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MULTILEVEL MCMC BAYESIAN INVERSION OF

PARABOLIC PDES UNDER GAUSSIAN PRIOR

VIET HA HOANG1 AND JIA HAO QUEK1 AND CHRISTOPH SCHWAB2

Abstract. We analyze the convergence of a multi-level Markov Chain Monte-
Carlo (MLMCMC) algorithm for the Bayesian estimation of solution func-

tionals for linear, parabolic partial differential equations subject to uncertain
diffusion coefficient. The multilevel convergence analysis is performed for a
time-independent, log-gaussian diffusion coefficient and for observations which
are assumed to be corrupted by additive, centered gaussian observation noise.
The elliptic spatial part of the parabolic PDE is neither uniformly coercive
nor uniformly bounded in terms of the realizations of the unknown gaussian
random field. The path-wise, multi-level discretization in space and time con-

sidered is based on standard, first order, Lagrangean simplicial Finite Elements
in the spatial domain and on first order, implicit timestepping of backward Eu-

ler type, ensuring good dissipation and unconditional stability, and resulting
in first order convergence in terms of the spatial meshwidth and the time-
step. The MCMC algorithms covered by our analysis comprise the standard,
indepence sampler as well as various variants, such as pCN. We prove that
the proposed MLMCMC algorithm delivers approximate Bayesian estimates
of quantities of interest consistent to first order in the discretization parameter

on the finest spatial / temporal discretization stepsize in overall work which
scales essentially (i.e., up to terms which depend logarithmically on the dis-

cretization parameters) as that of one deterministic solve on the finest mesh.
Our convergence analysis is based on the discretization-level dependent trun-
cation of the increments, introduced first in [15] for the corresponding elliptic
forward problems. This is required to address measurability and integrability
issues encountered in the Bayesian posterior density evaluated at consecutive
discretization levels with respect to the gaussian prior. Both, independence
sampler and pCN are analyzed in detail. Applicability of our analysis to other

versions of MCMC is discussed.

1. Introduction

The numerical analysis of multi-level algorithms for the assimilation of noisy
observation data into partial differential equations with uncertain function space
input has attracted substantial attention in recent years. Numerous mathematical
frameworks for precise formulations and numerical treatment of it have been pro-
posed. We mention only [2, 19] and the references there for an account of recent
developments.

In the present paper, we perform a mathematical analysis of several multi-level,
Markov-chain Monte Carlo (MCMC) algorithms for numerical approximation in
the Bayesian setting of PDE inversion, which has been promoted in the series of
papers [10, 11, 9, 22], and in the references there.

We adapt our multi-level MCMC framework developed in the elliptic setting in
[15] to linear, parabolic evolution equations. Importantly, and distinct from other
recent works, e.g. [6, 4, 5], we neither require truncation of the Gaussian prior
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distribution nor any boundedness from above and below of the pathwise solution
to the forward partial differential equations, neither of which holds in the case of
the Gaussian prior. Further, as we showed in [15] analytically and numerically,
under Gaussian prior, multilevel sampling of the Bayesian posterior can be severely
imprecise if the unboundedness of the solution with respect to a random draw of
the coefficient from the prior distribution is ignored. In this paper, we develop a
multilevel MCMC method for the Bayesian inversion of a linear, parabolic evolution
equation subject to a Gaussian prior, given observations on its solution at some
moments of time. Our mathematical analysis does not require uniform, almost
sure lower-boundedness away from zero of the diffusion coefficient. Therefore, our
method is applicable to the most general log-gaussian diffusion coefficient subject
to a Gaussian prior.

In the past decade, significant progress has been achieved in the mathematical
analysis of convergence of MCMC for PDEs with uncertain function space input.
We only mention [20, 14, 17]. In these works, in particular the significance of geo-
metric ergodicity and of a spectral gap condition for uniform w.r. to the discretiza-
tion parameters convergence rates of the MCMC algorithms has been identified.

The principal contributions of the present paper are: i) we develop a multilevel
MCMC space-time discretization for Bayesian coefficient inversion of a forward
problem being a linear parabolic PDE, under gaussian prior, ii) we provide sufficient
conditions on the regularity and sparsity of the data to show that the MLMCMC
method developed here is capable of numerically approximating the Bayesian esti-
mate of a quantity of interest to full consistency on the finest discretization levels
in space and time, of the forward parabolic problem, in computational work equally
essentially (i.e., up to logarithmic terms) to that of one deterministic solve of (one
instance of) the forward problem.

The outline of this paper is as follows. In Section 2, we present the problem
formulation, including in particular our assumptions on the uncertain, log-gaussian
diffusion coefficient. We emphasize that, unlike other recent works, the present
MLMCMC analysis does not require this coefficient to be lower-bounded away
from zero almost surely. Section 3 addresses the existence of the posterior measure
and the well-posedness of the Bayesian inverse problem. In Section 4, we address
the numerical approximations in the multi-level algorithm, in particular the J-term
truncation of the gaussian random field input, and the discretization in the tem-
poral and in the spatial domain. We consider standard, first order discretizations
in space and time, to keep the pathwise regularity requirements for the solution
moderate, and to have a simulation algorithm which resembles methods used in
computational practice. Higher order discretizations, or more sophisticated space-
time discretizations could equally be considered. Section 6 presents two series of
numerical experiments of our algorithm for a model problem in two space dimen-
sions. One set of experiments each for the indenpendence sampler and one for the
pCN sampler. We run these examples with the algorithmic parameters selected
according to our ML theory. The numerical results confirm our theoretical analysis
and strongly indicate that our theoretical results are sharp.

2. Problem formulation

We present the BIP under consideration. In Section 2.1, we address the para-
metric description of the log-gaussian random field used to model the uncertain



MULTILEVEL MCMC BAYESIAN INVERSION OFPARABOLIC PDES UNDER GAUSSIAN PRIOR3

diffusion coefficient. For numerical purpose, and as in many earlier works (e.g.
[8, 1, 13, 23, 11] and the references there) we introduce a countably-parametric
family of gaussian random fields which arises, for example (but not only) through a
Karhúnen-Loève expansion. The countably-parametric functional form is exploited
in the ensuing design of a multilevel MCMC algorithm to access the GRF ap-
proximately, at various levels of fidelity, through finitely truncated expansions with
controlled errors. The gaussian prior measure in the BIP is obtained as the product
measure on (sequences of) coefficients in the Karhúnen-Loève expansion.

2.1. Log-gaussian diffusion coefficient. In a bounded Lipschitz domain D ⊂ R
d

and a bounded time interval [0, T ], we consider a linear, second order divergence
form parabolic equation with an uncertain coefficient. Specifically, we assume given
K : D× R

N → R in parametric, log-normal form, which is formally given as

(2.1) K(x, z) = K∗(x) + exp



K̄(x) +

∞
∑

j=1

zjψj(x)



 ,

where z = (z1, z2, . . .) ∈ R
N. Further assumptions are required to render (2.1)

meaningful.

Assumption 2.1. The functions K∗, K̄ ∈ L∞(D) are non-negative. The functions
ψj ∈ L∞(D) for j = 1, 2, . . . are such that

∑∞
j=1 ‖ψj‖L∞(D) is finite.

Note that infK∗(x) = 0 is permitted by Assumption 2.1 so that depending on
the selection of the parameter z the coefficient K(x, z) is still nonnegative, but
could be arbitrarily close to 0.

We assume the parameters zj to be i.i.d, standard normal random variables, ie.
zj ∼ N (0, 1) in R. To describe the resulting random field, we endow R

N with the
product σ algebra

Θ =

∞
⊗

j=1

B(R)

where B(R) denotes the Borel σ-algebra in R. In the measurable space (RN,Θ),
we introduce the gaussian product probability measure (see, eg., [7, Chapter 2] for
detailed construction)

γ =
∞
⊗

j=1

N (0, 1).

For the random diffusion coefficient K in (2.1) to be well-defined, we restrict z in
(2.1) to the set

Γ = {z = (z1, z2, . . .) ∈ R
N :

∞
∑

j=1

|zj |bj <∞} .

This set is (RN,Θ)-measurable and there holds γ(Γ) = 1 (see, e.g., [26, p. 153] or
[21, Lemma 2.28]) . For every z ∈ Γ, the following quantities are well defined.

(2.2) Kmax(z) := esssupx∈DK∗(x) + exp



‖K̄‖L∞(D) +
∞
∑

j=1

‖ψj‖L∞(D)|zj |



 ,
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and

(2.3) Kmin(z) := essinfx∈DK∗(x)+exp



essinfx∈D K̄(x)−
∞
∑

j=1

‖ψj‖L∞(D)|zj |



 .

Since γ(Γ) = 1, for γ-a.e. draw of z ∈ R
N, Kmin(z),Kmax(z) ∈ L∞(D) and

z 7→ Kmin(z), z 7→ Kmax(z) are (Γ,Θ)-measurable.
A typical instance of the abstract setting outlined above, has ψj the Karhúnen-

Loève eigenfunctions of a compact, self-adjoint covariance operator C ∈ L(L2(D))
with kernel function k : D×D → R. Then, the realizations of K in (2.1) are γ-a.s.
Hölder continuous in D. We refer to [8] and the references there for a more detailed
discussion.

2.2. Forward Parabolic Initial Boundary Value Problem. Let V = H1
0 (D)

andH = L2(D). We denote by (·, ·) the duality pairing between V ′ and V , extended
by continuity from the inner product in H.

We assume given deterministic source term f ∈ L2((0, T );V ′) and initial data
g ∈ H. For z ∈ Γ, we consider the parabolic problem

(2.4)
∂P

∂t
−∇ · (K(x, z)∇P ) = f, P (0, x, z) = g.

We show in the following lemma that P is uniformly bounded in L2((0, T );V ) with
respect to each z ∈ Γ.

Lemma 2.2. Under Assumption 2.1, for each z ∈ Γ, the solution to (2.4) is
bounded in L2((0, T );V ):

‖P (z)‖L2((0,T );V ) ≤ ‖f‖L2((0,T );V ′) +

√

‖f‖2L2((0,T );V ′) + 2Kmin(z)‖g‖2H
2Kmin(z)

.

The proof follows the standard procedure (see, e.g. [25]). We include the argu-
ment in Appendix B for completeness. The result in Lemma 2.2 also implies that
∂P
∂t is a linear functional in the space D; that is, P (z) ∈ H1([0, T ];V ′).
To obtain a numerical approximation of the Bayesian posterior measure, condi-

tional on given, noisy observation data δ, we use the truncation of expansion (2.1)
and numerically approximate the resulting, finite-parametric forward equation by
backward Euler time-discretization and by a standard, Lagrangean FEM in the
spatial domain D.

A key point in the design of the multi-level MCMC algorithm and, in particular,
of selection of the algorithmic steering parameters which ensure a good error vs.
work bounds are a-priori discretization error bounds incurred from the three ap-
proximations of the foward problem: parameter truncation to J ∈ N many terms,
implicit backward Euler timestepping with size k > 0, and FE discretization in the
spatial domain D with regular, Lagrangean FEM of meshwidth h.

Establishing the asserted error bounds requires regularity for the solution P . In
particular, we will need that P (z) ∈ H1((0, T );V ). For this regularity, it makes
sense to identify the pointwise value of P in V for each t ∈ (0, T ). We therefore
assume this regularity at the onset. We remark that if this regularity is not sat-
isfied, one cannot identify the pointwise values of P with respect to t ∈ (0, T ).
The Bayesian inverse problem could then still be defined with point-values of P



MULTILEVEL MCMC BAYESIAN INVERSION OFPARABOLIC PDES UNDER GAUSSIAN PRIOR5

with respect to t in (2.6) being replaced by integrals with respect to the time vari-
able over subintervals on (0, T ). The existence and well-posedness of the posterior
measure still hold. However, in that case our method of proof does not provide
error estimates for the approximations of the posterior measure in terms of the
approximating parameters.

Assumption 2.3. There holds f ∈ H1((0, T );V ′) with f(0, ·) ∈ H and g ∈ H2(D).
Furthermore, there are constants C > 0 and s > 1 such that

K∗, K̄ ∈W 1,∞(D), ∀j ∈ N : ‖ψj‖W 1,∞(D) ≤ Cj−s.

We denote by q = s − 1. For conciseness, we define by bj = ‖ψj‖L∞(D) and

b̄j = ‖ψj‖W 1,∞(D). We define the prior probability space

U = {z = (z1, z2, . . .) ∈ R
N :

∞
∑

j=1

|zj |b̄j <∞}.

The set U has γ measure 1. The σ algebra Θ in U is defined as the restriction of
the σ algebra ⊗∞

j=1B(R) in R
N to U . The prior probability γ in U is defined as

the restriction of the tensorized measure ⊗∞
j=1N (0, 1) to U . In addition, we have

K(z) ∈W 1,∞(D) and that

∇K(z, x) = ∇K∗(x) + exp



K̄(x) +

∞
∑

j=1

zjψj(x)







∇K̄(x) +

∞
∑

j=1

zj∇ψj(x)



 .

The time derivative of P satisfies the problem

(2.5)
∂

∂t
(
∂P

∂t
)−∇ · (K∇∂P

∂t
) =

∂f

∂t
,

∂P

∂t
(0) = f(0, ·) +∇ · (K∇g).

As ∂f
∂t ∈ L2((0, T );V ′) and the initial condition f(0, ·) +∇ · (K∇g) ∈ H, problem

(2.5) is well-posed. We thus have P ∈ H1((0, T );V ).
Let ℓi ∈ V ′ for i = 1, . . . , N where N ∈ N. Let τi ∈ (0, T ) (i = 1, . . . , N). We

consider the forward function

(2.6) G(z) =
(

ℓ1(P (τ1, ·, z)), . . . , ℓN (P (τN , ·, z))
)

∈ R
N.

We consider the noisy observation of G
δ = G(z) + ϑ

where the additive observation noise ϑ is assumed to be centered, gaussian, i.e.
ϑ ∼ N (0,Σ) in R

N ; here, the N ×N covariance matrix Σ is positive definite. Our
purpose is to find the posterior probability measure γδ = P(z|δ). Let Φ be the
inverse covariance weighted, observation-prediction misfit function

Φ(z; δ) =
1

2
|δ − G(z)|2Σ.

3. Existence and Well-posedness of the Posterior measure

We will show that

(3.1)
dγδ

dγ
∝ exp(−Φ(z; δ)),

and therefore that the Bayesian posterior γδ is well-posed with respect to δ. To this
end, we denote Z(δ) =

∫

U
exp(−Φ(z; δ))dγ(z) the normalising constant of (3.1). We

have the following existence results.
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Proposition 3.1. Under Assumption 2.3, the solution P is measurable when viewed
as a map from U to H1((0, T );V ). This implies the existence of the posterior mea-
sure γδ which is determined by

dγδ

dγ
∝ exp (−Φ(z; δ)) .

Proof First we show that P as a map from U to H1((0, T );V ) is measurable.
Let z, z′ ∈ U . We then have

∂

∂t
(P (z)− P (z′))−∇ · (K(z)∇(P (z)− P (z′))) = ∇ · ((K(z)−K(z′))∇P (z)

with P (0, ·, z)− P (0, ·, z′) = 0. Thus

∫ T

0

(

∂

∂t
(P (z)− P (z′)), (P (z)− P (z′))

)

dt

+

∫ T

0

∫

D

K(z)∇(P (z)− P (z′)) · ∇(P (z)− P (z′))dxdt

= −
∫ T

0

∫

D

(K(z)−K(z′))∇P (z) · ∇(P (z)− P (z′))dxdt.

From this we have

Kmin(z)‖P (z)− P (z′)‖2L2((0,T );V )

≤ ‖K(z)−K(z′)‖L∞(D)‖P (z)‖L2((0,T );V )‖∇(P (z)− P (z′))‖L2((0,T );V )

so

(3.2) ‖P (z)−P (z′)‖L2((0,T );V ) ≤
1

Kmin(z)
‖K(z)−K(z′)‖L∞(D)‖P (z)‖L2((0,T );V ).

Similarly, we have

∂

∂t

∂

∂t
(P (z)−P (z′))−∇·(K(z)∇ ∂

∂t
(P (z)−P (z′))) = ∇·

(

K(z)−K(z′))∇∂P (z)

∂t

)

.

The initial condition is ∂
∂t (P (0, ·, z)− P (0, ·, z′)) = ∇ · ((K(z)−K(z′))∇g). Thus

Kmin(z)‖
∂

∂t
(P (z)− P (z′))‖2L2((0,T );V )

≤ ‖K(z)−K(z′)‖L∞(D)‖∇
∂P (z)

∂t
‖L2((0,T );H)‖∇

∂

∂t
(P (z)− P (z′))‖L2((0,T );H)

+ ‖∇ · (K(z)−K(z′))∇g‖2H .
Therefore

(3.3) ‖ ∂
∂t

(P (z)− P (z′))‖L2((0,T );V )

≤ c

Kmin(z)
‖K(z)−K(z′)‖L∞(D)‖∇

∂P (z)

∂t
‖L2((0,T );H)

+
c

Kmin(z)1/2
‖∇ · (K(z)−K(z′))∇g‖H .

Assume that K only contains a finite number of J terms zj for j = 1, . . . , J , i.e. z ∈
R

J . Then equations (3.2) and (3.3) show that P as a map R
J ∋ z → H1((0, T );V )

is continuous. Thus as a map from R
J ∋ z → C([0, T ];V ) it is also continuous, and



MULTILEVEL MCMC BAYESIAN INVERSION OFPARABOLIC PDES UNDER GAUSSIAN PRIOR7

is measurable. Let X ∈ B(C([0, T ];V )). The preimage of P−1(X) in R
J belongs

to B(RJ).
For z ∈ U , we consider the J-term truncated coefficient

KJ(x, z) := K∗(x) + exp(K̄(x) +

J
∑

j=1

zjψj(x)).

We consider the truncated equation

(3.4)
∂P J

∂t
(z)−∇ · (KJ(z)∇P J(z)) = f, P J(0, ·, z) = g.

Consider P J as a map U ∋ z → H1((0, T );V ), we then deduce that this map is
measurable. From Lemma B.2, we deduce that for z ∈ U ,

lim
J→∞

‖P J(z)− P (z)‖H1((0,T );V ) = 0

so
lim

J→∞
‖P J(z)− P (z)‖C([0,T ];V ) = 0.

As P is a pointwise limit of a sequence of measurable maps, P (z) as a map U ∋
z → C([0, T ];V ) is measurable. Therefore G : U ∋ z → R

N is measurable. Thus
(3.1) holds (see Theorem 2.1 of [9]). ✷

Next, we show the well-posedness.

Proposition 3.2. The posterior probability measure γδ is determined from formula
(3.1). It is well-posed and locally Lipschitz continuous with respect to the observa-
tion data. In particular, for observation δ, δ′ ∈ R

N such that |δ|, |δ′| < r, there is a
constant c(r) such that

(3.5) dHell(γ
δ, γδ

′

) < c(r)|δ − δ′|.
Proof We show inequality (3.5). We note that

2dHell(γ
δ, γδ

′

)2

=

∫

U





√

dγδ

dγ
−
√

dγδ′

dγ





2

dγ(z)

=

∫

U

[

Z(δ)−
1
2 exp

(

−1

2
Φ(z; δ)

)

− Z(δ′)−
1
2 exp

(

−1

2
Φ(z, δ′)

)]2

dγ(z)

≤ 2

∫

U

(

Z(δ)−
1
2 exp

(

−1

2
Φ(z; δ)

)

− Z(δ)−
1
2 exp

(

−1

2
Φ(z, δ′)

))2

dγ(z)

+ 2

∫

U

(

Z(δ)−
1
2 exp

(

−1

2
Φ(z, δ′)

)

− Z(δ′)−
1
2 exp

(

−1

2
Φ(z, δ′)

))2

dγ(z)

= I1 + I2

(3.6)

where

(3.7) I1 =
2

Z(δ)

∫

U

(

exp(−1

2
Φ(z; δ))− exp(−1

2
Φ(z, δ′))

)2

dγ(z),

and

(3.8) I2 = 2|Z(δ)−1/2 − Z(δ′)−1/2|2
∫

U

exp(−Φ(z, δ′))dγ(z).
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We have that
∣

∣

∣

∣

exp(−1

2
Φ(z; δ))− exp(−1

2
Φ(z, δ′))

∣

∣

∣

∣

≤ c(|δ|+ |δ′|+ |G(z)|)|δ − δ′|.

From Lemma B.1 in Section B, we have that

(3.9) ‖P (·, ·, z)‖C([0,T ];V ) ≤ c exp(

∞
∑

j=1

|zj |(bj + b̄j)),

so

|G(z)| ≤ c exp(

∞
∑

j=1

|zj |(bj + b̄j)).

Thus
∣

∣

∣

∣

exp(−1

2
Φ(z; δ))− exp(−1

2
Φ(z, δ′))

∣

∣

∣

∣

≤ c exp(c

∞
∑

j=1

|zj |(bj + b̄j))|δ − δ′|.

Therefore

I1 ≤ c|δ − δ′|2
∫

U

exp(c

∞
∑

j=1

|zj |(bj + b̄j))dγ(z) ≤ c|δ − δ′|2

due to Lemma A.1. Similarly, there exists a constant c > 0 (depending on Γ, N , r)
such that

∀δ, δ′ ∈ Br(0) : I2 ≤ c|δ − δ′|2.
✷

4. Numerical Approximation

For each choice of z ∈ U , we consider the numerical approximation of the para-
metric parabolic problem (2.4). It involves three approximations:

(i) truncating the KL expansion (2.1) to a finite number J ∈ N of terms,
(ii) discretizing the time derivative by implicit, backward-Euler time-stepping,
(iii) discretizing the resulting sequence of elliptic boundary value problems by

a standard, continuous piecewise affine Lagrangean FEM in the spatial
domain D.

We now estimate the impact of each of these approximations on the overall accuracy
of the forward map.

4.1. J-term truncation of affine-parametric input. We approximate the para-
metric diffusion coefficient in (2.4) by a finite number J of terms in (2.1), i.e. for
J ∈ N we define

KJ(x, z) = K∗(x) + exp



K̄(x) +

J
∑

j=1

zjψj(x)



 , x ∈ D, z ∈ R
J .

We consider the corresponding J-term truncated forward equation

(4.1)
∂P J

∂t
(z)−∇ · (KJ(z)∇P J(z)) = f, P J(0, ·, z) = g.

Under Assumption 2.3, the equation for ∂PJ

∂t reads formally

∂

∂t

∂P J

∂t
(z)−∇·(KJ(z)∇∂P J

∂t
(z)) =

∂f

∂t
with

∂P J

∂t
(0, ·, z) = f(0, ·)+∇·(KJ(·, z)∇g) .
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This initial-boundary value problem is well posed due to our assumptions ∂f
∂t ∈

L2((0, T );V ′) and f(0, ·) + ∇ · (KJ∇g) ∈ H. Thus, for every J ∈ N, there exists
a unique solution P J ∈ H1((0, T );V ) of (4.1). For a given parameter realization
z ∈ R

J , and for J ∈ N, we consider the corresponding approximate forward map

GJ(z) =
(

ℓ1(P
J(τ1, ·, z)), . . . , ℓN (P J(τN , ·, z))

)

∈ R
N .

The corresponding data-to-observation misfit functional is

(4.2) ΦJ(z; δ) =
1

2
|δ − GJ(z)|2Σ.

For given data δ and for the J-truncated forward problem, we define the corre-
sponding Bayesian posterior measure

(4.3)
dγJ,δ

dγ
∝ exp(−ΦJ(z; δ)),

with the normalizing constant ZJ,δ =
∫

RJ exp(−ΦJ(z; δ)) > 0.
We have the following result on well-posedness of the BIP corresponding to J-

term truncated, parametric inputs.

Proposition 4.1. There exists a constant c(r) > 0 such that, for every J ∈ N and
for every data δ ∈ Br(0), the approximated posterior measure γJ,δ satisfies, with
q = s− 1,

dHell(γ
δ, γJ,δ) ≤ cJ−q.

We provide the proof of this theorem in Appendix B.

4.2. Space- and Time-discretization. We next consider the impact of backward
Euler time discretization and of the P1-Lagrangean Finite Element Method for
discretizing the truncated equation (4.1) in the spatial domain D.

We consider a partition of [0, T ] by 0 = t0 < t1 < t2 < . . . < tM = T such that
tj − tj−1 = k for all j = 1, . . . ,M . We consider in D a nested sequence {T l}∞l=0 of
regular, simplicial triangulations of D; each simplex T ∈ T l is obtained by dividing
each simplex in T l−1 into 2d congruent subsimplices, ie., in 4 triangles when d = 2
or into 8 tedrahedra when d = 3. The sequence {T l}∞l=0 of triangulations of D gener-
ated in this way is uniformly shape-regular. We define a nested sequence {V l}l≥1 of
finite-dimensional spaces of continuous, piecewise affine Lagrangean finite element
functions

(4.4) V l = {w ∈ V : w|T ∈ P
1(T ) ∀ T ∈ T l},

where P1(T ) is the set of linear polynomials in T . The mesh size of each V l ⊂ H1
0 (D)

is hl = O(2−l). For notational simplicity, we denote hl by h in the presentation
below and in the proof in Appendix C.

For z ∈ U , we consider the backward Euler finite element scheme: Find P J,h,k
m (z) ∈

V l for m = 1, . . . ,M such that

(4.5)

∫

D

P J,h,k
m (x, z)− P J,h,k

m−1 (x, z)

k
φdx+

∫

D

KJ(x, z)∇P J,h,k
m (x, z) · ∇φ(x)dx

=

∫

D

f(tm, x)φ(x)dx,
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∀φ ∈ V l with P J,h,k
0 = gl where gl is an approximation of g in V l. As g ∈

H2(D), we choose gl so that ‖g − gl‖V ≤ ch. For simplicity, we assume that
τi ∈ {t1, t2, . . . , tM}. If τi = tm, we denote P J,h,k

m by P J,h,k
τi . We define

GJ,h,k(z) =
(

ℓ1(P
J,h,k
τ1 (z)), . . . , ℓN (P J,h,k

τN (z))
)

.

Let

ΦJ,h,k(z; δ) =
1

2
|δ − GJ,h,k(z)|2Σ.

We define the approximate Bayesian posterior measure resulting from the discretiza-
tion of the forward model, including J-term truncation of the coefficient expansion
(2.1), by its density

(4.6)
dγJ,h,k,δ

dγ
∝ exp(−ΦJ,h,k(z; δ)).

The following result provides a bound on the difference between the true Bayesian
posterior and its approximation resulting from the discretization of the forward
problem.

Proposition 4.2. Assume that D is a bounded, convex polytope, and that f ∈
H1((0, T );L2(D)) with f(0, ·) ∈ V and g ∈ H3

0 (D). Under Assumption 2.3, there
exists a constant c > 0 such that for all J ∈ N, and all h, k > 0 there holds

dHell(γ
δ, γJ,h,k,δ) ≤ c(J−q + h+ k).

We prove this proposition in Appendix C. This shows the corresponding error
for approximating the posterior probability measure by truncating the coefficient
and solving the truncated equation using Backward Euler timestepping in [0, T ]
and P1-FEM in the domain D. The effect of this approximation is observed numer-
ically when we approximate the expectation with respect to the Bayesian posterior
probability measure of a quantity of interest by the expectation with respect to
the approximate posterior probability measure, obtained via the space and time-
discretized forward problem. We remark that MLMC algorithms in forward UQ
for parabolic stochastic PDEs, this truncation is not required; see, e.g., [3].

5. Multilevel MCMC

5.1. Definition of the MLMCMC Algorithm. Let ℓ ∈ V ′. To develop the mul-
tilevel MCMC method for approximating the posterior expectation of the quantity
of interest ℓ(P (T, ·, z)), for the FE mesh hl = O(2−l) we choose J and k so that the
terms in the right hand side of the estimate in Proposition 4.2 are equivalent. In
particular, we let k = T2−l and J = ⌈2l/q⌉. We then denote the measure γJ,hl,k,δ

by γl, solution P J,hl,k
m by P l

m and potential ΦJ,hl,k by Φl. We denote P J,hl,k
M which

approximates P (T, ·, z) by P l
T on discretization level l. The multilevel MCMC

method for the parabolic equation (2.4) is similar to that for elliptic problems in
[15]. Relying on the detailed derivation in that reference, we shall only present the
result.
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To this end, we recall the definition in [15]

All′

1 = (1− exp(Φl(z; δ)− Φl−1(z; δ))Ql′(z)I l(z),

All′

2 = (exp(Φl−1(z; δ)− Φl(z; δ))− 1)Ql′(z)(1− I l(z)),

Al
3 = (exp(Φl(z; δ)− Φl−1(z; δ))− 1)I l(z),

All′

4 = Ql′(z)I l(z),

Al
5 = (1− exp(Φl−1(z; δ)− Φl(z; δ)))(1− I l(z)),

All′

6 = exp(Φl(z; δ)− Φl−1(z; δ))Ql′(z)I l(z),

All′

7 = Ql′(z)(1− I l(z)),

All′

8 = exp(Φl−1(z; δ)− Φl(z; δ))Ql′(z)(1− I l(z)),

where 0 ≤ l, l′ ≤ L and

Ql′ := ℓ(P l′

T )− ℓ(P l′−1
T ) when l′ 6= 0 and

Ql′ := ℓ(P 0
T ) when l′ = 0;

and

I l(z) =

{

1 if Φl(u; δ)− Φl−1(z; δ) ≤ 0,
0 otherwise.

With this notation at hand, the multilevel MCMC approximation of the posterior

expectation of a quantity of interest ℓ(P (T, ·, z)), i.e., of Eγδ

[ℓ(P (T, ·, z))] where
ℓ ∈ V ′, is defined by

EMLMCMC
L [ℓ(P (T, ·, z))]

=

L
∑

l=1

L′(l)
∑

l′=1

[

Eγl

Mll′
[All′

1 ] + Eγl−1

Mll′
[All′

2 ] + Eγl

Mll′
[Al

3] · Eγl−1

Mll′
[All′

4 +All′

8 ]

+Eγl−1

Mll′
[Al

5] · Eγl

Mll′
[All′

6 +All′

7 ]
]

+
L
∑

l=1

[

Eγl

Ml0
[Al0

1 ] + Eγl−1

Ml0
[Al0

2 ] + Eγl

Ml0
[Al

3] · Eγl−1

Ml0
[Al0

4 +Al0
8 ]

+Eγl−1

Ml0
[Al

5] · Eγl

Ml0
[Al0

6 +Al0
7 ]
]

+

L′(0)
∑

l′=1

Eγ0

M0l′
[ℓ(P l′

T − P l′−1
T )] + Eγ0

M00
[ℓ(P 0

T )] .

Here Eγl

Mll′
is the approximation of Eγl

using MCMC with Mll′ samples with the

acceptance probability

(5.1) αl(z, s) = 1 ∧ exp(Φl(z; δ)− Φl(s, δ)).

5.2. Analysis of the MLMCMC Algorithm. To analyze the MLMCMC algo-
rithm, we work under the following assumption of geometric ergodicity. To state
this assumption, we introduce some auxiliary quantities. From (3.9), there are
positive constants c1 and c2 such that for all z ∈ U

Φl(z) ≤ c1 + c2 exp



2

∞
∑

j=1

(bj + b̄j)|zj |



 .
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We define by

κ =

∫

U

exp



−c2 exp(2
∞
∑

j=1

(bj + b̄j)|zj |)



 dγ(z).

As shown in [16], κ is strictly positive. Following [16], we define the probability
measure γ̄ as

(5.2) dγ̄(z) =
1

κ
exp



−c2 exp(2
∞
∑

j=1

(bj + b̄j)|zj |)



 dγ(z), z ∈ U .

Let E γ̄,l denote the expectation with respect to the probability space generated
by the MCMC algorithm at discretization level l, with the acceptance probabil-
ity defined in (5.1), and with the initial sample z(0) distributed according to the
probability measure γ̄. To prove the convergence of the MLMCMC sampling, we
work under the following assumption of geometric ergodicity. As in our work on
the elliptic problem in [15], we assume

Assumption 5.1. [Geometric Ergodicity] Let C > 0 be sufficiently large. For each
l and l′ in N, denote by
(5.3)

V ll′(z) = exp



C

∞
∑

j=1

(bj + b̄j)|zj |+
1

ε

∑

j>Jl−1

(bj + b̄j)|zj |+
1

ε′

∑

j′>Jl′−1

(bj′ + b̄j′)|zj′ |





where ε =
∑

j>Jl−1
(bj + b̄j) and ε′ =

∑

j′>Jl′−1
(bj′ + b̄j′). Then if g : U → R is

a measurable function such that |g(z)| ≤ V ll′(z) holds for every z ∈ U , there exists
C ′ > 0 independent of l and g such that for every M ∈ N we have

(

E γ̄,l
[∣

∣

∣E
γl

[g]− Eγl

M [g]
∣

∣

∣

]2
)1/2

≤ CM−1/2 .

Remark 5.2. Assume that the expansion in (2.1) only has a finite number J of
random variables zj, i.e.

K(·, z) = K∗(·) + exp



K̄(·) +
J
∑

j=1

zjψj(·)



 .

With a sufficiently large constant C > 0, we can choose V ll′ as

(5.4) V ll′(z) = exp



C

J
∑

j=1

bj |zj |



 .

Remark 5.3. The proof of Assumption 5.1 for the independence sampler follows
exactly the same lines of [15] Appendix B. For the gPC sampler, if we assume the
validity of the L2

γδ spectral gap result of [14], then Assumption 5.1 holds.

For each discretization level l ∈ N0, we introduce the Markov chains

Cl = {z(k)}k∈N0
⊂ R

Jl

which are started with z(0) ∈ R
Jl and then generated by the MCMC process with

the acceptance probability αl in (5.1) with Jl = ⌈2l/q⌉. We denote by EL the
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expectation with respect to the probability space generated by these Markov chains
for l = 1, . . . , L. We have the following convergence result.

Theorem 5.4. Let D be a bounded polytope in R
d with Lipschitz boundary. Under

Assumption 2.3, the hypothesis of Proposition 4.2 and under the geometric ergod-
icity Assumption 5.1, in space dimension d = 2, 3, with the choices

L′(l) = L− l, Mll′ = 22(L−(l+l′)) for l ≥ 1, l′ ≥ 1,

M0l =Ml0 = 22L/L2, M00 = 22L/L4,

there exists a constant C(ℓ, δ) > 0 such that for every L ∈ N

(5.5) EL

[

|Eγδ

[ℓ(P (T, ·, z))]− EMLMCMC
L [ℓ(P (T, ·, z))]|

]

≤ C(ℓ, δ)L22−L .

The proof of this theorem is along the lines of the argument in the elliptic case
which we detailed in [15]. Similar to what we found there, the logarithmic factor
L2 in the estimate of Theorem 5.4 can be reduced by slightly increasing the sample
size of each Markov chain with the choice

Mll′ = (l + l′)a22(L−(l+l′)), l ≥ 1 and l′ ≥ 1 .

We list the resulting asymptotic bounds in Table 1 below.

a Mll′ , l, l
′ > 1 Ml0 =M0l M00 Total error

0 22(L−(l+l′) 22(L−l)/L2 22L/L4 O(L22−L)

2 (l + l′)222(L−(l+l′)) 22(L−l) 22L/L2 O(L logL2−L)

3 (l + l′)322(L−(l+l′)) l22(L−l) 22L/L O(L1/22−L)

4 (l + l′)422(L−(l+l′)) l222(L−l) 22L/(logL2) O(logL2−L)

Table 1. Relation of total error with different a

6. Numerical experiments

We present the numerical experiments to verify the theoretical results for MLM-
CMC for parabolic equations with log-normal coefficients. We consider periodic
boundary condition as this allows for establishing a very accurate reference so-
lution to compare the MLMCMC results to. We consider both the independent
sampler and the preconditioned Crank-Nicolson (pCN) sampler (see [22]) for the
MCMC. We used Gauss Hermite quadrature to estimate the posterior expectation.
At each of the quadrature point, the forward parabolic equation is solved using
Fourier collocation and a highly accurate implicit Runge Kutta method.

6.1. Independence Sampler. We present the MLMCMC using the independence
sampler first. We consider the parametric forward equation

∂P

∂t
(t, x, z)−∇ · (K(x, z)∇P (t, x, z)) = f(t, x)

for x ∈ D = (0, 1)× (0, 1), t ∈ (0, 1)
(6.1)
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where K(x, z) = exp (z(sin(2πx1) + sin(2πx2))) and f(x, t) = 200(sin(2πx1) +
sin(2πx2)), with the periodic boundary condition and initial condition P (x, 0) = 0;
here x = (x1, x2) ∈ D. The observation functional is chosen to be

(6.2) G(z) =
∫

D

x1
∂P

∂x1
(1, ·, z) + x2

∂P

∂x2
(1, ·, z)dx

and the quantity of interest as

(6.3) ℓ(P (z)) =

∫

D

x1.51

∂P

∂x1
(1, ·, z) + x1.52

∂P

∂x2
(1, ·, z)dx.

To compute the reference solution, 1200 Gauss-Hermite quadrature points are used
to estimate the expectation integral, 25× 25 collocation points are used in Fourier
Collocation and an implicit Runge Kutta method of order 12 with time step 1

32 is
used to solve the forward parabolic equation.

In Figure 1, we present the numerical result for a in Table 1 being 0. The
error is computed as the average error of 64 runs of MLMCMC. We plot the error
versus the finest mesh level hL. The gradient of the best fit straight line is 0.8776.
Similarly in Figures 2 and 3, we present the MLMCMC error for a = 2 and 4.
The gradient of the best fit straight lines are 0.9306 and 0.9840 respectively. These
results illustrates the theory. The slight difference in the slope for a = 0 compare
to a = 2, 4 appears indicative of the significance of the logarithmic factor in the
convergence error shown in Table 1.

Figure 1. MLMCMC error for 2D parabolic equation with
Gaussian prior with independence sampler, a = 0
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Figure 2. MLMCMC error for 2D parabolic equation with
Gaussian prior with independence sampler, a = 2

Figure 3. MLMCMC error for 2D parabolic equation with
Gaussian prior with independence sampler, a = 4
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6.2. pCN Sampler. We now present the results for the MLMCMC method with
the pCN sampler (see [22]) where a proposal is chosen from the current MCMC
state z(k) as:

s(k) =
√

1− β2z(k) + βξ,

where ξ is the standard normal variable. We consider several choices for β. We
present the results for β = 1√

2
first. In Figures 4 and 5, we plot the MLMCMC

error versus the finest mesh level hL for a = 0 and 2 respectively. The slopes of the
best fit straight lines are 0.7947 and 1.0185.

Figure 4. MLMCMC error for 2D parabolic equation with
Gaussian prior with pCN sampler, a = 0, β = 1√

2

Next, we present the results for β = 1√
10
. In Figures 6 and 7, we plot the

MLMCMC error against finest mesh level hL for a = 0 and 2 respectively. The
gradient of the best fit straight lines are 0.6109 and 0.9285. In both cases, we
observe that the choice of a = 0 results in inferior algorithm performance, in terms
of error vs. accuracy as compared to the choice of a = 2. This appears indicative
of the logarithmic factor in the error bound of the MLMCMC.

7. Conclusions

We considered first order time and space discretization; the error bounds are
essentially best possible for the given regularity of the solution, and also for the data:
due to the time independence of the diffusion coefficient K, one could expect e.g.
high time-regularity due to “parabolic smoothing”. However, due to the nonuniform
ellipticity of the spatial operator, which is a consequence of our lack of lower-
boundedness away from zero, it seems not obvious to establish a corresponding
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Figure 5. MLMCMC error for 2D parabolic equation with
Gaussian prior with pCN sampler, a = 2, β = 1√

2

regularity theory where constants are explicit w.r. to the coefficient parameters
z ∈ U .

We imposed sufficient conditions on the data (domain, f and g) in order to
allow for almost sure H2(D) regularity of the solutions; this in turn, allowed using
standard discretization error bounds based on quasiuniform spatial and temporal
stepsizes in the discretization of the forward model. We hasten to add that we
expect the steering parameter choices for the MLMCMC algorithm which were
derived in the present ms. will remain valid also for discretizations that allow local
mesh refinement, e.g. for domains D with re-entrant corners, or mixed boundary
conditions.

Finally, a corresponding multilevel error analysis for approximating posterior
expectations of quantities of interest for parabolic equations with log-normal coeffi-
cients could be equally developed for other sampling methods such as Hamiltonian
Monte Carlo (HMC) and Sequential Monte Carlo (SMC), or for their variants such
as the “MLS2MC” algorithm recently proposed in [18].

Appendix A

We record the following estimates whose proofs can be found in [16].

Lemma A.1. There exists a constant c > 0 such that for every s > 0 there holds
the estimates

∫ ∞

−∞
exp(−t2/2 + |t|s) dt√

2π
≤ c exp(s2/2) exp(s

√

2/π),
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Figure 6. MLMCMC error for 2D parabolic equation with
Gaussian prior and pCN sampler, a = 0, β = 1√

10

∫ ∞

−∞
t2 exp(−t2/2 + |t|s) dt√

2π
≤ c exp(s2/2)(1 + s2),

and
∫ ∞

−∞
|t| exp(−t2/2 + |t|s) dt√

2π
≤ c exp(s2/2)(1 + s) .

Appendix B. Proof of Proposition 4.1

We start with a stability bound of the solutions of the exact and of the J-term
truncated, parametric parabolic problem.

Lemma B.1. Under Assumption 2.3, there is a constant c > 0 such that

∀z ∈ U : ‖P (·, ·, z)‖H1((0,T );V ) ≤ c exp





∞
∑

j=1

|zj |(bj + b̄j)



 .

Furthermore, for every J ∈ N holds the uniform stability bound

∀z ∈ U : ‖P J(·, ·, z)‖H1((0,T );V ) ≤ c exp





∞
∑

j=1

|zj |(bj + b̄j)



 .

Proof From (2.4) we have
∫ T

0

(

∂P

∂t
(z), P (z)

)

dt+

∫ T

0

∫

D

K(z)∇P (z) · ∇P (z)dxdt =
∫ T

0

∫

D

fP (z)dxdt.
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Figure 7. MLMCMC error for 2D parabolic equation with
Gaussian prior with pCN sampler, a = 2, β = 1√

10

Thus

1

2
‖P (T, ·, z)‖2H +Kmin(z)‖P (z)‖2L2((0,T );V )

≤ 1

2Kmin(z)
‖f‖2L2((0,T );V ′) +

Kmin(z)

2
‖P (z)‖2L2((0,T );V ) +

1

2
‖P (0, ·, z)‖2H .

This implies

Kmin(z)

2
‖P (z)‖2L2((0,T );V ) ≤

1

2Kmin(z)
‖f‖2L2((0,T );V ′) +

1

2
‖g‖2H

i.e.

‖P (z)‖2L2((0,T );V ) ≤
1

K2
min(z)

‖f‖2L2((0,T );V ′) +
1

Kmin(z)
‖g‖2H .

Therefore, there is a constant c > 0 such that

‖P (z)‖L2((0,T );V ) ≤ c

(

1

Kmin(z)
‖f‖L2((0,T );V ′) +

1

Kmin(z)1/2
‖g‖H

)

.

Similarly, from (2.5), there is a constant c > 0 such that

∥

∥

∥

∥

∂P

∂t
(z)

∥

∥

∥

∥

L2((0,T );V )

≤ c

(

1

Kmin(z)

∥

∥

∥

∥

∂f

∂t

∥

∥

∥

∥

L2((0,T );V ′)

+
1

Kmin(z)1/2
(‖f(0, ·)‖H + ‖∇ · (K(z)∇g)‖H)

)

.



20 V.H. HOANG, J. H. QUEK AND CH. SCHWAB

We note that

∇ · (K(z)∇g) = ∇K(z) · ∇g +K(z)∆g.

From

∇K(z) = ∇K∗ + exp(K̄(x) +

∞
∑

j=1

zjψj)(∇K̄(x) +

∞
∑

j=1

zj∇ψj),

we have

‖∇K(z)‖L∞(D) ≤ ‖∇K∗‖L∞(D) + c exp(

∞
∑

j=1

|zj |bj)(1 +
∞
∑

j=1

zj b̄j)

≤ c(1 + exp(

∞
∑

j=1

|zj |(bj + b̄j)).

Thus

‖P (z)‖H1((0,T );V ) ≤ c(1 + c exp(

∞
∑

j=1

|zj |(bj + b̄j))).

The proof for P J(z) is similar. ✷

Lemma B.2. Under Assumption 2.3, there is a constant c > 0 such that

‖P (z)− P J(z)‖H1((0,T );V ) ≤ c





∑

j>J

|zj |(bj + b̄j)



 exp



c

∞
∑

j=1

|zj |(bj + b̄j)



 .

Proof From (2.4)

∂

∂t
(P (z)− P J(z))−∇ · (K(z)∇(P (z)− P J(z))) = ∇ · (K(z)−KJ(z))∇P J(z))

with P (0, ·, z)− P J(0, ·, z) = 0. We therefore have that

(B.1)

∫ T

0

(

∂

∂t
(P (z)− P J(z)), (P (z)− P J(z))

)

dt

+

∫ T

0

∫

D

K∇(P (z)− P J(z)) · ∇(P (z)− P J(z))dxdt

= −
∫ T

0

∫

D

(K(z)−KJ(z))∇P J(z) · ∇(P (z)− P J(z))dxdt.

Thus

Kmin(z)‖P (z)− P J(z)‖2L2((0,T );V )

≤ ‖K(z)−KJ(z)‖L∞(D)‖∇P J(z)‖L2((0,T );H)‖∇(P (z)− P J(z))‖L2((0,T );H).

From this we have

‖P (z)− P J(z)‖L2((0,T );V ) ≤
1

Kmin(z)
‖K(z)−KJ(z)‖L∞(D)‖P J(z)‖L2((0,T );V )

≤ c





∑

j>J

|zj |bj



 exp



c

∞
∑

j=1

|zj |(bj + b̄j)



 .
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Similarly, we have from (2.5)

∂

∂t

∂

∂t
(P (z)−P J(z))−∇·(K∇ ∂

∂t
(P (z)−P J(z))) = ∇·(K(z)−KJ(z))∇∂P J

∂t
(z)),

with ∂
∂t (P (z)− P J(z))(0, ·, z) = ∇ · ((K(z)−KJ(z))∇g). We deduce

Kmin(z)

∥

∥

∥

∥

∂

∂t
(P (z)− P J(z))

∥

∥

∥

∥

2

L2((0,T );V )

≤ ‖K(z)−KJ(z)‖L∞(D)

∥

∥

∥

∥

∇∂P J

∂t
(z)

∥

∥

∥

∥

L2((0,T );H)

∥

∥

∥

∥

∇ ∂

∂t
(P (z)− P J(z))

∥

∥

∥

∥

L2((0,T );H)

+ ‖∇ · (K(z)−KJ(z))∇g‖2H .

We thus have

‖ ∂
∂t

(P (z)− P J(z))‖L2((0,T );V )

≤ c

Kmin(z)
‖K(z)−KJ(z)‖L∞(D)‖∇

∂P J

∂t
(z)‖L2((0,T );H)

+
c

Kmin(z)1/2
‖∇ · (K(z)−KJ(z))∇g‖H .

Using |exp(x) − exp(y)| ≤ |x − y|(exp(x) + exp(y)) which holds for all x, y ∈ R,
there exists c > 0 such that for all J ∈ N and for every z ∈ U holds

‖K(z)−KJ(z)‖L∞(D)

= ‖exp(K̄(x) +

∞
∑

j=1

zjψj(x))− exp(K̄(x) +

J
∑

j=1

zjψj(x))‖L∞(D)

≤ c exp



2

∞
∑

j=1

|zj |bj









∑

j>J

|zj |bj



 .
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We note furthermore that for every z ∈ U

‖∇K(z)−∇KJ(z)‖L∞(D)

≤
∥

∥

∥

∥

∥

exp



K̄(x) +

∞
∑

j=1

zjψj(x)







∇K̄(x) +

∞
∑

j=1

zj∇ψj(x)





− exp



K̄(x) +

J
∑

j=1

zjψj(x)







∇K̄(x) +

J
∑

j=1

zj∇ψj(x)





∥

∥

∥

∥

∥

L∞(D)

≤
∥

∥

∥

∥

∥

exp



K̄(x) +

∞
∑

j=1

zjψj(x)



− exp



K̄(x) +

J
∑

j=1

zjψj(x)





∥

∥

∥

∥

∥

L∞(D)

·

∥

∥

∥

∥

∥

∇K̄(x) +

J
∑

j=1

zj∇ψj(x)

∥

∥

∥

∥

∥

L∞(D)

+

∥

∥

∥

∥

∥

exp



K̄(x) +

∞
∑

j=1

zjψj(x)





∥

∥

∥

∥

∥

L∞(D)

∥

∥

∥

∥

∥

∑

j>J

zj∇ψj(x)

∥

∥

∥

∥

∥

L∞(D)

≤ c exp





∞
∑

j=1

|zj |bj









∑

j>J

|zj |bj







1 +

J
∑

j=1

|zj |b̄j





+ c exp





∞
∑

j=1

|zj |bj









∑

j>J

|zj |b̄j





≤ c exp





∞
∑

j=1

|zj |(bj + b̄j)









∑

j>J

|zj |(bj + b̄j)



 .

From Lemma B.1, there exists c > 0 such that for every z ∈ U
∥

∥

∥

∥

∥

∂

∂t
(P (z)− P J(z))

∥

∥

∥

∥

∥

L2((0,T );V )

≤ c exp



c

∞
∑

j=1

|zj |(bj + b̄j)









∑

j>J

|zj |(bj + b̄j)



 .

✷

We now prove Proposition 4.1.
Proof of Proposition 4.1. From Lemma B.1, there exists a constant c > 0 such

that for every z ∈ U holds

|G(z)| ≤ c exp(c

∞
∑

j=1

|zj |(bj + b̄j)), |GJ(z)| ≤ c exp(c

∞
∑

j=1

|zj |(bj + b̄j))

for a constant c > 0. From Lemma B.2, we have

|G(z)− GJ(z)| ≤ c(
∑

j>J

|zj |(bj + b̄j)) exp(c

∞
∑

j=1

|zj |(bj + b̄j)).

Let Z(δ) and ZJ(δ) be the normalizing constants in (3.1) and (4.3) respectively.
We first show that ZJ is uniformly bounded below from 0 uniformly with respect
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to J . From (4.2) and Lemma B.1, we have that

|ΦJ(z; δ))| ≤ c(δ) exp(

J
∑

j=1

(bj + b̄j)).

From Lemma A.1, we have that

∫

U

ΦJ(z; δ)dγ(z) < Λ

uniformly for all J . Fixing a constant C > 0, the γ measure of the set z ∈ U such
that ΦJ(z; δ) > C is less than Λ/C so the γ measure of the set of z ∈ U such that
ΦJ(z; δ) ≤ C is more than 1 − Λ/C which is positive when C is sufficiently large.
Thus

ZJ(δ) =

∫

U

exp(−ΦJ(z; δ))dγ(z) > (1− Λ/C) exp(−C) > 0.

As in equation (3.6), we have

dHell(γ
δ, γJ,δ)2 ≤ I1 + I2,

where

(B.2) I1 =
2

Z(δ)

∫

U

(

exp(−1

2
Φ(z; δ))− exp(−1

2
ΦJ(z; δ))

)2

dγ(z),

and

(B.3) I2 = 2|Z(δ)−1/2 − ZJ(δ)−1/2|2
∫

U

exp(−ΦJ(z; δ))dγ(z).

We then have

∣

∣

∣

∣

exp(−1

2
Φ(z; δ))− exp(−1

2
ΦJ(z; δ))

∣

∣

∣

∣

≤ c(|δ|+ |G(z)|+ |GJ(z)|)|G(z)− GJ(z)|

≤ c(δ) exp



c

∞
∑

j=1

|zj |(bj + b̄j)









∑

j>J

|zj |(bj + b̄j)



 .

(B.4)

Thus

I1 ≤ c(δ)

∫

U

exp



c

∞
∑

j=1

|zj |(bj + b̄j)









∑

j>J

|zj |(bj + b̄j)





2

dγ(z).

Now we show that the right hand side of this inequality is bounded by c(δ)J−2q.
Denoting by γ1 the standard normal probability measure in R, and denoting Bj :=
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bj + b̄j , we have

∫

U

exp
(

c

∞
∑

j=1

|zj |Bj

)

( ∞
∑

j=J+1

|zj |Bj

)2

dγ(z)

=

∫

U

exp
(

c

∞
∑

j=1

|zj |Bj

)

( ∞
∑

i,j=J+1

BiBj |zi||zj |
)

dγ(z)

≤
∞
∑

i=J+1

B2
i

∫ ∞

−∞
exp(cBi|zi|)z2i dγ1(zi)

∞
∏

k=1

k 6=i

∫ ∞

−∞
exp(cBk|zk|)dγ1(zk)

+

∞
∑

i,j=J+1

i 6=j

BiBj

∫ ∞

−∞
exp(cBi|zi|)|zi|dγ1(zi) ·

∫ ∞

−∞
exp(cBj |zj |)|zj |dγ1(zj)

·
∞
∏

k=1

k 6=i,j

∫ ∞

−∞
exp(cBk|zk|)dγ1(zk) .

From Lemma A.1, there exists c > 0 (independent of Bj) such that
∫ ∞

−∞
t2 exp(−t2/2 + |t|s) dt√

2π
≤ c exp(s2/2)(1 + s2),

and
∫ ∞

−∞
|t| exp(−t2/2 + |t|s) dt√

2π
≤ c exp(s2/2)(1 + s) .

We deduce that there exists C > 0 such that for all J ≥ 1
∫

U

exp
(

c

∞
∑

j=1

Bj |zj |
)

( ∞
∑

j=J+1

Bj |zj |
)2

dγ(z)

≤ C

∞
∑

i=J+1

B2
i (1 +B2

i ) exp

( ∞
∑

k=1

c2B2
k/2 + cBk

√

2/π

)

+C

∞
∑

i,j=J+1

i 6=j

BiBj(1 +Bi)(1 +Bj) exp

( ∞
∑

k=1

c2B2
k/2 + cBk

√

2/π

)

≤ C





∞
∑

j=J+1

Bj





2

≤ CJ−2q.

Thus I1 ≤ CJ−2q. To bound I2, we observe that
(B.5)

|Z(δ)− 1
2−ZJ(δ)−

1
2 |2 ≤ Cmax{Z(δ)−3, ZJ(δ)−3}|Z(δ)−ZJ(δ)|2 ≤ C|Z(δ)−ZJ(δ)|2.

From (B.4),

(B.6) |Z(δ)− ZJ(δ)| ≤
∫

U

|exp (−Φ(z; δ))− exp
(

−ΦJ(z; δ)
)

|dγ(z) ≤ CJ−q.

Therefore,

I2 ≤ CJ−q.

✷
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Appendix C. Proof of Proposition 4.2

We note the following approximation for the approximating problem (4.5).

Lemma C.1. Let D be a convex domain. Under Assumption 2.3 and the hypothesis
of Proposition 4.2, there is a constant c > 0 such that for all m = 1, . . . ,M , and
for every z ∈ U , the solution of problem (4.5) satisfes

‖P J,h,k
m (z)− P J(tm, ·, z)‖V ≤ c exp



c

J
∑

j=1

|zj |(bj + b̄j)



 (h+ k) + c‖g − gl‖V .

Proof We start with

‖P J,h,k
m (·, z)− P J(tm, ·, z)‖V

≤ ‖P J,h,k
m (·, z)−RhP

J(tm, ·, z)‖V + ‖RhP
J(tm, ·, z)− P J(tm, ·, z)‖V

= ‖θm‖V + ‖ϕm‖V

where

θm = P J,h,k
m (·, z)−RhP

J(tm, ·, z) , ϕm = RhP
J(tm, ·, z)− P J(tm, ·, z)

and that Rh : V → V l is the projection satisfying

∫

D

KJ(·, z)∇(Rhψ) · ∇φdx =

∫

D

KJ(·, z)∇ψ · ∇φdx

∀ψ ∈ V and ∀φ ∈ V l. We consider

∫

D

θm − θm−1

k
φdx+

∫

D

KJ(·, z)∇θm · ∇φdx

=

∫

D

P J,h,k
m (·, z)− P J,h,k

m−1 (·, z)
k

φdx−
∫

D

RhP
J(tm, ·, z)−RhP

J(tm−1, ·, z)
k

φdx

+

∫

D

KJ(·, z)∇P J,h,k
m (·, z) · ∇φdx−

∫

D

KJ(·, z)∇RhP
J(tm, ·, z) · ∇φdx.

From (4.5) and the definition of Rh,

∫

D

θm − θm−1

k
φdx+

∫

D

KJ(·, z)∇θm · ∇φdx

=

∫

D

f(tm, ·)φdx−
∫

D

RhP
J(tm, ·, z)−RhP

J(tm−1, ·, z)
k

φdx

−
∫

D

KJ(·, z)∇P J(tm, ·, z) · ∇φdx.
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Adding and subtracting
∫

D
∂PJ

∂t (tm, ·, z)φdx,
∫

D

θm − θm−1

k
φdx+

∫

D

KJ(·, z)∇θm · ∇φdx

=

∫

D

f(tm, ·)φdx

−
∫

D

RhP
J(tm, ·, z)−RhP

J(tm−1, ·, z)
k

φdx+

∫

D

∂P J

∂t
(tm, ·, z)φdx

−
∫

D

∂P J

∂t
(tm, ·, z)φdx−

∫

D

KJ(·, z)∇P J(tm, ·, z) · ∇φdx.

Using (3.4),
∫

D

θm − θm−1

k
φdx+

∫

D

KJ(·, z)∇θm · ∇φdx

=

∫

D

f(tm, ·)φdx

−
∫

D

RhP
J(tm, ·, z)−RhP

J(tm−1, ·, z)
k

φdx+

∫

D

∂P J

∂t
(tm, ·, z)φdx

−
∫

D

f(tm, ·)φdx.

This implies that

(C.1)

∫

D

θm − θm−1

k
φdx+

∫

D

KJ(·, z)∇θm · ∇φdx = −
∫

D

ωmφdx

where

ωm =
RhP

J(tm, ·, z)−RhP
J(tm−1, ·, z)

k
− ∂P J

∂t
(tm, ·, z).

We write ωm = ωm
1 + ωm

2 where

ωm
1 =

RhP
J(tm, ·, z)−RhP

J(tm−1, ·, z)
k

− P J(tm, ·, z)− P J(tm−1, ·, z)
k

ωm
2 =

P J(tm, ·, z)− P J(tm−1, ·, z)
k

− ∂P J

∂t
(tm, ·, z).

We note that
∫

D

∇θm·∇θm − θm−1

k
dx =

1

2

[

‖∇θm‖2H − ‖∇θm−1‖2H
k

+ k

∥

∥

∥

∥

∇
(

θm − θm−1

k

)∥

∥

∥

∥

2

H

]

.

From (C.1), under Assumption 2.3, letting φ = θm−θm−1

k ,

∥

∥

∥

∥

θm − θm−1

k

∥

∥

∥

∥

2

H

+Kmin

∫

D

∇θm·∇
(

θm − θm−1

k

)

dx ≤
∫

D

−ωm

(

θm − θm−1

k

)

dx.

Thus
∥

∥

∥

∥

θm − θm−1

k

∥

∥

∥

∥

2

H

+
Kmin

2

[

‖∇θm‖2H − ‖∇θm−1‖2H
k

+ k

∥

∥

∥

∥

∇
(

θm − θm−1

k

)∥

∥

∥

∥

2

H

]

≤ 1

2
‖ωm‖2H +

1

2

∥

∥

∥

∥

θm − θm−1

k

∥

∥

∥

∥

2

H

,
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which implies

Kmin

2

‖∇θm‖2H − ‖∇θm−1‖2H
k

≤ 1

2
‖ωm‖2H .

Thus

‖θm‖2V ≤ 1

Kmin
k‖ωm‖2H + ‖θm−1‖2V ,

and recursively,

‖θm‖2V ≤ 1

Kmin
k

m
∑

i=1

‖ωi‖2H + ‖θ0‖2V .

Therefore

‖θm‖2V ≤ ck

Kmin

m
∑

i=1

‖ωi
1‖2H +

ck

Kmin

m
∑

i=1

‖ωi
2‖2H + ‖θ0‖2V .(C.2)

We have

ωm
1 = (Rh − I)

1

k

∫ tm

tm−1

P J
t (s, ·, z)ds =

1

k

∫ tm

tm−1

(Rh − I)P J
t (s, ·, z)ds.

From the duality argument in the proof of Theorem 1.1 of Thomee [24], we have

‖(Rh − I)P J
t (t, ·, z)‖H ≤ ch exp



c
∞
∑

j=1

|zj |(bj + b̄j)



 ‖P J
t (t, ·, z)‖V .

We have

kωm
1 =

∫ tm

tm−1

(Rh − I)P J
t (s, ·, z)ds.

Thus

k2‖ωm
1 ‖2H ≤ c exp



c

∞
∑

j=1

|zj |(bj + b̄j)



h2

(

∫ tm

tm−1

‖P J
t (s, ·, z)‖V ds

)2

≤ c exp



c
∞
∑

j=1

|zj |(bj + b̄j)



h2k

∫ tm

tm−1

‖P J
t (s, ·, z)‖2V ds.

Thus for all m = 1, . . . ,M

k

m
∑

i=1

‖ωi
1‖2H ≤ c exp



c

∞
∑

j=1

|zj |(bj + b̄j)



h2
∫ T

0

‖P J
t (s, ·, z)‖2V ds.

For ωm
2 , we have

kωm
2 = −

∫ tm

tm−1

(s− tm−1)P
J
tt(s, ·, z)ds

so

k2‖ωm
2 ‖2H ≤ k2

(

∫ tm

tm−1

‖P J
tt(s, ·, z)‖Hds

)2

,

i.e.

‖ωm
2 ‖2H ≤

(

∫ tm

tm−1

‖P J
tt(s, ·, z)‖Hds

)2

≤ k

∫ tm

tm−1

‖P J
tt(s, ·, z)‖2Hds.
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Thus

k
m
∑

i=1

‖ωi
2‖2H ≤ ck2

∫ T

0

‖P J
tt(s, ·, z)‖2Hds.

Using Lemma B.1 for P J where we consider z with only the first J components
being nonzero, we have that

‖P J
t (z)‖L2((0,T );V ) ≤ c exp(c

J
∑

j=1

|zj |(bj + b̄j)).

Using [12, Theorem 5, page 360] for equation (2.5), as ∂f
∂t ∈ L2((0, T );H) and

f(0, ·) +∇ · (K∇g) ∈ V , we have that

‖P J
tt(z)‖L2((0,T );H) ≤ c

Kmax(z)

Kmin(z)

(

∥

∥

∥

∥

∂f

∂t

∥

∥

∥

∥

L2((0,T );H)

+ ‖f(0, ·) +∇ · (K∇g)‖V
)

,

(the dependence of the multiplying constant C in the right hand side of this es-
timate in the statement of [12, Theorem 5 page 360] on Kmax(z)/Kmin(z) can be
straightforwardly verified by following the proof of this theorem on pages 361-362
of [12]). Thus

‖P J
tt(z)‖L2((0,T );H) ≤ c exp(c

∞
∑

j=1

|zj |(bj + b̄j)).

From (2.5), we have dPJ

dt (z) ∈ C([0, T ];H) and
∥

∥

∥

∥

∂P J

∂t
(z)

∥

∥

∥

∥

C([0,T ];H)

≤ c

(

∥

∥

∥

∥

∂P J

∂t
(z)

∥

∥

∥

∥

L2([0,T ];V )

+

∥

∥

∥

∥

∂P J

∂t
(z)

∥

∥

∥

∥

H1((0,T );V ′)

)

.

Thus

(C.3)

∥

∥

∥

∥

∂P J

∂t
(z)

∥

∥

∥

∥

C([0,T ];H)

≤ c exp(c

∞
∑

j=1

|zj |(bj + b̄j)).

From (2.4), for every z ∈ U and for every 0 < t ≤ T there holds in H−1(D)

(C.4) −∆P J(z) =
1

KJ(z)

(

f − ∂P J

∂t
(z) +∇KJ(z) · ∇P J(z)

)

.

Applying the shift theorem for the weighed Sobolev spaces, there exists a constant
c (which only depends on the domain D) such that for every 0 < t ≤ T and for
every z ∈ U holds

‖P J(t, ·, z)‖H2(D)

≤ c

KJ
min(z)

(

‖f(t, ·)‖H +

∥

∥

∥

∥

∂P J

∂t
(t, ·, z)

∥

∥

∥

∥

H

+ ‖∇KJ(t, ·, z)‖L∞(D)‖∇P J(t, ·, z)‖H
)

.

From Lemma B.1, we have

sup
t∈[0,T ]

‖∇P J(t, ·, z)‖H ≤ c exp(c

∞
∑

j=1

|zj |(bj + b̄j)).

From (C.3),

sup
t∈[0,T ]

∥

∥

∥

∥

∂P J

∂t
(t, ·, z)

∥

∥

∥

∥

H

≤ c exp(c

∞
∑

j=1

|zj |(bj + b̄j)).
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Thus

‖P J(t, ·, z)‖H2(D) ≤ c exp



c

∞
∑

j=1

|zj |(bj + b̄j)



 .

We further have ϕm = (Rh − I)P J(tm, ·, z) so
‖ϕm‖V ≤ ch‖P J(tm, ·, z)‖H2(D).

Therefore for all m = 1, . . . ,M

‖P J,h,k
m (z)− P J(tm, ·, z)‖V ≤ c exp(c

∞
∑

j=1

|zj |bj)(h+ k)·
(

‖P J
t (z)‖L2((0,T );V ) + ‖P J

tt(z)‖L2((0,T );H) + sup
t∈(0,T )

‖P J(t, ·, z)‖H2(D))

)

+ ‖g − gL‖V .

Hence, there is a constant c > 0 such that ∀ z ∈ U

‖P J,h,k
m (z)− P J(tm, ·, z)‖V ≤ c exp



c

∞
∑

j=1

|zj |(bj + b̄j)



 (h+ k) + ‖g − gl‖V .

We are now ready to prove Proposition 4.2.
Proof of Proposition 4.2: We note that it is sufficient to show that dHell(γ

J,δ, γJ,h,k,δ) ≤
C(h+ k). From Lemmas B.1 and C.1, when choosing gl such that ‖g − gl‖V ≤ ch,
we have

‖P J,h,k
τi (z)‖V ≤ c exp(c

J
∑

j=1

|zj |(bj + b̄j))

so

|GJ,h,k(z)| ≤ c exp(c

∞
∑

j=1

|zj |(bj + b̄j)).

We have further from Lemma C.1 that ∀ z ∈ U

|ℓi(P J(τi, ·, z))− ℓi(P
J,h,k
τi (·, z))| ≤ c exp



c

J
∑

j=1

|zj |(bj + b̄j)



 (h+ k).

Thus

|GJ(z)− GJ,h,k(z)| ≤ c exp



c

J
∑

j=1

|zj |(bj + b̄j)



 (h+ k).

We proceed as in the proof of Proposition 4.1. Let ZJ(δ) and ZJ,h,k(δ) be the
normalizing constants in (4.1) and (4.6) respectively. We have

2dHell(γ
J,δ, γJ,h,k,δ)2 ≤ I1 + I2,

where

(C.5) I1 =
2

ZJ(δ)

∫

U

(

exp(−1

2
ΦJ(z; δ))− exp(−1

2
ΦJ,h,k(z; δ))

)2

dγ(z),

and

(C.6) I2 = 2|ZJ(δ)−1/2 − ZJ,h,k(δ)−1/2|2
∫

U

exp(−1

2
ΦJ,h,k(z; δ))dγ(z).
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A proof which is similar to that for lower-bounding ZJ(δ) above shows that ZJ,h,k(δ)
is uniformly bounded below from 0 for all J, h and k. We then obtain that there is
a constant c > 0 such that for all J, h, k and all δ with |δ| ≤ r holds

∣

∣

∣

∣

exp(−1

2
ΦJ(z; δ))− exp(−1

2
ΦJ,h,k(z; δ))

∣

∣

∣

∣

≤ c
(

|δ|+ |GJ(z)|+ |GJ,h,k(z)|
)

|GJ(z)− GJ,h,k(z)|

≤ c exp



c

J
∑

j=1

|zj |(bj + b̄j)



 (h+ k).

Using the first inequality of Lemma A.1 we have

I1 ≤ c exp



c

J
∑

j=1

(bj + b̄j)
2 + c

J
∑

j=1

(bj + b̄j)



 (h+ k)2 ≤ c(h+ k)2.

Similarly, we have I2 ≤ c(h + k)2, implying that dHell(γ
J,δ, γJ,h,k,δ) ≤ c(h + k)2.

Together with dHell(γ
δ, γJ,δ) ≤ cJ−q, we get the conclusion. ✷
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