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Abstract

We establish dimension independent expression rates by deep ReLU networks for so-called
(b, e, X)-holomorphic functions. These are mappings from [—1,1]N — X, with X’ being a Banach
space, that admit analytic extensions to certain polyellipses in each of the input variables. The
significance of this function class has been established in previous works, where it was shown
that functions of this type occur widely in uncertainty quantification for partial differential
equations with uncertain inputs from function spaces. Proofs for establishing the expression rate
bounds are constructive, and are based on multilevel polynomial chaos expansions of the target
function. The (b, e, X)-holomorphy facilitates estimation of the coefficients in the polynomial
chaos expansions.

We apply the results to Bayesian inverse problems for partial differential equations with
distributed, uncertain inputs from Banach spaces, resulting in expression rate bounds on the
Bayesian posterior densities by deep ReLU neural networks. The expression rates for these
countably-parametric maps are free from the curse of dimensionality. Certain types of Bayesian
posterior concentration, which generically arise in large data or small noise asymptotics (e.g.
[44]) can be emulated in a noise-robust fashion by the ability of ReLU DNNs to express the
geometry of possibly high-dimensional posterior densities at MAP points.
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tainty Quantification
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1 Introduction

The efficient numerical approximation of solution (manifolds) to parameter dependent partial
differential equations (PDEs) has seen significant progress in recent years. We refer for instance
to [13, 14]. Similarly, and closely related, the treatment of Bayesian Inverse Problems for well-
posed partial (integro-)differential equations with uncertain input data has drawn considerable
attention, see e.g. [22] and the references there. This is, in part, due to the need to efficiently
assimilate noisy observation data into predictions subject to constraints given by certain physical
laws governing responses of systems of interest. We mention here the surveys [22, 70] and the
references there. In the present paper, we study mathematically the ability of deep neural
networks to express Bayesian Posterior probability measures, subject to given data and to PDE
constraints. To this end, we work in an abstract setting accommodating PDE constrained
Bayesian Inverse Problems with function space priors as exposed, e.g., in [22, 41] and in the
references there.

Several concrete constructions of function space prior probability measures for Bayesian PDE
inversion beyond Gaussian measures on separable Hilbert spaces have been advocated in recent
years. We mention in particular so-called Besov prior measures [46, 21].

Recently, several proposals have been put forward advocating the use of DNNs for Bayesian
PDE inversion from noisy data; we refer to [8, 81, 42]. These references computationally found
good numerical efficiency for DNN expression with various architectures of DNNs. Regarding
Deep NNs for “learning” solution maps of PDEs, we mention [81, 77]. Expressive power (ap-
proximation) rate bounds for solution manifolds of PDEs were obtained in [76]; results in this
reference are also key in the present analysis of DNN expression of Bayesian Posteriors. Specif-
ically, we quantify uncertainty in PDE inversion conditional on noisy observation data using
the Bayesian framework. Particular attention is on general, convex priors on uncertain function
space inputs [22, 41].

The Bayesian approach can incorporate most, if, not all, uncertainties of engineering interest
in PDE inversion and in Graph-based data classification in a systematic manner.

UQ for PDEs poses three challenges: large-scale forward problems need to be solved, high
dimensional parameter spaces arise in parametrization of distributed uncertain inputs (from
Banach spaces), and numerical approximation needs to scale favorably in the presence of “big
data”, resulting in consistent posteriors in the sense of Diaconis and Freedman [25].

Foundational mathematical developments on the question of universality of NNs are in [28,
40, 39, 6, 7]. In recent years so-called deep neural networks have undergone rapid development
and successful deployment in a wide range of applications. Evidence for the benefit afforded by
depth of NNs on their expressive power has been documented computationally in an increasing
number of applications (see, e.g. [49, 50, 81, 69, 86, 42, 64] and the references there). The results
reported in these references are mostly computational, and address particular applications.
Independent of these numerical experiments exploring performance of DNN based algorithms,
the approzimation theory of DNNs has also advanced in recent years. Distinct from earlier,
universality results e.g. in [40, 39, 6, 7], emphasis in more recent mathematical developments
has been on approximation (i.e., “expression”) rate bounds for specific function classes and
particular DNN architectures. We mention only [9, 62, 66] and the references there. In [76],
we proved that deep ReLU DNNs can express high-dimensional, parametric solution families of
elliptic PDEs, at rates which are free from the curse of dimensionality.

Specifically, we adopt the infinite-dimensional formulation of Bayesian Inverse Problems from
[78] and its extensions to general, convex prior measures on input function spaces as presented
in [41]. Assuming an affine representation system on the uncertain input data, we adopt uniform
prior measures on the parameters in the representation.

We prove that deep ReLU DNNs allow for expressing the parameter-to-response map and
the Bayesian posterior density at rates which are determined only by the size of the domains of



holomorphy.

1.1 Recent mathematical results on expressive power of DNNs

Fundamental universality results (amounting to, essentially, statements on density of shallow
NN expressions) on DNN expression in the class of continuous functions have been established
in the 90ies (see [67] for proof and a review of results), in recent years expression rate bounds for
approximation by DNNs for specific classes of functions have been in the focus of interest. We
mention in particular [31] and [9]. There, it is shown that deep NNs with a particular architecture
allow for approximation rate bounds analogous to those of rather general multiresolution systems
when measured in terms of the number N of units in the DNN.

In [18], convolutional DNNs were shown capable of expressing multivariate functions given
in so-called Hierarchic Tensor formats, a numerical representation inspired by electron structure
calculations in computational quantum chemistry.

In [82, 51], ReLU DNNs were shown to be able to express general uni- and multivariate
polynomials on bounded domains with uniform accuracy ¢ > 0, with complexity (i.e., with the
number of NN layers and the number of NN units and nonzero weights) scaling polylogarith-
mically with respect to . The results in [82, 51] allow transferring approximation results from
high order finite and spectral element methods, in particular exponential convergence results,
to certain types of DNNs.

In [71], DNN expression rates for multivariate polynomials were investigated, without ref-
erence to function spaces. Expression rate bounds explicit in the number of variables and the
polynomial degree by deep NNs were obtained. The proofs in [71] depend strongly on a large
number of bounded derivatives of the activation function, and do not cover the presently con-
sidered case of ReLU DNNs.

In [76] we proved dimension-independent DNN expression rate bounds on functions of count-
ably many variables. In [76] we used, as we do in part of the present paper, approximation rate
bounds for N-term truncated, so-called generalized polynomial chaos expansions of the para-
metric function. These have been investigated thoroughly in recent years (e.g. [15, 16, 4, 3] and
the references there). For the present analysis, however, we require more specific information of
polynomial degree distributions in N-term approximate gpc expansions as the dimension of the
space of active parameters increases. This was investigated by some of the authors recently in
[85, 84]. In the present article, we shall also draw upon results in these references.

In [56], the authors provided an analysis of expressive power of DNNs for a specific class of
multi-parametric maps which have a defined (assumed known) compositional structure: they are
obtained as (repeated) composition of a possibly large number of simpler functions, depending
only on a few variables at a time. It was shown that such functions can be expressed with DNNs
at complexity which is bounded by the dimensionality of constituent functions in the composition
and the size of the connectivity graph, thereby alleviating the curse of dimensionality for this
class.

1.2 Contributions

We extend our previous work [76] on ReLU NN expression bounds of countably-parametric so-
lution families and Qol’s for PDEs with affine-parametric uncertain input. We prove bounds
on the expressive power of ReLU DNNs for many-parametric response functions from Bayesian
inverse UQ for PDEs and more general operator equations subject to infinitely-parametric, un-
certain (and not directly observable) input data. As in [76], we assume that the input-to-solution
map has holomorphic dependence on possibly an infinite number of parameters. We have in
mind in particular (boundary, eigenvalue, control,...) problems for elliptic or parabolic PDEs
with uncertain coefficients. These may stem from, for example, domains of definition with un-
certain geometry (see, e.g., [68, 43, 17, 49]) in diffusion, incompressible flow, or time-harmonic,



electromagnetic scattering (see, e.g., [43]). Adopting a countable representation system ren-
ders uncertain inputs countably-parametric, and implies likewise countably-parametric output
families (“solution-manifolds”, “response-surfaces”) of the model under consideration.

In [76], expressive power estimates for deep ReLU NNs for countably-parametric solution
manifolds were obtained among others for linear, second order elliptic PDEs with uncertain
coefficient, in divergence form. The present results extend [76] in that here, we require merely
(b, £)-holomorphy on poly-ellipses, rather than on polydiscs as assumed in [76]. This requires
essential modifications of the DNN expression rate analysis in [76], as Legendre polynomial chaos
expansions are used rather than Taylor expansions. Moreover, we generalize our result from [76]
to parametric PDEs posed on a physical domain of dimension d > 2 (instead of d = 1).

In the Bayesian setting (see [78, 22, 41] and the references there), it has been shown in
[26, 74] that (b,e) holomorphy of the Qol is inherited by the Bayesian posterior density, if it
exists. In the present paper we analyze expression rates of deep ReLU DNNs for countably
parametric Bayesian posterior densities which arise from PDE inversion subject to noisy data.
We show, in particular, extending our analysis [76], that ReLU DNNs afford expression of such
densities at dimension-independent rates. The expression rate bounds are, to a large extent,
abstracted from particular model PDEs and apply to a wide class of PDEs and inverse problems
(e.g., elliptic and parabolic linear PDEs with uncertain coefficients, domains, source terms).

We refer to [81] for a possible computational approach and detailed numerical experiments,
for a 2nd order divergence form PDE with log-Gaussian diffusion coefficient.

1.3 Notation

We adopt standard notation, consistent with our previous works [84, 85]: N = {1,2,...} and
Ny := NU {0}. We write Ry := {x € R: 2 > 0}. The symbol C will stand for a generic,
positive constant independent of any asymptotic quantities in an estimate, and may change its
value even within the same equation.

In statements about (generalized) polynomial chaos expansions we require multiindices v =
(vj)jen € Nij. The total order of a multiindex v is denoted by |v|; = > jenVj- For the
countable set of “finitely supported” multiindices we write

F={velNj : v <o}

Here, suppr = {j € N : v; # 0} denotes the support of the multiindex v. The size of the
support of v € F is |v|p = #(suppv); it will, subsequently, indicate the number of active
coordinates in the multivariate monomial term y* := [] jeN y;J

A subset A C F is called downward closed, if v = (v;)jen € A implies pp = (u) en € A for
all g < v. Here, the ordering “<” on F is defined as p; < v;, for all j € N. We write |A| to
denote the finite cardinality of a set A. For 0 < p < oo, denote by ¢P(F) the space of sequences
t = (tu)ver C R satisfying [|t]|wr) = (X, cr [to]P)'/P < 0. As usual, £°(F) equipped with
the norm |[t|[se () := sup, ¢ r [tu| < oo denotes the space of all uniformly bounded sequences.

We consider the set CN endowed with the product topology. Any subset such as [—1, 1]V is
understood to be equipped with the subspace topology. For ¢ € (0,00) we write B, := {z €
C : |z| < €}. Furthermore BY := XenBe C CN. Elements of CY will be denoted by boldface

characters such as y = (y;)jen € [—1,1]N. For v € F, standard notations y* := [Tjen y;/7 and
vl = HjeN v;! will be employed (throughout, 0! := 1 and 0% := 1, so that v! contains finitely
many nontrivial factors). For any index set A C F we denote Py := span{y” },ea.

Tndex sets with the ”downward closed” property are also referred to in the literature [59] as lower sets.



1.4 Structure of the present paper

The structure of this paper is as follows: in Sec. 2, we review the mathematical setting of
Bayesian inverse problems for PDEs, including results which account for the impact of PDE dis-
cretization error on the Bayesian posterior. In Sec. 3, we recall the notion of (b, €)-holomorphic
functions on polyellipses, taking values in Banach spaces and review approximation rate bounds
for their truncated gpc expansion.

Sections 4-5 contain the mathematical core and main technical contributions of this paper:
we define the DNN architectures and present, after recapitulating the basic operations of DNN
calculus, expression rate bounds for so-called (b,e,R)-holomorphic functions. This function
class consists of maps from [—1,1]Y — R, which allow holomorphic extensions (in each variable)
to certain subsets of CY. This is subsequently generalized to (b, &, X')-holomorphic functions. To
keep the network size possibly small, we employ a multilevel strategy by combining approxima-
tions to elements in X at different accuracy levels. Section 5.2 presents an illustrative example
of a PDE with uncertain input data which satisfy the preceding, abstract hypotheses. Following
this, we apply our result for (b,e, R)-holomorphic functions to Bayesian posterior density in
Sec. 6. We show, in particular, that ReLU DNNs are able to express the posterior density with
rates (in terms of the size of the DNN) which are free from the curse of dimensionality. We also
show in Sec. 6.2 that DNNs allow for expression rates which are robust w.r. to certain types of
posterior concentration in the small noise respectively the large data limits. Section 6.3 shows
that the L*°-convergence of approximations of the posterior density implies convergence of the
approximate posterior measure in the Hellinger and total variation distances. In Sec. 7 we give
conclusions and indicate further directions. In the appendix we provide proofs of several results
from the main text.

2 Bayesian Inverse UQ

We first present the abstract setting of BIP on function space, [78, 26, 74]. We then verify the
abstract hypotheses in several examples; in particular, for advection diffusion reaction (ADR)
equations with uncertain coefficients in nonsmooth domains.

2.1 Forward Model

We consider abstract parametric operator equations, which are possibly nonlinear, whose oper-
ators depend on uncertain input data a. We also consider abstract, stable Petrov-Galerkin (PG
for short) discretizations of these equations, which are stable uniformly w.r. to the uncertain
inputs and whose parametric PG approximations admit holomorphic extensions to complex pa-
rameters with domains of holomorphy that are uniform w.r. to the discretization parameter.
We follow here the setup of [84, Section 3|, and refer to that reference for proofs of all statements
on well-posedness, and on analytic continuation.

We consider given an uncertain input datum a € X C X, where X denotes a Banach space
containing the set X of admissible input data of the operator equation. Generally, a is not
accessible a priori and, therefore, is considered as uncertain input data. A-priori knowledge
about the distribution of a € X for a particular application is encoded through a probability
measure pug on X, the Bayesian prior, which is supported on a measurable subset X C X of
admissible uncertain inputs. This implies, in particular, that X € B(X) be p_0-measurable, and
that po(X) = 1; we discuss this in detail in Section 2.2 ahead.

The abstract forward model to be considered in the sequel reads: given (a realization of) the
uncertain input parameter a € X, and a possibly nonlinear map N (a,)): X =),

findue X: (N(a,u),v)=0 forall vel. (2.1)



Here, (-, -) denotes the )’ x Y duality pairing. Throughout, we admit infinite-dimensional Banach
spaces X, X, (all results apply verbatim for finite-dimensional settings).

In (2.1), the nonlinear map N(-,-) : X x X — )’ could be thought of as residual map for a
PDE with solution space X and uncertain, distributed input data a from a function space X.

2.2 Bayesian Inverse Problem

We recapitulate the abstract setting of Bayesian Inverse Problems (BIPs for short) where the
data-to-prediction map is constrained by possibly nonlinear operator equations (2.1) which are
subject to unknown/ unobservable input data.

2.2.1 Setup

In the Bayesian inversion of the forward model (2.1), we in general do not have access to the
uncertain input a. Instead, we assume given noisy observation data 6 € Y, where Y is a space
of observation data. The data § € Y is a response of (2.1) for some admissible input a € X,
which response is corrupted by additive observation noise n € Y, i.e.

d=G(a)+n. (2.2)

The data-to-observation map G(-) is composed of the solution operator u : a — u(a) of (2.1)
and a continuous, linear observation map O € L(X,Y) taking the solution u(a) € X with input
a € X to observations O(u(a)) € Y. In terms of the solution operator u = G(a) of (2.1),
G: X —>Y:a— G(a) = (0oG)(a).

We often wish to predict a so-called quantity of interest (Qol for short). In this work, we
assume the Qol to be a bounded, linear functional @ € L(X, Z) where Z is a suitable Banach
space. In this setup, then, the inverse problem consists in estimating the “most likely” realization
of the Qol based on solutions v = G(a) of the forward problem (2.1), given noisy observation
data ¢ of responses G(a).

In Bayesian inversion, one assumes given a probability measure py on the Banach space
X of inputs which charges the set X C X of admissible inputs and which encodes our prior
information about the occurrence of inputs a.

Given a realization of the parameter a € X, and observation data § € Y, we denote by pole
the probability measure on d, conditioned on a. Under the assumption that °1* < p for some
measure p on Y, and that £°* has a density w.r. to u, we may define the likelihood potential
®(a;d) : X x Y — R (“the likelihood” for short) so that

dué\a
dp

(6) = exp(—®(a: 8)), /Y exp(—®(a: 6))du(8) = 1.

If Y = RX and if the observation noise n ~ N(0,T) is additive, centered Gaussian with positive
definite covariance matrix I' € RE XX then there exists a measure p on Y, equal to a constant
times the Lebesgue measure on Y, such that

0(a;6) = 3 [77/2(G(a) - §)I = 3116(a) — 6] (23)

The potential ® is an inverse covariance weighted, least squares functional of the response-to-
observation misfit for uncertain input parameter a € X and observation data § € Y.

We require the Bayesian posterior u%l? to be a probability measure. Therefore, we normalize
it, i.e. we impose

dpl® 1 . _ .
s a) = %exp(—é(a,é)), where Z(§) = /Xexp(—q)(a,(S))d,uo(a) . (2.4)

7



Equation (2.4) is a formal extension of Bayes’ rule to the presently considered Banach space
setting. In the Bayesian methodology, the posterior probability measure 1 is considered an
updated version of the prior po on the uncertain inputs that is informed by the observation
data 6. We refer to [78, 22, 41] for a detailed discussion and references. In the following, the
posterior probability measure will be denoted by 1°.

2.2.2 Assumptions

Based on [78, 21, 22, 41], we now formalize the preceding concepts. To this end, we introduce
a set of assumptions on the prior and on the forward map which ensure well-posedness and
continuous dependence of the BIP.

Assumption 2.1. In the Banach space X of uncertain parameters and the Banach space Y of
observation data, the potential ® : X XY — R satisfies:

(i) (bounded below) There is some oy > 0 such that for every r > 0 exists a constant
M(ai,7) € R such that for every uw € X and for every data § € Y with ||8]] < r holds

D(u;0) > M — aq|ullx -

(ii) (boundedness above) For every r > 0 exists K(r) > 0 such that for every v € X and for
every § € Y with max{||ul|x, ||0]ly} < r holds

D(u;d) < K .

(#ii) (Lipschitz continuous dependence on u) For every r > 0 exists a constant L(r) > 0 such
that for every ui,us € X and for every 6 € Y with max{||u1|x, |luz|lx, ||0]ly} < r holds

|®(u1;6) — P(u2;6)| < Lfjur — uz|x

(iv) (Lipschitz continuity w.r. to observation data 6 € Y') For some az > 0 and for every r > 0
exists C(ag,r) € R such that for every 61,92 € Y with max{||01||y, ||02|ly} < r and for
every u € X holds

| (u;61) — @(u;02)| < exp (azllullx + C) |61 — d2lly

(v) (Radon prior measure) The prior measure po is a Radon probability measure charging

a measurable subset X C X with X € B(X) of admissible uncertain parameters, i.e.
po(X) = 1.
(vi) (exponential tails) The prior measure po on the Banach space X has exponential tails:

Jk>0: /X exp(kllullx)duo(u) < oo . (2.5)

Remark 2.2. (i) Assumption (v) on the prior ug being a Radon probability measure is always
satisfied when X is separable.

2.2.3 Well-posedness

We shall consider well-posedness of the BIP in the following sense.

Definition 2.3 (Well-posedness of the BIP). For Banach spaces X, Y , with dg (-,-) denoting the
Hellinger metric on the space P(X) of Borel probability measures on X, for a prior pg € P(X)
and for the likelihood potential ®, the BIP (2.4) is well-posed if the following holds:

(i) (evistence and uniqueness) For every data § € Y eists a unique posterior measure y1° €
P(X) which is absolutely continuous w.r. to the prior po and which satisfies (2.4),

(ii) (stability) for every e > 0 there exists a constant Ce > 0 such that for every 6,0" € Y with
|6 — & |ly < C., there holds

dy(ul, 1) < e



2.2.4 Existence and Continuous Dependence

We are now in position to state sufficient conditions for well-posedness of the BIP and for
existence and uniqueness of the posterior ;°. We work in the abstract setting Assumption 2.1,
deferring the verification of the items in Assumption 2.1 to the ensuing discussion of concrete
model problems.

Theorem 2.4. Given Banach spaces X and Y and a likelihood function ® : X xY — R
satisfying Assumption 2.1, items (i), (i), (4i) with some oy > 0. Moreover, the prior measure
to € P(X) satisfies Assumption 2.1, items (v) and (vi) with some constant k > 0.

Then it holds:

(i) if kK > ay, for every 6 €Y, the posterior measure u’ belongs to P(X).

(ii) (Lipschitz continuity of Posterior w.r. to the data) If ® satisfies in addition Assumption
2.1, item (iv) with constants a1, an > 0, and if the constant k from Assumption 2.1, item
(vi), satisfies k > a1 + 2a, then for every r > 0 exists a constant C(r) > 0 such that, for
every 6,0 € Y with max{||8||y, ||0’||y} < r, the posteriors uo, u® € P(X) satisfy

d (1) < C(r)16 = 3'lly - (2.6)

The proof of this result is, for example, in [41], Thms. 2.4 and 2.6.

2.2.5 Consistent Approximation

In the numerical approximation of posteriors u® where the input-to-observation map G = QoG :
X — Y involves a well-posed, parametric forward operator equation (2.1), we will in general have
to resort to approximate, numerical solutions of (2.1). Generically, we tag such approximate
solution maps by a subscript N € N which should be understood as “number of degrees of
freedom” involved in the discretization of the parametric equation (2.1). In this way, we denote
the data-to-solution map of the nonlinear equation (2.1) by Gy : X — X, the corresponding
data-to-observation map by Gy = O o Gy, and the resulting potential function by ®y.

Approximation of the forward model (2.1), e.g. by consistent discretization, leads to an
approzimate Bayesian inverse problem, which is of the form

dus} 1 . . .
d—/jg(a) = 7 (0) exp(—Pn(a;0)), where Zn(J):= /Xexp(—@N(a,(S))duo(a) . (2.7)

Assuming exact observations O(+) at hand, the approximate potential ® in (2.7) is
1 ~
‘I)N(a;5)=5||F71/2(00GN)(0)—5)||§, a€X,5€Y.

The posterior 1% would, consequently, also be approximated by the corresponding numerical
posterior, which we denote by 14;.

It is of interest to identify sufficient conditions so that, as N — oo, the approximate posteriors
{uS }n>1 tend to the posterior u? in P(X).

Definition 2.5. (consistent posterior approzimation) The approxzimate Bayesian inverse prob-
lem (2.7) is said to be a consistent approximation of (2.4) for a prior g € P(X), potential ® if
the approximate potential ® is such that for every data § € Y, as N — oo, there holds

[0(a;0) = @x(asd)| =0 implies dur(u”, ) = 0.

Apart from consistency in the sense of Def. 2.5, in the numerical approximation of BIPs
we are also interested in convergence rates: if the numerical approximation Gy of the forward



solution map converges with a certain rate, say ¢ (IN), with ¢ a nonnegative function such that
P(N) ] 0 as N — oo, then the corresponding posteriors M‘JSV should converge with a rate related
to ©(N). The following theorem, which is proved in [22, Theorem 4.9], gives sufficient conditions
for posterior convergence.

Theorem 2.6. Let Banach spaces X and Y of uncertain parameters a and observation data 6,
resp., be given.

Let ug € P(X) be a Borel probability measure on X which satisfies Assumption 2.1, items
(i) - (vi), so that for observation data § € Y the BIPs (2.4), (2.7) for u’,u% € P(X) are
well-defined.

Assume also that the likelihood potentials ® and ® N satisfy Assumption 2.1, items (i), (i)
with constant ay > 0 which is uniform w.r. to N, and that for some ag > 0 exists C(as) > 0
independent of N such that for every a € X holds

[®(a;6) — Py (a;6)] < Cexp(as|lallx)p(N) (2.8)

with Y(N) ] 0 as N — oo.
If furthermore in Assumption 2.1, items (v),(vi) holds k > ay + 2as, then for every r > 0
exists a constant D(r) > 0 such that for every 6 € Y with ||d]y < r holds

VN eN: du(u’,pu) < D(r)y(N).

Here, the constant D(r) generally depends on the covariance T' of the centered Gaussian obser-
vation noise n in (2.2).

2.3 Prior Modeling

The modeling of prior probability measures on functional spaces of distributed, uncertain PDE
input data a in the model (2.1) has been developed in several references in recent years. The
‘usual construction’ is based on (a) coordinate representations of (realizations of) instances of a
in terms of a suitable basis {1;};>1 (thereby implying a will take values in a separable subset X
of X) and on (b) construction of the prior as countable product probability measure of product
measures on the co-ordinate spaces.

This approach, which is inspired by N. Wiener’s construction of the Wiener process by placing
Gaussian measures on coefficient realizations of Fourier series, has been realized for example in
[46, 21, 35] for Besov spaces, and in [41, 79] and the references there for more general priors.

2.4 Examples

The foregoing, abstract setting (2.1) accommodates a wide range of PDE boundary value, eigen-
value, control, and shape optimization problems with uncertain function space input a € X. We
illustrate the scope by listing several examples which are covered by the ensuing, abstract DNN
expression rate bounds. In all examples, D C R shall denote an open, bounded and connected,
polytopal domain in physical euclidean space of dimension d > 2. In dimension d = 1, D shall
denote an open, bounded interval of positive length.

2.4.1 Advection-Reaction-Diffusion Equation

We consider the linear, 2nd order, advection-reaction-diffusion problem with uncertain coef-
ficients in D C R2. Holomorphic dependence of solutions on coefficient data was shown in
[10] and the numerical analysis, including Finite-Element discretization in D on corner-refined
families of triangulations, with approximation rate estimates for both, the parametric solu-
tion and the Karhunen-Loeve expansion terms, was provided in [36]. Given a source term
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f € H YD) = (H}(D))*, and an isotropic diffusion coefficient a € L>(D), the ADR problem
reads: find u € H{ (D) such that

N(a,u)(z) := f(z) + V- (a(x)Vu(z)) =0 in D, wulspp =0. (2.9)

ADR falls into the variational setting (2.1) with X =Y = H}(D), X = L>®(D) and X := {a €
X :essinfyep a(z) > 0}. In [10, 36], also anisotropic diffusion coefficients a and advection and
reaction terms were admitted.

For a € X, the weak formulation (2.1) of (2.9) is uniquely solvable and the data-to-solution
map S : X — &X' :a+ u is continuous. Equipping & with the norm [jv[|x = ||[Vv||z2p), there
o 11

H-'(D)
< —- - 77
lulla < essinf ep a(z) ’
Assuming affine-parametric uncertain input [75, 15, 16], i.e., given ag € X with

_ = inf >0
a ess Inf ap(x) ,

for {¢;}j>1 C X with > ., [[¢]lx < a—, we put
X:={aeX:a(y)=ao+ Zyﬂ/fj’ y = (y;);>1 € [-1, 1"} (2.10)
Jj=1
For every y € [—1,1]" and a(y) € X, problem (2.9) admits a unique parametric solution u(y)
such that M (a(y),u(y)) = 0 in H~}(D).
2.4.2 Elliptic Eigenvalue Problem with uncertain coefficient

With function spaces as in the preceding section, for a € X as defined in (2.10), for every
y € [—1,1]N we seek solutions (A(y), w(y)) € R x X\{0} of the eigenvalue problem

N (a(y), (My), w(y)) =0 in H7'(D), (2.11)

where, for every a € X, N(a,(\,w)) : R x H}(D) = H YD) : (A\,w) = Aw + V - (aVw). For
every y, the EVP (2.11) admits a sequence {(Ax(y), wr(y)) : k = 1,2,...} of real eigenvalues
Ai(y) (which we assume enumerated according to their size, with multiplicity counted) with
associated eigenfunctions wy(y) € X (which form a dense set in X). It is known (e.g. [29])
that the first eigenpair {(A\i(y),w1(y)) : y € [-1,1]N} is isolated, admits a uniform (w.r. to
y € [~1,1]V) spectral gap.

3 Generalized polynomial chaos surrogates

3.1 Uncertainty parametrization

Let Z and X be two complex Banach spaces and let (1;) en be a sequence in Z. Additionally
suppose that O C Z is open and let u: O — X be complex differentiable. With the parameter

domain U := [~1,1]" we consider the infinite parametric map
u(y) =u [ >y Vy = (y;)jen € U, (3.1)
JEN

which is well-defined for instance if ([|¢;]/z)jen € ¢'(N). Here the expansion 3- .y y;i; is
understood as a parametrization of the uncertain input, and u is the function mapping the
input to the desired solution.

11



Under certain assumptions, such maps allow a representation as a sparse Taylor generalized
polynomial chaos expansion [15, 16], i.e. for y € U

174 1 174
u(y) = Z y”, ty = ;8yu(y) ly=0€ &, (3.2)
veF ’

or as a sparse Legendre generalized polynomial chaos expansion [13], i.e.

ay) = S hLu(y), b= /U Lo (y)u(y)du(y) € X, (3.3)

veF

where Ly, (y) = [[jenLv;(yj) and Ly, @ [-1,1] — R denotes the n-th Legendre polynomial
normalized in L?([—1,1],\/2), where X denotes the Lebesgue measure on [—1,1], i.e. A\/2 is a
uniform probability measure on [—1,1]. Then by [61, §18.3]

[l Lnllnos (-1, < (1 + 2n)% Vn € No. (3.4)

The summability properties of the (X-norms of) Taylor or Legendre gpc coefficients (||t, || x)ver,
(Il |2 )ver are key for assigning a meaning to such formal gpc expansions like (3.2) and (3.3).
For example, as for every y € U and for every v € F it holds that |y¥| < 1, the summability
(Itullx)wver € €1(F) guarantees unconditional convergence in X of the series in (3.2) for every
y € U. As we shall recall in Sec. 3.3, this summability is in turn ensured by a suitable form of
holomorphic continuation of the parameter-to-response map v : U — X.

Remark 3.1. We assume here X to be a complex space. If X is a Banach space over R, one
can consider u as a map to the complexification Xc = X +1X of X equipped with the so-called
Taylor norm [|v + iwl| . = supse(g or [| cO8(t)v — sin(t)w||x for all v, w € X (ep. [58]). Here i
denotes the square root of —1 with arg(i) = 7 /2.

3.2 (b,e, X)-holomorphy

To prove expressive power estimates for DNNs, we use parametric holomorphic maps from
a compact parameter domain U into a Banach space X with quantified sizes of domains of
holomorphy. To introduce such maps, we recapitulate principal definitions and results from
[16, 13, 12, 85] and the references there. The notion of (b,e)-holomorphy (given in Def. 3.3
ahead), which stipulates holomorphic parameter dependence of a function u : U — X' in each
variable on certain product domains O = X, O; C CN, has been found to be a sufficient
condition on a parametric map U 3 y — u(y) € X, in order that u admits gpc expansions
with p-summable coefficients for some p € (0,1), see, e.g., [13, 76] and also Sec. 3.3 ahead. In
the following, we extend the results from [76] in the sense that we admit smaller domains of
holomorphy: each O; = &, is a Bernstein-ellipse defined by

—1
gp;:{”; .z €C, 1g|z|<p}g<c,

rather than a complex disc O; = B, as in [76].

Remark 3.2. Let J C N. Throughout, continuity of a function defined on a cylindrical set
Xjej O; with O; C C for all j € J will be understood as continuity with respect to the subspace
topology on Xjej 0; C ><j€.7 C, where XjejC is assumed to be equipped with the product

topology by our convention (see Section 1.3). In this topology, the parameter domain U =
[—1,1]N is compact by Tychonoff’s theorem [57, Thm. 37.3].
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In the following, if p = (pj)é\’:l C (1,00) for some N € N, we define the poly-ellipse &, :=
X;.V:l &,, € CN, and similarly in case p = (p;);en C (1,00)

Ep =X E,, CCV.
i>1

Definition 3.3 ((b,¢, X)-Holomorphy). Let X be a complex Banach space. Assume given a
monotonically decreasing sequence b = (b;) en of positive reals b; such that b € (P(N) for some
p € (0,1].

We say that a map v : U — X is (b,e, X)-holomorphic if there exists a constant M < oo
such that

(i) w:U — X is continuous,

(ii) for every sequence p = (p;j)jen C (1,00)N which is (b, )-admissible, i.e. which satisfies

bi(pj —1) <e, (3.5)
>

jEN
u admits a separately holomorphic extension (again denoted by u) onto the poly-ellipse &,

(iii) for each (b, e)-admissible p holds

sup ||u(z)||lx < M . (3.6)

z€€p

If it is clear from the context that X = C, then we will omit X in notation.

Remark 3.4. We note that for b € (*(N) as in Definition 3.3, b; — 0 as j — oo. By (3.5),
(b, €)-admissible polyradii p can satisfy p; — oo, implying that the component sets £,; will grow
as j — o0o. We also observe the following, elementary geometric fact:

Vp>1: gp D B(p_l/p)/g . (3.7)

In particular, £, D By D [-1,1] for all p > 1+ V2. Bernstein ellipses &, are moreover
useful if the domain of holomorphy of u does not contain By. Moreover, if p; — oo, after all
but a (possibly small) finite number of parameters, the domains of holomorphy &, contain a
polydisc with radius (p —1/p)/2 > 1. We shall see in Sec. 4 below that multivariate monomials
can be expressed by smaller DNNs than, e.g., multivariate Legendre, or Jacobi polynomials.
In addition, for the emulation of tensor products of Taylor monomials the product network
is of smaller size than that for the emulation of tensor product Legendre polynomials. The
reason is that the L°°-norm of Taylor monomials equals 1, whereas for v € F it holds that
[Lullzo@w) < Iljcsupper V1 +2v5 (cf- (3.4)). Due to the growth of this bound, to achieve the
same absolute accuracy a larger relative accuracy is required, and therefore a larger product
network size (see Prop. 4.3). We therefore use in our expression rate bounds “Taylor DNN
emulations” as in [76] for all but a fized, finite number of dimensions. There, we use an
exponential expression rate bound from [63].

Definition 3.3 has been similarly stated in [13]. The sequence b in Definition 3.3 quantifies
the size of the domains of analytic continuation of the parametric map with respect to the
parameters y; € y: the stronger the decrease of b, the faster the radii p; of (b, e)-admissible
sequences p may increase. The sequence b (or, more precisely, the summability exponent p
such that b € ¢P(N)) will determine the algebraic rate at which the gpc coefficients tend to 0
(see Thm. 3.7 ahead). The notion of (b, e, X')-holomorphy applies to large classes of parametric
operator equations, notably including functions of the type (3.1). This statement is given in the
next lemma which is proven in [83, Lemma 2.2.7], see also [85, Lemma 3.3] (for a version based
on holomorphy on polydiscs rather than on polyellipses).
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Lemma 3.5. Letu: O — X be holomorphic where O C Z is open. Assume that (¥;);en C Z,
Vi # 0 for all j, with (||| z)jen € *(N) and {2 jenyis € O y € Ut C O. Then there
exists € > 0 such that u(y) = (X ,;cnyi¥)), y € U defines a (b,e, X )-holomorphic function
with bj = ||’(ﬂ]HZ

3.3 Summability of gpc coefficients

As mentioned above, the relevance of (b, e, X)-holomorphy lies in that it guarantees such func-
tions to possess gpc expansions with coefficients whose norms are p-summable for some p € (0, 1).
This p-summability is the crucial property required to establish convergence rates of certain par-
tial sums. Our analysis of the expressive power of DNNs of such parametric solution families
will be based on a version of these results as stated in the next theorem. To reduce the asymp-
totic size of the networks, we consider gpc expansions combining both multivariate monomials
and multivariate Legendre polynomials, as motivated in Rmk. 3.4. While p-summability of the
norms of both the Taylor and the Legendre coefficients of such functions is well-known (under
suitable assumptions), the present result is not available in the literature. For this reason we
provide a proof but stress that the general line of arguments closely follows earlier works such
as [15, 16, 13, 84].

In the next theorem we distinguish between low and high-dimensional coordinates: We shall
use in “low dimensions” indexed by j € {1,...,J} Legendre expansions, whereas in the co-
ordinates indexed by j > J we resort to Taylor gpc expansions. For 1 < 5 < J, we thus exploit
holomorphy on poly-ellipses £,, and Legendre gpc expansions. For j > J, we emulate by ReLU
DNNs the corresponding Taylor gpc expansions in these co-ordinates using [76] and the fact
that sufficiently large Bernstein ellipses with foci +1 contain discs with radius > 1 centered at
the origin (as pointed out in Rmk. 3.4).

Accordingly, we introduce the following notation: for some fixed J € N (defined in the
following) and v € F set

Vg = (Vly"'al/J)y Vp = (VJ+17VJ+27"')
and Fp = NJ, and we will write v = (vg,vp). Moreover Ug = [-1,1]/ and Ur =
><j>J[—17 1], and for y = (y;)jen € U define yg := (yj)j:1 € Ug and yr := (y;);>7 € Up. In

particular we will employ the notation y3" =][;. ; y;J . Additionally, for a function v : U — X,
by u(yg,0) we mean u evaluated at (y1,...,9s,0,0,...) € U.

Lemma 3.6. Let Cy :=4/9. Then Bgop C &, forall p> 3.

Proof. By Rmk. 3.4 it holds B(,_,-1)/2 C &,, so it suffices to check (p — p~1)/2 > Coyp for all
p > 3. For p = 3 this follows by elementary calculations, and for p > 3 it follows by the fact
that p— (p—p~1)/(2p) = (1 — p=2)/2 is monotonically increasing for p > 3. O
Theorem 3.7. Let u be (b, e, X)-holomorphic for some b € {P(N), p € (0,1) and € > 0. Then
there exists J € N such that

(i) for each v € F

O Fu(yg,0
cvim [ ey P gy € % (33
Ug Vp:

1s well-defined and it holds
(ILvgllz= e levllx)ver € €(F),

(i1) it holds

u(y) = Z el (Yp)yy" € X,
veF

14



with absolute and uniform convergence for ally € U,

(i11) there exist constants Cv, Co > 0 and a monotonically increasing sequence § = (6;)jen C
(1,00) such that (5;1)j€N € (?/(=PI(N), §; < C152/? for all j € N and

(0 Lusll L= s llevllx)ver € € (F). (3.9)

Furthermore with
A ={veF:6"2>71}

it holds for all T € (0,1) that |A;| > 0 and

sup < 02|A7—|7%+1.

w(y) = Y el (yp)yy”
yeU

veA,

X

The proof is given in Appendix A.1. We next give more details on the structure of the sets
(A)- € (0,1) that will be required in establishing the ensuing DNN expression rate bounds. To
this end let us introduce the quantities

m(A) == sug lv]1 and d(A) = Sul/)x | supp v|. (3.10)
ve ve

Proposition 3.8. Let the assumptions of Thm. 3.7 be satisfied, and let J € N and (A;), € (0,1)
be as in the statement of Thm. 3.7. Then

(i) A. is finite and downward closed for all T € (0,1),
(ii) m(Ar) = O(log(IA,])) and d(A,) = oflog(|A,])) as 7 — 0,
(iii) |[{ve : v € A;} = O(log(|A,|)7) as T — 0.
() if e; € A. for some j € N then for all i < j it holds that e; € A;.

Proof. To show (i), let v < p and p € A, be given. Then 7 < p™ < p~ and thus v € A,.
Item (ii) was shown in [83, Lemma 1.4.15] and [83, Example 1.4.23].

Item (iii) is a consequence of m(A;) = O(log(|A-|)), which holds by (ii). Finally, (iv) is a
direct consequence of the monotonicity of (J;);en, shown in the proof of Theorem 3.7. O

4 DNN surrogates of real valued functions

We now turn to the statement and proofs of the main results of this work. We first recapitulate
in Section 4.1 the DNNs which we consider for the approximation, then present in Section 4.2
mathematical operations on DNNs. In Section 4.3, we recapitulate quantitative approximation
rate bounds for polynomials by ReLU NNs, from [51, 63, 76, 47] which we use subsequently to
reapproximate N-term gpc approximations of (b, e, R)-holomorphic functions.

As in [76], we develop the DNN expression rate bounds (which are free from the curse
of dimensionality of the parametric maps) in Sections 4.4 and 4.5 in an abstract setting, for
countably-parametric, scalar-valued maps with quantified control on the size of holomorphy
domains.

4.1 Network architecture

We will use the same DNN architecture as in previous works (e.g. [63]). In Sections 4.1-4.3 we
now restate results from [63, Section 2].

We consider deep neural networks (DNNs for short) of feed-forward type. Such a NN f
can mathematically be described as a repeated composition of linear transformations with a
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nonlinear activation function. More precisely: For an activation function o : R — R, a fixed
number of hidden layers L € N, numbers Ny, € N of computation nodes in layer £ € {0,. .., L+1},
f: RNo — RNz+1 s realized by a feedforward neural network, if for certain wezghts w ; €R,

and biases b’ € R it holds for all z = (zi)No,

No
z;:a<zwi{jxi+b;>, jef{l,...,N}, (4.1)

i=1
and N
£
7t = U<wa+1 ‘v’+b‘+1> , le{l,...,L—1}, je{l,....,Nes1}, (4.2)
=1
and finally
Nri1
flz) = (ZJL+1 NL+1 _ (Z wL+1 L +bL+1> ) (4.3)
j=1

In this case Ny is the dimension of the input and Np4; is the dimension of the output. Fur-
thermore zf denotes the output of unit j in layer £. The weight w ; has the interpretation of
connecting the ith unit in layer £ — 1 with the jth unit in layer ¢.

Except when explicitly stated, we will not distinguish between the network (which is defined
through o, the wf’j and bf») and the function f : RNo — RNz+1 it realizes. We note in passing that
this relation is typically not one-to-one, i.e. different NNs may realize the same function as their
output. Let us also emphasize that we allow the weights wf,j and biases bﬁ for¢ e {1,...,L+1},
ie€{l,...,Ny—1}and j € {1,..., Ny} to take any value in R, i.e. we do not consider quantization
as e.g. in [9, 66].

As is customary in the theory of NNs, the number of hidden layers L of a NN is referred to
as depth? and the total number of nonzero weights and biases as the size of the NN. Hence, for
a DNN f as in (4.1)-(4.3), we define

size(f) := [{(i,4,0) = wi; # O} +[{(5,0) : b # 0}

In addition, sizei, (f) := [{(4,J) : wllj #0}+1{Jj : bjl- # 0} and sizeout (f) := |{(¢,7) : L+1 #
0} +{j : bJLJrl # 0}, which are the number of nonzero weights and biases in the 1nput layer
of f and in the output layer, respectively.

The proofs of our main results are constructive, in the sense that we explicitly provide
NN architectures and constructions of instances of DNNs with these architectures which are
sufficient (but possibly larger than necessary) for achieving the claimed expression rates. We
construct these NNs by assembling smaller networks, using the operations of concatenation
and parallelization, as well as so-called “identity-networks” which realize the identity mapping.
Below, we recall the definitions.

4.2 Basic operations
Throughout, as activation function o we consider either the ReLU activation function

o1(x) := max{0,z} zeR (4.4)
or, as suggested in [55, 54, 47], for r € N, r > 2, the RePU activation function

or(x) := max{0,z}" = o1(x)" xR (4.5)

%In other recent references (e.g. [62]), slightly different terminology for the number L of layers in the DNN differing
from the convention in the present paper by a constant factor, is used. This difference will be inconsequential for all
results that follow.
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See [63, Remark 2.1] for a historical note on rectified power units. If a NN uses o, as activation
function, we refer to it as 0,-NN. ReLU NNs are referred to as 01-NNs. It is assumed throughout
that all activations in a DNN are of equal type.

We now recall the parallelization and concatenation of networks, as well networks realizing
the identity. The constructions are mostly straightforward. For details and proofs we refer to
(66, 62, 27, 63].

4.2.1 Parallelization

Let f, g be two NNs with the same depth L € Ny, input dimensions n¢, ng and output dimensions
my, mg respectively. There exists a NN (f, g), such that

(f,9)q : R xR" — R™ x R™ : (z, &) — (f(x),g(x)).

It holds depth((f, 9)4) = L, size((f, 9)4) = size(f) +size(g), sizein((f,9)q) = sizein(f) +sizein(g)
and sizequt ((f, 9)g) = sizeout (f) + sizeout(9), see [66, 27].

In case ny = ny, = n, there exists a NN (f, g) with the same depth and size as (f, g)q4, such
that

(f,9) :R" = R™ xR™ : x — (f(2),9(x)).

4.2.2 Identity

By [66, Lemma 2.3], for all n € N, L € Ny there exists a oq-identity network Idg~ of depth L
such that Idgn () = z for all z € R™. It holds that

size(Idg») < 2n(depth(Idg.) + 1), sizei, (Idgn) < 2n, sizeout (Idgrn) < 2n.

Analogously [63, Proposition 2.3], for all 7, n € N, r > 2 and L € Ny there exists a o,-identity
network Idg-~ of depth L such that Idg-(2) = @. It holds that

size(Idgn) < nL(4r* 4 2r), sizein (Idgn ) < 4nr, sizeous (Idgn ) < n(2r +1).

4.2.3 Sparse concatenation

Let f and g be 01-NNs, such that the output dimension of f equals the input dimension of
g. Let ny be the input dimension of g and m; the output dimension of f. Then, the sparse
concatenation of the NNs f and g realizes the function

fog:R™ = R™ :x— (f(g9(x)). (4.6)

[39eb)

In the following, by abuse of notation “o” can either stand for the composition of functions or
the sparse concatenation of networks. The meaning will be clear from the context. By [66,
Remark 2.6], depth(f o g) = depth(f) + 1 + depth(g),

size(f o g) = size(f) + sizein (f) + sizeout(g) + size(g) < 2size(f) + 2size(g) (4.7)

and

o) sizein(g)  depth(g) > 1, . o) — sizeous(f)  depth(f) > 1,
sizein(f 0 g) = {2sizein(g) depth(g) = 0, sizeou(f ©9) = {2Sizeout(f) depth(f) = 0.

Similarly, for » > 2 there exists a sparse concatenation of ¢,-NNs (we denote the concatena-
tion operator again by o) satisfying the following size and depth bounds [63, Proposition 2.4]:
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Let f, g be two 0,-NNs such that the output dimension k of g equals the input dimension of f,
and suppose that size,(f), sizeout(¢) > k. Then depth(f o g) = depth(f) + 1 + depth(g),

size(f o g) < size(f) + (2r — 1) sizein (f) + (2r + 1)k + (2r — 1) sizeout (g) + size(g)
< size(f) + 2rsizei (f) + (4r — 1) sizeout (g) + size(g) (4.8)
< (2r 4 1) size(f) + 4r size(g).
and
e (fo sizein (g) depth(g) > 1,
sizein(f 0 g) < {27‘ sizein(g) + 2rk < 4rsizei,(g) depth(g) =0,

sizeout (f) depth
2r sizeout (f) + k < (2r 4+ 1) sizeous (f)  depth

) 2
) =

Combining identity networks with the sparse concatenation, we can parallelize networks of
different depth. The next lemma shows this for ReLU-NNs (a proof is given in Appendix A.2).

Sizeout(fog) S { E;

Lemma 4.1. For all k, n € N and 01-NNs f1,..., fr with the same input dimension n and
output dimensions my,...,my € N, there exists a 01-NN (f1,..., fr), called the parallelization
of f1,..., fr with shared identity network. It has input dimension n, output dimension Zle My,
depth L = maxy=1, ., depth(f;) and its size is bounded as follows:

size((f1,-- -5 fr)s) Z size(fy) + Zsmem fo)+2nL <2 Z size(f:) + 2nL,

t=1 t=1 t=1

sizein ((f1,- -5 fr)s) Z sizepn (ft) + 2n,

sizeout ((f1,-- -5 fr)s) Z 2sizeout (f1)-

Remark 4.2. The term 2nL in the size bound corresponds to the nonzero weights (and biases)
of the identity network used to construct the parallelization. We point out that this number is
independent of the number k of networks (fi)*_,, since our construction allows the k networks
to share one identity network.

4.3 Approximation of polynomials

As in other recent works (e.g. [76, 63, 24, 62]), the ensuing DNN expression rate analysis of
possibly countably-parametric posterior densities will rely on DNN reapprozimation of sparse
generalized polynomial chaos approximations of these densities. It has been observed in [82,
51] that deep ReLU DNNs can represent high order polynomials on bounded intervals rather
efficiently. We recapitulate several results of this type, from [63, Section 2], and from [76] which
we will require in the following.

4.3.1 Approximate multiplication

Contrary to [82], the next result bounds the DNN expression error in W1°°([—1,1]) (instead of
the L*°([—1,1]) norm).
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Proposition 4.3 ([76, Proposition 3.1]). For any ¢ € (0,1) and M > 1 there exists a o01-NN
Xsm : [—M,M]*> = R such that

)

- 0 -
sup |ab— xs(a,b)] <6, ess sup max{‘b—X5,M(a,b)
JalJb] <M Jal, bl <M da

0 >~<5,M(6L,b)‘} <4,

“T
(4.9)
where %Q&M(a, b) and %ig’M(a,b) denote weak derivatives. There exists a constant C > 0
independent of 6 € (0,1) and M > 1 such that sizein(X5n) < C, sizeout(Xs.0) < C,

depth(xsa7) < C(1 + logy(M/6)), size(x5.0) < C(1 + logy(M/6)).
Moreover, for every a € [—M,M)], there exists a finite set N, C [—M, M| such that b
x 5. (a,b) is strongly differentiable at all b € (—M, M)\N,.

Proposition 4.3 implies the existence of networks approximating the multiplication of n
different numbers.

Proposition 4.4 ([76, Proposition 3.3]). For any ¢ € (0,1), n € N and M > 1 there ezists a
01-NN [[5.5 0 [=M, M]" — R such that

n ~

sup i H xj — H&M(xl, s )| <0 (4.10)

(xi)?zle[fM,M] =1

There exists a constant C independent of 6 € (0,1), n € N and M > 1 such that

size(HéM) < C(14nlog(nM™/d)) and depth(HéM)

) )

< C(1+log(n)log(nM™/6)). (4.11)

Remark 4.5. In [76], Prop. 4.3 and 4.4 are shown for M = 1. The result for M > 1 is obtained
by a simple scaling argument. See [63, Proposition 2.6] for more details.

4.3.2 ReLU DNN approximation of tensor product Legendre polynomials

Based on the ReLU DNN emulation of products in Proposition 4.3, we constructed ReLU DNN
approximations of multivariate Legendre polynomials in [63]. For the statement recall m(A) in
(3.10).

Proposition 4.6 ([63, Proposition 2.10]). For every finite A C N& and every 6 € (0,1), there

exists a 01-NN fa s = (Lu s)ven with input dimension d and output dimension |A| such that the
outputs {Ly stven of fas satisfy for every v € A

< (2m(A) +2)%

HLV - EV,JHWLOO([—l,l]d) <9, sup iu,é((yj)jesur)p")

ye[-1,1]¢

Furthermore, there exists C > 0 such that for every d, A and §
depth(fa,s) <C(1+ dlogd)(1 + logy m(A))(m(A) + logy(1/6)),
size(fa,s) < C [d*m(A)? + d®m(A)? logy(1/6) + d?|A|(1 + logy m(A) + logy(1/5))] -
4.3.3 RePU DNN emulation of polynomials

The approximation of polynomials by neural networks can be significantly simplified if instead
of the ReLU activation o1 we consider as activation function the so-called rectified power unit
(“RePU” for short) o,(z) = max{0,z}" for r > 2. In contrast to ¢;-NNs, as shown in [47], for
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every r € N, r > 2 there exist RePU networks of depth 1 realizing the multiplication of two real
numbers without error. This yields the following result, slightly improving [47, Theorem 9], in
that the constant C' is independent of d. This is important, as in Section 4.5 ahead the number
of active parameters d(A,) increases with decreasing accuracy 7. The proof, which is based on
ideas from [62] can be found in Appendix A.3.

Proposition 4.7. Fiz d € N and r € N, r > 2. Then there exists a constant C' > 0 depending
on r but independent of d such that for any finite downward closed A C N& and any p € Py
there is a o.-network p : R* — R which realizes p exactly and such that size(p) < C|A| and
depth(p) < Clog,(JA]).

Remark 4.8 (cf. [63, Remark 2.12]). Let ¢ : R — R be an arbitrary C? function that is not
linear, i.e. it does not hold ¥"(x) = 0 for all x € R. In [71] it is shown that Y-networks can
approximate the multiplication of two numbers a, b in a fized bounded interval up to arbitrary
accuracy with a fixed number of units. We also refer to [76, Section 3.3] where we explain
this observation from [71] in more detail. From this, analogous to [47, Theorem 9], one can
obtain a version of Proposition 4.7 for arbitrary C? activation functions. To state it, we fix
d € N. Then there exists C > 0 independent of d such that for every § > 0, for every downward
closed A C N¢ and every p € Py, there exists a v-neural network q : [~M, M]* — R such that
SUPge(—ar,mpe |P(2) — q(z)] < 6, size(q) < C[A| and depth(q) < Clog,(|A]).

4.4 ReLU DNN approximation of (b, s, R)-holomorphic maps

We now present a result about the expressive power for (b, ¢, R)-holomorphic functions. Theorem
4.9 generalizes [76, Theorem 3.9], as it shows that less regular functions can be emulated with
the same convergence rate (see Remark 3.6). In particular, we obtain that up to logarithmic
terms, ReLU DNNs are capable of approximating (b, ¢, R)-holomorphic maps at rates equivalent
to those achieved by best n-term gpc approximations. Here, “rate” is understood in terms of
the NN size, i.e., in terms of the total number of nonzero weights in the DNN.

In the following, for A, C F as in Theorem 3.7, we define its support

S, = Upen, suppv C N. (4.12)

Theorem 4.9. Let u: U — R be (b, €, R)-holomorphic for some b € °(N), p € (0,1) and e > 0.
For 7 € (0,1) let A, C F be as in Theorem 3.7.

Then there exists C > 0 depending on b and wu, such that for all 7 € (0,1) there exists a
01-NN i, with input variables (y;)jes,, such that

size(t,) < C(1+ |A;| -log|A;| - loglog|A;]), depth(a,) < C(1 +log |A;] - loglog|A,|).
Furthermore, @, satisfies the uniform error bound

sup |u(y) = ar((y)jesn, )| < ClA| 7P (4.13)
Yy

In case |A;| =1, the statement holds with loglog|A;| replaced by 0.
The proof is given in Appendix A .4.

Remark 4.10. Let K € N and let v : U — RX be (b, e, RX)-holomorphic. Then Theorem 4.9
can be applied to each component of v. This at most increases the bound on the network size by
a factor K, but it does not affect the convergence rate. In fact, only the dimension of the output
layer has to be increased, the hidden layers of the DNN can be the same as for K = 1. This
corresponds to reusing the same polynomial basis for the approzimation of all components of v.
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4.5 RePU DNN approximation of (b, ¢, R)-holomorphic maps

We next provide an analogue of Thm. 4.9 (which used 01-NNs) for ¢,-NNs, r > 2. The faster
multiplication networks of Proposition 4.7 allow to prove the same approximation error for
slightly smaller networks in this case.

Theorem 4.11. Let u : U — R be (b,e,R)-holomorphic for some b € (?(N), p € (0,1) and
e>0. For 7 € (0,1) let A, C F be as in Theorem 3.7. Let r € N, r > 2.

Then there exists C > 0 depending on b and u, such that for all 7 € (0,1) there exists a
0p-NN i, with input variables (y;)jes,, such that

size(i,) < C|A;|, depth(a,) < Clog|A.|.
and ., satisfies the uniform error bound

sup lu(y) — - ((y;)jesy, )| < ClAL|~H/PHL (4.14)
Yy

Proof. By Proposition 4.7, the d(A,)-variate polynomial »_ .\ ¢y Ly, (ye)ys” € Py, from
Theorem 3.7 and Corollary 3.8 can be emulated exactly by a o,.-NN satisfying

size(t,) < C|A,], depth(a,) < Clog(|A;]),
for C' independent of d(A;). The error bound (4.14) holds by Thm. 3.7 (iii). O

Remark 4.10 also applies here. Arguing as in [76, Section 3.3], corresponding rate bounds
also hold for DNNs with monotonic, non-polynomial activation functions, such as sigmoidal,
arctan, etc. See also Remark 4.8.

5 DNN surrogates of X valued functions

In this section, we address the DNN emulation of countably-parametric, holomorphic maps
taking values in function spaces as typically arise in PDE UQ. In Section 5.1 we show DNN
expression rate bounds for parametric PDE solution families, assuming the existence of suitable
NN approximations of functions in the solution space of the PDE.

In Section 5.2.1 we review results on the exact DNN emulation of Courant-type Finite Ele-
ment spaces on regular, simplicial triangulations. In Section 5.2.2; we discuss Theorem 5.2 for
the ADR equation from Section 2.4.1.

5.1 ReLU DNN expression of (b, e, X')-holomorphic maps

So far, we considered the DNN expression of real-valued maps v : U — R. In applications to
PDES, often also the expression of maps u : U — X is of interest. Here, the real Banach space
X is a function space over a domain D C R? for d € N, and is interpreted as the solution space
of the parametric forward model (2.1).

As it was shown for example in [19, 3, 84], for gpc coefficients u,,, a v-dependent degree
of resolution in X of u(y) is in general advantageous. We approach DNN expression of the
parametric solution map through DNN emulation of multilevel gpc-FE approximations. To
state these, a regularity space X° C X of functions with additional regularity will be required.
We first present the result in an abstract setting, and subsequently detail it for an example in
Sec. 5.2.2.

For the DNN emulation of polynomials in the variables y € U, we use Lemma A.1, based
on the networks constructed in the proof of Theorem 4.9. For the gpc coefficients, which we
assume to be in X'®, we allow sequences of NN approximations satisfying a mild bound on their
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L*>-norm, as made precise in Assumption 5.1. This is needed to use the product networks from
Proposition 4.3 to multiply NNs approximating the polynomials in y with NN approximations
of gpc-coefficients.

Assumption 5.1. Assume that there exist v > 0, 6 > 0 and C > 0 such that for all v € X*
and all m € N there exists a NN ®) which satisfies

depth(®7,) < C(1 + logm), size(®r) < Cm
and
o=@ lx < Cllolleem™,  [[@pllx <Cllvlx, 1Pl ooy < Cllvllys m’.

Let us consider an example. For a bounded polytope D C R?, functions in the Kondratiev
space X° = IC%H(D) with ¢ € (0,1) (for a definition of K%+<(D) see Section 5.2.2 ahead) can
be approximated by continuous, piecewise linear functions with convergence rate v = % (e.g.
(2, 5, 48] for d = 2, [60] for d > 2). Continuous, piecewise linear functions on regular, simplicial
partitions can be exactly emulated by ReLU networks, see Section 5.2.1. They approximate
functions in X* = IC%JFC (D) with (optimal) rate v = 1/d. By the continuous embedding X'* <
L>(D) ([53], [20, Theorem 27]), the last inequality in Assumption 5.1 is satisfied with 6 = 0.
Here, the domain D may, but need not, be the physical domain of interest. The theorem below
also applies to boundary integral equations, in which case D is the boundary of the physical
domain. Holomorphic dependence of boundary integral operators on the shape of the domain
(“shape-holomorphy”) is shown in [34]. We obtain the following result, which generalizes [76,
Theorem 4.8]. To state the theorem, we recall the notation Sy, = Upea. suppv C N introduced
in (4.12).

Theorem 5.2. Let d € N and let X = WH4(D), q € [1,00], 3 X% C X be Banach spaces of
functions v : D — R for some bounded domain D C R%. Assume that Assumption 5.1 holds
for some v >0 and 0 > 0. Letu: U — X° C X be a (b,e, X)-holomorphic map, for some
be(P(N),pec(0,1) ande > 0. Let J €N, (cy)ver C X and {A;},¢(0,1) be as in Theorem 3.7.
Assume that (cv)ver C X* and that (|ley ||y [ Lug || oo (17) Jver € 0P" for some 0 < p < p® < 1.

Then, there exists a constant C > 0 depending on d, v, 0, b, (thus also onp), €, J, p* and u
such that for all 7 € (0,1) there exists a ReLU NN 4, with input variables (z1,...,24) =x € D
and (y;)jes,. fory € U and output dimension 1 such that for some N € N satisfying Nz > |A,|

size(i,) < C(1 + N -log N, - loglog N7 ), depth(a,) < C(1 + log N, - loglog ;)

and such that u, satisfies the uniform error bound

~ —r : 1/]9_ 1
Sgg”u(y)—uT(-,(yj)jesAT)HX <CNT, r:vmln{l,w}. (5.1)

The proof is given in Appendix A.5. Theorem 5.2 shows that for all r* < r there exists
C > 0 (additionally depending on 7*) such that
sup [|u(y) — @ (-, (y5)jesn, )| < Clsize(iir)) ™"
yeU
The limit 7 on the convergence rate in (5.1) is bounded from above by the gpc best n-term rate
1/p—1 for the the truncation error of the gpc expansion and by the convergence rate v of ReLLU
DNN approximations of functions in X'® from Assumption 5.1.

3 Although ¢ = 2 in all examples we consider, the theorem is stated slightly more generally for ¢ € [1,00]. In fact,
the result also holds for weighted W' 9-spaces.
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5.2 ReLU DNN expression using Courant finite element spaces

We now recall that any piecewise linear function is representable by a ReLU network, e.g. [76, 33].
This is used in Sec. 5.2.2 to show an expression result for (b, e, X')-holomorphic functions, where
X is a Sobolev space over a bounded domain.

5.2.1 Piecewise linear functions

In space dimension d = 1, any continuous piecewise linear function on a partition a = zg <
1 < -+- <z, = b of a finite interval [a,d] into N subintervals, can be expressed without error
by a 01-NN with depth 1 and size O(N), e.g. [76, Lemma 4.5].

A similar result holds for d > 2. Consider a bounded polytope G C R? with Lipschitz
boundary 0G being (the closure of) a finite union of plane d — 1-faces. Let T be a regular,
simplicial triangulation of G, i.e. the intersection of any two distinct closed simplices T, TeT
is either empty or an entire k-simplex for some 0 < k < d.* For the ReLU NN emulation of
gpc-coefficients, we will use that also in space dimension d > 2, continuous, piecewise linear
functions on a regular, simplicial mesh 7 can efficiently be emulated exactly by ReLU DNNs.
For locally convex partitions, this was shown in [33], as we next recall in Proposition 5.3. The
term locally convex refers to meshes 7 for which each patch, consisting of all elements attached
to a fixed node of T, is a convex set. See [33] for more details.

Set

SHG,T):={veC%G):v|p eP, VT € T}.

We denote by N(T) the set of nodes of the mesh 7 and by k7 := max,en {T' € T : p € T},

the maximum number of elements sharing a node.

Proposition 5.3 ([33, Theorem 3.1]). Let T be a regular, simplicial, locally convez triangulation
of a bounded polytope G. Then every v € S*(G,T) can be implemented exactly by a o1-NN of
depth 1+ log, [kt and size of the order O(|T k).

Estimates on the network size for continuous, piecewise linear functions on general, regular
simplicial partitions 7 are stated [33, Theorem 5.2] based on [80], but are much larger than
those in [33, Theorem 3.1].

5.2.2 Examples

The following standard example of a (b, e, X')-holomorphic parametric solution family is based
on Section 2.4.1, i.e. the solution to an affine-parametric diffusion problem, see e.g. [13, 84]. We
verify the assumptions of Theorem 5.2.

Let D C R? be a bounded polygonal Lipschitz domain (for details see [83, Remark 4.2.1]).
We consider a linear, elliptic diffusion equation with uncertain diffusion coefficient and with
homogeneous Dirichlet boundary conditions. With & := H}(D;C), X := L>°(D;C) and for a
fixed right-hand side f € )’ = X’ the weak formulation of this problem reads: for a € X, find
u(a) € X such that

/ Vu(a) "aVudz = (f,v) Yoe)=2X. (5.2)
D

The map a — u(a) € X is then locally well-defined and holomorphic around every a € X for
which essinfiep R(a(x)) > 0, see, e.g., [83, Example 1.2.38 and Egs. (4.3.12) — (4.3.13)].

We consider affine-parametric diffusion coefficients a = a(y), where y = (y;)jen is a sequence
of real-valued parameters ranging in U = [~1,1]N. For a nominal input ¢y € X and for a

*In other words, 7 is a cellular complex.
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sequence of fluctuations (¢;);en € X, define

a(y) = vo + Y _ Y- (5.3)
JEN
Such expansions arise, for example, from Fourier-, Karhunen-Loeve-, spline- or wavelet series
representations of a.
If essinfyep R(¢o(x)) = v > 0 then

D lsllx < (5.4)

JEN
ensures essinfyep R(a(y)(z)) > 0 for all y € U. This in turn implies that (5.2) admits a
unique solution for all diffusion coefficients a(y), y € U. Thus Lemma 3.5 yields y — u(y) =
w(@o + X jen Y5¥5) to be (b,e, X)-holomorphic for some £ > 0 and with b; := |[¢;[|x, j € N.

Next, we consider a smoothness space X®* and recall (b*, e®, X'®)-holomorphy of v : U — X* :

y — u(y). First we recall the definition of Kondratiev spaces: Let k € Ny and ¢ € R, and
rp : D — Ry be a smooth function which near vertices of D equals the distance to the closest
vertex. Then,

KCE(D) = {u D = C: )1 00u e L2(D),y € N2, || < k} . (5.5)

To obtain the approximation rate v = % in Proposition 5.3, we consider X® := IC? +1(D) for
some ¢ € (0,1). By [10, Theorem 1.1] and [83, Example 1.2.38], there exists ¢ € (0,1) such that
when f € K?_,(D), a € W"*°(D) =: X* and essinf,ep R(a(x)) > 0, the map a — u(a) € X*
is locally well-defined and holomorphic around every such a. We remark that the space from

which we chose f satisfies L*(D) C K, (D) Cc H-'(D) =",

If in addition to previously made assumptions, {%;},en, satisfies

> Isllxe < oo,

JeEN
then Lemma 3.5 yields y — u(y) = u(¥o + > ey ¥5¢5) to be (b%, &%, A*)-holomorphic for some
e® > 0 and with b3 := [[¢);]|x=, j € N. For a more detailed discussion of this example and more
general ADR equations, see [83, Section 4.3].

Thus, for the map U — X* C X : y — u(y) to be (b,e, X)- and (b°,e°, X'*)-holomorphic
for b € (?(N) and b* € 7" (N) for some 0 < p < p°® < 1, we additionally need to assume that
(1¥]lx)jen € £P(N) and (||1b;]x=)jen € 7" (N). The (b*,&%, X*)-holomorphy and Theorem 3.7
give (levllve | Lusllpoe ) Jver €07

In summary, the assumptions on u in Theorem 5.2 hold when f € L?*(D) and {t;}n, C
W1oo(D) satisfies essinf ep R(1o(z)) > 0, Equation (5.4), (||vj]x)jen € 2(N) and (|[¢);]| x+)jen €
27" (N). Then, u:U — X° = IC%_H(D) for some ¢ € (0,1). As mentioned below Assumption 5.1,
the NN approximations in Section 5.2.1 satisfy Assumption 5.1 with # = 0 and approximation
rate v = %

Similar results hold for the parametric eigenvalue problem (2.11). To state these in the
present, general framework, we set X := C x H}(D;C), X := L>(D;C). Then, the paramet-
ric first eigenpair {(A1(y),w1(y)) : y € U} C X admits a unique, holomorphic continuation
{(M(2),wi(z)) : 2 € U} C X to an open neighborhood of U in CN. The proof follows from
the uniformity of the spectral gap of the parametric first and second eigenvalues, i.e. from
A2(y) — A1(y) > ¢ for all y € U and some ¢y > 0 which is shown in [29, Proposition 2.4]. Also
see [1, Theorem 4] for a proof of analytic dependence on each y;. Upon defining the parametric
“right-hand side” f(y) := A1 (y)w1(y) € Hi(D;R) € L?(D) for y € U, it follows that the map
u = (A1, w1) € X satisfies v : U - &° = C x IC%_H(D) for some ¢ € (0,1). It is, in addition,
(b, e, X)- and (b°, &%, X*)-holomorphic for b € £?(N) and b° € 7" (N) for some 0 < p < p* < 1,
g, > 0, provided (||¢;x)jen € €P(N) and (||1b;]x=)jen € € (N). As before, X* = W (D).
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6 Application to Bayesian inference

6.1 ReLU DNN approximations for inverse UQ

In this section we discuss how the results in Section 4.4 apply to Bayesian inverse problems from
Sections 2.1 and 2.2.1.

Corollary 6.1. Let u be (b, e, X)-holomorphic, b € ¢?, p € (0,1), and assume the observation
noise covariance I' € REXK s symmetric, positive definite. Let the observation operator O :
X — RE be deterministic, bounded and linear, let py be the uniform measure on [—1,1]N, and
let for a given data sample § € RE

dp® 1
T ® = 75y SO ). 20)= [ e HI-0@E) i
forally e U.
5
Then also %O(y) s (b,e, X)-holomorphic. By Thm. 4.9 it can thus be uniformly approxi-

mated by ReLU NNs, with a convergence rate (in terms of the size of the network) arbitrarily
close to 1/p — 1.

5
Proof. The function 4 7 - R can be expressed as the composition of the maps
dpo

y — u(y), u (6 —O0w) ' T7H6 — Ou)), a — exp(—a). (6.1)

The first map is (b, e, X') holomorphic, the second map is a holomorphic mapping from X — C,
and the third map is holomorphic from C — C. It is thus easy to check that the composition is
(b, e, X)-holomorphic. The rest of the statement follows by Thm. 4.9. O

In case the number of parameters N € N is finite, exponential convergence rates of ReLU
DNN approzimations follow with [63, Theorem 3.7], but with the rate of convergence and other
constants in the error bound depending on N.

For the approximation of the posterior expectation Y — Z : § — E[Q o u|d], holomorphy of
the posterior density implies holomorphy of the posterior expectation, but without control on
the size of the domain of holomorphy. Thus [63, Theorem 3.7] gives exponential convergence
with rate Cexp(—bNYE+D) with possibly very small b > 0, in terms of the NN size N.
We remark that holomorphy of the data-to-Qol map is valid even for non-holomorphic input-to-
response maps in the operator equation [37]. In [37], this was exploited by considering a rational
approximation of the Bayesian estimate based on

6HE@&=éwaj%wm@w®mmw:zmM@,

where Z, Z' are entire functions of d, i.e. they admit a holomorphic extension to CX. With that
argument, convergence rates of the form C exp(—bN/(K+1) with arbitrarily large b > 0 were
obtained.

6.2 Posterior Concentration

We consider the DNN expression of posterior densities in Bayesian Inverse Problems when the
posterior density concentrates near a single point, the so-called maximum a posteriori point
(MAP point), at which the posterior density attains its maximum.

We consider in particular the case in which the posterior density exists, is unimodal, attaining
its global maximum at a so-called MAP point. In the mentioned scaling regimes, in the vicinity
of the MAP point, the Bayesian posterior density is close to a Gaussian distribution with
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covariance matrix I', which arises in either the small noise or in the large data limits, cf. e.g.
[73, 44]. We therefore study the behavior of the DNN expression rate bounds as I' | 0. This
limit applies to the situation of decreasing observation noise 7 or of increasing observation size
dim(Y").

The results in Section 6.1 hold for all symmetric, positive definite covariance matrices I', but
constants depend on I' and may tend to infinity as I' | 0. However, the concentration can be
exploited for the approximation of the posterior density. As example, we consider an inverse
problem with N < co parameters, with a holomorphic forward map [-1, 1]V — X : y — u(y),
a linear observation functional O : X — Y and a finite observation size K := dim(Y) < oo.
In [72, Theorem 4.1], in case of a non-degenerate Hessian ®,, , it was shown that after a I'-
dependent affine transformation the posterior density is analytic with polyradii of analyticity
independent of T'. Hence, by [63, Theorem 3.7], NN approximations of the posterior density
converge exponentially (albeit with constants depending exponentially on N).

Moreover, in [73, Appendix] it was shown that under suitable conditions a Gaussian distri-
bution approximates the posterior density up to first order in I'. This allows us to overcome
the curse of dimensionality in terms of N for the unnormalized posterior density, by exploiting
the radial symmetry of the Gaussian density function. By [62, Theorem 6.7], the Gaussian
density function can be approximated with the network size growing polylogarithmically with
the error, and the corresponding constants increasing at most quadratically in N. Thus, there
is no curse of dimensionality for the approximation of the unnormalized posterior density when
it concentrates near one point. Note that this ignores the consistency error of the Bayesian
posterior with respect to this Gaussian approximation to the posterior density. If the posterior
concentrates near multiple well-separated points, and if it is close to a Gaussian near each of
the points, then it can be approximated at the same rate by a sum of (localized) Gaussians.

The next proposition gives an approximation result for unnormalized Gaussian densities.
We refer to Appendix A.6 for a proof.

Proposition 6.2. Let A: RN — RY be a linear map. For x € RY set f(x) := exp(—31||Az|?).
Then, there exists C > 0 independent of A and N such that for every e € (0,1) there exists
a ReLU NN ®! satisfying

If = (I)£||L°O(RN) <Ce,
depth(®/) <C (log(N)(1 + log(N/e)) + 1 + log(1/¢)loglog(1/¢)),
size(®]) <C (1+ log(1/¢))? 4 N log(1/¢) + N2) .

We remark that the term CN? on the bound on the network size follows from bounding
the number of nonzero coefficients in the linear map A by N2. If A has at most C N nonzero
coefficients, the network size is of the order N log(N).

Densities of the type f(z) = exp(—3[A(z)|?) need to be normalized in order to become
probability densities on [—~1,1]Y. We now discuss an example to show the effect of the normal-
ization constant on the approximation result, when the density concentrates.

Fix an observation noise covariance I' € R¥*Y symmetric positive definite, and set T',, :=

- 2

I'/n and f,(x) = exp(—%||F;1/2:B||2) for x € [-1,1]V. Given § € [~1,1]", note that as n — oo,
the (unnormalized) density f,(x — ) concentrates around § € [~1,1]N. For any n > 1, using
the change of variables y = /nx,

- 1
/ Fol@ — 8)da = / exp <—||¢ﬁr—1/2(x - 5)||2> dz
11N (-1~ 2

1
=2 [ (5T - VAR ) dy
[~y
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1 -
e [ ey (—nr—lﬂ(y - 6>||2) dy = n=N/2Cy,
se[—1,1]N Ji—1,1]N 2

with Co(T', N) > 0 denoting the infimum in the last line, and where we used \/nd € [—/n, /n]".
Denote Z,(0) := f[_l y fn(x —6) > Con=N/2. Then, by Proposition 6.2 the normalized

density fn(x) = fn(x)/Z,(8) < Cy'nN/2f,(x), can be uniformly approximated on [—1, 1]V to
accuracy € > 0 with a ReLU network ®/» of size and depth bounded as follows, for C(T', N') > 0:

depth(®!") <C (1 + (log(1/e) + (1 + log(n))) log (log(1/e) + (1 +log(n)))) ,
size(®1+) < O (1 + log(1/2))? +108(1/€)(1 + logy(m)) + (1 + logy(n))?)

6.3 Posterior Consistency

In the previous section we proved L>°(U) bounds on the approximation of the posterior density
with NNs. Up to a constant, this immediately yields the same bounds for the Hellinger and
total variation distances of the corresponding (normalized) Bayesian posterior measures as we
show next.

Let X\ be the Lebesgue measure on [—1,1], and denote again by pg := ®jEN% the uniform
probability measure on U = [~1,1] equipped with the product sigma algebra. Let u < pg
and v < po be two measures on U with Radon-Nikodym derivatives dd—;fo =7, : U = R and

dv. —. 7, : U — R. Recall that the Hellinger distance is defined as

it (1.0 = ( [ /mto) - \/ﬂu(y))2duo(y>> Y A = Vs,

and the total variation distance is defined as
drv (p,v) = sup|p(B) - v(B)| < /U 7 (y) =m0 (Y)|dpo(y) = I, — T llLr (0 pu0)»
where the supremum is taken over all measurable B C U. Thus
drv (p,v) < Imp = Tl Lo o)

Since [vx — /Y| = I\}g;i}/‘ﬂ\ for all z, y > 0,

A (p,v) = VT = VmullL2 e <

7 = Tl oo (U, o)
infyev (v/Tu(y) + V7o (y))

Denote by 11 = ﬁ and 7 = ;¢ the normalized measures and by 7, 7, the corresponding

densities (which are probability densities w.r.t. ug). Then for all y € U

mu(y) Wu(y)‘ < ImuyvU) = m (y)v(U)] + | (y)v(U) — m (y) (V)]
) vU) |~ WU (U) '
Using [u(U) —v(U)| < |7y — moll 1 (v,ue) We obtain for all y € U

T (y) =7 (y)| =

_ _ 17 = Tl Loe o)V (U) + |7l oo (U, o) 1T = Tl Lo (U 110)
T (y) —T(y)| < : : —.

By symmetry this implies

_ _(vU) + lmlle ) #(U) + llmpll e,
drv (71,7) < [ = 7|l Lo (10) 0im ( O T e ) 62
and similarly as before
. v(U) 7ol Loo (U, ug) #(U)+|‘771L”L°°(U,u0))
min (
_ v(U)u(U) ’ v(O)u(U)
dy (1, 7) < 7y — 7o ll o (U0 (6.2b)

infycr (Van(y) + V7o (y))
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7 Conclusions and further directions

In this paper we presented dimension independent expression rates for the approximation of
infinite-parametric functions occurring in forward and inverse UQ by deep neural networks.
Our results are based on multilevel gpc expansions, and generalize the statements of [76] in
that they do not require analytic extensions of the target function to complex polydiscs, but
merely to complex polyellipses. Additionally, while for X' valued functions [76] only treated the
case of X = H'([0,1]), here we considered X = W14(D), with D being a bounded polytope,
for example. It was shown that our theory also comprises analyticity of parametric in scales
of corner-weighted Sobolev spaces in D, allowing to retain optimal convergence rates of FEM
in the presence of corner singularities of the PDE solution. These generalizations allow to
treat much broader problem classes, comprising for example a forward operator mapping inputs
to the solution of the parametric (nonlinear) Navier-Stokes equations [17]. Another instance
includes domain uncertainty, which typically does not yield forward operators with holomorphic
parameter dependence on polydiscs, e.g. [38].

As one possible application of our results, we treated in more detail the approximation of
posterior densities in Bayesian inference. Having cheaply evaluable surrogates of this density (in
the form of a DNN) can be a powerful tool, as any inference technique could require thousands
of evaluations of the posterior density. On top of that, in case of MCMC, arguably the most
widely used inference algorithm, these evaluations are inherently sequential and not parallel.
Each such evaluation requires a (time-consuming, approximate) computation of a PDE solution,
which can render MCMC infeasible in practice. Variational inference, on the other hand, where
sampling from the posterior is replaced by an optimization problem, does not necessarily require
sequential computation of (approximate) PDE solutions, however it still demands a high number
of evaluations of the posterior, which may be significantly sped up if this posterior is replaced
by a cheap surrogate. We refer for example to transport based methods such as [52].

As already indicated in the introduction of the present article, the idea of using DNNs
for expressing the input-to-response map (i.e., the “forward” map) for PDE models has been
proposed repeatedly in recent years. The motivation for this is the nonlinearity of such maps,
even for linear PDEs, and the often high regularity (e.g. holomorphy) of such maps. Here,
DNNs take a role of a computational tool alongside other reduction methods, such as reduced
basis (RB for short) or Model Order Reduction methods (MOR for short). Indeed, in [45] it has
been shown that under the provision that reduced bases for a compact solution manifold of a
linear, elliptic parametric PDE admit an efficient DNN expression, so does the input-to-solution
map of this PDE. The abstract, Lipschitz dependence result Thm. 2.6 will imply with the
present results and the DNN expression results of RB/MOR approximations for forward PDE
problems as developed in [45] analogous results also for the corresponding Bayesian Inverse
Problems considered in the present paper. MOR and RB approaches can be developed along
the lines of [11], where BIP subject RB/MOR approximation of the forward, input-to-response
maps where considered in conjunction with Bayesian inverse problems of the type considered
here. Should reduced bases admit good DNN expression rates, the analysis of [11] would imply
with the present results corresponding improved DNN expression rates, along the lines of [45].

We remark that the DNN expression rate bounds for the posterior densities are obtained
from DNN reapproximation of gpc surrogates. DNN expression rate bounds follow from the
corresponding approximation rates of N-term truncated gpc expansions. These, in turn, are
based on gpe coefficient estimates which were obtained as e.g. in [76] by analytic continuation
of parametric solution families into the complex domain. Analytic continuation can be avoided
if, instead, real-variable induction arguments for bounding derivatives of parametric solutions
are employed. We refer to [32] for forward UQ in an elliptic control problem, and to [35,
Section 7] for a proof of derivative bounds for the Bayesian posterior with Gaussian prior. As
in [76], the present DNN expression rate analysis relies on “intermediate” polynomial chaos
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approximations of the posterior density, assuming a prior given by the uniform probability
measure on U = [~1,1]N. The emulation of the posterior density by DNNs can leverage,
however, the compositional structure of DNNs to accommodate changes of (prior) probability,
with essentially the same expression rates, as long as the changes of measure can be emulated
efficiently by DNNs. This may include nonanalytic/ nonholomorphic densities. We refer to [63,
Section 4.2.3] for an example.

We also showed in Section 6.2 that ReLU DNN expression rates are either independent of
or depend only logarithmically on concentration in the posterior density, provided the concen-
tration happens only in a finite number of ‘informed’ variables, and the posterior density is of
‘MAP’ type, in particular (locally) unimodal. While important, this is only a rather particular
special case in applications, where oftentimes posterior concentration occurs along smooth sub-
manifolds. In such cases, deep ReLU DNNs can also be expected to exhibit robust expression
rates, according to the expression rate bounds in [66, Section 5]. Details are to be developed
elsewhere.

A  Proofs
A.1 Proof of Theorem 3.7

Proof. Since (bj)jen € P(N) it holds b; — 0. Thus we can find x > 1 so small and J € N so
large that with Cy = 4/9

supb: P <1 and k—1 b +C5 ! max 3,E max b, Y V3 < min 1,E )
' 2 J 0 J J 2
j>J jEN € g>J  §>J
(A1)

We fix such values for J and x throughout the proof.
Step 1. We give an upper bound for ||c, || x. First, recall that by Cauchy’s integral formula,
for any holomorphic function f : BS — X we have for any 0 < # < r and any k € Ny

k)(0) — k! f(C)d
7(0) = /{(EC . ¢

=7} <1+k
where the circle {¢ € C : || = 7} in the line integral is oriented positively. Therefore
IF PO _ 1
S g s Gl (A2)

Similarly, as shown in [23, Sec. 12.4] (also see the proof of [13, Thm. 2.2]), for any r > 1 and
any k € Ny and for a holomorphic function f: &, — X

! dy m(1+2k) 1
|[ sonw| <555 s 1w (A3)

We will now use these estimates to obtain an upper bound for ||c, || .
Fix v = (vg,vp) € F and define

K ifj<J
Pi = max{?),%ﬁ} if j>J,
where v;/|vp| := 0 if [vp| = 0. Then by (A.1)

> (o — by < (5 -1 Zb +3) b +22b|mb <e,

jeN i>J j>J
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so that p = (p;)jen is (b, €)-admissible in the sense of Def. 3.3. Thus, by Def. 3.3, u allows
a separately holomorphic extension to X;.Izl E. X Xj> Jgp]. which contains the set X;’Zl E. X
X< Bé,p, by Lemma 3.6, and it holds

sup lu(ye, yr)llx < M, (A4)

(B Yr)EX]y EnxX;n s BE

for M as in Definition 3.3.

To find an upper bound for [|c,||x, we use that ||0yZu(yg,0)|x is uniformly bounded for
all yg in the compact set Ug (due to the continuous dependence on yg), so that an application
of Fubini’s theorem (for Bochner integrals) yields

OyEu(ye,0) Oyru(ye,0)dy;  dy

1 1
= e I5 ) - vy) - [ L, (yy) e DY G
o= | Lunlyr) P EE D nyn) = [ Bt [ L) P EESE

Hence by repeated application of (A.3)

m(1+2v) /1 /1 Oyru(ye,0)dy;  dys
llx < ——==Kk7" su L, L, = = -
lewlie < Ty 2t sup | [ puan) o [ na ) TR S
J J
o¥Fu ,0
<...< H(1+2Vj) _ T ) gl sup M (A.5)
2(k — 1) YpEXI_, Ex vr! X

Jj=1

Next, we bound the last supremum in (A.5). Using that u allows a separately holomorphic
extension satisfying (A.4), repeated application of (A.2) gives

Oyrulys,0) | _ dyyti -+ ulys, 0)
sup B — = sup ]
YBEX)_; Ex Vg: X ypeEX)_ Ex Hj>J vj: Py
< sup sup lu(ye, yr)llx [ (Cops) ™
YBEX)_y En YFEX S B%Opj i>J
<M [[(Copj)~. (A.6)

i>J
Due to n! > e™"n" for all n € N and using p; > ev;/(2b;|vr|),

—vi CoE Vj v 2 lvrl |I/F|‘VF| 2e lvrl |VF“
N < I < [ 22 Ly 25
H(COP]) = H ( 2 bj|VF> (C()g) VII;F L Coe vp! F

i>J JjESupp v

(A7)
Altogether, there exists a constant C' such that for any v € F
d lvp|! [ 2e lvr

Jj=1

Step 2. We show (i) and the first part of (iii). Fix 71, 72 € (1,2) such that 1 < y172 < k.
By (3.4) it holds ||Ly||pe(—1,1)) < (1 +2n)'/2 for all n € Ny. Thus there exists a constant
C < oo such that for all vg € Fg

! [T, (1+2p)%
[T +20) | 1wz ey < 17 sup == T <oyEl.
j=1

MHEFE ’y‘lu‘
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Next set

Ve ifj<J
05 = A9
! {min{bg?l,jQ/p} if j > J. (A.9)

By (A.1) it holds b§_1 > 2 for all j > J and since v, < 2 by definition, (J;);en is monotonically

increasing. Furthermore (6]-_1) € (?/(=P)(N) since (b;)jen € ¢P(N). Moreover, by definition

d; < C1j%/? for C} :=~, and all j € N. Thus 6 = (0;);en satisfies the properties stated in (iii).
Now, by (A.8) and (A.9)

—lvsl vl
v K lvr|! [ 2e 1
S I ulumwplele <€ 3 () A (ZC ) grrapiee

vEF ver N2 VE:
—|ve| D\ Vi
K P23l 2eb;
o () )z (Y
|
vpEFE M2 vrEFF VF: i>J Coe

Due to £/(y1y2) > 1, the first series is finite according to [15, Lemma 7.1}, and the second series
is finite according to [15, Thm. 7.2] since

by (A.1). This shows (3.9).
To show (i), we point out that due to (5;1)]-61\; € /(1=P)(N) and SUpjen (5;1 <yt<i,
[15, Lemma 7.1] implies (6 %), cr € ¢P/0=P)(F). Hence applying Hélder’s inequality

Y Uvelrewallevle) = Y (ILvelliews)llevllx876)

veF veF
p 1-p
< <Z ||LUE||L°C(UE)|CD||X5V> <Z(5_V)1p> < 0.
veF veF

Step 3. We show (ii). Fix yg € Ug. Then, since (k — 1) Z}I:1 bj +3> ,5,bj <eby
(A.1), for every yg € Ug, the map yr — u(yg,yr) is separately holomorphic as a function of
yr € Xj>JB§CO by Def. 3.3. Note that 3Cy = 12/9 > 1, and by (A.1) we can find 0 € (1, 3C))

such that
Z 2@9[)] 1
J>J Coe
Then, again by [15, Thm. 7.2] and (A.6), (A.7) it holds
ovr ,0 ! 2e0b;\ "’
Z glvrl yF“(y|E )H < Z IVF! H ( 29b3> < 0. (A.10)
vrEFF Ve X vrEFF Vr: i>J o€

This and the fact that w: U — X is continuous by Def. 3.3 implies by [83, Prop. 2.1.5] and [83,
Rmk. 2.1.7] that for all yp € Up

Oy~ u(yE7 0)

wyp yr) = Y ypr Y-

vr!
vrEFFR F

with uniform and absolute (i.e. the norms are summable) convergence for all yr € Up.
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Next fix yp € Up. Then, since (k — 1) ZjeN b; < e, the map yg — u(yg, yr) is separately

. J . . .
holomorphic on yp € X_, & and with SUDy e £, lu(ye, yr)llx < M. Similar as in (A.5)
this allows us to show that there exists a constant C' (not depending on yr) such that

By similar arguments as in Step 1 we then get

S Luglli= )

vEEFE

< Ok~Ivel

X

Z Ck™ "’Eln 14y ‘3/2<oo

‘/ ve(YE)U(YE, yr)due(YE)
X vEEFE

It then follows, e.g. by a finite dimensional version of [83, Prop. 2.1.13], that there holds the
uniformly and absolutely convergent expansion

Wy yr) = Y Luw(ys / L (§0) (@, yr)dun(Fn)

VEEFE

0yr U(QE7 O)

> Ly, yE/ Lu,(@8) yFTy;quE(QE).

VEEFE vrEFF

By (A.10) (recall that 6 > 1) it holds supg,cu, >, c 7, 10yEu(E, 0)||lx/vF! < oo, so that by
Lebesgue dominated convergence we can interchange the integration with the summation to get

- 8V§u(@E’O) ~
w(Ye, Yr) Z Z Lus(ye)y / Ly (9p) ————dpe(9r),

VF!
vEE€EFE VFEFF

with absolute and uniform convergence for all y € U. This shows (ii).

Step 4. We complete the proof of (iii). Fix 7 € (0,1), so that |[A;| > 0. In Step 2
we verified (3.9) and showed that (§7¥),cr € (*/0=P)(F). Denote by (;);en a monoton-
ically decreasing arrangement of (6 %),cx, i.e. there is a bijection # : N — F such that

=67 for all i € N, and additionally (7;)ien is monotonically decreasing. Then /(=p) <

’1 ijl xf./(l ?) and thus z, < n /(5 YveFllwra-n(F) for all n € N. Since A, corre-
sponds to the [A;| multiindices v € F with the largest values of 7%, we get sup,cz\x. 6% <

||(6_"),,€;ng/<1fp>(f)|A5\_1/1’+1. Thus

u(y) = > cwLu (yp)ys

veEA,

< Y Musllzewallevllx
X veF\A,

_1 _
< AT hwerlaa-ny D 8 Lus | Lo ws) v,
veF

sup
yeu

which concludes the proof, since the final sum is finite by (3.9) as we showed already. O

A.2 Proof of Lemma 4.1

Proof. When L = 0 the properties of the lemma are satisfied by the parallelization defined in
Section 4.2.1. In the remainder of the proof, we assume L > 0.

We first describe the structure of (fi,..., fi),, and then define its weights explicitly. We
denote for t = 1,...,k the depth of f; by L; and the number of computation nodes of f; in layer

£=1,...,L; +1by Nét) € Ny, with the (unusual) convention that Ne(t) =0 for £ <0.
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We construct (fi, ..., fx), out of k+ 1 parallel networks, namely an identity network with
input dimension n and f1,..., fi, such that the L+ 1’st layer of (fi,..., fx), is the output layer
of f1,...,fx- As aresult, for t = 1,...,k the £ = 1,...,L; + 1'th layer of f; is part of the
¢+ L — L;th layer of (f1,..., fx), and Zle Ne(j-)Lt—L is the number of computation nodes of
(fi,---, fr), in layer £.

For the construction of (fi,..., fi),, it remains to discuss how fi,..., fi receive their input.
The identity network and the NNs f;, t = 1,...,k whose depth equals L directly take their
input from the input of (fi,..., fr),. For the other f;, ¢t =1,...,k, we replace the one input
weight in the input layer of f; by two weights, as for each component z; € R, ¢ = 1,...,n of
the input it holds that xz; = o1(x;) — o(—=;), where o1(z;) and o1(—z;) are computed by the
hidden layers of the identity network and can thus be used as input for f; in layer 14+ L — L; of

(i fr)s

We will denote the weights of (f1,...

Moreover, we write Me(t) = 22;11 Ne(i)LrL

. fr)s by wfyj and those of f;, t = 1,...,k by wt

(2%

forallt =1,...,kand £ = 1,...,L + 1 for the

number of computational nodes in layer ¢ of (fi,..., fi), used to emulate fi,..., f;—1. With
this notation, the network weights of (f1,..., fx), are
wi,; =1 i=1,...,n,
1 .
wz‘,n+i = 1 1= 9 9 1y
wi; =1 i=1,...,2n,
e = ) '7L7
1 _ ()1 o o (t)
W, onpar gy — Wi i=1,...,n, j=1,...,N}"7,
t=1,...,k satisfying L, = L,
¢ _ ()1 _ o (t)
wi72n+M/§t)+j =w; ; t=1,...,n, j=1...,N;"’,
{=14+L— L, t=1,...,k satisfying 0 < L; < L,
¢ _ (t),1 o C_ (t)
wn+i,2n+Mét)+j7 —w; ; i=1,...,n, j=1...,Ny"7,
{=1+4+L— Ly, t=1,...,k satisfying 0 < L; < L,
¢ — O+ Le—L . (t) o (t)
w2n+MZ(i)1+i,2’n+Mét)+j_wi’j Z_l""7NZ—1+Lt—L7 j—]., "7N£+Lt—L’
{=2+L—L;....,L, t=1,... )k,
L+1 — (), Letl o (t) o (t)
20+ MV +i, M) +j =wig i=1. N J=he Np
t=1,...,k satisfying 0 < Ly,
L+1 _ ()1 _ o (t)
i,Métl1+j_wi’j ’L_lu 7”7 j_]-a M) 1 »
t=1,...,k satisfying L; =0,
L+1 — _ _ (t)
i MO ) w; t=1,...,n, j=1...,N;"’,
t=1,...,k satisfying L; =0,
wﬁj =0 otherwise,
¢ _ () +L—L C_ (t)
b2n+M1§t)+j 7b]' ' Jj=1 7NZ+Lt—L’
{=1+L—-Ly....L, t=1,... )k,
L+1 _ 3 (t),Le+1 C_ (t)
Mi,t)rl‘i’j _bj j - 17 '7NLt+17
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t=1,... k

b? =0 otherwise.

The first three equations describe the first L layers of an identity network. The output layer of
the identity network is not included, because it is not desired that the input of (fi,..., fi) is
part of the output of (fi,..., fr),. The fourth, fifth and sixth equation describe how the input
of the network is connected to the parts emulating f;, for t = 1,... &k that satisfy L; > 0. The
seventh equation describes the remaining hidden layer weights of f;, t = 1,..., k. The weights
of the output layer, indexed by L + 1, are described in the eighth, ninth and tenth equation.
The only remaining nonzero weights are the biases of fi,..., fi, described in the twelfth and
thirteenth equation.

The expressions for the input dimension, the output dimension and the depth follow directly

from the construction. The bound on the network size is obtained by noting that all biases
().
bj

expression for the network weights w;

appear exactly once, the first three equations involve 2nL nonzero weights, that in the

(t),1
i,j

L; < L, and that w! j) ™ appears exactly once for £ > 1. The bound on the first layer size
follows from the first, second, fourth (for ¢ such that L; = L) and twelfth equation (for L; = L).
Likewise, the bound on the output layer size follows from the eighth, ninth, tenth and thirteenth
equation. O

appears exactly once if L; = L and exactly twice if

A.3 Proof of Proposition 4.7

Proof. The proof consists of 2 steps. In Step 1, we define subnetworks, similar to those in [62,
Lemma 4.5], to compute all monomials ¥ for v € A of order 2¢~! < |v| < 2%, In Step 2, we
use them to construct p.

Step 1. Throughout this proof, we denote the NN input by & € R%. For k € Ny we define
the index sets Ay := {v € A: [v| =k} and Ay := {v € A: 2¥71 < |v| < 2F}. In this first step
of the proof, we define subnetworks to compute ¥ for v € Agr—1 U Ag.

We will use that there exists a 0,-NN X, of depth 1, with input dimension 2 and output
dimension 1, which exactly emulates the product operator R? — R : (x,y) — zy. For r = 2
this was Shown in [47, Lemma 1], for r > 2 it follows from [47, Theorem 5] and the polarization
identity zy = (;E +y)? — 1(z — y)?, which was used in the proof of [47, Lemma 1]. We note
that the size of X depends on r.

Next, for all k£ € N such that Ay # 0 we define the 0,-NN ¥}, as

= (e} {5012,

where the identity networks have depth 1. With the convention that A;/, := 0, we define ¥y
such that applied to the inputs {” : v € Agr-2UA,_1} the identity networks compute the input
values ¥ : v € Ayr-1 C Ag_1 and the product networks compute ¥ : v € Ay. This is possible,
because A is downward closed: for all v € Ay and all p < v such that k=2 < lp| < k-1,
we assumed that x* is part of the input of ¥y (v € A implies u € A, hence pp € Ag_4). In
particular, there exists p € Ap_1 such that |u| = [|v|/2]. This implies that |v — p| = ||v]/2]
and thus v — pu € Agr—2 UAj_1. As a result, ¥ can be computed as ¥ = x,.(zH, ¥ H).
Next, we estimate the NN depth and size of ¥. It holds that depth(¥y) =1,

< |Age1 | size(Idg) + |Ag|size(X,) < (|[Age—1] + |Ag)C(r)
< (|Ag-1| + |AkC(r),
sizein (Vr) < (|Ak—1] + [Ax)C(r),
sizeous (Uk) < (|Ak—1| + |Ak))C(r).
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Step 2. In this step we construct p. Let m := m(A) as defined in Equation (3.10) and
k :=min{k € N: 2¥ > m}. In addition, we will write p(x) =: }_, ., tua”.
We define p as
p := Affine o (U, psumy,) o (\Ilk,l, psumkil) o---0 (U, psum,),

where for j =1,...,k

psum;; ({wy}ueAzj—Z){:BV}VEAj—17psumj—1) = Idg | psum;_; + Z tux” |,
VEA]‘—I

where the o,-identity network has depth 1. In addition, denote by v, i = 1,...,|Ax| any
enumeration of Ag. Then, Affine is a NN of depth 0, input dimension |Agr—1|+ |Ag|+ 1, output
dimension 1, computing the affine transformation

Afﬁne(wl, ce ,w|A2k71‘,wy(1>, e WhARD w|A2k71 “HAkH‘l)
[Ag]
=lo+ WA, | +|Ak+1 T E Wy, Ty G
Jj=1

where the constant tg is a NN bias. Thus, Affine neglects the first [Ayx-1] inputs, takes an affine
combination of the then following |Ag| inputs, and adds the last input. As a result, p(x) = p(x)
for all € R,

To bound the network depth and size, we note that

sizejn (psum;) < C(r)(1 + |Aj-1]),
sizeous (psum;) < C(r),
size(psum;) < C(r)(1 + [A;_1]),
size(Affine) = sizej, (Affine) = sizeoys (Affine) < 2 + |Ag|.

We obtain the following bounds on the depth and size of p: In case |A| = 1, the constant
polynomial p can be emulated exactly by a 0,-NN p of depth 0 and size 1. In case |A| > 2, it
holds:

k
depth(p) < depth(Affine) + > (1 + depth(¥;)) = 2k < 2+ 2log,(m) < C'log, (|A]),
Jj=1

k
size(p) < size(Affine) + sizej, (Affine) + Z (smeout ) + sizeout (psum; ) + size(V;)
j=1

+ size(psum;) + sizei, (V) + sizein(psumj))
<@+ 1Ak + 2+ [Ax) +Z( P81 +14;)) + Cr) + C(r) (1A ] +144])

+ O +1851]) + C)(A; 1] + |45 + Cr)(1+ 18, 1]))

k
<Cr) [ 1+ D145 | <C(r)Al,
j=0
sizei (P) < sizein (V1) + sizei, (psumy ) < C(r)(|Ag| + |A1]) < C(r)|A],
sizeout (P) < 2sizeout (Affine) < C|Ak| < C|A|,

where C, C(r) are independent of d.
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A.4 Proof of Theorem 4.9

Proof. If[A;| = 1, then Proposition 3.8 item (iv) implies A, = {0}. Hence, >, ¢ Lo (yr)yr"
is constant in y € U. Therefore, it is emulated exactly by a 0;-NN of depth 0 and size 1.

We use that |A;| > 2. The proof is given in several steps. In the first step, we define the
approximation @, of u. Then, we estimate its error. In the third step we construct a network
which emulates @, the depth and size of which are estimated in the fourth and last step.

Step 1. For all v € F let (jiu,)l”5" © N be such that T[4 y;.. vy =Yy forallyeU.
In addition, we define A; g := {vg € Fg : v € A;}. As shown in Proposition 3.8 item (iii),
A 5| <C(+1log|A.])’.

For all v € A, we define

for((yj)iesn,) = Xs,.R (qu,a(yE%HEV ({ygl ,F}"“>) yeU,

where x4, g is as in Proposition 4.3 and ﬂ b @sin Proposition 4.4. We choose the accuracy
of all tensor product Legendre polynomials to be § := % min {1 ||(|Cu|)uef\|gl(}— \AT|_1/”+1}'
By choosing ¢ independent of vp € A, g, we can use L,,E s for multiple different v (there
may be multiple v € A, with the same vg). For the accuracy of ]_[6 ol ({y]wF}‘VFll),
we choose €, p = (2m(A;) +2)~ 7m1n{1, lew| ™! |AT|—1/P}, For s, r, we choose accuracy
by = % min {1, ley| ™! |AT|_1/”}7 and note that the absolute values of its inputs are bounded by
R:=(2m(Arg) +2) .
Finally, we define
Uy = j{: v fu,r-
veEA,

Step 2. The error can be estimated as follows:

Slelp |Lup (yE)yF fu,T((yj)jESuppV”
y

< sup | Ly, (Ye)Y¥ — Lo (Ye)YE"
yelU

7 ve - lvrl1
+ s Ly, LVE i
sup S(yr)yY swe)] ] N ({yg h )‘ (A1)
+ sup i/u,é(yE)H ({yﬁ uF}‘uFll) — fu.r((y5)icsuppr)
yeU Ev,F

<5+ (2m(A;) +2) e p + 6,

— —1 —
< 3ll(cuDverllpim A 7P + S e |7 1AL 7VP.

To estimate the first term of the three, we used Proposition 4.6. For the second and the third
term, we used Propositions 4.4 and 4.3, respectively. As a result, we find

sup | > Loy (ye)yi" — @ ((y5)jesn,)
yeu veEA,

< sup Z lev| - [ Ly yE) — fu T(<y]).7€bupp”)‘
yeUVEA

< Z [ SUP | Loy (YE)YZ" — for((Yj)jesupp o)l
veEA, ES
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_ 1 _
< Z |cw] - || |C,,|),,€]:||41 |A'r| 1/p 1 =+ % lew| ™ [As] l/p)
veA,

<A,V
Together with Theorem 3.7 item (iii), which states that

sup |u(y) — Y Loy (Yp)ypr | < C|A-|7/PH
yeU veA,

we get Equation (4.13).
Step 3. We now construct a network which emulates .. It consists of four concatenated
subnetworks:

Uy 1= ﬂ(Tl) o ﬁg) o ﬂ(f) o ﬁg).

The first subnetwork @' has input dimension |Sa. |, output dimension |A; g| + |A-| and in
parallel emulates approximations of {Ly, }uzen, » and {y5" boea, :

- lvrly
(4) (Id]RAT Bl OfAT £,05 {Ide OHe ol ((yleF) - ) } N ) 5 (A12>
v,F 1= ve .

where fa, ;s is as constructed in Proposition 4.6 and where the depth of the o;-identity networks
is such that

depth ( (4)) < 1+ max{depth(fAT,E,zS)} Uy {depth (HE 1) } .
v,F, I/GA-,—

The second subnetwork 1153) has zero depth, i.e. it consists of an affine transformation only.

It has input dimension |A; g| + |A;| and output dimension 2|A.|. For a fixed but arbitrary

enumeration (V(])) | :Tl of A, the output of ug )o u(4) is

(@ 0 aM ((y))jesa, ) gpg = i’l,g“))g(yE)v

i3 o g - | Vye Uk <|A;]. (A13)
(UT °Ur )((yj)jeSAT ))2k = Hs (k) <yj (k)> )
v F i=1

The third subnetwork 11(72) is defined to be the parallelization of networks from Proposition 4.3
concatenated with o;-identity networks:

[Ar]
~(2) . ({Id )
Uyt R OX5 iR )

v(i)> } =1 d

where the identity networks are such that

depth( (2 >) <1+ max C (1 + log, (R/3,))

veA,

Its output is given by

(@ o al® o @™ ((y)jesa.)) = Foo - ((Wi)jesa, ), VY €Uk < [Af]. (A.14)
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Finally, the last subnetwork fL(Tl) has depth 0, input dimension |A;| and output dimension 1,

and emulates a linear combination of its inputs, with weight ¢, ;) in coordinate j, and without
bias. As a result,

(a9 0 a® 0@l 0 @) (y)jess,) =r((Ui)sess, )y Yy € U.

Step 4. We now give estimates on the depth of the subnetworks and the network itself.
We use that m(A- g) < m(A;) < C(1+4log|A;|), where the second inequality is Proposition 3.8
item (ii). We get, using Propositions 4.6, 4.4 and 4.3:

depth (ag‘l)) <1+ max{depth(fa, ,5)} U {depth <Hsu,p,1) }VEA
< max {C(1 +logm(A. g)) (m(Ar,g) +1ogy(1/6)) } T
u{C(1+log(|lvr) IOg(|VF|1/5V,F))}ueAT
< max {C(l +logm(Ar k) (m(AT,E) +log 3 + max {0,log [[(|cu | )ue 7o ()
+ L2 10g|A]}), (1 + log(m(A,))
log (m(Ar)(2m(Ar) +2)"3max {1, | verllor 8517} ) ) }
<C (1 + log(|A-]) loglog(|A~ ),
depth (af’)) —0,
depth () <1+ max € (1+log, ((2m(Ar) +2)”3max {1, | (lew Dwerla A7 }))
<C(1 +1og A ),
depth (a&”) —0,
depth (7;) = depth (")) + 1+ depth (@) + 1+ depth (@) + 1+ depth (a")
<C(1 +log(|A;]) loglog(|A,])).

For the bounds on the network size, we use that the depth of the identity networks in ﬁ(f)

is less than depth ﬂg)). There is one identity network with input dimension |A, g| and there

are |A,| identity networks with input dimension 1. The sum of the network sizes is bounded by
2(|A7, 5| + [Ar]) depth (V) < C(1+ [Ar|log(|A ) loglog(|A- ).

The depth of identity networks in ﬂ(TQ) is less than depth (af)), their input dimension is 1 and

their number is |A;|. Hence, the sum of their sizes is bounded by
2 A, | depth (#2)) < C(1+ |A, log(A- ).

We find using (4.7):

size (129)) <2size (fAT‘Eﬂg) +2 Z size (H
A

vpEhs

)+ 2C(1-+ - Tog(1A- ] toglog(1A. )

Eu,F,

<C(mlAr,p)? + m(Ar,r)* 10gy(1/8) + [Ar, | (1 + logy m(As. ) + logy(1/9)) )
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+ 7 1+ el log(wrl /ev.r)) + C(1 + |As | log(|A]) loglog (1A, )
veA

< (01 + 10g A-])* + C(1L+ log|A])? logy (3max {1 | (ew vl |A- 7 })
+C(1+1log|A.])’ (1 +loglog |A,| + log, (3 max {1, II(\cul)uepr(f)\Ar\”p_l})) )

+ Z C(1+m(A;)logm(A;)) + Z C (1 +m(A;)log (3max{1, |cw | |AT|1/P}))

veEA, veA,
+ C(1+ |Ar|log(|A+]) loglog(|A-]))

(%)
< (1 +10g|A )+ + O (1 + |, [log(IA- ) log log(|A, )
<CO(1+ |A;]log(JA,]) loglog(|A+])).

At (*) we used the following estimate, which uses that ||(|cy|)vex|ler(7) < 0o by Theorem 3.7
item (i) for X = R, and that log(max{1,z}) < z for all z > 0:

Y ¢ (1 +m(A,) log (3 max {1, e | |AT|1/p})>

veA,

<C(1+1log|A;]) Z log (3max{1, lew| |AT|1/p})

veA,
<O+ A log A, ]) + C(1L+log A, D) S Llog (max {1, |ey I” [A,]})
veA,

<CO(1+|Ar|log |A+]) + C(1+log [Ar]) Y [eu|” [As]
veEA,

SC(1+[Ar|log|Ar]) + C(1 +1og |Ar|) - [[(lew Dwerln 7 - 1A
< C(1+[Ar[log|Ar]).

(A.15)

The number of nonzero weights of ﬁ(rg) is at most 2|A;|, because each output depends on at
most one input. We can hence estimate

size (af’)) <2A .
Again using Equations (4.7) and (A.15), we find

size (@2)) <2 V;:T C (1+10g, ((2m(Ar,p) +2)"8max {1, e |A,17}))

+2C(1+ A, |log |A-)
< O(1+ |A.|log A, ]),

size <11(71)) <|A;l,
size (4,) < 4size (ﬂ(Tl)) + 4size (1](72)) + 4size (ﬂ(;’)) + 4size (ﬂ(f))
< C(1+[A-|log(|A+]) loglog(|A-]))-
O

Most of the network constructed in the proof of Theorem 4.9 will also be used in the proof
of Theorem 5.2 in Section A.5 ahead, namely the part of the network which in parallel emulates
the gpc basis polynomials {U 3> y — L., (ye)yy" }vea,. Therefore, we state the properties of
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that part of the network as a lemma. We state the lemma for the general case of a (b, e, X)-
holomorphic function v : U — X. The construction of the neural network is the same as for
a (b, e, R)-holomorphic function v : U — R, except that we now use the sequence (||cy||x)ver
instead of (|c,|)vex to define the accuracy.

Lemma A.1. Letu: U — X be (b, e, X)-holomorphic for some b € (?(N), p € (0,1) and e > 0.

Let J €N, (|lev||lx)ver € RT and O # A, C F for 7 € (0,1) be as in Theorem 3.7.
Then, the o1-NN fa, = i 0 1 o @M has input dimension |Sa,| and output dimension

|A-|. The components of its output are
(fAT((yj)jESAT))k = fu(k),‘r((yj)jESA.,.)? fOT‘ alyeUk < ‘ATlv (A16)

for an arbitrary but fired enumeration (V(k))LA:H‘ of Ar. They satisfy the uniform error bound

sup Ly, (yE)y;F - fV,T((yj)jGSUPP vl
yeU

) _— . ) (A.17)
< sllewllp)verllam A =74 4+ F lleullz 1471717, for allv € A-.

The depth and size are bounded as follows:

size(fa.) < C(1+ |A;| - log|A,| - loglog|A.]), depth(fx.) < C(1 +1log|A,| - loglog|A,]).

It follows from Proposition 4.3 and the definitions of R and 4, in Step 1 of the proof of
Theorem 4.9 that

sup | fu~((y)jess, )| < sup [Lug (yp)y”"| + sup [Lu, (ye)y™" — fu.-((y;)jesn. )
yeU yeU yeU

<R+6, <R+1=2m(A,,E)+2)7 +1.

A.5 Proof of Theorem 5.2

Proof. Throughout the proof, we fix 7 € (0,1), and thereby A,. The proof consists of 5 steps.
In Step 1, we construct the networks which approximate the gpc-coefficients {c, },eca, and the
polynomials in y € U. In Step 2, we construct @,. In Step 3, the error is estimated. In Step 4,
a NN emulating 4, is discussed in detail. In Step 5, the NN depth and size are estimated.

Step 1. We first construct a subnetwork which approximates the gpc coeflicients {¢, }oea., -
Let 6! € ¢¢/(1=P)(N) be as in Theorem 3.7 based on (b, e, X')-holomorphy of u. To optimize
the choice of network size used for the emulation of each gpc coefficient, we use [76, Lemma
4.7], which in turn is based on [3, Section 3] and [30, Section 2]. We apply the result for a, =
lewllas | Lug | poo 17y € (0,00), by = [lewllx (| Lupll poe (iryy) € (0,00) for all v € F, B:= 07" €
(0, )N, py :=p*, pp := p, n:= |A;| and A,, := A,. Instead of the assumption that (b,B7"),cr €
2(F) and B € ¢2/2=P) we have (b,BY)yer € (1(F) and B € (#/(1=P) (Theorem 3.7 item
(iii)). Under the current assumption we obtain the same result as in [76, Lemma 4.7], as in both
cases [76, Lemma 2.8] implies that (in the notation of [76])

> b, < Ottt (A.18)
F\Ay,
The rest of the proof of [76, Lemma 4.7] only uses (A.18), hence the conclusion of [76, Lemma
4.7] also holds when (b,B37"),cr € £(F) and B € ¢¢/(1=P),
Thus, it follows from [76, Lemma 4.7] that there exists a constant C' > 0 and a sequence

(M )wen, € NAnl (in the notation of [76]), which we denote by (m,.,)uea,, such that with
N, = Y ven, Mrw > [Ar] it holds

AP Y el sl ey mra + D llevlla 1Eusll e,y < CN7T o (A19)
vEA, vEF\A-
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for r as in Equation (5.1).

Forallv e A;, let ¢, , := <I>CVT_ be as provided by Assumption 5.1. Then, we consider the
parallelization with shared identity operator gn, = ({€u,7}ven,), introduced in Lemma 4.1.
With Assumption 5.1, it follows that

depth(ga,) = max depth(éy ) < max C(1+1log(mrp)) < C(1+4 logN;),

size(ga,) <2ddepth(ga,) +2 Y size(é, )
veA,

<C(1+1ogN;) +2 > Cmiry < CN;.

veA,

For the approximation of the polynomials in y € U, we use the DNN fAT from Lemma A.1.
We denote the components of its output by fo -((y;)jes,, ), for all v € A; and y € U.

Step 2. In this step we define ., combining the components of gx. and fAT.
First, we note that by Assumption 5.1, it holds that

v rll oo oy < Cllewll e M7, < Clllles |y )verllo (mm7,, = Cmi,
With Proposition 3.8, item (ii), this implies with R := (2m(A, g) + 2)7 that
R = max{ {R+1} U o en } < max{R1,0m,} < Cmax{(1+log | Acl)m?, )

for some constant C' which is independent of A..
We define the NN @, approximating u: for A := N.-""1, z € D and for y € U, we set

i (@, (Yj)jesn.) = Y *amy (Eor(®), for(Ui)jesn,)) -

veA,

Step 3. We estimate the NN expression error.

sup Hu(y) — U (- (Z/j)jESAT)HX

yeU
< sup Z CV(’)LVE(yE)y}U?F - Z CV(')LVE(yE)y;F
yeu veF veA, X
+ sup Z (CV(')LVE (yE)y - CV( )fu T((yj)jGSA,.))
yeu veA, X
+sup || Y (e fur(Wi)iesa,) = () for((¥))jesa,))
yeu veA, X
=+ sup Z (EV,T(')fV7T(<yj)j€SA,) - >~</\,R§, (EVJ(')vfV,'r<(yj)j€SA,)))
yeu veA, x
< Y llevlla sup Loy (ye)yi© |
vEF\A, yeU
+ Z ”CVHXSHP ’LVE yE)y = fu, T((yJ)JGSA.,-)|
veA
# 5 lew = el (500 L) |+ 500 L () = For()ses )
vEA,
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+ Z (HCU,T ) fu T((yJ)JESAT) - X>\ R, (Cv (), fl’,T((yj)jESAT))”(é,Q(D)

veA,

1/q
+ || (fur ((W5)iesa,) = [DXarol1 (G (), for(U)jesa,))) VEV,T(')Hqu(D)d)

(%)
<C D lewlla el oo
veEF\A,

_ _ -1 _
+5 3 ey llevlo)verllaim AP+ 23 el llenllz 14717
veA, veA,

+ 3 Cllela-md vl =y,
veEA,

— _ —1 _
13 Cllelz el verlatnAd 7 42 3 Cllelly ez 14,777

veA, veA,

5 1/q
0 (VI ) + AT IV 1)
veA,

<C [N;T + | AL TP L N 4 AP +N;’“} < ONT.

In case ¢ = oo, the £9-sums have to be replaced by a maximum.

At (*), to estimate the first of four terms, we used Equation (A.19). For the second term,
we used Lemma A.1. To estimate the third term, we used |c, — ¢y 7 [|x < Clley||xsmzy, from
Assumption 5.1 and Equation (A.19) to estimate D, [lcu — Cu |y SUDyey Lo (yE) 7,
and we used that by Assumption 5.1 [|c, — ¢y 7|5 < vl + |G, < Clev] 4 to estimate
Yven, lew =Gzl y supyer |Los (Y)Y — fu.r((yj)jes,. )| using Lemma A.1. To estimate
the fourth term, Proposition 4.3 was used, and

/
S (N Iy + A IV [ye) < S (M lpagpy +AC e

veA, veA,

SCOAAN+CA ”(”CV”X)VGJ:HN(]:) <CNT.

Step 4. We now construct a network emulating .. It is the concatenation of four subnet-

works, i, = u(5) N(T6) o ﬂ(:) o ﬂ(f). The first NN ﬂ(rg) has input dimension d + |S_ |, output

dimension 2|A.| and is defined as
a'(FS) = (gAT o Id]Rd7 fAT o IdR\SAT\) ’

where the depth of the identity networks is such that depth(ﬂ(TS)) = 1+max{depth(ja_ ), depth(fa.)}.
The second NN 115-7) emulates an affine map. It has depth 0, and its input dimension and output

dimension both equal 2|A.|. For a fixed but arbitrary enumeration (Ix(j))lez’l‘7 the NN ') is
defined such that

(87 0 i (@, ()ses0,)) | =i (@), N
B VeeD, VyeU, k=1,...,|A;|

( @ o (a, (yj)jesAT))% = fuw +((Yj)jesn, )
The third NN ﬁ(TG) is a parallelization of NNs from Proposition 4.3:

,a‘(rﬁ) = ({IdR 0>~<)\,R{, }‘j/:l‘>d
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where the depth of the identity networks is such that all components of the parallelization
have equal depth, so that the parallelization has depth max,ca, 1 + depth(x, ry). For all

k=1,...,]A;|, the k’th component of the output of fc@

(8 03 0 i @, (v)es1, ),

= XA’RL(k) (éu(k),7($)7 fu(k),‘r((yj) GSA.,.)) ) Va € D, V’y ev.

Finally, T) has depth 0, input dimension |A,|, output dimension 1 and computes the sum of
its inputs. As a result, it holds that

U ( y] ]GSAT Z X)\ R/, ClIT )7fu,7'((yj)jESA,.)) ) vV € D7 Vy eU.
veA,
Step 5. Finally, we bound the NN depth and size of 4.
We first estimate the network depth. It follows from Assumption 5.1 and Lemma A.1 that
depth(@®) =1 4+ max{depth(ja_ ), depth(fa )}
<14 max{C(1+logN;),C(1+log|A,|-loglog|A;|)}
<C(1 +log N - loglog N;).
In addition, it holds that

depth(a{") =0,
depth(a{®) = max 1 + depth(X r ) < max C(1 + log(R.,/\))
veEA, d veEA,

<C Héf/i\x(l + Jloglog(|A;|) + 0log(mr.p) + (r + 1) log(N;))

< C(l +log N>,
depth(a®) =
depth(i,) < depth( ) 41 + depth(a®) + 1 + depth(a{”) + 1 + depth(a®)
<C(1+logN; -loglog N,).

We now estimate the network size. By Proposition 3.8 item (iv), it follows that |Sa_| < |A.|.

(8)

As a result, the sizes of the identity networks in @’ can be estimated as follows:

size(Idga) < 2d(1 + depth(a®)) < C(1 + log N, - loglog N, ),
size(Idg sy, 1) <2[Sa, |(1+ depth(a{®)) < C(1 + N -log N; - loglog N ).

We find:

size(@®) < 2size(ga, ) + 2size(Idpa) + 2size(fa, ) + 2 size(Idis,. 1)
<2CN; +2C(1 +log N; - loglog ) + 2C(1 + |A+| - log |A+] - loglog |A+|)
+2C(1 4+ N; - log N, - loglog N;)
<2C(1+ N; -logN; - loglog N;,).

Because each component of the output of u( ) only depends on one component of its input, it
holds that swe(ug ) < 2|A;|. Furthermore, it holds that

size(il9) < Z 2size(Idg) + 2 size(X x gy
veEA,

< Z 4(1 + depth(a{®)) + C(1 +log(R. /A)) < C(1 4+ N - log N,),
veA,
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size(al®)) < |A,],
size(i,) < 4size(a®)) + 4size(a®) + 4size(al") + 4 size(a®)
<C(1+ N; -log N - loglog V).

This finishes the proof. O

A.6 Proof of Proposition 6.2

To prove Proposition 6.2, we will use [62, Theorem 6.7]. In the following lemma, we verify the
assumptions of that result concerning the approximation of the Gaussian density function, using
[62, Theorem 5.15], and cutting off the NN approximation sufficiently far away from zero.

Lemma A.2. Let g: R = R: x — exp(—3z?).
For all B € (0,1] there exists a o1-NN @% with input dimension and output dimension 1 and
an absolute constant C > 0 such that

lo—23] . <8 =Blloloeey.
depth(®%) < C(1 +1log(1/8)loglog(1/5)), size(®3) < C(1 + log(1/8))%
Proof. For arbitrary 8 € (0,1], we first construct a ReLU NN approximation @g /3,[~R,R] of g
‘g (I)ﬂ/?) RR]HL () < B/3, for R:=1+ +/2log(3/8). Here, R > 1 is chosen
such that g(R —1) = 8/3 = [|g]l pc (—oo,—rt1)u(R-1,00))- Let A : R = R: 2 — exp(—3x), so
that h(z?) = g(z), = € R. For the approximation of h on [0, R?], ReLU NNs obtain exponential
convergence, with network size independent of R. It was shown in [62, Theorem 5.15] (see also
the remark after that result) that for all R > 1, for hg(x) := h(R%*(z +1)/2), z € [-1,1], there
exists a NN & 576 —1,1] satisfying, for an absolute constant C' > 0 independent of R

satisfying

h
HhR ~ /-1 HLOO([fl,l]) <A/8,
depth(®!5, 1 1) < C(1+log(1/8) loglog(1/8)),  size(®5, , ) < C(L+log(1/8))*.

Let A be the linear transformation R — R : 2 +— 22/R? — 1 satisfying h = hp o A. Then, the

NN <I>Z J6,(—1,1] © A approximates h on [0, R?] with network size bounded independent of R. The

map g can be approximated as
O s g (®) = ®p8 o Ao Xg p(x,x), € [-R,R].

We obtain the following error estimate, for all R > 1, using that ‘h|le°°([O,oo)) = %

Hg_q)%/?u[—Rﬂ]HLm([ R.R)) ~ < IO = b ars.nls M oy
+ HhR o A(Xg/3,r(") = @276 1 © A (Xp/3.20 .))HLw([—R,R])
< [hlwree o, r2)) H( — %g/3,r(, HLoo( [—R,R])
+ | - 25 ]Hm([—l,u)
<4481

We estimate the NN depth and size as

depth(®? 53, R,R]) < depth ((1)2767[_171]) + 1+ depth(A) 4+ 1 + depth (>~<ﬁ/3’3(-, ))
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<C(1+log(6/8)loglog(6/8)) +1+0+1+ C(1+1og(3R/B))
< C(1+log(1/B)loglog(1/B)),

size((I)Z(/&[_R,R]) < 2size (@576’[_1 1 ) + 4size(A) + 4size (>~<5/37R(.’ ))
<C(1+1log(6/8))* +8+ C(1+1log(3R/B))
<C(1+1log(1/8))?,

for C' independent of R, using that R < C(1 +log(1/8))"/2.
Based on (I)B/S —Rr,R W€ define the following ReLLU NN approximation of g on R:

Y (x) = X /32 (cpg/g’[_Rm (z), max{0, R — |z} — max{0,R — 1 — m}) .
This can be emulated exactly by the network
%5/3.20B0 (@%/3’[7&1%], o1(-+ R) oIdp,o1(- + R — 1) oIdg, 01 (R — 1 — -) o Idz, 5y (R — -) IdR> :

where B : R — R*: (wl,xg,x3,$4,a:5) — (21,22 — 23 — x4 + x5) and where the depth of the
identity networks is depth(®? 2, such that all components of the parallelization have
equal depth.

We estimate the NN depth and size as

B/3,[-R R])

depth(®%) < depth(Xg/s3,2) + 1 + depth(B) + 1 4 depth(® 53— r.R)
<C(1+10g(3/8)) +1+0+4 14 C(1 +log(1/3)loglog(1/3))

<01+ log(1/8) loglog(1/8)),
size(®%) <4size(Xg/32) + 4size(B) + 2 size(®F 51 g) +4size(o1(- + R)) + 4size(ldg)

+ 4size(o1(- + R — 1)) + 4size(Idg) + 4size(o1(R — 1 — ) + 4size(Idg)
+ 4size(o1 (R — -)) + 4 size(Idgr)

<C(1+1og(3/8)) + 20 +2(C(1 +log(1/8))?)
+4(12 4+ 8(C(1 + log(1/8) loglog(1/8))))

<CO(1+1log(1/8))%

On [0, R — 1] and [R — 1, R], respectively, it holds that

Hg—(I) HLoo([oR 1) = Hg s, RR]HLoc([OR 1))

+ H(I)ﬁ/s,[—R,R](’) — Xg/3,2 ( B/B,[—R,R](')’ 1) H
<B/3+B/3<B,
< Ilg() = (BR=")9()l < (r—1,m))

+ H(R —)g() — (B - ')q)%/:s,[—R,R](')H

L*([0,R—1])

-
Hg BllLoe ((R-1,R))
L~ ([R—1,R])

+ H ‘I)B/g [-R R]( ) >~<ﬁ/3,2(‘1’%/3,[_R,R](')a (R - ))H
<B/3+B/3+5/3=

Lo ([R—1,R))

On (R, 0), it holds that ®% = 0 and hence Hg o7 HL (o)) < /3 < 8. The same estimates
hold on (—o0, 0], which finishes the proof of the lemma. O
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Using [65, Lemma 3.5] instead of [62, Theorem 5.15] for the approximation of h, the bound

on the network size would be C(1 4 log(1/8))?[R] < C(1 + log(1/8))%/>.

Proof of Proposition 6.2. We apply [62, Theorem 6.7], for g and CD% as in the Lemma A.2 above.
With 3 :=¢/2, R = 1+,/2log(3/8) and D := {z € RN : ||7(2)||, < R}, we obtain ®{ satisfying

f— ‘I’£||Loo(D) <ellgllwrepy <6,
depth(®]) < C(1 + log(2/¢) loglog(2/¢)) + log(N)log, (10rNR(2/¢)) + 1
<Clog(N)(1+1og(N/e)) + C(1+1log(l/e)loglog(1/e)),
size(®) <2C(1 + log(2/e))? + 4N? + 64(N — 1) log, (10rNR(2/¢)) + 4N
<C(1 +log(1/e))* + CNlog(1/e) + CN?.

On RN\ D, it holds that <I>£ = 0, which follows from the fact that the network @% constructed
in Lemma A.2 vanishes on (R, c0). We recall from the proof of the lemma that R was defined
such that Hf — @g“Lm(RN\D) < ”gHL°°((foo,—R+1)u(R71,oo)) = (/3 = ¢/6. Combined with the

estimate above, it holds that Hf - <I>£HLOO(RN) <e. O
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