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Abstract

Wave scattering structures with amplification and dissipation can be modelled by non-Hermitian
systems, opening new ways to control waves at small length scales. In this work, we study the
phenomenon of topologically protected edge states in acoustic systems with gain and loss. We
demonstrate that localized edge modes appear in a periodic structure of subwavelength resonators
with a defect in the gain/loss distribution, and explicitly compute the corresponding frequency and
decay length. Similarly to the Hermitian case, these edge modes can be attributed to the winding
of the eigenmodes. In the non-Hermitian case, the topological invariants fail to be quantized, but
can nevertheless predict the existence of localized edge modes.
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1 Introduction

In classical wave systems, sources of amplification and dissipation can be modelled by non-real material
parameters. Consequently, the underlying system is non-Hermitian, meaning that the left and right
eigenmodes are distinct. This opens the possibility of exceptional points, which are parameter values
such that the left and right eigenmodes are orthogonal, or equivalently, such that the system is not
diagonalizable. Around such points, rich physical phenomena have been observed, including enhanced
sensing and unidirectional invisibility (see, for example, [11, 18] for overviews of physical properties
around exceptional points). A particular case of non-Hermitian systems are systems with parity-time
symmetry, or PT symmetry. The spectrum of a PT -symmetric system is conjugate-symmetric, and
is therefore either real (known as unbroken PT symmetry) or non-real and symmetric around the real
axis (known as broken PT symmetry).

In the study of topologically protected edge modes, eigenvalue degeneracies are lifted to open band
gaps. In the well-known Su-Schrieffer-Heeger model [24], a certain parameter choice corresponds to a
conical degeneracy known as a Dirac cone. As the parameter varies, the degeneracy can open into two
topologically distinct band gaps. In the Hermitian case, the topological properties of one-dimensional
insulators can be described by the Zak phase. This is a geometrical phase which describes the winding
of the eigenmodes as the wave vector is varying. The bulk-boundary correspondence states that, by
combining materials with different Zak phases, the total structure will support modes that are confined
to the interface between the two materials. These modes as known as edge modes [7–9].

In the non-Hermitian case, the exceptional point degeneracies can open into non-trivial band gaps
enabling topologically protected non-Hermitian edge modes. Initially, such modes were created by
adding gain and loss to structures which already in the Hermitian case support edge modes, which
enables selective enhancement of the edge modes [21, 22, 27]. Later, it was discovered that pure
non-Hermitian edge modes can be created, i.e., edge modes that originate purely from the gain/loss
distribution and cease to exist in the Hermitian limit [15, 25]. Moreover, non-Hermitian effects can be
introduced by having anisotropic couplings. This can give rise to the skin effect, where bulk modes
are localized to the edges of the structure, and has been used for efficient funnelling of waves [26].
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The two different origins of the edge modes have been explained by two different topological winding
numbers: the (non-Hermitian) Zak phase and the vorticity, where the latter describes the winding of
the complex eigenvalues [10, 14, 15, 17, 19, 20, 29].

Protected edge modes in non-Hermitian systems have typically been studied for tight-binding
Hamiltonians with chiral symmetry. This enables a natural generalization of the Zak phase which
is quantized [28]. In the case without chiral symmetry, a similar approach can be made, but results
in a continuously varying Zak phase [12]. Instead, the “total Zak phase” can be considered, i.e., the
sum of the Zak phases for each band, which is indeed quantized [12, 16]. In this work, however, we
demonstrate the existence of edge modes even in structures whose total Zak phase vanishes. Instead,
these modes can be attributed to a non-zero (individual) Zak phase, and the continuously varying Zak
phase can be interpreted as a “partial” band inversion. By combining two materials whose Zak phases
have opposite sign, edge modes appear along the interface.

Non-Hermitian material parameters provide a way to have protected edge modes in crystals where
the periodic geometry is intact, and a defect is placed in the parameters. Due to the quantized Zak
phase, this is not possible in the non-Hermitian case [2]. In this work, we study an array consisting
of dimers of subwavelength resonators, with periodic geometry and a general configuration of the bulk
modulus. We begin by studying the periodic case, and compute the vorticity and the Zak phase. We
then introduce a defect in the bulk modulus, and explicitly compute the frequency of localized modes
in the subwavelength regime. The modes created this way originate purely from the non-Hermitian
gain and loss. In addition, we demonstrate numerically the edge modes in a non-Hermitian analogue
of the system studied in [2], where edge modes exist even in the Hermitian case.

2 Problem statement and preliminaries

In this section, we define the structure under consideration, and discuss some preliminary theory needed
for the analysis.

2.1 Problem statement

L

D1 D2· · · · · ·

Y

Figure 1: Example of the array, drawn to illustrate the symmetry assumptions.

We first describe the geometry of the structure, depicted in Figure 1. We will consider a three-
dimensional geometry which is periodic in one dimension. Let Y = [−L/2, L/2]× R

2 be the unit cell,
with half-cells Y1 = [−L/2, 0]×R

2 and Y2 = [0, L/2]×R
2. For j = 1, 2, we assume that Yj contains a

resonator Dj such that ∂Dj is of Hölder class C1,s for some 0 < s < 1. We denote a pair of resonators,
a so-called dimer, by D = D1 ∪D2. We assume that the dimer is parity symmetric, that is,

PD = D, (2.1)

where P is the parity operator P : R3 → R
3,P(x) = −x.

The geometry under consideration is periodic in the direction specified by w := (1, 0, 0). We define
the translated resonators Dm

i , i = 1, 2,m ∈ Z, by Dm
i = Di + mLw and the translated dimers by
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Dm = Dm
1 ∪Dm

2 . The total crystal C is given by

C =
⋃

m∈Z

Dm.

As found in [3], any imaginary part of the densities inside the resonators will not affect the resonant
frequencies to leading order. Therefore, we assume that all the resonators have equal densities ρb ∈ R,
and are with different bulk modulus κmi ∈ C, where the imaginary part of κmi corresponds to the gain
or loss inside the resonator. We define the parameters

vmi =

 

κmi
ρb
, v =

…

κ

ρ
, δ =

ρb
ρ
, k =

ω

v
, kmi =

ω

vmi
.

We model acoustic wave propagation inside the structure by the Helmholtz problem







































∆u+ k2u = 0 in R
3 \ C,

∆u+ (kmi )2u = 0 in Dm
i ,

u|+ − u|− = 0 on ∂C,

δ
∂u

∂ν

∣

∣

∣

∣

+

− ∂u

∂ν

∣

∣

∣

∣

−
= 0 on ∂C,

u(x1, x2, x3) satisfies the outgoing radiation condition as
√

x22 + x23 → ∞.

(2.2)

In order to have resonant frequencies in the subwavelength regime, we will study the case of a high
contrast in the density, corresponding to

δ ≪ 1.

In the limit δ → 0, we say a frequency ω (or corresponding eigenmode) is subwavelength if ω scales as
O(δ1/2). ´

The geometry described by C is periodic, but due to the different values of κmi the differential
problem (2.2) is in general not periodic. In the following, we will study different realisations of (2.2).
In Section 3, we study the periodic case, i.e. when κmi does not depend on m. In Section 4, we study
a case when an “edge” is introduced, giving localized edge modes. For completeness, in Section 5 we
numerically demonstrate the edge modes in a system with a defect in the geometry.

2.2 Layer potential theory

We denote the (outgoing) Helmholtz Green’s functions by Gk, defined by

Gk(x, y) := − eik|x−y|

4π|x− y| , x, y ∈ R
3, x 6= y, k ∈ C.

Let D ∈ R
3 be a bounded, multiply connected domain with N simply connected components Di.

Further, suppose that there exists some 0 < s < 1 so that ∂Di is of Hölder class C1,s for each
i = 1, . . . , N .

We introduce the single layer potential Sk
D : L2(∂D) → H1

loc
(R3), defined by

Sk
D[φ](x) :=

∫

∂D

Gk(x, y)φ(y) dσ(y), x ∈ R
3.

Here, the space H1
loc

(R3) consists of functions that are square integrable and with a square integrable
weak first derivative, on every compact subset of R3. Taking the trace on ∂D, it is well-known that
S0
D : L2(∂D) → H1(∂D) is invertible.

We also define the Neumann-Poincaré operator Kk,∗
D : L2(∂D) → L2(∂D) by

Kk,∗
D [φ](x) :=

∫

∂D

∂

∂νx
Gk(x, y)φ(y) dσ(y), x ∈ ∂D,

where ∂/∂νx denotes the outward normal derivative at x ∈ ∂D.
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The following relations, often known as jump relations, describe the behaviour of Sk
D on the bound-

ary ∂D (see, for example, [4]):
Sk
D[φ]

∣

∣

+
= Sk

D[φ]
∣

∣

−, (2.3)

and
∂

∂ν
Sk
D[φ]

∣

∣

∣

±
=

Å

±1

2
I +Kk,∗

D

ã

[φ], (2.4)

where I is the identity operator and |± denote the limits from outside and inside D.

2.3 Floquet-Bloch theory and quasiperiodic layer potentials

A function f(x) ∈ L2(R) is said to be α-quasiperiodic if e−iαxf(x) is a periodic function of x. If
the periodicity is L > 0, the quasiperiodicity α is defined modulo 2π

L . Therefore, we define the first
Brillouin zone Y ∗ as the torus Y ∗ := R/ 2π

L Z ≃ (−π/L, π/L]. Given a function f ∈ L2(R), the Floquet
transform is defined as

F [f ](x, α) :=
∑

m∈Z

f(x−mL)eiαmL. (2.5)

F [f ] is always α-quasiperiodic in x and periodic in α. Let Y0 = [−L/2, L/2) be the one-dimensional
unit cell. The Floquet transform is an invertible map F : L2(R) → L2(Y0 × Y ∗). The inverse is given
by (see, for instance, [4, 13])

F−1[g](x) =
L

2π

∫

Y ∗

g(x, α) dα, x ∈ R.

We define the quasiperiodic Green’s function Gα,k(x, y) as the Floquet transform of Gk(x, y) along
the direction specified by w, i.e.,

Gα,k(x, y) := −
∑

m∈Z

eik|x−y−mLw|

4π|x− y −mLw|e
iαmL.

Analogously to Section 2.2, we define the quasiperiodic single layer potential Sα,k
D by

Sα,k
D [φ](x) :=

∫

∂D

Gα,k(x, y)φ(y) dσ(y), x ∈ R
3.

It is known that Sα,0
D : L2(∂D) → H1(∂D) is invertible if α 6= 0 [4], and for low frequencies we have

Sα,k
D = Sα,0

D +O(k2). (2.6)

Moreover, on the boundary ∂D, Sα,k
D satisfies the jump relations

Sα,k
D [φ]

∣

∣

+
= Sα,k

D [φ]
∣

∣

−, (2.7)

and
∂

∂ν
Sα,k
D [φ]

∣

∣

∣

±
=

Å

±1

2
I + (K−α,k

D )∗
ã

[φ], (2.8)

where (K−α,k
D )∗ is the quasiperiodic Neumann-Poincaré operator, given by

(K−α,k
D )∗[φ](x) :=

∫

∂D

∂

∂νx
Gα,k(x, y)φ(y) dσ(y).

Remark 2.1. To simplify the presentation, we have only defined the three-dimensional layer potentials
and will perform the analysis in three spatial dimensions. However, we can analogously define the two-
dimensional layer potentials [4]. Doing so, the analysis of Sections 3 and 4 directly extend to the
two-dimensional case, yielding the same conclusions.
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3 Periodic problem

In this section, we study the periodic problem, i.e. when

κm1 = κ1, κm2 = κ2,

for all m ∈ Z, for some bulk moduli κi ∈ C, i = 1, 2. We also assume that Re(κ1) = Re(κ2). Taking
the Floquet transform of (2.2), we have



























































∆uα + k2uα = 0 in Y \D,
∆uα + k2i u

α = 0 in Di,

uα|+ − uα|− = 0 on ∂D,

δ
∂uα

∂ν

∣

∣

∣

∣

+

− ∂uα

∂ν

∣

∣

∣

∣

−
= 0 on ∂D,

uα(x+mLw) = eiαmuα(x) for all m ∈ Z,

uα(x1, x2, x3) satisfies the α-quasiperiodic outgoing radiation condition

as
√

x22 + x23 → ∞,

(3.1)

where uα(x) = F [u](x, α). The frequencies ω in the spectrum of (3.1) are called quasiperiodic resonant
frequencies, and we say that the corresponding solution uα is a (right) Bloch eigenmode. Moreover, ω
will be in the spectrum of the system corresponding to

κm1 = κ1, κm2 = κ2,

and we say that the corresponding solution vα is a left Bloch eigenmode.
We will refer to the case κ1, κ2 ∈ R as the Hermitian case, and otherwise as the non-Hermitian

case. We emphasise, however, that (3.1) can be viewed as the spectral problem for an operator which,
even in the case κ1, κ2 ∈ R, is not self-adjoint (due to the radiation condition). The motivation for
this terminology is that we will be able, using the capacitance matrix formulation, to approximate the
continuous spectral problem with a discrete eigenvalue problem which is Hermitian precisely in the
case κ1, κ2 ∈ R.

3.1 Complex band structure

In the periodic case, the spectrum σ of (2.2) can be decomposed into band functions ωα
n , which are

functions of α ∈ Y ∗, n = 1, 2, ..., by taking the Floquet transform:

σ =
∞
⋃

n=1

⋃

α∈Y ∗

ωα
n .

Since the material parameters are complex, the band functions ωα
n will in general be complex. Never-

theless, we define band gaps and degeneracies analogously to the case of real band function. Following
[23], we say that a band ωα

n is separable if ωα
n 6= ωα

m for all m 6= n and all α ∈ Y ∗, and otherwise
degenerate. In this setting, a band gap is a connected component of C \ σ.

Similarly to the previous works [2, 3, 5], the band structure and the eigenmodes can be approximated
using a capacitance matrix formulation. Therefore, we let V α

j be the solution to



























∆V α
j = 0 in Y \D,

V α
j = δij on ∂Di,

V α
j (x+mLw) = eiαmV α

j (x) for all m ∈ Z,

V α
j (x1, x2, x3) = O

Å

1√
x2
2+x2

3

ã

as
√

x22 + x22 → ∞, uniformly in x1,

(3.2)

where δij is the Kronecker delta. We define the quasiperiodic capacitance coefficients Cα
ij , for i, j = 1, 2,

by

Cα
ij :=

∫

Y \D
∇V α

i · ∇V α
j dx, i, j = 1, 2, (3.3)
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and then introduce the weighted quasiperiodic capacitance matrix Cv,α as

Cv,α =
1

ρ

Ç

κ1C
α
11 κ1C

α
12

κ2C
α
21 κ2C

α
22

å

. (3.4)

Observe that κi/ρ = O(δ), so the eigenvalues of Cv,α scale as O(δ). The following theorem was proved
in [3].

Theorem 3.1. As δ → 0, the quasiperiodic resonant frequencies satisfy the asymptotic formula

ωα
i =

 

λαi
|D1|

+O(δ), i = 1, 2,

where |D1| is the volume of a single resonator. Here, λαi are the eigenvalues of the weighted quasiperi-
odic capacitance matrix Cv,α.

Observe that |D1| = |D2| due to the P-symmetry of the dimer D. The eigenvalues λαi of Cv,α are
given by

λαj =
1

ρ

(

Cα
11

κ1 + κ2
2

+ (−1)j

 

(κ1 − κ2
2

)2

(Cα
11)

2 + κ1κ2|Cα
12|2
)

.

For a degeneracy to occur for small δ, we need λα1 = λα2 at some α ∈ Y ∗. It is straightforward to verify
that this occurs precisely when κ1 = κ2 := κ and |κ| ≥ κ0 for some κ0 that depends on the geometry.
These parameter values, i.e. balanced and large enough gain/loss, were found in [3] to correspond to
an exceptional point. When the gain and loss are not balanced, i.e. κ1 6= κ2, this degeneracy is lifted
and the two bands are separable.

In the case when the first and second bands are separable, we define the vorticity, ν, as

ν =
1

2π

∫

Y ∗

∂

∂α
arg (ωα

2 − ωα
1 ) dα.

The vorticity is given by the winding number of ωα
2 − ωα

1 around the origin, as α varies across the
Brillouin zone Y ∗.

Proposition 3.2. The vorticity ν vanishes for all δ small enough.

Proof. We will begin by proving that ωα
j = ω−α

j for j = 1, 2. We assume that we have a nonzero

solution uα to (3.1) corresponding to ωα
j = ω. We set L2(∂D) = L2(∂D1) × L2(∂D2) and define Ŝω

D

and K̂ω,∗
D as

Ŝω
D :=

Ç

Sk1

D1
0

0 Sk2

D2

å

, K̂ω,∗
D :=

Ç

Kk1,∗
D1

0

0 Kk2,∗
D2

å

.

Using the single layer potentials, we can write uα as

uα(x) =

{

Ŝω
D[φin](x), x ∈ D,

Sα,k
D [φout](x) x ∈ Y \D,

where (φin, φout) ∈ L2(∂D) satisfies the integral equation

Aα(ω, δ)

Å

φin

φout

ã

=

Å

0
0

ã

, Aα(ω, δ) :=

(

Ŝω
D −Sα,k

D

− 1
2I + K̂ω,∗

D −δ
Ä

1
2I +K−α,k,∗

D

ä

)

.

Now, we define

ψin =
Ä

Ŝω
D

ä−1
PŜω

D[φin], ψout = φout,

where, as before, P denotes the parity operator. Since S0
Di

is invertible for i = 1, 2, and since ω scales

as O(
√
δ), ψin is well-defined for all δ small enough. Due to the P-symmetry of D, we have

S−α,k
D = PSα,k

D ,
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so it follows that

A−α(ω, δ)

Å

ψin

ψout

ã

=

Å

0
0

ã

.

Hence the function u−α, defined by

u−α(x) =

{

Ŝω
D[ψin](x), x ∈ D,

S−α,k
D [ψout](x) x ∈ Y \D,

is a solution to (3.1) at the quasiperiodicity −α, corresponding to the frequency ω = ω−α
j . From this,

we conclude that ωα
j = ω−α

j for j = 1, 2, which implies that the winding number of ωα
2 − ωα

1 vanishes
with respect to any point in the complex plane.

The skin effect is a phenomenon where the system is highly sensitive to boundary conditions, and
bulk modes can be localized. This has been linked to a non-zero vorticity, and Proposition 3.2 suggests
that the skin effect does not occur in the array of subwavelength resonators [20].

Figures 2 and 3 show the band structure in the cases of broken PT -symmetry and without PT -
symmetry, respectively. In light of Remark 2.1, we perform the computations in two spatial dimensions.
Here, and throughout this work, the simulations were performed on circular resonators with unit radius
and resonator separations d = 0.5 (within the unit cell) and d′ = 6 (between the unit cells). Moreover,
the parameter values κ = 7000, ρ = 7000 and ρb = 1 are used throughout. The computations were
performed using the multipole method as described in [5, 6].

As proven in Proposition 3.2, when α varies from −π/L to π/L, the frequencies ωα will initially
(for α ∈ [−π/L, 0]) trace a curve in C, and afterwards (for α ∈ [0, π/L]) retrace the same curve with
opposite orientation. Therefore, as illustrated in Figures 2 and 3, the vorticity vanishes.

(a) Band functions as function of the quasiperiod-
icity.

(b) Trace of the band functions in the complex
plane and defect frequency.

Figure 2: Band structure in the case of a periodic micro-structure with broken PT -symmetry. Moreover, the
frequencies of localized modes studied in Section 4 are shown in Figure 2b. Here, we use the parameter values
κ1 = 1 + 1.4i and κ2 = 1− 1.4i.

3.2 Non-Hermitian band inversion

In the case of real material parameters, it is well-known that band inversion can occur, i.e. that the
monopole/dipole nature of the eigenmodes are swapped as α varies across the Brillouin zone (this
has been demonstrated in the setting of subwavelength resonators in [2]). The band inversion is
characterised by the so-called Zak phase. In this section, we study a non-Hermitian generalization of
the Zak phase, and demonstrate how band inversion can occur in non-Hermitian systems.

Since Cv,α is non-Hermitian, the left and right eigenvectors do not coincide. For j = 1, 2, we let
uj =

(

uj,1
uj,2

)

and vj =
(

vj,1
vj,2

)

denote the eigenvectors of Cα,v and (Cα,v)
∗
, respectively.
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(a) Band functions as function of the quasiperiod-
icity.

(b) Trace of the band functions in the complex
plane and defect frequency.

Figure 3: Band structure in the case of a periodic micro-structure without PT -symmetry. Moreover, the
frequencies of localized modes studied in Section 4 are shown in Figure 3b. Here, we use κ1 = 1 + 1.2i, κ2 =

1− 1.6i

Lemma 3.3. A bi-orthogonal system of eigenvectors uj ,vj , for j = 1, 2, i.e., a system satisfying
〈vi,uj〉 = δij, is given by

uj =
1√
2

Ç

e−iφj

1

å

, vj =
1√
2

(

eiθ
(1)
j

eiθ
(2)
j

)

,

where the complex phases φj , θ
(1)
j , and θ

(2)
j are defined by

ei(θ
(1)
j

−θ
(2)
j

+φj) =
κ2Cα

12

κ1Cα
12

, ei(θ
(1)
j

−φj) + eiθ
(2)
j = 2,

e−iφj =
Cα

11(κ1 − κ2) + (−1)j
»

(κ1 − κ2)
2
(Cα

11)
2 + 4κ1κ2|Cα

12|2
2κ2Cα

12

.

We define the functions Sα
j by

Sα
j (x) :=







1√
|D1|

δij x ∈ Di, i = 1, 2,

1√
|D1|

V α
j (x) x ∈ Y \D.

These functions are the normalized extensions of V α
j (defined in (3.2)), in the sense that 〈Si, Sj〉 = δij .

Here, and in the remainder of this work, 〈·, ·〉 denotes the inner product in L2(D).
The following approximation result is a straightforward generalization of results from [2, 5].

Lemma 3.4. As δ → 0, we have the following approximation of the right and left Bloch eigenmodes:

uαj = uj,1S
α
1 + uj,2S

α
2 +O(δ1/2),

vαj = vj,1S
α
1 + vj,2S

α
2 +O(δ1/2).

We then define the (non-Hermitian) Zak phase, ϕzak
j , by [10]

ϕzak
j :=

i

2

∫

Y ∗

Å

〈

vαj ,
∂uαj
∂α

〉

+
〈

uαj ,
∂vαj
∂α

〉

ã

dα.

In the case κ1, κ2 ∈ R, this definition coincides with the definition used in [2]. In the sequel, we will
occasionally write ϕzak

j (κ1, κ2) to denote the Zak phase corresponding to the bulk modulus κ1 inside
D1 and κ2 inside D2.

A 2× 2 matrix A = A(α) is said to be chirally symmetric if A can be written

A(α) = f(α)I +B(α),
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for some real function f and some off-diagonal matrix B. In the case of the weighted quasiperiodic
capacitance matrix, we have Cα

11 = Cα
22 ∈ R [2], so Cv,α is chirally symmetric precisely in the case

κ1 = κ2 ∈ R. Non-Hermitian systems with chiral symmetry are known to have quantized Zak phases,
which is not the case without chiral symmetry [12, 16, 28].

Lemma 3.5. The Zak phase ϕzak
j , j = 1, 2, can be written as

ϕzak
j = −Im

Å∫

Y ∗

〈

vj ,
∂uj

∂α

〉

dα

ã

+O(δ).

Proof. Observe that
〈Sα

1 , S
α
1 〉 = 1, 〈Sα

2 , S
α
2 〉 = 1, 〈Sα

1 , S
α
2 〉 = 0,

and in D we have
∂

∂α
Sα
1 ≡ 0,

∂

∂α
Sα
2 ≡ 0,

for all α ∈ Y ∗. We then have

〈

vαj ,
∂uαj
∂α

〉

= vj,1
∂uj,1

∂α
+ vj,2

∂uj,2

∂α
+O(δ)

=
〈

vj ,
∂uj

∂α

〉

+O(δ).

Moreover, from the normalization 〈vαj , uαj 〉 = 1 we have

〈

uαj ,
∂vαj
∂α

〉

= −
〈

vαj ,
∂uαj
∂α

〉

.

Combining the above approximations, we have

〈

vαj ,
∂uαj
∂α

〉

+
〈

uαj ,
∂vαj
∂α

〉

= i Im

Å

〈

vj ,
∂uj

∂α

〉

ã

+O(δ).

Substituting this approximation into the definition of the Zak phase, we obtain the sought expression
for ϕzak

j as δ → 0.

For the next result, we will assume that the Hermitian counterpart of the structure is topologically
trivial. In other words, we assume

ϕzak
j (Re(κ1),Re(κ2)) = 0. (3.5)

As shown in [2], this can for example be achieved by having a dilute dimerized array, where the
resonator separation is smaller within the unit cell compared to between the cells.

Proposition 3.6. Assume that the structure satisfies (3.5) and that κ1, κ2 are chosen such that the
first two band functions are separable. Then we have

ϕzak
j (κ1, κ2) = −ϕzak

j (κ2, κ1) +O(δ) and ϕzak
j (κ1, κ2) = ϕzak

j (κ1, κ2) +O(δ).

In particular, if κ1 = κ2 = κ, we have ϕzak
j (κ, κ) = O(δ).

Proof. From Lemmas 3.3 and 3.5, it is straightforward to show that ϕzak
1 (κ1, κ2) = ϕzak

2 (κ2, κ1)+O(δ)
and that ϕzak

1 (κ1, κ2) = −ϕzak
2 (κ1, κ2) + O(δ). It is well-known that the “total Zak phase” ϕzak

tot :=
ϕzak
1 + ϕzak

2 can only attain discrete multiples of π [12]. Since ϕzak
tot is continuous for κ1, κ2 ∈ C, it

follows from (3.5) that ϕzak
tot = 0 for all κ1, κ2 ∈ C. Consequently, ϕzak

1 = −ϕzak
2 , and it follows that

ϕzak
j (κ1, κ2) = −ϕzak

j (κ2, κ1) +O(δ) and ϕzak
j (κ1, κ2) = ϕzak

j (κ1, κ2) +O(δ).

Remark 3.7. Proposition 3.6 provides intuition on how to create structures supporting edge modes.
In the Hermitian case, the bulk-boundary correspondence indicates that edge modes will exist when
joining two materials with distinct Zak phases. Unlike the Hermitian case, the non-Hermitian Zak
phase is not quantized. Proposition 3.6 shows that distinct Zak phases can, in general, also be achieved
by swapping κ1 and κ2 while keeping d fixed. Clearly, this is a purely non-Hermitian effect, which
disappears in the Hermitian limit as Im(κ1), Im(κ2) → 0.
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Remark 3.8. The total Zak phase ϕzak
tot is known to be quantized and, under assumption (3.5),

vanishes even for complex κ1, κ2. As we shall see, however, this quantized number fails to predict the
existence of edge modes. In the Hermitian case, a nonzero Zak phase is equivalent to an “inverted”
band structure. The fact that the Zak phase is quantized originates from the fact that the eigenmodes
are purely monopole and dipole modes at α = 0 and α = π/L. A non-integer value of the Zak phase
can be attributed to a “partial” band inversion, where the eigenmodes wind around some point in
the complex plane, and (due to non-Hermiticity) are expressed as (complex) linear combinations of
monopole and dipole modes. Swapping the values of κ1 and κ2 swaps the sign of ϕzak

j , corresponding
to a reverse winding.

Figures 4 and 5 demonstrate the non-Hermitian band inversion in the case of low and high gain/loss,
respectively. Here, the phase factor of the eigenmodes, e−iφj , is shown in the complex plane as α varies
across the Brillouin zone Y ∗. In the cases without PT -symmetry, i.e., κ1 6= κ2, the phase factor has
a nonzero winding around some point in the complex plane, measured by the Zak phase. Due to
non-Hermiticity, the phase factor does not vary between −1 and 1, resulting in a non-quantized Zak
phase.

In the case of unbroken PT -symmetry, the phase factor is confined to the unit circle and has zero
winding with respect to any point in C (Figure 4b). This corresponds to zero Zak phase. In the case
of broken PT -symmetry, the two bands are degenerate and the Zak phase is undefined. Nevertheless,
the phases are no longer confined to the unit circle, and show a similar behaviour to the cases without
PT -symmetry (Figure 5b).

(a) κ1 = 1 + 0.8i, κ2 = 1− 0.6i (b) κ1 = 1 + 0.7i, κ2 = 1− 0.7i (c) κ1 = 1 + 0.6i, κ2 = 1− 0.8i

Figure 4: Traces of the phase factor e−iφj of the eigenmodes in the complex plane, demonstrating the non-
Hermitian band inversion with low gain/loss (corresponding to unbroken PT symmetry in Figure 4b).

(a) κ1 = 1+ 1.38i, κ2 = 1− 1.42i (b) κ1 = 1 + 1.4i, κ2 = 1− 1.4i (c) κ1 = 1+ 1.42i, κ2 = 1− 1.38i

Figure 5: Traces of the phase factor e−iφj of the eigenmodes in the complex plane, demonstrating the non-
Hermitian band inversion high low gain/loss (corresponding to broken PT symmetry in Figure 5b).

4 Localized modes by material-parameter defects

In this section, we study edge-modes in active subwavelength metamaterials with a defect in the
gain/loss parameter but with periodic geometry.
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4.1 Preliminary lemma

We begin the analysis with a general lemma that describes the subwavelength eigenmodes of a sub-
wavelength resonator. We consider a single resonator Ω which is a connected domain Ω ∈ R

3 such that
∂Ω is of Hölder class C1,s for some 0 < s < 1. We denote the bulk modulus and density in Ω by κb,
ρb and assume there is a neighbourhood U ⊂ R

3, Ω ⊂ U with material parameters κ, ρ. We introduce
the parameters

vb =

…

κb
ρb
, v =

…

κ

ρ
, δ =

ρb
ρ
, k =

ω

v
, kb =

ω

vb
.

We study the solutions to the problem































∆u+ k2u = 0 in U \ Ω,
∆u+ k2bu = 0 in Ω,

u|+ − u|− = 0 on ∂Ω,

δ
∂u

∂ν

∣

∣

∣

∣

+

− ∂u

∂ν

∣

∣

∣

∣

−
= 0 on ∂Ω.

(4.1)

The following result shows a fundamental property of high-contrast subwavelength resonators. Intu-
itively, the idea is that as δ → 0, the limiting problem is a homogeneous Neumann problem inside
Ω.

Lemma 4.1. As δ → 0, any solution u to (4.1) with ω = O(
√
δ) satisfies

u(x) = uΩ
(

1 +O(δ)
)

, x ∈ Ω,

for some constant uΩ.

Proof. The solution u can be represented as

u(x) =

®

Skb

Ω [φin](x), x ∈ Ω,

H(x) + Sk
Ω[φ

out](x), x ∈ U \ Ω,

for some function H satisfying ∆H + k2H = 0 in U . Clearly, if u(x) is a solution, then cu(x) is also a
solution for any c ∈ C, so we can assume that

‖φin‖L2(∂v) = O(1), ‖φout‖L2(∂Ω) = O(1), ‖H‖H1(∂Ω) = O(1)

as δ → 0. From the boundary conditions, and using the jump relations (2.7) and (2.8), we have

Å

−1

2
I +Kkb,∗

Ω

ã

[φin] = O(δ).

It then follows that φin = ψ +O(δ) for some ψ ∈ ker
Ä

− 1
2I +K0,∗

Ω

ä

. It is well-known that S0
Ω[ψ](x) is

constant for x ∈ Ω [4]. Moreover, from the low-frequency expansion (2.6) we have

Skb

Ω [φin] = S0
Ω[ψ] +O(δ),

which proves the claim.

4.2 Localized modes

We will begin this section by deriving an asymptotic eigenvalue problem that characterises localized
modes in the structure defined in Section 2 with a general distribution of the bulk moduli. Then, we
will compute an asymptotic formula for resonant frequencies of localized modes, and corresponding
decay lengths, of the defect structure illustrated in Figure 6.

Assume that u is a simple localized eigenmode to (2.2) in the subwavelength regime, i.e., u cor-
responds to a simple eigenvalue ω which scales as O(δ1/2). Here, we refer to localization in the
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κ2 κ1

m = 1

κ1 κ2

m = 0

κ1 κ2

m = −1

· · · κ2 κ1

m = 2

· · ·

Figure 6: Illustration of the edge. The special case κ1 = κ2 corresponds to local PT symmetry. Legend:
bulk modulus κ1, bulk modulus κ2.

L2(R)-sense, i.e.
∫

R
|u(x1, x2, x3)|2 dx1 <∞ for all x2, x3. In addition, we assume that u is normalized

as
∫

R
|u(x1, 0, 0)|2 dx1 = 1. By Lemma 4.1, we have

u(x) = umi +O(δ), x ∈ Dm
i ,

for some constant values umi , i = 1, 2,m ∈ Z.
Since ω is subwavelength, we can write

ω = ω0 +O(δ), ω0 = βδ1/2, (4.2)

for some constant β. The first proposition holds for general values of κmi .

Proposition 4.2. Any localized solution u to (2.2), corresponding to a subwavelength frequency ω,
satisfies the equation

1

ρ

Ç

Cα
11 Cα

12

Cα
21 Cα

22

å

Ü
∑

m∈Z

um1 e
iαmL

∑

m∈Z

um2 e
iαmL

ê

= µ

á

∑

m∈Z

um1 e
iαmL

κm1
∑

m∈Z

um2 e
iαmL

κm2

ë

, µ = ω2
0 |D1|. (4.3)

Proof. Taking the Floquet transform, we find from (2.2) that



































































∆uα + k2uα = 0 in Y \D,

∆uα + ω2ρb
∑

m∈Z

eiαmL

κmi
u(x+mL) = 0 in Di,

uα|+ − uα|− = 0 on ∂D,

δ
∂uα

∂ν

∣

∣

∣

∣

+

− ∂uα

∂ν

∣

∣

∣

∣

−
= 0 on ∂D,

uα(x+mLw) = eiαmuα(x) for all m ∈ Z,

uα(x1, x2, x3) satisfies the α-quasiperiodic outgoing radiation condition

as
√

x22 + x23 → ∞,
(4.4)

where uα(x) = F [u](x, α). Moreover inside Di we have, from Lemma 4.1, that

uα(x) = uαi +O(δ), x ∈ Di, uαi =
∑

m∈Z

umi e
iαmL,

for some sequences umi ∈ ℓ2(C) for i = 1, 2. Observe, in particular, that uαi are constant in x. Following
the arguments in [3, Lemma 4.2], it then follows that

uα(x) = uα1V
α
1 (x) + uα2V

α
2 (x) +O(δ1/2), x ∈ Y \D.

On one hand, using the transmission conditions and integration by parts, we obtain

∫

∂Di

∂uα

∂ν

∣

∣

∣

∣

+

dσ =
1

δ

∫

∂Di

∂uα

∂ν

∣

∣

∣

∣

−
dσ = −ω

2ρb
δ

∫

Di

∑

m∈Z

eiαmL

κmi
uα(x)dx = −ω

2ρb|Di|
δ

∑

m∈Z

umi e
iαmL

κmi
+O(δ).
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On the other hand, we have
∫

∂Di

∂uα

∂ν

∣

∣

∣

∣

+

dσ = uα1

∫

∂Di

∂V α
1

∂ν
dσ + uα2

∫

∂Di

∂V α
2

∂ν
dσ +O(δ1/2) = −uα1Ci,1 − uα2Ci,2 +O(δ1/2).

Combining the above estimates, and using (4.2), proves the result.

Next, we will consider a structure with a defect as illustrated in Figure 6. For κ1, κ2 ∈ C, we set

κm1 =

®

κ1, m ≤ 0,

κ2, m > 0,
κm2 =

®

κ2, m ≤ 0,

κ1, m > 0.
(4.5)

Observe that under this assumption, the total structure is P-symmetric, and consists of two half-space
arrays as studied in Section 3. The intuition for studying this structure comes from Proposition 3.6:
in the general case, the Zak phases of the two periodic arrays, corresponding to the half-space arrays,
have opposite sign.

The special case κ1 = κ2 := κ corresponds to a micro-structure that is PT -symmetric, i.e. the unit
cells of the half-space arrays are PT -symmetric. As we shall see, the behaviour is different in the case
of unbroken PT symmetry (κ1 = κ2 with small Im(κ)) compared to the case of broken PT -symmetry
(κ1 = κ2 with large Im(κ)) or without PT symmetry (κ1 6= κ2). In the case of unbroken PT symmetry,
the Zak phase vanishes to leading order, and we shall see that there are no localized modes in this
case.

We define

U1 =
∑

m≤0

um1 e
iαmL, U2 =

∑

m>0

um1 e
iαmL, U3 =

∑

m≤0

um2 e
iαmL, U4 =

∑

m>0

um2 e
iαmL.

Lemma 4.3. We have
U1 = bU3, U4 = bU2,

for some b ∈ C, independent of α, satisfying |b| < 1.

Proof. Observe first that, due to the P-symmetry of the structure, we have U1 = bU3 and U4 = bU2

for some b = b(α) which might depend on α. b being constant in α is equivalent to

un1
un2

being independent of n for n ≤ 0. To prove this, we will apply the inverse Floquet transform to the
equation in Proposition 4.2. We first define

Cm
ij =

L

2π

∫

Y

Cα
ije

iαmL dα, m ∈ Z.

We then find from (4.3) that

1

ρ

∑

m∈Z

Cm−n
11 um1 + Cm−n

12 um2 =
µ

κm1
un1 ,

1

ρ

∑

m∈Z

Cm−n
21 um1 + Cm−n

22 um2 =
µ

κm2
un2 ,

for n ∈ Z. We define

Um =

Å

um1
um2

ã

, K =

Å

κ1 0
0 κ2

ã

, J =

Å

0 1
1 0

ã

, Cm =

Å

Cm
11 Cm

12

Cm
21 Cm

22

ã

,

and introduce the doubly infinite vectors and matrices

u =

á ...

U−1

U0

U1

U2

...

ë

, K =

Ü

. . .
...

...
...

... . .
.

··· K 0 0 0 ···
··· 0 K 0 0 ···
··· 0 0 JK 0 ···
··· 0 0 0 JK ···
. .

. ...
...

...
...

. . .

ê

, C =

á

. . .
...

...
...

... . .
.

··· C0 C1 C2 C3 ···
··· C−1 C0 C1 C2 ···
··· C−2 C−1 C0 C1 ···
··· C−3 C−2 C−1 C0 ···
. .

. ...
...

...
...

. . .

ë

.
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Observe that C is the Laurent operator whose symbol is the quasiperiodic capacitance matrix Cα.
Here, K and C are operators on ℓ22(C), which is defined as the space of square-summable sequences of
vectors in C

2. We then find that (ρµ, u) is an eigenpair solution to the spectral problem

KCu = ρµu.

Moreover, we see that ũ := ( ··· U−2 U−1 U2 U3 ··· )
T
, where the superscript T denotes the transpose, is

an eigenvector corresponding to the same eigenvalue ρµ. Since ρµ is a simple eigenvalue, it follows
that

ũ = au

for some a ∈ C. In other words, we have that un1/u
n
2 is constant for all n ≤ 0 and that b = un1/u

n
2 is

constant in α. Moreover, since u is square-summable, it follows that b < 1 which proves the claim.

The constant b can be interpreted as the decay of the localized mode between two resonators. Using
Lemma 4.3, we have

∑

m∈Z

um1 e
iαmL = U2 + bU3,

∑

m∈Z

um2 e
iαmL = bU2 + U3.

Moreover, using (4.5) we obtain

∑

m∈Z

um1 e
iαmL

κm1
=
U2

κ2
+
bU3

κ1
,

∑

m∈Z

um2 e
iαmL

κm2
=
bU2

κ1
+
U3

κ2
.

In total, (4.3) reads

1

ρ

Ç

Cα
11 Cα

12

Cα
21 Cα

22

åÇ

1 b

b 1

åÇ

U2

U3

å

= µ

Ö

1

κ2

b

κ1
b

κ1

1

κ2

è

Ç

U2

U3

å

,

or, by defining

A =

Ç

1 b

b 1

å

, B = ρ

Ö

1

κ2

b

κ1
b

κ1

1

κ2

è

, v =

Ç

U2

U3

å

,

we arrive at
B−1CαAv = µv.

We have therefore proven the following result.

Proposition 4.4. Assume the array of resonators has a topological defect specified by (4.5). Then
there is a localized mode in the subwavelength regime, corresponding to a simple eigenvalue frequency
ω, only if there is a µ ∈ C, independent of α, such that µ is an eigenvalue of B−1CαA for all α ∈ Y ∗.

The eigenvalues of B−1CαA are given by

µα
j (b) =

κ1κ2
ρ(b2κ22 − κ21)

(

Cα
11

(

b2κ2 − κ1
)

+ b (κ2 − κ1)Re(C
α
12)

+ (−1)j
√

(

Cα
11 (b

2κ2 − κ1) + b (κ2 − κ1)Re(Cα
12)
)2 − (b2 − 1)(b2κ22 − κ21)

(

(Cα
11)

2 − |Cα
12|2
)

)

.

Here, we choose a holomorphic branch of the square root around a neighbourhood of the curve f(α)
for α ∈ (−π/L, π/L], where

f(α) =
(

Cα
11

(

b2κ2 − κ1
)

+ b (κ2 − κ1)Re(C
α
12)
)2 − (b2 − 1)(b2κ22 − κ21)

(

(Cα
11)

2 − |Cα
12|2
)

.

We also define the curve g(α) as

g(α) =
(

Cα
12

(

b2κ2 − κ1
)

+ Cα
11b (κ2 − κ1)

)2
.
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At points α where Cα
12 is real, we have f(α) = g(α), and therefore µα

j = µα
±, where

µα
± =

κ1κ2(b± 1)

ρ(bκ2 ± κ1)
(Cα

11 ± Cα
12).

In particular, the above formula holds at α = 0 and at α = π/L. Here, the sign depends on the branch
of the square root. Since the capacitance coefficients Cα

ij depend on α, the eigenvalue µα
j can only

be constant in α if the points α = 0 and α = π/L correspond to opposite signs. In other words, the
concatenation γ of the curves defined by f and by g must have odd winding number around the origin,
resulting in a swap of branches.

At α = 0 we have C0
12 = −C0

11, and so

µ0
− = 2C0

11

κ1κ2(b− 1)

ρ(bκ2 − κ1)
, µ0

+ = 0.

Therefore, we always have µ0
+ 6= µ

π/L
− . The condition µ0

− = µ
π/L
+ is equivalent to

λ2
b− 1

bκ2 − κ1
= λ1

b+ 1

bκ2 + κ1
.

Here, λ2 = 2C0
11 and λ1 = C

π/L
11 +C

π/L
12 , which was proved in [1] to satisfy 0 < λ1 < λ2. From this we

find two possible values for b:

b± =
1

2

(

l

Å

1− κ1
κ2

ã

±
 

l2
Å

1− κ1
κ2

ã2

+
4κ1
κ2

)

, l =
λ2 + λ1
λ2 − λ1

. (4.6)

In the case when the micro-structure is PT -symmetric with unbroken PT -symmetry, i.e., if κ1 = κ2 :=
κ, with

|Im(κ)| ≤ Re(κ)√
l2 − 1

,

the two values of b have unit modulus: |b−| = |b+| = 1. In the case of broken PT -symmetry, i.e.,

|Im(κ)| > Re(κ)√
l2−1

, or in the case κ1 6= κ2, there will always be a value b0 with |b0| < 1 and a value b1
with |b1| > 1.

We have now proven the following main result.

Theorem 4.5. Assume the array of resonators has a defect in the material parameters specified by
(4.5). Then,

• if κ1 = κ2 := κ with |Im(κ)| ≤ Re(κ)√
l2−1

(unbroken PT -symmetry), the structure does not support

simple localized modes in the subwavelength regime.

• if κ1 = κ2 := κ with |Im(κ)| > Re(κ)√
l2−1

(broken PT -symmetry) or if κ1 6= κ2 (no PT -symmetry),

the frequency ω of a simple localized mode in the subwavelength regime must satisfy

ω =

 

µα
j (b0)

|D1|
+O(δ).

Here, b0 is the value of b specified by (4.6) satisfying |b0| < 1.

Remark 4.6. The second part of Theorem 4.5 describes the possible frequency ω and the decay length
b of simple localized modes in the subwavelength regime. However, we have not proved the existence
of such modes. To do this, the main remaining challenge is to prove that one eigenvalue µj(b0)
indeed is constant in α. Analytically, this is obscured by the fact that the capacitance coefficients
have a complicated dependency on α. Numerically, however, the eigenvalues µ are straight-forward to
compute (shown in Figure 9), showing one constant eigenvalue.
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4.3 Numerical illustrations

The resonant frequencies and corresponding eigenmodes were computed using the multipole method, in
the case of circular resonators. In Figures 2 and 3, the defect frequencies, computed as in Theorem 4.5,
are shown in the complex plane. The two points correspond to the two distinct defect structures that
can be made with given values of the bulk moduli. To verify the existence of the edge mode, the
resonant modes of a finite but large system were computed. Figure 7 shows the localized mode in
a truncated array with 48 resonators, with a topological defect as depicted in Figure 6. Figure 9
shows the eigenvalues of the matrix B−1CαA as functions of α, clearly illustrating that one eigenvalue
is constant. For comparison, Figure 8 shows the localized mode for small κ1, κ2, demonstrating a
significantly less localized mode. In both cases, the relative discrepancy eω of the frequencies computed
using Theorem 4.5 and using the multipole discretization is around eω ≈ 0.1%.

In the case of small gain and loss, the localized mode disappears in the limit of balanced gain and
loss, i.e. when Im(κ1) → Im(κ2). In this limit, the magnitude of b approaches unity and the rate of
decay of the localized mode approaches zero.

Figure 7: Plot of the localized mode in a finite but
large array of resonators, satisfying |b| ≈ 0.44 and with
relative error eω ≈ 0.11%. Here, we use κ1 = 1 +

1.38i, κ2 = 1− 1.42i.

Figure 8: Plot of the localized mode in a finite but
large array of resonators, satisfying |b| ≈ 0.88 and with
relative error eω ≈ 0.09%. Observe the different x-
axis scale compared to Figure 7. Here, we use κ1 =

1 + 0.8i, κ2 = 1− 0.6i.

Figure 9: Real and imaginary parts of the eigenvalues µ of B−1CαA, showing a flat band in α. Here, we use
κ1 = 1 + 1.38i, κ2 = 1− 1.42i.

5 Localized modes by geometrical defects

In this section, we study a structure, again, created by joining two half-structures with different Zak
phases. Here, in contrast to the structure studied in Section 4, the difference is achieved by introducing
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d′d′d d

ϕzak
j = 0 ϕzak

j = π

Figure 10: Two-dimensional cross-section of a finite dimer chain with 13 resonators, heuristically showing how
to identify unit cells with different Zak phases on either side of the edge. Legend: bulk modulus κ, bulk
modulus κ, bulk modulus κ0.

a geometrical defect, depicted in Figure 10. Similar structures have been extensively studied in the case
of tight-binding Hamiltonian systems (see, for example, [7–9]). It is worth emphasizing that the current
structure is a non-Hermitian generalization of the structure studied in [2]. Here, for completeness, we
will demonstrate numerically the edge modes in the non-Hermitian case.

5.1 Problem statement

We consider a dimerized array with a single, centre resonator. We let d > 0 and d′ > 0 be the resonator
separations and assume d < d′. Then we assume that the truncated array D can be written

D =

(

M
⋃

n=−M

D0 + n(d+ d′, 0, 0)

)

⋃

(

M
⋃

n=−M+1

D0 + n(d+ d′, 0, 0)− (d′, 0, 0)

)

, (5.1)

where D0 is the centre resonator. In other words, D consists of a single centre resonator surrounded
by pairs of resonators. Moreover, N = 4M + 1 is the number of resonators.

As before, we assume that all the resonators have the same density ρb ∈ R. Moreover, the bulk
moduli are given by κ, κ and κ0 where κ ∈ C and κ0 = Re(κ). We assume that the centre resonator
D0 has bulk modulus κ0, and that the remaining resonators have bulk moduli

κ in

®

D0 + n(d+ d′, 0, 0), n < 0,

D0 + n(d+ d′, 0, 0)− (d′, 0, 0), n ≥ 1,
and κ in

®

D0 + n(d+ d′, 0, 0), n > 0,

D0 + n(d+ d′, 0, 0)− (d′, 0, 0), n < 1.

This distribution is illustrated in Figure 10. We also assume that Im(κ) is chosen below the exceptional
point of the corresponding infinite structure, so that the Zak phase φzakj is well-defined.

5.2 Numerical illustrations

The resonant frequencies and eigenmodes of the finite array with a geometrical defect, composed of
49 resonators, was numerically computed using the multipole method as described in [2]. Figure 11
shows the localized mode, roughly demonstrating a similar degree of localization as in Figure 7.

6 Conclusions

In this work, we have demonstrated the existence of edge modes in an active system of subwavelength
resonators with a defect only in the material parameters. We have linked the continuously varying
Zak phase with partial band inversion, which provides a bulk-boundary correspondence for the non-
Hermitian system without chiral symmetry. Moreover, we have explicitly computed the frequency of
localized edge modes, and, in accordance to the bulk-boundary correspondence, proved that no edge
modes exist in the case of a micro-structure with unbroken PT -symmetry.

17



Figure 11: Plot of the localized mode in the structure with a geometrical defect, in a finite but large array of
resonators. Here, we use κ1 = 1− 0.5i and κ2 = 1 + 0.5i.

References

[1] H. Ammari, B. Davies, and E. O. Hiltunen. Robust edge modes in dislocated systems of subwave-
length resonators. arXiv preprint arXiv:2001.10455, 2020.

[2] H. Ammari, B. Davies, E. O. Hiltunen, and S. Yu. Topologically protected edge modes in one-
dimensional chains of subwavelength resonators. arXiv:1906.10688 (to appear in J. Math. Pure
Appl.), 2019.

[3] H. Ammari, B. Davies, H. Lee, E. O. Hiltunen, and S. Yu. Exceptional points in parity–time-
symmetric subwavelength metamaterials. arXiv preprint arXiv:2003.07796, 2020.

[4] H. Ammari, B. Fitzpatrick, H. Kang, M. Ruiz, S. Yu, and H. Zhang. Mathematical and Computa-
tional Methods in Photonics and Phononics, volume 235 of Mathematical Surveys and Monographs.
American Mathematical Society, Providence, 2018.

[5] H. Ammari, B. Fitzpatrick, H. Lee, E. O. Hiltunen, and S. Yu. Honeycomb-lattice minnaert
bubbles. arXiv preprint arXiv:1811.03905, 2018.

[6] H. Ammari, B. Fitzpatrick, H. Lee, S. Yu, and H. Zhang. Subwavelength phononic bandgap
opening in bubbly media. Journal of Differential Equations, 263(9):5610–5629, 2017.

[7] A. Drouot, C. L. Fefferman, and M. I. Weinstein. Defect states for dislocated periodic media.
arXiv:1810.05875 (To appear in Comm. Math. Physics), 2018.

[8] C. L. Fefferman, J. P. Lee-Thorp, and M. I. Weinstein. Topologically protected states in one-
dimensional continuous systems and dirac points. P. Nat. Acad. Sci. USA, 111(24):8759–8763,
2014.

[9] C. L. Fefferman, J. P. Lee-Thorp, and M. I. Weinstein. Topologically protected states in one-
dimensional systems. Mem. Amer. Math. Soc., 247(1173), 2017.

[10] A. Ghatak and T. Das. New topological invariants in non-hermitian systems. Journal of Physics:
Condensed Matter, 31(26):263001, apr 2019.

[11] W. Heiss. The physics of exceptional points. J. Phys. A: Math. Theor., 45(44):444016, 2012.

[12] H. Jiang, C. Yang, and S. Chen. Topological invariants and phase diagrams for one-dimensional
two-band non-hermitian systems without chiral symmetry. Phys. Rev. A, 98:052116, Nov 2018.

[13] P. Kuchment. Floquet Theory for Partial Differential Equations. Number 60 in Operator Theory:
Advances and Applications. Birkhäuser Verlag, Basel, 1993.

[14] L.-J. Lang, Y. Wang, H. Wang, and Y. D. Chong. Effects of non-hermiticity on su-schrieffer-heeger
defect states. Physical Review B, 98(9):094307, 2018.

18



[15] D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and F. Nori. Edge modes, degeneracies, and
topological numbers in non-hermitian systems. Physical review letters, 118(4):040401, 2017.

[16] S.-D. Liang and G.-Y. Huang. Topological invariance and global berry phase in non-hermitian
systems. Phys. Rev. A, 87:012118, Jan 2013.

[17] B. Midya, H. Zhao, and L. Feng. Non-hermitian photonics promises exceptional topology of light.
Nature communications, 9(1):1–4, 2018.

[18] M.-A. Miri and A. Alù. Exceptional points in optics and photonics. Science, 363(6422):eaar7709,
2019.

[19] X. Ni, D. Smirnova, A. Poddubny, D. Leykam, Y. Chong, and A. B. Khanikaev. Pt phase tran-
sitions of edge states at pt symmetric interfaces in non-hermitian topological insulators. Physical
Review B, 98(16):165129, 2018.

[20] N. Okuma, K. Kawabata, K. Shiozaki, and M. Sato. Topological origin of non-hermitian skin
effects. Phys. Rev. Lett., 124(086801), 2020.

[21] C. Poli, M. Bellec, U. Kuhl, F. Mortessagne, and H. Schomerus. Selective enhancement of topo-
logically induced interface states in a dielectric resonator chain. Nature communications, 6(1):1–5,
2015.

[22] H. Schomerus. Topologically protected midgap states in complex photonic lattices. Optics letters,
38(11):1912–1914, 2013.

[23] H. Shen, B. Zhen, and L. Fu. Topological band theory for non-hermitian hamiltonians. Phys.
Rev. Lett., 120:146402, Apr 2018.

[24] W. P. Su, J. R. Schrieffer, and A. J. Heeger. Solitons in polyacetylene. Phys. Rev. Lett., 42:1698–
1701, Jun 1979.

[25] K. Takata and M. Notomi. Photonic topological insulating phase induced solely by gain and loss.
Physical review letters, 121(21):213902, 2018.

[26] S. Weidemann, M. Kremer, T. Helbig, T. Hofmann, A. Stegmaier, M. Greiter, R. Thomale, and
A. Szameit. Topological funneling of light. Science, 2020.

[27] S. Weimann, M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte, K. G. Makris, M. Segev, M. C. Rechts-
man, and A. Szameit. Topologically protected bound states in photonic parity–time-symmetric
crystals. Nature materials, 16(4):433–438, 2017.

[28] C. Yin, H. Jiang, L. Li, R. Lü, and S. Chen. Geometrical meaning of winding number and its
characterization of topological phases in one-dimensional chiral non-hermitian systems. Phys. Rev.
A, 97:052115, May 2018.

[29] C. Yuce and Z. Oztas. Pt symmetry protected non-hermitian topological systems. Scientific
reports, 8(1):1–5, 2018.

19


	Introduction
	Problem statement and preliminaries
	Problem statement
	Layer potential theory
	Floquet-Bloch theory and quasiperiodic layer potentials

	Periodic problem
	Complex band structure
	Non-Hermitian band inversion

	Localized modes by material-parameter defects
	Preliminary lemma
	Localized modes
	Numerical illustrations

	Localized modes by geometrical defects
	Problem statement
	Numerical illustrations

	Conclusions

