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1 Introduction

The efficient numerical approximation of solution (manifolds) to parameter depen-
dent partial differential equations (PDEs) has seen significant progress in recent
years. We refer for instance to [13, 14]. Similarly, and closely related, the treatment
of Bayesian inverse problems for well-posed partial (integro-)differential equations
with uncertain input data has drawn considerable attention, see e.g. [21] and the
references there. This is, in part, due to the need to efficiently assimilate noisy
observation data into predictions subject to constraints given by certain physical
laws governing responses of systems of interest. We mention here the surveys
[21, 71] and the references there. In the present paper, we study mathematically the
ability of deep neural networks to express Bayesian posterior probability measures,
subject to given data and to PDE constraints. To this end, we work in an abstract
setting accommodating PDE constrained Bayesian inverse problems with function
space priors as exposed, e.g., in [21, 41] and in the references there.

Several concrete constructions of function space prior probability measures for
Bayesian PDE inversion beyond Gaussian measures on separable Hilbert spaces
have been advocated in recent years. We mention in particular so-called Besov
prior measures [46, 20].

Recently, several proposals have been put forward advocating the use of DNNs
for Bayesian PDE inversion from noisy data; we refer to [9, 82, 42]. These references
computationally found good numerical efficiency for DNN expression with various
architectures of DNNs. Regarding Deep NNs for “learning” solution maps of PDEs,
we mention [82, 78]. Expressive power (approximation) rate bounds for solution
manifolds of PDEs were obtained in [77]; results in this reference are also key in the
present analysis of DNN expression of Bayesian posteriors. Specifically, we quantify
uncertainty in PDE inversion conditional on noisy observation data using the
Bayesian framework. Particular attention is on general, convex priors on uncertain
function space inputs [21, 41].

The Bayesian approach can incorporate most, if not all, uncertainties of
engineering interest in PDE inversion and in graph-based data classification in a
systematic manner.

Computational UQ for PDEs poses three challenges: large-scale forward prob-
lems need to be solved, high dimensional parameter spaces arise in parametrization
of distributed uncertain inputs (from Banach spaces), and numerical approxima-
tion needs to scale favorably in the presence of “big data”, resulting in consistent
posteriors in the sense of Diaconis and Freedman [24].

Foundational mathematical developments on the question of universality of

NNs are e.g. in [28, 40, 39, 7, 8]. In recent years so-called deep neural networks
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(DNNs for short) have seen rapid development and successful deployment in a wide
range of applications. Evidence for the benefit afforded by depth of NNs on their
expressive power has been documented computationally in an increasing number
of applications (see, e.g. [49, 50, 82, 70, 87, 42, 65] and the references there). The
results reported in these references are mostly computational, and address particular
applications. Independent of these numerical experiments exploring the performance
of DNN based algorithms, the approzimation theory of DNNs has also advanced
in recent years. Distinct from earlier, universality results e.g. in [40, 39, 7, §],
emphasis in more recent mathematical developments has been on approximation
(i-e., “expression”) rate bounds for specific function classes and particular DNN
architectures. We mention only [10, 63, 67] and the references there. In [77], we
proved that ReLU DNNs can express high-dimensional, parametric solution families
of elliptic PDEs, at rates which are free from the curse of dimensionality.

Specifically, we adopt the infinite-dimensional formulation of Bayesian inverse
problems from [79] and its extensions to general, convex prior measures on input
function spaces as presented in [41]. Assuming an affine representation system on
the uncertain input data, we adopt uniform prior measures on the parameters in
the representation.

We prove that ReLU DNNs allow for expressing the parameter-to-response
map and the Bayesian posterior density at rates which are determined only by the

size of the domains of holomorphy.

1.1 Recent mathematical results on expressive power of
DNNs

Fundamental universality results (amounting to, essentially, statements on density
of shallow NN expressions) on DNN expression in the class of continuous functions
have been established in the 90ies (see [68] for proof and a review of results), in
recent years expression rate bounds for approximation by DNNs for specific classes
of functions have been in the focus of interest. We mention in particular [31] and
[10]. There, it is shown that deep NNs with a particular architecture allow for
approximation rate bounds analogous to those of rather general multiresolution
systems when measured in terms of the number N of units in the DNN.

In [18], convolutional DNNs were shown capable of expressing multivariate
functions given in so-called Hierarchical Tensor formats, a numerical representation
inspired by electron structure calculations in computational quantum chemistry.

In [83, 51], ReLU DNNs were shown to be able to express general uni- and
multivariate polynomials on bounded domains with uniform accuracy 6 > 0, with

complexity (i.e., with the number of NN layers and the number of NN units and
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nonzero weights) scaling polylogarithmically with respect to 6. The results in
[83, 51] allow transferring approximation results from high order finite and spectral
element methods, in particular exponential convergence results, to certain types of
DNNs.

In [72], DNN expression rates for multivariate polynomials were investigated,
without reference to function spaces. Expression rate bounds explicit in the number
of variables and the polynomial degree by deep NNs were obtained. The proofs in
[72] depend strongly on a large number of bounded derivatives of the activation
function, and do not cover the presently considered case of ReLLU DNNs.

In [77] we proved dimension-independent DNN expression rate bounds on
functions of countably many variables. In [77] we used, as we do in part of the
present paper, approximation rate bounds for N-term truncated, so-called gener-
alized polynomial chaos expansions of the parametric function. These have been
investigated thoroughly in recent years (e.g. [15, 16, 4, 3] and the references there).
For the present analysis, however, we require more specific information of polyno-
mial degree distributions in N-term approximate gpc expansions as the dimension
of the space of active parameters increases. This was investigated by some of the
authors recently in [86, 85]. In the present article, we shall also draw upon results
in these references.

In [56], the authors provided an analysis of expressive power of DNNs for a
specific class of multi-parametric maps which have a defined (assumed known)
compositional structure: they are obtained as (repeated) composition of a possibly
large number of simpler functions, depending only on a few variables at a time. It
was shown that such functions can be expressed with DNNs at complexity which is
bounded by the dimensionality of constituent functions in the composition and the
size of the connectivity graph, thereby alleviating the curse of dimensionality for

this class.

1.2 Contributions

We extend our previous work [77] on ReLU NN expression bounds of countably-
parametric solution families and Qol’s for PDEs with affine-parametric uncertain
input. In a first main result, Theorem 4.9 of Section 4.4, we prove bounds on
the expressive power of ReLU DNNs for many-parametric response functions
from Bayesian inverse UQ for PDEs and more general operator equations subject
to infinitely-parametric, uncertain and “invisible” (i.e. not directly observable)
input data. As in [77], we assume that the input-to-solution map has holomorphic
dependence on possibly an infinite number of parameters. We have in mind in

particular (boundary, eigenvalue, control,...) problems for elliptic or parabolic PDEs
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with uncertain coefficients. These may stem from, for example, domains of definition
with uncertain geometry (see, e.g., [69, 43, 17, 49]) in diffusion, incompressible
flow, or time-harmonic, electromagnetic scattering (see, e.g., [43]). Adopting a
countable representation system renders uncertain inputs countably-parametric,
and implies likewise countably-parametric output families (“solution-manifolds”,
“response-surfaces”) of the model under consideration.

In [77], expressive power estimates for deep ReLU NNs for countably-parametric
solution manifolds were obtained among others for linear, second order elliptic
PDEs with uncertain coefficients, in divergence form. Theorems 4.9 and 5.2 extend
[77] in two regards. Firstly, we require merely (b, €)-holomorphy on poly-ellipses,
rather than on polydiscs as assumed in [77]. This requires essential modifications of
the DNN expression rate analysis in [77], as Legendre polynomial chaos expansions
are used rather than Taylor expansions. Secondly, we generalize our result from
[77] to parametric PDEs posed on a polytopal physical domain D of dimension
d > 2 (instead of d = 1).

In the Bayesian setting (see [79, 21, 41] and the references there), it has been
shown in [25, 75] that (b, €)-holomorphy of the Qol is inherited by the Bayesian
posterior density, if it exists. In the present paper we analyze expression rates of
ReLU DNNs for countably parametric Bayesian posterior densities which arise from
PDE inversion subject to noisy data. We show, in particular, extending our analysis
[77], that ReLU DNNs afford expression of such densities at dimension-independent
rates. The expression rate bounds are, to a large extent, abstracted from particular
model PDEs and apply to a wide class of PDEs and inverse problems (e.g., elliptic
and parabolic linear PDEs with uncertain coefficients, domains, source terms). We
also provide in Section 6.3 novel bounds on the posterior consistency of the DNN
emulated Bayesian posterior in the presently considered, general setting.

We refer to [82] for a possible computational approach and detailed numerical
experiments, for a 2nd order divergence form PDE with log-Gaussian diffusion
coefficient.

1.3 Notation

We adopt standard notation, consistent with our previous works [85, 86]: N =
{1,2,...} and Ny := NU {0}. We write R4 := {z € R: z > 0}. The symbol C
will stand for a generic, positive constant independent of any asymptotic quantities
in an estimate, and may change its value even within the same equation.

In statements about (generalized) polynomial chaos expansions we require

multiindices v = (v})jen € NON. The total order of a multiindex v is denoted by
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v|1 = ZjeN v;. For the countable set of “finitely supported” multiindices we write
_ N
F:={veNy: |v|; <oo}.

Here, suppr = {j € N : v; # 0} denotes the support of the multiindex v. The
size of the support of v € F is |v|g = #(supp v); it will, subsequently, indicate the
number of active coordinates in the multivariate monomial term y* := [] jEN y;j .

A subset A C F is called downward closed®, if v = (vj)jen € A implies
1 = (pj)jen € A for all p < v. Here, the ordering “<” on F is defined as
p; < vy, for all j € N. We write |A| to denote the finite cardinality of a set
A. For 0 < p < oo, denote by ¢P(F) the space of sequences t = (tu)per C R
satisfying [t/ () == O, cr |tu[P)1/P < co. As usual, £°(F) equipped with the
norm ||y (7) := sup,¢r [tv| < co denotes the space of all uniformly bounded
sequences.

We consider the set CI endowed with the product topology. Any subset such
as [—1,1]Y is understood to be equipped with the subspace topology. For & € (0, c0)
we write B: := {z € C : |z| < €}. Furthermore BY := XjeN B. C CN. Elements
of CN will be denoted by boldface characters such as y = (y5)jen € [-1, 11N, For
v € F, standard notations y" := HjeN ijJ and v! = HjeN vj! will be employed
(throughout, 0! := 1 and 00 = 1, so that v! contains finitely many nontrivial
factors). For any index set A C F we denote Py := span{y”},cn.

For a Banach space X we denote by P(X) the space of Borel probability
measures on X and by dg(-,-) the Hellinger metric on P(X).

1.4 Structure of the present paper

The structure of this paper is as follows: in Section 2, we review the mathematical
setting of Bayesian inverse problems for PDEs, including results which account for
the impact of the PDE discretization error on the Bayesian posterior. In Section 3,
we recall the notion of (b, £)-holomorphic functions on polyellipses, taking values
in Banach spaces and review approximation rate bounds for their truncated gpc
expansion.

Sections 4-5 contain the mathematical core and main technical contributions
of this paper: we define the DNN architectures and present, after recapitulating
the basic operations of DNN calculus, expression rate bounds for so-called (b, €, R)-

holomorphic functions. This function class consists of maps from [—1, I]N — R,

1 Index sets with the "downward closed” property are also referred to in the literature
[59] as lower sets.
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which allow holomorphic extensions (in each variable) to certain subsets of CN. This
is subsequently generalized to (b, e, X')-holomorphic functions. To keep the network
size possibly small, we employ a multilevel strategy by combining approximations
to elements in X at different accuracy levels. Section 5.2 presents an illustrative
example of a PDE with uncertain input data which satisfy the preceding, abstract
hypotheses. Following this, we apply our result for (b, e, R)-holomorphic functions
to the Bayesian posterior density in Section 6. We show, in particular, that ReLU
DNNs are able to express the posterior density with rates (in terms of the size
of the DNN) which are free from the curse of dimensionality. We also show in
Section 6.2 that DNNs allow for expression rates which are robust w.r. to certain
types of posterior concentration in the small noise respectively the large data limits.
Section 6.3 shows that the L°°-convergence of approximations of the posterior
density implies convergence of the approximate posterior measure in the Hellinger
and total variation distances. In Section 7 we give conclusions and indicate further
directions. In the appendix we provide proofs of several results from the main text,

which are not included in the published version [64] of this text.

2 Bayesian inverse UQ

We first present the abstract setting of BIP on function spaces, [79, 25, 75]. We
then verify the abstract hypotheses in several examples; in particular, for diffusion

equations with uncertain coefficients in polygons.

2.1 Forward model

We consider abstract parametric operator equations, which are possibly nonlinear,
whose operators depend on uncertain input data a.

We consider given an uncertain input datum a € X C X, where X denotes
a Banach space containing the set X of admissible input data of the operator
equation. Generally, a is not accessible a priori and, therefore, is considered as
uncertain input data. A priori knowledge about the distribution of a € X for a
particular application is encoded through a probability measure pg on X, the
Bayesian prior, which is supported on a measurable subset X C X of admissible
uncertain inputs. This implies, in particular, that X € B(X) is po-measurable, and
that uo(X) = 1; we discuss this in detail in Section 2.2 ahead.

The abstract forward model to be considered in the sequel reads: given (a

realization of) the uncertain input parameter a € X , and a possibly nonlinear map
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N(a,-):X—>y/,
findue X: (N(a,u),v) =0 forall vey. (1)

Here, (-,-) denotes the V' x Y duality pairing. Throughout, we admit infinite-
dimensional Banach spaces X, X, (all results apply verbatim for the finite-
dimensional settings).

In (1), the nonlinear map A(-,-) : X x X — )’ could be thought of as residual
map for a PDE with solution space X and uncertain, distributed input data a from

a function space X.

2.2 Bayesian inverse problem

We recapitulate the abstract setting of Bayesian inverse problems (BIPs for short)
where the data-to-prediction map is constrained by possibly nonlinear operator

equations (1) which are subject to unknown / unobservable input data.

2.2.1 Setup

In the Bayesian inversion of the forward model (1), we in general do not have access
to the uncertain input a. Instead, we assume given noisy observation data 6 € Y,
where Y is a space of observation data. The data § € Y is a response of (1) for
some admissible input a € X, which response is corrupted by additive observation
noise n €Y, i.e.

0=G(a)+n. (2)
The data-to-observation map G(-) is composed of the solution operator G : a — u
associated to (1) and a continuous, linear observation map O € L(X,Y) taking
the solution u(a) € X with input a € X to observations O(u(a)) € Y. Thus
G: X —>Y:a— G(a):=(0oG)(a).

We often wish to predict a so-called quantity of interest (Qol for short). In this
work, we assume the Qol to be a bounded, linear functional Q € £L(X, Z) where
Z is a suitable Banach space. In this setup, then, the inverse problem consists in
estimating the “most likely” realization of the Qol based on solutions v = G(a) of
the forward problem (1), given noisy observation data § of responses G(a).

In Bayesian inversion, one assumes given a probability measure pg on the
Banach space X of inputs which charges the set X C X of admissible inputs and
which encodes our prior information about the occurrence of inputs a.

Given a realization of the parameter a € f(, and observation data 6 € Y,

dla

we denote by p°'® the probability measure on ¢, conditioned on a. Under the
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dla dla

assumption that p°'* < p.or for some reference measure pof on Y, and that p
has a density w.r. to pu.of which is positive p.ef-a.e., we may define the likelihood

potential ®(a;d) : X x Y — R (the “negative log-likelihood”) so that

du&\a
dﬂref

(8) = exp(—(a; ), / exp(—(a; 8))dpiye (5) = 1. (3)
Y

Remark 2.1. Let Y = R and assume that the observation noise n~N(0,T) is
additive, centered Gaussian with positive definite covariance matriz T' € REXK,
Then there exists a measure pof on 'Y, equal to a I'-dependent constant times

the Lebesgue measure on Y, such that
SN S 2 1 2
@(a:8) = 3 |072(G(a) ~ )3 = LIG(a) — o]/3 (4)

The potential ® is an inverse covariance weighted, least squares functional of the
response-to-observation misfit for uncertain input parameter a € X and observation
data § € Y.

In finite dimensions, Bayes’ rule states that the posterior ,ua“; (the probability
measure of the unknown a conditioned on the data d) is proportional to the product
of the likelihood M‘S‘“ and the prior pug. In the present Banach space setting, this

formally extends to

dﬂa‘é
dm = Z05)

exp(~0(a:0)), where 2(0) = [ exp(-®(a0))duoa) . (5)
X
which can be made rigorous, see the references below. Here Z(0) is a normalization

w to be a probability density as a function of

constant guaranteeing
a € X w.r.t. the measure pg. In the Bayesian methodology, the posterior probability
measure ,ual‘s is considered an updated version of the prior g on the uncertain
inputs that is informed by the observation data §. In the following, the posterior

probability measure will be denoted by p‘s.

Remark 2.2. Note that (5) is independent of the choice of reference measure fiyer

dﬂéla -
dp‘ref (6) -

in (3): Let fior be another (equivalent) reference measure such that
exp(—®(a;4)). Then

Al o Qs (51 e ) Yzt (),

du(”a
exp(—®(a;d)) = = —
( ( ) ) d,uref dﬂref d:u/ref

B dlu/ref

(9)

Hence ®(a;8) = ®(a; 8)+log(c) with the a-independent constant ¢ = %(6). The
constant ¢ will merely influence the normalization Z(8) in (5), but either choice

als
of pret OT firef leads to the same formula for a — d(ﬁ‘m) (a).
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We refer to [79, 21, 41] for a detailed discussion and further references, in particular
[21, Section 3.4.2], which is an application of the more general discussion in [21,
Section 3.2]. Our definition of the likelihood potential ® in (4) is consistent with
[21, Equation (10.39)]. It is shifted with respect to the definition in [21, Equation
(10.30)] by adding to ® a function depending on §, but not on a, see Remark 2.2
and also [21, Remark 5].

2.2.2 Assumptions

Based on [79, 20, 21, 41], we now formalize the preceding concepts. To this end, we
introduce a set of assumptions on the prior and on the forward map which ensure

well-posedness and continuous dependence of the BIP.

Assumption 2.3 (|41, Assumption 2.1|). In the Banach space X of uncertain pa-
rameters and the Banach space Y of observation data, the potential ® : X XY — R
satisfies:

(i) (bounded below) There is some a1 > 0 such that for every r > 0 exists a
constant M (a1,r) € R such that for every uw € X and for every data 6 € Y
with ||6]|y < r holds

B(u:6) > M — o ullx

(#) (boundedness above) For every r > 0 exists K(r) > 0 such that for every
u € X and for every 6 € Y with max{||u||x,||d]ly} < r holds

D(u;d) < K.

(i11) (Lipschitz continuous dependence on w) For every r > 0 exists a con-
stant L(r) > 0 such that for every ui,us € X and for every § € Y with
max{l|u1|[x, [uzllx, 1d]ly } <7 holds

|©(u1;0) — P(ug; 6)| < Lljur — uzllx -

(iv) (Lipschitz continuity w.r. to observation data 6 € Y ) For some ag > 0 and
for every r > 0 emists C(az,r7) € R such that for every 61,02 € Y with
max{[|d1]ly, [|02]ly } < r and for every u € X holds

| (u;61) — (u;02)| < exp (azllullx + C) (|61 — d2lly -

(v) (Radon prior measure) The prior measure g is a Radon probability measure
charging a measurable subset X C X with X € B(X) of admissible uncertain

parameters, i.e. ug(X) =1.
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(vi) (exponential tails) The prior measure uy on the Banach space X has exponen-
tial tails:
Ik >0: /exp(/@||u||x)d,u0(u) < 00 . (6)
X

Remark 2.4. Assumption (v) on the prior ug being a Radon probability measure

is always satisfied when X is separable.

2.2.3 Well-posedness

We shall consider well-posedness of the BIP in the following sense.

Definition 2.5 (Well-posedness of the BIP, [41, Definition 1.4]). For Banach

spaces X, Y, with dg(-,-) denoting the Hellinger metric on the space P(X)

of Borel probability measures on X, for a prior pg € P(X) and for the likelihood

potential @, the BIP (5) is well-posed if the following holds:

(i) (existence and uniqueness) For every data 0 € Y exists a unique posterior
measure ,u‘s € P(X) which is absolutely continuous w.r. to the prior pg and
which satisfies (5),

(if) (stability) for every e > 0 and r > 0 there exists a constant Ce(r) > 0 such
that for every 6,8" € Y with max{||0||y, |||y} < r and |6 —&'|ly < C-, there
holds

dp (1, 1”) <e.

2.2.4 Existence and continuous dependence

We are now in position to state sufficient conditions for well-posedness of the BIP
and for existence and uniqueness of the posterior /fs. We work in the abstract
setting Assumption 2.3, deferring the verification of the items in Assumption 2.3

to the ensuing discussion of concrete model problems.

Theorem 2.6 ([41, Theorems 2.4 and 2.6]). Given Banach spaces X andY and
a likelihood function ® : X XY — R satisfying Assumption 2.3, items (i), (%), (iii)
with some a1 > 0. Moreover, the prior measure ug € P(X) satisfies Assumption
2.8, items (v) and (vi) with some constant k > 0.
Then it holds:
(i) If k > a1, for every 6 € Y, the posterior measure u® defined in Equation (5)
is well-defined, and a Radon probability measure on X.
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(ii) (Lipschitz continuity of the posterior w.r. to the data) If ® satisfies in addi-
tion Assumption 2.3, item (iv) with some constant ag > 0, and if the con-
stant k from Assumption 2.8, item (vi), satisfies k > a1 + 2a2, then for
every r > 0 exists a constant C(r) > 0 such that, for every 6,6’ € Y with
max{||§|ly, |6’y } < r, the posteriors ué,,uél € P(X) satisfy

A, 1)y < C@))s -8 lly - (7)

A proof of this result is, for example, in [41, Theorems 2.4 and 2.6].

2.2.5 Consistent approximation

In the numerical approximation of posteriors u‘s where the input-to-observation
map G = Oo G : X — Y involves a well-posed, parametric forward operator
equation (1), we will in general have to resort to approximate, numerical solutions
of (1). Generically, we tag such approximate solution maps by a subscript N € N
which should be understood as the “number of degrees of freedom” involved in the
discretization of the parametric equation (1). In this way, we denote the data-to-
solution map of the nonlinear equation (1) by Gy : X — X, the corresponding
data-to-observation map by Gy = O o G, and the likelihood potential by ® .
Approximation of the forward model (1), e.g. by consistent discretization, leads

to an approximate Bayesian inverse problem, which is of the form

du}s\, (a) = 1
duo ~ 7 ZN(6)

exp(~ @y (a;8)), where Zy(5) := / exp(—® v (a; 8))dptoa)

X
(8)
Assuming exact observations O(+) at hand, the approximate potential @ in (8) is

1 _ ~
P (a;8) = SI02((00GN)(@) = 0)IF, acX.deY.

The posterior ,u5 would, consequently, also be approximated by the corresponding
numerical posterior, which we denote by N?\%
It is of interest to identify sufficient conditions so that, as N — oo, the

approximate posteriors {#?v}NZl tend to the posterior u6 in P(X).

Definition 2.7 (consistent posterior approximation, [41, Definition 1.5]). The
approzimate Bayesian inverse problem (8) is said to be a consistent approximation
of (5) for a prior ug € P(X) and a potential ® if the approzimate potential @ is
such that for every data 6 € Y, as N — oo, there holds

[(a;0) — B (as8) 0 implies dpr(u”, uhe) 0.
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Apart from consistency in the sense of Definition 2.7, in the numerical approx-
imation of BIPs we are also interested in convergence rates: if the numerical
approximation G of the forward solution map converges with a certain rate, say
¥(N), with ¢ a nonnegative function such that ¢(N) | 0 as N — oo, then the
corresponding posteriors u‘]sv should converge with a rate related to ¥(N). The
following theorem, which is proved in [21, Theorem 18], gives sufficient conditions

for posterior convergence.

Theorem 2.8 (|21, Theorem 18|). Let Banach spaces X and Y of uncertain pa-
rameters a and observation data &, resp., be given.

Let pg € P(X) be a Borel probability measure on X which satisfies Assumption
2.8, items (i) - (vi), so that for observation data § € Y the BIPs (5), (8) for
,u‘s,u‘]sv € P(X) are well-defined.

Assume also that the likelihood potentials ® and ® satisfy Assumption 2.8,
items (i), (1) with constant ay > 0 which is uniform w.r. to N, and that for some
as > 0 exists C(as) > 0 independent of N such that for every a € X holds

|®(a; 6) — Py (a;6)| < Cexp(as|lallx)¥ (V) (9)

with (N) L 0 as N — oco.

If furthermore Assumption 2.3, item (vi) holds with k > a1 + 2as, then for
every v > 0 exists a constant D(r) > 0 such that for every 6 € Y with ||0|ly < r
holds

YN eN: dy(u’,pul) < DY(N).

Here, the constant D(r) generally depends on the covariance T' of the centered

Gaussian observation noise n in (2).

2.3 Prior modeling

The modeling of prior probability measures on function spaces of distributed,
uncertain PDE input data a in the model (1) has been developed in several
references in recent years. The ‘usual construction’ is based on (a) coordinate
representations of (realizations of) instances of a in terms of a suitable basis
{%j}j>1 (thereby implying a will take values in a separable subset X of X) and on
(b) construction of the prior as countable product probability measure of probability
measures on the co-ordinate spaces.

This approach, which is inspired by N. Wiener’s construction of the Wiener
process by placing Gaussian measures on coefficient realizations of Fourier series,
has been realized for example in [46, 20, 35] for Besov spaces, and in [41, 80] and

the references there for more general priors.
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2.4 Examples

The foregoing, abstract setting (1) accommodates a wide range of PDE boundary
value, eigenvalue, control, and shape optimization problems with uncertain function
space input a € X. We illustrate the scope by listing several examples which are
covered by the ensuing, abstract DNN expression rate bounds. In all examples,
D C R% shall denote an open, bounded and connected, polytopal domain in physical
Euclidean space of dimension d > 2. In dimension d = 1, D shall denote an open,

bounded interval of positive length.

2.4.1 Diffusion equation

We consider the linear, 2nd order, diffusion equation with uncertain coefficients
in D c R%. Holomorphic dependence of solutions on coefficient data was shown
in [5] and the numerical analysis, including Finite-Element discretization in D
on corner-refined families of triangulations, with approximation rate estimates
for both, the parametric solution and the Karhunen-Loeve expansion terms, was
provided in [36]. Given a source term f € H~ (D) = (HZ(D))*, and an isotropic
diffusion coefficient a € X C {a € L°°(D) : essinfgzep a(x) > 0} the diffusion
problem reads: find u € H} (D) such that

N(a,u)(z) = f(x)+ V- (a(x)Vu(z)) =0 inD, wulgp =0. (10)

It falls into the variational setting (1) with X = Y = H}(D), X = L®°(D). In
[5, 36], also anisotropic diffusion coefficients a and advection and reaction terms
were admitted.

For a € X, the weak formulation (1) of (10) is uniquely solvable and the
data-to-solution map G : X3 X:iam u(a) is continuous. Equipping X with the
norm ||v|lx = [|[Vv||p2(p), there holds

I fllz-1(D)

< —/——7——F— .
lullx < essinfep a(x)

Assuming affine-parametric uncertain input [76, 15, 16], i.e., given ag € X with

a— :=ess inf ag(xz) >0
xeD 0( ) ’

for {¢j};>1 C X with 37,5 [[¥;lx < a—, we choose the prior such that its

support is contained in the set

Xi={a€X:a=a(y)=ao+y s, y=(y);>1 € [-L1"} (1))
i>1
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For every y € [—1, 1]N and a(y) € X, problem (10) admits a unique parametric
solution u(y) € X such that N(a(y),u(y)) =0 in H (D).

2.4.2 Elliptic eigenvalue problem with uncertain coefficient

For a € X as defined in (11), for every y € [—1,1]" we seek solutions (A(y), w(y)) €
R x H}(D)\{0} of the eigenvalue problem

N(a(y), A(y),w(y))) =0 in H (D), (12)

where, for every a € X, N(a, (\,w)) : R x H3(D) = H (D) : (\,w) — Aw + V-
(aVw). For every y, the EVP (12) admits a sequence {(A;(y), w(y)) : k=1,2,...}
of real eigenvalues A (y) (which we assume enumerated according to their size,
with multiplicity counted) with associated eigenfunctions wy(y) € H} (D) (which
form a dense set in Hg(D)). It is known (e.g. [29, Proposition 2.4]) that the first
eigenpair {(A1(y), w1(y)) : y € [—1,1]V} is isolated, admits a uniform (w.r. to
y € [-1, I}N) spectral gap.

3 Generalized polynomial chaos surrogates

3.1 Uncertainty parametrization

Let Z and & be two complex Banach spaces and let (1j);jen be a sequence in
Z. Additionally suppose that O C Z is open and let u : O — X be complex
differentiable. With the parameter domain U := [—1, 1]N we consider the infinite

parametric map

u(y) =u [ Dy vy = (yj)jen €U, (13)
JEN
which is well-defined for instance if (||1;]/z); en € ¢(N). Here the map U — O :
Y ZjeN 1;%; is understood as an (affine) parametrization of the uncertain input
a and u denotes the map which relates the input to the solution of the model under
consideration.
Under certain assumptions, such maps allow a representation as a sparse Taylor

generalized polynomial chaos expansion (15, 16], i.e. for y € U

1
uy) =Y ty’,  t= — 105 u(y) ly=o€ X, (14)
veF ’
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or as a sparse Legendre generalized polynomial chaos expansion [13], i.e.

)= 3 b = [ L@ e, 1)

veF U

where Ly (y) = HjeN Ly (y;) and Ly, : [-1,1] — R denotes the n-th Legendre
polynomial normalized in LQ([—l, 1], A/2), where X\ denotes the Lebesgue measure
on [—1,1], i.e. A/2 is a uniform probability measure on [—1,1]. Also, uy := ®jeN%
denotes the uniform probability measure on U = [—1, 1]N equipped with the product
o-algebra. Then by [61, §18.3]

IZnllpoe(rap < (1+20)%  ¥n e No. (16)

The summability properties of the (X-norms of) Taylor or Legendre gpc coefficients
(It lla)ver, (llvllx)ver are key for assigning a meaning to such formal gpc
expansions like (14) and (15). For example, as for every y € U and for every
v € F it holds that |y¥| < 1, the summability (||tu||x)ver € £} (F) guarantees
unconditional convergence in X of the series in (14) for every y € U. As we shall
recall in Section 3.3, this summability is in turn ensured by a suitable form of

holomorphic continuation of the parameter-to-response map v : U — X.

Remark 3.1. We assume here X to be a complex space. If X is a Banach space
over R, one can consider u as a map to the complexification Xg = X +iX of
X equipped with the so-called Taylor norm ||v + iw||x. = sup;ejo,2nx) || cos(t)v —
sin(t)w||x for allv, w € X (cp. [58]). Here, i = v/—1 with arg(i) = 7/2.

3.2 (b,e, X)-holomorphy

To prove expressive power estimates for DNNs, we use parametric holomorphic
maps from a compact parameter domain U into a Banach space X with quantified
sizes of domains of holomorphy. To introduce such maps, we recapitulate principal
definitions and results from [16, 13, 12, 86] and the references there. The notion
of (b, e)-holomorphy (given in Definition 3.3 ahead), which stipulates holomorphic
parameter dependence of a function v : U — X in each variable on certain product
domains O = XjeN 0; C CN, has been found to be a sufficient condition on a
parametric map U 3 y — u(y) € X, in order that u admits gpc expansions with
p-summable coefficients for some p € (0, 1), see, e.g., [13, 77] and also Section 3.3
ahead. In the following, we extend the results from [77] in the sense that we admit

smaller domains of holomorphy: each O; = £, is a Bernstein-ellipse defined by

-1
8,)::{;:—’—72:26@, 1§|z|<p}§(c,
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rather than a complex disc O; = By,; as in [77].

Remark 3.2. Let 7 C N. Throughout, continuity of a function defined on a cylin-
drical set Xjej O; with O C C for all j € J will be understood as continuity
with respect to the subspace topology on Xjej 0; C Xjej C, where Xjej C is as-
sumed to be equipped with the product topology by our convention (see Section 1.8).
In this topology, the parameter domain U = [—1, 1]N is compact by Tychonoff’s
theorem [57, Theorem 387.3].

In the following, if p = (pj)j-vzl C (1,00) for some N € N, we define the poly-ellipse
N
Ep =X

=1 Ep; C CY, and similarly in case p = (pj)jen C (1,00)

Ep = X &, CCN.
i>1

Definition 3.3 ((b,e, X')-Holomorphy). Let X be a complex Banach space. As-
sume given a monotonically decreasing sequence b = (b;)jen of positive reals b;
such that b € (P(N) for some p € (0,1].
We say that a map u : U — X is (b, e, X)-holomorphic if there exists a constant
M < oo such that
(i) w:U — X is continuous,
(ii) for every sequence p = (pj)jen C (1, 00)N which is (b, €)-admissible, i.e. which
satisfies
D bilps—1 <e, (17)
jEN
u admits a separately holomorphic extension (again denoted by u) onto the
poly-ellipse Ep,
(iii) for each (b,e)-admissible p holds

sup [lu(z)llx <M . (18)

z€&p

If it is clear from the context that X = C, then we will omit X in notation.

Remark 3.4. We note that for b € ¢*(N) as in Definition 3.3, bj =+ 0asj—
oo. By (17), (b,€)-admissible polyradii p can satisfy p; — oo, implying that the
component sets Ey; will grow as j — oo. We also observe the following, elementary
geometric fact:

Vp>1: gp D) B(pfl/p)/Q . (19)

In particular, £, D By D [—~1,1] for all p > 1+ /2. Bernstein ellipses £, are

moreover useful if the domain of holomorphy of u does not contain B1. Moreover,
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if pj = o0, after all but a (possibly small) finite number of parameters, the domains
of holomorphy Ep; contain a polydisc with radius (p; — 1/p;)/2 > 1. We shall
see in Section 4 below that multivariate monomials can be expressed by smaller
DNNSs than, e.g., multivariate Legendre, or Jacobi polynomials. In particular, for
the emulation of tensor products of Taylor monomials the product network is of
smaller size than that for the emulation of temsor product Legendre polynomials.
The reason is that the L°° -norm of Taylor monomials equals 1, whereas forv € F it
holds that || Lv || oo () < Hj€suppu m (cf. (16)). Due to the growth of this
bound, to achieve the same absolute accuracy a larger relative accuracy is required,
and therefore a larger product network size (see Proposition 4.3). We therefore use
in our expression rate bounds “Taylor DNN emulations” as in [77] for all but a
fized, finite number of dimensions. There, we use an exponential expression rate
bound from [62] for the ReLU DNN approzimation of tensor product Legendre
polynomials (Proposition 4.6).

Definition 3.3 has been similarly stated in [13]. The sequence b in Definition 3.3
quantifies the size of the domains of analytic continuation of the parametric map
with respect to the parameters y; € y: the stronger the decrease of b, the faster the
radii p; of (b, e)-admissible sequences p may increase. The sequence b (or, more
precisely, the summability exponent p such that b € ¢P(N)) will determine the
algebraic rate at which the gpc coefficients tend to 0 (see Theorem 3.7 ahead).
The notion of (b, e, X')-holomorphy applies to large classes of parametric operator
equations, notably including functions of the type (13). This statement is given in
the next lemma which is proven in [84, Lemma 2.2.7], see also [86, Lemma 3.3] (for
a version based on holomorphy on polydiscs rather than on polyellipses).

Lemma 3.5. Let u: O — X be holomorphic where O C Z is open. Assume that
(Wj)jen C Z, 15 # 0 for all j, with (|[v]|z)jen € €' (N) and {3yt - y €
U} C O. Then there exists € > 0 such that u(y) = u(ZjEN Y1), y € U defines
a (b, e, X )-holomorphic function with b; := ||v;|| z.

3.3 Summability of gpc coefficients

As mentioned above, the relevance of (b, ¢, X)-holomorphy lies in that it guarantees
such functions to possess gpc expansions with coefficients whose norms are p-
summable for some p € (0,1). This p-summability is the crucial property required
to establish convergence rates of certain partial sums. Our analysis of the expressive
power of DNNs of such parametric solution families will be based on a version

of these results as stated in the next theorem. To reduce the asymptotic size of
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the networks, we consider gpc expansions combining both multivariate monomials
and multivariate Legendre polynomials, as motivated in Remark 3.4. While p-
summability of the norms of both the Taylor and the Legendre coefficients of such
functions is well-known (under suitable assumptions), Theorem 3.7 below is not
available in the literature. For this reason we provide a proof but stress that the
general line of arguments closely follows earlier works such as [15, 16, 13, 85].

In the next theorem we distinguish between low- and high-dimensional co-
ordinates: We shall use in “low dimensions” indexed by j € {1,...,J} Legendre
expansions, whereas in the co-ordinates indexed by j > J we resort to Taylor gpc
expansions. For 1 < j < J, we thus exploit holomorphy on poly-ellipses £,; and
Legendre gpc expansions. For j > J, we emulate by ReLLU DNNs the corresponding
Taylor gpc expansions in these co-ordinates using [77] and the fact that sufficiently
large Bernstein ellipses with foci +1 contain discs with radius > 1 centered at the
origin (as pointed out in Remark 3.4).

Accordingly, we introduce the following notation: for some fixed J € N (defined
in the following) and v € F set

vg = (v1,...,vg), vp = (Vyy1,Viga,---)

and Fp := N7, and we will write v = (v, vp). Moreover U := [-1,1]7 and
Up := Xj>J[—1,1], and for y = (yj)jen € U define yg := (yj)jzl € Ug and
yr := (yj);>7 € Up. In particular we will employ the notation ¢y = Hj>J y;j.
Additionally, for a function u : U — X, by u(yg,0) we mean u evaluated at
(y1,---,97,0,0,...) € U. In terms of the Lebesgue measure A on [—1,1] define
UE = ®3-]:1% on Ug and pup := ®j>J% on Up.

Lemma 3.6. Let Co :=4/9. Then Bgop C & forall p> 3.

Proof. By Remark 3.4 it holds B(,_,-1)/2 C &y, so it suffices to check (p—p~H/2>
Cop for all p > 3. For p = 3 this follows by elementary calculations, and for p > 3
it follows by the fact that p — (p — p~1)/(2p) = (1 — p~2)/2 is monotonically
increasing for p > 3. O

Theorem 3.7. Let u be (b, e, X)-holomorphic for some b € (P(N), p € (0,1) and
e > 0. Then there exists J € N such that
(i) for eachv e F

o= [ Lustop)

Ug
is well-defined and it holds

Oy;u(ys, 0)

P dpp(yp) € X (20)

(IZvp Lo @) llevllx)ver € €°(F),
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(ii) 4t holds
u(y) = Y cwlus(yp)yi" € X,
veF
with absolute and uniform convergence for all y € U,
(iii) there exist constants C1, C2 > 0 and a monotonically increasing sequence
8 = (8;)jen C (1,00) such that (57 ")jen € */U"PI(N), 6; < C15%/P for all
j €N and
(0¥ [| Lug || oo () llev | 2 )wer € €1(F). (21)
Furthermore with
r={veF:86"Y>71}

it holds for all 7 € (0,1) that |A+| > 0 and

_1
sup u(y) — > el (yp)yd” | < CalAr| 77T

yeU
veA, X

The proof is given in Appendix A.1. We next give more details on the structure
of the sets (AT)TE(O,I) that will be required in establishing the ensuing DNN
expression rate bounds. To this end let us introduce the quantities

m(A) := sup |v|1 and d(A) := sup |suppr|. (22)

veA veA
Proposition 3.8. Let the assumptions of Theorem 3.7 be satisfied, and let J € N
and (A+)r € (0,1) be as in the statement of Theorem 3.7. Then
(i) Ar is finite and downward closed for all 7 € (0,1),
(ii) m(Ar) = O(log(|A7])) and d(Ar) = o(log(|Ar])) as T — 0,
(iii) [{vp : v € Ar}| = O(log(|A+])7) as T — 0,
(iv) for all 7 € (0,1), if e € Ar for some j € N then for all i < j it holds that
e; € Ar.

Proof. To show ( ), for downward closedness, let v < g and p € A; be given. Then
7<p ® < p7¥ and thus v € A;. Item (ii) was shown in [84, Lemma 1.4.15] and
[84, Example 1.4.23].

Item (iii) is a consequence of m(A;) = O(log(]A~+|)), which holds by (ii). Finally,
(iv) is a direct consequence of the monotonicity of (J;);en, which holds by Theorem
3.7. O

Remark 3.9. We note that in the proof of Theorem 3.7, in particular Equa-
tion (53), the sequence & is defined in terms of only b, p and .2 The index sets

2 The sequence § depends on ¢ through v2 € (1, k), for k satisfying Equation (45).
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(AT)TE(O,I) depend solely on 6 and 7. Thus, in principle, € and the sequence b are
sufficient to determine these index sets. For example, in the situation of Lemma
3.5, it holds bj = |||z, j € N, which is known (or can be estimated) for many

function systems {1;};>1.

4 DNN surrogates of real-valued functions

We now turn to the statement and proofs of the main results of this work. We first
recapitulate in Section 4.1 the DNNs which we consider for the approximation,
then present in Section 4.2 mathematical operations on DNNs. In Section 4.3, we
recapitulate quantitative approximation rate bounds for polynomials by ReLU
NNs, from [51, 77, 62, 47] which we use subsequently to reapproximate N-term
gpc approximations of (b, e, R)-holomorphic functions.

As in [77], we develop the DNN expression rate bounds (which are free from
the curse of dimensionality of the parametric maps) in Sections 4.4 and 4.5 in
an abstract setting, for countably-parametric, scalar-valued maps with quantified

control on the size of holomorphy domains.

4.1 Network architecture

We will use the same DNN architecture as in previous works (e.g. [62]). In Sections
4.1-4.3 we now restate results from [62, Section 2].

We consider deep neural networks (DNNs for short) of feed-forward type.
Such a NN f can mathematically be described as a repeated composition of
linear transformations with a nonlinear activation function. More precisely: For an
activation function o : R — R, a fixed number of hidden layers L € Ny, numbers
Ny € N of computation nodes in layer £ € {1,...,L + 1}, f: RNo — RNzt g
realized by a feedforward neural network, if for certain weights wﬁj € R, and biases
bg € R it holds for all = (mi)lN:OI

No
z}:a<2w}’jxi+b}> , je{l,...,N1}, (23a)
=1

and

Ny

{+1 +1 ¢ (+1 .

zj+ :a(i wl—; zi+bj+> , te{l,...,L -1}, j€{1,...,Np41},
=1

(23b)
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and finally

Ny Npi1
L+1\N L+1_L L+1
f@%4%+y;“—<2yw*a+@+> : (23c)
i=1 j=1

In this case Ny is the dimension of the input and Ny is the dimension of the

14
1,3
has the interpretation of connecting the ith unit in layer £ — 1 with the jth unit in

layer ¢. If L = 0, then (23c) holds with z? =x; fori=1,..., Np.

Except when explicitly stated, we will not distinguish between the network
(which is defined through o, the wf,j and bﬁ) and the function f : RNo — RNz+1
it realizes. We note in passing that this relation is typically not one-to-one, i.e.

output. Furthermore zf denotes the output of unit j in layer £. The weight w

different NNs may realize the same function as their output. Let us also emphasize
that we allow the weights wﬁj and biases bﬁ foree{1,...,L+1},i e {1,... ,Ny_1}
and j € {1,..., Ny} to take any value in R, i.e. we do not consider quantization as
e.g. in [10, 67].

As is customary in the theory of NNs, the number of hidden layers L of a NN
is referred to as depth® and the total number of nonzero weights and biases as the
size of the NN. Hence, for a DNN f as in (23), we define

size(f) i= [{(0,5.0) : wh; # 0} + {(,0) : b #0}| and depth(f) := L.

In addition, sizein(f) := [{(i,4) : w;; # O} + [{j : bj # 0}| and sizeous(f) =
{(,7): wﬁfl 0} + {7 : bjLJrl # 0}|, which are the number of nonzero weights
and biases in the input layer of f and in the output layer, respectively.

The proofs of our main results are constructive, in the sense that we explicitly
provide NN architectures and constructions of instances of DNNs with these
architectures which are sufficient (but possibly larger than necessary) for achieving
the claimed expression rates. We construct these NNs by assembling smaller
networks, using the operations of concatenation and parallelization, as well as
so-called “identity-networks” which realize the identity mapping. Below, we recall
the definitions.

3 In other recent references (e.g. [63]), slightly different terminology for the number L of
layers in the DNN differing from the convention in the present paper by a constant factor,
is used. This difference will be inconsequential for all results that follow.
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4.2 Basic operations

Throughout, as activation function o we consider either the ReLU activation
function
o1(x) := max{0,z} rzeR (24)

or, as suggested in [54, 55, 47|, for r € N, r > 2, the RePU activation function

or(z) == max{0,z}" = o1(z)" z €R. (25)

See [62, Remark 2.1] for a historical note on rectified power units. If a NN uses
or as activation function, we refer to it as o--NN. ReLU NNs are referred to as
01-NNs. It is assumed throughout that all activations in a DNN are of equal type.

We now recall the parallelization and concatenation of networks, as well
networks realizing the identity. The constructions are mostly straightforward. For
details and proofs we refer to [67, 63, 27, 62].

4.2.1 Parallelization

Let f, g be two NNs with the same depth L € Np, input dimensions ny, ng and
output dimensions m ¢, mg respectively. There exists a NN (f, g)4 such that

(f,9)q : R™ xR" — R"™ xR™ : (z, &) — (f(z),9(x)).

It holds depth((f,g9)q) = L, size((f,g)q) = size(f) + size(g), sizein((f,9)q) =
sizein (f) + sizein (g) and sizeous ((f, 9)q) = sizeout (f) + sizeout(g), see [67, 27].

In case ny = ng = n, there exists a NN (f, g) with the same depth and size as
(f,9)4, such that

(f,9) : R" = R™ xR™ : @ (f(x),g(x)).

4.2.2 |dentity

By [67, Lemma 2.3], for all n € N, L € Ny there exists a o;-identity network Idgn
of depth L such that Idg. (x) = @ for all x € R™. It holds that

size(Idgn) <2n(L + 1), sizejy (Idgn) < 2n, sizeout (Idgn ) < 2n.

Analogously, by [62, Proposition 2.3|, for all r, n € N, » > 2 and L € Ny there
exists a or-identity network Idgn of depth L such that Idgn (x) = @. It holds that

size(Idgn ) < nL(4r® 4+ 2r),  sizejn(Idgn) < 4nr,  sizeous(Idgn ) < n(2r + 1).
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4.2.3 Sparse concatenation

Let f and g be 01-NNs, such that the output dimension of g equals the input
dimension of f. Let ng be the input dimension of g and m; the output dimension
of f. Then, the sparse concatenation of the NNs f and g realizes the function

fog:R" = R™ :z— f(g(x)). (26)

In the following, by abuse of notation, “o” can either stand for the composition of
functions or the sparse concatenation of networks. The meaning will be clear from
the context. By [67, Remark 2.6], depth(f o g) = depth(f) + 1 + depth(g),

size(f o g) < size(f) + sizein (f) + sizeout (g) + size(g) < 2size(f) + 2size(g) (27)
and

sizein(g)  depth(g) > 1,
2sizein(g) depth(g) =0,
=1
n=o.

sizein (f o g) < {

sizeout (f) depth

sizeout (f 0 g) <
2sizeout(f) depth

(
(

Similarly, for » > 2 there exists a sparse concatenation of o,-NNs (we denote
the concatenation operator again by o) satisfying the following size and depth
bounds from [62, Proposition 2.4]: Let f, g be two 0»-NNs such that the output

dimension k of g equals the input dimension of f, and suppose that sizej,(f),
sizeout (g9) > k. Then depth(f o g) = depth(f) + 1 + depth(g),

size(f o g) < size(f) + (2r — 1) sizein (f) + (2r + 1)k + (2r — 1) sizeout (g) + size(g)
< size(f) + 2rsizei (f) + (4r — 1) sizeout (9) + size(g)
< (2r + 1) size(f) + 4rsize(g),
(28)
and
sizein (g) depth(g) > 1,

sizein(fog) <
2r sizein (g) + 2rk < 4rsizeiy(g) depth(g) =0,

sizeout (f) depth(f) > 1,
=0.

sizeout (f 0 g) < { . .
2r sizeout (f) + k < (2r + 1) sizeout(f) depth(f)

Combining identity networks with the sparse concatenation, we can parallelize
networks of different depth. The next lemma shows this for ReLU-NNs (a proof is
given in Appendix A.2).
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Lemma 4.1. For allk, n € N and 01-NNs f1,..., fi with the same input dimen-
sion n and output dimensions m1,...,my € N, there exists a o1-NN (f1,..., fr)q
called the parallelization of f1,..., fi with shared identity network. It has in-
put dimension n, output dimension m := Zle my, it realizes R — R™ : ¢
(fi(x),..., fr(x)), has depth L := max;—;, depth(ft) and its size is bounded

as follows:

k k k
size((f1,---5 fr)s) < Zsme (ft)+ Zsmem (ft)+2nL < QZSIZE (ft) +2nL,
t=1 t=1

t=1

k
sizein ((f1,-- -5 fr)s) < Z sizein (ft) + 2n,
=

k
sizeout ((f1,- -, fr)s) < Z 2 sizeout (ft)-
t=1

Remark 4.2. The term 2nL in the size bound corresponds to the nonzero weights
(and biases) of the identity network used to construct the parallelization. We point
out that this number is independent of the number k of networks (ft)ff:l, since our

construction allows the k networks to share one identity network.

4.3 Approximation of polynomials

As in other recent works (e.g. [77, 62, 23, 63]), the ensuing DNN expression rate
analysis of possibly countably-parametric posterior densities will rely on DNN
reapproximation of sparse generalized polynomial chaos approximations of these
densities. It has been observed in [83, 51| that ReLU DNNs can represent high
order polynomials on bounded intervals rather efficiently. We recapitulate several
results of this type, from [62, Section 2], and from [77] which we will require in the
following.

4.3.1 Approximate multiplication

Contrary to [83], the next result bounds the DNN expression error in W ([— M, M]?)
(instead of the L°°([—M, M]?)-norm).
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Proposition 4.3 ([77, Proposition 3.1]). For any § € (0,1) and M > 1 there
erists a 01-NN >25,M (M, M]2 — R such that

sup |ab— x4 p(a,b)| <6,
lal,[b|]<M

. (29)
a— abxts,M(a?b)‘} < 5a

o -~
ess sup max{‘b— = %6 Mm(a, b)‘ )
lal,[b| <M Oa

where %)2571\/[(0,, b) and % xs,m(a,b) denote weak deriwatives. There fm‘sts a con-
stant C' > 0 independent of 6 € (0,1) and M > 1 such that sizei, (x5.0) < C,
sizeout (X5,01) < C,

depth(%s.01) < C(1 +loga(M/6)),  size(%5,01) < C(1+ logy(M]5)).

Moreover, for every a € [—M, M|, there exists a finite set Ng C [—M, M| such
that b — X pr(a,b) is strongly differentiable at all b € (—M, M)\Na.

Proposition 4.3 implies the existence of networks approximating the multiplication

of n different numbers.

Proposition 4.4 ([77, Proposition 3.3]). For any 6§ € (0,1), n € N and M > 1
there exists a 01-NN [[5 3y : [=M, M]" — R such that

sup H H(SMxl,..., n)| <6. (30)

(zi);LIG —M M]”

There exists a constant C' independent of 6 € (0,1), n € N and M > 1 such
that

size(Hé’ ) < C(1+nlog(nM™/5)), depth(Ha,M) < C(1+log(n)log(nM™/5)).
(31)

Remark 4.5. In [77], Propositions 4.3 and 4.4 are shown for M = 1. The result
for M > 1 is obtained by a simple scaling argument. See [62, Proposition 2.6] for
more details.

4.3.2 ReLU DNN approximation of tensor product Legendre polynomials
Based on the ReLU DNN emulation of products in Proposition 4.3, we constructed

ReLU DNN approximations of multivariate Legendre polynomials in [62]. For the
statement recall m(A) in (22).



e Deep learning in high dimension =— 27

Proposition 4.6 ([62, Proposition 2.13|). For every finite A C Ng and every 6 €

(0,1), there exists a 01-NN fa 5 = (Ly §)ven with input dimension d and output
dimension |A| such that the outputs {iw(g},je,\ of fa,s satisfy for every v € A

1L = Ly sllwroe oy < 6 sup [ Ly s((y))jesuppr)| < (2m(A) +2)%.
yE€[-1,1]4

Furthermore, there exists C' > 0 such that for every d, A and ¢

depth(fa,5) <C(1 + dlogd)(1 + logy m(A)) (m(A) 4 logy(1/6)),
size(f).5) < C [d2m(A)2 + dm(A) log(1/8) + d2|A|(1 + logy m(A) + logz(l/d))} .

4.3.3 RePU DNN emulation of polynomials

The approximation of polynomials by neural networks can be significantly simplified
if instead of the ReLU activation o1 we consider as activation function the so-called
rectified power unit (“RePU” for short) o, (z) = max{0,z}" for r > 2. In contrast
to 01-NNs, as shown in [47], for every r € N, r > 2 there exist RePU networks of
depth 1 realizing the multiplication of two real numbers without error. This yields
the following result, slightly improving [47, Theorem 9], in that the constant C' is
independent of d. This is relevant, as in Section 4.5 ahead the number of active

parameters d(Ar) increases with decreasing accuracy 7.

Proposition 4.7 ([62, Proposition 2.14]). Fiz d € N and r € N, r > 2. Then
there exists a constant C > 0 depending on r but independent of d such that for any
finite downward closed A C Ng and any p € Py there is a or-network p : R? 5 R
which realizes p ezactly and such that size(p) < C|A| and depth(p) < C'logy(|A]).

Remark 4.8. Similar results hold for other, widely used activation functions 1.
As discussed in [62, Remark 2.15], if the product of two numbers can be approxi-
mated by ¥-NNs up to arbitrary accuracy and with NN size and depth independent
of the accuracy, then polynomials can be approximated with size and depth bounded
as size(p) < C|A| and depth(p) < Clogy(|A]), for C independent of the arbitrarily
small accuracy.

Activation functions for which this holds include (i) i € c? for which there
exists © € R where "' (x) # 0, (i) ¢ which are continuous and sigmoidal of order
k > 2 (see also [62, Remark 2.1]), and (iii) NNs with rational activations. We

refer to [62, Remark 2.15] for a more detailed discussion.
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4.4 ReLU DNN approximation of (b, e, R)-holomorphic
maps

We now present a result about the expressive power for (b, e, R)-holomorphic
functions, in the sense of Remark 3.1. Theorem 4.9 generalizes [77, Theorem 3.9],
as it shows that less regular functions® can be emulated with the same convergence
rate (see Remark 3.4). In particular, we obtain that up to logarithmic terms, ReLU
DNNs are capable of approximating (b, €, R)-holomorphic maps at rates equivalent
to those achieved by best n-term gpc approximations. Here, “rate” is understood
in terms of the NN size, i.e., in terms of the total number of nonzero weights in
the DNN.
In the following, for Ar C F as in Theorem 3.7, we define its support

SA. :=Upep, suppr C N. (32)

Theorem 4.9. Let v : U — R be (b,e,R)-holomorphic for some b € (P(N),
p€(0,1) ande > 0. For 7 € (0,1) let Ax C F be as in Theorem 3.7.

Then there exists C > 0 depending on b, € and u, such that for all T € (0,1)
there exists a 01-NN 17 with input variables (y;j)jes, such that

size(tr) <C(1+ |Ar| - log|Ar| - loglog|A+]),
depth(ir) <C(1+log |Ar| - loglog |Ar]).

Furthermore, U+ satisfies the uniform error bound

sup lu(y) — ar((y5)jesy. )| < ClALV/PHL (33)
Y

In case |A+| = 1, the statement holds with loglog |A+| replaced by 0.
The proof is given in Appendix A.3.

Remark 4.10. Let K € N and let v : U — R¥ be (b,e,RK)—holomorphic. Then
Theorem 4.9 can be applied to each component of v. This at most increases the
bound on the network size by a factor K, but it does not affect the depth and the
convergence rate. In fact, only the dimension of the output layer has to be increased,
the hidden layers of the DNN can be the same as for K = 1. This corresponds to

reusing the same polynomial basis for the approrimation of all components of v.

4 Theorem 4.9 only assumes quantified holomorphy in polyellipses in a suitable, finite
number of the parameters y;, whereas [77, Theorem 3.9] required holomorphy in polydiscs.
The presently obtained expression rates are identical to those in [77, Theorem 3.9], but
are shown to hold for maps with smaller domains of holomorphy.
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4.5 RePU DNN approximation of (b, <, R)-holomorphic
maps

We next provide an analogue of Theorem 4.9 (which used ¢1-NNs) for o,-NNs,
r > 2. The smaller multiplication networks of Proposition 4.7 allow to prove the

same approximation error for slightly smaller networks in this case.

Theorem 4.11. Let u : U — R be (b,e,R)-holomorphic for some b € (P(N),
p € (0,1) and e > 0. For 7 € (0,1) let A C F be as in Theorem 3.7. Let r € N,
r> 2.

Then there exists C > 0 depending on b, €, u and r, such that for all T € (0,1)
there exists a or-NN 7 with input variables (y;)jes,  such that

size(ar) < C|A+], depth(ir) < Clog|A~|
and Ur satisfies the uniform error bound

sup |u(y) — @r((y;)jesy, )| < ClA-|7H/PHL (34)
yeU

Proof. By Proposition 4.7, the |Sy _|-variate polynomial ZueAT cvluvg(Yyp)y' €
P, . from Theorem 3.7 and Corollary 3.8 can be emulated exactly by a o,-NN
satisfying

size(tr) < C|Ar], depth(ir) < Clog(|Ar]),

for C' independent of |Sy_|. The error bound (34) holds by Theorem 3.7 (iii). O

Remarks 4.8 and 4.10 also apply here.

5 DNN surrogates of X-valued functions

In this section, we address the DNN emulation of countably-parametric, holomorphic
maps taking values in function spaces as typically arise in PDE UQ. In Section
5.1 we show DNN expression rate bounds for parametric PDE solution families,
assuming the existence of suitable NN approximations of functions in the solution
space of the PDE.

In Section 5.2.1 we review results on the exact DNN emulation of Courant-type
Finite Element spaces on regular, simplicial triangulations. In Sections 5.2.2 and
5.2.3, we discuss Theorem 5.2 for the diffusion equation from Section 2.4.1 and the

eigenvalue problem from Section 2.4.2.
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5.1 ReLU DNN expression of (b, ¢, X)-holomorphic maps

So far, we considered the DNN expression of real-valued maps v : U — R. In
applications to PDEs, often also the expression of maps v : U — X is of interest.
Here, the real Banach space X is a function space over a domain D C R? for d € N,
and is interpreted as the solution space of the parametric forward model (1).

As it was shown for example in [26, 3, 85|, for gpc coefficients uy, a v-dependent
degree of resolution in & of uy is in general advantageous. We approach DNN
expression of the parametric solution map through DNN emulation of multilevel
gpc-FE approximations. To state these, a regularity space X° C X of functions
with additional regularity will be required. We first present the result in an abstract
setting, and subsequently detail it for an example in Sections 5.2.2 and 5.2.3.

For the DNN emulation of polynomials in the variables y € U, we use Lemma
A.1, based on the networks constructed in the proof of Theorem 4.9. For the gpc
coefficients, which we assume to be in X'*, we allow sequences of NN approximations
satisfying a mild bound on their L°°-norm, as made precise in Assumption 5.1.
This is needed to use the product networks from Proposition 4.3 to multiply NNs

approximating the polynomials in y with NN approximations of gpc-coefficients.

Assumption 5.1. Assume that there exist v > 0, 0 > 0 and C > 0 such that for
allv € X% and all m € N there exists a NN @y, which satisfies

depth(®;,) < C(1 + logm), size(®y,) < Cm
and

— 6
lv—@mllax < Cllvasm™, |@mlla < Cllvllx, |[@m < Cloll s m”

||Loo(D)
Let us consider an example. For a bounded polytope D C ]Rd, functions in the
Kondratiev space X® = K7, (D) with ¢ € (0,1) (for a definition of K, (D)
see Equation (39) ahead) can be approximated by continuous, piecewise affine
functions on regular triangulations of D with convergence rate v = é (e.g. |2, 6, 48]
for d = 2, [60] for d > 2). Continuous, piecewise affine functions on regular,
simplicial partitions can be exactly emulated by ReLLU networks, see Section 5.2.1.
These NNs approximate functions in X* = IC%JFC(D) with (optimal) rate v = 1/d.
By the continuous embedding X* — L (D) (|53], [19, Theorem 27]), the last
inequality in Assumption 5.1 is satisfied with § = 0. Here, the domain D may,
but need not, be the physical domain of interest. The theorem below also applies
to boundary integral equations, in which case D is the boundary of the physical
domain. Holomorphic dependence of boundary integral operators on the shape of

the domain (“shape-holomorphy”) is shown in [34].
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We obtain the following result, which generalizes [77, Theorem 4.8]. To state
the theorem, we recall the notation Sp_ = U,ep_suppr C N introduced in (32).

Theorem 5.2. Let d € N and let X = WH4(D), ¢ € [1,00], ® X* C X be Banach
spaces of functions v : D — R for some bounded domain D C Re. Assume that
Assumption 5.1 holds for some v > 0 and 0 > 0. Let u : U — X° C X be
a (b,e, X)-holomorphic map, in the sense of Remark 3.1, for some b € (P(N),
p € (0,1) and e > 0. Let (cv)ver C X and (Ar)rg(o,1) be as in Theorem 3.7.
Assume that (cv)yer C X° and that (|lev ||y« ([ Lugll Lo ) ver € P" for some
0<p<p®<l.

Then, there exists a constant C' > 0 depending on d, v, 0, b, (thus also on
p), €, p° and u such that for all 7 € (0,1) there exists a ReLU NN @, with input
variables (z1,...,7q) = x € D and (y;)jes,, fory € U and output dimension 1
such that for some N+ € N satisfying Nr > |A+]

size(tr) < C(14 Nr -log N - loglog N7), depth(ar) < C(1 + log N7 - loglog N7)

and such that @r satisfies the uniform error bound

N o . 1/p—1
sup [(9) = e (e o < O o= pmin {1, -4

(35)

The proof is given in Appendix A.4. Theorem 5.2 shows that for all 7* < r there
exists C' > 0 (additionally depending on r*) such that

*

sup [u(y) = ar( () jesa, )l < Clsize(ar)) ™" .

The limit 7 on the convergence rate in (35) is bounded from above by the gpc
best n-term rate 1/p — 1 for the truncation error of the gpc expansion and by
the convergence rate v of ReLU DNN approximations of functions in X from
Assumption 5.1.

5.2 ReLU DNN expression of Courant Finite Elements

We now recall that any continuous, piecewise affine function on a locally convex,
regular triangulation is representable by a ReLU network, e.g. [77, 33|. This is used
in Section 5.2.2 to show an expression result for (b, e, X')-holomorphic functions,

where X is a Sobolev space over a bounded domain.

5 Although g = 2 in all examples we consider, the theorem is stated slightly more generally
for q € [1,00]. In fact, the result also holds for weighted W!-9-spaces.
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5.2.1 Continuous, piecewise affine functions

In space dimension d = 1, any continuous, piecewise linear function on a partition
a=1ty <ty <--- <ty ="bof a finite interval [a,b] into N subintervals, can be
expressed without error by a o1-NN with depth 1 and size O(N), e.g. [77, Lemma
4.5].

A similar result holds for d > 2. Consider a bounded polytope G C R? with
Lipschitz boundary G being (the closure of) a finite union of plane d — 1-faces.
Let T be a regular, simplicial triangulation of G, i.e. the intersection of any two
distinct closed simplices T, T € T is either empty or an entire k-simplex for some
0 < k < d.% For the ReLU NN emulation of gpc-coefficients, we will use that
also in space dimension d > 2, continuous, piecewise linear functions on a regular,
simplicial mesh 7 can efficiently be emulated exactly by ReLU DNNs. For locally
convex partitions, this was shown in [33], as we next recall in Proposition 5.3.
The term locally convex refers to meshes T for which each patch, consisting of all
elements attached to a fixed node of T, is a convex set. See [33] for more details.

Set

SYG,T):={ve @) :vjreP, VT €T}

We denote by N(T) the set of nodes of the mesh 7 and by k7 := max,cn [{T €

T : p € T}, the maximum number of elements sharing a node.

Proposition 5.3 ([33, Theorem 3.1]). Let T be a regular, simplicial, locally con-
vez triangulation of a bounded polytope G. Then every v € S*(G,T) can be imple-
mented exactly by a o1-NN of depth 1+ logy[k7] and size of the order O(|T k).

Estimates on the network size for continuous, piecewise linear functions on general,
regular simplicial partitions 7 are stated in [33, Theorem 5.2] based on [81], but

are much larger than those in [33, Theorem 3.1].

5.2.2 Parametric diffusion problem

The standard example of a (b, €, X')-holomorphic parametric solution family is based
on Section 2.4.1, i.e. the solution to an affine-parametric diffusion problem, see e.g.
[13, 85]. In the setting of Section 2.4.1, we verify the assumptions of Theorem 5.2.

Let D C R? be a bounded polygonal Lipschitz domain (for details see [84,

Remark 4.2.1]). We consider a linear, elliptic diffusion equation with uncertain

6 In other words, T is a cellular complex.
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diffusion coefficient and with homogeneous Dirichlet boundary conditions. With
X =Y := H}(D;C), X := L>®(D;C) and for a fixed right-hand side f € }' = X’
the weak formulation reads: given a € X, find u(a) € X such that

/Vu(a)TaVvdw =(f,v) Yv e Y. (36)
D

The map G : a — u(a) € X is then locally well-defined and holomorphic around
every a € X for which essinfzcp R(a(x)) > 0, see, e.g., [84, Example 1.2.38 and
Equations (4.3.12) — (4.3.13)].

We consider affine-parametric diffusion coefficients a = a(y), where y =
(yj)jen is a sequence of real-valued parameters ranging in U = [-1, I]N. For a
nominal input ag € X and for a sequence of fluctuations (¢;);en C X, define

a(y) = a0+ >y (37)
JjEN
Such expansions arise, for example, from Fourier-, Karhunen-Loéve-, spline- or
wavelet series representations of a.
If essinfyep R(ap(x)) = v > 0 then

> lslix <~ (38)
JEN
ensures essinfycp R(a(y)(x)) > 0 for all y € U. This in turn implies that (36)
admits a unique solution for all diffusion coefficients a(y), y € U. Thus Lemma 3.5
yields y — u(y) = G(ag + ZjeN y;1;) to be (b, e, X)-holomorphic for some € > 0
and with bj = ||1/)]||X, jeN.

Next, we consider a smoothness space X® and recall (b°,£°, X*)-holomorphy
of u:U — X°:y— u(y). First we recall the definition of Kondratiev spaces: Let
k€ Npand ¢ € R, and rp : D — R~ be a smooth function which near vertices of
D equals the distance to the closest vertex. Then,

KE(D) = {u :D - C:rl§IC08u e L2(D), £ € N3, |¢] < k} : (39)

To obtain the approximation rate v = % in Proposition 5.3, we consider
X = IC%_H(D) for some ¢ € (0,1). By [5, Theorem 1.1] and [84, Example 1.2.38],
there exists ¢ € (0,1) such that when f € /Cg_l(D), a € Wh*(D) =: X* and
essinfzep N(a(x)) > 0, the map G : a — u(a) € X° is locally well-defined and
holomorphic around every such a. We remark that the space from which we chose
f satisfies L*(D) C K¢_ (D) c H'(D) = V.

If in addition to previously made assumptions, {1;};en satisfies

> lllxe < oo,

JEN
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then Lemma 3.5 yields y — u(y) = G(ao + ZjeN y;1;) to be (b°%,e°, X%)-
holomorphic for some €* > 0 and with b7 := ||¢;||x+, j € N. For a more detailed
discussion of this example and more general advection-diffusion-reaction equations,
see [84, Section 4.3].

Thus, for the map U — X° C X : y — u(y) to be (b,e, X)- and (b°,&°, X®)-
holomorphic for b € (P(N) and b° € (7 (N) for some 0 < p < p° < 1, we
additionally need to assume that (||1;||x)jen € #(N) and ([|¢;]x+)jen € " (N).
The (b°, &%, X*)-holomorphy and Theorem 3.7 give (|lcv ||y« [Lvgllpoo(17,))ver €
o

In summary, the assumptions on u in Theorem 5.2 hold when f € L? (D)
and ao, {¢;}jen C W1 (D) satisfy essinfgzep R(ag(x)) > 0, Equation (38),
(16511 x)jen € P(N) and (Ji]]xe)jen € & (N). Then, u: U = X* = K2,,(D)
for some ¢ € (0,1). As mentioned below Assumption 5.1, the NN approximations

in Section 5.2.1 satisfy Assumption 5.1 with 6 = 0 and approximation rate v = %

5.2.3 Parametric eigenvalue problem

We verify the assumptions of Theorem 5.2 for the parametric eigenvalue problem
(12). To this end, we choose X := C x H(D;C), X := L°°(D;C).

Then, the parametric first eigenpair {(A\1(y),w1(y)) : y € U} C X admits
a unique, holomorphic continuation {(A1(z),wi(2)) : z € V} C X to an open
neighborhood V' of U in CN. The proof follows from the uniformity of the spectral
gap of the parametric first and second eigenvalues, i.e. from A2 (y) — A1 (y) > o
for all y € U and some cp > 0 which is shown in [29, Proposition 2.4]. Also see
[1, Theorem 4] for a proof of analytic dependence on each y;. Upon defining the
parametric “right-hand side” f(y) := A1 (y)w1 (y) € H}(D;R) c L*(D) for y € U,
it follows that the map v := (A1, w1) € X satisfies u : U — X° = C x ICEJrl(D)
for some ¢ € (0,1). It is, in addition, (b,e, X)- and (b°,°, X¥)-holomorphic for
b € P(N) and b° € ﬁpS(N) for some 0 < p < p° < 1, g,&° > 0, provided
(1511x) e € P(N) and (J4b5x=)jen € & (N). As before, X* = W1(D). This
(b,e, X)- and (b°,£°, X*)-holomorphy was proved in [1, Theorem 4 and Corollary 2]
(where for simplicity the corollary was stated for the special case that D is convex).
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6 Application to Bayesian inference

6.1 ReLU DNN approximations for inverse UQ

In this section we discuss how the results in Section 4.4 apply to Bayesian inverse
problems from Sections 2.1 and 2.2.1.

In practice it is more convenient to work with measures on U, instead of their
pushforwards under the map y — a(y) := ag + ZjeN y;%¥; € X on the Banach
space X . For this reason, throughout this section we adopt the equivalent viewpoint
of interpreting y € U (instead of a(y)) as the unknown, uy as the prior, and
ailﬁ,u‘; as the posterior measure on U (which is the measure of the unknown y € U
conditioned on the data ¢). Here, we assume that a : y — a(y) is invertible and
that o~ ! is measurable, and denote by ailﬁ,u‘s the pushforward measure of ,u‘;

under ™! (which is a measure on U).”

Corollary 6.1. Let u be (b,e, X)-holomorphic, b € ¢, p € (0,1), and assume the

RKXK

observation noise covariance I' € is symmetric, positive definite. Let the

observation operator O : X — RE be deterministic, bounded and linear, let uy be

the uniform measure on U = [—1, 1]N, and let for a given data sample 6 € RE
da™ g 1 1 2
= exp(—3||0 — O(u , orally eU,
T ) = g (36— O@)IR).  for ally

2(6) = / exp(— 1116 — O(u(y))|2)dup (z).
U

Then also %715“5(?;) is (b, e, R)-holomorphic.
By Theorem 4.9 it can thus be uniformly approzimated by ReLU NNs, with a

convergence rate (in terms of the size of the network) arbitrarily close to 1/p — 1.

—1 5
Proof. The function % : U — R can be expressed as the composition of the

maps
y — u(y), U %(6 — (’)(u))TF_l(6 - 0(u)), a — exp(—a). (40)

The first map is (b, e, X) holomorphic, the second map is a holomorphic mapping
from X — C, and the third map is holomorphic from C — C. The composition is
(b, e, R)-holomorphic. The rest of the statement follows by Theorem 4.9. O

7 Alternative to looking for the unknown a(y) in the Banach space X, we could interpret
y € U to be the unknown. In this case the posterior measure is defined on U (instead
of X), and the assumption of invertibility of a, which is used to push forward u’ to a
measure on U, would not be necessary.
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In case the number of parameters N € N is finite, exponential convergence rates
of ReLU DNN approzimations follow with [62, Theorem 3.6], but with the rate of
convergence and other constants in the error bound depending on .

For the approximation of the posterior expectation Y — Z : § — E[Q o u|d],
holomorphy of the posterior density implies holomorphy of the posterior expectation,
but without control on the size of the domain of holomorphy. Thus [62, Theorem
3.6] gives exponential convergence with rate C’exp(—b./\/’l/(K+1))7 with possibly
very small b > 0, in terms of the NN size A/. We remark that holomorphy of
the data-to-Qol map is valid even for non-holomorphic input-to-response maps
in the operator equation [37]. In [37], this was exploited by considering a rational

approximation of the Bayesian estimate based on

1

0~ E[Qould] = /Q(u(a))m exp(—®(a; 8))dpg(a) =: Z'(8)/Z(5),
b'e

where Z, Z' are entire functions of 4, i.e. they admit a holomorphic extension to

CX. With that argument, convergence rates of the form C' exp(—bN /(K 'H)) with

arbitrarily large b > 0 were obtained.

6.2 Posterior concentration

We consider the DNN expression of posterior densities in Bayesian inverse problems
when the posterior density concentrates near a single point, the so-called mazimum
a posteriori point (MAP point), at which the posterior density attains its maximum.

We consider in particular the case in which the posterior density exists, is
unimodal, attaining its global maximum at the MAP point. In the mentioned
scaling regimes, in the vicinity of the MAP point, the Bayesian posterior density is
close to a Gaussian distribution with covariance matrix I', which arises in either
the small noise or in the large data limits, cf. e.g. [74, 44]. We therefore study the
behavior of the DNN expression rate bounds as I'" | 0. This limit applies to the
situation of decreasing observation noise 1 or of increasing observation size dim(Y").

The results in Section 6.1 hold for all symmetric, positive definite covariance
matrices I', but constants depend on I' and may tend to infinity as I" | 0. However,
the concentration can be exploited for the approximation of the posterior density.
As an example, we consider an inverse problem with N < co parameters, with a
holomorphic forward map [—1,1]Y — X : y — u(y), a linear observation functional
O : X — Y and a finite observation size K := dim(Y") < oco. In |73, Theorem 4.1],
in case of a non-degenerate Hessian ®y 4 it was shown that after a I'-dependent
affine transformation the posterior density is analytic with polyradii of analyticity

independent of I'. Hence, by [62, Theorem 3.6], NN approximations of the posterior
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density converge exponentially (albeit with constants depending exponentially on
N).

Moreover, in [74, Appendix] it was shown that under suitable conditions a
Gaussian distribution approximates the posterior density up to first order in T'.
This allows us to overcome the curse of dimensionality in terms of N for the
unnormalized posterior density, by exploiting the radial symmetry of the Gaussian
density function. By [63, Theorem 6.7], the Gaussian density function can be
approximated by ReLU NNs with the network size growing polylogarithmically
with the error, and the corresponding constants increasing at most quadratically
in N. Thus, there is no curse of dimensionality for the approximation of the
unnormalized posterior density when it concentrates near one point. Note that
this ignores the consistency error of the posterior density with respect to this
Gaussian approximation to the true posterior density. If the posterior concentrates
near multiple well-separated points, and if it is close to a Gaussian near each of
the points, then it can be approximated at the same rate by a sum of (localized)
Gaussians.

The next proposition gives an approximation result for unnormalized Gaussian

densities. We refer to Appendix A.5 for a proof.

Proposition 6.2. For N € N, let A: RY — R be a bijective linear map. For
x e RY set g(z) = exp(—% |Az||3).

Then, there exists C > 0 independent of A and N such that for every e € (0,1)
there exists a ReLU NN ®2 satisfying

Hg - q)gHLoo(RN) <Ce=Ce HgHL‘X’(RN) )
depth(®2) < C (log(N)(1 + log(N/e)) + 1 + log(1/¢) loglog(1/¢)),
size(®) < O ((1 +log(1/€))? + Nlog(1/e) + N2) .

Remark 6.3. The term CN? in the bound on the network size follows from bound-
ing the number of nonzero coefficients in the linear map A by N2, If A has at most

CN nonzero coefficients, the network size is of the order N log(N).

Densities of the type g(z) = exp(f%HA(m)H%) need to be normalized in order to
become probability densities on [—1, 1}N . We now discuss an example to show the
effect of the normalization constant on the approximation result, when the density
concentrates.

RN*N symmetric positive definite,

Fix an observation noise covariance I' €
and for n € N set I'y, :=T'/n and gn(x) = exp(f%HF;l/zmH%) for € [—1,1]V.
Given § € [—1,1]", note that as n — oo, the unnormalized density §n(z — o)

concentrates around & € [—1,1]". For any n > 1, using the change of variables
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y = y/nx, we bound the normalization constant from below:

/ Gn(@ — 0)da = / exp(—%H\/ﬁf‘_lﬂ(m—é)\@)dm

[7111]N [7171]N
_ 1,
= [ e (< A - Vi) ) dy
[—vn,v/nlN
_ . 1, ~
>n V2 ing / exp (—2 107 2(y — §)I3) dy
dE[—1,1]N
[—1,1]N
— N2y,

with Cp(T", N) > 0 denoting the infimum in the second to last line, and where we
used /16 € [—v/n, vn]N.

Denote Z,(9) := f[—l,l]N gn(x — 0)dx > Con~N/2. Then, by Proposition 6.2
the normalized density gn(z — §) := gn(x — 9)/Zn(d) < Co_lnN/zgn(m —0) can
be uniformly approximated on [—1, l]N to accuracy € > 0 with a ReLU network
®2" of size and depth bounded as follows, for C(I', N) > 0:

depth(®2") <C (1 + (log(l/s) +(1+ log(n))) log (log(l/s) +(1+ log(n)))) ,

size(®8") < C ((1 +log(1/e))% + log(1/e)(1 + logy(n)) + (1 + 1og2(n))2) .

6.3 Posterior consistency

In Section 6.1 we proved L°°(U)-bounds on the approximation of the posterior
density with NNs. Up to a constant, this immediately yields the same bounds
for the Hellinger and total variation distances of the corresponding (normalized)
Bayesian posterior measures as we show next.

Let A be the Lebesgue measure on [—1, 1], and denote again by uy := ®jeN%
the uniform probability measure on U = [—1, 1]N equipped with the product sigma
algebra. Let p < py and v < py be two measures on U with Radon-Nikodym
derivatives - =: 7, : U —Rand 4% =: 7, : U — R. Recall that the Hellinger

dpu dpu
distance (which we use here also for non-probability measures) is defined as

1/2

anen) = |3 [ (VR - vaw) dww | = Hivavalew:
U

The total variation distance is defined as

dry (k. v) :s%plu(B)*V(B)l S/\Tru(y)*ﬂu(y)ldw(y) = llmu =l (U pp)
U
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where the supremum is taken over all measurable B C U. Thus
drv (pv) <7 — Tl poe (U py)-

Since |vz — /Y| = % for all , y > 0,

||7l'u - 7rV||L°°(U )
dg(p,v) = = — < o .
H(v) = Slvie = Vvl ) < V2infyey (yAa(y) + vav(y))

the normalized measures and by 7, 7y

v
v(U)
the corresponding densities (which are probability densities w.r.t. pg7). Then for

alyeU

Denote by & = ﬁ and U =

[Tu(y) — 7 (y)| =

@) U) — m(y)v(U)| + |m (y)v(U) — m (y)p(U)]
B uU)v(U) '

Using |u(U) —v(U)| < [|mp — 7|l L1 (v, ) We obtain for all y € U

_ _ I7n = mull oo U,y (U) + I1mull Loo (U, ) 170 — Tl Loo (U, )
ITu(y) — 7w (y)| < SO () :

By symmetry this implies

_ _(vO) + llmoll Lo py) #U) + 7l o o,
b 17) < ol min (i T )
(41a)

and similarly as before

(V(U)Jer,,HLoc(U,MU) p@)+lmpllLee U uy) )
v (O p(0) ’ v(U)p(0)

V2intyer (vu () + Vo (y))

du(,7) < |7 — Tl Lo (U )
(41b)
Proposition 6.4. Consider the setting of Corollary 6.1. Then for every T € (0,1)

there exists a 01-NN fr : U — [0,00) (with input variables (y;j)jes, ) such that
with A+ as in Theorem 3.7

size(fr) <C(1+4 |Ar|-log|Ar]|-loglog|Ar|), (42)

depth(f7) <C(1 + log|A~| - loglog|A+])

and the measure vy on U with density fr = g;’[’] satisfies
di (™M’ 7r ) < ClA-| T, (43)

and the same bound holds w.r.t. dry .
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Proof. By Corollary 6.1 and Theorem 4.9 there exists a o1-NN f-r U - R
P . da 14,9

satisfying (42) such that with f(y) := adTgM = ﬁexp(f%w — O(u(y))||3),

where u is (b, £)-holomorphic, holds

I1f = Frllpoo o) < ClA-| 77T (44)

Let fr := 01(fr). Then fr : U — [0, 00) and the bound (44) remains true for fr
since f(y) >0 for ally € U.

Since any (b, €)-holomorphic function is continuous on U and because f(y) > 0
for all y € U, we have infycy f(y) > 0 and sup,¢eyy f(y) < co. Thus (41) implies
(43) for dpy and dp. O

7 Conclusions and further directions

In this paper we presented dimension independent expression rates for the approxi-
mation of infinite-parametric functions occurring in forward and inverse UQ by deep
neural networks. Our results are based on multilevel gpc expansions, and generalize
the statements of [77] in that they do not require analytic extensions of the target
function to complex polydiscs, but merely to complex polyellipses. Additionally,
while for X-valued functions [77] only treated the case of X = H([0,1]), here
we considered X = Wl’q(D), with D being a bounded polytope, for example. It
was shown that our theory also comprises analyticity of parametric maps in scales
of corner-weighted Sobolev spaces in D, allowing to retain optimal convergence
rates of FEM in the presence of corner singularities of the PDE solution. These
generalizations allow to treat much broader problem classes, comprising for example
a forward operator mapping inputs to the solution of the parametric (nonlinear)
Navier-Stokes equations [17]. Another instance includes domain uncertainty, which
typically does not yield forward operators with holomorphic parameter dependence
on polydiscs, see e.g. [38].

As one possible application of our results, we treated in more detail the
approximation of posterior densities in Bayesian inference. Having cheaply evaluable
surrogates of this density (in the form of a DNN) can be a powerful tool, as any
inference technique could require thousands of evaluations of the posterior density.
On top of that, in case of MCMC, arguably the most widely used inference algorithm,
these evaluations are inherently sequential and not parallel. Each such evaluation
requires a (time-consuming, approximate) computation of a PDE solution, which
can render MCMC infeasible in practice. Variational inference, on the other hand,
where sampling from the posterior is replaced by an optimization problem, does

not necessarily require sequential computation of (approximate) PDE solutions,
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however it still demands a high number of evaluations of the posterior, which may
be significantly sped up if this posterior is replaced by a cheap surrogate. We refer
for example to transport based methods such as [52].

As already indicated in the introduction of the present article, the idea of
using DNNs for expressing the input-to-response map (i.e., the “forward” map) for
PDE models has been proposed repeatedly in recent years. The motivation for
this is the nonlinearity of such maps, even for linear PDEs, and the often high
regularity (e.g. holomorphy) of such maps. Here, DNNs are a computational tool
alongside other reduction methods, such as reduced basis (RB for short) or Model
Order Reduction methods (MOR for short). Indeed, in [45, Remark 4.6] it has
been suggested that under the provision that reduced bases for a compact solution
manifold of a linear, elliptic parametric PDE admit an efficient DNN expression, so
does the input-to-solution map of this PDE. The abstract, Lipschitz dependence
result Theorem 2.8 (which is [21, Theorem 18]) will imply with the present results
and the DNN expression results of RB/MOR approximations for forward PDE
problems as developed in [45] analogous results also for the corresponding Bayesian
inverse problems considered in the present paper. MOR and RB approaches can be
developed along the lines of [11], where BIP subject RB/MOR approximation of
the forward, input-to-response maps were considered in conjunction with Bayesian
inverse problems of the type considered here. Should reduced bases admit good
DNN expression rates, the analysis of [11] would imply with the present results
corresponding improved DNN expression rates, along the lines of [45].

We remark that the DNN expression rate bounds for the posterior densities
are obtained from DNN reapproximation of gpc surrogates. DNN expression rate
bounds follow from the corresponding approximation rates of N-term truncated
gpc expansions. These, in turn, are based on gpc coefficient estimates which were
obtained as e.g. in [77]| by analytic continuation of parametric solution families
into the complex domain. Analytic continuation can be avoided if, instead, real-
variable induction arguments for bounding derivatives of parametric solutions are
employed. We refer to [32] for forward UQ in an elliptic control problem, and to [35,
Section 7] for a proof of derivative bounds for the Bayesian posterior with Gaussian
prior. As in [77], the present DNN expression rate analysis relies on “intermediate”
polynomial chaos approximations of the posterior density, assuming a prior given
by the uniform probability measure on U = [—1, 1]N. The emulation of the posterior
density by DNNs can leverage, however, the compositional structure of DNNs to
accommodate changes of (prior) probability, with essentially the same expression
rates, as long as the changes of measure can be emulated efficiently by DNNs. This
may include nonanalytic / nonholomorphic densities. We refer to [62, Section 4.3.5]

for an example.
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We also showed in Section 6.2 that ReLU DNN expression rates are either
independent of or depend only logarithmically on concentration in the posterior
density, provided the concentration happens only in a finite number of ‘informed’
variables, and the posterior density is of ‘M AP’ type, in particular (locally) unimodal.
While important, this is only a rather particular special case in applications, where
oftentimes posterior concentration occurs along smooth submanifolds. In such cases,
ReLU DNNs can also be expected to exhibit robust expression rates, according to

the expression rate bounds in [67, Section 5]. Details are to be developed elsewhere.

A Proofs

A.1 Proof of Theorem 3.7

Proof. Since (b;) en € £P(N) it holds b; — 0. Thus we can find £ > 1 so small and
J € N so large that with Co = 4/9

1—p 1
supb, < -,
> 7 2
, (45)
(R—I)ij-i-q;lmax{&?e}max ij,Zb]; <min{1,%}.
JeN j>J i>J

We fix such values for J and s throughout the proof.

Step 1. We give an upper bound for ||cy||x. First, recall that by Cauchy’s
integral formula, for any holomorphic function f : Bg — X we have for any
0<7<randanyk €Ny

k k! f(¢
o=y [ Ha

2mi
{¢eC: (=}
where the circle {¢ € C : |(| = 7} in the line integral is oriented positively.

Therefore

) (0 1
WP < 5 sp Gl (46)

Similarly, as shown in [22, Section 12.4] (also see the proof of [13, Theorem 2.2]),
for any r > 1 and any k € Ny and for a holomorphic function f: & — X

1
[rommy| <3
1

X

o S @)l (47)
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We will now use these estimates to obtain an upper bound for |cy|| -
Fix v = (vg,vr) € F and define

K ifj<J

Vi . .
max{?),%m} lf] > J,
where v;/|vp| := 0 if [vp| = 0. Then by (45)

> (o = )b < (k-1 Zb +3) b +22b| F|J<s

JEN i>J

pj =

so that p = (pj)jen is (b, €)-admissible in the sense of Definition 3.3. Thus, by

Definition 3.3, u allows a separately holomorphic extension to )(;Ll Ex X )(j>J Ep;

which contains the set ijl Ex X Xj>J B(C:’opj by Lemma 3.6, and it holds

sup lu(ye yr)llx < M, (48)

(yByr)EXi_y XXy BE .

for M as in Definition 3.3.
To find an upper bound for ||cy||x, we use that |0yFu(yg,0)||x is uniformly
bounded for all yg in the compact set Ug (due to the continuous dependence on

YE), so that an application of Fubini’s theorem (for Bochner integrals) yields

Cv = /LVE(yE)#gE’)dN (y )

UE

1
GF ,0) d d
/LV1 yl /LVJ yr (yE )ﬂﬂ
-1

—1

Hence by repeated application of (47)

1 1
w(14+2v1) _ O Eu(yg,0)d d
HCVHXSMH " gup VLVQ(y2)"'/LV,](yJ),W()yJ~~~y2
B |a] 21

2(k—1) nEE vp! 2 2
J J UF
i —|vg| Iyru(ye,0
< < 1+2 v aEE——
< H( + 2v5) 2(;{71)) K yEES;Ip Y i
j=15r

Next, we bound the last supremum in (49). Using that u allows a separately

holomorphic extension satisfying (48), repeated application of (46) gives

Oyru(ye,0)

VF!

yy 11 - ulye,0)

sup
Hj>J vj!

YE EXj:l En

H -
X ‘yEEXj:lgN

X
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< sup sup lutyz, ye)llx [] (Cops) ™"
YBEX]_ lgﬁyFEXJ>TBC0pJ §>J
<M [[(Copy)™. (50)
i>J

Due to n"™ > n! > e "n" for all n € N and using p; > ev; /(2b;|vE|),

_— Coe vj \ 7 2 \ V7! lvp| Vel
| I Cop:) YV < I I 0= _ 7 - = PrL pvr
. J( OP]) - '6 < 2 bj|l/p|) (Co&‘) U;F F
7> J&suppvr (51)

e
< () |'jFPb”F.
Coe vp!

Altogether, there exists a constant C' such that for any v € F

J | | ‘VF“ % [vF|
—|VE Vp
levllx <C 1:[ +205) P (CTE) bYr. (52)
Step 2. We show (i) and the first part of (iii). Fix 1, 72 € (1,2) such that
1 <72 < k. By (16) it holds || Ln|| o ((—1.1)) < (1+ 2n)*/? for all n € No. Thus
there exists a constant C' < oo such that for all vp € Fg

J J 3/2
(14 2p
H(1+2VJ) ||LVE||L°°(UE) < ,Y|1uE| sup ijl( A .7) < C’Y|1VE|'
j=1 HEFE "
Next set
PO R itj<J (53)
P \min{op 2Py iG>

By (45) it holds b’.’_1 > 2 for all j > J and since 2 < 2 by definition, (J;);e is
monotonically increasing. Furthermore (4 1y € #/(1=P)(N) since (bj)jen € £P(N).
Moreover, by definition §; < C1j 2/P for Cy := 5 and all j € N. Thus § = (05)jen

satisfies the properties stated in (iii).
Now, by (52) and (53)

> 8 Lus e llev]x

veF
T 2e \E L
<C - [ =— bFp LT
1;(%72> vp! (Co€> BOF

K _ll’El |VF|' 26b§) Vi
=C - .
Z (71%) Z vp! H Coe

vpEFFR j>J
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Due to k/(7172) > 1, the first series is finite according to [15, Lemma 7.1|, and the

second series is finite according to [15, Theorem 7.2| since

J
<1
> o
j>J

by (45). This shows (21).

To show (i), we point out that due to (éj_l)jeN € p/(t=p) (N) and sup,cyy 5]-_1 <
7{1 < 1, [15, Lemma 7.1] implies (6 %), cr € »/(1=P)(F). Hence applying
Holder’s inequality

>

L | oo U levll2)”

veF
= > (Lugllpo @) llevll 6”6 7)P
veF
p 1-p
< (Z |LVE||L00(UE)|CV||X6U> (Z(é_u)w> < oo,
veF vEF

Step 3. We show (ii). Fix yg € Ug. Then, since (k—1) Zj:l bj+3 Zj>J b; <
€ by (45), for every yg € Ug, the map yr — u(yg, yr) is separately holomorphic
as a function of yr € X, _; BSg, by Definition 3.3. Note that 3Cy = 12/9 > 1,
and by (45) we can find 6 € (1,3Cp) such that

Then, again by [15, Theorem 7.2] and (50), (51) it holds

VFr Vj
el || Oyrulye, 0) | _ lvp|! 2efb;
> 0 : LS > ool I;IJ s ) < 69

174
vrEFF F vreFF 7

This and the fact that w : U — X is continuous by Definition 3.3 implies by [84,
Proposition 2.1.5] and [84, Remark 2.1.7] that for all yp € Up

wWym,yr) = Y Y¥

vp!
VFEFF B

with uniform and absolute (i.e. the norms are summable) convergence for all

yr € Uf.
Next fix yp € Up. Then, since (k—1) ZjeN bj < e,themap yg — u(yg,yr) is

separately holomorphic on yp € X;;l & and with sup,, o\ £ lu(ye, yr)llx <
= I Ex
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M. As in (49) this allows us to show that there exists a constant C' (not depending
on yr) such that

J
[ toeiutur urnpue)| < ox [0 +2)
E X :

By similar arguments as in Step 1 we then get

S velliews | [ Losweutve, v des(ue)

vEE€FE 5 Py
Z Ck™~ ‘VE‘Hl—i—l/ 32 < .
VEEFE

It then follows, e.g. by a finite dimensional version of [84, Proposition 2.1.13], that

there holds the uniformly and absolutely convergent expansion

wye,yr) =, Lus(ye) /LuE(ﬂE)U(?JEwF)dHE(QE)

vpEFE Ug
. Oyrw(¥E,0) _
> Lup(yn) / Lug(G5) Y WT?/;F due(Ye).
vpEFE Ug vrEFF £

By (54) (recall that 0 > 1) it holds supg, cv, Db e 7, 10yr w(UE, 0)|lx/VF! < oo,
so that by Lebesgue dominated convergence we can interchange the integration

with the summation to get

wvpr) = 3 Y Loswe [ Lol 0D g ),

VF!
vpEFEVFEFF Ugr

with absolute and uniform convergence for all y € U. This shows (ii).

Step 4. We complete the proof of (iii). Fix 7 € (0,1), so that |[A+] > 0.
In Step 2 we verified (21) and showed that (6 ¥),cr € #/7P)(F). Denote
by (z;)jen a monotonically decreasing arrangement of (8~ ), cr, i.e. there is
a bijection 7 : N — F such that z; = =670 for all i € N, and additionally
=1 f/(l ?) and thus
zn < n VP8 “veFllgp/a-» (7 for all n € N. Since A7 corresponds to the

(z;)icn is monotonically decreasing. Then mp/(l P) <n iy

A+| multiindices v € F with the largest values of & : , we get sup A0V <
vEF\A-
H(‘S )uef ||£p/<lfp)(7-‘)‘AT| 1/p ', Thus

sup U(y)*ZCuLuE(yE)y;F < Z | Lve Lo (up)llevllx
yey vEA, ¥ VEF\A.
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1.9 —
<A TFUE e llpra-n D 8 I Luslpewg)llevlix,
veF

which concludes the proof, since the final sum is finite by (21) as we showed
already. O

A.2 Proof of Lemma 4.1

Proof. When L = 0 the properties of the lemma are satisfied by the parallelization
defined in Section 4.2.1. In the remainder of the proof, we assume L > 0.

We first describe the structure of (f1,..., fx)s, and then define its weights
explicitly. We denote for t = 1,...,k the depth of f; by L; and the number of
computation nodes of f; in layer £ = 1,..., L+ 1 by Nét) € Ny, with the (unusual)
convention that ngt) ;=0 for £ <O0.

We construct (fi,..., f)s out of k4 1 parallel networks, namely an identity
network with input dimension n and fi,..., fi, such that the L + 1’st layer of
(f1,---, fr)s is the output layer of f1,..., fi, but it does not contain the output of
the identity network. As a result, for t =1,...,k the £ =1,..., Ly + 1’th layer of
ft is part of the £ + L — L;’th layer of (f1,..., fx)s, and 2n + Zle Néj’)Lt,_L is
the number of computation nodes of (f1,..., fi)s in layer £=1,..., L.

For the construction of (f1,..., fr)s, it remains to discuss how fi,..., fj
receive their input. The identity network and the NNs f;, ¢ = 1,..., k whose depth
equals L directly take their input from the input of (f1,..., fx),. For the other
ft, t =1,...,k, we replace the one input weight in the input layer of f; by two
weights, as for each component z; € R, i = 1,...,n of the input it holds that
x; = o1(x;) — o1(—x;), where o1(x;) and o1(—z;) are computed by the hidden
layers of the identity network and can thus be used as input for f; in layer 14+ L — L

of (fi,---s fi)s
We will denote the weights of (f1,..., fx)s by wz{j and those of fr,t=1,... k

by wl(?’e. Moreover, we write Mét) = 22;11 ngj-)Ls—L forallt=1,...,kand £ =

1,...,L 41 for the number of computational nodes in layer £ of (f1,..., f), used
to emulate fi,..., fy—1. With this notation, the network weights of (f1,..., fr)q
are
wl, =1 i=1 n
'“’i,n+i_71 i=1 n
wi ;=1 i=1,...,2n,
e=2,..., L,
wl — ()1 i=1,..., n, j=1,..., N2
i,2n+M§t)+j i T
t=1,..., k satisfying Ly = L,
. ugfj).’l i=1,..., n j=1,..., NY)

" —
i,2n+M§”)+j .
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L=14L— Ly, t=1,...,k satisfying 0 < Ly < L,
t),1 ) ) t
wt ) =—w7(;} i=1,...,n, J=1,..4,N£),
nti,2nt MY 4 ,
L=1+L— Ly, t=1,..., k satisfying 0 < Ly < L,
(t),6+Ly—L (t (t)
w —w(t) i=1,..., N j=1,..., N
2t M i 2np M4y T I 02140y —L L, —L
£=2+L—L¢, ..., L t=1,..., k,
L41 o (),L+1 _ ) _ ()
w OO | i=Ll. Ny J=b e Nplin
2nt M i M | 4
t=1,..., k satisfying 0 < Ly
L+1 _ ()1 _ _ (t)
Wity =l i=1,..., n, j=1,..., ~¢
My 4 qti
t=1,...,k satisfying Ly = 0,
whtl ® szgf').’l i=1,...,n, j:l,..A,Nit),
neti, My g+ 7
t=1,..., k satisfying Ly = 0,
wfj -0 otherwise,
,
. (). 4Ly—L ()
b RS j=1 N
2n+M§t>+g‘ J ' (+Ly—L
L=14L— Ly, ..., L, t=1,..., k,
pL+1 — (0, Let1 j=1 N
M® T SNL 4
L4177
t=1,..., k
¢ _ )
b. =0 otherwise.

J

The first three equations describe the first L layers of an identity network. The
output layer of the identity network is not included, because it is not desired that
the input of (f1,..., fx)s is part of the output of (f1,..., fx)s. The fourth, fifth
and sixth equation describe how the input of the network is connected to the parts
emulating fi, for t = 1,... k that satisfy L; > 0. The seventh equation describes
the remaining hidden layer weights of fi, t = 1,..., k. The weights of the output
layer, indexed by L + 1, are described in the eighth, ninth and tenth equation.
The only remaining nonzero weights are the biases of f1, ..., fi, described in the
twelfth and thirteenth equation.

The expressions for the input dimension, the output dimension and the depth
follow directly from the CE)I)lsétruction. The bound on the network size is obtained
b

by noting that all biases appear exactly once, the first three equations involve

2nL nonzero weights, that in the expression for the network weights wgt])’l

(),
i,J
once for £ > 1. The bound on the first layer size follows from the first, second,
fourth (for ¢ such that Ly = L) and twelfth equation (for L; = L). Likewise, the

bound on the output layer size follows from the eighth, ninth, tenth and thirteenth

appears

)

exactly once if Ly = L and exactly twice if Ly < L, and that w ¢ appears exactly

equation. O
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A.3 Proof of Theorem 4.9

Proof. If |A+| = 1, then Proposition 3.8 item (iv) implies A = {0}. Hence,
ZueAT cvLy (yE)yIl;F is constant in y € U. Therefore, it is emulated exactly by a
01-NN of depth 0 and size 1.

We use that |Ar-| > 2. The proof is given in several steps. In the first step, we
define the approximation @, of u. Then, we estimate its error. In the third step we
construct a network which emulates %, the depth and size of which are estimated
in the fourth and last step.

Step 1. For all v € F let (j; ,,F)‘VF|1 C N be such that Hl’flh Yiiwp = Y5
for all y € U. In addition, we define A, g := {vgp € Fg : v € A;r}. As shown in
Proposition 3.8 item (iii), |[A, g| < C(1 + log |A-])7.

For all v € A+, we define

for((yj)jesa,) = Xs,.R <LVE,5(yE)7H ({ygz ,F}lth)) . Yyeu,

where >~<5V R is as in Proposition 4.3, HE po188 in Proposition 4.4 and EUE 5 asin
; v,F ’

Eu,F

Proposition 4.6. We choose the accuracy of all tensor product Legendre polynomials
to be § := %min {17 H(|cu|),,€]:||;11(f)|AT\_1/”+1}. By choosing ¢ independent of
vgp € A; g, we can use i,,E s for multiple different v (there may be multiple

v € A; with the same vg). For the accuracy of HE it ({yjl o }I Fll)7 we choose
Ev,F = = (2m(Ar)+2)"7 3 min {1, lew|™ |AT\71/”}. For X, g, we choose accuracy
oy 1= g min {1, |cy|_ |AT|_1/p}, and note that the absolute values of its inputs

are bounded by R := (2m(A, g) + 2)7.
Finally, we define

Ur 1= E cvfu,r.
veA,

Step 2. The error can be estimated as follows:

sup ‘LVE yE) - fu, T((yj)jESuppV)|
yeU
< sup |Lup (Yp)YP — Loy s(ye)yy" |
yeU
F_ 7 - ( ) |uF\1)
+;1€1p Lug.s(yp)yy uE,6(yE)HEVYF,1 Wi tiza (55)
tswp Ly swe)[ [ (50, W) = o (@) scsumpr)
ye v.F

<6+ (@2m(Ar) +2) ey p + 0y

1 —1/p+1 2 —1 —1
< $l(ewDverlipim el PF 4 3 e 7H AR VP



50 = Opschoor, Schwab, Zech @

To estimate the first two terms of the three, we used Propositions 4.4 and 4.6. For

the third term, we used Proposition 4.3. As a result, we find

sup | Y v Loy (Yp)yy" — ir((y;)jes,,)

yeU veA,
< Y el sup | Lo (We)YY = fu.r (U))jesuppv)|

veEA, yeu

1 -1 —1/p+1 | 2 -1 -1

< S el Gllenlverlpm A7 + F el 7 AL 7HP)

veA,
§|A-r|_1/p+1.

Together with Theorem 3.7 item (iii), which states that

sup u(y) - Z CULVE(yE)y;‘F §C2|AT|_1/p+1>
yey veEA,

we get Equation (33).
Step 3. We now construct a network which emulates . It consists of four

concatenated subnetworks:

I GV ) )

Ur := Uy OUy OUr

)

oy
The first subnetwork 1](74) has input dimension |Sy _ |, output dimension |A; g|+
|A7| and in parallel emulates approximations of {Lv }upen, » and {y7" }oen,

5 = lvr 1
= <IdRAT,E|ofAT,E,57 {Ide IL. Fl((yﬁw)i 1 )} ) (56)
v, B = vVEA,

where fp_ s is as constructed in Proposition 4.6 and where the depth of the

o1-identity networks is such that

depth (ﬁ-(r4)) <1+ max{depth(fa_ ,.5)}U {depth (H 1) } .
Y Ev,F» veA,

©

The second subnetwork i, ’ has zero depth, i.e. it consists of an affine transformation

only. It has input dimension |A, |+ |Ar| and output dimension 2|A-|. For a fixed

AN A

but arbitrary enumeration (1/(7)) of A+, the output of ﬂ(Tg) o {L5-4) is
i=1

~(3 ~(4 T

(u$ Joal )((yj)jGSAT )) ok 1 =L,,gc>,5(yE)7

) vy e,
3 (1) ~ el
(@7 0 @ (w))sesn ) =[] o (yjj,um) : Vk < [Ar].
v JF? U F =1
(57)
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The third subnetwork 129) is defined to be the parallelization of networks from
Proposition 4.3 concatenated with o1-identity networks:

[Ar]
~(2
u_(,_) <{Id]R1 O><5 <])’R}'_1)d7

where the identity networks are such that

depth ( (2 )) <1+ 1max C (1+1logy (R/v)) .

veA,
Its output is given by
~(2)  ~(3) _ ~(4
(@ 0@t 0@l ((y))jesn, )y = fow ~(W)jess, ), Yy €Uk < [As].
(58)
Finally, the last subnetwork ﬂ(Tl) has depth 0, input dimension |A;| and output

dimension 1, and emulates a linear combination of its inputs, with weight c,,¢;) in

coordinate j, and without bias. As a result,

(@ 0 0al® 0 al) ((wy)jesn,) =ar((Wi)jess, )y Wy EU.

Step 4. We now give estimates on the depth of the subnetworks and the
network itself. We use that m(A, g) < m(Ar) < C(1+log|Ar]), where the second
inequality is Proposition 3.8 item (ii). We get, using Propositions 4.6, 4.4 and 4.3:

depth ( (4 )) <1+ max{depth(fa, ;.s)}U {depth (HE 1) }
v, Fs veA,

< max {C(1 +logm(A; g)) (m(Ar g) +logs(1/5)) }
U {C(l + log(\uph) 105(\VF|1/5:/,F)) }VEAT
< max {C’(l + log m(AT’E)) (m(AT,E) +log 3
+ max {0, 10g |(jew we o ) + 152 log |Ar|} ), €1+ log(m(Ar)
log (m(Ar)(2m(Ar) +2) 3max{1,||<|cu\>uef||p<f>|AT\1“’}))}
<C(1 +log(|A+]) loglog(|A+])),
depth (af’)) -0,
depth (a(f)) <1+ max C (1 +log, ((Qm(AT) +2)73 max {1, \|(|c,,|)uef||@1(;)|AT\1/1’}))

veA,

<C(1+log|Ar]),
depth( (1)) 0,

depth (@y) = depth ( (”) 41+ depth ( (2 )) 41+ depth ( (3)) 41+ depth (a(ﬁ‘))
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< C(1 +log(|A+|) loglog(|A+])).

For the bounds on the network size, we use that the depth of the identity
~( ) ~(4)

networks in 4, ’ is less than depth ( . There is one identity network with input
dimension |A; g| and there are |A7| identity networks with input dimension 1. The

sum of the network sizes is bounded by
2(|A7,5] + A+ depth (@) < C(1+ |Ar| log(|A+|) log log(|A+ )

The depth of identity networks in ﬁg) is less than depth (ﬂgrz)), their input

dimension is 1 and their number is |A-|. Hence, the sum of their sizes is bounded
by

21A+ | depth (@) < C(1+ A+ log(A-])).

We find using (27):

size (ﬂ5-4)) < 2size (fAT,E,é) + 2 Z size (Hau,p,l)

VEEA,
+2C(1 4 |Ar|log(|A~]) loglog(|A~]))

< C(m(Ar,g)” + m(Ar,p) logs(1/5) + [Ar,pl (1 + logy m(Ar ) + loga(1/6)))

+ > C(1+ lvrhlog(lvrli /ey r)) + C (1 + |Ar| log(|A-|) log log(|A-))

veA,

< (0(1 +1og [Ar])? + C(1 + log |A-])
togy (3max {1, [(euverlle m A7) +C(1 +10g A7)

. (1 + loglog |A+| + log, (3 maX{lv ||(|Cu\)uef||e1(f)|AT|1/p71})> )

+ Z C(1+m(Ar)logm(Ar))
veEA,

+ Z (1 + m(Ar)log (3maX{1 lev] ‘ATll/p}))

veA,
+ O (1 + |Ar[log(|A7]) log log(|A+]))

(*)
< C(1+1log [A-])"T! + O (1 +|Ar|log(|A+]) loglog(|A- )
<O (1 +|Ar|log(|Ar]) loglog(|Ar])).
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At (*) we used the following estimate, which uses that ||(lcv|)yex|lepF) < 00
by Theorem 3.7 item (i) for X =R, and that log(max{1,z}) < z for all z > 0:

Z C (1 + m(Ar)log (3max{1, lew| |A7-\1/p}))

veA,
<C(+loglAr)) Y log (3max{1,|cy| \AT|1/P})
veA,

<C(1+[Arllog|Ar]) + C(1+1og|[Ar]) > Llog (max {1,]cu|” [Ar|})
veEA,

<O+ |Ar[log|Ar]) + CA +log [Ar]) S e l” |As|
veA,

SC(1+|Ar[log|Ar]) + C(1 +log |Ar]) - [[(lew NveF 7 5 - 1A

<O+ |AT‘ log |Ar]).

(59)

(3)

The number of nonzero weights of 4; "’ is at most 2|Ar|, because each output

depends on at most one input. We can hence estimate
size (a(ﬁ”) <2|A+|.
Again using Equations (27) and (59), we find

size (a(f)) < 2U§T C (1 + log, ((Qm(AT,E) +2)73max {17 lew | |AT|1/p}))

+20(1 + |Ar| log |Ar])
<O + [Ar|log|As),
size (119)) <A+,
size (r) < 4size (a())) + 4size (a@) + 4size (a@) + 4size (a(f))
< C(1 + |Ar|log(|A+]) log log(|Ar ).

O

Most of the network constructed in the proof of Theorem 4.9 will also be used in
the proof of Theorem 5.2 in Section A.4 ahead, namely the part of the network
which in parallel emulates the gpc basis polynomials {U 3 y — Ly, (y E)y;F Yoen. -
Therefore, we state the properties of that part of the network as a lemma. We
state the lemma for the general case of a (b, e, X')-holomorphic function u : U — X.
The construction of the neural network is the same as for a (b, e, R)-holomorphic
function u : U — R, except that we now use the sequence (||cv||x)per instead of

(lev|)werF to define the accuracy.
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Lemma A.1. Let u : U — X be (b, e, X)-holomorphic for some b € £P(N), p €
(0,1) and e > 0. Let J € N, (|ev||x)pver € RT and 0 # Ay C F for 7 € (0,1) be
as in Theorem 3.7.

Then, the 01-NN fA = u.(,-Z)Oﬂs-g)ouS- ) has input dimension |Sy_| and output

dimension |A+|. The components of its output are

(Fa ((Wi)jesa )y = Fuwr (U jesa, ) forally € Uk < |A7|,  (60)

for an arbitrary but fired enumeration (V(k))‘kA:H' of Ar. They satisfy the uniform
error bound

sup ‘LVE yE)y - fu, T((yj)JESuppu)|
LIS

7P L 2 e 12 1A T, for all v € Ar.

(61)

%H(”CVHX)UE}'HN(]: [Ar

The depth and size are bounded as follows:

size(fa,) < C(1+[A7| - log|Ar| - loglog [Ar]),
depth(fa.) < C(1 +log|A+| - loglog |A+]).

It follows from Proposition 4.3 and the definitions of R and d, in Step 1 of the
proof of Theorem 4.9 that

sup | fo,r((i)jesa, )| < sup |Lug (ye)y”"| + sup |Lvs (Y)Y — fur((y))jes,.)]
yeU yeU

<R+6y gR+1:(2m(AT,E)+2) 41

A.4 Proof of Theorem 5.2

Proof. Throughout the proof, we fix 7 € (0, 1), and thereby A-. The proof consists
of 5 steps. In Step 1, we construct the networks which approximate the gpc-
coefficients {cv },en, and the polynomials in y € U. In Step 2, we construct @r.
In Step 3, the error is estimated. In Step 4, a NN emulating @, is discussed in
detail. In Step 5, the NN depth and size are estimated.

Step 1. We first construct a subnetwork which approximates the gpc coeffi-
cients {cu}yen, . Let 871 € ?/(1=P)(N)) be as in Theorem 3.7 based on (b, &, X)-
holomorphy of u. To optimize the choice of network size used for the emulation of
each gpc coefficient, we use [77, Lemma 4.7], which in turn is based on [3, Section 3]
and [30, Section 2]. We apply the result for ap = ||cu|| x= HLUEHLOO(UE) € (0, 00),
bu = llev ]l x | Lvsll oo (1) € (0,00) for all v € F, B:=38"" € (0,), pa == p*,
pp :=p, n:= |Ar] and Ay, := A;. Instead of the assumption that (bpB7"),cr €
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2(F) and B € 12/7P) we have (byB~)yer € (1(F) and B € £#/1=P) (Theo-
rem 3.7 item (iii)). Under the current assumption we obtain the same result as in
[77, Lemma 4.7, as in both cases [77, Lemma 2.8] implies that (in the notation of
[771)

> b <onT Mt (62)
F\A,

The rest of the proof of [77, Lemma 4.7] only uses (62), hence the conclusion of
[77, Lemma 4.7] also holds when (by8%),c 7 € ¢*(F) and 8 € (P/(1=P),

Thus, it follows from [77, Lemma 4.7] that there exists a constant C' > 0 and
a sequence (Mnw)pep, € N/A=l (in the notation of [77]), which we denote by
(mrw)ven, , such that with N7 := ZueAT mr > |A7| it holds

—1/p+1 -
Al TP S ewllae 1vellpo gy e+ Y lewlla v o @)
veEA, veF\A,

< CONFT (63)

for r as in Equation (35).

For all v € Ar, let ¢y r := ®7%_ be as provided by Assumption 5.1. Then, we
consider the parallelization with shared identity operator ga_ := ({¢v,r}ren, )q
introduced in Lemma 4.1. With Assumption 5.1, it follows that

depth(ga,) = max depth(éy, ) < max C(1 +log(mrw)) < C(1+logN7),

veEA, veA,

size(ga._) <2ddepth(ga,) +2 Z size(Cy,r)
veA,

<C(1+1ogNy)+2 > Cmrw < CA7.
veA

For the approximation of the polynomials in y € U, we use the DNN JZA, from
Lemma A.1. We denote the components of its output by fu,r((y;);jes,, ), for all
veEArandyeU.

Step 2. In this step we define #%r, combining the components of g5 and fAT-

First, we note that by Assumption 5.1, it holds that for all v € A+

~ 0 0 0
HC%THLOO(D) < Cllevllys mrw < Cll(llevll xs)verlles (F)yMrv = Cmzy.
With Proposition 3.8, item (ii), this implies with R := (2m(A, g) + 2)7 that

Ry, = max{{R + 1} U {[|év,r | poo (0 bven, } < max{R+1,Cm%,}
< Cmax{(1 +log|Ar )7, m%,},
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for some constant C' which is independent of A-.
We define the NN @, approximating u: for A\ := N=""', @ € D and for y € U,

we set

Ur(x, (Yj)jes,, ) : Z gy (o7 (@), for((5)jesn.)) -

veA,

Step 3. We estimate the NN expression error.

sup |lu(y) = ar (s (Yi)jesa )| 4

<sw (> (O vs(yp)yr” — Y () Lup (Yp)yr"

yeu veF veA, X

+sup | S (v () Lue (Wp)ys — (Vo ((y))ses))

yelU
veA, X

+sup (| > (ew()fvr((W))jesn,) = evr(fvr () ess, )

yeu
veA, X

+sup (| Y (G (N fur(Wi)iess,) = %ary (v, (), fur(j)jess.)))

eUu
Yy veA, X
< 2 el sup Lo (ue)y” |

vEF\A, ve

+ > llewlly sup |Lvw (WE)YE — for(Ui)jesn,)]
veA,

+ > llew —Gurlly <sup |Luw (yp)y¥ | + sup |Lus (yp)y¥ —fw«yj)jesAT)\)
veA.,

+ > ( |Gu,r () for((U)jesa,) = XaR, (Eu,T('),fu,T((yj)jesAT))||(,§q(D)
veEA,

1/q
+ || (o (W) jesa,) — [DXam )1 (G, (), for ((U5)je54,))) Véw,r( ||Lq(D)d)

()
<C Y levlla ILvell o vy

veF\A,
—1 —1/p+1 -1 -1
1 S Dy llelpverliimn e 7 + 2 57 feully lewlz! 1A- 77
veEA, veA,

+ > Cllevllxsmzd [ Lvg |l Lo ()
veA,
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-1 -1 1 -1 -1
+3 Y Cllevlx lllevlo)verlnim A7 +3 3" Clevlly levllz! 1471717
veEA, veEA,

. 1/q
3 (NI oy + AT IV G )
veA,

<C N+ 1A TP 4 N (A TP AT < ONF

In case ¢ = oo, the £?-sums have to be replaced by a maximum.

At (*), the first term can be estimated with Equation (63). To obtain the second
and third term, we used Lemma A.1l. To obtain the fourth term, we used |[c, —
év,rllx < Cllev||x=mr.), from Assumption 5.1 and we used Equation (63) to esti-
mate Y ,cp_llev — Cu,rllx SUPyecr !L,,E (yE)y7¥ |- To obtain the fifth and sixth
term, we used that by Assumption 5.1 |[cy — Cu ||y < |lew|lp+Cv,rllx < Cllevl x
to estimate 3o, llev — vl v sWbyer [Lus (YE)YE — fo,r((yj)jes,, )| using
Lemma A.1. To obtain the seventh term, Proposition 4.3 was used, and to estimate
it, we again used Assumption 5.1 and [A-| < Ny to obtain |A-| N7 < N7

1/q
> (NI o) + A IV Ny ) < D0 (Mtlzawy +AClew L2 )
veA, veA,
< CIA A+ A (lew L )ver s )
<CON; .

Step 4. We now construct a network emulating @-. It is the concatenation
of four subnetworks, @ := u(5) ,(rG) o fL(T7) ~(8) . The first NN u,(r ) has input
dimension d + |Sp |, output dimension 2|Ar| and is defined as

~(8 ~ s

US_ ) = (gAT o Ide, A, © IdesArl)d’
where the depth of the identity networks is such that depth(a (8)) =1+
max{depth(g,_),depth(fs )}. The second NN u,(r ) emulates an affine map.
It has depth 0, and its input dimension and output dimension both equal 2|A~|.
For a fixed but arbitrary enumeration (vU ))lA | the NN @ ~(7) is defined such that

7 ~
(U'(r ) Oug— )( 7(yj)j€SAT ))2]671 :Cy(k),q—(w)7 vm c ])7 Vy c U7

(ug) o il® (a, (yj)jGSAT)) VE=1,...,|Ar]

o = Jvw ~(Widjesn, ),

The third NN ﬂ,(re') is a parallelization of NNs from Proposition 4.3:

2(6) _ [Az]
Ur ({IdR OX)\ R’ ! b }k=1 .
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where the depth of the identity networks is such that all components of the
parallelization have equal depth, so that the parallelization has depth max, cp_ 1+
depth(>~<>\7RL). For all k =1,...,|A7|, the k’th component of the output of ﬂs-ﬁ) is

(’115_6) o 17/5_7) o ﬂ_(rs) (;1;7 (yj)jESAT))k = >~<>‘7R;(k) (5u(k)77(w),fl,(k)ﬂ.((yj)jESAT)) 5
Ve € D, Vy e U.
®

Finally, @y ) has depth 0, input dimension |A+|, output dimension 1 and computes
the sum of its inputs. As a result, it holds that

ir (@, (y5)jesn.) = Y *amy (Evr (@), for((Uj)jesy,)), VYo eD, VyeU.
veA,
Step 5. Finally, we bound the NN depth and size of #r.
We first estimate the network depth. It follows from Assumption 5.1 and
Lemma A.1 that
depth(a (8)) =1+ max{depth(ga_ ), depth(fAT )}
<14 max{C(1 +logN+),C(1 +log|A~|-loglog |A+])}
<C(1+ log N+ - loglog N7).
In addition, it holds that
depth(al™) =0,
depth(ﬁ(T )) = max 1+ depth(x . Ry,) < max C(1 4+ log(Ry,/N\))
veN,

veEN,

<C max (14 Jloglog(|A+]) + 0log(mrw) + (r + 1) log(N7))

veEN,
<C(1+logN7),
depth(a (5)) 0,
(5) ~(6) ~(7) (8)
depth(ir) < depth(ar ') + 1+ depth(asr ') + 1 + depth(dr ') + 1 + depth(ar )
<C(1+ log N+ - loglog N7).

We now estimate the network size. By Proposition 3.8 item (i), it follows that

~(8)

|Sa.| < |Ar|. As aresult, the sizes of the identity networks in @y’ can be estimated

as follows:
size(Idga) <2d(1 + depth(ﬁ-(rg))) < C(1 +log N7 - loglog N7),
size(Idgs,, 1) <2[Sa, (1 + depth(@$™)) < C(1 4+ Ny - log N> - loglog A7).
We find:

size(ty il )) < 2size(gp. ) + 2size(Idga) + 2size(fa. ) + 2size(Idps, 1)
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<2CN7 +2C(1 + log N7 -loglog N7) + 2C (1 + |A+| - log |A+| - loglog |A~|)
+2C(1 + N> - log N> - loglog N7)
<2C(1 4+ N7 -log N+ - loglog N7 ).

)

Because each component of the output of @, ' only depends on one component of
its input, it holds that saze(us- ) < 2|A+|. Furthermore, it holds that

sme(u Z 2size(Idg) + 2size(X Ry)
veA,
< N 4(1 + depth(a®)) + C(1 +log(Ri, /A)) < C(1+ N - log A7),
veA,

sme( ) <|A+,
size(tr) < 431ze(u,(r )) + 451ze(u.(r )) + 4size(tr al’ )) + 4size(ﬂ,(rs))
<C(1+ N7 -log N7 - loglog N7).

This finishes the proof. O

A.5 Proof of Proposition 6.2

To prove Proposition 6.2, we will use [63, Theorem 6.7]. In the following lemma, we
verify the assumptions of that result concerning the approximation of the Gaussian
density function, using [63, Theorem 5.15|, and cutting off the NN approximation

sufficiently far away from zero.

Lemma A.2. Letg:R—>R:z— exp(—%mQ).
For all B € (0,1] there exists a 01-NN @% with input dimension 1 and output

dimension 1 and an absolute constant C' > 0 such that

Hg - (I)%HLOC(R) < B=Blgllper)>
depth(®%) < C(1 + log(1/B) loglog(1/8)), size(®4) < C(1 + log(1/8)).

Proof. For arbitrary 8 € (0,1], we first construct a ReLU NN approximation
g - _
<I>,6/37[_ R] of g satisfying Hg @5/3[ R ‘Lm([_R’R]) < B/3, for R := 1+

\/2log(3/P). Here, R > 1is chosen such that g(R—1) = 8/3 = [|gl| oo (oo, — pt1) =
gl Loe (R—1,00)- Let A : R = R: 2 — exp(—%m), so that h(z?) = g(z), € R. For

the approximation of ~ on [0, R2]7 ReLU NNs obtain exponential convergence, with

network size independent of R. Applying [63, Theorem 5.15] (see also the remark
after that result) to h((R? 4 2)(x+1)/2), 2 € [—1, 1] with accuracy 3/(6 exp(1/2))
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and with the weights in the output layer multiplied by exp(1/2), we obtain that for
all R > 1, for hp(z) := exp(1/2) (R +2)(z4+1)/2) = h((R? +2)(z +1)/2 — 1),

€ [—1,1], there exists a NN (I)/B/ﬁ 1,1]
independent of R

satisfying, for an absolute constant C' > 0

[ = o ta ey <86

depth(®lf | 1) <C(1+log(1/8) loglog(1/8)),
size(égl/?'ﬁ,[_l,l]) < C(1+log(1/8))>.

Here, we applied [63, Theorem 5.15] with 7 := 2(2 + R*)™! and 1/ < C(1 +
log(1/8)), for n as defined in that reference.

Let T be the affine transformation R — R : =z — 2(z + 1)/(2 +R*) -1
satisfying T([—1, R> +1]) = [-1,1] and h = hp o T. Then, the NN @B/G 1y°T
approximates h on [—1, R? + 1] with network size bounded as stated above. The

map g can be approximated as

q)%/gy[,R’R] (z) = ®Z767[7171] oTo >~<B/G,R(m’m)a r € [-R, R].

To bound the error, we use that for all 2 € [~R, R] it holds Xg/5 g(z,z) €
[-1,R? 4+ 1] and thus T(Xg/6,r(x,x)) € [-1,1]. Note that we approximate h on
[—1, R? + 1] rather than [0, R?] because iﬁ/G’R(w,x) need not be in [0, R?] for
all © € [-R, R]. We obtain the following error estimate, for all R > 1, using that
|h|W11°°([—1,(x>)) = %exp(l/?) < 1:

lo =851

< Hh((") h (%g/6,r( HLoo (I-R,R])

+ HhR o T (X/6,r(+7) = ®fs 1.1 T (Xp/6.(- ")) HLOO([_RRD

) (O OB ]

+ s — 2
<8+8=%

-1 HLoc([q,u)

We estimate the NN depth and size as

depth(@%/gy[iRyR]) < depth ( 76,1 1]) + 1+ depth(T") + 1 + depth (X g6 (-, "))
<C(1+1log(6/8)loglog(6/8)) +14+0+ 1+ C(1+log(6R/B))
<C(1 +log(1/B)loglog(1/8)),
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size(@%/&[_R,R]) < 2size ((I)ZI/%&[—LI]) + 4size(T) + 4 size (;ﬁ/G,R('v )
<C(1+10g(6/B))* + 8+ C(1 + log(6R/B))
<CO(1+1log(1/8))%,

for C independent of R, using that R < C'(1 + log(l/ﬂ))l/z.

Based on @%/3 (—R,R] Ve define the following ReLLU NN approximation of g
on R:

@%(m) = >~<ﬂ/372 (@%/3’[737}%](2:), max{0, R — |z|} —max{0,R—1— |x|}) .
This can be emulated exactly by the network

;6/3,2 oBo ((I)%/S,[fR,R]’Ul(' + R)oldg,o1(-+ R — 1) o Idg,

Ul(R—1—~)OIdR,O'1(R—~)OId]R),

where B : R® — R? : (z1, 22,23, 24, 25) — (z1,22 — 3 — 24 + x5) and where the
depth of the identity networks is depth(@%/&[iR,R]) — 2, such that all components
of the parallelization have equal depth.

We estimate the NN depth and size as

depth(®%) < depth(xg/39) + 1+ depth(B) + 1+ depth(@%/gﬁ[iR’R])
<C(1+10g(3/B8)) +1+0+ 1+ C(1+log(1/8)loglog(1/8))
< C(1 4+ log(1/B)loglog(1/8)),
size(®}) < 4size(X g3 ) + 4size(B) + 2 size((b%/&[_R’R]) + 4size(o1(- + R))
+ 4size(Idr) + 4size(o1(- + R — 1)) + 4size(Idgr)
+ 4size(o1(R—1—+)) + 4size(Idr) + 4size(o1 (R — -)) + 4 size(IdR)
<C(1+log(3/8)) + 20 +2(C(1 +log(1/5))?)
+4(12 4+ 8(C(1 + log(1/8) loglog(1/8))))
<C(1+1log(1/8))*.

On [0, R — 1] and [R — 1, R], respectively, it holds that

Hg B @%HLOO([O,RA])

< Hg - ‘1>%/3,[—R7R] HLO"([OvR_l])

+ H(DZ‘/?%[—RR](') ~ X/3.2 <¢’%/3,[—R,R](')’ 1) HLoc([O,R—l])
<B/3+B/3 <8,
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-+
Hg Bl Lo ([R-1,R))

< lg() = (B =90l Lo ((r-1,R))

+ H(R —)9() — (R — ')élg?/&[*R»R](.)HL“([R*LRD

Y Y D) — % 9 . _.
o (ERL IO R P C TN EE)] M.

<B/3+B/3+8/3=05.

— 9 < B/3 < B. The
g B Lo ((Rooo)) — B/ B

same estimates hold on (—o0, 0], which finishes the proof of the lemma. O

On (R, c0), it holds that <I>% = 0 and hence

Using [66, Lemma 3.5] instead of [63, Theorem 5.15] for the approximation of h, the
bound on the network size would be C(1 4 log(1/8))?[R] < C(1 + log(l/ﬁ))5/2.
Proof of Proposition 6.2. We apply [63, Theorem 6.7], for g and @% as in the

Lemma A.2 above. With 8 := /2, R = 1 + y/21log(3/3) and D := {x € RV :
| Az, < R}, we obtain ®f satisfying

o — ¢§||Loo(D) <ellgllwreopy <&
depth(®2) < C(1 +log(2/¢) loglog(2/e)) + log(N) logs (10T NR(2/¢)) + 1
<Clog(N)(1+1log(N/e)) + C(1 + log(1/¢e)loglog(1/e)),
size(®8) <2C(1 + log(2/¢))? + AN? + 64(N — 1) log, (10rNR(2/¢)) + AN
< CO(1 +log(1/e))? + CNlog(1/e) + CN>.

On ]RN\D, it holds that ®¢ = 0, which follows from the fact that the net-
work <I>% constructed in Lemma A.2 vanishes on (R,00). We recall from the

proof of the lemma that R was defined such that Hg — @2|]LN(RN\D) <
HgHLOO((—oo,—R+1)U(R—1,oo)) = /3 = ¢/6. Combined with the estimate above, it
holds that ||g — ®2|[ .. vy <& O
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