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Abstract

We consider the problem of phase retrieval from magnitudes of short-time Fourier transform
(STFT) measurements. It is well-known that signals are uniquely determined (up to global
phase) by their STFT magnitude when the underlying window has an ambiguity function that
is nowhere vanishing. It is less clear, however, what can be said in terms of unique phase-
retrievability when the ambiguity function of the underlying window vanishes on some of the
time-frequency plane. In this short note, we demonstrate that by considering signals in Paley–
Wiener spaces, it is possible to prove new uniqueness results for STFT phase retrieval. Among
those, we establish a first uniqueness theorem for STFT phase retrieval from magnitude-only

samples in a real-valued setting.

Keywords Phase retrieval, Short-time Fourier transform, Paley–Wiener space, Sampling theorem,
Entire functions.

1 Introduction

The problem of phase retrieval has been around since the very early days of X-ray crystallography [3,
17]. To date, its applications include coherent diffraction imaging, astronomy and audio processing.
The measurements in phase retrieval problems typically consist of phaseless Fourier-type data of
the object of interest. Acquisition of magnitude-only measurements means loss of information
that needs to be accounted for. One possible approach for phase retrieval is to collect redundant
measurements as is done in ptychography for coherent diffraction imaging [5, 12, 16]. There, the idea
is that instead of creating one set of measurements through diffraction, a sliding pinhole is added
and many masked diffraction patterns are collected. Hence, the measurements can be thought of
as magnitudes of windowed Fourier transforms. The same is true for measurements collected in
audio processing such as the phase vocoder [8, 15]. Indeed, suppose one wants to alter an audio
signal (for instance pitch-shift it). To do so, one can take its short-time Fourier transform (STFT),
redistribute the magnitudes thereof in the time-frequency plane and look for a matching audio signal
by performing phase retrieval. Motivated by these applications, we consider phaseless measurements
of short-time Fourier transforms in this note. More precisely, we analyse the question of unique phase
retrievability from STFT magnitudes when the underlying signal is bandlimited.

In general, rather little is known about the uniqueness of phase retrieval from STFT magnitude
measurements. A known result is that one may recover signals up to global phase from phaseless
STFT measurements when the ambiguity function of the underlying window function is nowhere
vanishing [9, 11] (see Lemma 1.2). Additionally, the complement property [1, 2, 4] is a necessary
condition for uniqueness. Finally, in the finite-dimensional setting, there is a plethora of results
for phase retrieval from discrete short-time Fourier magnitudes [6, 14]. The aim of this note is to
provide milder assumptions on the ambiguity function of the window that guarantee uniqueness of
STFT phase retrieval when the considered signal class is that of bandlimited functions.
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Let us start by summarising relevant prerequisites and fixing notations: For a function f ∈ L2(R),
we define the short-time Fourier transform (STFT) (with window function φ ∈ L2(R)) by

Vφf(x, ω) :=

∫

R

f(t)φ(t− x)e−2πitω dt, x, ω ∈ R.

It can be shown that Vφf is uniformly continuous [9]. We consider the phase retrieval problem of
recovering f from STFT magnitude measurements |Vφf |. Note that it is impossible to distinguish
between f and eiαf , for α ∈ R, from the STFT magnitude measurements alone. For this reason, we
aim to reconstruct f up to global phase. That is, we attempt to recover the equivalence class

[f ] :=
{

feiα
∣

∣α ∈ R
}

.

One of the most important properties of the phase retrieval problem with STFT measurements is
the ambiguity function relation. We use the convention

Ff(ξ) =

∫

R

f(t)e−2πitξ dt, ξ ∈ R,

for the Fourier transform on L1(R) and extend it to L2(R) by a density argument. In addition, we
can define the ambiguity function of a signal f ∈ L2(R) via

Af(x, ω) := eπixωVff(x, ω).

The ambiguity function relation can now be stated as follows:

Lemma 1.1 (Ambiguity function relation). Let f, φ ∈ L2(R). Then,

F
(

|Vφf |2
)

(ω,−x) = Af(x, ω) · Aφ(x, ω), x, ω ∈ R.

We included a proof of this well-known relation in appendix A, for the convenience of the reader.
One direct corollary of the ambiguity function relation is that if the ambiguity function of φ ∈ L2(R)
is nowhere vanishing, then one may recover the ambiguity function of f ∈ L2(R) everywhere from
the STFT magnitude measurements |Vφf |. Furthermore, f is uniquely determined up to global
phase by its ambiguity function. Combining these observations, one has (see e.g. [9, 11]):

Lemma 1.2. Let φ ∈ L2(R) be such that

Aφ(x, ω) 6= 0, for a.e. (x, ω) ∈ R
2.

Then, the following are equivalent for f, g ∈ L2(R):

1. f = eiαg, for some α ∈ R.

2. |Vφf | = |Vφg|.

Clearly, if φ ∈ L2(R) is such that Aφ is zero in some region of C, then, using the ambiguity function
relation, one cannot recover Af everywhere. In this note, we ask whether under some additional
assumptions, this scenario still enjoys unique phase recovery. In particular, we consider bandlimited
functions f . It turns out that in this setting it suffices to assume that Aφ does not vanish on certain
line segments in the time-frequency plane. More precisely, for B > 0 and p ∈ {1, 2}, we consider
the Paley–Wiener space of bandlimited functions defined as

PWp
B :=

{

f : C → C

∣

∣

∣

∣

∣

∃F ∈ Lp([−B,B]) ∀ z ∈ C : f(z) =

∫ B

−B

F (ξ)e2πiξz dξ

}

.

We record the following classical results on functions in the Paley–Wiener space that we will make
use of:

Theorem 1.3 (Paley–Wiener theorem). Let B > 0. Then, the following are equivalent:
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1. f ∈ PW2
B.

2. f is an entire function such that there exists a constant c > 0 for which

|f(z)| ≤ c e2πB|z|, z ∈ C,

and
∫

R

|f(t)|2 dt < ∞.

Theorem 1.4 (WSK sampling theorem). Let B > 0 and f ∈ PW2
B. Then, we have

f(t) =
∑

n∈Z

f
( n

2B

)

sinc (2Bt− n) , t ∈ R.

Theorem 1.5 (see Theorem 1 in [18], p. 723). Let p ∈ {1, 2}, let B > 0 and let f ∈ PWp
B be real-

valued on the real line. Then, f can be uniquely determined up to global sign from
{∣

∣f( n
4B )

∣

∣

∣

∣n ∈ Z
}

.

Another property of bandlimited functions that we will employ is that their ambiguity function is
compactly supported in frequency domain.

Lemma 1.6. Let B > 0 and f ∈ PW2
B. Then, Af is uniformly continuous and suppAf ⊂

R× (−2B, 2B).

Proof. See appendix B.

Therefore, we can consider φ ∈ L2(R) such thatAφ does not vanish on R×(−2B, 2B) and reconstruct
all f ∈ PW2

B up to global phase from the STFT magnitude measurements |Vφf |. In what follows,
we will show that, in fact, the STFT phase retrieval problem is uniquely solvable for signals in PW2

B

under weaker assumptions on Aφ. We remark that our uniqueness results are mainly of theoretical
interest and do not suggest a method for stable phase recovery.

Outline This paper is divided into two main parts. First, in Section 2, we consider signals in the
Paley–Wiener space which are real-valued on the real line and develop two uniqueness results for
this case: In particular, we show that if the ambiguity function of the window is non-zero almost
everywhere on a certain line segment in the time-frequency plane, then all bandlimited signals are
uniquely determined by their STFT magnitudes (Subsection 2.1). In addition, we show that if the
Fourier transform of the window is non-zero almost everywhere on an open interval around the
origin and if the window is real-valued itself, then all bandlimited signals are uniquely determined
by samples of their STFT magnitudes (Subsection 2.2). Secondly, in Section 3, we consider general
signals in the Paley–Wiener space and develop two uniqueness results in this setting. More precisely,
we show that if the ambiguity function of the window is non-zero almost everywhere on two parallel
line segments in the time-frequency plane that are sufficiently close together, then uniqueness of
phase retrieval from STFT magnitudes holds for all signals in PW2

B (Subsection 3.1). In addition,
we show that if the ambiguity function of the window does not vanish on a single line segment
in the time-frequency plane, then all bandlimited signals are uniquely determined by their STFT
magnitudes (Subsection 3.2). In Section 4, we discuss our results for some examples of window
classes.

2 Real-valued signals

2.1 Reconstruction from full measurements

If f ∈ PW2
B , for some B > 0, and the window φ ∈ L2(R) is such that Aφ(0, ω) 6= 0, for

ω ∈ (−2B, 2B), then one can use the Ambiguity Function Relation to obtain Af(0, ·) everywhere.
Therefore, one can recover |f | on the real line via Fourier inversion. If f is real-valued on the real
line, this is enough to recover f everywhere up to global phase [18] (see Theorem 1.5). The last
insight is particularly important such that we state it as a lemma.
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Lemma 2.1. Let B > 0 and f ∈ PW2
B be real-valued on the real line. Then, f is uniquely

determined by {|f(t)| | t ∈ R} up to global sign.

Proof. This follows immediately from Theorem 1.5. Alternatively, one might consider the following
argument: Let us assume without loss of generality that f is non-trivial. By the Paley–Wiener
theorem (see Theorem 1.3), f is an entire function. The roots of a non-zero entire function are
isolated and therefore there must exist an interval I ⊂ R ⊂ C such that for all t ∈ I, f(t) 6= 0.
Therefore, |f | agrees with f up to global sign on I. In other words, |f | is the restriction of f or −f

to the interval I and thus analytically extending |f | from I to C yields f or −f .

Note that the same does not hold for general signals. Indeed, consider the following counterexample.

Example 2.2. Let B > 0, f(z) = sinc(Bz) and g(z) = sinc(Bz)eπiBz, for z ∈ C. One can readily
show that

f(z) =
1

B

∫ B

−B

χ[−B/2,B/2](ξ)e
2πiξz dξ, z ∈ C,

g(z) =
1

B

∫ B

−B

χ[0,B](ξ)e
2πiξz dξ, z ∈ C.

Therefore, we have f, g ∈ PW2
B. In addition,

|f(t)| = |sinc(Bt)| = |g(t)| , t ∈ R,

but f and g do not agree up to global phase.

Many more counterexamples may be constructed using Hadamard’s factorisation theorem and ideas
similar to the ones in [13]. We may now combine the lemma above with the ambiguity function
relation to derive the following theorem.

Theorem 2.3. Let B > 0 and φ ∈ L2(R) such that

Aφ(0, ω) 6= 0, for a.e. ω ∈ (−2B, 2B).

Then, the following are equivalent for f, g ∈ PW2
B real-valued on the real line:

1. f = ±g.

2. |Vφf | = |Vφg|.
Proof. First, note that if f = ±g, then it follows immediately that |Vφf | = |Vφg|. Secondly, suppose
that |Vφf | = |Vφg|. It follows from the ambiguity function relation that

Af(x, ω) · Aφ(x, ω) = Ag(x, ω) · Aφ(x, ω), x, ω ∈ R.

Hence, by the assumption on the ambiguity function of the window, Af(0, ω) = Ag(0, ω), for
a.e. ω ∈ (−2B, 2B). By the Paley–Wiener theorem, f and g are square integrable and thus Af and
Ag are (uniformly) continuous. Therefore, Af(0, ω) = Ag(0, ω), for all ω ∈ (−2B, 2B). We know
from Lemma 1.6 that suppAf, suppAg ⊂ R×(−2B, 2B) and consequently, that Af(0, ·) = Ag(0, ·).
Since

Af(0, ·) = F
(

|f |2
)

, Ag(0, ·) = F
(

|g|2
)

,

we have |f | = |g|. Applying Lemma 2.1 yields the assertion.

Remark 2.4. Using basic Fourier-analytic results, one can show a statement which is similar to
Theorem 2.3 for compactly supported, even, real-valued functions:

Let B > 0 and φ ∈ L2(R) such that

Aφ(x, 0) 6= 0, for a.e. x ∈ (−2B, 2B).

Then, the following are equivalent for f, g ∈ L2([−B,B]) even and real-valued:

1. f = ±g.

2. |Vφf | = |Vφg|.
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2.2 Reconstruction from sampled STFT measurements

So far, we have not used the sampling theorem in [18] for the reconstruction from samples of the
STFT magnitudes. Let us consider the same setup as before and ask whether the phase is uniquely
determined by sampled data. To the best of our knowledge, the following is the first uniqueness
result for phase retrieval from sampled STFT magnitude measurements.

Theorem 2.5. Let B > 0 and let φ ∈ L2(R) be a real-valued window such that

(Fφ) (ξ) 6= 0, for a.e. ξ ∈ (−B,B).

Then, the following are equivalent for f, g ∈ PW2
B real-valued on the real line:

1. f = ±g.

2.
∣

∣Vφf
(

n
4B , 0

)
∣

∣ =
∣

∣Vφg
(

n
4B , 0

)
∣

∣, for all n ∈ Z.

Proof. First, note that if f = ±g, then it follows immediately that
∣

∣

∣
Vφf

( n

4B
, 0
)∣

∣

∣
=

∣

∣

∣
Vφg

( n

4B
, 0
)∣

∣

∣
, n ∈ Z.

Secondly, assume that the above equation holds. Let us define φ#(t) := φ(−t), for t ∈ R (this
simplifies to φ#(t) := φ(−t) because φ is real-valued). Note that

Vφf(x, 0) =

∫

R

f(t)φ(t− x) dt =
(

f ∗ φ#
)

(x), x ∈ R,

and hence
∣

∣

∣

(

f ∗ φ#
)

( n

4B

)
∣

∣

∣
=

∣

∣

∣

(

g ∗ φ#
)

( n

4B

)
∣

∣

∣
, n ∈ Z.

As f, g ∈ PW2
B , it follows from the convolution theorem that f ∗ φ# and g ∗ φ# extend to functions

in PW1
B . Indeed, as f ∈ PW2

B , there exists F ′ ∈ L2([−B,B]) such that

f(z) =

∫ B

−B

F ′(ξ)e2πiξz dξ, z ∈ C.

Now, consider F = F ′Fφ ∈ L1([−B,B]). Then, by the convolution theorem,

(f ∗ φ#)(t) =

∫ B

−B

F (ξ)e2πiξt dξ, t ∈ R.

Therefore, the analytic extensions of f ∗ φ# and g ∗ φ# belong to PW1
B . In addition, f ∗ φ# and

g ∗φ# are real-valued such that it follows from Theorem 1.5 that f ∗φ# = ±(g ∗φ#). Consequently,
we have

F
(

f ∗ φ#
)

= ±F
(

g ∗ φ#
)

.

By the assumption on the Fourier transform of the window, it follows that Ff = ±Fg and hence,
f = ±g.

Remark 2.6. We observe the following:

1. The sampling rate only depends on the bandwidth of the signals and is exactly twice the Nyquist
rate.

2. For the Gaussian φ(t) := e−πt2 , t ∈ R, we can readily see that Fφ is non-zero everywhere. In
addition, the Gaussian is real-valued such that the theorem above implies that all bandlimited
signals are uniquely determined by samples of their STFT magnitudes with Gaussian window
(also called Gabor transform magnitudes).

3. We use the uniform sampling sequence X = { n
4B }n∈Z ⊂ R, for convenience of notation. In

fact, our result still holds if one replaces X = { n
4B }n∈Z by any separated, uniformly dense

sampling sequence with density lower bounded by 4B [18].

4. While the STFT is complex-valued, we employ only real-valued information on one line of the
time-frequency plane. On this line, sign retrieval suffices for the uniqueness result to hold.
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3 Complex-valued signals

3.1 Using the ambiguity function on two line segments

We have seen that for complex-valued f ∈ PW2
B , it is not true that f is uniquely determined up

to global phase by {|f(t)| | t ∈ R}. Therefore, we need to change our strategy to deduce a general
uniqueness result. One can, for instance, impose slightly stronger assumptions on the ambiguity
function of the window to show that in this case one may recover f uniquely up to global phase
from |Vφf |.

Theorem 3.1. Let B > 0, c ∈ (0, 1
2B ] and φ ∈ L2(R) such that

Aφ(0, ω) 6= 0 and Aφ(c, ω) 6= 0,

for a.e. ω ∈ (−2B, 2B). Then, the following are equivalent for f, g ∈ PW2
B:

1. f = eiαg, for some α ∈ R.

2. |Vφf | = |Vφg|.

Proof. First, note that if f = eiαg, for some α ∈ R, then it follows immediately that |Vφf | = |Vφg|.
Secondly, suppose that |Vφf | = |Vφg|. Let us also assume without loss of generality that f and g are
non-zero. As in the proof of Theorem 2.3, we find that Af(0, ·) = Ag(0, ·) and Af(c, ·) = Ag(c, ·).
Therefore, |f | = |g| on R and

f(t)f(t− c) = g(t)g(t− c), t ∈ R.

By the Paley–Wiener theorem, f and g are entire functions. Therefore, we know that f and g have
a countable number of roots (as their roots are isolated). In particular, there exists some t0 ∈ R

such that for all n ∈ Z, we have

f(t0 + nc) 6= 0 and g(t0 + nc) 6= 0.

Now, let us set α ∈ (−π, π] to be such that

f(t0) = eiαg(t0).

Then, we can use the relation

f(t)f(t− c) = g(t)g(t− c), t ∈ R,

to recursively find that
f(t0 + nc) = eiαg(t0 + nc), n ∈ Z.

Finally, since f, g ∈ PW2
B and c ≤ 1

2B , it follows that f(t0 + ·), g(t0 + ·) ∈ PW2
1

2c

. Therefore, we

deduce from the WSK sampling theorem (see Theorem 1.4) that

f(t0 + t) =
∑

n∈Z

f(t0 + nc) sinc

(

t

c
− n

)

=
∑

n∈Z

eiαg(t0 + nc) sinc

(

t

c
− n

)

= eiαg(t0 + t),

for all t ∈ R. Hence, we conclude that f = eiαg.

Remark 3.2. We can apply basic Fourier analysis to develop a result similar to Theorem 3.1 for
compactly supported functions:

Let B > 0, c ∈ (0, 1
2B ] and φ ∈ L2(R) such that

Aφ(x, 0) 6= 0 and Aφ(x, c) 6= 0,

for a.e. x ∈ (−2B, 2B). Then, the following are equivalent for f, g ∈ L2([−B,B]):

1. f = eiαg, for some α ∈ R.
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2. |Vφf | = |Vφg|.

We note that the requirement c ≤ 1
2B is linked to the use of the WSK sampling theorem in the

proof of the above result. The following example shows that it is necessary in order for f ∈ PW2
B

to be uniquely determined up to global phase by |f(t)| and f(t)f(t− c), for t ∈ R.

Example 3.3. Let ǫ, B > 0 and c = 1
2B−ǫ > 1

2B . Consider f(z) = sinc(ǫz)eπi(2B−ǫ)z as well as

g(z) = sinc(ǫz)e−πi(2B−ǫ)z, for z ∈ C. Then, it is readily seen that

f(z) =
1

ǫ

∫ B

−B

χ[B−ǫ,B](ξ)e
2πiξz dξ, z ∈ C,

as well as

g(z) =
1

ǫ

∫ B

−B

χ[−B,−B+ǫ](ξ)e
2πiξz dξ, z ∈ C.

Therefore, we have f, g ∈ PW2
B. In addition,

|f(t)| = |sinc(ǫt)| = |g(t)| ,

as well as

f(t)f(t− c) = sinc(ǫt) sinc(ǫ(t− c))eπi(2B−ǫ)c = − sinc(ǫt) sinc(ǫ(t− c)),

= sinc(ǫt) sinc(ǫ(t− c))e−πi(2B−ǫ)c = g(t)g(t− c),

hold, for t ∈ R. However, f and g do not agree up to global phase.

Many more examples may be constructed using Hadamard’s factorisation theorem and ideas similar
to the ones in [13].

3.2 Using the ambiguity function on a single line segment

We can approach the reconstruction of general bandlimited functions from their STFT magnitude
measurements from a slightly different angle and obtain another uniqueness result. The following
statement is neither stronger nor weaker than Theorem 3.1: Indeed, it has the advantage that one
only needs to assume that the ambiguity function of the window does not vanish on a single line
segment while having the disadvantage that one has to make this assumption pointwise and not in
an L2-sense.

Theorem 3.4. Let B > 0 and φ ∈ L2(R) be such that

Aφ(0, ω) 6= 0, ω ∈ [−2B, 2B].

Then, the following are equivalent for f, g ∈ PW2
B:

1. f = eiαg, for some α ∈ R.

2. |Vφf | = |Vφg|.

Proof. First, note that if f = eiαg, for some α ∈ R, then it follows immediately that |Vφf | = |Vφg|.
Secondly, suppose that |Vφf | = |Vφg| and assume without loss of generality that f and g are non-
zero. Note that Aφ is continuous such that |Aφ| is continuous and by assumption |Aφ(0, ω)| > 0,
for ω ∈ [−2B, 2B]. By the extreme value theorem, there exists a positive constant ∆ > 0 such that
|Aφ(0, ω)| ≥ ∆, for ω ∈ [−2B, 2B]. As |Aφ| is uniformly continuous, there exists a δ > 0 such that

|Aφ(x, ω)| > ∆
2 , (x, ω) ∈ (−δ, δ)× [−2B, 2B].

In particular, it follows that

Aφ(x, ω) 6= 0, (x, ω) ∈ (−δ, δ)× [−2B, 2B].
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Lemma 1.1 further implies

Af(x, ω) = Ag(x, ω), (x, ω) ∈ (−δ, δ)× [−2B, 2B].

Hence, by employing Lemma 1.6, we deduce that Af(x, ω) = Ag(x, ω), for (x, ω) ∈ (−δ, δ)×R. By
Fourier inversion, we have

f(t)f(t− c) = g(t)g(t− c), t ∈ R,

for c ∈ (−δ, δ). As f and g are entire functions and assumed to be non-zero, there exists a t0 ∈ R

such that f(t0), g(t0) 6= 0. As |f(t0)| = |g(t0)|, it follows that there exists an α ∈ R such that
f(t0) = eiαg(t0). This implies that f(t) = eiαg(t) for all t ∈ (t0 − δ, t0 + δ). As f and g are entire,
we conclude that f = eiαg.

Remark 3.5. As before, we can make a similar statement as the above for compactly supported
functions:

Let B > 0 and φ ∈ L2(R) be such that

Aφ(x, 0) 6= 0, x ∈ [−2B, 2B].

Then, the following are equivalent for f, g ∈ L2([−B,B]):

1. f = eiαg, for some α ∈ R.

2. |Vφf | = |Vφg|.

4 Examples

In the following, we want to consider different windows and their ambiguity functions in order to
put the results which we have developed in context. We start by considering the most well-known
window in time-frequency analysis: The Gaussian window φ(t) := e−πt2 , for t ∈ R (see Figure 1).
For the Gaussian, one can show that

Aφ(x, ω) =
1√
2
e−

π

2 (x
2+ω2), x, ω ∈ R.

Therefore, Aφ is nowhere vanishing and all f ∈ L2(R) may be uniquely recovered up to global
phase from their STFT magnitude measurements |Vφf |. Note that this already follows from the
classical theory about uniqueness of STFT phase retrieval (Lemma 1.2). One could be tempted to
believe that the only windows for which the ambiguity functions are non-zero everywhere are the
generalised Gaussians eq, where q is a polynomial of degree two. This belief is wrong, however,
as was recently shown in [10], and one can in fact construct more functions φ ∈ L2(R) such that
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Figure 1: Picture of a discretisation of the Gaussian window and its ambiguity function.
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Figure 2: Picture of a discretisation of the Hermite function H1 and its ambiguity function.
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Figure 3: Picture of a discretisation of the Hermite function H7 and its ambiguity function.

Aφ 6= 0 everywhere. Finally, note that φ is real-valued and that the Fourier transform of φ is also a
Gaussian. In particular, Fφ vanishes nowhere and it follows from Theorem 2.5 that for all B > 0,
one can recover all f ∈ PW2

B that are real-valued on the real line up to global sign from the sampled
measurements

∣

∣Vφf(
n
4B , 0)

∣

∣, for n ∈ Z.

The next class of window functions we want to study is that of the Hermite functions. We define
the monomials

en(z) :=

√

πn

n!
zn, z ∈ C,

for n ∈ Z≥0. One can show that these monomials form an orthonormal basis of the Fock space
F2(C) [9]. The pre-images of these monomials under the Bargmann transform B : L2(R) → F2(C)
are called Hermite functions and we write Hn := B−1en, for n ∈ Z≥0. The ambiguity function of
the Hermite functions can be expressed in terms of the Laguerre polynomials

L
(j)
k (t) :=

k
∑

m=0

(k + j)!

(k −m)!(j +m)!

(−t)m

m!
, t ∈ R,

where k, j ∈ Z≥0 [7]. In particular, we have for all x, ω ∈ R and z = x+ iω that (see Figure 2 and
Figure 3 for an illustration):

AHn(x, ω) = e−
π

2
|z|2L(0)

n (π |z|2) = e−
π

2
|z|2

n
∑

m=0

(

n

m

)

(−π)m |z|2m
m!

.
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Figure 4: Picture of a discretisation of the rectangular window and its ambiguity function.
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Figure 5: Picture of a discretisation of the Hanning window and its ambiguity function.

Therefore, the set of roots of AHn consists of concentric rings around the origin of the time-frequency
plane. The radius of these rings is determined by the positive roots of the n-th Laguerre polynomial

L
(0)
n . In particular, AHn is non-zero almost everywhere and it follows from Lemma 1.2 that all

f ∈ L2(R) are uniquely determined up to global phase by their STFT measurements. As for the
Gaussian case, uniqueness of STFT phase retrieval already follows from the ambiguity function
relation. Note that the Fourier transform of the Hermite function Hn is (−i)nHn [9]. In addition,

one can show that hn(t) := eπt
2

Hn(t), t ∈ R, is a polynomial of degree n [7]. It follows that FHn

has only finitely many roots and thus FHn is non-zero almost everywhere. In addition, as Hn is
real-valued, it follows from Theorem 2.5 that for all B > 0, it holds that all f ∈ PW2

B that are
real-valued on the real line can be recovered up to global sign from the sampled measurements
∣

∣VHn
f( n

4B , 0)
∣

∣, for n ∈ Z.

The third class of window functions, we consider is that of compactly supported window functions.
This class includes all windows commonly used in practice. Consider for instance the rectangular
window

φ(t) =

{

1 if t ∈ [−1, 1],

0 else,

or the Hanning window φ := cos2 χ[−π/2,π/2]. If φ ∈ L2(R) is compactly supported, then for any
fixed x ∈ R, the function ω 7→ Aφ(x, ω) is bandlimited. In particular, ω 7→ Aφ(x, ω) extends to
an analytic function on the complex plane. Therefore, z 7→ Aφ(x, z) is either zero or has merely
isolated zeroes on the real line. Hence, we can conclude that for all x ∈ R such that ω 7→ Aφ(x, ω)
is not the trivial map, it holds that

10



Aφ(x, ω) 6= 0, for a.e. ω ∈ R.

For a depiction of the ambiguity functions of the rectangular and Hanning windows see Figure 4
and Figure 5, respectively. As Aφ(0, ω) = F(|φ|2)(ω), it follows that Aφ(0, ω) 6= 0 for a.e. ω ∈ R,
as long as φ is not the trivial window. Therefore, Theorem 2.3 implies that for all B > 0, it holds
that all f ∈ PW2

B which are real-valued on the real line are uniquely determined up to global sign
by their STFT measurements. We can say more, however. If φ is not the trivial window, then
Aφ(0, 0) = ‖φ‖2 > 0. As Aφ is continuous, it follows that for all x > 0 which are small enough,
Aφ(x, 0) > 0. Therefore, Aφ(x, ω) 6= 0 for almost every ω ∈ R. By Theorem 3.1, we find that for
all B > 0, it holds that all f ∈ PW2

B are uniquely determined up to global phase by their STFT
magnitudes.
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A The ambiguity function relation

Proof of the ambiguity function relation. Using the family {fx ∈ L1(R) |x ∈ R} given by

fx(t) = f(t)φ(t− x), t ∈ R,

for x ∈ R, allows us to write

Vφf(x, ω) = Ffx(ω), x, ω ∈ R.

In addition, we can readily see that

Ffx(ω) = Ff#
x (ω), x, ω ∈ R,

where f#
x (t) = fx(−t), for t, x ∈ R. Let x ∈ R be fixed but arbitrary. As fx ∈ L1(R), it follows

from the convolution theorem that

|Vφf(x, ω)|2 = Vφf(x, ω)Vφf(x, ω) = F
(

fx ∗ f#
x

)

(ω), ω ∈ R.

As Vφf ∈ L2(R2) (by the orthogonality relations of the STFT [9]), it follows that the STFT
magnitude measurements squared are in L1 and thus the Fourier inversion theorem implies that

F
(

|Vφf(x, ·)|2
)

(−x′) =
(

fx ∗ f#
x

)

(x′) =

∫

R

f(t)f(t− x′)φ(t− x)φ(t− x− x′) dt,

for −x′ ∈ R. Finally, we can see the above as a function in x ∈ R and note that
∫

R

∣

∣

∣

∣

∫

R

f(t)f(t− x′)φ(t− x)φ(t− x− x′) dt

∣

∣

∣

∣

dx ≤
∫

R

∫

R

|f(t)f(t− x′)φ(t− x)φ(t− x− x′)| dt dx

=

∫

R

|f(t)f(t− x′)|
∫

R

|φ(t− x)φ(t− x− x′)| dx dt

=

∫

R

|f(t)f(t− x′)|
∫

R

|φ(x)φ(x− x′)| dx dt

≤ ‖f‖22 ‖φ‖
2
2 < ∞,

for x′ ∈ R, by the triangle inequality, Tonelli’s theorem, a change of variables and Cauchy–Schwarz.
Therefore, we may take the Fourier transform in x and obtain

F
(

|Vφf |2
)

(ω′,−x′) =

∫

R

∫

R

f(t)f(t− x′)φ(t− x)φ(t− x− x′)e−2πixω′

dt dx

=

∫

R

f(t)f(t− x′)e−2πitω′

∫

R

φ(t− x)φ(t− x− x′)e2πi(t−x)ω′

dx dt

= Vff(x
′, ω′)Vφφ(x′, ω′),

for x′, ω′ ∈ R, by Fubini’s theorem and a change of variables. Finally, note that all the equalities in
this proof are actual equalities as all functions that we compare are continuous functions by virtue
of them being Fourier transforms of L1 functions.
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B The ambiguity function of a Paley–Wiener function

Proof of Lemma 1.6. It follows from Plancherel’s theorem that the restriction of f to the real line
is in L2(R). Therefore, Af(x, ω) = eπixωVff(x, ω) is uniformly continuous [9]. Now, define fx(t) :=

f(t− x), for t, x ∈ R, and let x ∈ R be arbitrary but fixed. We compute

e−πixωAf(x, ω) =

∫

R

f(t)f(t− x)e−2πitω dt = F (f · fx) (ω) = (Ff ∗ Ffx) (ω),

using the convolution theorem. Furthermore, we find that

Ffx(ω) =

∫

R

f(t− x)e−2πitω dt = e−2πixω

∫

R

f(t)e2πit(−ω) dt = e−2πixωFf(−ω)

= e−2πixωFf(−ω).

Therefore, we have

e−πixωAf(x, ω) =

∫

R

Ff(ξ)Ffx(ω − ξ) dξ =

∫ B

−B

Ff(ξ)Ff(ξ − ω)e−2πix(ω−ξ) dξ.

If ω ∈ R is such that |ω| ≥ 2B, then we can readily see that ξ − ω 6∈ [−B,B], for ξ ∈ (−B,B). It
follows that Af(x, ω) = 0.
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