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Abstract: We establish dimension independent expression rates by deep ReLU

networks for certain countably-parametric maps, so-called (b, 𝜀,𝒳 )-holomorphic

functions. These are mappings from [−1, 1]N → 𝒳 , with 𝒳 being a Banach space,

that admit analytic extensions to certain polyellipses in each of the input variables.

Parametric maps of this type occur in uncertainty quantiőcation for partial differ-

ential equations with uncertain inputs from function spaces, upon the introduction

of bases. For such maps, we prove (constructive) expression rate bounds by families

of deep neural networks, based on multilevel polynomial chaos expansions. We

show that (b, 𝜀,𝒳 )-holomorphy implies summability and sparsity of coefficients

in generalized polynomial chaos expansions. This, in turn, implies deep neural

network expression rate bounds.

We apply the results to Bayesian inverse problems for partial differential equations

with distributed, uncertain inputs from Banach spaces. Our results imply the

existence of łneural Bayesian posteriorsž emulating the posterior densities with

expression rate bounds that are free from the curse of dimensionality, and limited

only by sparsity of certain gpc expansions. We prove the neural Bayesian posteriors

robust in large data or small noise asymptotics (e.g. [44]) which can be emulated

in a noise-robust fashion.

Keywords: Bayesian inverse problems, generalized polynomial chaos, deep networks,

uncertainty quantiőcation

MSC 2020: 62F15, 65N21, 62M45, 68Q32, 41A25

*Corresponding author: Joost A. A. Opschoor, Christoph Schwab, ETH

Zürich, SAM, ETH Zentrum, HG G57.1, CH8092 Zürich, Switzerland, e-mail:

joost.opschoor@sam.math.ethz.ch, christoph.schwab@sam.math.ethz.ch

Jakob Zech, University of Heidelberg, 69120 Heidelberg, Germany, e-mail: jakob.zech@uni-

heidelberg.de



2 Opschoor, Schwab, Zech

1 Introduction

The efficient numerical approximation of solution (manifolds) to parameter depen-

dent partial differential equations (PDEs) has seen signiőcant progress in recent

years. We refer for instance to [13, 14]. Similarly, and closely related, the treatment

of Bayesian inverse problems for well-posed partial (integro-)differential equations

with uncertain input data has drawn considerable attention, see e.g. [21] and the

references there. This is, in part, due to the need to efficiently assimilate noisy

observation data into predictions subject to constraints given by certain physical

laws governing responses of systems of interest. We mention here the surveys

[21, 71] and the references there. In the present paper, we study mathematically the

ability of deep neural networks to express Bayesian posterior probability measures,

subject to given data and to PDE constraints. To this end, we work in an abstract

setting accommodating PDE constrained Bayesian inverse problems with function

space priors as exposed, e.g., in [21, 41] and in the references there.

Several concrete constructions of function space prior probability measures for

Bayesian PDE inversion beyond Gaussian measures on separable Hilbert spaces

have been advocated in recent years. We mention in particular so-called Besov

prior measures [46, 20].

Recently, several proposals have been put forward advocating the use of DNNs

for Bayesian PDE inversion from noisy data; we refer to [9, 82, 42]. These references

computationally found good numerical efficiency for DNN expression with various

architectures of DNNs. Regarding Deep NNs for łlearningž solution maps of PDEs,

we mention [82, 78]. Expressive power (approximation) rate bounds for solution

manifolds of PDEs were obtained in [77]; results in this reference are also key in the

present analysis of DNN expression of Bayesian posteriors. Speciőcally, we quantify

uncertainty in PDE inversion conditional on noisy observation data using the

Bayesian framework. Particular attention is on general, convex priors on uncertain

function space inputs [21, 41].

The Bayesian approach can incorporate most, if not all, uncertainties of

engineering interest in PDE inversion and in graph-based data classiőcation in a

systematic manner.

Computational UQ for PDEs poses three challenges: large-scale forward prob-

lems need to be solved, high dimensional parameter spaces arise in parametrization

of distributed uncertain inputs (from Banach spaces), and numerical approxima-

tion needs to scale favorably in the presence of łbig dataž, resulting in consistent

posteriors in the sense of Diaconis and Freedman [24].

Foundational mathematical developments on the question of universality of

NNs are e.g. in [28, 40, 39, 7, 8]. In recent years so-called deep neural networks
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(DNNs for short) have seen rapid development and successful deployment in a wide

range of applications. Evidence for the beneőt afforded by depth of NNs on their

expressive power has been documented computationally in an increasing number

of applications (see, e.g. [49, 50, 82, 70, 87, 42, 65] and the references there). The

results reported in these references are mostly computational, and address particular

applications. Independent of these numerical experiments exploring the performance

of DNN based algorithms, the approximation theory of DNNs has also advanced

in recent years. Distinct from earlier, universality results e.g. in [40, 39, 7, 8],

emphasis in more recent mathematical developments has been on approximation

(i.e., łexpressionž) rate bounds for speciőc function classes and particular DNN

architectures. We mention only [10, 63, 67] and the references there. In [77], we

proved that ReLU DNNs can express high-dimensional, parametric solution families

of elliptic PDEs, at rates which are free from the curse of dimensionality.

Speciőcally, we adopt the inőnite-dimensional formulation of Bayesian inverse

problems from [79] and its extensions to general, convex prior measures on input

function spaces as presented in [41]. Assuming an affine representation system on

the uncertain input data, we adopt uniform prior measures on the parameters in

the representation.

We prove that ReLU DNNs allow for expressing the parameter-to-response

map and the Bayesian posterior density at rates which are determined only by the

size of the domains of holomorphy.

1.1 Recent mathematical results on expressive power of

DNNs

Fundamental universality results (amounting to, essentially, statements on density

of shallow NN expressions) on DNN expression in the class of continuous functions

have been established in the 90ies (see [68] for proof and a review of results), in

recent years expression rate bounds for approximation by DNNs for speciőc classes

of functions have been in the focus of interest. We mention in particular [31] and

[10]. There, it is shown that deep NNs with a particular architecture allow for

approximation rate bounds analogous to those of rather general multiresolution

systems when measured in terms of the number 𝑁 of units in the DNN.

In [18], convolutional DNNs were shown capable of expressing multivariate

functions given in so-called Hierarchical Tensor formats, a numerical representation

inspired by electron structure calculations in computational quantum chemistry.

In [83, 51], ReLU DNNs were shown to be able to express general uni- and

multivariate polynomials on bounded domains with uniform accuracy 𝛿 > 0, with

complexity (i.e., with the number of NN layers and the number of NN units and
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nonzero weights) scaling polylogarithmically with respect to 𝛿. The results in

[83, 51] allow transferring approximation results from high order őnite and spectral

element methods, in particular exponential convergence results, to certain types of

DNNs.

In [72], DNN expression rates for multivariate polynomials were investigated,

without reference to function spaces. Expression rate bounds explicit in the number

of variables and the polynomial degree by deep NNs were obtained. The proofs in

[72] depend strongly on a large number of bounded derivatives of the activation

function, and do not cover the presently considered case of ReLU DNNs.

In [77] we proved dimension-independent DNN expression rate bounds on

functions of countably many variables. In [77] we used, as we do in part of the

present paper, approximation rate bounds for 𝑁 -term truncated, so-called gener-

alized polynomial chaos expansions of the parametric function. These have been

investigated thoroughly in recent years (e.g. [15, 16, 4, 3] and the references there).

For the present analysis, however, we require more speciőc information of polyno-

mial degree distributions in 𝑁 -term approximate gpc expansions as the dimension

of the space of active parameters increases. This was investigated by some of the

authors recently in [86, 85]. In the present article, we shall also draw upon results

in these references.

In [56], the authors provided an analysis of expressive power of DNNs for a

speciőc class of multi-parametric maps which have a deőned (assumed known)

compositional structure: they are obtained as (repeated) composition of a possibly

large number of simpler functions, depending only on a few variables at a time. It

was shown that such functions can be expressed with DNNs at complexity which is

bounded by the dimensionality of constituent functions in the composition and the

size of the connectivity graph, thereby alleviating the curse of dimensionality for

this class.

1.2 Contributions

We extend our previous work [77] on ReLU NN expression bounds of countably-

parametric solution families and QoI’s for PDEs with affine-parametric uncertain

input. In a őrst main result, Theorem 4.9 of Section 4.4, we prove bounds on

the expressive power of ReLU DNNs for many-parametric response functions

from Bayesian inverse UQ for PDEs and more general operator equations subject

to inőnitely-parametric, uncertain and łinvisiblež (i.e. not directly observable)

input data. As in [77], we assume that the input-to-solution map has holomorphic

dependence on possibly an inőnite number of parameters. We have in mind in

particular (boundary, eigenvalue, control,...) problems for elliptic or parabolic PDEs



Deep learning in high dimension 5

with uncertain coefficients. These may stem from, for example, domains of deőnition

with uncertain geometry (see, e.g., [69, 43, 17, 49]) in diffusion, incompressible

ŕow, or time-harmonic, electromagnetic scattering (see, e.g., [43]). Adopting a

countable representation system renders uncertain inputs countably-parametric,

and implies likewise countably-parametric output families (łsolution-manifoldsž,

łresponse-surfacesž) of the model under consideration.

In [77], expressive power estimates for deep ReLU NNs for countably-parametric

solution manifolds were obtained among others for linear, second order elliptic

PDEs with uncertain coefficients, in divergence form. Theorems 4.9 and 5.2 extend

[77] in two regards. Firstly, we require merely (b, 𝜀)-holomorphy on poly-ellipses,

rather than on polydiscs as assumed in [77]. This requires essential modiőcations of

the DNN expression rate analysis in [77], as Legendre polynomial chaos expansions

are used rather than Taylor expansions. Secondly, we generalize our result from

[77] to parametric PDEs posed on a polytopal physical domain D of dimension

𝑑 ≥ 2 (instead of 𝑑 = 1).

In the Bayesian setting (see [79, 21, 41] and the references there), it has been

shown in [25, 75] that (b, 𝜀)-holomorphy of the QoI is inherited by the Bayesian

posterior density, if it exists. In the present paper we analyze expression rates of

ReLU DNNs for countably parametric Bayesian posterior densities which arise from

PDE inversion subject to noisy data. We show, in particular, extending our analysis

[77], that ReLU DNNs afford expression of such densities at dimension-independent

rates. The expression rate bounds are, to a large extent, abstracted from particular

model PDEs and apply to a wide class of PDEs and inverse problems (e.g., elliptic

and parabolic linear PDEs with uncertain coefficients, domains, source terms). We

also provide in Section 6.3 novel bounds on the posterior consistency of the DNN

emulated Bayesian posterior in the presently considered, general setting.

We refer to [82] for a possible computational approach and detailed numerical

experiments, for a 2nd order divergence form PDE with log-Gaussian diffusion

coefficient.

1.3 Notation

We adopt standard notation, consistent with our previous works [85, 86]: N =

{1, 2, . . . } and N0 := N ∪ {0}. We write R+ := {𝑥 ∈ R : 𝑥 ≥ 0}. The symbol 𝐶

will stand for a generic, positive constant independent of any asymptotic quantities

in an estimate, and may change its value even within the same equation.

In statements about (generalized) polynomial chaos expansions we require

multiindices ν = (𝜈𝑗)𝑗∈N ∈ N
N
0 . The total order of a multiindex ν is denoted by
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|ν|1 :=
∑︀

𝑗∈N
𝜈𝑗 . For the countable set of łőnitely supportedž multiindices we write

ℱ := {ν ∈ N
N
0 : |ν|1 <∞}.

Here, suppν = {𝑗 ∈ N : 𝜈𝑗 ̸= 0} denotes the support of the multiindex ν. The

size of the support of ν ∈ ℱ is |ν|0 = #(suppν); it will, subsequently, indicate the

number of active coordinates in the multivariate monomial term yν :=
∏︀

𝑗∈N
𝑦
𝜈𝑗

𝑗 .

A subset Λ ⊆ ℱ is called downward closed1, if ν = (𝜈𝑗)𝑗∈N ∈ Λ implies

µ = (𝜇𝑗)𝑗∈N ∈ Λ for all µ ≤ ν. Here, the ordering ł≤ž on ℱ is deőned as

𝜇𝑗 ≤ 𝜈𝑗 , for all 𝑗 ∈ N. We write |Λ| to denote the őnite cardinality of a set

Λ. For 0 < 𝑝 < ∞, denote by ℓ𝑝(ℱ) the space of sequences t = (𝑡ν)ν∈ℱ ⊂ R

satisfying ‖t‖ℓ𝑝(ℱ) := (
∑︀

ν∈ℱ |𝑡ν |𝑝)1/𝑝 <∞. As usual, ℓ∞(ℱ) equipped with the

norm ‖t‖ℓ∞(ℱ) := supν∈ℱ |𝑡ν | < ∞ denotes the space of all uniformly bounded

sequences.

We consider the set CN endowed with the product topology. Any subset such

as [−1, 1]N is understood to be equipped with the subspace topology. For 𝜀 ∈ (0,∞)

we write 𝐵𝜀 := {𝑧 ∈ C : |𝑧| < 𝜀}. Furthermore 𝐵N
𝜀 :=×𝑗∈N

𝐵𝜀 ⊂ C
N. Elements

of CN will be denoted by boldface characters such as y = (𝑦𝑗)𝑗∈N ∈ [−1, 1]N. For

ν ∈ ℱ , standard notations yν :=
∏︀

𝑗∈N
𝑦
𝜈𝑗

𝑗 and ν! =
∏︀

𝑗∈N
𝜈𝑗 ! will be employed

(throughout, 0! := 1 and 00 := 1, so that ν! contains őnitely many nontrivial

factors). For any index set Λ ⊂ ℱ we denote PΛ := span{yν}ν∈Λ.

For a Banach space 𝑋 we denote by 𝒫(𝑋) the space of Borel probability

measures on 𝑋 and by 𝑑𝐻(·, ·) the Hellinger metric on 𝒫(𝑋).

1.4 Structure of the present paper

The structure of this paper is as follows: in Section 2, we review the mathematical

setting of Bayesian inverse problems for PDEs, including results which account for

the impact of the PDE discretization error on the Bayesian posterior. In Section 3,

we recall the notion of (b, 𝜀)-holomorphic functions on polyellipses, taking values

in Banach spaces and review approximation rate bounds for their truncated gpc

expansion.

Sections 4-5 contain the mathematical core and main technical contributions

of this paper: we deőne the DNN architectures and present, after recapitulating

the basic operations of DNN calculus, expression rate bounds for so-called (b, 𝜀,R)-

holomorphic functions. This function class consists of maps from [−1, 1]N → R,

1 Index sets with the ”downward closed” property are also referred to in the literature

[59] as lower sets.
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which allow holomorphic extensions (in each variable) to certain subsets of CN. This

is subsequently generalized to (b, 𝜀,𝒳 )-holomorphic functions. To keep the network

size possibly small, we employ a multilevel strategy by combining approximations

to elements in 𝒳 at different accuracy levels. Section 5.2 presents an illustrative

example of a PDE with uncertain input data which satisfy the preceding, abstract

hypotheses. Following this, we apply our result for (b, 𝜀,R)-holomorphic functions

to the Bayesian posterior density in Section 6. We show, in particular, that ReLU

DNNs are able to express the posterior density with rates (in terms of the size

of the DNN) which are free from the curse of dimensionality. We also show in

Section 6.2 that DNNs allow for expression rates which are robust w.r. to certain

types of posterior concentration in the small noise respectively the large data limits.

Section 6.3 shows that the 𝐿∞-convergence of approximations of the posterior

density implies convergence of the approximate posterior measure in the Hellinger

and total variation distances. In Section 7 we give conclusions and indicate further

directions. In the appendix we provide proofs of several results from the main text,

which are not included in the published version [64] of this text.

2 Bayesian inverse UQ

We őrst present the abstract setting of BIP on function spaces, [79, 25, 75]. We

then verify the abstract hypotheses in several examples; in particular, for diffusion

equations with uncertain coefficients in polygons.

2.1 Forward model

We consider abstract parametric operator equations, which are possibly nonlinear,

whose operators depend on uncertain input data 𝑎.

We consider given an uncertain input datum 𝑎 ∈ 𝑋̃ ⊂ 𝑋, where 𝑋 denotes

a Banach space containing the set 𝑋̃ of admissible input data of the operator

equation. Generally, 𝑎 is not accessible a priori and, therefore, is considered as

uncertain input data. A priori knowledge about the distribution of 𝑎 ∈ 𝑋 for a

particular application is encoded through a probability measure 𝜇0 on 𝑋, the

Bayesian prior, which is supported on a measurable subset 𝑋̃ ⊂ 𝑋 of admissible

uncertain inputs. This implies, in particular, that 𝑋̃ ∈ ℬ(𝑋) is 𝜇0-measurable, and

that 𝜇0(𝑋̃) = 1; we discuss this in detail in Section 2.2 ahead.

The abstract forward model to be considered in the sequel reads: given (a

realization of) the uncertain input parameter 𝑎 ∈ 𝑋̃, and a possibly nonlinear map
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𝒩 (𝑎, ·) : 𝒳 → 𝒴 ′,

find 𝑢 ∈ 𝒳 : ⟨𝒩 (𝑎, 𝑢), 𝑣⟩ = 0 for all 𝑣 ∈ 𝒴 . (1)

Here, ⟨·, ·⟩ denotes the 𝒴 ′ × 𝒴 duality pairing. Throughout, we admit inőnite-

dimensional Banach spaces 𝑋,𝒳 ,𝒴 (all results apply verbatim for the őnite-

dimensional settings).

In (1), the nonlinear map 𝒩 (·, ·) : 𝑋 ×𝒳 → 𝒴 ′ could be thought of as residual

map for a PDE with solution space 𝒳 and uncertain, distributed input data 𝑎 from

a function space 𝑋.

2.2 Bayesian inverse problem

We recapitulate the abstract setting of Bayesian inverse problems (BIPs for short)

where the data-to-prediction map is constrained by possibly nonlinear operator

equations (1) which are subject to unknown / unobservable input data.

2.2.1 Setup

In the Bayesian inversion of the forward model (1), we in general do not have access

to the uncertain input 𝑎. Instead, we assume given noisy observation data 𝛿 ∈ 𝑌 ,

where 𝑌 is a space of observation data. The data 𝛿 ∈ 𝑌 is a response of (1) for

some admissible input 𝑎 ∈ 𝑋̃, which response is corrupted by additive observation

noise 𝜂 ∈ 𝑌 , i.e.

𝛿 = 𝒢(𝑎) + 𝜂 . (2)

The data-to-observation map 𝒢(·) is composed of the solution operator 𝐺 : 𝑎 ↦→ 𝑢

associated to (1) and a continuous, linear observation map 𝒪 ∈ ℒ(𝒳 , 𝑌 ) taking

the solution 𝑢(𝑎) ∈ 𝒳 with input 𝑎 ∈ 𝑋 to observations 𝒪(𝑢(𝑎)) ∈ 𝑌 . Thus

𝒢 : 𝑋 → 𝑌 : 𝑎 ↦→ 𝒢(𝑎) := (𝒪 ∘𝐺)(𝑎).

We often wish to predict a so-called quantity of interest (QoI for short). In this

work, we assume the QoI to be a bounded, linear functional 𝑄 ∈ ℒ(𝒳 , 𝑍) where

𝑍 is a suitable Banach space. In this setup, then, the inverse problem consists in

estimating the łmost likelyž realization of the QoI based on solutions 𝑢 = 𝐺(𝑎) of

the forward problem (1), given noisy observation data 𝛿 of responses 𝒢(𝑎).
In Bayesian inversion, one assumes given a probability measure 𝜇0 on the

Banach space 𝑋 of inputs which charges the set 𝑋̃ ⊂ 𝑋 of admissible inputs and

which encodes our prior information about the occurrence of inputs 𝑎.

Given a realization of the parameter 𝑎 ∈ 𝑋̃, and observation data 𝛿 ∈ 𝑌 ,

we denote by 𝜇𝛿|𝑎 the probability measure on 𝛿, conditioned on 𝑎. Under the
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assumption that 𝜇𝛿|𝑎 ≪ 𝜇ref for some reference measure 𝜇ref on 𝑌 , and that 𝜇𝛿|𝑎

has a density w.r. to 𝜇ref which is positive 𝜇ref -a.e., we may deőne the likelihood

potential Φ(𝑎; 𝛿) : 𝑋 × 𝑌 → R (the łnegative log-likelihoodž) so that

d𝜇𝛿|𝑎

d𝜇ref
(𝛿) = exp(−Φ(𝑎; 𝛿)),

∫︁

𝑌

exp(−Φ(𝑎; 𝛿))d𝜇ref(𝛿) = 1 . (3)

Remark 2.1. Let 𝑌 = R
𝐾 and assume that the observation noise 𝜂 ∼ 𝒩 (0,Γ) is

additive, centered Gaussian with positive definite covariance matrix Γ ∈ R
𝐾×𝐾 .

Then there exists a measure 𝜇ref on 𝑌 , equal to a Γ-dependent constant times

the Lebesgue measure on 𝑌 , such that

Φ(𝑎; 𝛿) =
1

2
‖Γ−1/2(𝒢(𝑎)− 𝛿)‖22 =:

1

2
‖𝒢(𝑎)− 𝛿‖2Γ . (4)

The potential Φ is an inverse covariance weighted, least squares functional of the

response-to-observation misőt for uncertain input parameter 𝑎 ∈ 𝑋 and observation

data 𝛿 ∈ 𝑌 .

In őnite dimensions, Bayes’ rule states that the posterior 𝜇𝑎|𝛿 (the probability

measure of the unknown 𝑎 conditioned on the data 𝛿) is proportional to the product

of the likelihood 𝜇𝛿|𝑎 and the prior 𝜇0. In the present Banach space setting, this

formally extends to

d𝜇𝑎|𝛿

d𝜇0
(𝑎) =

1

𝑍(𝛿)
exp(−Φ(𝑎; 𝛿)), where 𝑍(𝛿) =

∫︁

𝑋

exp(−Φ(𝑎; 𝛿))d𝜇0(𝑎) , (5)

which can be made rigorous, see the references below. Here 𝑍(𝛿) is a normalization

constant guaranteeing
exp(−Φ(𝑎;𝛿))

𝑍(𝛿)
to be a probability density as a function of

𝑎 ∈ 𝑋 w.r.t. the measure 𝜇0. In the Bayesian methodology, the posterior probability

measure 𝜇𝑎|𝛿 is considered an updated version of the prior 𝜇0 on the uncertain

inputs that is informed by the observation data 𝛿. In the following, the posterior

probability measure will be denoted by 𝜇𝛿.

Remark 2.2. Note that (5) is independent of the choice of reference measure 𝜇ref

in (3): Let 𝜇̃ref be another (equivalent) reference measure such that d𝜇𝛿|𝑎

d𝜇̃ref
(𝛿) =

exp(−Φ̃(𝑎; 𝛿)). Then

exp(−Φ(𝑎; 𝛿)) =
d𝜇𝛿|𝑎

d𝜇ref
(𝛿) =

d𝜇𝛿|𝑎

d𝜇̃ref
(𝛿)

d𝜇̃ref
d𝜇ref

(𝛿) = exp(−Φ̃(𝑎; 𝛿))
d𝜇̃ref
d𝜇ref

(𝛿).

Hence Φ̃(𝑎; 𝛿) = Φ(𝑎; 𝛿)+log(𝑐) with the 𝑎-independent constant 𝑐 = d𝜇̃ref

d𝜇ref
(𝛿). The

constant 𝑐 will merely influence the normalization 𝑍(𝛿) in (5), but either choice

of 𝜇ref or 𝜇̃ref leads to the same formula for 𝑎 ↦→ d𝜇𝑎|𝛿

d𝜇0
(𝑎).
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We refer to [79, 21, 41] for a detailed discussion and further references, in particular

[21, Section 3.4.2], which is an application of the more general discussion in [21,

Section 3.2]. Our deőnition of the likelihood potential Φ in (4) is consistent with

[21, Equation (10.39)]. It is shifted with respect to the deőnition in [21, Equation

(10.30)] by adding to Φ a function depending on 𝛿, but not on 𝑎, see Remark 2.2

and also [21, Remark 5].

2.2.2 Assumptions

Based on [79, 20, 21, 41], we now formalize the preceding concepts. To this end, we

introduce a set of assumptions on the prior and on the forward map which ensure

well-posedness and continuous dependence of the BIP.

Assumption 2.3 ([41, Assumption 2.1]). In the Banach space 𝑋 of uncertain pa-

rameters and the Banach space 𝑌 of observation data, the potential Φ : 𝑋×𝑌 → R

satisfies:

(i) (bounded below) There is some 𝛼1 ≥ 0 such that for every 𝑟 > 0 exists a

constant 𝑀(𝛼1, 𝑟) ∈ R such that for every 𝑢 ∈ 𝑋 and for every data 𝛿 ∈ 𝑌

with ‖𝛿‖𝑌 < 𝑟 holds

Φ(𝑢; 𝛿) ≥𝑀 − 𝛼1‖𝑢‖𝑋 .

(ii) (boundedness above) For every 𝑟 > 0 exists 𝐾(𝑟) > 0 such that for every

𝑢 ∈ 𝑋 and for every 𝛿 ∈ 𝑌 with max{‖𝑢‖𝑋 , ‖𝛿‖𝑌 } < 𝑟 holds

Φ(𝑢; 𝛿) ≤ 𝐾 .

(iii)(Lipschitz continuous dependence on 𝑢) For every 𝑟 > 0 exists a con-

stant 𝐿(𝑟) > 0 such that for every 𝑢1, 𝑢2 ∈ 𝑋 and for every 𝛿 ∈ 𝑌 with

max{‖𝑢1‖𝑋 , ‖𝑢2‖𝑋 , ‖𝛿‖𝑌 } < 𝑟 holds

|Φ(𝑢1; 𝛿)− Φ(𝑢2; 𝛿)| ≤ 𝐿‖𝑢1 − 𝑢2‖𝑋 .

(iv) (Lipschitz continuity w.r. to observation data 𝛿 ∈ 𝑌 ) For some 𝛼2 ≥ 0 and

for every 𝑟 > 0 exists 𝐶(𝛼2, 𝑟) ∈ R such that for every 𝛿1, 𝛿2 ∈ 𝑌 with

max{‖𝛿1‖𝑌 , ‖𝛿2‖𝑌 } < 𝑟 and for every 𝑢 ∈ 𝑋 holds

|Φ(𝑢; 𝛿1)− Φ(𝑢; 𝛿2)| ≤ exp (𝛼2‖𝑢‖𝑋 + 𝐶) ‖𝛿1 − 𝛿2‖𝑌 .

(v) (Radon prior measure) The prior measure 𝜇0 is a Radon probability measure

charging a measurable subset 𝑋̃ ⊆ 𝑋 with 𝑋̃ ∈ ℬ(𝑋) of admissible uncertain

parameters, i.e. 𝜇0(𝑋̃) = 1.
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(vi) (exponential tails) The prior measure 𝜇0 on the Banach space 𝑋 has exponen-

tial tails:

∃𝜅 > 0 :

∫︁

𝑋

exp(𝜅‖𝑢‖𝑋)d𝜇0(𝑢) <∞ . (6)

Remark 2.4. Assumption (v) on the prior 𝜇0 being a Radon probability measure

is always satisfied when 𝑋 is separable.

2.2.3 Well-posedness

We shall consider well-posedness of the BIP in the following sense.

Definition 2.5 (Well-posedness of the BIP, [41, Deőnition 1.4]). For Banach

spaces 𝑋, 𝑌 , with 𝑑𝐻(·, ·) denoting the Hellinger metric on the space 𝒫(𝑋)

of Borel probability measures on 𝑋, for a prior 𝜇0 ∈ 𝒫(𝑋) and for the likelihood

potential Φ, the BIP (5) is well-posed if the following holds:

(i) (existence and uniqueness) For every data 𝛿 ∈ 𝑌 exists a unique posterior

measure 𝜇𝛿 ∈ 𝒫(𝑋) which is absolutely continuous w.r. to the prior 𝜇0 and

which satisfies (5),

(ii) (stability) for every 𝜀 > 0 and 𝑟 > 0 there exists a constant 𝐶𝜀(𝑟) > 0 such

that for every 𝛿, 𝛿′ ∈ 𝑌 with max{‖𝛿‖𝑌 , ‖𝛿′‖𝑌 } < 𝑟 and ‖𝛿− 𝛿′‖𝑌 ≤ 𝐶𝜀, there

holds

𝑑𝐻(𝜇𝛿, 𝜇𝛿
′

) < 𝜀 .

2.2.4 Existence and continuous dependence

We are now in position to state sufficient conditions for well-posedness of the BIP

and for existence and uniqueness of the posterior 𝜇𝛿. We work in the abstract

setting Assumption 2.3, deferring the veriőcation of the items in Assumption 2.3

to the ensuing discussion of concrete model problems.

Theorem 2.6 ([41, Theorems 2.4 and 2.6]). Given Banach spaces 𝑋 and 𝑌 and

a likelihood function Φ : 𝑋×𝑌 → R satisfying Assumption 2.3, items (i), (ii), (iii)

with some 𝛼1 > 0. Moreover, the prior measure 𝜇0 ∈ 𝒫(𝑋) satisfies Assumption

2.3, items (v) and (vi) with some constant 𝜅 > 0.

Then it holds:

(i) If 𝜅 ≥ 𝛼1, for every 𝛿 ∈ 𝑌 , the posterior measure 𝜇𝛿 defined in Equation (5)

is well-defined, and a Radon probability measure on 𝑋.
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(ii) (Lipschitz continuity of the posterior w.r. to the data) If Φ satisfies in addi-

tion Assumption 2.3, item (iv) with some constant 𝛼2 ≥ 0, and if the con-

stant 𝜅 from Assumption 2.3, item (vi), satisfies 𝜅 ≥ 𝛼1 + 2𝛼2, then for

every 𝑟 > 0 exists a constant 𝐶(𝑟) > 0 such that, for every 𝛿, 𝛿′ ∈ 𝑌 with

max{‖𝛿‖𝑌 , ‖𝛿′‖𝑌 } < 𝑟, the posteriors 𝜇𝛿, 𝜇𝛿
′ ∈ 𝒫(𝑋) satisfy

𝑑𝐻(𝜇𝛿, 𝜇𝛿
′

) ≤ 𝐶(𝑟)‖𝛿 − 𝛿′‖𝑌 . (7)

A proof of this result is, for example, in [41, Theorems 2.4 and 2.6].

2.2.5 Consistent approximation

In the numerical approximation of posteriors 𝜇𝛿 where the input-to-observation

map 𝒢 = 𝒪 ∘ 𝐺 : 𝑋 → 𝑌 involves a well-posed, parametric forward operator

equation (1), we will in general have to resort to approximate, numerical solutions

of (1). Generically, we tag such approximate solution maps by a subscript 𝑁 ∈ N

which should be understood as the łnumber of degrees of freedomž involved in the

discretization of the parametric equation (1). In this way, we denote the data-to-

solution map of the nonlinear equation (1) by 𝐺𝑁 : 𝑋 → 𝒳 , the corresponding

data-to-observation map by 𝒢𝑁 = 𝒪 ∘𝐺𝑁 , and the likelihood potential by Φ𝑁 .

Approximation of the forward model (1), e.g. by consistent discretization, leads

to an approximate Bayesian inverse problem, which is of the form

𝑑𝜇𝛿𝑁
𝑑𝜇0

(𝑎) =
1

𝑍𝑁 (𝛿)
exp(−Φ𝑁 (𝑎; 𝛿)), where 𝑍𝑁 (𝛿) :=

∫︁

𝑋

exp(−Φ𝑁 (𝑎; 𝛿))d𝜇0(𝑎) .

(8)

Assuming exact observations 𝒪(·) at hand, the approximate potential Φ𝑁 in (8) is

Φ𝑁 (𝑎; 𝛿) =
1

2
‖Γ−1/2(︀(𝒪 ∘𝐺𝑁 )(𝑎)− 𝛿

)︀

‖22 , 𝑎 ∈ 𝑋̃, 𝛿 ∈ 𝑌 .

The posterior 𝜇𝛿 would, consequently, also be approximated by the corresponding

numerical posterior, which we denote by 𝜇𝛿𝑁 .

It is of interest to identify sufficient conditions so that, as 𝑁 → ∞, the

approximate posteriors {𝜇𝛿𝑁}𝑁≥1 tend to the posterior 𝜇𝛿 in 𝒫(𝑋).

Definition 2.7 (consistent posterior approximation, [41, Deőnition 1.5]). The

approximate Bayesian inverse problem (8) is said to be a consistent approximation

of (5) for a prior 𝜇0 ∈ 𝒫(𝑋) and a potential Φ if the approximate potential Φ𝑁 is

such that for every data 𝛿 ∈ 𝑌 , as 𝑁 → ∞, there holds

|Φ(𝑎; 𝛿)− Φ𝑁 (𝑎; 𝛿)| → 0 implies 𝑑𝐻(𝜇𝛿, 𝜇𝛿𝑁 ) → 0 .
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Apart from consistency in the sense of Deőnition 2.7, in the numerical approx-

imation of BIPs we are also interested in convergence rates: if the numerical

approximation 𝐺𝑁 of the forward solution map converges with a certain rate, say

𝜓(𝑁), with 𝜓 a nonnegative function such that 𝜓(𝑁) ↓ 0 as 𝑁 → ∞, then the

corresponding posteriors 𝜇𝛿𝑁 should converge with a rate related to 𝜓(𝑁). The

following theorem, which is proved in [21, Theorem 18], gives sufficient conditions

for posterior convergence.

Theorem 2.8 ([21, Theorem 18]). Let Banach spaces 𝑋 and 𝑌 of uncertain pa-

rameters 𝑎 and observation data 𝛿, resp., be given.

Let 𝜇0 ∈ 𝒫(𝑋) be a Borel probability measure on 𝑋 which satisfies Assumption

2.3, items (i) - (vi), so that for observation data 𝛿 ∈ 𝑌 the BIPs (5), (8) for

𝜇𝛿, 𝜇𝛿𝑁 ∈ 𝒫(𝑋) are well-defined.

Assume also that the likelihood potentials Φ and Φ𝑁 satisfy Assumption 2.3,

items (i), (ii) with constant 𝛼1 ≥ 0 which is uniform w.r. to 𝑁 , and that for some

𝛼3 ≥ 0 exists 𝐶(𝛼3) > 0 independent of 𝑁 such that for every 𝑎 ∈ 𝑋̃ holds

|Φ(𝑎; 𝛿)− Φ𝑁 (𝑎; 𝛿)| ≤ 𝐶 exp(𝛼3‖𝑎‖𝑋)𝜓(𝑁) (9)

with 𝜓(𝑁) ↓ 0 as 𝑁 → ∞.

If furthermore Assumption 2.3, item (vi) holds with 𝜅 ≥ 𝛼1 + 2𝛼3, then for

every 𝑟 > 0 exists a constant 𝐷(𝑟) > 0 such that for every 𝛿 ∈ 𝑌 with ‖𝛿‖𝑌 < 𝑟

holds

∀𝑁 ∈ N : 𝑑𝐻(𝜇𝛿, 𝜇𝛿𝑁 ) ≤ 𝐷𝜓(𝑁) .

Here, the constant 𝐷(𝑟) generally depends on the covariance Γ of the centered

Gaussian observation noise 𝜂 in (2).

2.3 Prior modeling

The modeling of prior probability measures on function spaces of distributed,

uncertain PDE input data 𝑎 in the model (1) has been developed in several

references in recent years. The ‘usual construction’ is based on (a) coordinate

representations of (realizations of) instances of 𝑎 in terms of a suitable basis

{𝜓𝑗}𝑗≥1 (thereby implying 𝑎 will take values in a separable subset 𝑋̃ of 𝑋) and on

(b) construction of the prior as countable product probability measure of probability

measures on the co-ordinate spaces.

This approach, which is inspired by N. Wiener’s construction of the Wiener

process by placing Gaussian measures on coefficient realizations of Fourier series,

has been realized for example in [46, 20, 35] for Besov spaces, and in [41, 80] and

the references there for more general priors.
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2.4 Examples

The foregoing, abstract setting (1) accommodates a wide range of PDE boundary

value, eigenvalue, control, and shape optimization problems with uncertain function

space input 𝑎 ∈ 𝑋. We illustrate the scope by listing several examples which are

covered by the ensuing, abstract DNN expression rate bounds. In all examples,

D ⊂ R
𝑑 shall denote an open, bounded and connected, polytopal domain in physical

Euclidean space of dimension 𝑑 ≥ 2. In dimension 𝑑 = 1, D shall denote an open,

bounded interval of positive length.

2.4.1 Diffusion equation

We consider the linear, 2nd order, diffusion equation with uncertain coefficients

in D ⊂ R
2. Holomorphic dependence of solutions on coefficient data was shown

in [5] and the numerical analysis, including Finite-Element discretization in D

on corner-reőned families of triangulations, with approximation rate estimates

for both, the parametric solution and the Karhunen-Loeve expansion terms, was

provided in [36]. Given a source term 𝑓 ∈ 𝐻−1(D) = (𝐻1
0 (D))*, and an isotropic

diffusion coefficient 𝑎 ∈ 𝑋̃ ⊂ {𝑎 ∈ 𝐿∞(D) : ess infx∈D 𝑎(x) > 0} the diffusion

problem reads: őnd 𝑢 ∈ 𝐻1
0 (D) such that

𝒩 (𝑎, 𝑢)(x) := 𝑓(x) +∇ · (𝑎(x)∇𝑢(x)) = 0 in D, 𝑢|𝜕D = 0 . (10)

It falls into the variational setting (1) with 𝒳 = 𝒴 = 𝐻1
0 (D), 𝑋 = 𝐿∞(D). In

[5, 36], also anisotropic diffusion coefficients 𝑎 and advection and reaction terms

were admitted.

For 𝑎 ∈ 𝑋̃, the weak formulation (1) of (10) is uniquely solvable and the

data-to-solution map 𝐺 : 𝑋̃ → 𝒳 : 𝑎 ↦→ 𝑢(𝑎) is continuous. Equipping 𝒳 with the

norm ‖𝑣‖𝒳 = ‖∇𝑣‖𝐿2(D), there holds

‖𝑢‖𝒳 ≤
‖𝑓‖𝐻−1(D)

ess infx∈D 𝑎(x)
.

Assuming affine-parametric uncertain input [76, 15, 16], i.e., given 𝑎0 ∈ 𝑋 with

𝑎− := ess inf
x∈D

𝑎0(x) > 0,

for {𝜓𝑗}𝑗≥1 ⊂ 𝑋 with
∑︀

𝑗≥1 ‖𝜓𝑗‖𝑋 < 𝑎−, we choose the prior such that its

support is contained in the set

𝑋̃ := {𝑎 ∈ 𝑋 : 𝑎 = 𝑎(y) := 𝑎0 +
∑︁

𝑗≥1

𝑦𝑗𝜓𝑗 , y = (𝑦𝑗)𝑗≥1 ∈ [−1, 1]N}. (11)
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For every y ∈ [−1, 1]N and 𝑎(y) ∈ 𝑋̃, problem (10) admits a unique parametric

solution 𝑢(y) ∈ 𝒳 such that 𝒩 (𝑎(y), 𝑢(y)) = 0 in 𝐻−1(D).

2.4.2 Elliptic eigenvalue problem with uncertain coefficient

For 𝑎 ∈ 𝑋̃ as deőned in (11), for every y ∈ [−1, 1]N we seek solutions (𝜆(y), 𝑤(y)) ∈
R×𝐻1

0 (D)∖{0} of the eigenvalue problem

𝒩 (𝑎(y), (𝜆(y), 𝑤(y))) = 0 in 𝐻−1(D) , (12)

where, for every 𝑎 ∈ 𝑋̃, 𝒩 (𝑎, (𝜆,𝑤)) : R×𝐻1
0 (D) → 𝐻−1(D) : (𝜆,𝑤) ↦→ 𝜆𝑤 +∇ ·

(𝑎∇𝑤). For every y, the EVP (12) admits a sequence {(𝜆𝑘(y), 𝑤𝑘(y)) : 𝑘 = 1, 2, ...}
of real eigenvalues 𝜆𝑘(y) (which we assume enumerated according to their size,

with multiplicity counted) with associated eigenfunctions 𝑤𝑘(y) ∈ 𝐻1
0 (D) (which

form a dense set in 𝐻1
0 (D)). It is known (e.g. [29, Proposition 2.4]) that the őrst

eigenpair {(𝜆1(y), 𝑤1(y)) : y ∈ [−1, 1]N} is isolated, admits a uniform (w.r. to

y ∈ [−1, 1]N) spectral gap.

3 Generalized polynomial chaos surrogates

3.1 Uncertainty parametrization

Let 𝒵 and 𝒳 be two complex Banach spaces and let (𝜓𝑗)𝑗∈N be a sequence in

𝒵. Additionally suppose that 𝑂 ⊆ 𝒵 is open and let u : 𝑂 → 𝒳 be complex

differentiable. With the parameter domain 𝑈 := [−1, 1]N we consider the inőnite

parametric map

𝑢(y) := u

⎛

⎝

∑︁

𝑗∈N

𝑦𝑗𝜓𝑗

⎞

⎠ ∀y = (𝑦𝑗)𝑗∈N ∈ 𝑈, (13)

which is well-deőned for instance if (‖𝜓𝑗‖𝒵)𝑗∈N ∈ ℓ1(N). Here the map 𝑈 → 𝑂 :

y ↦→
∑︀

𝑗∈N
𝑦𝑗𝜓𝑗 is understood as an (affine) parametrization of the uncertain input

𝑎 and u denotes the map which relates the input to the solution of the model under

consideration.

Under certain assumptions, such maps allow a representation as a sparse Taylor

generalized polynomial chaos expansion [15, 16], i.e. for y ∈ 𝑈

𝑢(y) =
∑︁

ν∈ℱ
𝑡νy

ν , 𝑡ν =
1

ν!
𝜕νy𝑢(y) |y=0∈ 𝒳 , (14)
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or as a sparse Legendre generalized polynomial chaos expansion [13], i.e.

𝑢(y) =
∑︁

ν∈ℱ
𝑙ν𝐿ν(y), 𝑙ν =

∫︁

𝑈

𝐿ν(y)𝑢(y)d𝜇𝑈 (y) ∈ 𝒳 , (15)

where 𝐿ν(y) =
∏︀

𝑗∈N
𝐿𝜈𝑗 (𝑦𝑗) and 𝐿𝑛 : [−1, 1] → R denotes the 𝑛-th Legendre

polynomial normalized in 𝐿2([−1, 1], 𝜆/2), where 𝜆 denotes the Lebesgue measure

on [−1, 1], i.e. 𝜆/2 is a uniform probability measure on [−1, 1]. Also, 𝜇𝑈 := ⊗𝑗∈N
𝜆
2

denotes the uniform probability measure on 𝑈 = [−1, 1]N equipped with the product

𝜎-algebra. Then by [61, ğ18.3]

‖𝐿𝑛‖𝐿∞([−1,1]) ≤ (1 + 2𝑛)
1
2 ∀𝑛 ∈ N0. (16)

The summability properties of the (𝒳 -norms of) Taylor or Legendre gpc coefficients

(‖𝑡ν‖𝒳 )ν∈ℱ , (‖𝑙ν‖𝒳 )ν∈ℱ are key for assigning a meaning to such formal gpc

expansions like (14) and (15). For example, as for every y ∈ 𝑈 and for every

ν ∈ ℱ it holds that |yν | ≤ 1, the summability (‖𝑡ν‖𝒳 )ν∈ℱ ∈ ℓ1(ℱ) guarantees

unconditional convergence in 𝒳 of the series in (14) for every y ∈ 𝑈 . As we shall

recall in Section 3.3, this summability is in turn ensured by a suitable form of

holomorphic continuation of the parameter-to-response map 𝑢 : 𝑈 → 𝒳 .

Remark 3.1. We assume here 𝒳 to be a complex space. If 𝒳 is a Banach space

over R, one can consider u as a map to the complexification 𝒳C = 𝒳 + i𝒳 of

𝒳 equipped with the so-called Taylor norm ‖𝑣 + i𝑤‖𝒳C
:= sup𝑡∈[0,2𝜋) ‖ cos(𝑡)𝑣 −

sin(𝑡)𝑤‖𝒳 for all 𝑣, 𝑤 ∈ 𝒳 (cp. [58]). Here, i =
√
−1 with arg(i) = 𝜋/2.

3.2 (b, ε,X )-holomorphy

To prove expressive power estimates for DNNs, we use parametric holomorphic

maps from a compact parameter domain 𝑈 into a Banach space 𝒳 with quantiőed

sizes of domains of holomorphy. To introduce such maps, we recapitulate principal

deőnitions and results from [16, 13, 12, 86] and the references there. The notion

of (b, 𝜀)-holomorphy (given in Deőnition 3.3 ahead), which stipulates holomorphic

parameter dependence of a function 𝑢 : 𝑈 → 𝒳 in each variable on certain product

domains 𝒪 =×𝑗∈N
𝑂𝑗 ⊆ C

N, has been found to be a sufficient condition on a

parametric map 𝑈 ∋ y ↦→ 𝑢(y) ∈ 𝒳 , in order that 𝑢 admits 𝑔𝑝𝑐 expansions with

𝑝-summable coefficients for some 𝑝 ∈ (0, 1), see, e.g., [13, 77] and also Section 3.3

ahead. In the following, we extend the results from [77] in the sense that we admit

smaller domains of holomorphy: each 𝑂𝑗 = ℰ𝜌𝑗 is a Bernstein-ellipse deőned by

ℰ𝜌 :=

{︂

𝑧 + 𝑧−1

2
: 𝑧 ∈ C, 1 ≤ |𝑧| < 𝜌

}︂

⊆ C,
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rather than a complex disc 𝑂𝑗 = 𝐵𝜌𝑗 as in [77].

Remark 3.2. Let 𝒥 ⊆ N. Throughout, continuity of a function deőned on a cylin-

drical set×𝑗∈𝒥 𝑂𝑗 with 𝑂𝑗 ⊆ C for all 𝑗 ∈ 𝒥 will be understood as continuity

with respect to the subspace topology on×𝑗∈𝒥 𝑂𝑗 ⊂×𝑗∈𝒥 C, where×𝑗∈𝒥 C is as-

sumed to be equipped with the product topology by our convention (see Section 1.3).

In this topology, the parameter domain 𝑈 = [−1, 1]N is compact by Tychonoff’s

theorem [57, Theorem 37.3].

In the following, if ρ = (𝜌𝑗)
𝑁
𝑗=1 ⊆ (1,∞) for some 𝑁 ∈ N, we deőne the poly-ellipse

ℰρ :=×
𝑁

𝑗=1
ℰ𝜌𝑗 ⊆ C

𝑁 , and similarly in case ρ = (𝜌𝑗)𝑗∈N ⊆ (1,∞)

ℰρ :=×
𝑗≥1

ℰ𝜌𝑗 ⊆ C
N .

Definition 3.3 ((b, 𝜀,𝒳 )-Holomorphy). Let 𝒳 be a complex Banach space. As-

sume given a monotonically decreasing sequence b = (𝑏𝑗)𝑗∈N of positive reals 𝑏𝑗

such that b ∈ ℓ𝑝(N) for some 𝑝 ∈ (0, 1].

We say that a map 𝑢 : 𝑈 → 𝒳 is (b, 𝜀,𝒳 )-holomorphic if there exists a constant

𝑀 <∞ such that

(i) 𝑢 : 𝑈 → 𝒳 is continuous,

(ii) for every sequence ρ = (𝜌𝑗)𝑗∈N ⊂ (1,∞)N which is (b, 𝜀)-admissible, i.e. which

satisfies
∑︁

𝑗∈N

𝑏𝑗(𝜌𝑗 − 1) ≤ 𝜀 , (17)

𝑢 admits a separately holomorphic extension (again denoted by 𝑢) onto the

poly-ellipse ℰρ,

(iii) for each (b, 𝜀)-admissible ρ holds

sup
z∈ℰρ

‖𝑢(z)‖𝒳 ≤𝑀 . (18)

If it is clear from the context that 𝒳 = C, then we will omit 𝒳 in notation.

Remark 3.4. We note that for b ∈ ℓ1(N) as in Definition 3.3, 𝑏𝑗 → 0 as 𝑗 →
∞. By (17), (b, 𝜀)-admissible polyradii ρ can satisfy 𝜌𝑗 → ∞, implying that the

component sets ℰ𝜌𝑗 will grow as 𝑗 → ∞. We also observe the following, elementary

geometric fact:

∀𝜌 > 1 : ℰ𝜌 ⊃ 𝐵(𝜌−1/𝜌)/2 . (19)

In particular, ℰ𝜌 ⊃ 𝐵1 ⊃ [−1, 1] for all 𝜌 > 1 +
√
2. Bernstein ellipses ℰ𝜌 are

moreover useful if the domain of holomorphy of 𝑢 does not contain 𝐵1. Moreover,
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if 𝜌𝑗 → ∞, after all but a (possibly small) finite number of parameters, the domains

of holomorphy ℰ𝜌𝑗 contain a polydisc with radius (𝜌𝑗 − 1/𝜌𝑗)/2 > 1. We shall

see in Section 4 below that multivariate monomials can be expressed by smaller

DNNs than, e.g., multivariate Legendre, or Jacobi polynomials. In particular, for

the emulation of tensor products of Taylor monomials the product network is of

smaller size than that for the emulation of tensor product Legendre polynomials.

The reason is that the 𝐿∞-norm of Taylor monomials equals 1, whereas for ν ∈ ℱ it

holds that ‖𝐿ν‖𝐿∞(𝑈) ≤
∏︀

𝑗∈supp ν

√︀

1 + 2𝜈𝑗 (cf. (16)). Due to the growth of this

bound, to achieve the same absolute accuracy a larger relative accuracy is required,

and therefore a larger product network size (see Proposition 4.3). We therefore use

in our expression rate bounds “Taylor DNN emulations” as in [77] for all but a

fixed, finite number of dimensions. There, we use an exponential expression rate

bound from [62] for the ReLU DNN approximation of tensor product Legendre

polynomials (Proposition 4.6).

Deőnition 3.3 has been similarly stated in [13]. The sequence b in Deőnition 3.3

quantiőes the size of the domains of analytic continuation of the parametric map

with respect to the parameters 𝑦𝑗 ∈ y: the stronger the decrease of b, the faster the

radii 𝜌𝑗 of (b, 𝜀)-admissible sequences ρ may increase. The sequence b (or, more

precisely, the summability exponent 𝑝 such that b ∈ ℓ𝑝(N)) will determine the

algebraic rate at which the gpc coefficients tend to 0 (see Theorem 3.7 ahead).

The notion of (b, 𝜀,𝒳 )-holomorphy applies to large classes of parametric operator

equations, notably including functions of the type (13). This statement is given in

the next lemma which is proven in [84, Lemma 2.2.7], see also [86, Lemma 3.3] (for

a version based on holomorphy on polydiscs rather than on polyellipses).

Lemma 3.5. Let u : 𝑂 → 𝒳 be holomorphic where 𝑂 ⊆ 𝒵 is open. Assume that

(𝜓𝑗)𝑗∈N ⊆ 𝒵, 𝜓𝑗 ̸= 0 for all 𝑗, with (‖𝜓𝑗‖𝒵)𝑗∈N ∈ ℓ1(N) and {
∑︀

𝑗∈N
𝑦𝑗𝜓𝑗 : y ∈

𝑈} ⊆ 𝑂. Then there exists 𝜀 > 0 such that 𝑢(y) = u(
∑︀

𝑗∈N
𝑦𝑗𝜓𝑗), y ∈ 𝑈 defines

a (b, 𝜀,𝒳 )-holomorphic function with 𝑏𝑗 := ‖𝜓𝑗‖𝒵 .

3.3 Summability of gpc coefficients

As mentioned above, the relevance of (b, 𝜀,𝒳 )-holomorphy lies in that it guarantees

such functions to possess gpc expansions with coefficients whose norms are 𝑝-

summable for some 𝑝 ∈ (0, 1). This 𝑝-summability is the crucial property required

to establish convergence rates of certain partial sums. Our analysis of the expressive

power of DNNs of such parametric solution families will be based on a version

of these results as stated in the next theorem. To reduce the asymptotic size of
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the networks, we consider gpc expansions combining both multivariate monomials

and multivariate Legendre polynomials, as motivated in Remark 3.4. While 𝑝-

summability of the norms of both the Taylor and the Legendre coefficients of such

functions is well-known (under suitable assumptions), Theorem 3.7 below is not

available in the literature. For this reason we provide a proof but stress that the

general line of arguments closely follows earlier works such as [15, 16, 13, 85].

In the next theorem we distinguish between low- and high-dimensional co-

ordinates: We shall use in łlow dimensionsž indexed by 𝑗 ∈ {1, ..., 𝐽} Legendre

expansions, whereas in the co-ordinates indexed by 𝑗 > 𝐽 we resort to Taylor gpc

expansions. For 1 ≤ 𝑗 ≤ 𝐽 , we thus exploit holomorphy on poly-ellipses ℰ𝜌𝑗 and

Legendre gpc expansions. For 𝑗 > 𝐽 , we emulate by ReLU DNNs the corresponding

Taylor gpc expansions in these co-ordinates using [77] and the fact that sufficiently

large Bernstein ellipses with foci ±1 contain discs with radius > 1 centered at the

origin (as pointed out in Remark 3.4).

Accordingly, we introduce the following notation: for some őxed 𝐽 ∈ N (deőned

in the following) and ν ∈ ℱ set

ν𝐸 := (𝜈1, . . . , 𝜈𝐽 ), ν𝐹 := (𝜈𝐽+1, 𝜈𝐽+2, . . . )

and ℱ𝐸 := N
𝐽
0 , and we will write ν = (ν𝐸 ,ν𝐹 ). Moreover 𝑈𝐸 := [−1, 1]𝐽 and

𝑈𝐹 :=×𝑗>𝐽
[−1, 1], and for y = (𝑦𝑗)𝑗∈N ∈ 𝑈 deőne y𝐸 := (𝑦𝑗)

𝐽
𝑗=1 ∈ 𝑈𝐸 and

y𝐹 := (𝑦𝑗)𝑗>𝐽 ∈ 𝑈𝐹 . In particular we will employ the notation yν𝐹

𝐹 =
∏︀

𝑗>𝐽 𝑦
𝜈𝑗

𝑗 .

Additionally, for a function 𝑢 : 𝑈 → 𝒳 , by 𝑢(y𝐸 ,0) we mean 𝑢 evaluated at

(𝑦1, . . . , 𝑦𝐽 , 0, 0, . . . ) ∈ 𝑈 . In terms of the Lebesgue measure 𝜆 on [−1, 1] deőne

𝜇𝐸 := ⊗𝐽
𝑗=1

𝜆
2 on 𝑈𝐸 and 𝜇𝐹 := ⊗𝑗>𝐽

𝜆
2 on 𝑈𝐹 .

Lemma 3.6. Let 𝐶0 := 4/9. Then 𝐵C
𝐶0𝜌 ⊆ ℰ𝜌 for all 𝜌 ≥ 3.

Proof. By Remark 3.4 it holds 𝐵(𝜌−𝜌−1)/2 ⊆ ℰ𝜌, so it suffices to check (𝜌−𝜌−1)/2 ≥
𝐶0𝜌 for all 𝜌 ≥ 3. For 𝜌 = 3 this follows by elementary calculations, and for 𝜌 > 3

it follows by the fact that 𝜌 ↦→ (𝜌 − 𝜌−1)/(2𝜌) = (1 − 𝜌−2)/2 is monotonically

increasing for 𝜌 ≥ 3.

Theorem 3.7. Let 𝑢 be (b, 𝜀,𝒳 )-holomorphic for some b ∈ ℓ𝑝(N), 𝑝 ∈ (0, 1) and

𝜀 > 0. Then there exists 𝐽 ∈ N such that

(i) for each ν ∈ ℱ

𝑐ν :=

∫︁

𝑈𝐸

𝐿ν𝐸 (y𝐸)
𝜕ν𝐹
y𝐹
𝑢(y𝐸 ,0)

ν𝐹 !
d𝜇𝐸(y𝐸) ∈ 𝒳 (20)

is well-defined and it holds

(‖𝐿ν𝐸‖𝐿∞(𝑈𝐸)‖𝑐ν‖𝒳 )ν∈ℱ ∈ ℓ𝑝(ℱ),
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(ii) it holds

𝑢(y) =
∑︁

ν∈ℱ
𝑐ν𝐿ν𝐸 (y𝐸)yν𝐹

𝐹 ∈ 𝒳 ,

with absolute and uniform convergence for all y ∈ 𝑈 ,

(iii) there exist constants 𝐶1, 𝐶2 > 0 and a monotonically increasing sequence

δ = (𝛿𝑗)𝑗∈N ⊆ (1,∞) such that (𝛿−1
𝑗 )𝑗∈N ∈ ℓ𝑝/(1−𝑝)(N), 𝛿𝑗 ≤ 𝐶1𝑗

2/𝑝 for all

𝑗 ∈ N and

(δν‖𝐿ν𝐸‖𝐿∞(𝑈𝐸)‖𝑐ν‖𝒳 )ν∈ℱ ∈ ℓ1(ℱ). (21)

Furthermore with

Λ𝜏 := {ν ∈ ℱ : δ−ν ≥ 𝜏}
it holds for all 𝜏 ∈ (0, 1) that |Λ𝜏 | > 0 and

sup
y∈𝑈

⃦

⃦

⃦

⃦

⃦

⃦

𝑢(y)−
∑︁

ν∈Λ𝜏

𝑐ν𝐿ν𝐸 (y𝐸)yν𝐹

𝐹

⃦

⃦

⃦

⃦

⃦

⃦

𝒳

≤ 𝐶2|Λ𝜏 |−
1
𝑝+1.

The proof is given in Appendix A.1. We next give more details on the structure

of the sets (Λ𝜏 )𝜏∈(0,1) that will be required in establishing the ensuing DNN

expression rate bounds. To this end let us introduce the quantities

𝑚(Λ) := sup
ν∈Λ

|ν|1 and 𝑑(Λ) := sup
ν∈Λ

| suppν|. (22)

Proposition 3.8. Let the assumptions of Theorem 3.7 be satisfied, and let 𝐽 ∈ N

and (Λ𝜏 )𝜏 ∈ (0, 1) be as in the statement of Theorem 3.7. Then

(i) Λ𝜏 is finite and downward closed for all 𝜏 ∈ (0, 1),

(ii) 𝑚(Λ𝜏 ) = 𝑂(log(|Λ𝜏 |)) and 𝑑(Λ𝜏 ) = 𝑜(log(|Λ𝜏 |)) as 𝜏 → 0,

(iii) |{ν𝐸 : ν ∈ Λ𝜏}| = 𝑂(log(|Λ𝜏 |)𝐽 ) as 𝜏 → 0,

(iv) for all 𝜏 ∈ (0, 1), if e𝑗 ∈ Λ𝜏 for some 𝑗 ∈ N then for all 𝑖 < 𝑗 it holds that

e𝑖 ∈ Λ𝜏 .

Proof. To show (i), for downward closedness, let ν ≤ µ and µ ∈ Λ𝜏 be given. Then

𝜏 ≤ ρ−µ ≤ ρ−ν and thus ν ∈ Λ𝜏 . Item (ii) was shown in [84, Lemma 1.4.15] and

[84, Example 1.4.23].

Item (iii) is a consequence of 𝑚(Λ𝜏 ) = 𝑂(log(|Λ𝜏 |)), which holds by (ii). Finally,

(iv) is a direct consequence of the monotonicity of (𝛿𝑗)𝑗∈N, which holds by Theorem

3.7.

Remark 3.9. We note that in the proof of Theorem 3.7, in particular Equa-

tion (53), the sequence δ is defined in terms of only b, 𝑝 and 𝜀.2 The index sets

2 The sequence δ depends on ε through γ2 ∈ (1, κ), for κ satisfying Equation (45).
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(Λ𝜏 )𝜏∈(0,1) depend solely on δ and 𝜏 . Thus, in principle, 𝜀 and the sequence b are

sufficient to determine these index sets. For example, in the situation of Lemma

3.5, it holds 𝑏𝑗 = ‖𝜓𝑗‖𝒵 , 𝑗 ∈ N, which is known (or can be estimated) for many

function systems {𝜓𝑗}𝑗≥1.

4 DNN surrogates of real-valued functions

We now turn to the statement and proofs of the main results of this work. We őrst

recapitulate in Section 4.1 the DNNs which we consider for the approximation,

then present in Section 4.2 mathematical operations on DNNs. In Section 4.3, we

recapitulate quantitative approximation rate bounds for polynomials by ReLU

NNs, from [51, 77, 62, 47] which we use subsequently to reapproximate 𝑁 -term

gpc approximations of (b, 𝜀,R)-holomorphic functions.

As in [77], we develop the DNN expression rate bounds (which are free from

the curse of dimensionality of the parametric maps) in Sections 4.4 and 4.5 in

an abstract setting, for countably-parametric, scalar-valued maps with quantiőed

control on the size of holomorphy domains.

4.1 Network architecture

We will use the same DNN architecture as in previous works (e.g. [62]). In Sections

4.1ś4.3 we now restate results from [62, Section 2].

We consider deep neural networks (DNNs for short) of feed-forward type.

Such a NN 𝑓 can mathematically be described as a repeated composition of

linear transformations with a nonlinear activation function. More precisely: For an

activation function 𝜎 : R → R, a őxed number of hidden layers 𝐿 ∈ N0, numbers

𝑁ℓ ∈ N of computation nodes in layer ℓ ∈ {1, . . . , 𝐿 + 1}, 𝑓 : R𝑁0 → R
𝑁𝐿+1 is

realized by a feedforward neural network, if for certain weights 𝑤ℓ
𝑖,𝑗 ∈ R, and biases

𝑏ℓ𝑗 ∈ R it holds for all x = (𝑥𝑖)
𝑁0
𝑖=1

𝑧1𝑗 = 𝜎

(︃

𝑁0
∑︁

𝑖=1

𝑤1
𝑖,𝑗𝑥𝑖 + 𝑏1𝑗

)︃

, 𝑗 ∈ {1, . . . , 𝑁1} , (23a)

and

𝑧ℓ+1
𝑗 = 𝜎

(︃

𝑁ℓ
∑︁

𝑖=1

𝑤ℓ+1
𝑖,𝑗 𝑧ℓ𝑖 + 𝑏ℓ+1

𝑗

)︃

, ℓ ∈ {1, . . . , 𝐿− 1}, 𝑗 ∈ {1, . . . , 𝑁ℓ+1} ,

(23b)
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and őnally

𝑓(x) = (𝑧𝐿+1
𝑗 )

𝑁𝐿+1

𝑗=1 =

(︃

𝑁𝐿
∑︁

𝑖=1

𝑤𝐿+1
𝑖,𝑗 𝑧𝐿𝑖 + 𝑏𝐿+1

𝑗

)︃𝑁𝐿+1

𝑗=1

. (23c)

In this case 𝑁0 is the dimension of the input and 𝑁𝐿+1 is the dimension of the

output. Furthermore 𝑧ℓ𝑗 denotes the output of unit 𝑗 in layer ℓ. The weight 𝑤ℓ
𝑖,𝑗

has the interpretation of connecting the 𝑖th unit in layer ℓ− 1 with the 𝑗th unit in

layer ℓ. If 𝐿 = 0, then (23c) holds with 𝑧0𝑖 := 𝑥𝑖 for 𝑖 = 1, . . . , 𝑁0.

Except when explicitly stated, we will not distinguish between the network

(which is deőned through 𝜎, the 𝑤ℓ
𝑖,𝑗 and 𝑏ℓ𝑗) and the function 𝑓 : R𝑁0 → R

𝑁𝐿+1

it realizes. We note in passing that this relation is typically not one-to-one, i.e.

different NNs may realize the same function as their output. Let us also emphasize

that we allow the weights 𝑤ℓ
𝑖,𝑗 and biases 𝑏ℓ𝑗 for ℓ ∈ {1, . . . , 𝐿+1}, 𝑖 ∈ {1, . . . , 𝑁ℓ−1}

and 𝑗 ∈ {1, . . . , 𝑁ℓ} to take any value in R, i.e. we do not consider quantization as

e.g. in [10, 67].

As is customary in the theory of NNs, the number of hidden layers 𝐿 of a NN

is referred to as depth3 and the total number of nonzero weights and biases as the

size of the NN. Hence, for a DNN 𝑓 as in (23), we deőne

size(𝑓) := |{(𝑖, 𝑗, ℓ) : 𝑤ℓ
𝑖,𝑗 ̸= 0}|+ |{(𝑗, ℓ) : 𝑏ℓ𝑗 ̸= 0}| and depth(𝑓) := 𝐿.

In addition, sizein(𝑓) := |{(𝑖, 𝑗) : 𝑤1
𝑖,𝑗 ̸= 0}| + |{𝑗 : 𝑏1𝑗 ̸= 0}| and sizeout(𝑓) :=

|{(𝑖, 𝑗) : 𝑤𝐿+1
𝑖,𝑗 ̸= 0}|+ |{𝑗 : 𝑏𝐿+1

𝑗 ̸= 0}|, which are the number of nonzero weights

and biases in the input layer of 𝑓 and in the output layer, respectively.

The proofs of our main results are constructive, in the sense that we explicitly

provide NN architectures and constructions of instances of DNNs with these

architectures which are sufficient (but possibly larger than necessary) for achieving

the claimed expression rates. We construct these NNs by assembling smaller

networks, using the operations of concatenation and parallelization, as well as

so-called łidentity-networksž which realize the identity mapping. Below, we recall

the deőnitions.

3 In other recent references (e.g. [63]), slightly different terminology for the number L of

layers in the DNN differing from the convention in the present paper by a constant factor,

is used. This difference will be inconsequential for all results that follow.



Deep learning in high dimension 23

4.2 Basic operations

Throughout, as activation function 𝜎 we consider either the ReLU activation

function

𝜎1(𝑥) := max{0, 𝑥} 𝑥 ∈ R (24)

or, as suggested in [54, 55, 47], for 𝑟 ∈ N, 𝑟 ≥ 2, the RePU activation function

𝜎𝑟(𝑥) := max{0, 𝑥}𝑟 = 𝜎1(𝑥)
𝑟 𝑥 ∈ R. (25)

See [62, Remark 2.1] for a historical note on rectiőed power units. If a NN uses

𝜎𝑟 as activation function, we refer to it as 𝜎𝑟-NN. ReLU NNs are referred to as

𝜎1-NNs. It is assumed throughout that all activations in a DNN are of equal type.

We now recall the parallelization and concatenation of networks, as well

networks realizing the identity. The constructions are mostly straightforward. For

details and proofs we refer to [67, 63, 27, 62].

4.2.1 Parallelization

Let 𝑓 , 𝑔 be two NNs with the same depth 𝐿 ∈ N0, input dimensions 𝑛𝑓 , 𝑛𝑔 and

output dimensions 𝑚𝑓 , 𝑚𝑔 respectively. There exists a NN (𝑓, 𝑔)d such that

(𝑓, 𝑔)d : R𝑛𝑓 × R
𝑛𝑔 → R

𝑚𝑓 × R
𝑚𝑔 : (x, x̃) ↦→ (𝑓(x), 𝑔(x̃)).

It holds depth((𝑓, 𝑔)d) = 𝐿, size((𝑓, 𝑔)d) = size(𝑓) + size(𝑔), sizein((𝑓, 𝑔)d) =

sizein(𝑓) + sizein(𝑔) and sizeout((𝑓, 𝑔)d) = sizeout(𝑓) + sizeout(𝑔), see [67, 27].

In case 𝑛𝑓 = 𝑛𝑔 = 𝑛, there exists a NN (𝑓, 𝑔) with the same depth and size as

(𝑓, 𝑔)𝑑, such that

(𝑓, 𝑔) : R𝑛 → R
𝑚𝑓 × R

𝑚𝑔 : x ↦→ (𝑓(x), 𝑔(x)).

4.2.2 Identity

By [67, Lemma 2.3], for all 𝑛 ∈ N, 𝐿 ∈ N0 there exists a 𝜎1-identity network IdR𝑛

of depth 𝐿 such that IdR𝑛(x) = x for all x ∈ R
𝑛. It holds that

size(IdR𝑛) ≤ 2𝑛(𝐿+ 1), sizein(IdR𝑛) ≤ 2𝑛, sizeout(IdR𝑛) ≤ 2𝑛.

Analogously, by [62, Proposition 2.3], for all 𝑟, 𝑛 ∈ N, 𝑟 ≥ 2 and 𝐿 ∈ N0 there

exists a 𝜎𝑟-identity network IdR𝑛 of depth 𝐿 such that IdR𝑛(x) = x. It holds that

size(IdR𝑛) ≤ 𝑛𝐿(4𝑟2 + 2𝑟), sizein(IdR𝑛) ≤ 4𝑛𝑟, sizeout(IdR𝑛) ≤ 𝑛(2𝑟 + 1).



24 Opschoor, Schwab, Zech

4.2.3 Sparse concatenation

Let 𝑓 and 𝑔 be 𝜎1-NNs, such that the output dimension of 𝑔 equals the input

dimension of 𝑓 . Let 𝑛𝑔 be the input dimension of 𝑔 and 𝑚𝑓 the output dimension

of 𝑓 . Then, the sparse concatenation of the NNs 𝑓 and 𝑔 realizes the function

𝑓 ∘ 𝑔 : R𝑛𝑔 → R
𝑚𝑓 : x ↦→ 𝑓(𝑔(x)). (26)

In the following, by abuse of notation, ł∘ž can either stand for the composition of

functions or the sparse concatenation of networks. The meaning will be clear from

the context. By [67, Remark 2.6], depth(𝑓 ∘ 𝑔) = depth(𝑓) + 1 + depth(𝑔),

size(𝑓 ∘ 𝑔) ≤ size(𝑓) + sizein(𝑓) + sizeout(𝑔) + size(𝑔) ≤ 2 size(𝑓) + 2 size(𝑔) (27)

and

sizein(𝑓 ∘ 𝑔) ≤
{︃

sizein(𝑔) depth(𝑔) ≥ 1,

2 sizein(𝑔) depth(𝑔) = 0,

sizeout(𝑓 ∘ 𝑔) ≤
{︃

sizeout(𝑓) depth(𝑓) ≥ 1,

2 sizeout(𝑓) depth(𝑓) = 0.

Similarly, for 𝑟 ≥ 2 there exists a sparse concatenation of 𝜎𝑟-NNs (we denote

the concatenation operator again by ∘) satisfying the following size and depth

bounds from [62, Proposition 2.4]: Let 𝑓 , 𝑔 be two 𝜎𝑟-NNs such that the output

dimension 𝑘 of 𝑔 equals the input dimension of 𝑓 , and suppose that sizein(𝑓),

sizeout(𝑔) ≥ 𝑘. Then depth(𝑓 ∘ 𝑔) = depth(𝑓) + 1 + depth(𝑔),

size(𝑓 ∘ 𝑔) ≤ size(𝑓) + (2𝑟 − 1) sizein(𝑓) + (2𝑟 + 1)𝑘 + (2𝑟 − 1) sizeout(𝑔) + size(𝑔)

≤ size(𝑓) + 2𝑟 sizein(𝑓) + (4𝑟 − 1) sizeout(𝑔) + size(𝑔)

≤ (2𝑟 + 1) size(𝑓) + 4𝑟 size(𝑔),

(28)

and

sizein(𝑓 ∘ 𝑔) ≤
{︃

sizein(𝑔) depth(𝑔) ≥ 1,

2𝑟 sizein(𝑔) + 2𝑟𝑘 ≤ 4𝑟 sizein(𝑔) depth(𝑔) = 0,

sizeout(𝑓 ∘ 𝑔) ≤
{︃

sizeout(𝑓) depth(𝑓) ≥ 1,

2𝑟 sizeout(𝑓) + 𝑘 ≤ (2𝑟 + 1) sizeout(𝑓) depth(𝑓) = 0.

Combining identity networks with the sparse concatenation, we can parallelize

networks of different depth. The next lemma shows this for ReLU-NNs (a proof is

given in Appendix A.2).
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Lemma 4.1. For all 𝑘, 𝑛 ∈ N and 𝜎1-NNs 𝑓1, . . . , 𝑓𝑘 with the same input dimen-

sion 𝑛 and output dimensions 𝑚1, . . . ,𝑚𝑘 ∈ N, there exists a 𝜎1-NN (𝑓1, . . . , 𝑓𝑘)s
called the parallelization of 𝑓1, . . . , 𝑓𝑘 with shared identity network. It has in-

put dimension 𝑛, output dimension 𝑚 :=
∑︀𝑘

𝑡=1𝑚𝑡, it realizes R
𝑛 → R

𝑚 : x ↦→
(𝑓1(x), . . . , 𝑓𝑘(x)), has depth 𝐿 := max𝑡=1,...,𝑘 depth(𝑓𝑡) and its size is bounded

as follows:

size((𝑓1, . . . , 𝑓𝑘)s) ≤
𝑘
∑︁

𝑡=1

size(𝑓𝑡) +

𝑘
∑︁

𝑡=1

sizein(𝑓𝑡) + 2𝑛𝐿 ≤ 2

𝑘
∑︁

𝑡=1

size(𝑓𝑡) + 2𝑛𝐿,

sizein((𝑓1, . . . , 𝑓𝑘)s) ≤
𝑘
∑︁

𝑡=1

sizein(𝑓𝑡) + 2𝑛,

sizeout((𝑓1, . . . , 𝑓𝑘)s) ≤
𝑘
∑︁

𝑡=1

2 sizeout(𝑓𝑡).

Remark 4.2. The term 2𝑛𝐿 in the size bound corresponds to the nonzero weights

(and biases) of the identity network used to construct the parallelization. We point

out that this number is independent of the number 𝑘 of networks (𝑓𝑡)
𝑘
𝑡=1, since our

construction allows the 𝑘 networks to share one identity network.

4.3 Approximation of polynomials

As in other recent works (e.g. [77, 62, 23, 63]), the ensuing DNN expression rate

analysis of possibly countably-parametric posterior densities will rely on DNN

reapproximation of sparse generalized polynomial chaos approximations of these

densities. It has been observed in [83, 51] that ReLU DNNs can represent high

order polynomials on bounded intervals rather efficiently. We recapitulate several

results of this type, from [62, Section 2], and from [77] which we will require in the

following.

4.3.1 Approximate multiplication

Contrary to [83], the next result bounds the DNN expression error in𝑊 1,∞([−𝑀,𝑀 ]2)

(instead of the 𝐿∞([−𝑀,𝑀 ]2)-norm).
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Proposition 4.3 ([77, Proposition 3.1]). For any 𝛿 ∈ (0, 1) and 𝑀 ≥ 1 there

exists a 𝜎1-NN ×̃𝛿,𝑀 : [−𝑀,𝑀 ]2 → R such that

sup
|𝑎|,|𝑏|≤𝑀

|𝑎𝑏− ×̃𝛿,𝑀 (𝑎, 𝑏)| ≤ 𝛿,

ess sup
|𝑎|,|𝑏|≤𝑀

max

{︂⃒

⃒

⃒

⃒

𝑏− 𝜕

𝜕𝑎
×̃𝛿,𝑀 (𝑎, 𝑏)

⃒

⃒

⃒

⃒

,

⃒

⃒

⃒

⃒

𝑎− 𝜕

𝜕𝑏
×̃𝛿,𝑀 (𝑎, 𝑏)

⃒

⃒

⃒

⃒

}︂

≤ 𝛿,
(29)

where 𝜕
𝜕𝑎 ×̃𝛿,𝑀 (𝑎, 𝑏) and 𝜕

𝜕𝑏 ×̃𝛿,𝑀 (𝑎, 𝑏) denote weak derivatives. There exists a con-

stant 𝐶 > 0 independent of 𝛿 ∈ (0, 1) and 𝑀 ≥ 1 such that sizein(×̃𝛿,𝑀 ) ≤ 𝐶,

sizeout(×̃𝛿,𝑀 ) ≤ 𝐶,

depth(×̃𝛿,𝑀 ) ≤ 𝐶(1 + log2(𝑀/𝛿)), size(×̃𝛿,𝑀 ) ≤ 𝐶(1 + log2(𝑀/𝛿)).

Moreover, for every 𝑎 ∈ [−𝑀,𝑀 ], there exists a finite set 𝒩𝑎 ⊆ [−𝑀,𝑀 ] such

that 𝑏 ↦→ ×̃𝛿,𝑀 (𝑎, 𝑏) is strongly differentiable at all 𝑏 ∈ (−𝑀,𝑀)∖𝒩𝑎.

Proposition 4.3 implies the existence of networks approximating the multiplication

of 𝑛 different numbers.

Proposition 4.4 ([77, Proposition 3.3]). For any 𝛿 ∈ (0, 1), 𝑛 ∈ N and 𝑀 ≥ 1

there exists a 𝜎1-NN ˜∏︀
𝛿,𝑀 : [−𝑀,𝑀 ]𝑛 → R such that

sup
(𝑥𝑖)𝑛𝑖=1∈[−𝑀,𝑀 ]𝑛

⃒

⃒

⃒

⃒

⃒

⃒

𝑛
∏︁

𝑗=1

𝑥𝑗 −
˜∏︁

𝛿,𝑀
(𝑥1, . . . , 𝑥𝑛)

⃒

⃒

⃒

⃒

⃒

⃒

≤ 𝛿. (30)

There exists a constant 𝐶 independent of 𝛿 ∈ (0, 1), 𝑛 ∈ N and 𝑀 ≥ 1 such

that

size(
˜∏︁

𝛿,𝑀
) ≤ 𝐶(1+𝑛 log(𝑛𝑀𝑛/𝛿)), depth(

˜∏︁

𝛿,𝑀
) ≤ 𝐶(1+log(𝑛) log(𝑛𝑀𝑛/𝛿)).

(31)

Remark 4.5. In [77], Propositions 4.3 and 4.4 are shown for 𝑀 = 1. The result

for 𝑀 > 1 is obtained by a simple scaling argument. See [62, Proposition 2.6] for

more details.

4.3.2 ReLU DNN approximation of tensor product Legendre polynomials

Based on the ReLU DNN emulation of products in Proposition 4.3, we constructed

ReLU DNN approximations of multivariate Legendre polynomials in [62]. For the

statement recall 𝑚(Λ) in (22).



Deep learning in high dimension 27

Proposition 4.6 ([62, Proposition 2.13]). For every finite Λ ⊂ N
𝑑
0 and every 𝛿 ∈

(0, 1), there exists a 𝜎1-NN 𝑓Λ,𝛿 = (𝐿̃ν,𝛿)ν∈Λ with input dimension 𝑑 and output

dimension |Λ| such that the outputs {𝐿̃ν,𝛿}ν∈Λ of 𝑓Λ,𝛿 satisfy for every ν ∈ Λ

‖𝐿ν − 𝐿̃ν,𝛿‖𝑊 1,∞([−1,1]𝑑) ≤ 𝛿, sup
y∈[−1,1]𝑑

⃒

⃒𝐿̃ν,𝛿((𝑦𝑗)𝑗∈supp ν)
⃒

⃒ ≤ (2𝑚(Λ) + 2)𝑑.

Furthermore, there exists 𝐶 > 0 such that for every 𝑑, Λ and 𝛿

depth(𝑓Λ,𝛿) ≤𝐶(1 + 𝑑 log 𝑑)(1 + log2𝑚(Λ))
(︀

𝑚(Λ) + log2(1/𝛿)
)︀

,

size(𝑓Λ,𝛿) ≤𝐶
[︁

𝑑2𝑚(Λ)2 + 𝑑𝑚(Λ) log2(1/𝛿) + 𝑑2|Λ|
(︀

1 + log2𝑚(Λ) + log2(1/𝛿)
)︀

]︁

.

4.3.3 RePU DNN emulation of polynomials

The approximation of polynomials by neural networks can be signiőcantly simpliőed

if instead of the ReLU activation 𝜎1 we consider as activation function the so-called

rectified power unit (łRePUž for short) 𝜎𝑟(𝑥) = max{0, 𝑥}𝑟 for 𝑟 ≥ 2. In contrast

to 𝜎1-NNs, as shown in [47], for every 𝑟 ∈ N, 𝑟 ≥ 2 there exist RePU networks of

depth 1 realizing the multiplication of two real numbers without error. This yields

the following result, slightly improving [47, Theorem 9], in that the constant 𝐶 is

independent of 𝑑. This is relevant, as in Section 4.5 ahead the number of active

parameters 𝑑(Λ𝜏 ) increases with decreasing accuracy 𝜏 .

Proposition 4.7 ([62, Proposition 2.14]). Fix 𝑑 ∈ N and 𝑟 ∈ N, 𝑟 ≥ 2. Then

there exists a constant 𝐶 > 0 depending on 𝑟 but independent of 𝑑 such that for any

finite downward closed Λ ⊆ N
𝑑
0 and any 𝑝 ∈ PΛ there is a 𝜎𝑟-network 𝑝 : R𝑑 → R

which realizes 𝑝 exactly and such that size(𝑝) ≤ 𝐶|Λ| and depth(𝑝) ≤ 𝐶 log2(|Λ|).

Remark 4.8. Similar results hold for other, widely used activation functions 𝜓.

As discussed in [62, Remark 2.15], if the product of two numbers can be approxi-

mated by 𝜓-NNs up to arbitrary accuracy and with NN size and depth independent

of the accuracy, then polynomials can be approximated with size and depth bounded

as size(𝑝) ≤ 𝐶|Λ| and depth(𝑝) ≤ 𝐶 log2(|Λ|), for 𝐶 independent of the arbitrarily

small accuracy.

Activation functions for which this holds include (i) 𝜓 ∈ 𝐶2 for which there

exists 𝑥 ∈ R where 𝜓′′(𝑥) ̸= 0, (ii) 𝜓 which are continuous and sigmoidal of order

𝑘 ≥ 2 (see also [62, Remark 2.1]), and (iii) NNs with rational activations. We

refer to [62, Remark 2.15] for a more detailed discussion.
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4.4 ReLU DNN approximation of (b, ε,R)-holomorphic

maps

We now present a result about the expressive power for (b, 𝜀,R)-holomorphic

functions, in the sense of Remark 3.1. Theorem 4.9 generalizes [77, Theorem 3.9],

as it shows that less regular functions4 can be emulated with the same convergence

rate (see Remark 3.4). In particular, we obtain that up to logarithmic terms, ReLU

DNNs are capable of approximating (b, 𝜀,R)-holomorphic maps at rates equivalent

to those achieved by best 𝑛-term gpc approximations. Here, “rate” is understood

in terms of the NN size, i.e., in terms of the total number of nonzero weights in

the DNN.

In the following, for Λ𝜏 ⊂ ℱ as in Theorem 3.7, we deőne its support

𝑆Λ𝜏
:= ∪ν∈Λ𝜏

suppν ⊂ N. (32)

Theorem 4.9. Let 𝑢 : 𝑈 → R be (b, 𝜀,R)-holomorphic for some b ∈ ℓ𝑝(N),

𝑝 ∈ (0, 1) and 𝜀 > 0. For 𝜏 ∈ (0, 1) let Λ𝜏 ⊂ ℱ be as in Theorem 3.7.

Then there exists 𝐶 > 0 depending on b, 𝜀 and 𝑢, such that for all 𝜏 ∈ (0, 1)

there exists a 𝜎1-NN 𝑢̃𝜏 with input variables (𝑦𝑗)𝑗∈𝑆Λ𝜏
such that

size(𝑢̃𝜏 ) ≤𝐶(1 + |Λ𝜏 | · log |Λ𝜏 | · log log |Λ𝜏 |),
depth(𝑢̃𝜏 ) ≤𝐶(1 + log |Λ𝜏 | · log log |Λ𝜏 |).

Furthermore, 𝑢̃𝜏 satisfies the uniform error bound

sup
y∈𝑈

⃒

⃒𝑢(y)− 𝑢̃𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏
)
⃒

⃒ ≤ 𝐶|Λ𝜏 |−1/𝑝+1. (33)

In case |Λ𝜏 | = 1, the statement holds with log log |Λ𝜏 | replaced by 0.

The proof is given in Appendix A.3.

Remark 4.10. Let 𝐾 ∈ N and let 𝑣 : 𝑈 → R
𝐾 be (b, 𝜀,R𝐾)-holomorphic. Then

Theorem 4.9 can be applied to each component of 𝑣. This at most increases the

bound on the network size by a factor 𝐾, but it does not affect the depth and the

convergence rate. In fact, only the dimension of the output layer has to be increased,

the hidden layers of the DNN can be the same as for 𝐾 = 1. This corresponds to

reusing the same polynomial basis for the approximation of all components of 𝑣.

4 Theorem 4.9 only assumes quantified holomorphy in polyellipses in a suitable, finite

number of the parameters yj , whereas [77, Theorem 3.9] required holomorphy in polydiscs.

The presently obtained expression rates are identical to those in [77, Theorem 3.9], but

are shown to hold for maps with smaller domains of holomorphy.
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4.5 RePU DNN approximation of (b, ε,R)-holomorphic

maps

We next provide an analogue of Theorem 4.9 (which used 𝜎1-NNs) for 𝜎𝑟-NNs,

𝑟 ≥ 2. The smaller multiplication networks of Proposition 4.7 allow to prove the

same approximation error for slightly smaller networks in this case.

Theorem 4.11. Let 𝑢 : 𝑈 → R be (b, 𝜀,R)-holomorphic for some b ∈ ℓ𝑝(N),

𝑝 ∈ (0, 1) and 𝜀 > 0. For 𝜏 ∈ (0, 1) let Λ𝜏 ⊂ ℱ be as in Theorem 3.7. Let 𝑟 ∈ N,

𝑟 ≥ 2.

Then there exists 𝐶 > 0 depending on b, 𝜀, 𝑢 and 𝑟, such that for all 𝜏 ∈ (0, 1)

there exists a 𝜎𝑟-NN 𝑢̃𝜏 with input variables (𝑦𝑗)𝑗∈𝑆Λ𝜏
such that

size(𝑢̃𝜏 ) ≤ 𝐶|Λ𝜏 |, depth(𝑢̃𝜏 ) ≤ 𝐶 log |Λ𝜏 |

and 𝑢̃𝜏 satisfies the uniform error bound

sup
y∈𝑈

⃒

⃒𝑢(y)− 𝑢̃𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏
)
⃒

⃒ ≤ 𝐶|Λ𝜏 |−1/𝑝+1. (34)

Proof. By Proposition 4.7, the |𝑆Λ𝜏
|-variate polynomial

∑︀

ν∈Λ𝜏
𝑐ν𝐿ν𝐸 (y𝐸)yν𝐹

𝐹 ∈
PΛ𝜏

from Theorem 3.7 and Corollary 3.8 can be emulated exactly by a 𝜎𝑟-NN

satisfying

size(𝑢̃𝜏 ) ≤ 𝐶|Λ𝜏 |, depth(𝑢̃𝜏 ) ≤ 𝐶 log(|Λ𝜏 |),

for 𝐶 independent of |𝑆Λ𝜏
|. The error bound (34) holds by Theorem 3.7 (iii).

Remarks 4.8 and 4.10 also apply here.

5 DNN surrogates of X -valued functions

In this section, we address the DNN emulation of countably-parametric, holomorphic

maps taking values in function spaces as typically arise in PDE UQ. In Section

5.1 we show DNN expression rate bounds for parametric PDE solution families,

assuming the existence of suitable NN approximations of functions in the solution

space of the PDE.

In Section 5.2.1 we review results on the exact DNN emulation of Courant-type

Finite Element spaces on regular, simplicial triangulations. In Sections 5.2.2 and

5.2.3, we discuss Theorem 5.2 for the diffusion equation from Section 2.4.1 and the

eigenvalue problem from Section 2.4.2.
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5.1 ReLU DNN expression of (b, ε,X )-holomorphic maps

So far, we considered the DNN expression of real-valued maps 𝑢 : 𝑈 → R. In

applications to PDEs, often also the expression of maps 𝑢 : 𝑈 → 𝒳 is of interest.

Here, the real Banach space 𝒳 is a function space over a domain D ⊂ R
𝑑 for 𝑑 ∈ N,

and is interpreted as the solution space of the parametric forward model (1).

As it was shown for example in [26, 3, 85], for gpc coefficients 𝑢ν , a ν-dependent

degree of resolution in 𝒳 of 𝑢ν is in general advantageous. We approach DNN

expression of the parametric solution map through DNN emulation of multilevel

gpc-FE approximations. To state these, a regularity space 𝒳 𝑠 ⊂ 𝒳 of functions

with additional regularity will be required. We őrst present the result in an abstract

setting, and subsequently detail it for an example in Sections 5.2.2 and 5.2.3.

For the DNN emulation of polynomials in the variables y ∈ 𝑈 , we use Lemma

A.1, based on the networks constructed in the proof of Theorem 4.9. For the gpc

coefficients, which we assume to be in 𝒳 𝑠, we allow sequences of NN approximations

satisfying a mild bound on their 𝐿∞-norm, as made precise in Assumption 5.1.

This is needed to use the product networks from Proposition 4.3 to multiply NNs

approximating the polynomials in y with NN approximations of gpc-coefficients.

Assumption 5.1. Assume that there exist 𝛾 > 0, 𝜃 ≥ 0 and 𝐶 > 0 such that for

all 𝑣 ∈ 𝒳 𝑠 and all 𝑚 ∈ N there exists a NN Φ𝑣
𝑚 which satisfies

depth(Φ𝑣
𝑚) ≤ 𝐶(1 + log𝑚), size(Φ𝑣

𝑚) ≤ 𝐶𝑚

and

‖𝑣 − Φ𝑣
𝑚‖𝒳 ≤ 𝐶‖𝑣‖𝒳 𝑠𝑚−𝛾 , ‖Φ𝑣

𝑚‖𝒳 ≤ 𝐶‖𝑣‖𝒳 ,
⃦

⃦Φ𝑣
𝑚

⃦

⃦

𝐿∞(D)
≤ 𝐶 ‖𝑣‖𝒳 𝑠 𝑚

𝜃.

Let us consider an example. For a bounded polytope D ⊂ R
𝑑, functions in the

Kondratiev space 𝒳 𝑠 = 𝒦2
1+𝜁(D) with 𝜁 ∈ (0, 1) (for a deőnition of 𝒦2

1+𝜁(D)

see Equation (39) ahead) can be approximated by continuous, piecewise affine

functions on regular triangulations of D with convergence rate 𝛾 = 1
𝑑 (e.g. [2, 6, 48]

for 𝑑 = 2, [60] for 𝑑 > 2). Continuous, piecewise affine functions on regular,

simplicial partitions can be exactly emulated by ReLU networks, see Section 5.2.1.

These NNs approximate functions in 𝒳 𝑠 = 𝒦2
1+𝜁(D) with (optimal) rate 𝛾 = 1/𝑑.

By the continuous embedding 𝒳 𝑠 →˓ 𝐿∞(D) ([53], [19, Theorem 27]), the last

inequality in Assumption 5.1 is satisőed with 𝜃 = 0. Here, the domain D may,

but need not, be the physical domain of interest. The theorem below also applies

to boundary integral equations, in which case D is the boundary of the physical

domain. Holomorphic dependence of boundary integral operators on the shape of

the domain (łshape-holomorphyž) is shown in [34].
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We obtain the following result, which generalizes [77, Theorem 4.8]. To state

the theorem, we recall the notation 𝑆Λ𝜏
= ∪ν∈Λ𝜏

suppν ⊂ N introduced in (32).

Theorem 5.2. Let 𝑑 ∈ N and let 𝒳 =𝑊 1,𝑞(D), 𝑞 ∈ [1,∞], 5 𝒳 𝑠 ⊂ 𝒳 be Banach

spaces of functions 𝑣 : D → R for some bounded domain D ⊂ R
𝑑. Assume that

Assumption 5.1 holds for some 𝛾 > 0 and 𝜃 ≥ 0. Let 𝑢 : 𝑈 → 𝒳 𝑠 ⊂ 𝒳 be

a (b, 𝜀,𝒳 )-holomorphic map, in the sense of Remark 3.1, for some b ∈ ℓ𝑝(N),

𝑝 ∈ (0, 1) and 𝜀 > 0. Let (𝑐ν)ν∈ℱ ⊂ 𝒳 and (Λ𝜏 )𝜏∈(0,1) be as in Theorem 3.7.

Assume that (𝑐ν)ν∈ℱ ⊂ 𝒳 𝑠 and that (‖𝑐ν‖𝒳 𝑠 ‖𝐿ν𝐸‖𝐿∞(𝑈𝐸))ν∈ℱ ∈ ℓ𝑝
𝑠

for some

0 < 𝑝 < 𝑝𝑠 < 1.

Then, there exists a constant 𝐶 > 0 depending on 𝑑, 𝛾, 𝜃, b, (thus also on

𝑝), 𝜀, 𝑝𝑠 and 𝑢 such that for all 𝜏 ∈ (0, 1) there exists a ReLU NN 𝑢̃𝜏 with input

variables (𝑥1, . . . , 𝑥𝑑) = x ∈ D and (𝑦𝑗)𝑗∈𝑆Λ𝜏
for y ∈ 𝑈 and output dimension 1

such that for some 𝒩𝜏 ∈ N satisfying 𝒩𝜏 ≥ |Λ𝜏 |

size(𝑢̃𝜏 ) ≤ 𝐶(1 +𝒩𝜏 · log𝒩𝜏 · log log𝒩𝜏 ), depth(𝑢̃𝜏 ) ≤ 𝐶(1 + log𝒩𝜏 · log log𝒩𝜏 )

and such that 𝑢̃𝜏 satisfies the uniform error bound

sup
y∈𝑈

⃦

⃦𝑢(y)− 𝑢̃𝜏 (·, (𝑦𝑗)𝑗∈𝑆Λ𝜏
)
⃦

⃦

𝒳 ≤ 𝐶𝒩−𝑟
𝜏 , 𝑟 := 𝛾min

{︂

1,
1/𝑝− 1

𝛾 + 1/𝑝− 1/𝑝𝑠

}︂

.

(35)

The proof is given in Appendix A.4. Theorem 5.2 shows that for all 𝑟* < 𝑟 there

exists 𝐶 > 0 (additionally depending on 𝑟*) such that

sup
y∈𝑈

⃦

⃦𝑢(y)− 𝑢̃𝜏 (·, (𝑦𝑗)𝑗∈𝑆Λ𝜏
)
⃦

⃦

𝒳 ≤ 𝐶(size(𝑢̃𝜏 ))
−𝑟* .

The limit 𝑟 on the convergence rate in (35) is bounded from above by the gpc

best 𝑛-term rate 1/𝑝 − 1 for the truncation error of the gpc expansion and by

the convergence rate 𝛾 of ReLU DNN approximations of functions in 𝒳 𝑠 from

Assumption 5.1.

5.2 ReLU DNN expression of Courant Finite Elements

We now recall that any continuous, piecewise affine function on a locally convex,

regular triangulation is representable by a ReLU network, e.g. [77, 33]. This is used

in Section 5.2.2 to show an expression result for (b, 𝜀,𝒳 )-holomorphic functions,

where 𝒳 is a Sobolev space over a bounded domain.

5 Although q = 2 in all examples we consider, the theorem is stated slightly more generally

for q ∈ [1,∞]. In fact, the result also holds for weighted W 1,q-spaces.
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5.2.1 Continuous, piecewise affine functions

In space dimension 𝑑 = 1, any continuous, piecewise linear function on a partition

𝑎 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑁 = 𝑏 of a őnite interval [𝑎, 𝑏] into 𝑁 subintervals, can be

expressed without error by a 𝜎1-NN with depth 1 and size 𝒪(𝑁), e.g. [77, Lemma

4.5].

A similar result holds for 𝑑 ≥ 2. Consider a bounded polytope 𝐺 ⊂ R
𝑑 with

Lipschitz boundary 𝜕𝐺 being (the closure of) a őnite union of plane 𝑑− 1-faces.

Let 𝒯 be a regular, simplicial triangulation of 𝐺, i.e. the intersection of any two

distinct closed simplices 𝑇 , 𝑇
′ ∈ 𝒯 is either empty or an entire 𝑘-simplex for some

0 ≤ 𝑘 < 𝑑.6 For the ReLU NN emulation of gpc-coefficients, we will use that

also in space dimension 𝑑 ≥ 2, continuous, piecewise linear functions on a regular,

simplicial mesh 𝒯 can efficiently be emulated exactly by ReLU DNNs. For locally

convex partitions, this was shown in [33], as we next recall in Proposition 5.3.

The term locally convex refers to meshes 𝒯 for which each patch, consisting of all

elements attached to a őxed node of 𝒯 , is a convex set. See [33] for more details.

Set

𝑆1(𝐺, 𝒯 ) := {𝑣 ∈ 𝐶0(𝐺) : 𝑣|𝑇 ∈ P1, ∀𝑇 ∈ 𝒯 }.

We denote by 𝒩 (𝒯 ) the set of nodes of the mesh 𝒯 and by 𝑘𝒯 := max𝑝∈𝒩 |{𝑇 ∈
𝒯 : 𝑝 ∈ 𝑇}|, the maximum number of elements sharing a node.

Proposition 5.3 ([33, Theorem 3.1]). Let 𝒯 be a regular, simplicial, locally con-

vex triangulation of a bounded polytope 𝐺. Then every 𝑣 ∈ 𝑆1(𝐺, 𝒯 ) can be imple-

mented exactly by a 𝜎1-NN of depth 1 + log2⌈𝑘𝒯 ⌉ and size of the order 𝒪(|𝒯 |𝑘𝒯 ).

Estimates on the network size for continuous, piecewise linear functions on general,

regular simplicial partitions 𝒯 are stated in [33, Theorem 5.2] based on [81], but

are much larger than those in [33, Theorem 3.1].

5.2.2 Parametric diffusion problem

The standard example of a (b, 𝜀,𝒳 )-holomorphic parametric solution family is based

on Section 2.4.1, i.e. the solution to an affine-parametric diffusion problem, see e.g.

[13, 85]. In the setting of Section 2.4.1, we verify the assumptions of Theorem 5.2.

Let D ⊂ R
2 be a bounded polygonal Lipschitz domain (for details see [84,

Remark 4.2.1]). We consider a linear, elliptic diffusion equation with uncertain

6 In other words, T is a cellular complex.
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diffusion coefficient and with homogeneous Dirichlet boundary conditions. With

𝒳 = 𝒴 := 𝐻1
0 (D;C), 𝑋 := 𝐿∞(D;C) and for a őxed right-hand side 𝑓 ∈ 𝒴 ′ = 𝒳 ′

the weak formulation reads: given 𝑎 ∈ 𝑋, őnd 𝑢(𝑎) ∈ 𝒳 such that
∫︁

D

∇𝑢(𝑎)⊤𝑎∇𝑣dx = ⟨𝑓, 𝑣⟩ ∀𝑣 ∈ 𝒴. (36)

The map 𝐺 : 𝑎 ↦→ 𝑢(𝑎) ∈ 𝒳 is then locally well-deőned and holomorphic around

every 𝑎 ∈ 𝑋 for which ess infx∈D ℜ(𝑎(x)) > 0, see, e.g., [84, Example 1.2.38 and

Equations (4.3.12) ś (4.3.13)].

We consider affine-parametric diffusion coefficients 𝑎 = 𝑎(y), where y =

(𝑦𝑗)𝑗∈N is a sequence of real-valued parameters ranging in 𝑈 = [−1, 1]N. For a

nominal input 𝑎0 ∈ 𝑋 and for a sequence of ŕuctuations (𝜓𝑗)𝑗∈N ⊆ 𝑋, deőne

𝑎(y) = 𝑎0 +
∑︁

𝑗∈N

𝑦𝑗𝜓𝑗 . (37)

Such expansions arise, for example, from Fourier-, Karhunen-Loève-, spline- or

wavelet series representations of 𝑎.

If ess infx∈D ℜ(𝑎0(x)) = 𝛾 > 0 then
∑︁

𝑗∈N

‖𝜓𝑗‖𝑋 < 𝛾 (38)

ensures ess infx∈D ℜ(𝑎(y)(x)) > 0 for all y ∈ 𝑈 . This in turn implies that (36)

admits a unique solution for all diffusion coefficients 𝑎(y), y ∈ 𝑈 . Thus Lemma 3.5

yields y ↦→ 𝑢(y) = 𝐺(𝑎0 +
∑︀

𝑗∈N
𝑦𝑗𝜓𝑗) to be (b, 𝜀,𝒳 )-holomorphic for some 𝜀 > 0

and with 𝑏𝑗 := ‖𝜓𝑗‖𝑋 , 𝑗 ∈ N.

Next, we consider a smoothness space 𝒳 𝑠 and recall (b𝑠, 𝜀𝑠,𝒳 𝑠)-holomorphy

of 𝑢 : 𝑈 → 𝒳 𝑠 : y ↦→ 𝑢(y). First we recall the deőnition of Kondratiev spaces: Let

𝑘 ∈ N0 and 𝜁 ∈ R, and 𝑟D : D → R>0 be a smooth function which near vertices of

D equals the distance to the closest vertex. Then,

𝒦𝑘
𝜁 (D) :=

{︁

𝑢 : D → C : 𝑟
|ξ|−𝜁
D 𝜕ξ𝑥𝑢 ∈ 𝐿2(D), ξ ∈ N

2
0, |ξ| ≤ 𝑘

}︁

. (39)

To obtain the approximation rate 𝛾 = 1
2 in Proposition 5.3, we consider

𝒳 𝑠 := 𝒦2
𝜁+1(D) for some 𝜁 ∈ (0, 1). By [5, Theorem 1.1] and [84, Example 1.2.38],

there exists 𝜁 ∈ (0, 1) such that when 𝑓 ∈ 𝒦0
𝜁−1(D), 𝑎 ∈ 𝑊 1,∞(D) =: 𝑋𝑠 and

ess infx∈D ℜ(𝑎(x)) > 0, the map 𝐺 : 𝑎 ↦→ 𝑢(𝑎) ∈ 𝒳 𝑠 is locally well-deőned and

holomorphic around every such 𝑎. We remark that the space from which we chose

𝑓 satisőes 𝐿2(D) ⊂ 𝒦0
𝜁−1(D) ⊂ 𝐻−1(D) = 𝒴 ′.

If in addition to previously made assumptions, {𝜓𝑗}𝑗∈N satisőes
∑︁

𝑗∈N

‖𝜓𝑗‖𝑋𝑠 <∞,
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then Lemma 3.5 yields y ↦→ 𝑢(y) = 𝐺(𝑎0 +
∑︀

𝑗∈N
𝑦𝑗𝜓𝑗) to be (b𝑠, 𝜀𝑠,𝒳 𝑠)-

holomorphic for some 𝜀𝑠 > 0 and with 𝑏𝑠𝑗 := ‖𝜓𝑗‖𝑋𝑠 , 𝑗 ∈ N. For a more detailed

discussion of this example and more general advection-diffusion-reaction equations,

see [84, Section 4.3].

Thus, for the map 𝑈 → 𝒳 𝑠 ⊂ 𝒳 : y ↦→ 𝑢(y) to be (b, 𝜀,𝒳 )- and (b𝑠, 𝜀𝑠,𝒳 𝑠)-

holomorphic for b ∈ ℓ𝑝(N) and b𝑠 ∈ ℓ𝑝
𝑠

(N) for some 0 < 𝑝 < 𝑝𝑠 < 1, we

additionally need to assume that (‖𝜓𝑗‖𝑋)𝑗∈N ∈ ℓ𝑝(N) and (‖𝜓𝑗‖𝑋𝑠)𝑗∈N ∈ ℓ𝑝
𝑠

(N).

The (b𝑠, 𝜀𝑠,𝒳 𝑠)-holomorphy and Theorem 3.7 give (‖𝑐ν‖𝒳 𝑠 ‖𝐿ν𝐸‖𝐿∞(𝑈𝐸))ν∈ℱ ∈
ℓ𝑝

𝑠

.

In summary, the assumptions on 𝑢 in Theorem 5.2 hold when 𝑓 ∈ 𝐿2(D)

and 𝑎0, {𝜓𝑗}𝑗∈N ⊂ 𝑊 1,∞(D) satisfy ess infx∈D ℜ(𝑎0(x)) > 0, Equation (38),

(‖𝜓𝑗‖𝑋)𝑗∈N ∈ ℓ𝑝(N) and (‖𝜓𝑗‖𝑋𝑠)𝑗∈N ∈ ℓ𝑝
𝑠

(N). Then, 𝑢 : 𝑈 → 𝒳 𝑠 = 𝒦2
𝜁+1(D)

for some 𝜁 ∈ (0, 1). As mentioned below Assumption 5.1, the NN approximations

in Section 5.2.1 satisfy Assumption 5.1 with 𝜃 = 0 and approximation rate 𝛾 = 1
2 .

5.2.3 Parametric eigenvalue problem

We verify the assumptions of Theorem 5.2 for the parametric eigenvalue problem

(12). To this end, we choose 𝒳 := C×𝐻1
0 (D;C), 𝑋 := 𝐿∞(D;C).

Then, the parametric őrst eigenpair {(𝜆1(y), 𝑤1(y)) : y ∈ 𝑈} ⊂ 𝒳 admits

a unique, holomorphic continuation {(𝜆1(z), 𝑤1(z)) : z ∈ 𝑉 } ⊂ 𝒳 to an open

neighborhood 𝑉 of 𝑈 in C
N. The proof follows from the uniformity of the spectral

gap of the parametric őrst and second eigenvalues, i.e. from 𝜆2(y)− 𝜆1(y) > 𝑐0

for all y ∈ 𝑈 and some 𝑐0 > 0 which is shown in [29, Proposition 2.4]. Also see

[1, Theorem 4] for a proof of analytic dependence on each 𝑦𝑗 . Upon deőning the

parametric łright-hand sidež 𝑓(y) := 𝜆1(y)𝑤1(y) ∈ 𝐻1
0 (D;R) ⊂ 𝐿2(D) for y ∈ 𝑈 ,

it follows that the map 𝑢 := (𝜆1, 𝑤1) ∈ 𝒳 satisőes 𝑢 : 𝑈 → 𝒳 𝑠 = C × 𝒦2
𝜁+1(D)

for some 𝜁 ∈ (0, 1). It is, in addition, (b, 𝜀,𝒳 )- and (b𝑠, 𝜀𝑠,𝒳 𝑠)-holomorphic for

b ∈ ℓ𝑝(N) and b𝑠 ∈ ℓ𝑝
𝑠

(N) for some 0 < 𝑝 < 𝑝𝑠 < 1, 𝜀, 𝜀𝑠 > 0, provided

(‖𝜓𝑗‖𝑋)𝑗∈N ∈ ℓ𝑝(N) and (‖𝜓𝑗‖𝑋𝑠)𝑗∈N ∈ ℓ𝑝
𝑠

(N). As before, 𝑋𝑠 =𝑊 1,∞(D). This

(b, 𝜀,𝒳 )- and (b𝑠, 𝜀𝑠,𝒳 𝑠)-holomorphy was proved in [1, Theorem 4 and Corollary 2]

(where for simplicity the corollary was stated for the special case that D is convex).
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6 Application to Bayesian inference

6.1 ReLU DNN approximations for inverse UQ

In this section we discuss how the results in Section 4.4 apply to Bayesian inverse

problems from Sections 2.1 and 2.2.1.

In practice it is more convenient to work with measures on 𝑈 , instead of their

pushforwards under the map y ↦→ 𝑎(y) := 𝑎0 +
∑︀

𝑗∈N
𝑦𝑗𝜓𝑗 ∈ 𝑋 on the Banach

space 𝑋. For this reason, throughout this section we adopt the equivalent viewpoint

of interpreting y ∈ 𝑈 (instead of 𝑎(y)) as the unknown, 𝜇𝑈 as the prior, and

𝑎−1♯𝜇𝛿 as the posterior measure on 𝑈 (which is the measure of the unknown y ∈ 𝑈

conditioned on the data 𝛿). Here, we assume that 𝑎 : y ↦→ 𝑎(y) is invertible and

that 𝑎−1 is measurable, and denote by 𝑎−1♯𝜇𝛿 the pushforward measure of 𝜇𝛿

under 𝑎−1 (which is a measure on 𝑈).7

Corollary 6.1. Let 𝑢 be (b, 𝜀,𝒳 )-holomorphic, b ∈ ℓ𝑝, 𝑝 ∈ (0, 1), and assume the

observation noise covariance Γ ∈ R
𝐾×𝐾 is symmetric, positive definite. Let the

observation operator 𝒪 : 𝒳 → R
𝐾 be deterministic, bounded and linear, let 𝜇𝑈 be

the uniform measure on 𝑈 = [−1, 1]N, and let for a given data sample 𝛿 ∈ R
𝐾

d𝑎−1♯𝜇𝛿

d𝜇𝑈
(y) =

1

𝑍(𝛿)
exp(− 1

2‖𝛿 −𝒪(𝑢(y))‖2Γ), for all y ∈ 𝑈,

𝑍(𝛿) =

∫︁

𝑈

exp(− 1
2‖𝛿 −𝒪(𝑢(y))‖2Γ)d𝜇𝑈 (y).

Then also d𝑎−1♯𝜇𝛿

d𝜇𝑈
(y) is (b, 𝜀,R)-holomorphic.

By Theorem 4.9 it can thus be uniformly approximated by ReLU NNs, with a

convergence rate (in terms of the size of the network) arbitrarily close to 1/𝑝− 1.

Proof. The function d𝑎−1♯𝜇𝛿

d𝜇𝑈
: 𝑈 → R can be expressed as the composition of the

maps

y ↦→ 𝑢(y), 𝑢 ↦→ 1
2 (𝛿 −𝒪(𝑢))⊤Γ−1(𝛿 −𝒪(𝑢)), 𝑎 ↦→ exp(−𝑎). (40)

The őrst map is (b, 𝜀,𝒳 ) holomorphic, the second map is a holomorphic mapping

from 𝒳 → C, and the third map is holomorphic from C → C. The composition is

(b, 𝜀,R)-holomorphic. The rest of the statement follows by Theorem 4.9.

7 Alternative to looking for the unknown a(y) in the Banach space X, we could interpret

y ∈ U to be the unknown. In this case the posterior measure is defined on U (instead

of X), and the assumption of invertibility of a, which is used to push forward µδ to a

measure on U , would not be necessary.
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In case the number of parameters 𝑁 ∈ N is őnite, exponential convergence rates

of ReLU DNN approximations follow with [62, Theorem 3.6], but with the rate of

convergence and other constants in the error bound depending on 𝑁 .

For the approximation of the posterior expectation 𝑌 → 𝑍 : 𝛿 ↦→ E[𝑄 ∘ 𝑢|𝛿],
holomorphy of the posterior density implies holomorphy of the posterior expectation,

but without control on the size of the domain of holomorphy. Thus [62, Theorem

3.6] gives exponential convergence with rate 𝐶 exp(−𝑏𝒩 1/(𝐾+1)), with possibly

very small 𝑏 > 0, in terms of the NN size 𝒩 . We remark that holomorphy of

the data-to-QoI map is valid even for non-holomorphic input-to-response maps

in the operator equation [37]. In [37], this was exploited by considering a rational

approximation of the Bayesian estimate based on

𝛿 ↦→ E[𝑄 ∘ 𝑢|𝛿] =
∫︁

𝑋̃

𝑄(𝑢(𝑎))
1

𝑍(𝛿)
exp(−Φ(𝑎; 𝛿))d𝜇0(𝑎) =: 𝑍′(𝛿)/𝑍(𝛿),

where 𝑍,𝑍′ are entire functions of 𝛿, i.e. they admit a holomorphic extension to

C
𝐾 . With that argument, convergence rates of the form 𝐶 exp(−𝑏𝒩 1/(𝐾+1)) with

arbitrarily large 𝑏 > 0 were obtained.

6.2 Posterior concentration

We consider the DNN expression of posterior densities in Bayesian inverse problems

when the posterior density concentrates near a single point, the so-called maximum

a posteriori point (MAP point), at which the posterior density attains its maximum.

We consider in particular the case in which the posterior density exists, is

unimodal, attaining its global maximum at the MAP point. In the mentioned

scaling regimes, in the vicinity of the MAP point, the Bayesian posterior density is

close to a Gaussian distribution with covariance matrix Γ, which arises in either

the small noise or in the large data limits, cf. e.g. [74, 44]. We therefore study the

behavior of the DNN expression rate bounds as Γ ↓ 0. This limit applies to the

situation of decreasing observation noise 𝜂 or of increasing observation size dim(𝑌 ).

The results in Section 6.1 hold for all symmetric, positive deőnite covariance

matrices Γ, but constants depend on Γ and may tend to inőnity as Γ ↓ 0. However,

the concentration can be exploited for the approximation of the posterior density.

As an example, we consider an inverse problem with 𝑁 <∞ parameters, with a

holomorphic forward map [−1, 1]𝑁 → 𝒳 : y → 𝑢(y), a linear observation functional

𝒪 : 𝒳 → 𝑌 and a őnite observation size 𝐾 := dim(𝑌 ) <∞. In [73, Theorem 4.1],

in case of a non-degenerate Hessian Φy,y it was shown that after a Γ-dependent

affine transformation the posterior density is analytic with polyradii of analyticity

independent of Γ. Hence, by [62, Theorem 3.6], NN approximations of the posterior
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density converge exponentially (albeit with constants depending exponentially on

𝑁).

Moreover, in [74, Appendix] it was shown that under suitable conditions a

Gaussian distribution approximates the posterior density up to őrst order in Γ.

This allows us to overcome the curse of dimensionality in terms of 𝑁 for the

unnormalized posterior density, by exploiting the radial symmetry of the Gaussian

density function. By [63, Theorem 6.7], the Gaussian density function can be

approximated by ReLU NNs with the network size growing polylogarithmically

with the error, and the corresponding constants increasing at most quadratically

in 𝑁 . Thus, there is no curse of dimensionality for the approximation of the

unnormalized posterior density when it concentrates near one point. Note that

this ignores the consistency error of the posterior density with respect to this

Gaussian approximation to the true posterior density. If the posterior concentrates

near multiple well-separated points, and if it is close to a Gaussian near each of

the points, then it can be approximated at the same rate by a sum of (localized)

Gaussians.

The next proposition gives an approximation result for unnormalized Gaussian

densities. We refer to Appendix A.5 for a proof.

Proposition 6.2. For 𝑁 ∈ N, let 𝐴 : R𝑁 → R
𝑁 be a bijective linear map. For

x ∈ R
𝑁 set g(x) := exp(− 1

2‖𝐴x‖22).
Then, there exists 𝐶 > 0 independent of 𝐴 and 𝑁 such that for every 𝜀 ∈ (0, 1)

there exists a ReLU NN Φg
𝜀 satisfying

⃦

⃦g− Φg
𝜀

⃦

⃦

𝐿∞(R𝑁 )
≤𝐶𝜀 = 𝐶𝜀 ‖g‖𝐿∞(R𝑁 ) ,

depth(Φg
𝜀) ≤𝐶 (log(𝑁)(1 + log(𝑁/𝜀)) + 1 + log(1/𝜀) log log(1/𝜀)) ,

size(Φg
𝜀) ≤𝐶

(︁

(1 + log(1/𝜀))2 +𝑁 log(1/𝜀) +𝑁2
)︁

.

Remark 6.3. The term 𝐶𝑁2 in the bound on the network size follows from bound-

ing the number of nonzero coefficients in the linear map 𝐴 by 𝑁2. If 𝐴 has at most

𝐶𝑁 nonzero coefficients, the network size is of the order 𝑁 log(𝑁).

Densities of the type g(x) = exp(− 1
2‖𝐴(x)‖22) need to be normalized in order to

become probability densities on [−1, 1]𝑁 . We now discuss an example to show the

effect of the normalization constant on the approximation result, when the density

concentrates.

Fix an observation noise covariance Γ ∈ R
𝑁×𝑁 symmetric positive deőnite,

and for 𝑛 ∈ N set Γ𝑛 := Γ/𝑛 and g̃𝑛(x) = exp(− 1
2‖Γ

−1/2
𝑛 x‖22) for x ∈ [−1, 1]𝑁 .

Given 𝛿 ∈ [−1, 1]𝑁 , note that as 𝑛 → ∞, the unnormalized density g̃𝑛(x − 𝛿)

concentrates around 𝛿 ∈ [−1, 1]𝑁 . For any 𝑛 ≥ 1, using the change of variables
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y =
√
𝑛x, we bound the normalization constant from below:
∫︁

[−1,1]𝑁

g̃𝑛(x− 𝛿)dx =

∫︁

[−1,1]𝑁

exp
(︁

−1

2
‖√𝑛Γ−1/2(x− 𝛿)‖22

)︁

dx

= 𝑛−𝑁/2
∫︁

[−√
𝑛,

√
𝑛]𝑁

exp
(︁

−1

2
‖Γ−1/2(y −√

𝑛𝛿)‖22
)︁

dy

≥ 𝑛−𝑁/2 inf
𝛿∈[−1,1]𝑁

∫︁

[−1,1]𝑁

exp
(︁

−1

2
‖Γ−1/2(y − 𝛿)‖22

)︁

dy

= 𝑛−𝑁/2𝐶0,

with 𝐶0(Γ, 𝑁) > 0 denoting the inőmum in the second to last line, and where we

used
√
𝑛𝛿 ∈ [−√

𝑛,
√
𝑛]𝑁 .

Denote 𝑍𝑛(𝛿) :=
∫︀

[−1,1]𝑁
g̃𝑛(x− 𝛿)dx ≥ 𝐶0𝑛

−𝑁/2. Then, by Proposition 6.2

the normalized density g𝑛(x − 𝛿) := g̃𝑛(x − 𝛿)/𝑍𝑛(𝛿) ≤ 𝐶−1
0 𝑛𝑁/2

g̃𝑛(x − 𝛿) can

be uniformly approximated on [−1, 1]𝑁 to accuracy 𝜀 > 0 with a ReLU network

Φg𝑛
𝜀 of size and depth bounded as follows, for 𝐶(Γ, 𝑁) > 0:

depth(Φg𝑛
𝜀 ) ≤𝐶

(︀

1 +
(︀

log(1/𝜀) + (1 + log(𝑛))
)︀

log
(︀

log(1/𝜀) + (1 + log(𝑛))
)︀)︀

,

size(Φg𝑛
𝜀 ) ≤𝐶

(︁

(1 + log(1/𝜀))2 + log(1/𝜀)(1 + log2(𝑛)) + (1 + log2(𝑛))
2
)︁

.

6.3 Posterior consistency

In Section 6.1 we proved 𝐿∞(𝑈)-bounds on the approximation of the posterior

density with NNs. Up to a constant, this immediately yields the same bounds

for the Hellinger and total variation distances of the corresponding (normalized)

Bayesian posterior measures as we show next.

Let 𝜆 be the Lebesgue measure on [−1, 1], and denote again by 𝜇𝑈 := ⊗𝑗∈N
𝜆
2

the uniform probability measure on 𝑈 = [−1, 1]N equipped with the product sigma

algebra. Let 𝜇 ≪ 𝜇𝑈 and 𝜈 ≪ 𝜇𝑈 be two measures on 𝑈 with Radon-Nikodym

derivatives d𝜇
d𝜇𝑈

=: 𝜋𝜇 : 𝑈 → R and d𝜈
d𝜇𝑈

=: 𝜋𝜈 : 𝑈 → R. Recall that the Hellinger

distance (which we use here also for non-probability measures) is deőned as

𝑑𝐻(𝜇, 𝜈) =

⎛

⎝

1
2

∫︁

𝑈

(︁

√︀

𝜋𝜇(y)−
√︀

𝜋𝜈(y)
)︁2

d𝜇𝑈 (y)

⎞

⎠

1/2

= 1√
2
‖√𝜋𝜇−

√
𝜋𝜈‖𝐿2(𝑈,𝜇𝑈 ).

The total variation distance is deőned as

𝑑𝑇𝑉 (𝜇, 𝜈) = sup
𝐵

|𝜇(𝐵)− 𝜈(𝐵)| ≤
∫︁

𝑈

|𝜋𝜇(y)−𝜋𝜈(y)|d𝜇𝑈 (y) = ‖𝜋𝜇 −𝜋𝜈‖𝐿1(𝑈,𝜇𝑈 ),
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where the supremum is taken over all measurable 𝐵 ⊆ 𝑈 . Thus

𝑑𝑇𝑉 (𝜇, 𝜈) ≤ ‖𝜋𝜇 − 𝜋𝜈‖𝐿∞(𝑈,𝜇𝑈 ).

Since |√𝑥−√
𝑦| = |𝑥−𝑦|

|√𝑥+
√
𝑦| for all 𝑥, 𝑦 ≥ 0,

𝑑𝐻(𝜇, 𝜈) = 1√
2
‖√𝜋𝜇 −√

𝜋𝜈‖𝐿2(𝑈,𝜇𝑈 ) ≤
‖𝜋𝜇 − 𝜋𝜈‖𝐿∞(𝑈,𝜇𝑈 )√

2 infy∈𝑈 (
√
𝜋𝜇(y) +

√
𝜋𝜈(y))

.

Denote by 𝜇 = 𝜇
𝜇(𝑈)

and 𝜈 = 𝜈
𝜈(𝑈)

the normalized measures and by 𝜋𝜇, 𝜋𝜈

the corresponding densities (which are probability densities w.r.t. 𝜇𝑈 ). Then for

all y ∈ 𝑈

|𝜋𝜇(y)− 𝜋𝜈(y)| =
⃒

⃒

⃒

⃒

𝜋𝜇(y)

𝜇(𝑈)
− 𝜋𝜈(y)

𝜈(𝑈)

⃒

⃒

⃒

⃒

≤|𝜋𝜇(y)𝜈(𝑈)− 𝜋𝜈(y)𝜈(𝑈)|+ |𝜋𝜈(y)𝜈(𝑈)− 𝜋𝜈(y)𝜇(𝑈)|
𝜇(𝑈)𝜈(𝑈)

.

Using |𝜇(𝑈)− 𝜈(𝑈)| ≤ ‖𝜋𝜇 − 𝜋𝜈‖𝐿1(𝑈,𝜇𝑈 ) we obtain for all y ∈ 𝑈

|𝜋𝜇(y)− 𝜋𝜈(y)| ≤
‖𝜋𝜇 − 𝜋𝜈‖𝐿∞(𝑈,𝜇𝑈 )𝜈(𝑈) + ‖𝜋𝜈‖𝐿∞(𝑈,𝜇𝑈 )‖𝜋𝜇 − 𝜋𝜈‖𝐿∞(𝑈,𝜇𝑈 )

𝜈(𝑈)𝜇(𝑈)
.

By symmetry this implies

𝑑𝑇𝑉 (𝜇, 𝜈) ≤ ‖𝜋𝜇−𝜋𝜈‖𝐿∞(𝑈,𝜇𝑈 ) min

(︂

𝜈(𝑈) + ‖𝜋𝜈‖𝐿∞(𝑈,𝜇𝑈 )

𝜈(𝑈)𝜇(𝑈)
,
𝜇(𝑈) + ‖𝜋𝜇‖𝐿∞(𝑈,𝜇𝑈 )

𝜈(𝑈)𝜇(𝑈)

)︂

(41a)

and similarly as before

𝑑𝐻(𝜇, 𝜈) ≤ ‖𝜋𝜇 − 𝜋𝜈‖𝐿∞(𝑈,𝜇𝑈 )

min
(︁

𝜈(𝑈)+‖𝜋𝜈‖𝐿∞(𝑈,𝜇𝑈 )

𝜈(𝑈)𝜇(𝑈)
,
𝜇(𝑈)+‖𝜋𝜇‖𝐿∞(𝑈,𝜇𝑈 )

𝜈(𝑈)𝜇(𝑈)

)︁

√
2 infy∈𝑈 (

√
𝜋̄𝜇(y) +

√
𝜋̄𝜈(y))

.

(41b)

Proposition 6.4. Consider the setting of Corollary 6.1. Then for every 𝜏 ∈ (0, 1)

there exists a 𝜎1-NN 𝑓𝜏 : 𝑈 → [0,∞) (with input variables (𝑦𝑗)𝑗∈𝑆Λ𝜏
) such that

with Λ𝜏 as in Theorem 3.7

size(𝑓𝜏 ) ≤𝐶(1 + |Λ𝜏 | · log |Λ𝜏 | · log log |Λ𝜏 |),
depth(𝑓𝜏 ) ≤𝐶(1 + log |Λ𝜏 | · log log |Λ𝜏 |)

(42)

and the measure 𝜈𝜏 on 𝑈 with density 𝑓𝜏 = d𝜈𝜏
d𝜇𝑈

satisfies

𝑑𝐻

(︁

𝑎−1♯𝜇𝛿, 𝜈𝜏

)︁

≤ 𝐶|Λ𝜏 |−
1
𝑝+1, (43)

and the same bound holds w.r.t. 𝑑𝑇𝑉 .
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Proof. By Corollary 6.1 and Theorem 4.9 there exists a 𝜎1-NN 𝑓𝜏 : 𝑈 → R

satisfying (42) such that with 𝑓(y) := d𝑎−1♯𝜇𝛿

d𝜇𝑈
= 1

𝑍(𝛿)
exp(− 1

2‖𝛿 − 𝒪(𝑢(y))‖2Γ),
where 𝑢 is (b, 𝜀)-holomorphic, holds

‖𝑓 − 𝑓𝜏‖𝐿∞(𝑈) ≤ 𝐶|Λ𝜏 |−
1
𝑝+1. (44)

Let 𝑓𝜏 := 𝜎1(𝑓𝜏 ). Then 𝑓𝜏 : 𝑈 → [0,∞) and the bound (44) remains true for 𝑓𝜏

since 𝑓(y) ≥ 0 for all y ∈ 𝑈 .

Since any (b, 𝜀)-holomorphic function is continuous on 𝑈 and because 𝑓(y) > 0

for all y ∈ 𝑈 , we have infy∈𝑈 𝑓(y) > 0 and supy∈𝑈 𝑓(y) <∞. Thus (41) implies

(43) for 𝑑𝑇𝑉 and 𝑑𝐻 .

7 Conclusions and further directions

In this paper we presented dimension independent expression rates for the approxi-

mation of inőnite-parametric functions occurring in forward and inverse UQ by deep

neural networks. Our results are based on multilevel gpc expansions, and generalize

the statements of [77] in that they do not require analytic extensions of the target

function to complex polydiscs, but merely to complex polyellipses. Additionally,

while for 𝒳 -valued functions [77] only treated the case of 𝒳 = 𝐻1([0, 1]), here

we considered 𝒳 = 𝑊 1,𝑞(D), with D being a bounded polytope, for example. It

was shown that our theory also comprises analyticity of parametric maps in scales

of corner-weighted Sobolev spaces in D, allowing to retain optimal convergence

rates of FEM in the presence of corner singularities of the PDE solution. These

generalizations allow to treat much broader problem classes, comprising for example

a forward operator mapping inputs to the solution of the parametric (nonlinear)

Navier-Stokes equations [17]. Another instance includes domain uncertainty, which

typically does not yield forward operators with holomorphic parameter dependence

on polydiscs, see e.g. [38].

As one possible application of our results, we treated in more detail the

approximation of posterior densities in Bayesian inference. Having cheaply evaluable

surrogates of this density (in the form of a DNN) can be a powerful tool, as any

inference technique could require thousands of evaluations of the posterior density.

On top of that, in case of MCMC, arguably the most widely used inference algorithm,

these evaluations are inherently sequential and not parallel. Each such evaluation

requires a (time-consuming, approximate) computation of a PDE solution, which

can render MCMC infeasible in practice. Variational inference, on the other hand,

where sampling from the posterior is replaced by an optimization problem, does

not necessarily require sequential computation of (approximate) PDE solutions,
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however it still demands a high number of evaluations of the posterior, which may

be signiőcantly sped up if this posterior is replaced by a cheap surrogate. We refer

for example to transport based methods such as [52].

As already indicated in the introduction of the present article, the idea of

using DNNs for expressing the input-to-response map (i.e., the łforwardž map) for

PDE models has been proposed repeatedly in recent years. The motivation for

this is the nonlinearity of such maps, even for linear PDEs, and the often high

regularity (e.g. holomorphy) of such maps. Here, DNNs are a computational tool

alongside other reduction methods, such as reduced basis (RB for short) or Model

Order Reduction methods (MOR for short). Indeed, in [45, Remark 4.6] it has

been suggested that under the provision that reduced bases for a compact solution

manifold of a linear, elliptic parametric PDE admit an efficient DNN expression, so

does the input-to-solution map of this PDE. The abstract, Lipschitz dependence

result Theorem 2.8 (which is [21, Theorem 18]) will imply with the present results

and the DNN expression results of RB/MOR approximations for forward PDE

problems as developed in [45] analogous results also for the corresponding Bayesian

inverse problems considered in the present paper. MOR and RB approaches can be

developed along the lines of [11], where BIP subject RB/MOR approximation of

the forward, input-to-response maps were considered in conjunction with Bayesian

inverse problems of the type considered here. Should reduced bases admit good

DNN expression rates, the analysis of [11] would imply with the present results

corresponding improved DNN expression rates, along the lines of [45].

We remark that the DNN expression rate bounds for the posterior densities

are obtained from DNN reapproximation of gpc surrogates. DNN expression rate

bounds follow from the corresponding approximation rates of 𝑁 -term truncated

gpc expansions. These, in turn, are based on gpc coefficient estimates which were

obtained as e.g. in [77] by analytic continuation of parametric solution families

into the complex domain. Analytic continuation can be avoided if, instead, real-

variable induction arguments for bounding derivatives of parametric solutions are

employed. We refer to [32] for forward UQ in an elliptic control problem, and to [35,

Section 7] for a proof of derivative bounds for the Bayesian posterior with Gaussian

prior. As in [77], the present DNN expression rate analysis relies on łintermediatež

polynomial chaos approximations of the posterior density, assuming a prior given

by the uniform probability measure on 𝑈 = [−1, 1]N. The emulation of the posterior

density by DNNs can leverage, however, the compositional structure of DNNs to

accommodate changes of (prior) probability, with essentially the same expression

rates, as long as the changes of measure can be emulated efficiently by DNNs. This

may include nonanalytic / nonholomorphic densities. We refer to [62, Section 4.3.5]

for an example.
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We also showed in Section 6.2 that ReLU DNN expression rates are either

independent of or depend only logarithmically on concentration in the posterior

density, provided the concentration happens only in a őnite number of ‘informed’

variables, and the posterior density is of ‘MAP’ type, in particular (locally) unimodal.

While important, this is only a rather particular special case in applications, where

oftentimes posterior concentration occurs along smooth submanifolds. In such cases,

ReLU DNNs can also be expected to exhibit robust expression rates, according to

the expression rate bounds in [67, Section 5]. Details are to be developed elsewhere.

A Proofs

A.1 Proof of Theorem 3.7

Proof. Since (𝑏𝑗)𝑗∈N ∈ ℓ𝑝(N) it holds 𝑏𝑗 → 0. Thus we can őnd 𝜅 > 1 so small and

𝐽 ∈ N so large that with 𝐶0 = 4/9

sup
𝑗>𝐽

𝑏1−𝑝
𝑗 <

1

2
,

(𝜅− 1)
∑︁

𝑗∈N

𝑏𝑗 + 𝐶−1
0 max

{︁

3,
2𝑒

𝜀

}︁

max

⎧

⎨

⎩

∑︁

𝑗>𝐽

𝑏𝑗 ,
∑︁

𝑗>𝐽

𝑏𝑝𝑗

⎫

⎬

⎭

< min
{︁

1,
𝜀

2

}︁

.

(45)

We őx such values for 𝐽 and 𝜅 throughout the proof.

Step 1. We give an upper bound for ‖𝑐ν‖𝒳 . First, recall that by Cauchy’s

integral formula, for any holomorphic function 𝑓 : 𝐵C
𝑟 → 𝒳 we have for any

0 < 𝑟 < 𝑟 and any 𝑘 ∈ N0

𝑓 (𝑘)(0) =
𝑘!

2𝜋i

∫︁

{𝜁∈C : |𝜁|=𝑟}

𝑓(𝜁)

𝜁1+𝑘
d𝜁,

where the circle {𝜁 ∈ C : |𝜁| = 𝑟} in the line integral is oriented positively.

Therefore
‖𝑓 (𝑘)(0)‖𝒳

𝑘!
≤ 1

𝑟𝑘
sup
𝑧∈𝐵C

𝑟

‖𝑓(𝑧)‖𝒳 . (46)

Similarly, as shown in [22, Section 12.4] (also see the proof of [13, Theorem 2.2]),

for any 𝑟 > 1 and any 𝑘 ∈ N0 and for a holomorphic function 𝑓 : ℰ𝑟 → 𝒳
⃦

⃦

⃦

⃦

⃦

⃦

1
∫︁

−1

𝑓(𝑦)𝐿𝑘(𝑦)
d𝑦

2

⃦

⃦

⃦

⃦

⃦

⃦

𝒳

≤ 𝜋(1 + 2𝑘)

2(𝑟 − 1)

1

𝑟𝑘
sup
𝑥∈ℰ𝑟

‖𝑓(𝑥)‖𝒳 . (47)



Deep learning in high dimension 43

We will now use these estimates to obtain an upper bound for ‖𝑐ν‖𝒳 .

Fix ν = (ν𝐸 ,ν𝐹 ) ∈ ℱ and deőne

𝜌𝑗 :=

⎧

⎨

⎩

𝜅 if 𝑗 ≤ 𝐽,

max
{︁

3, 𝜀2
𝜈𝑗

𝑏𝑗 |ν𝐹 |

}︁

if 𝑗 > 𝐽,

where 𝜈𝑗/|ν𝐹 | := 0 if |ν𝐹 | = 0. Then by (45)

∑︁

𝑗∈N

(𝜌𝑗 − 1)𝑏𝑗 ≤ (𝜅− 1)

𝐽
∑︁

𝑗=1

𝑏𝑗 + 3
∑︁

𝑗>𝐽

𝑏𝑗 +
∑︁

𝑗>𝐽

𝜀

2

𝜈𝑗
𝑏𝑗 |ν𝐹 | 𝑏𝑗 < 𝜀,

so that ρ = (𝜌𝑗)𝑗∈N is (b, 𝜀)-admissible in the sense of Deőnition 3.3. Thus, by

Deőnition 3.3, 𝑢 allows a separately holomorphic extension to×
𝐽

𝑗=1
ℰ𝜅××𝑗>𝐽

ℰ𝜌𝑗

which contains the set×
𝐽

𝑗=1
ℰ𝜅 ××𝑗>𝐽

𝐵C
𝐶0𝜌𝑗

by Lemma 3.6, and it holds

sup
(y𝐸 ,y𝐹 )∈×𝐽

𝑗=1 ℰ𝜅××𝑗>𝐽 𝐵C

𝐶0𝜌𝑗

‖𝑢(y𝐸 ,y𝐹 )‖𝒳 ≤𝑀, (48)

for 𝑀 as in Deőnition 3.3.

To őnd an upper bound for ‖𝑐ν‖𝒳 , we use that ‖𝜕ν𝐹
y𝐹
𝑢(y𝐸 ,0)‖𝒳 is uniformly

bounded for all y𝐸 in the compact set 𝑈𝐸 (due to the continuous dependence on

y𝐸), so that an application of Fubini’s theorem (for Bochner integrals) yields

𝑐ν =

∫︁

𝑈𝐸

𝐿ν𝐸 (y𝐸)
𝜕ν𝐹
y𝐹
𝑢(y𝐸 ,0)

ν𝐹 !
d𝜇𝐸(y𝐸)

=

1
∫︁

−1

𝐿𝜈1(𝑦1) · · ·
1
∫︁

−1

𝐿𝜈𝐽 (𝑦𝐽 )
𝜕ν𝐹
y𝐹
𝑢(y𝐸 ,0)

ν𝐹 !

d𝑦𝐽
2

. . .
d𝑦1
2
.

Hence by repeated application of (47)

‖𝑐ν‖𝒳 ≤ 𝜋(1 + 2𝜈1)

2(𝜅− 1)
𝜅−𝜈1 sup

𝑦1∈ℰ𝜅

⃦

⃦

⃦

⃦

⃦

⃦

1
∫︁

−1

𝐿𝜈2(𝑦2) · · ·
1
∫︁

−1

𝐿𝜈𝐽 (𝑦𝐽 )
𝜕ν𝐹
y𝐹
𝑢(y𝐸 ,0)

ν𝐹 !

d𝑦𝐽
2

. . .
d𝑦2
2

⃦

⃦

⃦

⃦

⃦

⃦

𝒳

≤ · · · ≤

⎛

⎝

𝐽
∏︁

𝑗=1

(1 + 2𝜈𝑗)

⎞

⎠

(︂

𝜋

2(𝜅− 1)

)︂𝐽

𝜅−|ν𝐸 | sup
y𝐸∈×𝐽

𝑗=1 ℰ𝜅

⃦

⃦

⃦

⃦

𝜕ν𝐹
y𝐹
𝑢(y𝐸 ,0)

ν𝐹 !

⃦

⃦

⃦

⃦

𝒳
.

(49)

Next, we bound the last supremum in (49). Using that 𝑢 allows a separately

holomorphic extension satisfying (48), repeated application of (46) gives

sup
y𝐸∈×𝐽

𝑗=1 ℰ𝜅

⃦

⃦

⃦

⃦

𝜕ν𝐹
y𝐹
𝑢(y𝐸 ,0)

ν𝐹 !

⃦

⃦

⃦

⃦

𝒳
= sup

y𝐸∈×𝐽
𝑗=1 ℰ𝜅

⃦

⃦

⃦

⃦

⃦

𝜕
𝜈𝐽+1
𝑦𝐽+1 · · ·𝑢(y𝐸 ,0)
∏︀

𝑗>𝐽 𝜈𝑗 !

⃦

⃦

⃦

⃦

⃦

𝒳
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≤ sup
y𝐸∈×𝐽

𝑗=1 ℰ𝜅

sup
y𝐹∈×𝑗>𝐽 𝐵C

𝐶0𝜌𝑗

‖𝑢(y𝐸 ,y𝐹 )‖𝒳
∏︁

𝑗>𝐽

(𝐶0𝜌𝑗)
−𝜈𝑗

≤𝑀
∏︁

𝑗>𝐽

(𝐶0𝜌𝑗)
−𝜈𝑗 . (50)

Due to 𝑛𝑛 ≥ 𝑛! ≥ 𝑒−𝑛𝑛𝑛 for all 𝑛 ∈ N and using 𝜌𝑗 ≥ 𝜀𝜈𝑗/(2𝑏𝑗 |ν𝐹 |),

∏︁

𝑗>𝐽

(𝐶0𝜌𝑗)
−𝜈𝑗 ≤

∏︁

𝑗∈supp ν𝐹

(︂

𝐶0𝜀

2

𝜈𝑗
𝑏𝑗 |ν𝐹 |

)︂−𝜈𝑗

=

(︂

2

𝐶0𝜀

)︂|ν𝐹 | |ν𝐹 ||ν𝐹 |

νν𝐹

𝐹

b
ν𝐹

𝐹

≤
(︂

2𝑒

𝐶0𝜀

)︂|ν𝐹 | |ν𝐹 |!
ν𝐹 !

b
ν𝐹

𝐹 .

(51)

Altogether, there exists a constant 𝐶 such that for any ν ∈ ℱ

‖𝑐ν‖𝒳 ≤ 𝐶

⎛

⎝

𝐽
∏︁

𝑗=1

(1 + 2𝜈𝑗)

⎞

⎠𝜅−|ν𝐸 | |ν𝐹 |!
ν𝐹 !

(︂

2𝑒

𝐶0𝜀

)︂|ν𝐹 |
b
ν𝐹

𝐹 . (52)

Step 2. We show (i) and the őrst part of (iii). Fix 𝛾1, 𝛾2 ∈ (1, 2) such that

1 < 𝛾1𝛾2 < 𝜅. By (16) it holds ‖𝐿𝑛‖𝐿∞([−1,1]) ≤ (1 + 2𝑛)1/2 for all 𝑛 ∈ N0. Thus

there exists a constant 𝐶 <∞ such that for all ν𝐸 ∈ ℱ𝐸

⎛

⎝

𝐽
∏︁

𝑗=1

(1 + 2𝜈𝑗)

⎞

⎠‖𝐿ν𝐸‖𝐿∞(𝑈𝐸) ≤ 𝛾
|ν𝐸 |
1 sup

µ∈ℱ𝐸

∏︀𝐽
𝑗=1(1 + 2𝜇𝑗)

3/2

𝛾
|µ|
1

≤ 𝐶𝛾
|ν𝐸 |
1 .

Next set

𝛿𝑗 :=

{︃

𝛾2 if 𝑗 ≤ 𝐽

min{𝑏𝑝−1
𝑗 , 𝑗2/𝑝} if 𝑗 > 𝐽.

(53)

By (45) it holds 𝑏𝑝−1
𝑗 > 2 for all 𝑗 > 𝐽 and since 𝛾2 < 2 by deőnition, (𝛿𝑗)𝑗∈N is

monotonically increasing. Furthermore (𝛿−1
𝑗 ) ∈ ℓ𝑝/(1−𝑝)(N) since (𝑏𝑗)𝑗∈N ∈ ℓ𝑝(N).

Moreover, by deőnition 𝛿𝑗 ≤ 𝐶1𝑗
2/𝑝 for 𝐶1 := 𝛾2 and all 𝑗 ∈ N. Thus δ = (𝛿𝑗)𝑗∈N

satisőes the properties stated in (iii).

Now, by (52) and (53)

∑︁

ν∈ℱ
δ
ν‖𝐿ν𝐸‖𝐿∞(𝑈𝐸)‖𝑐ν‖𝒳

≤𝐶
∑︁

ν∈ℱ

(︂

𝜅

𝛾1𝛾2

)︂−|ν𝐸 | |ν𝐹 |!
ν𝐹 !

(︂

2𝑒

𝐶0𝜀

)︂|ν𝐹 |
b
ν𝐹

𝐹 b
(𝑝−1)ν𝐹

𝐹

=𝐶

⎛

⎝

∑︁

ν𝐸∈ℱ𝐸

(︂

𝜅

𝛾1𝛾2

)︂−|ν𝐸 |
⎞

⎠

⎛

⎝

∑︁

ν𝐹∈ℱ𝐹

|ν𝐹 |!
ν𝐹 !

∏︁

𝑗>𝐽

(︃

2𝑒𝑏𝑝𝑗
𝐶0𝜀

)︃𝜈𝑗
⎞

⎠ .
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Due to 𝜅/(𝛾1𝛾2) > 1, the őrst series is őnite according to [15, Lemma 7.1], and the

second series is őnite according to [15, Theorem 7.2] since

∑︁

𝑗>𝐽

2𝑒𝑏𝑝𝑗
𝐶0𝜀

< 1

by (45). This shows (21).

To show (i), we point out that due to (𝛿−1
𝑗 )𝑗∈N ∈ ℓ𝑝/(1−𝑝)(N) and sup𝑗∈N 𝛿

−1
𝑗 ≤

𝛾−1
2 < 1, [15, Lemma 7.1] implies (δ−ν)ν∈ℱ ∈ ℓ𝑝/(1−𝑝)(ℱ). Hence applying

Hölder’s inequality

∑︁

ν∈ℱ
(‖𝐿ν𝐸‖𝐿∞(𝑈𝐸)‖𝑐ν‖𝒳 )𝑝

=
∑︁

ν∈ℱ
(‖𝐿ν𝐸‖𝐿∞(𝑈𝐸)‖𝑐ν‖𝒳 δ

ν
δ
−ν)𝑝

≤
(︃

∑︁

ν∈ℱ
‖𝐿ν𝐸‖𝐿∞(𝑈𝐸)‖𝑐ν‖𝒳 δ

ν

)︃𝑝(︃
∑︁

ν∈ℱ
(δ−ν)

𝑝
1−𝑝

)︃1−𝑝

<∞.

Step 3. We show (ii). Fix y𝐸 ∈ 𝑈𝐸 . Then, since (𝜅−1)
∑︀𝐽

𝑗=1 𝑏𝑗+3
∑︀

𝑗>𝐽 𝑏𝑗 <

𝜀 by (45), for every y𝐸 ∈ 𝑈𝐸 , the map y𝐹 ↦→ 𝑢(y𝐸 ,y𝐹 ) is separately holomorphic

as a function of y𝐹 ∈×𝑗>𝐽
𝐵C
3𝐶0

by Deőnition 3.3. Note that 3𝐶0 = 12/9 > 1,

and by (45) we can őnd 𝜃 ∈ (1, 3𝐶0) such that

∑︁

𝑗>𝐽

2𝑒𝜃𝑏𝑗
𝐶0𝜀

< 1.

Then, again by [15, Theorem 7.2] and (50), (51) it holds

∑︁

ν𝐹∈ℱ𝐹

𝜃|ν𝐹 |
⃦

⃦

⃦

⃦

𝜕ν𝐹
y𝐹
𝑢(y𝐸 ,0)

ν𝐹 !

⃦

⃦

⃦

⃦

𝒳
≤

∑︁

ν𝐹∈ℱ𝐹

|ν𝐹 |!
ν𝐹 !

∏︁

𝑗>𝐽

(︂

2𝑒𝜃𝑏𝑗
𝐶0𝜀

)︂𝜈𝑗

<∞. (54)

This and the fact that 𝑢 : 𝑈 → 𝒳 is continuous by Deőnition 3.3 implies by [84,

Proposition 2.1.5] and [84, Remark 2.1.7] that for all y𝐹 ∈ 𝑈𝐹

𝑢(y𝐸 ,y𝐹 ) =
∑︁

ν𝐹∈ℱ𝐹

y
ν𝐹

𝐹

𝜕ν𝐹
y𝐹
𝑢(y𝐸 ,0)

ν𝐹 !

with uniform and absolute (i.e. the norms are summable) convergence for all

y𝐹 ∈ 𝑈𝐹 .

Next őx y𝐹 ∈ 𝑈𝐹 . Then, since (𝜅−1)
∑︀

𝑗∈N
𝑏𝑗 < 𝜀, the map y𝐸 ↦→ 𝑢(y𝐸 ,y𝐹 ) is

separately holomorphic on y𝐸 ∈×
𝐽

𝑗=1
ℰ𝜅 and with supy𝐸∈×𝐽

𝑗=1 ℰ𝜅
‖𝑢(y𝐸 ,y𝐹 )‖𝒳 ≤
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𝑀 . As in (49) this allows us to show that there exists a constant 𝐶 (not depending

on y𝐹 ) such that
⃦

⃦

⃦

⃦

⃦

⃦

∫︁

𝑈𝐸

𝐿ν𝐸 (y𝐸)𝑢(y𝐸 ,y𝐹 )d𝜇𝐸(y𝐸)

⃦

⃦

⃦

⃦

⃦

⃦

𝒳

≤ 𝐶𝜅−|ν𝐸 |

⎛

⎝

𝐽
∏︁

𝑗=1

(1 + 2𝜈𝑗)

⎞

⎠ .

By similar arguments as in Step 1 we then get

∑︁

ν𝐸∈ℱ𝐸

‖𝐿ν𝐸‖𝐿∞(𝑈𝐸)

⃦

⃦

⃦

⃦

⃦

⃦

∫︁

𝑈𝐸

𝐿ν𝐸 (y𝐸)𝑢(y𝐸 ,y𝐹 )d𝜇𝐸(y𝐸)

⃦

⃦

⃦

⃦

⃦

⃦

𝒳

≤
∑︁

ν𝐸∈ℱ𝐸

𝐶𝜅−|ν𝐸 |
𝐽
∏︁

𝑗=1

(1 + 𝜈𝑗)
3/2 <∞.

It then follows, e.g. by a őnite dimensional version of [84, Proposition 2.1.13], that

there holds the uniformly and absolutely convergent expansion

𝑢(y𝐸 ,y𝐹 ) =
∑︁

ν𝐸∈ℱ𝐸

𝐿ν𝐸 (y𝐸)

∫︁

𝑈𝐸

𝐿ν𝐸 (ỹ𝐸)𝑢(ỹ𝐸 ,y𝐹 )d𝜇𝐸(ỹ𝐸)

=
∑︁

ν𝐸∈ℱ𝐸

𝐿ν𝐸 (y𝐸)

∫︁

𝑈𝐸

𝐿ν𝐸 (ỹ𝐸)
∑︁

ν𝐹∈ℱ𝐹

𝜕ν𝐹
y𝐹
𝑢(ỹ𝐸 ,0)

ν𝐹 !
y
ν𝐹

𝐹 d𝜇𝐸(ỹ𝐸).

By (54) (recall that 𝜃 > 1) it holds supỹ𝐸∈𝑈𝐸

∑︀

ν𝐹∈ℱ𝐹
‖𝜕ν𝐹

y𝐹
𝑢(ỹ𝐸 ,0)‖𝒳 /ν𝐹 ! <∞,

so that by Lebesgue dominated convergence we can interchange the integration

with the summation to get

𝑢(y𝐸 ,y𝐹 ) =
∑︁

ν𝐸∈ℱ𝐸

∑︁

ν𝐹∈ℱ𝐹

𝐿ν𝐸 (y𝐸)yν𝐹

𝐹

∫︁

𝑈𝐸

𝐿ν𝐸 (ỹ𝐸)
𝜕ν𝐹
y𝐹
𝑢(ỹ𝐸 ,0)

ν𝐹 !
d𝜇𝐸(ỹ𝐸),

with absolute and uniform convergence for all y ∈ 𝑈 . This shows (ii).

Step 4. We complete the proof of (iii). Fix 𝜏 ∈ (0, 1), so that |Λ𝜏 | > 0.

In Step 2 we veriőed (21) and showed that (δ−ν)ν∈ℱ ∈ ℓ𝑝/(1−𝑝)(ℱ). Denote

by (𝑥𝑗)𝑗∈N a monotonically decreasing arrangement of (δ−ν)ν∈ℱ , i.e. there is

a bijection 𝜋 : N → ℱ such that 𝑥𝑖 = δ−𝜋(𝑖) for all 𝑖 ∈ N, and additionally

(𝑥𝑖)𝑖∈N is monotonically decreasing. Then 𝑥
𝑝/(1−𝑝)
𝑛 ≤ 𝑛−1∑︀𝑛

𝑗=1 𝑥
𝑝/(1−𝑝)
𝑗 and thus

𝑥𝑛 ≤ 𝑛−1/𝑝+1‖(δ−ν)ν∈ℱ‖ℓ𝑝/(1−𝑝)(ℱ) for all 𝑛 ∈ N. Since Λ𝜏 corresponds to the

|Λ𝜏 | multiindices ν ∈ ℱ with the largest values of δ−ν , we get supν∈ℱ∖Λ𝜏
δ−ν ≤

‖(δ−ν)ν∈ℱ‖ℓ𝑝/(1−𝑝)(ℱ)|Λ𝜏 |−1/𝑝+1. Thus

sup
y∈𝑈

⃦

⃦

⃦

⃦

⃦

⃦

𝑢(y)−
∑︁

ν∈Λ𝜏

𝑐ν𝐿ν𝐸 (y𝐸)yν𝐹

𝐹

⃦

⃦

⃦

⃦

⃦

⃦

𝒳

≤
∑︁

ν∈ℱ∖Λ𝜏

‖𝐿ν𝐸‖𝐿∞(𝑈𝐸)‖𝑐ν‖𝒳
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≤ |Λ𝜏 |−
1
𝑝+1‖(δ−ν)ν∈ℱ‖ℓ𝑝/(1−𝑝)(ℱ)

∑︁

ν∈ℱ
δ
ν‖𝐿ν𝐸‖𝐿∞(𝑈𝐸)‖𝑐ν‖𝒳 ,

which concludes the proof, since the őnal sum is őnite by (21) as we showed

already.

A.2 Proof of Lemma 4.1

Proof. When 𝐿 = 0 the properties of the lemma are satisőed by the parallelization

deőned in Section 4.2.1. In the remainder of the proof, we assume 𝐿 > 0.

We őrst describe the structure of (𝑓1, . . . , 𝑓𝑘)s, and then deőne its weights

explicitly. We denote for 𝑡 = 1, . . . , 𝑘 the depth of 𝑓𝑡 by 𝐿𝑡 and the number of

computation nodes of 𝑓𝑡 in layer ℓ = 1, . . . , 𝐿𝑡+1 by 𝑁
(𝑡)
ℓ ∈ N0, with the (unusual)

convention that 𝑁
(𝑡)
ℓ := 0 for ℓ ≤ 0.

We construct (𝑓1, . . . , 𝑓𝑘)s out of 𝑘 + 1 parallel networks, namely an identity

network with input dimension 𝑛 and 𝑓1, . . . , 𝑓𝑘, such that the 𝐿 + 1’st layer of

(𝑓1, . . . , 𝑓𝑘)s is the output layer of 𝑓1, . . . , 𝑓𝑘, but it does not contain the output of

the identity network. As a result, for 𝑡 = 1, . . . , 𝑘 the ℓ = 1, . . . , 𝐿𝑡 + 1’th layer of

𝑓𝑡 is part of the ℓ + 𝐿 − 𝐿𝑡’th layer of (𝑓1, . . . , 𝑓𝑘)s, and 2𝑛 +
∑︀𝑘

𝑡=1𝑁
(𝑡)
ℓ+𝐿𝑡−𝐿 is

the number of computation nodes of (𝑓1, . . . , 𝑓𝑘)s in layer ℓ = 1, . . . , 𝐿.

For the construction of (𝑓1, . . . , 𝑓𝑘)s, it remains to discuss how 𝑓1, . . . , 𝑓𝑘
receive their input. The identity network and the NNs 𝑓𝑡, 𝑡 = 1, . . . , 𝑘 whose depth

equals 𝐿 directly take their input from the input of (𝑓1, . . . , 𝑓𝑘)s. For the other

𝑓𝑡, 𝑡 = 1, . . . , 𝑘, we replace the one input weight in the input layer of 𝑓𝑡 by two

weights, as for each component 𝑥𝑖 ∈ R, 𝑖 = 1, . . . , 𝑛 of the input it holds that

𝑥𝑖 = 𝜎1(𝑥𝑖) − 𝜎1(−𝑥𝑖), where 𝜎1(𝑥𝑖) and 𝜎1(−𝑥𝑖) are computed by the hidden

layers of the identity network and can thus be used as input for 𝑓𝑡 in layer 1+𝐿−𝐿𝑡

of (𝑓1, . . . , 𝑓𝑘)s.

We will denote the weights of (𝑓1, . . . , 𝑓𝑘)s by 𝑤ℓ
𝑖,𝑗 and those of 𝑓𝑡, 𝑡 = 1, . . . , 𝑘

by 𝑤
(𝑡),ℓ
𝑖,𝑗 . Moreover, we write 𝑀

(𝑡)
ℓ :=

∑︀𝑡−1
𝑠=1𝑁

(𝑠)
ℓ+𝐿𝑠−𝐿 for all 𝑡 = 1, . . . , 𝑘 and ℓ =

1, . . . , 𝐿+ 1 for the number of computational nodes in layer ℓ of (𝑓1, . . . , 𝑓𝑘)s used
to emulate 𝑓1, . . . , 𝑓𝑡−1. With this notation, the network weights of (𝑓1, . . . , 𝑓𝑘)s
are

𝑤
1
𝑖,𝑖 =1 𝑖 = 1, . . . , 𝑛,

𝑤
1
𝑖,𝑛+𝑖 = − 1 𝑖 = 1, . . . , 𝑛,

𝑤
ℓ
𝑖,𝑖 =1 𝑖 = 1, . . . , 2𝑛,

ℓ = 2, . . . , 𝐿,

𝑤
1

𝑖,2𝑛+𝑀
(𝑡)
1 +𝑗

=𝑤
(𝑡),1
𝑖,𝑗

𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑁
(𝑡)
1 ,

𝑡 = 1, . . . , 𝑘 satisfying 𝐿𝑡 = 𝐿,

𝑤
ℓ

𝑖,2𝑛+𝑀
(𝑡)
ℓ +𝑗

=𝑤
(𝑡),1
𝑖,𝑗

𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑁
(𝑡)
1 ,
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ℓ = 1 + 𝐿 − 𝐿𝑡, 𝑡 = 1, . . . , 𝑘 satisfying 0 < 𝐿𝑡 < 𝐿,

𝑤
ℓ

𝑛+𝑖,2𝑛+𝑀
(𝑡)
ℓ +𝑗

= − 𝑤
(𝑡),1
𝑖,𝑗

𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑁
(𝑡)
1 ,

ℓ = 1 + 𝐿 − 𝐿𝑡, 𝑡 = 1, . . . , 𝑘 satisfying 0 < 𝐿𝑡 < 𝐿,

𝑤
ℓ

2𝑛+𝑀
(𝑡)
ℓ−1+𝑖,2𝑛+𝑀

(𝑡)
ℓ +𝑗

=𝑤
(𝑡),ℓ+𝐿𝑡−𝐿
𝑖,𝑗

𝑖 = 1, . . . , 𝑁
(𝑡)
ℓ−1+𝐿𝑡−𝐿

, 𝑗 = 1, . . . , 𝑁
(𝑡)
ℓ+𝐿𝑡−𝐿

,

ℓ = 2 + 𝐿 − 𝐿𝑡, . . . , 𝐿, 𝑡 = 1, . . . , 𝑘,

𝑤
𝐿+1

2𝑛+𝑀
(𝑡)
𝐿 +𝑖,𝑀

(𝑡)
𝐿+1+𝑗

=𝑤
(𝑡),𝐿𝑡+1
𝑖,𝑗

𝑖 = 1, . . . , 𝑁
(𝑡)
𝐿𝑡

, 𝑗 = 1, . . . , 𝑁
(𝑡)
𝐿𝑡+1

,

𝑡 = 1, . . . , 𝑘 satisfying 0 < 𝐿𝑡,

𝑤
𝐿+1

𝑖,𝑀
(𝑡)
𝐿+1+𝑗

=𝑤
(𝑡),1
𝑖,𝑗

𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑁
(𝑡)
1 ,

𝑡 = 1, . . . , 𝑘 satisfying 𝐿𝑡 = 0,

𝑤
𝐿+1

𝑛+𝑖,𝑀
(𝑡)
𝐿+1+𝑗

= − 𝑤
(𝑡),1
𝑖,𝑗

𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑁
(𝑡)
1 ,

𝑡 = 1, . . . , 𝑘 satisfying 𝐿𝑡 = 0,

𝑤
ℓ
𝑖,𝑗 =0 otherwise,

𝑏
ℓ

2𝑛+𝑀
(𝑡)
ℓ +𝑗

= 𝑏
(𝑡),ℓ+𝐿𝑡−𝐿
𝑗

𝑗 = 1, . . . , 𝑁
(𝑡)
ℓ+𝐿𝑡−𝐿

,

ℓ = 1 + 𝐿 − 𝐿𝑡, . . . , 𝐿, 𝑡 = 1, . . . , 𝑘,

𝑏
𝐿+1

𝑀
(𝑡)
𝐿+1+𝑗

= 𝑏
(𝑡),𝐿𝑡+1
𝑗

𝑗 = 1, . . . , 𝑁
(𝑡)
𝐿𝑡+1

,

𝑡 = 1, . . . , 𝑘,

𝑏
ℓ
𝑗 =0 otherwise.

The őrst three equations describe the őrst 𝐿 layers of an identity network. The

output layer of the identity network is not included, because it is not desired that

the input of (𝑓1, . . . , 𝑓𝑘)s is part of the output of (𝑓1, . . . , 𝑓𝑘)s. The fourth, őfth

and sixth equation describe how the input of the network is connected to the parts

emulating 𝑓𝑡, for 𝑡 = 1, . . . , 𝑘 that satisfy 𝐿𝑡 > 0. The seventh equation describes

the remaining hidden layer weights of 𝑓𝑡, 𝑡 = 1, . . . , 𝑘. The weights of the output

layer, indexed by 𝐿 + 1, are described in the eighth, ninth and tenth equation.

The only remaining nonzero weights are the biases of 𝑓1, . . . , 𝑓𝑘, described in the

twelfth and thirteenth equation.

The expressions for the input dimension, the output dimension and the depth

follow directly from the construction. The bound on the network size is obtained

by noting that all biases 𝑏
(𝑡),ℓ
𝑗 appear exactly once, the őrst three equations involve

2𝑛𝐿 nonzero weights, that in the expression for the network weights 𝑤
(𝑡),1
𝑖,𝑗 appears

exactly once if 𝐿𝑡 = 𝐿 and exactly twice if 𝐿𝑡 < 𝐿, and that 𝑤
(𝑡),ℓ
𝑖,𝑗 appears exactly

once for ℓ > 1. The bound on the őrst layer size follows from the őrst, second,

fourth (for 𝑡 such that 𝐿𝑡 = 𝐿) and twelfth equation (for 𝐿𝑡 = 𝐿). Likewise, the

bound on the output layer size follows from the eighth, ninth, tenth and thirteenth

equation.
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A.3 Proof of Theorem 4.9

Proof. If |Λ𝜏 | = 1, then Proposition 3.8 item (iv) implies Λ𝜏 = {0}. Hence,
∑︀

ν∈Λ𝜏
𝑐ν𝐿ν(y𝐸)yν𝐹

𝐹 is constant in y ∈ 𝑈 . Therefore, it is emulated exactly by a

𝜎1-NN of depth 0 and size 1.

We use that |Λ𝜏 | ≥ 2. The proof is given in several steps. In the őrst step, we

deőne the approximation 𝑢̃𝜏 of 𝑢. Then, we estimate its error. In the third step we

construct a network which emulates 𝑢̃𝜏 , the depth and size of which are estimated

in the fourth and last step.

Step 1. For all ν ∈ ℱ let (𝑗𝑖;ν𝐹
)
|ν𝐹 |1
𝑖=1 ⊂ N be such that

∏︀|ν𝐹 |1
𝑖=1 𝑦𝑗𝑖;ν𝐹

= yν𝐹

𝐹

for all y ∈ 𝑈 . In addition, we deőne Λ𝜏,𝐸 := {ν𝐸 ∈ ℱ𝐸 : ν ∈ Λ𝜏}. As shown in

Proposition 3.8 item (iii), |Λ𝜏,𝐸 | ≤ 𝐶(1 + log |Λ𝜏 |)𝐽 .

For all ν ∈ Λ𝜏 , we deőne

𝑓ν,𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏
) := ×̃𝛿ν ,𝑅

(︂

𝐿̃ν𝐸 ,𝛿(y𝐸),
˜∏︁

𝜀ν,𝐹 ,1

(︁

{𝑦𝑗𝑖;ν𝐹
}|ν𝐹 |1
𝑖=1

)︁

)︂

, y ∈ 𝑈,

where ×̃𝛿ν ,𝑅 is as in Proposition 4.3, ˜∏︀
𝜀ν,𝐹 ,1 as in Proposition 4.4 and 𝐿̃ν𝐸 ,𝛿 as in

Proposition 4.6. We choose the accuracy of all tensor product Legendre polynomials

to be 𝛿 := 1
3 min

{︁

1, ‖(|𝑐ν |)ν∈ℱ‖−1
ℓ1(ℱ)

|Λ𝜏 |−1/𝑝+1
}︁

. By choosing 𝛿 independent of

ν𝐸 ∈ Λ𝜏,𝐸 , we can use 𝐿̃ν𝐸 ,𝛿 for multiple different ν (there may be multiple

ν ∈ Λ𝜏 with the same ν𝐸). For the accuracy of ˜∏︀
𝜀ν,𝐹 ,1

(︁

{𝑦𝑗𝑖;ν𝐹
}|ν𝐹 |1
𝑖=1

)︁

, we choose

𝜀ν,𝐹 := (2𝑚(Λ𝜏 )+2)−𝐽 1
3 min

{︁

1, |𝑐ν |−1 |Λ𝜏 |−1/𝑝
}︁

. For ×̃𝛿ν ,𝑅, we choose accuracy

𝛿ν := 1
3 min

{︁

1, |𝑐ν |−1 |Λ𝜏 |−1/𝑝
}︁

, and note that the absolute values of its inputs

are bounded by 𝑅 := (2𝑚(Λ𝜏,𝐸) + 2)𝐽 .

Finally, we deőne

𝑢̃𝜏 :=
∑︁

ν∈Λ𝜏

𝑐ν𝑓ν,𝜏 .

Step 2. The error can be estimated as follows:

sup
y∈𝑈

⃒

⃒𝐿ν𝐸 (y𝐸)yν𝐹

𝐹 − 𝑓ν,𝜏 ((𝑦𝑗)𝑗∈supp ν)
⃒

⃒

≤ sup
y∈𝑈

⃒

⃒𝐿ν𝐸 (y𝐸)yν𝐹

𝐹 − 𝐿̃ν𝐸 ,𝛿(y𝐸)yν𝐹

𝐹

⃒

⃒

+ sup
y∈𝑈

⃒

⃒

⃒

⃒

𝐿̃ν𝐸 ,𝛿(y𝐸)yν𝐹

𝐹 − 𝐿̃ν𝐸 ,𝛿(y𝐸)
˜∏︁

𝜀ν,𝐹 ,1

(︁

{𝑦𝑗𝑖;ν𝐹
}|ν𝐹 |1
𝑖=1

)︁

⃒

⃒

⃒

⃒

+ sup
y∈𝑈

⃒

⃒

⃒

⃒

𝐿̃ν,𝛿(y𝐸)
˜∏︁

𝜀ν,𝐹 ,1

(︁

{𝑦𝑗𝑖;ν𝐹
}|ν𝐹 |1
𝑖=1

)︁

− 𝑓ν,𝜏 ((𝑦𝑗)𝑗∈supp ν)

⃒

⃒

⃒

⃒

≤ 𝛿 + (2𝑚(Λ𝜏 ) + 2)𝐽𝜀ν,𝐹 + 𝛿ν

≤ 1
3‖(|𝑐ν |)ν∈ℱ‖−1

ℓ1(ℱ)|Λ𝜏 |−1/𝑝+1 + 2
3 |𝑐ν |−1 |Λ𝜏 |−1/𝑝.

(55)
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To estimate the őrst two terms of the three, we used Propositions 4.4 and 4.6. For

the third term, we used Proposition 4.3. As a result, we őnd

sup
y∈𝑈

⃒

⃒

⃒

⃒

⃒

⃒

∑︁

ν∈Λ𝜏

𝑐ν𝐿ν𝐸 (y𝐸)yν𝐹

𝐹 − 𝑢̃𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏
)

⃒

⃒

⃒

⃒

⃒

⃒

≤
∑︁

ν∈Λ𝜏

|𝑐ν | sup
y∈𝑈

⃒

⃒𝐿ν𝐸 (y𝐸)yν𝐹

𝐹 − 𝑓ν,𝜏 ((𝑦𝑗)𝑗∈supp ν)
⃒

⃒

≤
∑︁

ν∈Λ𝜏

|𝑐ν | ·
(︀

1
3‖(|𝑐ν |)ν∈ℱ‖−1

ℓ1(ℱ)|Λ𝜏 |−1/𝑝+1 + 2
3 |𝑐ν |−1 |Λ𝜏 |−1/𝑝)︀

≤ |Λ𝜏 |−1/𝑝+1.

Together with Theorem 3.7 item (iii), which states that

sup
y∈𝑈

⃒

⃒

⃒

⃒

⃒

⃒

𝑢(y)−
∑︁

ν∈Λ𝜏

𝑐ν𝐿ν𝐸 (y𝐸)yν𝐹

𝐹

⃒

⃒

⃒

⃒

⃒

⃒

≤𝐶2|Λ𝜏 |−1/𝑝+1,

we get Equation (33).

Step 3. We now construct a network which emulates 𝑢̃𝜏 . It consists of four

concatenated subnetworks:

𝑢̃𝜏 := 𝑢̃
(1)
𝜏 ∘ 𝑢̃(2)𝜏 ∘ 𝑢̃(3)𝜏 ∘ 𝑢̃(4)𝜏 .

The őrst subnetwork 𝑢̃
(4)
𝜏 has input dimension |𝑆Λ𝜏

|, output dimension |Λ𝜏,𝐸 |+
|Λ𝜏 | and in parallel emulates approximations of {𝐿ν𝐸}ν𝐸∈Λ𝜏,𝐸

and {yν𝐹

𝐹 }ν∈Λ𝜏
:

𝑢̃
(4)
𝜏 :=

(︃

Id
R

|Λ𝜏,𝐸 | ∘𝑓Λ𝜏,𝐸 ,𝛿,

{︂

IdR1 ∘ ˜∏︁

𝜀ν,𝐹 ,1

(︂

(︁

𝑦𝑗𝑖;ν𝐹

)︁|ν𝐹 |1

𝑖=1

)︂}︂

ν∈Λ𝜏

)︃

, (56)

where 𝑓Λ𝜏,𝐸 ,𝛿 is as constructed in Proposition 4.6 and where the depth of the

𝜎1-identity networks is such that

depth
(︁

𝑢̃
(4)
𝜏

)︁

≤ 1 + max{depth(𝑓Λ𝜏,𝐸 ,𝛿)} ∪
{︂

depth

(︂

˜∏︁

𝜀ν,𝐹 ,1

)︂}︂

ν∈Λ𝜏

.

The second subnetwork 𝑢̃
(3)
𝜏 has zero depth, i.e. it consists of an affine transformation

only. It has input dimension |Λ𝜏,𝐸 |+ |Λ𝜏 | and output dimension 2|Λ𝜏 |. For a őxed

but arbitrary enumeration
(︁

ν(𝑗)
)︁|Λ𝜏 |

𝑗=1
of Λ𝜏 , the output of 𝑢̃

(3)
𝜏 ∘ 𝑢̃(4)𝜏 is

(︀

𝑢̃
(3)
𝜏 ∘ 𝑢̃(4)𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏

)
)︀

2𝑘−1
= 𝐿̃

ν
(𝑘)
𝐸 ,𝛿

(y𝐸),

(︀

𝑢̃
(3)
𝜏 ∘ 𝑢̃(4)𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏

)
)︀

2𝑘
=

˜∏︁

𝜀
ν
(𝑘),𝐹

,1

⎛

⎝

(︂

𝑦𝑗
𝑖;ν

(𝑘)
𝐹

)︂|ν(𝑘)
𝐹 |

𝑖=1

⎞

⎠ ,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

∀y ∈ 𝑈,

∀𝑘 ≤ |Λ𝜏 |.

(57)
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The third subnetwork 𝑢̃
(2)
𝜏 is deőned to be the parallelization of networks from

Proposition 4.3 concatenated with 𝜎1-identity networks:

𝑢̃
(2)
𝜏 :=

(︂

{︁

IdR1 ∘×̃𝛿
ν
(𝑗) ,𝑅

}︁|Λ𝜏 |

𝑗=1

)︂

d

,

where the identity networks are such that

depth
(︁

𝑢̃
(2)
𝜏

)︁

≤ 1 + max
ν∈Λ𝜏

𝐶 (1 + log2 (𝑅/𝛿ν)) .

Its output is given by

(︀

𝑢̃
(2)
𝜏 ∘ 𝑢̃(3)𝜏 ∘ 𝑢̃(4)𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏

)
)︀

𝑘
= 𝑓ν(𝑘),𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏

), ∀y ∈ 𝑈, 𝑘 ≤ |Λ𝜏 |.
(58)

Finally, the last subnetwork 𝑢̃
(1)
𝜏 has depth 0, input dimension |Λ𝜏 | and output

dimension 1, and emulates a linear combination of its inputs, with weight 𝑐ν(𝑗) in

coordinate 𝑗, and without bias. As a result,
(︁

𝑢̃
(1)
𝜏 ∘ 𝑢̃(2)𝜏 ∘ 𝑢̃(3)𝜏 ∘ 𝑢̃(4)𝜏

)︁

((𝑦𝑗)𝑗∈𝑆Λ𝜏
) = 𝑢̃𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏

), ∀y ∈ 𝑈.

Step 4. We now give estimates on the depth of the subnetworks and the

network itself. We use that 𝑚(Λ𝜏,𝐸) ≤ 𝑚(Λ𝜏 ) ≤ 𝐶(1 + log |Λ𝜏 |), where the second

inequality is Proposition 3.8 item (ii). We get, using Propositions 4.6, 4.4 and 4.3:

depth
(︁

𝑢̃
(4)
𝜏

)︁

≤ 1 + max{depth(𝑓Λ𝜏,𝐸 ,𝛿)} ∪
{︂

depth

(︂

˜∏︁

𝜀ν,𝐹 ,1

)︂}︂

ν∈Λ𝜏

≤ max
{︀

𝐶
(︀

1 + log𝑚(Λ𝜏,𝐸)
)︀(︀

𝑚(Λ𝜏,𝐸) + log2(1/𝛿)
)︀}︀

∪
{︀

𝐶
(︀

1 + log(|ν𝐹 |1) log(|ν𝐹 |1/𝜀ν,𝐹 )
)︀}︀

ν∈Λ𝜏

≤ max
{︁

𝐶
(︀

1 + log𝑚(Λ𝜏,𝐸)
)︀

(︁

𝑚(Λ𝜏,𝐸) + log 3

+ max
{︀

0, log ‖(|𝑐ν |)ν∈ℱ‖ℓ1(ℱ) +
1−𝑝
𝑝 log |Λ𝜏 |

}︀

)︁

, 𝐶
(︁

1 + log(𝑚(Λ𝜏 ))

log
(︁

𝑚(Λ𝜏 )(2𝑚(Λ𝜏 ) + 2)𝐽3max
{︁

1, ‖(|𝑐ν |)ν∈ℱ‖ℓ1(ℱ)|Λ𝜏 |1/𝑝
}︁)︁)︁}︁

≤𝐶
(︀

1 + log(|Λ𝜏 |) log log(|Λ𝜏 |)
)︀

,

depth
(︁

𝑢̃
(3)
𝜏

)︁

=0,

depth
(︁

𝑢̃
(2)
𝜏

)︁

≤ 1 + max
ν∈Λ𝜏

𝐶
(︁

1 + log2

(︁

(2𝑚(Λ𝜏 ) + 2)𝐽3max
{︁

1, ‖(|𝑐ν |)ν∈ℱ‖ℓ1(ℱ)|Λ𝜏 |1/𝑝
}︁)︁)︁

≤𝐶(1 + log |Λ𝜏 |),

depth
(︁

𝑢̃
(1)
𝜏

)︁

=0,

depth (𝑢̃𝜏 ) = depth
(︁

𝑢̃
(1)
𝜏

)︁

+ 1 + depth
(︁

𝑢̃
(2)
𝜏

)︁

+ 1 + depth
(︁

𝑢̃
(3)
𝜏

)︁

+ 1 + depth
(︁

𝑢̃
(4)
𝜏

)︁



52 Opschoor, Schwab, Zech

≤𝐶
(︀

1 + log(|Λ𝜏 |) log log(|Λ𝜏 |)
)︀

.

For the bounds on the network size, we use that the depth of the identity

networks in 𝑢̃
(4)
𝜏 is less than depth

(︁

𝑢̃
(4)
𝜏

)︁

. There is one identity network with input

dimension |Λ𝜏,𝐸 | and there are |Λ𝜏 | identity networks with input dimension 1. The

sum of the network sizes is bounded by

2(|Λ𝜏,𝐸 |+ |Λ𝜏 |) depth
(︁

𝑢̃
(4)
𝜏

)︁

≤ 𝐶
(︀

1 + |Λ𝜏 | log(|Λ𝜏 |) log log(|Λ𝜏 |)
)︀

.

The depth of identity networks in 𝑢̃
(2)
𝜏 is less than depth

(︁

𝑢̃
(2)
𝜏

)︁

, their input

dimension is 1 and their number is |Λ𝜏 |. Hence, the sum of their sizes is bounded

by

2|Λ𝜏 | depth
(︁

𝑢̃
(2)
𝜏

)︁

≤ 𝐶
(︀

1 + |Λ𝜏 | log(|Λ𝜏 |)
)︀

.

We őnd using (27):

size
(︁

𝑢̃
(4)
𝜏

)︁

≤ 2 size
(︀

𝑓Λ𝜏,𝐸 ,𝛿

)︀

+ 2
∑︁

ν𝐹∈Λ𝜏

size

(︂

˜∏︁

𝜀ν,𝐹 ,1

)︂

+ 2𝐶
(︀

1 + |Λ𝜏 | log(|Λ𝜏 |) log log(|Λ𝜏 |)
)︀

≤𝐶
(︁

𝑚(Λ𝜏,𝐸)2 +𝑚(Λ𝜏,𝐸) log2(1/𝛿) + |Λ𝜏,𝐸 |
(︀

1 + log2𝑚(Λ𝜏,𝐸) + log2(1/𝛿)
)︀

)︁

+
∑︁

ν∈Λ𝜏

𝐶
(︀

1 + |ν𝐹 |1 log(|ν𝐹 |1/𝜀ν,𝐹 )
)︀

+ 𝐶
(︀

1 + |Λ𝜏 | log(|Λ𝜏 |) log log(|Λ𝜏 |)
)︀

≤
(︁

𝐶(1 + log |Λ𝜏 |)2 + 𝐶(1 + log |Λ𝜏 |)

· log2
(︁

3max
{︁

1, ‖(|𝑐ν |)ν∈ℱ‖ℓ1(ℱ)|Λ𝜏 |1/𝑝−1
}︁)︁

+ 𝐶(1 + log |Λ𝜏 |)𝐽

·
(︁

1 + log log |Λ𝜏 |+ log2

(︁

3max
{︁

1, ‖(|𝑐ν |)ν∈ℱ‖ℓ1(ℱ)|Λ𝜏 |1/𝑝−1
}︁)︁)︁)︁

+
∑︁

ν∈Λ𝜏

𝐶 (1 +𝑚(Λ𝜏 ) log𝑚(Λ𝜏 ))

+
∑︁

ν∈Λ𝜏

𝐶
(︁

1 +𝑚(Λ𝜏 ) log
(︁

3max
{︁

1, |𝑐ν | |Λ𝜏 |1/𝑝
}︁)︁)︁

+ 𝐶
(︀

1 + |Λ𝜏 | log(|Λ𝜏 |) log log(|Λ𝜏 |)
)︀

(*)
≤ 𝐶(1 + log |Λ𝜏 |)𝐽+1 + 𝐶

(︀

1 + |Λ𝜏 | log(|Λ𝜏 |) log log(|Λ𝜏 |)
)︀

≤𝐶
(︀

1 + |Λ𝜏 | log(|Λ𝜏 |) log log(|Λ𝜏 |)
)︀

.
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At (*) we used the following estimate, which uses that ‖(|𝑐ν |)ν∈ℱ‖ℓ𝑝(ℱ) <∞
by Theorem 3.7 item (i) for 𝒳 = R, and that log(max{1, 𝑥}) ≤ 𝑥 for all 𝑥 > 0:

∑︁

ν∈Λ𝜏

𝐶
(︁

1 +𝑚(Λ𝜏 ) log
(︁

3max
{︁

1, |𝑐ν | |Λ𝜏 |1/𝑝
}︁)︁)︁

≤𝐶(1 + log |Λ𝜏 |)
∑︁

ν∈Λ𝜏

log
(︁

3max
{︁

1, |𝑐ν | |Λ𝜏 |1/𝑝
}︁)︁

≤𝐶(1 + |Λ𝜏 | log |Λ𝜏 |) + 𝐶(1 + log |Λ𝜏 |)
∑︁

ν∈Λ𝜏

1
𝑝 log

(︀

max
{︀

1, |𝑐ν |𝑝 |Λ𝜏 |
}︀)︀

≤𝐶(1 + |Λ𝜏 | log |Λ𝜏 |) + 𝐶(1 + log |Λ𝜏 |)
∑︁

ν∈Λ𝜏

|𝑐ν |𝑝 |Λ𝜏 |

≤𝐶(1 + |Λ𝜏 | log |Λ𝜏 |) + 𝐶(1 + log |Λ𝜏 |) · ‖(|𝑐ν |)ν∈ℱ‖𝑝
ℓ𝑝(ℱ)

· |Λ𝜏 |

≤𝐶(1 + |Λ𝜏 | log |Λ𝜏 |).

(59)

The number of nonzero weights of 𝑢̃
(3)
𝜏 is at most 2|Λ𝜏 |, because each output

depends on at most one input. We can hence estimate

size
(︁

𝑢̃
(3)
𝜏

)︁

≤ 2|Λ𝜏 |.

Again using Equations (27) and (59), we őnd

size
(︁

𝑢̃
(2)
𝜏

)︁

≤ 2
∑︁

ν∈Λ𝜏

𝐶
(︁

1 + log2

(︁

(2𝑚(Λ𝜏,𝐸) + 2)𝐽3max
{︁

1, |𝑐ν | |Λ𝜏 |1/𝑝
}︁)︁)︁

+ 2𝐶(1 + |Λ𝜏 | log |Λ𝜏 |)
≤𝐶(1 + |Λ𝜏 | log |Λ𝜏 |),

size
(︁

𝑢̃
(1)
𝜏

)︁

≤ |Λ𝜏 |,

size (𝑢̃𝜏 ) ≤ 4 size
(︁

𝑢̃
(1)
𝜏

)︁

+ 4 size
(︁

𝑢̃
(2)
𝜏

)︁

+ 4 size
(︁

𝑢̃
(3)
𝜏

)︁

+ 4 size
(︁

𝑢̃
(4)
𝜏

)︁

≤𝐶
(︀

1 + |Λ𝜏 | log(|Λ𝜏 |) log log(|Λ𝜏 |)
)︀

.

Most of the network constructed in the proof of Theorem 4.9 will also be used in

the proof of Theorem 5.2 in Section A.4 ahead, namely the part of the network

which in parallel emulates the gpc basis polynomials {𝑈 ∋ y ↦→ 𝐿ν𝐸 (y𝐸)yν𝐹

𝐹 }ν∈Λ𝜏
.

Therefore, we state the properties of that part of the network as a lemma. We

state the lemma for the general case of a (b, 𝜀,𝒳 )-holomorphic function 𝑢 : 𝑈 → 𝒳 .

The construction of the neural network is the same as for a (b, 𝜀,R)-holomorphic

function 𝑢 : 𝑈 → R, except that we now use the sequence (‖𝑐ν‖𝒳 )ν∈ℱ instead of

(|𝑐ν |)ν∈ℱ to deőne the accuracy.
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Lemma A.1. Let 𝑢 : 𝑈 → 𝒳 be (b, 𝜀,𝒳 )-holomorphic for some b ∈ ℓ𝑝(N), 𝑝 ∈
(0, 1) and 𝜀 > 0. Let 𝐽 ∈ N, (‖𝑐ν‖𝒳 )ν∈ℱ ∈ R

ℱ and ∅ ̸= Λ𝜏 ⊂ ℱ for 𝜏 ∈ (0, 1) be

as in Theorem 3.7.

Then, the 𝜎1-NN 𝑓Λ𝜏
:= 𝑢̃

(2)
𝜏 ∘𝑢̃(3)𝜏 ∘𝑢̃(4)𝜏 has input dimension |𝑆Λ𝜏

| and output

dimension |Λ𝜏 |. The components of its output are

(︀

𝑓Λ𝜏
((𝑦𝑗)𝑗∈𝑆Λ𝜏

)
)︀

𝑘
= 𝑓ν(𝑘),𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏

), for all y ∈ 𝑈, 𝑘 ≤ |Λ𝜏 |, (60)

for an arbitrary but fixed enumeration (ν(𝑘))
|Λ𝜏 |
𝑘=1 of Λ𝜏 . They satisfy the uniform

error bound

sup
y∈𝑈

⃒

⃒𝐿ν𝐸 (y𝐸)yν𝐹

𝐹 − 𝑓ν,𝜏 ((𝑦𝑗)𝑗∈supp ν)
⃒

⃒

≤ 1
3‖(‖𝑐ν‖𝒳 )ν∈ℱ‖−1

ℓ1(ℱ)|Λ𝜏 |−1/𝑝+1 + 2
3 ‖𝑐ν‖−1

𝒳 |Λ𝜏 |−1/𝑝, for all ν ∈ Λ𝜏 .

(61)

The depth and size are bounded as follows:

size(𝑓Λ𝜏
) ≤ 𝐶(1 + |Λ𝜏 | · log |Λ𝜏 | · log log |Λ𝜏 |),

depth(𝑓Λ𝜏
) ≤ 𝐶(1 + log |Λ𝜏 | · log log |Λ𝜏 |).

It follows from Proposition 4.3 and the deőnitions of 𝑅 and 𝛿ν in Step 1 of the

proof of Theorem 4.9 that

sup
y∈𝑈

⃒

⃒𝑓ν,𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏
)
⃒

⃒ ≤ sup
y∈𝑈

⃒

⃒𝐿ν𝐸 (y𝐸)yν𝐹
⃒

⃒ + sup
y∈𝑈

⃒

⃒𝐿ν𝐸 (y𝐸)yν𝐹 − 𝑓ν,𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏
)
⃒

⃒

≤𝑅+ 𝛿ν ≤ 𝑅+ 1 = (2𝑚(Λ𝜏,𝐸) + 2)𝐽 + 1.

A.4 Proof of Theorem 5.2

Proof. Throughout the proof, we őx 𝜏 ∈ (0, 1), and thereby Λ𝜏 . The proof consists

of 5 steps. In Step 1, we construct the networks which approximate the gpc-

coefficients {𝑐ν}ν∈Λ𝜏
and the polynomials in y ∈ 𝑈 . In Step 2, we construct 𝑢̃𝜏 .

In Step 3, the error is estimated. In Step 4, a NN emulating 𝑢̃𝜏 is discussed in

detail. In Step 5, the NN depth and size are estimated.

Step 1. We őrst construct a subnetwork which approximates the gpc coeffi-

cients {𝑐ν}ν∈Λ𝜏
. Let δ−1 ∈ ℓ𝑝/(1−𝑝)(N) be as in Theorem 3.7 based on (b, 𝜀,𝒳 )-

holomorphy of 𝑢. To optimize the choice of network size used for the emulation of

each gpc coefficient, we use [77, Lemma 4.7], which in turn is based on [3, Section 3]

and [30, Section 2]. We apply the result for 𝑎ν := ‖𝑐ν‖𝒳 𝑠 ‖𝐿ν𝐸‖𝐿∞(𝑈𝐸) ∈ (0,∞),

𝑏ν := ‖𝑐ν‖𝒳 ‖𝐿ν𝐸‖𝐿∞(𝑈𝐸) ∈ (0,∞) for all ν ∈ ℱ , β := δ−1 ∈ (0, 1)N, 𝑝𝑎 := 𝑝𝑠,

𝑝𝑏 := 𝑝, 𝑛 := |Λ𝜏 | and Λ𝑛 := Λ𝜏 . Instead of the assumption that (𝑏νβ
−ν)ν∈ℱ ∈
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ℓ2(ℱ) and β ∈ ℓ2𝑝/(2−𝑝), we have (𝑏νβ
−ν)ν∈ℱ ∈ ℓ1(ℱ) and β ∈ ℓ𝑝/(1−𝑝) (Theo-

rem 3.7 item (iii)). Under the current assumption we obtain the same result as in

[77, Lemma 4.7], as in both cases [77, Lemma 2.8] implies that (in the notation of

[77])

∑︁

ℱ∖Λ𝑛

𝑏ν ≤ 𝐶𝑛−1/𝑝𝑏+1. (62)

The rest of the proof of [77, Lemma 4.7] only uses (62), hence the conclusion of

[77, Lemma 4.7] also holds when (𝑏νβ
−ν)ν∈ℱ ∈ ℓ1(ℱ) and β ∈ ℓ𝑝/(1−𝑝).

Thus, it follows from [77, Lemma 4.7] that there exists a constant 𝐶 > 0 and

a sequence (𝑚𝑛;ν)ν∈Λ𝑛
∈ N

|Λ𝑛| (in the notation of [77]), which we denote by

(𝑚𝜏 ;ν)ν∈Λ𝜏
, such that with 𝒩𝜏 :=

∑︀

ν∈Λ𝜏
𝑚𝜏 ;ν ≥ |Λ𝜏 | it holds

|Λ𝜏 |−1/𝑝+1 +
∑︁

ν∈Λ𝜏

‖𝑐ν‖𝒳 𝑠 ‖𝐿ν𝐸‖𝐿∞(𝑈𝐸)𝑚
−𝛾
𝜏 ;ν +

∑︁

ν∈ℱ∖Λ𝜏

‖𝑐ν‖𝒳 ‖𝐿ν𝐸‖𝐿∞(𝑈𝐸)

≤ 𝐶𝒩−𝑟
𝜏 (63)

for 𝑟 as in Equation (35).

For all ν ∈ Λ𝜏 , let 𝑐ν,𝜏 := Φ𝑐ν
𝑚𝜏;ν be as provided by Assumption 5.1. Then, we

consider the parallelization with shared identity operator 𝑔Λ𝜏
:= ({𝑐ν,𝜏}ν∈Λ𝜏

)s
introduced in Lemma 4.1. With Assumption 5.1, it follows that

depth(𝑔Λ𝜏
) = max

ν∈Λ𝜏

depth(𝑐ν,𝜏 ) ≤ max
ν∈Λ𝜏

𝐶(1 + log(𝑚𝜏 ;ν)) ≤ 𝐶(1 + log𝒩𝜏 ),

size(𝑔Λ𝜏
) ≤ 2𝑑 depth(𝑔Λ𝜏

) + 2
∑︁

ν∈Λ𝜏

size(𝑐ν,𝜏 )

≤𝐶(1 + log𝒩𝜏 ) + 2
∑︁

ν∈Λ𝜏

𝐶𝑚𝜏 ;ν ≤ 𝐶𝒩𝜏 .

For the approximation of the polynomials in y ∈ 𝑈 , we use the DNN 𝑓Λ𝜏
from

Lemma A.1. We denote the components of its output by 𝑓ν,𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏
), for all

ν ∈ Λ𝜏 and y ∈ 𝑈 .

Step 2. In this step we deőne 𝑢̃𝜏 , combining the components of 𝑔Λ𝜏
and 𝑓Λ𝜏

.

First, we note that by Assumption 5.1, it holds that for all ν ∈ Λ𝜏

‖𝑐ν,𝜏‖𝐿∞(D) ≤ 𝐶 ‖𝑐ν‖𝒳 𝑠 𝑚
𝜃
𝜏 ;ν ≤ 𝐶‖(‖𝑐ν‖𝒳 𝑠)ν∈ℱ‖ℓ𝑝𝑠 (ℱ)𝑚

𝜃
𝜏 ;ν = 𝐶𝑚𝜃

𝜏 ;ν .

With Proposition 3.8, item (ii), this implies with 𝑅 := (2𝑚(Λ𝜏,𝐸) + 2)𝐽 that

𝑅′
ν := max{{𝑅+ 1} ∪ {‖𝑐ν,𝜏‖𝐿∞(D)}ν∈Λ𝜏

} ≤ max{𝑅+ 1, 𝐶𝑚𝜃
𝜏 ;ν}

≤𝐶max{(1 + log |Λ𝜏 |)𝐽 ,𝑚𝜃
𝜏 ;ν},
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for some constant 𝐶 which is independent of Λ𝜏 .

We deőne the NN 𝑢̃𝜏 approximating 𝑢: for 𝜆 := 𝒩−𝑟−1
𝜏 , x ∈ D and for y ∈ 𝑈 ,

we set

𝑢̃𝜏 (x, (𝑦𝑗)𝑗∈𝑆Λ𝜏
) :=

∑︁

ν∈Λ𝜏

×̃𝜆,𝑅′
ν

(︀

𝑐ν,𝜏 (x), 𝑓ν,𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏
)
)︀

.

Step 3. We estimate the NN expression error.

sup
y∈𝑈

⃦

⃦𝑢(y)− 𝑢̃𝜏 (·, (𝑦𝑗)𝑗∈𝑆Λ𝜏
)
⃦

⃦

𝒳

≤ sup
y∈𝑈

⃦

⃦

⃦

⃦

⃦

⃦

∑︁

ν∈ℱ
𝑐ν(·)𝐿ν𝐸 (y𝐸)yν𝐹

𝐹 −
∑︁

ν∈Λ𝜏

𝑐ν(·)𝐿ν𝐸 (y𝐸)yν𝐹

𝐹

⃦

⃦

⃦

⃦

⃦

⃦

𝒳

+ sup
y∈𝑈

⃦

⃦

⃦

⃦

⃦

⃦

∑︁

ν∈Λ𝜏

(︀

𝑐ν(·)𝐿ν𝐸 (y𝐸)yν𝐹

𝐹 − 𝑐ν(·)𝑓ν,𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏
)
)︀

⃦

⃦

⃦

⃦

⃦

⃦

𝒳

+ sup
y∈𝑈

⃦

⃦

⃦

⃦

⃦

⃦

∑︁

ν∈Λ𝜏

(︀

𝑐ν(·)𝑓ν,𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏
)− 𝑐ν,𝜏 (·)𝑓ν,𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏

)
)︀

⃦

⃦

⃦

⃦

⃦

⃦

𝒳

+ sup
y∈𝑈

⃦

⃦

⃦

⃦

⃦

⃦

∑︁

ν∈Λ𝜏

(︀

𝑐ν,𝜏 (·)𝑓ν,𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏
)− ×̃𝜆,𝑅′

ν

(︀

𝑐ν,𝜏 (·), 𝑓ν,𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏
)
)︀)︀

⃦

⃦

⃦

⃦

⃦

⃦

𝒳

≤
∑︁

ν∈ℱ∖Λ𝜏

‖𝑐ν‖𝒳 sup
y∈𝑈

⃒

⃒𝐿ν𝐸 (y𝐸)yν𝐹

𝐹

⃒

⃒

+
∑︁

ν∈Λ𝜏

‖𝑐ν‖𝒳 sup
y∈𝑈

⃒

⃒𝐿ν𝐸 (y𝐸)yν𝐹

𝐹 − 𝑓ν,𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏
)
⃒

⃒

+
∑︁

ν∈Λ𝜏

‖𝑐ν − 𝑐ν,𝜏‖𝒳

(︃

sup
y∈𝑈

⃒

⃒𝐿ν𝐸 (y𝐸)yν𝐹

𝐹

⃒

⃒ + sup
y∈𝑈

⃒

⃒𝐿ν𝐸 (y𝐸)yν𝐹

𝐹 − 𝑓ν,𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏
)
⃒

⃒

)︃

+
∑︁

ν∈Λ𝜏

(︂

⃦

⃦𝑐ν,𝜏 (·)𝑓ν,𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏
)− ×̃𝜆,𝑅′

ν

(︀

𝑐ν,𝜏 (·), 𝑓ν,𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏
)
)︀⃦

⃦

𝑞

𝐿𝑞(D)

+
⃦

⃦

(︀

𝑓ν,𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏
)− [𝐷×̃𝜆,𝑅′

ν
]1
(︀

𝑐ν,𝜏 (·), 𝑓ν,𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏
)
)︀)︀

∇𝑐ν,𝜏 (·)
⃦

⃦

𝑞

𝐿𝑞(D)𝑑

)︂1/𝑞

(*)
≤ 𝐶

∑︁

ν∈ℱ∖Λ𝜏

‖𝑐ν‖𝒳 ‖𝐿ν𝐸‖𝐿∞(𝑈𝐸)

+ 1
3

∑︁

ν∈Λ𝜏

‖𝑐ν‖𝒳 ‖(‖𝑐ν‖𝒳 )ν∈ℱ‖−1
ℓ1(ℱ)|Λ𝜏 |−1/𝑝+1 + 2

3

∑︁

ν∈Λ𝜏

‖𝑐ν‖𝒳 ‖𝑐ν‖−1
𝒳 |Λ𝜏 |−1/𝑝

+
∑︁

ν∈Λ𝜏

𝐶‖𝑐ν‖𝒳 𝑠𝑚−𝛾
𝜏 ;ν ‖𝐿ν𝐸‖𝐿∞(𝑈𝐸)
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+ 1
3

∑︁

ν∈Λ𝜏

𝐶 ‖𝑐ν‖𝒳 ‖(‖𝑐ν‖𝒳 )ν∈ℱ‖−1
ℓ1(ℱ)|Λ𝜏 |−1/𝑝+1 + 2

3

∑︁

ν∈Λ𝜏

𝐶 ‖𝑐ν‖𝒳 ‖𝑐ν‖−1
𝒳 |Λ𝜏 |−1/𝑝

+
∑︁

ν∈Λ𝜏

(︁

𝜆𝑞 ‖1‖𝑞
𝐿𝑞(D)

+ 𝜆𝑞 ‖∇𝑐ν,𝜏‖𝑞𝐿𝑞(D)𝑑

)︁1/𝑞

≤𝐶
[︁

𝒩−𝑟
𝜏 + |Λ𝜏 |−1/𝑝+1 +𝒩−𝑟

𝜏 + |Λ𝜏 |−1/𝑝+1 +𝒩−𝑟
𝜏

]︁

≤ 𝐶𝒩−𝑟
𝜏 .

In case 𝑞 = ∞, the ℓ𝑞-sums have to be replaced by a maximum.

At (*), the őrst term can be estimated with Equation (63). To obtain the second

and third term, we used Lemma A.1. To obtain the fourth term, we used ‖𝑐ν −
𝑐ν,𝜏‖𝒳 ≤ 𝐶‖𝑐ν‖𝒳 𝑠𝑚−𝛾

𝜏 ;ν from Assumption 5.1 and we used Equation (63) to esti-

mate
∑︀

ν∈Λ𝜏
‖𝑐ν − 𝑐ν,𝜏‖𝒳 supy∈𝑈

⃒

⃒𝐿ν𝐸 (y𝐸)yν𝐹

𝐹

⃒

⃒. To obtain the őfth and sixth

term, we used that by Assumption 5.1 ‖𝑐ν − 𝑐ν,𝜏‖𝒳 ≤ ‖𝑐ν‖𝒳+‖𝑐ν,𝜏‖𝒳 ≤ 𝐶 ‖𝑐ν‖𝒳
to estimate

∑︀

ν∈Λ𝜏
‖𝑐ν − 𝑐ν,𝜏‖𝒳 supy∈𝑈

⃒

⃒𝐿ν𝐸 (y𝐸)yν𝐹

𝐹 − 𝑓ν,𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏
)
⃒

⃒ using

Lemma A.1. To obtain the seventh term, Proposition 4.3 was used, and to estimate

it, we again used Assumption 5.1 and |Λ𝜏 | ≤ 𝒩𝜏 to obtain |Λ𝜏 |𝒩−𝑟−1
𝜏 ≤ 𝒩−𝑟

𝜏 :

∑︁

ν∈Λ𝜏

(︁

𝜆𝑞 ‖1‖𝑞
𝐿𝑞(D)

+ 𝜆𝑞 ‖∇𝑐ν,𝜏‖𝑞𝐿𝑞(D)𝑑

)︁1/𝑞
≤
∑︁

ν∈Λ𝜏

(︁

𝜆 ‖1‖𝐿𝑞(D) + 𝜆𝐶 ‖𝑐ν‖𝒳
)︁

≤𝐶|Λ𝜏 |𝜆+ 𝐶𝜆 ‖(‖𝑐ν‖𝒳 )ν∈ℱ‖ℓ1(ℱ)

≤𝐶𝒩−𝑟
𝜏 .

Step 4. We now construct a network emulating 𝑢̃𝜏 . It is the concatenation

of four subnetworks, 𝑢̃𝜏 := 𝑢̃
(5)
𝜏 ∘ 𝑢̃(6)𝜏 ∘ 𝑢̃(7)𝜏 ∘ 𝑢̃(8)𝜏 . The őrst NN 𝑢̃

(8)
𝜏 has input

dimension 𝑑+ |𝑆Λ𝜏
|, output dimension 2|Λ𝜏 | and is deőned as

𝑢̃
(8)
𝜏 :=

(︀

𝑔Λ𝜏
∘ IdR𝑑 , 𝑓Λ𝜏

∘ Id
R

|𝑆Λ𝜏
|

)︀

d
,

where the depth of the identity networks is such that depth(𝑢̃
(8)
𝜏 ) = 1 +

max{depth(𝑔Λ𝜏
), depth(𝑓Λ𝜏

)}. The second NN 𝑢̃
(7)
𝜏 emulates an affine map.

It has depth 0, and its input dimension and output dimension both equal 2|Λ𝜏 |.
For a őxed but arbitrary enumeration (ν(𝑗))

|Λ𝜏 |
𝑗=1 , the NN 𝑢̃

(7)
𝜏 is deőned such that

(︁

𝑢̃
(7)
𝜏 ∘ 𝑢̃(8)𝜏 (x, (𝑦𝑗)𝑗∈𝑆Λ𝜏

)
)︁

2𝑘−1
= 𝑐ν(𝑘),𝜏 (x),

(︁

𝑢̃
(7)
𝜏 ∘ 𝑢̃(8)𝜏 (x, (𝑦𝑗)𝑗∈𝑆Λ𝜏

)
)︁

2𝑘
= 𝑓ν(𝑘),𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏

),

⎫

⎪

⎬

⎪

⎭

∀x ∈ D, ∀y ∈ 𝑈,

∀𝑘 = 1, . . . , |Λ𝜏 |.

The third NN 𝑢̃
(6)
𝜏 is a parallelization of NNs from Proposition 4.3:

𝑢̃
(6)
𝜏 :=

(︂

{︁

IdR ∘×̃𝜆,𝑅′

ν
(𝑘)

}︁|Λ𝜏 |

𝑘=1

)︂

d

,
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where the depth of the identity networks is such that all components of the

parallelization have equal depth, so that the parallelization has depth maxν∈Λ𝜏
1+

depth(×̃𝜆,𝑅′
ν
). For all 𝑘 = 1, . . . , |Λ𝜏 |, the 𝑘’th component of the output of 𝑢̃

(6)
𝜏 is

(︁

𝑢̃
(6)
𝜏 ∘ 𝑢̃(7)𝜏 ∘ 𝑢̃(8)𝜏 (x, (𝑦𝑗)𝑗∈𝑆Λ𝜏

)
)︁

𝑘
= ×̃𝜆,𝑅′

ν
(𝑘)

(︀

𝑐ν(𝑘),𝜏 (x), 𝑓ν(𝑘),𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏
)
)︀

,

∀x ∈ D, ∀y ∈ 𝑈.

Finally, 𝑢̃
(5)
𝜏 has depth 0, input dimension |Λ𝜏 |, output dimension 1 and computes

the sum of its inputs. As a result, it holds that

𝑢̃𝜏 (x, (𝑦𝑗)𝑗∈𝑆Λ𝜏
) =

∑︁

ν∈Λ𝜏

×̃𝜆,𝑅′
ν

(︀

𝑐ν,𝜏 (x), 𝑓ν,𝜏 ((𝑦𝑗)𝑗∈𝑆Λ𝜏
)
)︀

, ∀x ∈ D, ∀y ∈ 𝑈.

Step 5. Finally, we bound the NN depth and size of 𝑢̃𝜏 .

We őrst estimate the network depth. It follows from Assumption 5.1 and

Lemma A.1 that

depth(𝑢̃
(8)
𝜏 ) = 1 +max{depth(𝑔Λ𝜏

), depth(𝑓Λ𝜏
)}

≤ 1 + max{𝐶(1 + log𝒩𝜏 ), 𝐶(1 + log |Λ𝜏 | · log log |Λ𝜏 |)}
≤𝐶(1 + log𝒩𝜏 · log log𝒩𝜏 ).

In addition, it holds that

depth(𝑢̃
(7)
𝜏 ) = 0,

depth(𝑢̃
(6)
𝜏 ) = max

ν∈Λ𝜏

1 + depth(×̃𝜆,𝑅′
ν
) ≤ max

ν∈Λ𝜏

𝐶(1 + log(𝑅′
ν/𝜆))

≤𝐶 max
ν∈Λ𝜏

(1 + 𝐽 log log(|Λ𝜏 |) + 𝜃 log(𝑚𝜏 ;ν) + (𝑟 + 1) log(𝒩𝜏 ))

≤𝐶(1 + log𝒩𝜏 ),

depth(𝑢̃
(5)
𝜏 ) = 0,

depth(𝑢̃𝜏 ) ≤ depth(𝑢̃
(5)
𝜏 ) + 1 + depth(𝑢̃

(6)
𝜏 ) + 1 + depth(𝑢̃

(7)
𝜏 ) + 1 + depth(𝑢̃

(8)
𝜏 )

≤𝐶(1 + log𝒩𝜏 · log log𝒩𝜏 ).

We now estimate the network size. By Proposition 3.8 item (i), it follows that

|𝑆Λ𝜏
| ≤ |Λ𝜏 |. As a result, the sizes of the identity networks in 𝑢̃

(8)
𝜏 can be estimated

as follows:

size(IdR𝑑) ≤ 2𝑑(1 + depth(𝑢̃
(8)
𝜏 )) ≤ 𝐶(1 + log𝒩𝜏 · log log𝒩𝜏 ),

size(Id
R

|𝑆Λ𝜏
|) ≤ 2|𝑆Λ𝜏

|(1 + depth(𝑢̃
(8)
𝜏 )) ≤ 𝐶(1 +𝒩𝜏 · log𝒩𝜏 · log log𝒩𝜏 ).

We őnd:

size(𝑢̃
(8)
𝜏 ) ≤ 2 size(𝑔Λ𝜏

) + 2 size(IdR𝑑) + 2 size(𝑓Λ𝜏
) + 2 size(Id

R
|𝑆Λ𝜏

|)
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≤ 2𝐶𝒩𝜏 + 2𝐶(1 + log𝒩𝜏 · log log𝒩𝜏 ) + 2𝐶(1 + |Λ𝜏 | · log |Λ𝜏 | · log log |Λ𝜏 |)
+ 2𝐶(1 +𝒩𝜏 · log𝒩𝜏 · log log𝒩𝜏 )

≤ 2𝐶(1 +𝒩𝜏 · log𝒩𝜏 · log log𝒩𝜏 ).

Because each component of the output of 𝑢̃
(7)
𝜏 only depends on one component of

its input, it holds that size(𝑢̃
(7)
𝜏 ) ≤ 2|Λ𝜏 |. Furthermore, it holds that

size(𝑢̃
(6)
𝜏 ) ≤

∑︁

ν∈Λ𝜏

2 size(IdR) + 2 size(×̃𝜆,𝑅′
ν
)

≤
∑︁

ν∈Λ𝜏

4(1 + depth(𝑢̃
(6)
𝜏 )) + 𝐶(1 + log(𝑅′

ν/𝜆)) ≤ 𝐶(1 +𝒩𝜏 · log𝒩𝜏 ),

size(𝑢̃
(5)
𝜏 ) ≤ |Λ𝜏 |,

size(𝑢̃𝜏 ) ≤ 4 size(𝑢̃
(5)
𝜏 ) + 4 size(𝑢̃

(6)
𝜏 ) + 4 size(𝑢̃

(7)
𝜏 ) + 4 size(𝑢̃

(8)
𝜏 )

≤𝐶(1 +𝒩𝜏 · log𝒩𝜏 · log log𝒩𝜏 ).

This őnishes the proof.

A.5 Proof of Proposition 6.2

To prove Proposition 6.2, we will use [63, Theorem 6.7]. In the following lemma, we

verify the assumptions of that result concerning the approximation of the Gaussian

density function, using [63, Theorem 5.15], and cutting off the NN approximation

sufficiently far away from zero.

Lemma A.2. Let 𝑔 : R → R : 𝑥 ↦→ exp(− 1
2𝑥

2).

For all 𝛽 ∈ (0, 1] there exists a 𝜎1-NN Φ𝑔
𝛽 with input dimension 1 and output

dimension 1 and an absolute constant 𝐶 > 0 such that
⃦

⃦

⃦
𝑔 − Φ𝑔

𝛽

⃦

⃦

⃦

𝐿∞(R)
≤ 𝛽 = 𝛽 ‖𝑔‖𝐿∞(R) ,

depth(Φ𝑔
𝛽) ≤ 𝐶(1 + log(1/𝛽) log log(1/𝛽)), size(Φ𝑔

𝛽) ≤ 𝐶(1 + log(1/𝛽))2.

Proof. For arbitrary 𝛽 ∈ (0, 1], we őrst construct a ReLU NN approximation

Φ𝑔
𝛽/3,[−𝑅,𝑅]

of 𝑔 satisfying
⃦

⃦

⃦
𝑔 − Φ𝑔

𝛽/3,[−𝑅,𝑅]

⃦

⃦

⃦

𝐿∞([−𝑅,𝑅])
≤ 𝛽/3, for 𝑅 := 1 +

√︀

2 log(3/𝛽). Here,𝑅 > 1 is chosen such that 𝑔(𝑅−1) = 𝛽/3 = ‖𝑔‖𝐿∞(−∞,−𝑅+1) =

‖𝑔‖𝐿∞(𝑅−1,∞). Let ℎ : R → R : 𝑥 ↦→ exp(− 1
2𝑥), so that ℎ(𝑥2) = 𝑔(𝑥), 𝑥 ∈ R. For

the approximation of ℎ on [0, 𝑅2], ReLU NNs obtain exponential convergence, with

network size independent of 𝑅. Applying [63, Theorem 5.15] (see also the remark

after that result) to ℎ((𝑅2 +2)(𝑥+1)/2), 𝑥 ∈ [−1, 1] with accuracy 𝛽/(6 exp(1/2))
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and with the weights in the output layer multiplied by exp(1/2), we obtain that for

all 𝑅 > 1, for ℎ𝑅(𝑥) := exp(1/2)ℎ((𝑅2 + 2)(𝑥+ 1)/2) = ℎ((𝑅2 + 2)(𝑥+ 1)/2− 1),

𝑥 ∈ [−1, 1], there exists a NN Φℎ𝑅

𝛽/6,[−1,1]
satisfying, for an absolute constant 𝐶 > 0

independent of 𝑅
⃦

⃦

⃦
ℎ𝑅 − Φℎ𝑅

𝛽/6,[−1,1]

⃦

⃦

⃦

𝐿∞([−1,1])
≤𝛽/6,

depth(Φℎ𝑅

𝛽/6,[−1,1]) ≤𝐶(1 + log(1/𝛽) log log(1/𝛽)),

size(Φℎ𝑅

𝛽/6,[−1,1]) ≤𝐶(1 + log(1/𝛽))2.

Here, we applied [63, Theorem 5.15] with 𝜂 := 2(2 + 𝑅2)−1 and 1/𝜂 ≤ 𝐶(1 +

log(1/𝛽)), for 𝜂 as deőned in that reference.

Let 𝑇 be the affine transformation R → R : 𝑥 ↦→ 2(𝑥 + 1)/(2 + 𝑅2) − 1

satisfying 𝑇 ([−1, 𝑅2 + 1]) = [−1, 1] and ℎ = ℎ𝑅 ∘ 𝑇 . Then, the NN Φℎ𝑅

𝛽/6,[−1,1]
∘ 𝑇

approximates ℎ on [−1, 𝑅2 + 1] with network size bounded as stated above. The

map 𝑔 can be approximated as

Φ𝑔
𝛽/3,[−𝑅,𝑅]

(𝑥) := Φℎ𝑅

𝛽/6,[−1,1] ∘ 𝑇 ∘ ×̃𝛽/6,𝑅(𝑥, 𝑥), 𝑥 ∈ [−𝑅,𝑅].

To bound the error, we use that for all 𝑥 ∈ [−𝑅,𝑅] it holds ×̃𝛽/6,𝑅(𝑥, 𝑥) ∈
[−1, 𝑅2 + 1] and thus 𝑇 (×̃𝛽/6,𝑅(𝑥, 𝑥)) ∈ [−1, 1]. Note that we approximate ℎ on

[−1, 𝑅2 + 1] rather than [0, 𝑅2] because ×̃𝛽/6,𝑅(𝑥, 𝑥) need not be in [0, 𝑅2] for

all 𝑥 ∈ [−𝑅,𝑅]. We obtain the following error estimate, for all 𝑅 > 1, using that

|ℎ|𝑊 1,∞([−1,∞)) =
1
2 exp(1/2) < 1:

⃦

⃦

⃦
𝑔 − Φ𝑔

𝛽/3,[−𝑅,𝑅]

⃦

⃦

⃦

𝐿∞([−𝑅,𝑅])

≤
⃦

⃦

⃦
ℎ((·)2)− ℎ

(︀

×̃𝛽/6,𝑅(·, ·)
)︀

⃦

⃦

⃦

𝐿∞([−𝑅,𝑅])

+
⃦

⃦

⃦
ℎ𝑅 ∘ 𝑇

(︀

×̃𝛽/6,𝑅(·, ·)
)︀

− Φℎ𝑅

𝛽/6,[−1,1] ∘ 𝑇
(︀

×̃𝛽/6,𝑅(·, ·)
)︀

⃦

⃦

⃦

𝐿∞([−𝑅,𝑅])

≤ |ℎ|𝑊 1,∞([−1,𝑅2+1])

⃦

⃦

⃦
(·)2 − ×̃𝛽/6,𝑅(·, ·)

⃦

⃦

⃦

𝐿∞([−𝑅,𝑅])

+
⃦

⃦

⃦
ℎ𝑅 − Φℎ𝑅

𝛽/6,[−1,1]

⃦

⃦

⃦

𝐿∞([−1,1])

≤ 𝛽
6 + 𝛽

6 = 𝛽
3 .

We estimate the NN depth and size as

depth(Φ𝑔
𝛽/3,[−𝑅,𝑅]

) ≤ depth
(︁

Φℎ𝑅

𝛽/6,[−1,1]

)︁

+ 1 + depth(𝑇 ) + 1 + depth
(︀

×̃𝛽/6,𝑅(·, ·)
)︀

≤𝐶(1 + log(6/𝛽) log log(6/𝛽)) + 1 + 0 + 1 + 𝐶(1 + log(6𝑅/𝛽))

≤𝐶(1 + log(1/𝛽) log log(1/𝛽)),



Deep learning in high dimension 61

size(Φ𝑔
𝛽/3,[−𝑅,𝑅]

) ≤ 2 size
(︁

Φℎ𝑅

𝛽/6,[−1,1]

)︁

+ 4 size(𝑇 ) + 4 size
(︀

×̃𝛽/6,𝑅(·, ·)
)︀

≤𝐶(1 + log(6/𝛽))2 + 8 + 𝐶(1 + log(6𝑅/𝛽))

≤𝐶(1 + log(1/𝛽))2,

for 𝐶 independent of 𝑅, using that 𝑅 ≤ 𝐶(1 + log(1/𝛽))1/2.

Based on Φ𝑔
𝛽/3,[−𝑅,𝑅]

, we deőne the following ReLU NN approximation of 𝑔

on R:

Φ𝑔
𝛽(𝑥) := ×̃𝛽/3,2

(︁

Φ𝑔
𝛽/3,[−𝑅,𝑅]

(𝑥),max{0, 𝑅− |𝑥|} −max{0, 𝑅− 1− |𝑥|}
)︁

.

This can be emulated exactly by the network

×̃𝛽/3,2 ∘𝐵 ∘
(︁

Φ𝑔
𝛽/3,[−𝑅,𝑅]

, 𝜎1(·+𝑅) ∘ IdR, 𝜎1(·+𝑅− 1) ∘ IdR,

𝜎1(𝑅− 1− ·) ∘ IdR, 𝜎1(𝑅− ·) ∘ IdR
)︁

,

where 𝐵 : R5 → R
2 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥1, 𝑥2 − 𝑥3 − 𝑥4 + 𝑥5) and where the

depth of the identity networks is depth(Φ𝑔
𝛽/3,[−𝑅,𝑅]

)− 2, such that all components

of the parallelization have equal depth.

We estimate the NN depth and size as

depth(Φ𝑔
𝛽) ≤ depth(×̃𝛽/3,2) + 1 + depth(𝐵) + 1 + depth(Φ𝑔

𝛽/3,[−𝑅,𝑅]
)

≤𝐶(1 + log(3/𝛽)) + 1 + 0 + 1 + 𝐶(1 + log(1/𝛽) log log(1/𝛽))

≤𝐶(1 + log(1/𝛽) log log(1/𝛽)),

size(Φ𝑔
𝛽) ≤ 4 size(×̃𝛽/3,2) + 4 size(𝐵) + 2 size(Φ𝑔

𝛽/3,[−𝑅,𝑅]
) + 4 size(𝜎1(·+𝑅))

+ 4 size(IdR) + 4 size(𝜎1(·+𝑅− 1)) + 4 size(IdR)

+ 4 size(𝜎1(𝑅− 1− ·)) + 4 size(IdR) + 4 size(𝜎1(𝑅− ·)) + 4 size(IdR)

≤𝐶(1 + log(3/𝛽)) + 20 + 2
(︀

𝐶(1 + log(1/𝛽))2
)︀

+ 4
(︀

12 + 8
(︀

𝐶(1 + log(1/𝛽) log log(1/𝛽))
)︀)︀

≤𝐶(1 + log(1/𝛽))2.

On [0, 𝑅− 1] and [𝑅− 1, 𝑅], respectively, it holds that

⃦

⃦

⃦
𝑔 − Φ𝑔

𝛽

⃦

⃦

⃦

𝐿∞([0,𝑅−1])

≤
⃦

⃦

⃦
𝑔 − Φ𝑔

𝛽/3,[−𝑅,𝑅]

⃦

⃦

⃦

𝐿∞([0,𝑅−1])

+
⃦

⃦

⃦
Φ𝑔
𝛽/3,[−𝑅,𝑅]

(·)− ×̃𝛽/3,2

(︁

Φ𝑔
𝛽/3,[−𝑅,𝑅]

(·), 1
)︁⃦

⃦

⃦

𝐿∞([0,𝑅−1])

≤𝛽/3 + 𝛽/3 < 𝛽,
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⃦

⃦

⃦
𝑔 − Φ𝑔

𝛽

⃦

⃦

⃦

𝐿∞([𝑅−1,𝑅])

≤ ‖𝑔(·)− (𝑅− ·)𝑔(·)‖𝐿∞([𝑅−1,𝑅])

+
⃦

⃦

⃦
(𝑅− ·)𝑔(·)− (𝑅− ·)Φ𝑔

𝛽/3,[−𝑅,𝑅]
(·)
⃦

⃦

⃦

𝐿∞([𝑅−1,𝑅])

+
⃦

⃦

⃦
(𝑅− ·)Φ𝑔

𝛽/3,[−𝑅,𝑅]
(·)− ×̃𝛽/3,2(Φ

𝑔
𝛽/3,[−𝑅,𝑅]

(·), (𝑅− ·))
⃦

⃦

⃦

𝐿∞([𝑅−1,𝑅])

≤𝛽/3 + 𝛽/3 + 𝛽/3 = 𝛽.

On (𝑅,∞), it holds that Φ𝑔
𝛽 ≡ 0 and hence

⃦

⃦

⃦
𝑔 − Φ𝑔

𝛽

⃦

⃦

⃦

𝐿∞([𝑅,∞))
≤ 𝛽/3 < 𝛽. The

same estimates hold on (−∞, 0], which őnishes the proof of the lemma.

Using [66, Lemma 3.5] instead of [63, Theorem 5.15] for the approximation of ℎ, the

bound on the network size would be 𝐶(1 + log(1/𝛽))2⌈𝑅⌉ ≤ 𝐶(1 + log(1/𝛽))5/2.

Proof of Proposition 6.2. We apply [63, Theorem 6.7], for 𝑔 and Φ𝑔
𝛽 as in the

Lemma A.2 above. With 𝛽 := 𝜀/2, 𝑅 = 1 +
√︀

2 log(3/𝛽) and 𝐷 := {x ∈ R
𝑁 :

‖𝐴x‖2 ≤ 𝑅}, we obtain Φg
𝜀 satisfying

⃦

⃦g− Φg
𝜀

⃦

⃦

𝐿∞(𝐷)
≤ 𝜀 ‖𝑔‖𝑊 1,∞(𝐷) ≤ 𝜀,

depth(Φg
𝜀) ≤𝐶(1 + log(2/𝜀) log log(2/𝜀)) + log(𝑁) log2 (10𝜋𝑁𝑅(2/𝜀)) + 1

≤𝐶 log(𝑁)(1 + log(𝑁/𝜀)) + 𝐶(1 + log(1/𝜀) log log(1/𝜀)),

size(Φg
𝜀) ≤ 2𝐶(1 + log(2/𝜀))2 + 4𝑁2 + 64(𝑁 − 1) log2 (10𝜋𝑁𝑅(2/𝜀)) + 4𝑁

≤𝐶(1 + log(1/𝜀))2 + 𝐶𝑁 log(1/𝜀) + 𝐶𝑁2.

On R
𝑁∖𝐷, it holds that Φg

𝜀 = 0, which follows from the fact that the net-

work Φ𝑔
𝛽 constructed in Lemma A.2 vanishes on (𝑅,∞). We recall from the

proof of the lemma that 𝑅 was deőned such that
⃦

⃦g− Φg
𝜀

⃦

⃦

𝐿∞(R𝑁∖𝐷)
≤

‖𝑔‖𝐿∞((−∞,−𝑅+1)∪(𝑅−1,∞)) = 𝛽/3 = 𝜀/6. Combined with the estimate above, it

holds that
⃦

⃦g− Φg
𝜀

⃦

⃦

𝐿∞(R𝑁 )
≤ 𝜀.
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