidates for building-blocks when designing sensors capable
of detecting a variety of phenomena, such as mechanical vibrations, fluctuations in magnetic fields,
changes in temperature and the presence of small particles such as viruses and nanoparticles.
These devices rely on measuring the shifts in the structure’s resonant frequencies, caused by the
perturbations [19, 20, 21]. A weakness of this approach, however, is that the shift in the resonant
frequencies typically scales proportionally to the perturbation, meaning that the shift is very
small for small perturbations. This weakness can be overcome through the use of structures with
exceptional points.

An exceptional point is a point in parameter space at which two or more eigenvalues, and also
the corresponding eigenvectors, coincide [18, 16]. A deep degeneracy of this nature gives rise to
structures with remarkable properties. In particular, if a perturbation of order s is made to a
structure with an N*" order exceptional point (i.e. one at which N eigenvalues and eigenvectors
coincide) then the eigenvalues will generally experience perturbations of order s'/V. Thus, when
trying to detect small perturbations, the measurable response will be relatively large, offering the
grounds for designing enhanced sensing arrays [13, 17, 23].
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There are different approaches to achieve a non-Hermitian system needed to create exceptional
points. One approach is to create a system with unidirectional coupling of the states [22]. In
systems of high-contrast subwavelength resonators, however, such unidirectional coupling is not
achievable. Instead, a non-Hermitian system can be created by introducing gain and loss, corre-
sponding to imaginary material parameters. The assumption of parity—time (PT ) symmetry forces
the spectrum to be conjugate-symmetric. Exceptional points are then the transition points be-
tween a real spectrum and a non-real spectrum which is symmetric around the real axis. High-order
exceptional points based on PT-symmetry have been observed, for example, in [14, 15, 24, 25].

In the setting of subwavelength resonators, the existence and consequences of second-order
exceptional points have been studied in [6, 10]. Similar structures, also with low-order exceptional
points, have been considered in [1, 2, 3]. One difficulty is that in this setting long-range interactions
cannot be accurately neglected. In this work, we instead use a fully-coupled approach to study
the exceptional points. We both demonstrate analogues of the exceptional points reported in e.g.
[25] and, further, reveal a rich variety of configurations and symmetries which produce high-order
exceptional points. Since the systems have open boundaries, radiative losses prevent the systems
from exhibiting exact PT symmetries. Nevertheless, we will study the asymptotic expansion in
the subwavelength regime, where the limiting problem is indeed P7 -symmetric, and demonstrate
asymptotic exceptional points.

The structure and main contributions of this work are as follows: we begin, in Section 2, by
demonstrating the value of high-order exceptional points for sensing applications. We show that if
a small particle is introduced into a structure with an N*" order exceptional point, then one of the
eigenvalues will experience a perturbation that is of the same order as the N root of the small
particle’s volume. The remaining sections are devoted to the study of high-contrast subwavelength
resonators. The capacitance matrix approzimation is presented in Section 3, which provides a
rigorous, PT-symmetric approximation to the differential problem. The existence of third-order
asymptotic exceptional points is proved in Section 4. When the order N is higher than three,
the study of exceptional points reduces to the study of a system of N polynomial equations of
order N. Analytical solutions of these systems are beyond reach. Instead, we combine asymptotic
methods with numerical computations to demonstrate the exceptional points. For N = 4, we find
four solutions, with striking symmetries of the gain/loss distribution. These solutions continue
to higher orders, and, moreover, the number of distinct solutions rapidly increase as N increases.
Finally, in Section 7.2, we return to the original motivation for high-order exceptional points, and
numerically demonstrate the enhanced sensing in a system of subwavelength resonators.

2 Implications for enhanced sensing
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Figure 1: A system with an exceptional point will experience enhanced eigenfrequency splitting in response
to small perturbations, for example due to the introduction of a small particle.

In order to motivate our forthcoming search for high-order exceptional points in systems of sub-
wavelength resonators, we first explore the use of such a system in enhanced sensing applications.
In particular, we wish to understand the behaviour of a system with an N*" order exceptional point
in response to the introduction of a small particle. Recall that the outgoing Helmholtz Green’s
function G* is given by

k eik|w7y| 3
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where “outgoing” is taken to mean that it satisfies the Sommerfeld radiation condition. For a
function u with wave number k, this condition is given by

Jim |2 (88| 1k> u(z) = 0. (2.1)

Consider a general setting where time-harmonic waves propagate through a material with material
parameters described by a function m € L°(R?), which we assume is constant outside of a compact
set. In view of the Jordan-type decompositions established in [12], we suppose that the system
has an N*" order exceptional point in the sense that the corresponding Green’s function, which is
defined as the solution to the Helmoltz problem

(Ay + m(x)k?) G (z,y) = 6, () in R3, (2.2)
GE (z,y) satisfies the Sommerfeld radiation condition as |z| — oo, ’
has the form
0 (@)es ()
Gh(2,y) = G* (@, y) + Y 0 + R(k,2,y), (2.3)

2 (k2 — (k)27
in a neighbourhood of k*, where k* € C is the single N*" order subwavelength resonant frequency
of the system, {¢1,...,on} C HL.(R3) are generalized eigenmodes associated to k* and the
remainder R is a holomorphic function of k that is smooth as a function of x and y. As usual, for a
set A C R?, H'(A) denotes the Sobolev space consisting of square-integrable functions whose weak
derivatives are square-integrable, while H]! (A) denotes the subset of H'(A) whose functions, and
weak derivatives thereof, are locally square-integrable.

Suppose that a small particle €2 is introduced to the system, which is small in the sense that
Q) = z+5'/3B for some fixed domain B, fixed centre z € R? and small size 0 < s < 1. We have that
the volume of ) satisfies |Q2] = O(s) as s — 0. By the asymptotic Gohberg-Sigal theory developed
n [11], the perturbed problem will have N resonant modes with frequencies in a neighbourhood
of k*, as s — 0. A resonant mode of the new system will satisfy the problem

(A+m(2)k*)u(z) =0  inR*\Q,
(A+7()k*)u(z) =0  inQ, (2.4)
u(z) satisfies the Sommerfeld radiation condition as |z| — oo,

where 7 € L () describes the material parameters within { and we assume that 7 Z m. Thanks
to the Lippmann-Schwinger representation, we have that

uly) = K / (m(z) — ()G (&, y)u(z) dz,

which, using the decomposition (2.3), becomes
u = 2 mix) —T17\x k X ulx X
) = [ (m(e) = ()G @ u(e) d
N
2 7%@) m(z) — 7(x))p;(x)u(z) dz
+h ;(k2_<k*)2)j/9< () ~ 7(@))s(x)u(a) d

+ k? /Q(m(x) —7(x))R(k, z, y)u(z) dz.

Define the operator T : L?(Q) — L?(Q) as



For sufficiently small s, T is invertible (¢f. [12, Lemma 3.2]), so we may write that
N
T—l . ~
u) =23 LI () — 7(a)) (2u(e) de + R¥ul (),

where RF is holomorphic as a function of & (in a neighbourhood of k*) and its operator norm
satisfies ||R*||z(r2(0),02(0)) — 0 as s — 0 for each fixed k [11]. Multiplying by (m — 7)¢; for
l=1,...,N and integrating over (2 yields an approximate matrix eigenvalue problem

v=FkAv+r, (2.5)

where v € CV, A € CV*N and r € CV are given by

v = [ m(o) = 7)) @ulz) da.
Q

1 Yo (x) de
Ay = G [ @) — @) (@)

w:[fmmfwm%umwaMm

Since r = O(s) as s — 0, the resonant modes of the perturbed system will approximately satisfy,
up to leading order in s, the problem

det (I — k*A) =0. (2.6)

Gohberg-Sigal theory tells us that as s — 0, there will be a small perturbation of the original
eigenvalue k*, so we write k = k* + v for some small v. Then, we may write that I — k24 =
v~N(B+ C) where C is a matrix which has norm ||C||» = O(v) and (vanishing values suppressed)

vV — I/N_1>\1 m
N ' ’
v —VAN_1 NN-1
VN - /\N

with the constants A1, ..., An,01,...,nn—1 given by A\; = [,(m —7); T~ [p;]dz and n; = [,(m—
7)o T pn] do. Since |||« is small the Generalized Rouché Theorem, as given in [11], can be
used to determine the singularities of B4+C'. In particular, there will be a one-to-one correspondence
(up to multiplicity) between the singularities of B + C and of B, and these singularities will be
asymptotically close as s — 0. Expanding det(B), we see that it has singularities satisfying
v= ()\j)l/j for j =1,...,N. In particular, j = N corresponds to a resonant mode with frequency
k which satisfies, in an asymptotic sense,

1/N
k—k* =~ </ (m —7)pnT on] d:c) .
Q
Approximating this integral as s — 0, we see that
k— kK~ (n.]Q) N, (2.7)
where || is the volume of Q and 7, = (m(z) — 7(2))en(2)T " on](2).

Remark 2.1. It is clear that in order for (2.7) to offer a useful approach to enhance the shift
in the resonant frequency the constant 1, should be mazximised by carefully positioning the small
particle. We will return to this point in Section 7.2, where we will examine how 1, varies as a
function of the particle’s position, for several of the high-order exceptional points which we find
below.



3 Subwavelength resonators

In this section, we set out the subwavelength resonance problem that will be studied in the re-
mainder of this work. We also introduce the capacitance matrix formulation and the dilute ap-
proximation that will form the basis of our search for high-order exceptional points.

3.1 Problem description

We will study a structure composed of N resonators D1, Do, ..., Dy which are pairwise disjoint
subsets of R3 such that 9D; € C'+* for 0 < s < 1. In our search for high-order exceptional points,
we will restrict ourselves to the case where the resonators are all of equal volume. We assume
that the material inside the i*" resonator D; has complex-valued material parameters x; € C and
p; € C. The corresponding parameters «, p of the surrounding material are assumed to be real.
We denote the frequency of the waves by w and define the parameters, for i =1, ..., N,

U = ﬁa ’U:\/E7 61:&7 k:g’ kz:ﬁ
\ o p p v vi

In the frequency domain, the time-reversal operator 7 is given by complex conjugation, while the
parity operator P is given by P : R3 — R3,

P(z) = —x.
We assume that the collection of resonators D = UY_, D; is PT-symmetric, which means that
PD =D

and that, for indices ¢ and j such that PD; = Dj, it must hold that x; = k; and p; = p;. The
imaginary parts can be interpreted as the magnitude of the gain or loss. With these assumptions
we define the material contrast § := |d;|, which will be our asymptotic parameter. We will assume
that

§ <1,

and that ¢; = O(9) for all ¢ > 1 while v; = O(1) for all i = 1,..., N. We study the wave resonance
problem

Au+E*u=0 in R3\ D,
Au+Kklu=0 in D;, i=1,..N,
uly —ul- =0 on 0D, (3.1)
Ou ou ) '
51‘7 - = =0 on 8D1, Z:L...N,
ov n ov|_
u(z) satisfies the Sommerfeld radiation condition as |z| — occ.

Here, |+ and |- denote the limits from the outside and inside of D, respectively. Recall that
the Sommerfeld radiation condition is specified in (2.1). We will study the solutions of (3.1) by
rigorously decomposing them in terms of their subwavelength resonant modes. We say that a
frequency w is a resonant frequency if the real part of w is positive and there is a non-zero solution
u (which is known as the resonant mode associated with w) to the problem (3.1). Moreover, we
say that a resonant frequency w is a subwavelength resonant frequency if w — 0 as 6 — 0.

3.2 Capacitance-matrix analysis

Our approach to solving (3.1) in the case that u'™ = 0 is to study the (weighted) capacitance
matriz. We will see that the eigenstates of this N x N-matrix characterize, at leading order in §,
the resonant modes of the system. This approach offers a rigorous discrete approximation to the
differential problem (3.1).



Let S¥ be the single layer potential, defined by

Splel(z) := o G*(,y)9(y) do(y), = eR>.

We will use the notation Sp for 8%, i.e. for the Laplace single layer potential. Since we are
working in three dimensions, the Laplace single layer potential is known to be invertible as a map
from L?(0D) to H*(0D). Further properties of the single layer potential can be found in e.g. [8].

In order to introduce the notion of capacitance, we define the functions 1, for j =1,..., N, as

77[]] = SBI[Xé)DjL
where x4 : R* — {0,1} is used to denote the characteristic function of a set A C R3. The
capacitance coeflicients Cyj, for 4,j = 1, ..., IV, are then defined as

Cij = — ’l/)j dO’.
aDi

The matrix C = (Cj;), for i,j =1,..., N, is called the capacitance matriz. We will define a € R to
be such that Re(v?d1) = da and assume that a # 0. We then define the weight matrix V = (V;;)
to be the diagonal matrix with non-zero entries given by

v26;

Vii=—+*, i=1,..,N. 3.2

50 ¢ (3.2)
We will see that the factor a just corresponds to a rescaling of all the subwavelength resonant
frequencies, and the factor ¢ implies that the entries of V' scale as O(1) for small ¢. Finally, we
define the weighted capacitance matriz C? as

vfélCu ’U%ﬁlclz ’U%(SlclN
v382Ca1  v302Ca2 - v382Cap

C':=6aVC=1| °" = = (3.3)
’012\]5NCN1 'U12V5NCN2 v]2V53CNN

This has been weighted to account for the different material parameters inside the different res-
onators, see e.g. [7, 9] for other variants in slightly different settings, such as when the resonators
have different volumes.

We define the functions S{’ as

Sk i s e R3 E,
Sy [Wil(x), zeDj, j=1,..,N.
To simplify the notation, we also define the vector of functions S* as
St ()
S¥(z) = :
Sy (@)
Then, for a vector ¢ = (q1, ..., gn)T € CN, where T denotes the transpose, we write q-S% to denote
the dot product

N
¢-5°(a) = Y- S (@)

The following theorem is a straightforward generalization of [6, Lemma 2.1, Theorem 2.2].

Theorem 3.1. Let ()i, q;) be the eigenpairs of the weighted capacitance matriz C¥. As § — 0, the
subwavelength resonant frequencies w; satisfy the asymptotic formula

Ai )
wi= 2o+ 0®), i=1,...,N,
| D1 (¥)

where |D1| is the volume of each resonator and the branch of the square root is chosen with positive
real part. Moreover, the corresponding resonant modes u; satisfy the asymptotic formula

ui(z) = ¢; - 8(x) + O(6*?), i=1,...,N.




3.3 Asymptotic exceptional points in the dilute regime

The dilute regime corresponds to the limit when the resonator separation becomes large relative to
their size. Specifically, we fix the size and shape of each resonator and assume that the separation
scales in proportion to e ~*. We wish to study the behaviour of the system as ¢ — 0. The following
lemma was proved in [5] (up to modification by rescaling).

Lemma 3.2. Consider a dilute system of N identical subwavelength resonators, given by

N
D = U(B +€_1Zj),
j=1

where 0 < € < 1, B is some fived domain and ~'z; represents the position of each resonator.

Here, z; and the size of B are of order one. In the limit ¢ — 0, the asymptotic behaviour of the
capacitance coefficients are given by

Cappg + O(e?), i=7,
Cij =4 _ (Capp)? O, it
47|z — 2]
where Capp := — [, S5 [xon] do.
We will assume that Dq,..., Dy are all given by translations of some domain B which is

parity-symmetric (i.e. it satisfies PB = B). For simplicity, we will fix the size of B to be such
that Capg = 47 (this holds e.g. if B is the unit sphere). We let € > 0 be a small parameter and

define the resonators as N
1
D;=B-— (z - ;) (e71,0,0).

Notice that the resonators are equally spaced along the x-axis and that all the resonators are far
away from each other when ¢ is small. Then, using the matrix V as defined in (3.2), we define the
matrix CJ as

! e —e/2 - —¢/(N-1)
—e 1 —e —6/(N—2)
Co=Vv| —» == L ey | (3.4)
“e/(N-1) —/(N—2) —/(N—3) 1

By Lemma 3.2, we see that C] gives a dilute approximation of C in the sense that
C" = 4rad (Cf + O(e?)) .

Also, under this choice of D, we can follow the proof of [6, Theorem 2.2] to conclude that the
error term in Theorem 3.1 holds uniformly in €. Therefore, from Theorem 3.1, we get the following
theorem.

Theorem 3.3. Let v; be the eigenvalues of C§ and g; the corresponding eigenvectors. Then, for
small € and §, we have the following asymptotic behaviour of w; and wu;:

4mrady;
wi = |2l 06 + 61/2%€2),
| D1

ui(z) = qi - 8" + O(? +6Y?), i=1,..,N.

Here, the error terms hold uniformly for € and § in neighbourhoods of 0.

This theorem gives a discrete approximation of the resonant frequencies and eigenmodes, in
terms of the eigenvalues and eigenvectors of Cj. It shows that exceptional points of C} will
be asymptotic exceptional points of the full differential equation problem (3.1). An N order
exceptional point of Cj is a set of parameter values such that

det(CY —zI) = (y — )V and dimker(CY —~I) =1,

for some «y. In what follows, we will study these points by expanding the characteristic polynomial

of CY and matching the coefficients to those of (y — z)".



4 A third-order exceptional point

In this section, we consider an array of three resonators and search for a third-order exceptional
point. Observe, firstly, that since IV is odd the centre resonator must have real material parameters
in order to be PT-symmetric. We introduce the notation

0261 := da(l + ib), V38, 1= dac, v363 = da(1 —ib),

for real-valued parameters a,b and c. Notice that a,b,c = O(1). In this case, the matrix CJ is
given by
1+1ib —(1+4ib)e —(1+1ib)e/2
Cy = —ce c —ce
—(1—ib)e/2 —(1—ib)e  1—ib
Next, we shall show that the discrete model matrix C}j has an exceptional point of order 3.
The characteristic polynomial of CY, which is det(CYy — «I), can be easily computed as

2
P(z) = 2% — (c+2)z% + <1—|—b2+20—54(1+b2+8c))x

9
—c(1+b%) (1 ——g? - €3> .
4
In order to get an exceptional point of order 3, we require
P(z) = (z =) = 2® = 3v2® + 3y°x — 77,

and that dimker(CY —~I) = 1, for some 7. Comparing the above two expressions for P(x), we see
that b, c and € should satisfy

Iy=c+2, (4.1)
2

372:1+b2+207%(1+b2+80), (4.2)
9

73 =c(1+b?) (1 - 162 - 53> . (4.3)

Lemma 4.1. For any smalle > 0, there existb > 0 and ¢ > 0 satisfying (4.2) and (4.3). Moreover,
we have

b=bie+0(?), (4.4)
c=1+cie+ O0(e?),

where by and c1 are specified as the roots of given polynomials. Therefore, for such b and c, the
characteristic polynomial of C is given by

c+2

P(z) = (z —~)® with~= =1+ 0(e).

Proof. From (4.1) we have that v = (¢ + 2)/3. Then, (4.2) can be written as

2\ ! 2
14+5% = (1 6) [(HQ) 2(152)%. (4.6)
4 3
Then, substituting the above into (4.3), we get
e\ (c+2)° 95 3\ [(c+2)? 2
1-= =c1-2e2— —2(1— 4.
B



which is a cubic polynomial in ¢. If ¢ = 0, it has a solution ¢ = 1. Since (4.7) is a regularly
perturbed cubic equation by small € > 0, it has a real root ¢ satisfying

c=1+cie+O0(?).

Substituting the above expansion to (4.7), it is straightforward to see that ¢; is the real root of the
polynomial ¢f + 2L¢; — % =0, i.e. ¢; ~0.483... . Then, by (4.6), we can compute the expansion
of b as

b=bie + O(c?),
where by = 4/ % + % ~ 1.53... . O]
We next show that, at the exceptional point, all the eigenvectors coalesce.
Lemma 4.2. For a given small € > 0, let b and ¢ be chosen as in Lemma 4.1 and let v be the
corresponding eigenvalue of Cy. Then we have
dimker(Cy —~I) = 1.
Proof. Since v = (¢4 2)/3, we have

1+ib— <2 —(1+ib)e —(1+1ib)e/2
Cy—~I = —ce c— &2 —ce
—(1—ib)e/2 —(1—ib)e (1—1ib)— <2

We will show that rank(Cy — vI) = 2, which implies the conclusion. First of all, since v is an
eigenvalue, rank(Cy — vI) < 3. We therefore only need to show that two of the column vectors of
C% — ~I are linearly independent. For small € > 0, by (4.4) and (4.5), we have

e S S )
CY—yl=¢ —1 2 —1 +0(?). (4.8)
-1/2 -1 -2 —ib

Observe that both b; and ¢; are non-zero and real. From the asymptotic behaviour of (4.8), we
see that the first and the last column vectors are linearly independent for sufficiently small . [
By the above two lemmas, we see that the trimer has an exceptional point of order 3.

Theorem 4.3. For small € and & the trimer D has an asymptotic exceptional point of order 3 at
the resonant frequency w* satisfying

dmad(c+ 2) 179 9
W = | ——L + O(6 4 6Y/2&2).
V' 3IDi ( )

Here, ¢ € R is a constant satisfying (4.2) and (4.3).

Remark 4.4. As discussed in [6], we do not expect the original differential problem (3.1) to support
exact exceptional points, in the sense of exactly degenerate resonant frequencies and coalescence of
eigenmodes. The exceptional points studied here are linked to the PT -symmetry of the problem.
Even under the assumption of symmetric gain and loss, the problem (3.1) is not PT -symmetric,
since the radiation condition swaps sign under complex conjugation. Nevertheless, for small
and 0, the leading order approzimation given by CY is indeed PT -symmetric, leading to asymp-
totic, approzimate, exceptional points. This is demonstrated by Figures 3 and 4 which depict the
coincidence of the eigenvalues of C and the resonant frequencies of the full differential system,
respectively.

Remark 4.5. The approach used here (making an approzimation under the assumption that the
resonators are arbitrarily far apart) can also be used to find the exceptional point supported by
a PT-symmetric pair of resonators (see Appendiz A for details). This structure was previously
studied in [6] using a more general approach that requires no assumptions of diluteness.



5 Exceptional points of order four

We now seek fourth-order exceptional points, and assume that D is an array of four P7T-symmetric
resonators with material parameters given by

v261 := da(l +ib), V26 := dalc + id), v383 = da(c — id), 026, := da(l — ib).

In this setting, the matrix C}, as defined in Section 3.2, is

1+ib —(1+ib)e  —(1+ib)e/2 —(1+ib)e/3
oV — —(c+id)e c+id —(c+id)e  —(c+id)e/2
CT —(c—id)e/2  —(c—id)e c—id —(c—1id)e
—(1—1db)e/3 —(1—ibe/2 —(1—ib)e 1—1db

and the characteristic polynomial P(x) = det(C} — «I) can be computed as
P(z) = 2" —2(c+1)a?

1
+ (1 +0* +c(d+e)+d?— SQE(Q + 2b% 4 9¢(5 + 2¢) — 27bd + 18d2)> 2

1
+13 (9(c® + d®)(—4 + 9% + 4€%) + (1 + b%)(—36 + 2 (49 + 12¢))) =

1
+ g (L H09)(e? + d?) (144 — €2(520 + 384¢ + 23¢7)) .

In order to get an exceptional point of order 4, we require that
P(z) = (x —7)* = 2 — 4ya® + 64222 — 493z + 4%,
for some . Comparing the two expressions for P, we see that v = (¢4 1)/2 and that

3

52

Slet 2=1+b"+c(d+c)+d*— = (24 20> 4 9¢(5 + 2¢) — 27bd + 184%) , (5.1)
1 1

e+ 1)% = 13 (9(c® + d?)(—4 + 9% 4+ 4€®) + c(1 4 b%)(—36 + 49¢% + 12%)) , (5.2)
1 1
glet Nt = mad+ b?)(c? + d*) (144 — £2(520 + 384¢ + 23¢?)). (5.3)

We are interested in solutions to this system for small . At ¢ = 0, we have a unique solution given
by
b=0, c=1, d=0.

For small but nonzero ¢, we make the ansatz
b=bie+ O0(?), c=1+cie+0(?), d=die + O(?).

By substituting into (5.1)—(5.3) we find, after simplifications, that

65
49 16
St | ——4b)+—=0, (5.5)
9 3
1\ 32 23
¢t —16(ct + d?) (bf - 9> + 3o+ 1603 — 24byd; + 5 =0 (5.6)

Moreover, it is clear that if (b1, ¢1,dy) is a solution, then (—by,¢1,—d1) is also a solution. Solving
the above system numerically, we obtain 4 solutions up to this symmetry (or 8 solutions in total),
presented in Figure 2.
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(a) Exceptional point satisfying bidi > 0 and |b1| > (b) Ezceptional point satisfying bidi > 0 and |b1] <
|d1‘, with ¢1 = 0.654. |d1‘, with ¢1 = —0.863.
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(¢) Exceptional point satisfying bidi < 0 and |bi| > (d) Exceptional point satisfying bidi < 0 and |b1] <
|d1‘, with ¢; = 1.07. |d1‘, with ¢y = —1.15.

Figure 2: A system of four PT -symmetric resonators supports four asymptotic exceptional points. Here,
we plot the leading order coefficients of the imaginary parts of the material parameters (the gain or loss)
at each of the four exceptional points.

The four different solutions can be described in terms of the relative magnitude and signs of b,
and dy: each solution corresponds to one of the four cases depending on if b; and d; have the same
or opposite sign, and if by or if d; is larger in magnitude. This is depicted in Figure 2. A solution
with the qualitative features bydy > 0 and |by| > |dy| was previously observed in the setting of a
Hamiltonian system in [25].

We have used formal asymptotics to approximate the continuously differentiable solutions to
(5.1)-(5.3). Next, we show that, at a solution to this system, all eigenvectors of C'y coalesce.

Lemma 5.1. For a given small € > 0, let b,c and d be solutions to (5.1)—(5.3) and let -y be the
corresponding eigenvalue of Cy. Then we have

dimker(Cy —~I) = 1.

Proof. We will show the equivalent statement that C] — vI has rank 3. Since v is an eigenvalue
of CY, the rank is at most 3. Moreover, since v = (¢ + 1)/2, we have for small ¢,

—5 +iby -1 —1/2 -1/3
-1 L +id; -1 —1/2 9
v _ 2
Cy—~l=¢ 12 1 a g, 1 + 0(e%).
~1/3 ~1/2 -1 =9 —ib
The determinant of the 3 x 3 upper right block is given by
-1 ~1/2  -1/3
det | 4 +idy ~1 —-1/2 | = == ((c1 +3)* + 4d} +2),
1 1 s 12
— G —idy  —1
and is negative for any c; and d;. Therefore, for small €, the rank of Cj — I is at least 3. O

6 Exceptional points of arbitrary order

Here, we study exceptional points in larger systems of resonators. We will consider a P77 -symmetric
array with either even or odd number of resonators. In the case of an odd number, analogously to
the third order exceptional point, we assume that the centre resonator has no gain or loss.

To be specific, we consider an array of N resonators with material parameters given by v2§; :=
da(a; +1ib;) for i = 1,..., N., for some a,a;,b; € R. We choose a such that a; = 1. In the case of

11



an even number of resonators, N = 2n,n € N, we assume that a; = asp11—; and b; = —bap11-4,
in other words that

v361 = da(a;+iby), ..., v26, = da(a,+iby), 'U,?L+1(5n+1 = da(a,—iby), ..., v3, 00, = da(as—iby).

In the case of an odd number of resonators, N = 2n + 1,n € N, we assume that a; = a2p12—,

b; = —bapyo—; and by, = 0, in other words that
v%él =da(ay +iby), ..., va(Sn = da(a, + iby,), U?L+16n+1 = daan1,
V2 o0t = da(an —1iby), ..., V3, 102041 = da(ar —iby).

In this setting, the dilute capacitance matrix Cj = (sz)j,j)a as defined in Section 3.3, is the
matrix with entries specified by

az+1b27 7’:]7

€ . .
s 1 F ]
i —

Again, to have an exceptional point of order N we require that

oy, —
.1, 7((17; —+ lbl)

det(CY — ) = (y — x)", (6.1)

dimker(Cy —~I) =1, (6.2)

for some 7. For general N, the equation (6.1) is a system of N polynomial equations of order
N, in terms of the N unknown parameters v, b1, ag, ba, ..., an, b, and, if N is odd, a,4+1. For N
larger than 4, it is not possible to explicitly derive the solutions, and we will numerically study
this system of equations in Section 7. Nevertheless, under the assumption that (6.1) holds, we can

derive asymptotic formulas for the unknown parameters analogously to (5.4)—(5.6).
We begin by observing the following simple equation for ~:

1 N
N = N;ai. (6.3)

As ¢ — 0, we also have the following result.

Lemma 6.1. Assume that there is a solution a;,b;, fori=1,...,N, to (6.1) which is continuous
as € = 0. Then, we have
a; =14+ 0(e), b; = O(e),

and, consequently, v =1+ O(e).

Proof. As € — 0, denote the limiting values of a; and b; by a; 0 and b; o, respectively. Since (6.1)
has no terms of order O(e), we find that

a; = a0+ 0(6), bi =bio+ O(e).
We then have
N
det(Cy —zI) = H(aw +1ib; o —x) + O(e)

=1

= (0 — )" +0(e),

where, from (6.3),
% i
= — a;o-
Yo N 2 ,0

Since vy € R, it follows that b; o = 0 for all ¢ = 1,..,V, and since a; o = 1 it follows that a;0 =1
foralli=1,...,N. O
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Assume that (6.1) holds for some 7. Then, for small ¢ > 0, we have by Lemma 6.1 that
a; =14 a; 1€ + o(e), by = b; 1€ + o(e), v =14 ve+o(e),

for some a; 1, b; 1 and ~; independent of €. In this case, it holds that

a1,1+ib1,1 -1 —-1/2 - —=1/(N-1)
-1 a2 1+iba 1 -1 e —1/(N-2)
Cy=1+eCy,+o(e), Ci1= -1/2 -1 asa+ibzy - —1/(N-3) (6.4)

—1/(N—1) —1/(N—2) —1/(}\/—3) - al,léibl,l

Then
Cy—vI=¢(Cq, —ml) +o(e).

Therefore, for v to be an N order exceptional point of CY, we must have that v is an N th
order exceptional point of C}i’ 1- We can then obtain a system of polynomial equations describing
the exceptional point (analogous to (5.4)—(5.6) but for general N) by expanding the characteristic
polynomial of Cj ;. Moreover, assuming that (6.1) holds for some 7, a simple way to prove that
(6.2) holds is to check that Cj, has a one-dimensional kernel.

At an exceptional point v; of Cy y, it follows from Theorem 3.3 and (6.4) that the full system
exhibits an asymptotic exceptional point with frequency given by

4mad
| D1

(14 e71) + O(8) +620(e).

7 Numerical computations

In this section, we perform numerical simulations to illustrate properties and applications of high-
order exceptional points. In Section 7.1 we numerically demonstrate exceptional points of arbitrary
order. In Section 7.2 we return to the initial question of achieving enhanced sensing using high-
order exceptional points, and study the details of how strongly small particle perturbations are
enhanced for different particle positions.

7.1 High-order exceptional points

To find the exceptional points of Cj,, the equation for the characteristic polynomial,
det(Cy, — xl) = (11— z)",

was solved numerically (in terms of the unknown parameters a; 1, a; 2..., b; 1,b; 2,... and ~1), and
the solutions satisfying dim kelr(C'g’1 —y1I) = 1 were selected. Throughout this section, the com-
putations were performed using spherical resonators with unit radius, 6 = 1/5000, = 0.1 and
a=1.

Figure 3 shows, to leading order and for selected N, the resonant frequencies as the gain and
loss increases from 0 and crosses the exceptional points. The gain/loss parameters are b; 1 = 7b; 4,
for 0 < 7 < 2, where b}, corresponds to the gain/loss at the exceptional point. Figure 3 shows
examples of exceptional points of various orders up to N = 14. These examples all follow the
same pattern, whereby the gain/loss grows linearly away from the centre (previously reported by
[25]). We expect similar behaviour for even larger N, which demonstrates the possibility to create
exceptional points of arbitrary order.

Figure 4 shows the resonant frequencies of the full differential system, without making any
asymptotic approximations. Here, the resonant frequencies were computed using the multipole
method (see [5, Appendix A] for details). This demonstrates the approximate nature of the excep-
tional points: due to the radiation condition and the loss of energy to the far field, the frequencies
have non-zero imaginary parts even at 7 = 0. As § — 0, this imaginary part vanishes and the
system has an exact exceptional point.
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Figure 3: Evolution of the resonant frequencies, to leading order, as gain and loss is introduced. Here,
the imaginary parts b;, as defined in Section 6, are rescaled by T € [0,2], where 7 = 1 corresponds to an
N order exceptional point. The inset plots show the relative distribution of the imaginary parts of the
material parameters on each resonator.
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Figure 4: Evolution of the resonant frequencies as gain and loss is introduced, computed for the full dif-
ferential system without asymptotic approximation. The imaginary parts b;, as defined in Section 6, are
rescaled by T € [0,2], where T = 1 corresponds to an N order asymptotic exceptional point.
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Figure 5: Exceptional points of different orders can be found with the same symmetries. Here, two examples
of symmetric families of gain/loss distributions corresponding to exceptional points of different orders are
shown. Figures 5a to 5¢ (which are the same distributions as in Figure 3) show roughly linearly growing
distributions, while Figures 5d to 5f show alternating distributions.

The exceptional points demonstrated in Figure 3 exhibit linearly growing gain/loss towards the
edges of the resonator structure, which corresponds to one of the four solutions (Figure 2a) from
the case of four resonators. The other solutions from Figure 2 also have higher-order analogues.
Another family of solutions, this time with alternating gain/loss (corresponding to Figure 2d), is
shown in Figure 5. We emphasize that as N increases, the number of different gain/loss distri-
butions producing exceptional points vastly increases. While the realizations of these exceptional
points involve matching a large number of parameters, the large number of different solutions
suggests the possibility of reducing the dimensionality of the parameter space.

7.2 Enhanced sensing

Recall that an array with an exceptional point of order N has powerful applications in enhanced
sensing since small perturbations typically lead to eigenfrequency shifts with a 1/N exponent. This
was examined for the particular case of sensing the presence of a small particle in Section 2. It
was shown that one of the eigenfrequencies would experience a shift proportional to n;/ N|Q\1/ N
where |Q] is the volume of the small particle and 7, depends on the particle’s position. For small
|2], the operator T is close to the identity so 7, is approximately proportional to 3;(2). We can
thus explore the optimal position to place the small particle by plotting |¢%| and looking for its
maximum. This is shown for each of the exceptional points in case of three and four resonators in
Figure 6.

The profiles presented in Figure 6 are simulations of the full differential system using the
multipole method [5, Appendix A]. This system exhibits only asymptotic exceptional points, which
explains the unexpected symmetry. The asymptotic parameter values derived in Sections 4 and 5
were used in these simulations.

As is typically the case with structures composed of many subwavelength resonators (see e.g.
[4, 5]), the maxima of the resonant modes occur on the resonators themselves. Thus, for optimal en-
hanced sensing of a small particle, the particle should be placed close to one of the resonators. The
choice of which resonator is ideal varies depending on the precise configuration of the exceptional
point in question, as demonstrated by Figure 6b.
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(b) |93 | for each of the four asymptotic exceptional points in the case

of N = 4 resonators. The distribution of the imaginary parts on each
resonator is shown inset, corresponding to the values depicted in Figure 2.
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Figure 6: In order to maximise the enhanced perturbation due to the introduction of a small particle, the
position of the particle relative to the array of resonators is an important consideration. The analysis of
Section 2 implies that one should seek to place the particle at the point where |p3%| is mazimized.
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8 Concluding remarks

In this work, we have demonstrated the possibility of using subwavelength resonators for sensitivity
enhancement. There are two key steps in the argument. First, we have shown that enhanced
sensing occurs at exceptional points, and proven how the sensitivity is enhanced by increasing the
order of the exceptional point. Then, we have demonstrated that high-order exceptional points
indeed occur in systems of subwavelength resonators. We have rigorously proven that a third order
exceptional point exists, and have numerically demonstrated a plethora of configurations giving
exceptional points of higher-orders.

Data availability

The code used in this study is available at https://github.com/davies-b/EPdilute.
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A Second-order exceptional points

The approach used in this work can also be used to find an exceptional point in a P7T-symmetric
pair of resonators. This structure was previously studied without the assumption of diluteness in
[6]. The two resonators have material parameters given by

v261 := da(l +ib), 026y := da(l — ib),

In this case we wish to find an exceptional point of the matrix

, 1+ib  —(1+ib)e
Ca = (—(1 —ib)e  1-ib ) ' (A1)

This has characteristic polynomial given by
P(z) = 2® — 2z + (1 + b*)(1 — &2), (A.2)

which we want to have the form (z —~)? = 22 — 2yx +~2. This can be achieved by choosing v = 1
and .

b= —. A3

— (A.3)
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We must also verify that dimker(Cy — I) = 1. We have that

1= (18 ‘6) + 0@, (A4)

—e —ie

from which we can see that ker(CYy — I) is spanned by (—i,1)T, at leading order in ¢, and is one
dimensional.
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