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ACOUSTIC SCATTERING PROBLEMS WITH CONVOLUTION QUADRATURE

AND THE METHOD OF FUNDAMENTAL SOLUTIONS∗

IGNACIO LABARCA† AND RALF HIPTMAIR‡

Abstract. Time domain acoustic scattering problems in two dimensions are studied. The numerical scheme
relies on the use of Convolution Quadrature (CQ) method to reduce the time domain problem to the solution of
frequency domain Helmholtz equations with complex wavenumbers. These equations are solved with the method
of fundamental solutions (MFS), which approximates the solution by a linear combination of fundamental solutions
defined at source points inside (outside) the scatterer for exterior (interior) problems. Numerical results show that
the coupling of both methods works efficiently and accurately for multistep and multistage based CQ.

Key words. acoustic wave scattering, convolution quadrature, method of fundamental solutions

1. Introduction. For several years now, since the seminal work of Ch. Lubich [17, 18], convo-
lution quadrature (CQ) has attracted considerable attention as a method for simulating wave prop-
agation in time domain, based on relationships obtained in the Laplace domain. This approach was
successful in the wave propagation context, because it allows the use of frequency-domain Green’s
functions instead of their more complicated time-domain counterparts (see Eq.(1.2)).This makes
possible the use of integral equation methods to solve the arising frequency-domain problems. In-
tegral equation methods are also an option in time-domain, but they require difficult integration
techniques in two dimensions, and dealing with distributional expressions in three dimensions [14].
Instead of resorting to integral equations, we follow a different and simpler approach. This is the
method of fundamental solutions (MFS) [10, 4] which assumes that the solution of the Helmholtz
equation can be represented by a linear combination of fundamental solutions with sources located
at the interior of the scatterer. The advantage of the MFS for the CQ scheme also lies in the
possibility of sparsification of the resulting matrix, due to the exponential decaying of fundamen-
tal solutions for modified Helmholtz equations [7]. It is also possible to use techniques developed
for Boundary Element methods, which allow the use of directional H−matrices for each of the
Helmholtz problems [6]. Although a combination of MFS with Laplace transform techniques and
the modified Helmholtz equation has been mentioned before [7, 16], as far as we know, there are
no results for a successful implementation of MFS in combination with multistep and multistage
methods in time domain, on which CQ is based.

The problem that we are interested in solving is the exterior (interior) acoustic scattering
problem in the time-domain. Let Ω ⊂ Rd, d = 2, 3, be the bounded region of space ocuppied by
the scatterer. By rescaling we can achieve that the wave speed in the homogeneous exterior domain
Rd\Ω is given by c = 1. The equations for the scattered field u excited by an incident wave uinc are
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as follows [20, Section 1.5]

(1.1)





∂2u

∂t2
(x, t)−∆u(x, t) = 0, x ∈ Rd\Ω (or x ∈ Ω), t ≥ 0,

u(x, t) = −uinc(x, t), x ∈ Γ := ∂Ω, t ≥ 0,

u(x, 0) =
∂u

∂t
(x, 0) = 0, x ∈ Rd\Ω (or x ∈ Ω).

This is a wave equation with Dirichlet boundary conditions and zero initial conditions. At an initial
time t = 0 it is assumed that the incident field has not yet reached the scatterer, which is reflected
by our initial conditions.

Fundamental solutions for the wave equation in two and three dimensions centered at a given
point y ∈ Ω are the following

(1.2) G(x− y, t) =





H(t− |x− y|)

2π
√
t2 − |x− y|2

, d = 2,

δ(t− |x− y|)

4π|x− y|
, d = 3.

The study of retarded potential integral operators based on (1.2) started with the work of Bam-
berger and Ha Duong [9], where they established the analysis in time-domain by means of Laplace
Transform techniques. Galerkin Boundary Element methods were studied later in [11, 1]. Alterna-
tive numerical methods for retarded potentials based on collocation schemes can also be found in
[8].

The exterior acoustic scattering problem has been efficiently solved in [3] by means of the
convolution quadrature method and the boundary element method. We propose an alternative
method based on convolution quadrature combined with the method of fundamental solutions,
which is easy to implement and produces accurate numerical results.

2. Numerical Scheme.

2.1. Convolution Quadrature. We briefly describe the CQ-approach to the initial boundary
value problem (1.1). We start with the wave equation, boundary conditions and initial conditions
and derive frequency-domain problems based on multistep and multistage methods. Further details
can be found in [14, Chapters 3, 4 and 6] and [20, Section 4].

We start by rewriting (1.1) as a first-order system in time. Let v(x, t) :=
∂u

∂t
(x, t) and define

(2.1) U(x, t) := (u(x, t), v(x, t)).

From (1.1) it is clear that U satisfies

(2.2)

∂U

∂t
(x, t) = LU(x, t), x ∈ Rd\Ω, t ≥ 0,

U(x, t) = −U inc(x, t), x ∈ Γ := ∂Ω, t ≥ 0,

U(x, 0) = 0, x ∈ Rd\Ω,
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where L :=

(
0 I
∆ 0

)
and U inc(x, t) :=

(
uinc(x, t),

∂u

∂t

inc

(x, t)

)
.

The system (2.2) can be discretized in time by multistep or multistage methods. Transforming the
resulting equations in the Laplace domain will lead to the corresponding CQ scheme and will be
explained in the following sections.

2.2. Multistep Convolution Quadrature. A multistep method for solving equation (2.2)
is defined by parameters αℓ, βℓ ∈ R, ℓ = 0, . . . ,m and a time step ∆t > 0 [22, Ch. III.2]. At discrete
times tn := n∆t, n ∈ N it generates approximations Un(x) ≈ U(x, tn) by the recursion

(2.3)

m∑

ℓ=0

αℓUn+ℓ−m = ∆t

m∑

ℓ=0

βℓLUn+ℓ−m, n = 0, 1, . . . .

where we set Un = 0 for n ≤ 0. Applying the Z-Transform [14, Sec. 2.2]

(2.4) U(x, ζ) :=

∞∑

n=0

Un(x)ζ
n =

∞∑

n=0

(un(x), vn(x))ζ
n, ζ ∈ C, |ζ| < 1,

on (2.3) leads to a new equation in the Z-domain that corresponds to

(2.5)
δ(ζ)

∆t
U(x, ζ) = LU(x, ζ), ζ ∈ C, |ζ| < 1

where δ(ζ) :=

∑m
ℓ=0 αm−ℓζ

ℓ

∑m
ℓ=0 βm−ℓζℓ

. We also obtain boundary conditions in the Z-domain,

(2.6) U(x, ζ) = −U inc(x, ζ) := −

∞∑

n=0

U inc(x, tn)ζ
n, x ∈ Γ.

Finally, we arrive at the following 1-parameter family of boundary value problems

(2.7)

δ(ζ)

∆t
U(x, ζ) = LU(x, ζ), x ∈ Rd\Ω, |ζ| < 1,

U(x, ζ) = −U inc(x, ζ), x ∈ Γ, |ζ| < 1.

Recalling that U(x, ζ) = (u(x, ζ),v(x, ζ)), where

(2.8)
δ(ζ)

∆t
v(x, ζ) = ∆u(x, ζ), x ∈ R

d\Ω, |ζ| < 1,

leads to the following Helmholtz type boundary value problems

(2.9)
−∆u(x, ζ)−

(
i
δ(ζ)

∆t

)2

u(x, ζ) = 0, x ∈ Rd\Ω, |ζ| < 1,

u(x, ζ) = −uinc(x, ζ), x ∈ Γ, |ζ| < 1,
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with complex wavenumbers k(ζ) = i
δ(ζ)

∆t
. Using an A-stable multistep method will ensure that

the rational polynomial δ satisfies δ(ζ) ∈ C+ for ζ ∈ C+ [17, Section 1, p.131]. However, we are
interested in the time-domain solution u(x, t), not in the Z-domain solution u(x, ζ). Both of them
are related by means of the inverse Z-Transform, which corresponds to an application of the Cauchy
integral formula:

(2.10) u(x, tn) ≈ un(x) =
1

2πi

∫

C

u(x, ζ)

ζn+1
dζ, x ∈ R

d\Ω.

For implementation purposes, a good choice for the contour of integration C is a circle of radius λ <
1, which allows the use of the Fast Fourier Transform (FFT) to compute the integral approximately
by means of a trapezoidal rule. Following [14, Section 4.2.1], the final expression is

(2.11)
1

2πi

∫

C

1

ζn+1
u(x, ζ)dζ ≈

λ−n

N + 1

N∑

ℓ=0

u(x, ζℓ)ζ
−n
ℓ

where ζℓ := e
2πiℓ
N+1 , ℓ = 0, . . . , N, and N + 1 ∈ N is the number of quadrature points in the

trapezoidal rule. This means that we need to solve N + 1 frequency domain problems (2.9) with
ζ = ζℓ, ℓ = 0, . . . , N to approximate the solution of our wave equation. The order of convergence
of this method is the same as that of the multistep method chosen. Due to Dahlquist’s Barrier
Theorem [21, Chapter V, Theorem 1.4], A-stable multistep methods are limited to order ≤ 2, which
is a major drawback of multistep-based CQ.

2.3. Multistage Convolution Quadrature. There are A-stable implicit multistage meth-
ods of arbritrary order [2]. This is the main motivation for considering them for solving (2.2) instead

of multistep methods. Writing
c A

bT
, A ∈ Rm×m, b, c ∈ Rm, m ∈ N for the Butcher tableau for

a given m-stage Runge-Kutta method, and defining the stages Unj(x) ≈ U(x, tn + cj∆t) and the
steps Un(x) ≈ U(x, tn), the method amounts to computing a sequence of vector valued functions

(2.12)
Un(x) := (Un1(x), . . . , Unm(x))

= (U(x, tn + c1∆t), . . . , U(x, tn + cm∆t)), n = 0, . . . , N,

of stage solutions such that

(2.13)
Un = Un1 + ∆t AL Un,

Un+1 = Un + ∆t b · L Un.

where L Un := (LUn1(x), . . . ,LUnm(x)) and Un = 0, Un = 0 for n ≤ 0.
For stiffly accurate Runge-Kutta methods such as RadauIIA or LobattoIIIC families [19], we have
the relation

eTmA = bT ,

where em = (0, . . . , 0, 1) ∈ Rm. Thus, the second equation in (2.13) can be derived from the first
one by multiplying from the left by eTm. Then, we get the simpler recursion

(2.14) Un = 1eTmUn−1 + ∆t AL Un,
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The application of the Z-transform to this equation leads to the following equation in the
Z-domain:

(2.15) U(ζ) = ζ1eTmU(ζ) + ∆t AL U(ζ), ζ ∈ C, |ζ| < 1,

where we denote U(ζ) :=
∑∞

n=0 Unζ
n =

∞∑

n=0

((un1(x), vn1(x)), . . . , (unm(x), vnm(x)))ζn.

From (2.15) we obtain the following expression

(2.16)
δRK(ζ)

∆t
U(ζ) = L U(ζ),

where we wrote δRK(ζ) := A−1
(
I − ζ1eTm

)
∈ Cm×m.

Similarly as for the multistep case, we derive a Helmholtz-type equation with a matrix-valued
“wavenumber” of complex coefficients. Letting U := ((u1,v1), . . . , (um,vm)), we define u :=
(u1, . . . ,um) which satisfies the vector Helmholtz-type boundary value problems

(2.17) −∆ u(x, ζ) +

(
δRK(ζ)

∆t

)2

u(x, ζ) = 0, x ∈ Rd\Ω,

u(x, ζ) = −uinc(x, ζ), x ∈ Γ,

|ζ| < 1,

where ∆ u(x, ζ) := (∆u1(x, ζ), . . . ,∆um(x, ζ)) . The system can be decoupled by diagonalization
of the matrix-valued wavenumber

(2.18) δRK(ζ) = P (ζ)D(ζ)P−1(ζ),

where

(2.19) D(ζ) = diag(δRK
1 (ζ), . . . , δRK

m (ζ)) and P (ζ) ∈ C
m×m

are the matrices of eigenvalues and eigenvectors of δRK(ζ), respectively. Finally, we need to solve
for j = 1, . . . ,m

(2.20)
−∆wj(x, ζ)−

(
i
δRK
j (ζ)

∆t

)2

wj(x, ζ) = 0, x ∈ Rd\Ω,

wj(x, ζ) = −winc
j (x, ζ), x ∈ Γ,

|ζ| < 1,

where we have used the change of variables w(x, ζ) = P−1(ζ)u(x, ζ). As regards implementation,
the procedure follows exactly that of (2.11), using the FFT and solving a finite number of Helmholtz-
type boundary value problems.

2.4. Method of Fundamental Solutions. In the previous section, by means of the Z trans-
form we reduced the time domain wave equation with Dirichlet boundary conditions to multiple
Helmholtz Dirichlet boundary value problems. Different solvers in frequency domain can be used
for these boundary value problems (BVPs). Here we focus on the Method of Fundamental Solu-
tions. We are interested in solving either the interior or exterior Helmholtz Dirichlet BVP with
wavenumber k ∈ C+ and Dirichlet boundary conditions, i.e.

(2.21)
−∆u(x)− k2u(x) = 0, x ∈ Ω,

u(x) = g(x), x ∈ Γ
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for the interior problem, or

(2.22)
−∆u(x)− k2u(x) = 0, x ∈ Rd\Ω,

u(x) = g(x), x ∈ Γ
+Radiation Conditions

for the exterior problem. In both cases, g is a function defining Dirichlet boundary conditions, and
models an incident field e.g a plane wave or a field generated by a point source.

As indicated by its name the MFS approximates u by a linear superposition of fundamental
solutions. The fundamental solution for the Helmholtz equation in R2 is the Hankel function of the
first kind and order zero

(2.23) G(x,y; k) :=
i

4
H

(1)
0 (k|x− y|), x 6= y, k ∈ C.

The Method of Fundamental Solutions (MFS) selects a finite set of points {yj}
N
j=1 and writes ũ as

a linear combination of fundamental solutions centered at these points

(2.24) ũ(x) =

Ny∑

j=1

αjG(x,yj ; k), x ∈ R
2\Ω,

with coefficients αj ∈ C, j = 1, . . . , Ny. In 2D, the source locations {yj} are chosen on a smooth
curve contained in the domain Ω for exterior problems, and enclosing Ω for interior problems (see
Figure 1). Exponential convergence can be achieved if these are suitable chosen for analytic do-
mains [4]. The optimal placement of auxiliary sources is still an unsolved problem in 3D.

Ω

u
scat

u
inc

Γ

Σ

Fig. 1: Example geometry with source points (red dots) inside Ω on curve Σ (dashed line).

The coefficients can be determined by L2(Γ)-fitting of the known boundary data g, thus en-
forcing the Dirichlet boundary conditions. We need to find coefficients αj , j = 1, . . . , N, such that,
with ũ as in (2.24)

(2.25) (α1, . . . , αN ) = argmin
α∈CN ‖ũ− g‖L2(Γ) .

This can be done by choosing quadrature points xℓ, ℓ = 1, . . . , Nx, to approximate the L2−norm
on the boundary. Then, the problem can be solved by a least squares method. We can rewrite it
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in matrix form as

(2.26) α⋆ = argmin
α∈CN ‖Mα− g‖2 .

where α = (α1, . . . , αNy
)T , g = (g(x1), . . . , g(xNx

))T and Mℓj = G(xℓ,yj ; k) for ℓ = 1, . . . , Nx, j =
1, . . . , Ny.

3. Algorithm. We denote

(3.1) M(ζ) :=




G(x0,y0; ζ) . . . G(x0,yNy
; ζ)

... . . .
...

G(xNx
,y0; ζ) . . . G(xNx

,yNy
; ζ)


 ∈ C

Nx×Ny

the matrix related to the minimization problem arising from the MFS (2.25). Note that this is a
dense matrix. Concerning the selection of source points we follow [15, 4]. For the two dimensional
Helmholtz equation over a domain Ω ⊂ R2 with analytic boundary Γ let Φ : C → C be such that

(3.2) Γ := {x ∈ R
2 : x = (Re Φ(z), Im Φ(z)), z ∈ C, |z| = 1}

and

(3.3) Σ := {x ∈ R
2 : x = (Re Φ(z), Im Φ(z)), z ∈ C, |z| = r}

are the boundary Γ of the domain Ω and the curve Σ where charge points are chosen, respectively.
The fixed parameter 0 < r < 1 (resp. r > 1) for exterior (resp. interior) problems. This was pro-
posed for the Laplace problem [15] and has been used for Helmholtz problems too. In [4] a different
approach is suggested to improve results in the presence of singularities in the parametrizations of
analytic domains, but for simplicity we decided not to use it, because our focus is on testing the
direct coupling of CQ and MFS.

We present the algorithms for the multistep and multistage case. The CQ implementation
is mainly based on the presentation given in [14, Sections 4 and 6]. It is worth mentioning that
a scaling of the data is needed in order to correctly compute the Z-Transform of boundary data
and the inverse Z-Transform as a contour integral over a circle of radius 0 < λ < 1 [14, Section

4.2]. Evaluating Z-Transforms at points ζℓ = λ exp
(

2πiℓ
M+1

)
is equivalent to computing the Discrete

Fourier Transform (DFT) of scaled functions:

(3.4)

M∑

n=0

g(x, tn)ζ
n
ℓ =

M∑

n=0

{λng(x, tn)} exp

(
2πiℓn

M + 1

)
.

Also, computing the approximate contour integral of the inverse Z-Transform (2.11) is equivalent
to computing an inverse DFT and rescaling the output:

(3.5) u(x, tn) ≈
λ−n

N + 1

M∑

ℓ=0

u(x, ζℓ)ζ
−n
ℓ = λ−n

(
1

M + 1

M∑

ℓ=0

u(x, ζℓ) exp

(
−2πiℓn

M + 1

))
.

Observe that this involves using the same number of quadrature points for the trapezoidal rule in
(3.5) as the number of discrete times tn, n = 0, . . . ,M. As we are dealing with analytic functions
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(Helmholtz solutions for k ∈ C+ ) this is not a problem, as exponential convergence is guaranteed
for the trapezoidal rule. Nevertheless, some experiments have shown that accuracy can be lost in
presence of cavities, due to the appearence of so-called scattering poles [5], making it necessary to
overresolve in the frequency domain.

Now, we give details of the algorithms used for the multistep and multistage CQ combined with
MFS. The computational complexity of these algorithms is mainly due to solving the linear system
by a least squares method. Boundary data can be stored in a matrix of size Nx × M . The cost
of computing the DFT by means of the FFT is negligible compared to the other steps. The as-
sembly of a single matrix requires O(NxNy) operations, because it involves evaluations over charge
and collocation points. The least squares problem is solved by the QR method for a dense matrix
(based on Matlab’s backslash operator) which is the most costly operation in the algorithm. This
is repeated M times, where M is the number of timesteps. For the case of Runge-Kutta methods,
this has to be multiplied by the number of stages m.

Multistep CQ - MFS

a) Define λ = ǫ1/2M and ∆t = T/M.
b) For a given parametrization Φ : C 7→ C and some r ∈ (0, 1) compute

(3.6)

xℓ = (Re Φ(zℓ), Im Φ(zℓ)), zℓ = exp
(

2iℓπ
Nx+1

)
, ℓ = 0, . . . , Nx,

yj = (Re Φ(rzj), Im Φ(rzj)), zj = exp
(

2ijπ
Ny+1

)
, ℓ = 0, . . . , Ny.

c) Compute the data

(3.7) g(xℓ, tn) = −uinc(xℓ, tn), ℓ = 0, . . . , Nx, n = 0, . . . ,M.

d) Rescale the data:

(3.8) hn(xℓ) = λng(xℓ, tn), ℓ = 0, . . . , Nx, n = 0, . . . ,M.

e) Compute the DFT of the scaled data {hn(xℓ)}
M
n=0, ℓ = 0, . . . , Nx, to obtain

(3.9) {h̃n(xℓ)}
M
n=0, ℓ = 0, . . . , Nx.

f) For each n = 0, . . . ,M , solve the least squares problem to obtain the vector of coefficients:

(3.10) α⋆(ζn) = argmin
α∈C

Ny+1

∥∥∥M(δ(ζn)/∆t)α− h̃n

∥∥∥
2

where α :=
(
α0 . . . αNy

)T
, h̃n :=

(
h̃n(x0) . . . h̃n(xNx

)
)T

and M(δ(ζn)/∆t) is defined
by (3.1).

g) Evaluate the solutions in a prescribed set of points of interest {pl}
Np

l=0

(3.11) ṽn(pl) =

Ny∑

j=0

α⋆
j (ζn)G(pl − yj ; kn)

to obtain the vector ṽn =
(
ṽn(p0) . . . ṽn(pNp

)
)T
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h) Compute the inverse DFT over the rows of the matrix ṽ =
(
ṽ0 . . . ṽM

)
to obtain

(3.12) v =
(
v0 . . . vM

)
.

i) Finally, rescale the solution to recover the approximations

(3.13) u(pl, tn) ≈ λ−nvn(pl), l = 0, . . . , Np, n = 0, . . . ,M.

Multistage CQ - MFS

a) Define λ = ǫ1/2M and ∆t = T/M.
b) For a given parametrization Φ : C 7→ C and r ∈ (0, 1) compute:

xℓ for ℓ = 0, . . . , Nx, yj for j = 0, . . . , Ny

as in (3.6).
c) Compute the data for each stage s = 1, . . . , S

(3.14) g(xℓ, tn + cs∆t) = −uinc(xℓ, tn + cs∆t), ℓ = 0, . . . , Nx, n = 0, . . . ,M.

d) Rescale the data:

(3.15) hn,s(xℓ) = λng(xℓ, tn + cs∆t), ℓ = 0, . . . , Nx, n = 0, . . . ,M.

e) Compute the DFT of the scaled data {hn,s(xℓ)}
M
n=0, ℓ = 0, . . . , Nx, s = 1, . . . ,m, to obtain

(3.16) h̃s := {h̃n,s(xℓ)}
M
n=0, ℓ = 0, . . . , Nx, s = 1, . . . ,m

and denote

(3.17) h̃n :=
(
h̃n,1(x0), . . . , h̃n,1(xNx

), . . . , h̃n,m(x0), . . . , h̃n,m(xNx
)
)T

.

f) For each n = 0, . . . ,M compute the diagonalization (2.18):

δRK(ζn) = P (ζn)D(ζn)P
−1(ζn)

and the Kronecker product

P−1(ζn)⊗ h̃n = νn = (νn,1, . . . ,νn,m).

Then, for s = 1, . . . ,m solve the least squares problem to obtain the vector of coefficients:

(3.18) α⋆
s(ζn) = argmin

α∈C
Ny+1

∥∥M(δRK
s (ζn)/∆t)α− νn,s

∥∥
2

where α :=
(
α0, . . . , αNy

)T
and M(δRK

s (ζn)/∆t) is defined by (3.1).

g) Evaluate the solutions in a prescribed set of points of interest {pl}
Np

l=0

(3.19) ṽn,s(pl) =

Ny∑

j=0

α⋆
j,s(ζn)G(pl − yj ; iδ

RK
s (ζn)/∆t)

to obtain the vector ṽn,s =
(
ṽn,s(p0) . . . ṽn,s(pNp

)
)T
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h) Compute the Kronecker product

P (ζn)⊗ (ṽn,1, . . . , ṽn,m) = ˜̃vn

i) Compute the inverse DFT over the rows of the matrix Vs =
(
˜̃v0,s . . . ˜̃vM,s

)
to obtain

(3.20) vs =
(
v0,s . . . vM,s

)
.

j) Finally, rescale the solution and get the approximation

(3.21) u(pl, tn +∆t) ≈ λ−nvn,S(pl), l = 0, . . . , Np, n = 0, . . . ,M.

4. Numerical Experiments. For all of our examples we will consider an incident field con-
sisting of a plane wave, i.e. for a given d ∈ R2 the incident field uinc is given as

(4.1) uinc(x, t) := f(t− tlag − d · x), x ∈ R
2, t ∈ R,

where

(4.2) f(t) := sin(ωt)µ(t)µ(4− t), µ(t) :=
exp(−βt)

1 + exp(−βt)
, β = 5, ω = 4.

The errors are measured considering a relative pointwise error in space, discrete L2−norm in
time:

(4.3) error :=




N∑

n=0

∑

p∈X

|u(p, tn)− ũ(p, tn)|
2




1/2




N∑

n=0

∑

p∈X

|u(p, tn)|
2




1/2
,

where X ⊂ R2\Ω is a finite set.

Multistep CQ is tested in two cases based on backward differentiation formulas (BDF) of order
1 and 2. Those are fully described by the following polynomials

(4.4) δBDF1(ζ) = 1− ζ, δBDF2(ζ) =
1

2

(
ζ2 − 4ζ + 3

)
.

Multistage CQ is tested for the RadauIIA family, considering methods of two and three stages
respectively. Their Butcher tableau is given by

(4.5) A =

(
5/12 −1/12
3/4 1/4

)
, bT = eTmA, c = A1,
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for the two-stage method, and

(4.6)

A =




11/45 37/225 −2/225

37/225 11/45 −2/225

4/9 4/9 1/9




+




−7
√
6

360 −169
√
6

1800

√
6

75

169
√
6

1800 7
√
6

360 −
√
6

75

−
√
6

36

√
6

36 0




, bT = eTmA, c = A1,

for the three-stage method. RadauIIA families have classical order of convergence of 2m + 1,
stage order of convergence of m, where m is the number of stages [21].

To take advantage of the exponentially decaying nature of the fundamental solutions for Im k >
0, we discard entries of matrix (3.1) that are below a given threshold of 10−20 as it was done in [7].
This allows us to use sparse linear solvers for most of our least squares problems, without losing
accuracy. Our implementation was done in Matlab 2018a using the backslash operator, which solves
the least squares problem by the QR method.

4.1. Method of Fundamental Solutions for complex wavenumbers. First, we need to
validate that the method behaves correctly in this different setting. The problem studied is

(4.7)
−∆u(x)− k2u(x) = 0 in R2\Ω,

u(x) = −uinc(x) on Γ,
+ Radiation Conditions

where Ω is the unit disk and source points are chosen on a circle of radius r = 0.8. The incident
field uinc(x) corresponds to

(4.8) uinc(x) =
i

4
H

(1)
0 (k|x− xsrc|), x ∈ R

2,

where xsrc = (0.2, 0.3). As this is an exterior problem and we are locating a source in the interior
of the domain, the exact solution for the problem is u(x) = −uinc(x) in the exterior of Ω.

The number of collocation points is N = 600 for each problem. Convergence results for the
numerical experiments are shown in Figure 2. We observe exponential convergence for the MFS for
several complex wavenumbers.

4.2. Scattering at a disk. Our first example consists in solving the interior problem of
acoustic scattering at a disk of unit radius. The incident field is the plane wave defined in (4.1). We
solve the interior problem with Dirichlet boundary conditions, for which we expect as a solution

(4.9) u(x, t) = uinc(x, t), x ∈ R
2\Ω.

The speed of propagation of the wave is always set to c = 1 and the final time of computation is
T = 10.

Convergence of BDF1, BDF2 and RadauIIA Runge-Kutta methods is presented in Figure 3a.
The number of collocation points and sources are chosen as rather large Nx = 2000, Ny = 1000
to have errors mainly due to the time discretization and not by the spatial error due to the MFS.
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Fig. 2: Convergence results for the exterior Helmholtz problem of Section 4.1 with different
wavenumbers.

Sources are located in a circle of radius r = 1.2.
The solution is computed at X = {(−0.5,−0.5), (−0.5, 0.5), (0.5, 0.5), (0.5,−0.5)}. We also solve
the exterior problem and compare our results with respect to a highly resolved solution based on
three stages RadauIIA method with M = 1600. The radius used for the curve Σ is r = 0.8 and
the solution is computed in X = {(−2,−2), (−2, 2), (2, 2), (2,−2)}. Results are shown in Figure
3b. Both experiments show that it is possible to obtain the classical order of convergence of each
multistep and multistage method, although for the interior problem a limited accuracy is reached,
which was not possible to improve by increasing the number of charges. This can be explained by
the limited accuracy that in general is achievable by the CQ method [14]. We also illustrate the
percentage of matrix entries retained due to sparsification in Figure 5, for BDF2 based CQ with
1600 timesteps.

4.3. Scattering at a rounded triangle. We repeat the example of the previous section but
with a different geometry. Now we consider a rounded triangle, which can be parametrized for
s ∈ [0, 2π]

(4.10) x(s) + iy(s) = eis + a1e
−2is, a1 = 0.3.

The complexification of this can be seen as Φ(z) = z+
a1
z2

, z ∈ C. If we restrict Φ to the unit circle

we obtain Φ(eis) = x(s) + iy(s). We define our geometries of interest by

(4.11) Γ := {(x, y) ∈ R
2 : x = x(s), y = y(s), Φ(eis) = x(s) + iy(s) for s ∈ [0, 2π]}

and

(4.12) Σ := {(x, y) ∈ R
2 : x = x(s), y = y(s), Φ(reis) = x(s) + iy(s) for s ∈ [0, 2π]},
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(a) Interior problem.
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(b) Exterior problem.

Fig. 3: Convergence of the CQ scheme for the interior/exterior problem in Section 4.2, compared
with an (a) exact solution; (b) highly resolved solution.

with the radiusr = 1.2 for the interior problem and r = 0.85 for the exterior problem. These
geometries are shown in Figure 6. Numerical results for this experiment are the same as for
the unit circle, choosing fixed values N = 2000, Np = 1000. The solution was computed in X =
{(−0.5,−0.5), (−0.5, 0.5), (0, 0), (0.5, 0)} for the interior problem andX = {(−2,−2), (−2, 2), (2, 2), (2,−2)}
for the exterior problem. Results are shown in Figures 7a and 7b, were the classical convergence
rates are obtained.

4.4. Scattering at an inverted ellipse. We repeat the example with an inverted ellipse,
which can be parametrized for s ∈ [0, 2π]

(4.13) x(s) + iy(s) =
eis

1 + a2e2is
, a2 = 0.25.

The complexification of this is Φ(z) =
z

1 + a2z2
, z ∈ C. If we restrict Φ to the unit circle we obtain

Φ(eis) = x(s) + iy(s). We define our geometries of interest by

(4.14) Γ := {(x, y) ∈ R
2 : x = x(s), y = y(s), Φ(eis) = x(s) + iy(s) for s ∈ [0, 2π]}

and

(4.15) Σ := {(x, y) ∈ R
2 : x = x(s), y = y(s), Φ(reis) = x(s) + iy(s) for s ∈ [0, 2π]},

with the radius r = 1.2 for the interior problem and r = 0.8 for the exterior problem. These
geometries are shown in Figure 9. Choosing fixed values N = 2000, Np = 1000, the solution is
computed in X = {(−0.5,−0.5), (−0.5, 0.5), (0.5, 0.5), (0.5,−0.5)} for the interior problem, X =
{(−2,−2), (−2, 2), (2, 2), (2,−2)} for the exterior problem. Errors are shown in Figures 10a and
10b. Similar behavior as in the previous sections is observed, with classical order of convergence
obtained.
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Fig. 4: Snapshots of the solution to the exterior problem in [−3, 3]× [−3, 3] at times t = 2, 4, 6 and
8.

4.5. Incident source close to scatterer. The proposed scheme suffers from inaccuracies in
case of early-onset incident fields due to close sources. The situation is shown in Figure 12. Let us
consider an incident field given by

(4.16) uinc(x, t) :=

∫ t

0

G(x− xsrc, t− τ)f(τ) dτ,

where G(x, t) is the fundamental solution of the wave equation defined in (1.2), xsrc ∈ R2 is the
location of the source and f(t) is a signal in time. The position of xsrc determines the time that
takes the incident field to reach the boundary Γ of the scatterer. Assuming the wavespeed to be
c = 1 we obtain that

(4.17) u(x⋆, t⋆) 6= 0
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Fig. 5: Percentage of matrix entries (3.1) from experiment in Section 4.2 retained due to sparsifi-
cation with tolerance 10−20 for BDF2 CQ with M = 1600.

(a) Interior problem. (b) Exterior problem.

Fig. 6: Rounded triangle. Collocation points are marked as black circles, while charge points are
marked as red squares. Interior and exterior problem, respectively

for some t⋆ > d(xsrc, Γ) in a point x⋆ ∈ Γ. However, our approximation of u(x⋆, t⋆) given
by ũ(x⋆, t⋆) from (2.24) depends on the auxiliary sources located on the curve Σ. For the case
d(x⋆,Σ) > t⋆ > d(xsrc, Γ), signals from sources on Σ are not able to reach the boundary Γ at time
t⋆ and our approximation turns out to be ũ(x⋆, t⋆) = 0. This error propagates to the time stepping
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(a) Interior problem.
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(b) Exterior problem.

Fig. 7: Convergence of the CQ scheme for the interior/exterior problem in Section 4.3, compared
with an (a) exact solution; (b) highly resolved solution.

scheme, leading to a wrong solution.
To illustrate this issue, let us consider the exterior scattering problem at a disk of unit radius

and sources located in a circle of radius r = 0.8 as in Section 4.2. The incident field is given as in
(4.16) with xsrc = (0, 0.95) and the signal is defined by

(4.18) f(t) := sin(2t)5H(t), t ∈ R,

where H is the Heavyside function. The exact solution of this problem is given by u(x, t) =
uinc(x, t). CQ-MFS applied as in Section4.2 fails, see bold error line in Figure 13.

We found a simple remedy. It is enough to introduce a delay in the starting time of the signal f ,
replacing it by f̃(t) = f(t−tlag).We show the results of the numerical experiment for different values
of tlag in Figure 13. Strikingly, a simple delay in time of the incident field improves the accuracy
of the solution. As pointed out, this has a simple physical explanation, the waves produced by
auxiliary sources can reach the boundary before the incident field.

5. Conclusions. Throughout this article we worked with the Convolution Quadrature meth-
ods in combination with the Method of Fundamental Solutions as a frequency domain solver. Our
numerical experiments on 2D analytic domains show that this combination performs well. We ob-
tain classical orders of convergence for multistep and multistage methods at interior and exterior
problems. The fundamental solutions of Helmholtz problems with complex wavenumbers are expo-
nentially decaying for the case k ∈ C+, which gives us the opportunity to sparsify matrices. Our
numerical tests show that this procedure is effective.
This work is a starting point: MFS is a representative of a larger class of Trefftz methods. A
generalization is the Multiple Multipole Method [12]. It has been succesfully used for 3D frequency
domain simulations based on heuristics for the placement of multipoles [13]. This work offers a
proof of concept that CQ can be used to transfer these techniques to time domain. Possible ex-
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Fig. 8: Snapshots of the solution to the exterior problem in [−3, 3]× [−3, 3] at times t = 2, 4, 6 and
8.

tensions include a more elaborated method for the matrix compression consisting in Directional
H2−matrices [6]. It is also possible to employ different MFS resolutions depending on the values of
ζn. Adaptivity in terms of the real and imaginary parts of the wavenumber based on the residual
of the least squares system could be incorporated.
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(a) Interior problem. (b) Exterior problem.

Fig. 9: Inverted ellipse. Collocation points are marked as black circles, while source points are
marked as red squares. Interior and exterior problem, respectively
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(a) Interior problem.
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Fig. 10: Convergence of the CQ scheme for the interior/exterior problem in Section 4.4, compared
with an (a) exact solution; (b) highly resolved solution.
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Fig. 11: Snapshots of the solution to the exterior problem in [−3, 3] × [−3, 3] at times t = 2, 4, 6
and 8.

Point Source

MFS

Fig. 12: Point source incident field too close to the scatterer in comparison with the sources asso-
ciated to the MFS.
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Fig. 13: Convergence of the CQ scheme with three stages RadauIIA method for the exterior problem
in Section 4.5 for different time delays, compared with exact solutions.
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Appendix. Source code for the numerical implementation of CQ and MFS can be found in
https://github.com/ijlabarca/CQ-MFS. Tests and figures can be reproduced.

https://github.com/ijlabarca/CQ-MFS
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