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Abstract. Homogenization in terms of multiscale limits transforms a multiscale problem with
n + 1 asymptotically separated microscales posed on a physical domain D ⊂ Rd into a one-scale
problem posed on a product domain of dimension (n+1)d by introducing n so-called “fast variables”.
This procedure allows to convert n + 1 scales in d physical dimensions into a single-scale structure
in (n + 1)d dimensions. We prove here that both the original, physical multiscale problem and the
corresponding high-dimensional, one-scale limiting problem can be efficiently treated numerically
with the recently developed quantized tensor-train finite-element method (QTT-FEM).

The QTT-FE approximation consists in restricting approximation and computation to sequences
of nested subspaces, each of which is a tensor product of two factors of low dimension (rank), within
a vast, but generic “virtual” (background) discretization space. In practice, these subspaces are
determined iteratively and data-adaptively at runtime bypassing any “offline precomputation”. For
theoretical analysis, low-dimensional subspaces are constructed analytically to bound the tensor
ranks against the error tolerance.

We consider a model linear elliptic multiscale problem in several physical dimensions and show,
theoretically and experimentally, that both (i) the solution of the associated high-dimensional
one-scale problem and (ii) the approximation to the solution of the multiscale problem induced
thereby admit efficient QTT-FE approximations. These problems can therefore be numerically
solved in a scale-robust fashion by standard (low-order) PDE discretizations combined with
state-of-the-art general-purpose solvers for tensor-structured linear systems. Specifically, we prove
the existence of QTT-FE approximations with an upper bound on the tensor ranks growing no
faster than algebraically with respect to log ǫ−1 and independent of the scale parameters, where ǫ is
the target accuracy for the approximation of the solution and of its gradient. In numerical
experiments, we verify the theoretical rank bounds and computationally investigate the dependence
of the complexity of the solutions on the number n of microscales.

Key words. Multiscale problems, low-rank approximation, low-rank tensors, multilevel struc-
ture, data-driven discretization, matrix product states, tensor train.

AMS subject classifications. 15A69, 35B27, 65N15, 65N22, 65N30, 65N50.

1. Introduction. The efficient numerical solution of mathematical models of
physical processes with multiple scales has undergone a rapid development during
recent years. Several classes of computational approaches have been put forward
which aim, usually through selective and sparing access of the microscopic structure
of the problem, to reconstruct numerically the “effective”, macroscopic or
“homogenized” behavior of the solution. In the context of finite-element
discretizations, these methodologies are referred to as multiscale FEM (MsFEM). In
a broader context, several such computational approaches for the numerical
approximation of multiscale differential equation models have been developed:
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generalized FEM (gFEM) [6], hierarchic multiscale methods (HMM) [1], local,
orthogonal decompositions (LOD) [5], to name a few. For a comprehensive
discussion, we refer to [32, 1, 5] and to the references therein.

In these approaches, the solution of the correct macroscopic, or “upscaled”
mathematical model is numerically approximated by extracting microscopic
information in the form of the solutions of “localized”, “micro” problems, with
suitable (artificial) boundary conditions. This can be achieved by the mentioned
methods in (essentially optimal) numerical complexity that is independent of the
microscopic length scale of the problem, under the rather optimistic provision that
exact solutions of the localized problems are available at negligible cost. Once the
macroscopic solution has been computed, postprocessing techniques allow for
localized numerical recovery of the microscopic structure of the physical solution.
Solving the localized problems is necessary to take into account the effect of the
microscale structure; it is, however, not necessarily trivial. Considering that
essential computation “offline” or “free of computational cost” is therefore debatable
in general and especially in the settings where microscales and microstructure evolve
during computation. The latter may be relevant, for example, in Newton-type
iterations for nonlinear problems or in time stepping for evolution problems.

In the present paper, we consider multilevel low-rank tensor approximation for a
class of linear second-order multiscale diffusion problems of the following form:

∇TAε ∇uε = f on D and uε = 0 on ∂D (1.1)

with n microscales controlled by a scale parameter ε > 0. The two key ingredients
of the approach, to which we refer as QTT-FE, are as follows. First, a generic, low-
order “background” finite-element (FE) space, so vast as to resolve the microscale
behavior of the solution, is considered. Second, approximation is restricted to a
subset of the background finite-element space that is efficiently parametrized by the
low-rank multilevel tensor decomposition known as the quantized tensor train (QTT)
decomposition [60, 43] and as the matrix product states (MPS) representation in
computational quantum physics [72, 71, 70, 65]. The QTT-FE approximation and
the associated QTT-FE method for the numerical solution of PDEs rely on certain
sequences of nested subspaces of tensor-product form and of low rank. These can be
constructed using analytical tools for the purpose of analysis or computed in a fully
data-driven way in practice.

For multiscale problems, such as (1.1), the QTT-FE approximation and the
associated QTT-FE method aim to numerically resolve the macroscopic and
microscopic behavior of the solution simultaneously and throughout the physical
domain by immediately solving the original multiscale model. In particular, the
QTT-FE method is entirely “online”, i.e., in contrast to the mentioned gFEM, LOD
and MsFEM [5, 33, 6, 1], it does not involve any “offline” computation of
problem-adapted subspaces (basis functions) or any “offline” solution of localized
auxiliary problems. The mathematical analysis of tensor approximation, which we
provide in the present paper, however, relies on several intermediate approximations
and the associated assumptions on the microscale structure.

Under suitable assumptions, including that of asymptotic scale separation, the
microscale structure of the solutions of such problems is known to be represented
by (n + 1)-scale limits (see, e.g., [55, 3, 4]). These limits lead to high-dimensional,
possibly anisotropic elliptic boundary value problems, which are independent of the
scale parameter ε and are posed on a Cartesian product of the physical domain D and
of n microscale cells Y1, . . . , Yn. The dependence on the microscale variables, taking
value in the cells, represents the microscale structure of solution of the multiscale
problem. The (n + 1)-scale limits hence trade the physical scale of the microscale
structure for the high dimensionality of the limit problem.

This idea, proposed for problems with n scales in [66], has been developed in the
context of sparse tensor FEM multiscale diffusion problems in [30] and, subsequently,
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for elasticity and electromagnetics [29, 73, 74, 75, 18, 67]. In particular, algebraic
convergence rates independent of the scale parameter with weak or no dependence
on the number of n of fast variables were established. The implementation of the
developed sparse-tensor FEM discretizations of the high-dimensional limits requires,
however, the explicit derivation of the PDEs which describe the (n + 1)-scale limits.
This may not be feasible, in particular, for nonlinear multiscale problems, even though
the existence of (n+ 1)-scale limits has been established mathematically.

1.1. Contributions. In the present paper, we extend the earlier work [46, 38]
for the case of a single spatial dimension (d = 1) and consider the quantized tensor-
train finite-element (QTT-FE) approximation. We develop a mathematical analysis
of the low-rank QTT-FE [35, 40, 52] approximation to the solutions of the class of
linear elliptic second-order multiscale problems specified in Section 2 below, with
diffusion coefficients depending on n+ 1 separated scales, i.e., in the classical setting
of (n + 1)-scale homogenization. We also mention the work [42], where multiscale-
diffusion problems in two spatial dimensions (d = 2) were treated but using low-rank
matrix structure with respect to the two spatial variables and not the multilevel low-
rank tensor structure, as in [46, 38].

Here, we prove first that the QTT-FE approach allows for root-exponentially
convergent numerical approximations of the solution to the one-scale limit problem.
We achieve that by analytically constructing low-rank approximations with an
upper bound on the ranks that grows no faster than algebraically with respect to
L ≃ log ǫ−1 and is independent of the scale parameter ε. Here, ǫ is the target
accuracy for the H1 approximation of the scale-interaction functions, which
constitute the solution. From these approximations, we construct their counterparts
approximating the solutions of the corresponding family of multiscale problems.

The idea of approximating the multiscale problem by reapproximating the
homogenized problem (via (n + 1)-scale limits as in [4, 20]), proposed for elliptic
multiscale problems in [66], was exploited in the context of sparse grid
approximations [30, 29, 28]. Our present perspective extends beyond that, as the
adaptive QTT-FE approximation and the QTT-FE method can completely bypass
the homogenization procedure and operate entirely on the physical domain,
adaptively accessing the fine-scale information of the PDE. The numerical
approximations computed by this approach are better adapted to the data, are more
efficient than the particular approximations constructed analytically in our proofs
through the reapproximation of one-scale limit problems and do not suffer from the
accuracy limitation of homogenization. This is confirmed by our numerical results,
reported in Section 5, that were obtained by such a practical computational
QTT-FEM algorithm based on the Julia package TensorRefinement.jl [36].

1.2. Structure of the present paper. In Section 2, we describe the n-scale
homogenization problem, and present in particular the QTT discretization of this
problem in the physical domain in Section 2.1. The emphasis in Section 2 is to
present the n-scale problem and its quantized, tensor-formatted discretization
entirely in the physical domain. Section 3 presents the asymptotic analysis of the
n-scale solution by the so-called unfolding method: the asymptotic limit of the
physical problem is described by a high-dimensional one-scale problem. To this end,
we recapitulate from [55, 3, 4] results on reiterated homogenization for linear elliptic
multiscale problems, which are required in the ensuing numerical analysis of the
QTT-FE approach.

In Section 4, the solution of the one-scale limit problem is approximated by tensor
products of algebraic and trigonometric polynomials, and these products, in turn, are
reapproximated by low-order (but also low-rank) finite-element functions. Finally,
corresponding approximations to the solutions of multiscale problems with ε > 0 are
derived.

Section 5 presents numerical experiments with model multiscale problems, for
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which the QTT-FE structure of approximate solutions computed numerically is
investigated. Finally, in Section 6, we discuss our results and their possible
generalizations. The Appendix contains a few proofs postponed due to their
technicality.

2. Model elliptic multiscale problem. We consider a bounded “physical”
domain D ⊂ Rd (with which, for notational convenience, we associate the macroscale
ε0 ≡ 1) and a moderate number n ∈ N of microscales ε1, . . . , εn, which we assume to
be positive functions of a positive scale parameter ε.

We assume furthermore that there exist n unit cells Y1, . . . , Yn such that D is
partitioned into a union of translations of ε1Y1 and each Yi−1 with i ∈ {2, . . . , n} is
partitioned into a union of translations of εiYi. We deal in particular with the case of
Y1, . . . , Yn = (0, 1)d in the present paper, while more sophisticated constructions may
be used to model, e.g., perforated media. For notational convenience, we set Y0 = {0}
and Yi = Y1 × · · · × Yi for each i ∈ {1, . . . , n}.

To formulate a multiscale diffusion problem on D, we consider a matrix function
A defined on D × Yn, which therefore depends on a macroscale (“slow”) variable and
on n microscale (“fast”) variables. We will consider multiscale diffusion coefficients Aε

induced by functions satisfying the following Assumption 2.1. Here and throughout,
we use C#(Yn) to denote the space of functions that are continuous on Yn and Yi-
periodic with respect to the ith variable for each i ∈ {1, . . . , n}.

Assumption 2.1. A ∈ L∞(D ; C#(Yn ; R
d×d
sym )) is essentially bounded and

uniformly positive definite with constants Γ and γ: γ ≤ ξTA(x,yn) ξ ≤ Γ for every
unit vector ξ ∈ Rd, a.e. x ∈ D and all yn ∈ Yn.

For every ε > 0, a function A satisfying Assumption 2.1 induces a multiscale
coefficient Aε ∈ L∞(D; Rd×d

sym) as follows:

Aε(x) = A
(
x,

x

ε1
, . . . ,

x

εn

)
for a.e. x ∈ D . (2.1)

With such a coefficient, we consider the following model variational problem on
◦

V =
H1

0 (D):

find uε ∈
◦

V such that

∫

D

(∇v)TAε ∇uε =
∫

D

fv for all v ∈
◦

V , (2.2)

where f ∈ L2(D) is a forcing term. Assumption 2.1 and the Lax–Milgram theorem
guarantee that this problem has a unique solution, which satisfies the stability bound

|uε|H1(D) ≤ γ−1 sup
v∈

◦

Vr{0}

|f(v)|
|v|H1(D)

≤ C γ−1 sup
v∈

◦

Vr{0}

|f(v)|
‖v‖L2(D)

= C γ−1‖f‖L2(D) ,

where C is the classical Poincaré constant for D.
Although the forcing term f is assumed to be independent of the scale parameter

ε for simplicity, we hasten to add that all results that follow admit a straightforward
generalization to the case when f exhibits a microscale structure analogous to the one
expressed by (2.1).

2.1. Low-rank tensor multilevel discretization. Starting from this section,
we restrict the general setting to the case of D = Y1 = · · · = Yn = (0, 1)d for
simplicity. In this section, we give an explicit construction of the low-rank tensor
multilevel parametrization of functions, such as the solutions of multiscale problems
of the form (2.2). Regarding the cases when D and Y1, . . . , Yn are domains of more
complex geometry, we only remark that they can be handled using the approach of [35,
Section 5].

We start with defining, in Sections 2.1.1 and 2.1.2, the underlying virtual grids
and the associated background finite-element spaces based on partitioning D into 2dL
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Cartesian-product elements, where L ∈ N is a fixed number of levels associated with
the iterative uniform hierarchical partitioning of D.

Subsequently, in Section 2.1.3, we present the multilevel TT-MPS decomposition,
which renders the aforementioned grids and finite-element spaces virtual in the sense
that they are to be involved in computations only in a low-parametric representation.
Finally, in Section 2.1.4, we elaborate on the relation of the TT-MPS decomposition
to low-rank matrix representation and to subspace representation, which is crucial for
the choice of this particular decomposition and for the subspace-factorization language
that we use for our proofs thereafter.

2.1.1. Finite-element discretization on the unit interval. Let L ∈ N be a
fixed number of levels of the low-rank tensor multilevel discretization to be
constructed. For [0, 1], we consider a uniform partition into 2L subintervals with the
nodes

tLj = j · 2−L with j ∈ {0, . . . , 2L} . (2.3)

These points constitute a partitioning of (0, 1), inducing the nodal continuous
piecewise-linear functions ϕL

j with j ∈ {0, . . . , 2L}, defined by ϕL
j (t

L
j′) = δjj′ for all

j, j′ ∈ {0, . . . , 2L}, and the piecewise-constant functions ϕ̄L
i with i ∈ {1, . . . , 2L},

defined by ϕ̄L
i |(tL

i′−1
)(tL

i′
)
= δii′ for all i, i′ ∈ {1, . . . , 2L}.

Using the functions defined above, we introduce the following notations for finite-
element spaces:

ŪL = span{ϕ̄L
j }2

L

j=1 , UL = span{ϕL
j }2

L

j=0 and
◦

UL = span{ϕL
j }2

L−1
j=1 . (2.4)

The subspace
◦

UL ⊂ UL accommodates the homogeneous essential boundary condi-
tions of the problem (2.2).

To obtain coefficients of finite-element approximations with respect to these bases,

we will use the analysis operators Φ̄L : L2(0, 1) → C2L and ΦL : H1(0, 1) → C2L

defined as follows: for all w ∈ L2(0, 1), v ∈ H1(0, 1) and i ∈ {1, . . . , 2L}, we set

(Φ̄Lw)i = 2L
∫ tLi

tLi−1

w and (ΦLv)i = v(tLi ) . (2.5)

Here and throughout, C denotes the field of complex numbers, which appears in our
analysis because we express polynomial approximation in terms of Fourier
approximation. Throughout this Section 2, C can be safely replaced with R.

2.1.2. Finite-element discretization on D. Tensorizing the univariate basis
functions defined above, we obtain d-variate basis functions that span the
corresponding finite-element spaces:

V̄ L =
d⊗

k=1

ŪL ⊂ L2(D) , V L =
d⊗

k=1

UL ⊂ V and
◦

V L =
d⊗

k=1

◦

UL = V L ∩
◦

V . (2.6)

As in the case of the finite-element spaces (2.4) of univariate functions, the definition

of
◦

V L ⊂ V L serves to accommodate the boundary conditions of the problem (2.2).
Classical approximation bounds (see, e.g., [19]) give

inf
vL∈

◦

V L

‖v − vL‖H1(D) ≤ C 2−αL ‖v‖H1+α(D) for all v ∈ H1+α(D) , (2.7)

where α ∈ (0, 1] is a fractional order of Sobolev smoothness and C > 0 is a constant
that depends on α but not on L.
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Since the solution uε of (2.2) may exhibit algebraic singularities at the boundary
of D due to the interplay of the domain’s geometry, boundary conditions and diffu-
sion coefficient, uε ∈ H1+α(D) may hold only for α significantly less than one. To ef-
ficiently approximate such solutions in low-rank form, we follow [35, 40, 52] in using
the multilevel QTT format for the low-rank separation of the indices associated with
different levels and, for example, not different physical variables. This consists in ap-
plying the isomorphies

d⊗

k=1

C
2L ≃

d⊗

k=1

L⊗

ℓ=1

C
2 ≃ C

2dL ≃
L⊗

ℓ=1

d⊗

k=1

C
2 ≃

L⊗

ℓ=1

C
2d , (2.8)

so that the 2dL degrees of freedom of V L in (2.6) are indexed by L indices
corresponding to the L levels of discretization, each taking 2d values that enumerate
the elements of the corresponding factor on the right-hand side of (2.8).

To use the separation of variables associated with levels (and not with the
“physical” variables) in low-rank tensor approximation, we need a notational device
to apply the isomorphies (2.8) and explicitly form these level variables. To this end,
we define ΠL with L ∈ N as the permutation matrix of order 2dL satisfying

ΠL( i1,1 , . . . , id,1, . . . . . . , i1,L , . . . , id,L; i1,1 , . . . , i1,L, . . . . . . , id,1 , . . . , id,L) = 1
(2.9)

for all ikℓ ∈ {1, 2} with k ∈ {1, . . . , d} and ℓ ∈ {1, . . . , L}.
Under the permutation realized by ΠL, each “physical” index ik with

k ∈ {1, . . . , d}, taking value in {1, . . . , 2L} and corresponding to the kth “physical”
dimension, is decomposed into its L binary bits ik,ℓ with ℓ ∈ {1, . . . , L}. A standard
choice of isomorphism is given by

ik = 1 + 2L−1 · (ik,1 − 1) + · · ·+ 20 · (ik,L − 1) (2.10)

for all ik ∈ {1, . . . , 2L} and ik,1, . . . , ik,L ∈ {1, 2}. The resulting dL binary bits are
then reordered in groups of L, and the indices within each group ℓ ∈ {1, . . . , L} can
be merged into an index jℓ taking value in {1, . . . , 2d} and corresponding to the ℓth
factor on the right-hand side of (2.8). The respective isomorphism is

jℓ = 1 + 2d−1 · (i1,ℓ − 1) + · · ·+ 20 · (id,ℓ − 1) (2.11)

for all jℓ ∈ {1, . . . , 2d} and i1,ℓ, . . . , id,ℓ ∈ {1, 2}.
The elements of

◦

V L and V̄ L can be parametrized by their coefficients extracted
using the analysis operators

Ψ̄L =ΠL
d⊗

k=1

Φ̄L : L2(D) → C
2dL and ΨL =ΠL

d⊗

k=1

ΦL :
(
H1(0, 1)

)⊗d → C
2dL .

(2.12)

Note that the restriction of ΨL to
◦

V L is not surjective. This lack of surjectivity stems

from that we choose to use nested finite-element spaces
◦

V L with L ∈ N given by (2.6)

but represent every function from
◦

V L with L ∈ N by 2dL values instead of (2L − 1)d,
while the extraneous parameters are set equal to zero in agreement with the boundary
conditions of the problem (2.2).

2.1.3. Low-rank tensor parametrization of functions. Consider a tensor1

u ∈ Cn1···nL with L ∈ N dimensions and mode sizes n1, . . . , nL ∈ N. The vector u is

1It is standard to say that a “tensor” with dimensions n1, . . . , nL is an L-dimensional array, has
size n1 × · · · × nL and is an element of Cn1×···×nL (for complex-valued tensors). For convenience,
we choose to work here with “long vectors” instead, calling them tensors. These are “vectorizations”
of tensors in the usual meaning.
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said to be represented in the matrix-product state (MPS) representation [72, 71, 70,
65], or in the tensor-train (TT) decomposition [62, 61], by

uj1,...,jL =

r1∑

α1

· · ·
rL−1∑

αL−1

U1(α0, j1, α1) · U2(α1, j2, α2) · · · UL(αL−1, jL, αL) (2.13)

for all jℓ ∈ {1, . . . , nℓ} with ℓ ∈ {1, . . . , L}, where we use α0 ≡ 1 ≡ αL and r0 = 1 = rL
for notational convenience. The arrays U1, . . . , UL are called factors or cores (sites in
the MPS literature), and the integer parameters r1, . . . , rL−1, governing the number of
entries of the factors, are called ranks (referred to as “bond dimensions” in the MPS
literature). The factors U1, . . . , UL correspond to the indices j1, . . . , jL separated
in (2.13); they are multiplied in a specific way and, in particular, in a fixed order, so
that the latter partly defines the decomposition.

To place our approach in a broader context, we note that the TT-MPS
representation (2.13) is one of many tensor decompositions [27, 24, 26, 45], or tensor
networks [57].

In the present paper, we use the TT-MPS representation as a multilevel tensor
decomposition [68] for parametrizing discretizations with L ∈ N levels of iterative
uniform hierarchical partitioning of the physical domain D. This means that the
tensors we consider and represent in the form (2.13) have L dimensions of size

n1 = . . . = nL = 2d ,

representing the levels of the discretization in the sense of (2.8) and (2.10)–(2.11). In
the context of the TT-MPS decomposition, this has been known in the literature as
the quantized tensor-train (QTT) decomposition [60, 43, 44, 45, 2].

Specifically in our setting, the decomposition of the form (2.13) is used to repre-

sent, in terms of the factors U1, . . . , UL, the unique finite-element function uL ∈
◦

V L

or uL ∈ V̄ L (see Section 2.1.2) such that, respectively, u = ΨLuL or u = Ψ̄LuL holds.
The reason for parametrizing a function uL from a low-order, generic finite-element

space, such as
◦

V L or V̄ L, via the QTT representation is as follows: the number of ef-
fective parameters, i.e., the total number

N =

L∑

ℓ=1

rℓ−1 nℓ rℓ (2.14)

of entries of all the factors U1, . . . , UL, may be moderate (in particular, much smaller
than 2dL) even when L is large. The number of effective parameters can be bounded
from above using the maximum rank. We use (2.13) for n1 = · · · = nL = 2d, which
gives

N ≤ 2dLr2max for rmax = max{r0, . . . , rL} . (2.15)

The goal of the present paper is to show, theoretically and experimentally, that the
QTT representation, see (2.13) with (2.8), is well-suited for approximating the exact
solution uε of (2.2). Specifically, for a fixed choice (i) of quasi-optimality constants
C̃L with L ∈ N, (ii) of the scale parameter ε > 0, (iii) of the desired accuracy δ > 0
and (iv) of the number L ∈ N of levels such that

C̃L inf
vL∈

◦

V L

‖vL − uε‖H1(D) ≤ δ , (2.16)

we prove (in the analysis presented here) the existence of, and compute (in

numerical experiments), functions uε,L, vε,L1 , . . . , vε,Ld ∈ V̄ L represented exactly by
low-rank QTT decompositions of the form (2.13) for the tensors u,vL1 , . . . ,v

L
d given
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by u = Ψ̄Luε,L and vLk = Ψ̄Lvε,Lk for k ∈ {1, . . . , d} and such that the tuple

ūε,L = (uε,L, vε,L1 , . . . , vε,Ld ) satisfies the quasi-optimal error bound

‖ūε,L − (uε,∇uε)‖L2(D)d+1 ≤ C̃L inf
vL∈

◦

V L

‖vL − uε‖H1(D) . (2.17)

For such decompositions, we address the dependence of the maximum rank rmax (2.15)
and of the numbers N of effective parameters (2.14) on the microscales ε1, . . . , εn. The
rationale for considering, for L ∈ N, the approximation of uε and of its derivatives in

V̄ L instead of approximating uε in
◦

V L with L ∈ N is presented in Section 2.2 below.

Nodal basis functions from spaces similar to
◦

V L with L ∈ N are, however, used in our
analysis for intermediate approximations related to the one-scale limit problem (3.6).

To illustrate the potential of our approach, we remark here that the complexity
of low-rank approximations to the solution of the multiscale problem (2.2) may be

drastically lower than 2dL = dim V̄ L ≃ dim
◦

V L when L takes large values for
◦

V L or
V̄ L to afford high accuracy. In our numerical experiments for d = 2 dimensions, we
consider discretizations with up to L = 50 levels. and compute approximations that
are quasi-optimal for each L by discretizing and solving the multiscale problem. For
the finest microscale εn = 2−40, the approximations computed have the number N
of effective parameters not exceeding 20, 000 to 100, 000 and the maximum rank rmax

not exceeding 20 to 50 (depending on the specific problem considered; see Figures 5.3
and 5.4). These values of N are to be contrasted with 2dL, which reaches the value
of 2100 ≈ 1030. The reason for the efficiency of the TT-MPS decomposition is its
inherent relation to subspace approximation and its reliance on well-established matrix
algorithms. We elaborate on this point in Section 2.1.4.

2.1.4. TT-MPS representation and subspace factorization. Let us revisit
the TT-MPS decomposition (2.13) of a tensor u ∈ Cn1···nL . For each ℓ ∈ {1, . . . , L−
1}, consider the ℓth unfolding matrix Uℓ ∈ C(n1···nℓ)×(nℓ+1···nL) of u, formed from
u by merging the first ℓ dimensions into a row dimension and the remaining L − ℓ
dimensions, into a column dimension:

(Uℓ)j1,...,jℓ; jℓ+1,...,jL = uj1,...,jℓ,jℓ+1,...,jL (2.18)

for all jk ∈ {1, . . . , nk} with k ∈ {1, . . . , L}. Then (2.13) implies

rank Uℓ ≤ rℓ (2.19)

for every ℓ ∈ {1, . . . , L− 1}.
On the other hand, the decomposition (2.13) implies that, for every ℓ ∈ {1, . . . , L−

1},

u ∈ LL
ℓ ⊗ C

nℓ+1···nL with Lℓ ⊂ C
n1···nℓ such that dimLℓ ≤ rℓ (2.20)

holds for Lℓ = im Vℓ, where “ im” denotes the image (range) of a matrix, and

u ∈ C
n1···nℓ ⊗ML

ℓ with Mℓ ⊂ C
nℓ+1···nL such that dimMℓ ≤ rℓ (2.21)

holds for Mℓ = im Wℓ.
Condition (2.19) shows that (2.13) with every single ℓ ∈ {1, . . . , L−1}, is a rank-

rℓ factorization of the ℓth unfolding matrix Uℓ of u. This is often referred to as the
separation of variables in u; namely, that of the first ℓ indices from the remaining
L− ℓ indices.

On the other hand, conditions (2.20) and (2.21) with every single ℓ ∈ {1, . . . , L−1}
express the same separation of variables in the language of tensor-product subspaces.
These subspaces are given in terms of the factors U1, . . . , UL, are highly adapted to u
and cannot be chosen a priori, without knowing u.
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We note that the converse is also true: if, for some r1, . . . , rL−1 ∈ N, a tensor u
satisfies (2.19), (2.20) or (2.21) for ℓ ∈ {1, . . . , L− 1}, then it has a decomposition of
the form (2.13) with ranks r1, . . . , rL−1 and some factors U1, . . . , UL. For details, we
refer the reader to [26, 71, 70, 62, 61]. Here, in the case of the QTT decomposition,
i.e., of (2.13) with n1 = · · · = nL = 2d and (2.8), it is convenient to equivalently
express the existence of a low-rank representation in the language of the factorization
of subspaces, which we now introduce.

Definition 2.2 (multilevel factorization of subspaces). Let d ∈ N and L ∈ N.
We say that a subspace S of V̄ L (or of V L) factorizes at level ℓ ∈ {0, . . . , L} with
rank r ∈ N0 if there exists a subspace L ⊂ Cdℓ such that dimL ≤ r and Ψ̄L(S) ⊂
L⊗ C2d(L−ℓ)

(or, respectively, ΨL(S) ⊂ L⊗ C2d(L−ℓ)

).
As follows from the above discussion, for n1 = · · · = nL = 2d, factors U1, . . . , UL

satisfying (2.13) with ranks r1, . . . , rL−1 exist if and only if span{u} factorizes at levels
1, . . . , L− 1 with ranks r1, . . . , rL−1 in the sense of Definition 2.2. Besides, if m ∈ N,

u1, . . . ,um ∈ C2dL and every ui with i ∈ {1, . . . ,m} has a decomposition of the

form (2.13) with n1 = · · · = nL = 2d and ranks r
(i)
1 , . . . , r

(i)
L−1, then span{u1, . . . ,um}

factorizes at levels ℓ = 1, . . . , L− 1 with ranks
∑m

i=1 r
(i)
1 , . . . ,

∑m
i=1 r

(i)
L−1.

Remark 2.3. Many elementary functions (exponential, polynomial,
trigonometric, etc.) exhibit [25, 44] the low-rank structure defined by (2.13), with or
without (2.8). In the present paper, we use this property of algebraic polynomials
and of exponential functions in the form stated in Propositions 4.7 and 4.8 below.
Together with suitable regularity results, such properties can be used to prove that the
solutions of PDEs possess the low-rank structure of the same type, meaning that
some choice of L − 1 subspaces satisfying (2.20) or (2.21) of dimensions moderately
depending on the desired approximation accuracy is readily available via
classical approximation. This type of argument has been employed, e.g.,
in [25, 39, 35, 40, 38, 52], where the approximability of the solutions of certain
PDEs with accuracy converging root-exponentially with respect to the number N of
effective parameters was established.

Remark 2.4. The TT-MPS decomposition comes with robust arithmetic: not
only can basic linear operations (addition, multiplication, etc.) be performed
immediately on the factors (such as U1, . . . , UL above) without ever representing any
of the n1 · · ·nL individual entries of u, but also decompositions with excessive ranks
can be efficiently and reliably truncated using well-established algorithms for low-rank
matrix approximation. In particular, approximation with given ranks that is
quasi-optimal with respect to the Frobenius norm of tensors (equivalently, with
respect to the vector ℓ2 norm of function coefficients) is achieved by what is known as
Schmidt decomposition in the MPS literature [70, Lemma 1] and [65, Section 4.1.3]
and as TT-SVD and TT rounding algorithms in the TT literature [62, Algorithms 1
and 2]. This truncation inherits adaptivity from the matrix SVD and may be seen as
a way of implicitly constructing L − 1 tensor-product subspaces (2.20) adapted to u.
These are constructed computationally and are typically superior to those
constructed analytically using classical approximation techniques in approximability
proofs (see Remark 2.3 above).

2.2. Discrete multiscale problem and low-rank tensor parametrization.
For every L ∈ N, we consider the following discretization of the problem (2.2):

find uε,L ∈
◦

V L such that

∫

D

(∇vL)TAε ∇uε,L =

∫

D

fvL for all vL ∈
◦

V L .

(2.22)
As for the original problem, Assumption 2.1 and the Lax–Milgram theorem guarantee
that the above discretization has a unique solution. By Céa’s lemma,

‖uε,L − uε‖H1(D) ≤ Γγ−1 inf
vL∈

◦

V L

‖vL − uε‖H1(D) ≤ C Γγ−1 2−αL‖uε‖H1+α(D) , (2.23)
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where C is the constant appearing in the approximation bound (2.7).
For any fixed ε > 0, the number L of levels may be increased in order to achieve

any desired accuracy of approximating the solution of the multiscale problem (2.2)
in the sense of (2.17). In the idealized setting when the discretization (2.22) can be
solved exactly or another quasi-optimal projection onto V̄ L can be constructed
exactly for any L ∈ N, arbitrarily low errors can be achieved due to (2.23) and (2.7)
respectively. The presence of the microscale delays the convergence of the discrete
solutions to the exact solution: the factor ‖uε‖H1+α(D) in (2.23) and (2.7) is
approximately compensated by a number of levels proportional to λn = log2 ε

−1
n ,

which is required to start resolving the microscale structure. Then a suitable number
of additional levels allows to achieve any desired accuracy in exact arithmetic.

The coefficient uε,L = ΨLuε,L of the exact discrete solution is characterized by
the Galerkin optimality condition in the form of a linear system

Aε,L uε,L = fL (2.24)

with appropriately defined data: a symmetric matrix Aε,L and a right-hand side
vector fL. These can be accurately represented with low ranks in the QTT
decomposition, see (2.13) with (2.8). Specifically, accurate low-rank approximations
of the right-hand side vector may be constructed by classical approximation using
the regularity of f , as we mention in the discussion following Remark 2.3 (the
stipulation of Assumption 4.1 is sufficient). The same is true for the entries of the
diffusion coefficient. Finally, the matrix Aε,L can be represented in a low-rank form
of matrices corresponding to (2.13); see, e.g., [41] and [10, Section 2.3].

For large L, however, linear systems of the form (2.24) are ill-conditioned and
cannot be solved accurately in finite-precision computations. Besides, numerical
solvers for linear systems in the TT-MPS representation rely on frequent low-rank
truncation (rounding, see Remark 2.4 above), which allows to control the associated
error only in the ℓ2 norm of the coefficient tensor. Controlling the H1 accuracy of
the corresponding finite-element function under such truncation is impossible in

practice due to the ill-conditioning of the basis introduced for
◦

V L in Section 2.1.2
with respect to the H1 norm. As a result, the discrete solution uε,L cannot be
accurately computed in terms of uε,L = ΨLuε,L for practically relevant values of L.
An effectual remedy to this in the form of a tensor-structured BPX-type
preconditioner was developed in [10].

Literature on numerical tensor-structured solvers for linear systems is vast; we
only mention here several works: on tensorized solvers [50, 14, 12, 11], which are based
on implementing standard numerical methods with the use of TT-MPS arithmetic,
alternating-optimization methods [31, 64, 63, 59], which rely on the multilinearity of
tensor decompositions, and Riemannian-optimization methods [69, 49], which exploit
the geometry of sets of tensors defined by hard rank constraints.

3. Reiterated homogenization and high-dimensional one-scale limit.
For analysis, instead of the original multiscale problem (2.2), we consider a one-scale
high-dimensional limit problem posed in (3.6) in this section. The derivation of the
one-scale limit problem goes back to [55, 3, 4]. It is obtained from the original
multiscale problem (2.2) by homogenization, analyzed for a single (n = 1) microscale
in [15, 13, 34, 54, 55, 3], and for n > 1 microscales by iteration in [4]. For a general
discussion, we refer to [23]. For every ε > 0, the solution of the one-scale limit
problem induces an approximation of the solution of the corresponding multiscale
problem. We invoke this approximation only for analysis, as an auxiliary
approximation.

3.1. One-scale high-dimensional limit problem. To formulate reiterated
homogenization, we consider the following assumption, of which Assumption 2.1 is a
particular case with i = n and An = A. We recall that, for a space W of functions
with domain Y , the notation W# denotes the subspace of Y -periodic functions of W .
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Assumption 3.1 (on coefficient Ai with i ∈ {0, . . . , n} microscales, with
ellipticity and continuity constants γ and Γ). Ai ∈ L∞(D ; C#(Yi ; R

d×d
sym )) is

uniformly positive definite with constants Γ and γ: γ ≤ ξTAi(x,yi) ξ ≤ Γ for every
unit vector ξ ∈ Rd, a.e. x ∈ D and all yi ∈ Yi.

For each step i ∈ {1, . . . , n} of homogenization, we define

Vi = L2
(
D × Yi−1, H

1
#(Yi)/R

)
≃ L2(D)⊗ L2(Y1)⊗ · · · ⊗ L2(Yi−1)⊗H1

#(Yi)/R ,

Wi = L∞(D × Yi−1, H
1
#(Yi)/R) ,

(3.1)
where H1

#(Yi)/R is the closed subspace of H1
#(Yi) that consists of functions with

vanishing mean, and consider the Cartesian-product space

Vi =
◦

V × V1 × · · · × Vi (3.2)

endowed with the inner product 〈·, ·〉Vi
given by

〈ψ,φ〉Vi
=

∑

|α|=1

〈∂αψ0, ∂
αφ0〉L2(D) +

i∑

j=1

∑

|αj |=1

〈∂αj

j ψj , ∂
αj

j φj〉L2(D×Yj) (3.3)

for all ψ = (ψ0, ψ1, . . . , ψi),φ = (φ0, φ1, . . . , φi) ∈ Vi. We denote the norm induced
by 〈·, ·〉Vi

with ‖·‖Vi
. Here and throughout, the symbol ∂α with α ∈ Nd

0 denotes
the differentiation of functions with respect to the first d-dimensional variable, taking
value in D, indicated by the multi-index α, whereas ∂αj with j ∈ {1, . . . , n} and

α ∈ Nd
0 denotes differentiation with respect to the (j + 1)th d-dimensional variable,

taking value in Yj , according to the multi-index α. Further, we define a bilinear form
Bi : Vi × Vi → R:

Bi(ψ,φ) =

∫

D×Yi

(
∇ψ0 +

i∑

j=1

∇jψj

)T

Ai

(
∇φ0 +

i∑

j=1

∇jφj

)
(3.4)

for all ψ = (ψ0, ψ1, . . . , ψi),φ = (φ0, φ1, . . . , φi) ∈ Vi, where Ai is a matrix function
satisfying Assumption 3.1 with i microscales and with positive constants γ and Γ
and ∇j with j ∈ {1, . . . , n} denotes differentiation with respect to the (j + 1)th
d-dimensional variable, taking value in Yj . Then the bilinear form Bi is continuous
and coercive: the inequalities

γ ‖φ‖2
Vi

≤ Bi(φ,φ) and Bi(ψ,φ) ≤ Γ ‖ψ‖Vi
‖φ‖Vi

(3.5)

hold for all ψ,φ ∈ Vi. Then, since f ∈ L2(D), the problem of finding u ∈ Vi such
that

Bi(u,φ) =

∫

D

fφ0 for all φ = (φ0, φ1, . . . , φi) ∈ Vi (3.6)

has a unique solution u = (u0, u1, . . . , ui) (by the Lax–Milgram theorem). We
remark that the bilinear forms B1, . . . ,Bn in (3.6) satisfy property (3.5) with
constants uniform with respect to the scale parameter ε.

The problem (3.6) with i = n microscales, representing the result of n iterations
of homogenization applied to the original multiscale problem (2.2).

For notational convenience, we introduce

vi =

i∑

j=0

∇juj for i ∈ {1, . . . , n} . (3.7)

In the next section, we discuss the approximation of the solution uε of the multiscale
problem (2.2) by u0 and of ∇uε, using vn.
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3.2. Approximation of the multiscale problem via the one-scale limit
problem. In the analysis of homogenization, the limit for ε→ 0 is considered under
the additional assumption that the microscales converge to zero and asymptotically
separate:

lim
ε→0

εi
εi−1

= 0 for i = 1, . . . , n , (3.8)

where we use convention ε0 ≡ 1. Then the one-scale limit problem (3.6) approximates
the multiscale problem in the following sense.

The physical solution uε, including the oscillations in its gradient induced by the
multiscale structure of the diffusion coefficient (2.1), can be approximated in terms of
the solution of the one-scale high-dimensional limit problem. Specifically, the error of
approximating uε with ũε defined by

ũε(x) = u0(x) +

n∑

i=1

εiui

(
x,

x

ε1
, . . . ,

x

εi

)
for all x ∈ D , (3.9)

which is a homogenized solution with microscale correctors, converges to zero as ε→ 0
under additional smoothness assumptions.

Proposition 3.2 (Theorem 2.14 in [4]). Assume that the solution
(u0, u1, . . . , un) of the one-scale limit problem (3.6) satisfies u0 ∈ C1(D) and
ui ∈ C1(D,C1

#(Yi)) for all i ∈ {1, . . . , n}. Then ũε − uε → 0 in H1(D) as ε→ 0.
For the convergence claimed in Proposition 3.2, the rate can be quantified in the

case of a single (n = 1) microscale as follows.
Proposition 3.3 (Proposition 3.5 and the subsequent discussion in [30]). For

n = 1, assume that A ∈ C∞(D,C∞
# (Y1))

d×d
sym and that the homogenized solution u0

belongs to H2(D). Then

‖uε − ũε‖H1(D) ≤ Cε
1
2
1 . (3.10)

The constant C is independent of ε1 but depends on u0 and u1.
The homogenization approximation (3.9), with pointwise correctors, is

standard [15, 13, 34] but requires the additional smoothness from the solution
u = (u0, u1, . . . , un) ∈ Vn of the one-scale limit problem. In [56, 55, 22, 21], an
alternative homogenization approximation constructed using unfolding and
averaging operators was proposed, also in the case of a single (n = 1) microscale. An
obvious advantage of this alternative homogenization approximation is that it is well
defined in terms of the solution u = (u0, u1) ∈ V1 of the one-scale limit problem
without additional smoothness assumptions.

Definition 3.4 (see Definitions 2.1 and 2.16 in [21]). For any ε1 > 0, the cor-
responding unfolding operator T ε1 : L2(D) → L2(D× Y1) and the averaging operator
Uε1 : L2(D × Y1) → L2(D) are defined by

(T ε1φ)(x, y) = φ
(
ε1

[ x
ε1

]
+ ε1y

)

for a.e. (x, y) ∈ D× Y1 and every φ ∈ L2(D), where φ is extended by zero outside its
domain, and by

(Uε1Φ)(x) = |Y1|−1

∫

Y1

Φ
(
ε1

[ x
ε1

]
+ ε1z,

{ x

ε1

})
dz

for a.e. x ∈ D and every Φ ∈ L2(D × Y1). Here, the notations “[ · ]” and “{ · }” are
used for the integral and fractional parts of the real argument.

The application of the unfolding and averaging operators to vector-valued func-
tions (such as gradients) is meant componentwise.
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Certain basic properties of the unfolding and averaging operators were analyzed
in [21]. In particular, by [21, Proposition 2.17], the operator Uε1 : L2(D×Y1) → L2(D)
is continuous and has norm |Y1|−1/2.

The following result is obtained by bounding the L2 norm of u0 − uε using [30,
Proposition 3.5] with the subsequent discussion and [30, Lemma 3.8] and by bounding
the L2 norm of Uεv1−∇uε using the argument given in the proof of [30, Theorem 3.9].

Proposition 3.5. For n = 1, the following bound holds under the hypothesis
of Proposition 3.3:

‖(u0, Uε1v1)− (uε,∇uε)‖L2(D)d+1 ≤ Cε
1
2
1 . (3.11)

The constant C is independent of ε1 but depends on u0 and u1.
In the case when Aε does not depend on the macroscale variable, analogous

bounds were justified in [21] under the assumption u0 ∈ H1+α(D) with α ∈ ( 12 , 1).
To the best of our knowledge, no results analogous to those of Propositions 3.3

and 3.5 are available for problems with n > 1 microscales.
Following [30], we introduce in this section n-microscale unfolding and averaging

operators, which generalize those introduced [21, Definitions 2.1 and 2.16] in the case
of a single (n = 1) microscale (see Definition 3.4 above).

Definition 3.6. For every i ∈ {1, . . . , n}, we define the unfolding and averaging
operators corresponding to the ith microscale as follows:

T ε
i = T εi ⊗ idYi+1×···×Yn

: L2(D × Yi+1 × · · · × Yn) → L2(D × Yi × · · · × Yn) ,

Uε
i = Uεi ⊗ idYi+1×···×Yn

: L2(D × Yi × · · · × Yn) → L2(D × Yi+1 × · · · × Yn) .

Further, for every i ∈ {1, . . . , n}, the n-microscale unfolding and averaging operators
are defined as

T ε = T ε
1 ◦ · · · ◦ T ε

n : L2(D) → L2(D × Yn)

and

Uε = Uε
n ◦ · · · ◦ Uε

1 : L
2(D × Yn) → L2(D) .

The definition of the n-microscale unfolding and averaging operators is given
above in the form of the iterated composition of those corresponding to individual
scales, which allows to carry out the analysis of averaging in Section 4.3.5 in a similar,
iterated fashion. We note that the above definition is equivalent to [30, Definitions 3.11
and 3.12].

Certain basic properties of the n-microscale unfolding and averaging operators
follow from those of the single-scale operators. In particular, for each i ∈ {1, . . . , n},
the operator Uε

i : L
2(D× Yi × · · · × Yn) → L2(D× Yi+1 × · · · × Yn) is continuous and

has norm |Yi|−1/2. As a result,

‖Uε(Φ− Φ̃)‖L2(D) ≤ ‖Φ− Φ̃‖L2(D×Yn) for all Φ, Φ̃ ∈ L2(D × Yn) . (3.12)

As in [21], one can show that the solution uε of the multiscale problem (2.2) under
the scale-separation condition (3.8) satisfies

lim
ε→0

‖T ε∇uε − vn‖L2(D×Yn) = 0 . (3.13)

Using the folding operator Uε, we can state an analog of (3.10) for several
microscales, showing that the scale-interaction functions u1, ..., un in (3.13) describe,
to the leading order, the oscillations of the functions uε with ε > 0 as they approach
the weak limit u0.
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Lemma 3.7. Under the scale-separation condition (3.8), for the multiscale prob-
lem (2.2) we have ∇uε − Uεvn → 0 in L2(D) as ε→ 0.

For a proof, we refer to [21, Theorem 6.1] for the case n = 1 of a single microscale
and [21, Remark 7.5] regarding the case of n > 1 microscales. When u0, u1, . . . , un
are sufficiently smooth, this result can be inferred from the corrector result stated in
Proposition 3.2.

3.3. Recurrence for scale-interaction functions. Let i ∈ {1, . . . , n} and
assume that Ai is a matrix function satisfying Assumption 3.1 with i microscales and
positive constants γ and Γ. Then the limit problem (3.6), posed on D × Yi, is well
posed and has a unique solution.

Assume that ξ ∈ Rd is a unit vector. For a.e. (x,yi−1) ∈ D × Yi−1, define a
bilinear form bi(x,yi−1, · , · ) : H1

#(Yi)/R × H1
#(Yi)/R → R and a linear form

fi(x,yi−1, ξ, · ) : H1
#(Yi)/R → R as follows:

bi(x,yi−1, ψ, φ) =

∫

Yi

(∇ψ)TAi(x,yi−1, · )∇φ ,

fi(x,yi−1, ξ, φ) = −
∫

Yi

ξTAi(x,yi−1, · )∇φ
(3.14)

for all ψ, φ ∈ H1
#(Yi)/R. Then the following holds for a.e. (x,yi−1) ∈ D × Yi−1.

First, the assumption regarding Ai results in the continuity and ellipticity of
bi(x,yi−1, · , · ): for all ψ, φ ∈ H1

#(Yi)/R, bi(x,yi−1, ψ, φ) ≤ Γ|ψ|H1(Yi)|φ|H1(Yi) and

bi(x,yi−1, φ, φ) ≥ γ‖φ‖2
H1

#(Yi)/R

. Second, by the same argument, the linear form

fi(x,yi−1, ξ, · ) is continuous:

∣∣fi(x,yi−1, ξ, φ)
∣∣ ≤ Γ‖φ‖H1

#(Yi)/R
for all φ ∈ H1

#(Yi)/R .

By the Lax–Milgram theorem, the problem of finding wξ(x,yi−1, · ) ∈ H1
#(Yi)/R such

that

bi(x,yi−1,wξ(x,yi−1, · ), φ) = fi(x,yi−1, ξ, φ) for all φ ∈ H1
#(Yi)/R . (3.15)

admits a unique solution, which satisfies ‖wξ(x,yi−1, · )‖H1
#(Yi)/R

≤ γ−1Γ.

Let ξ1, . . . , ξd be the columns of the identity matrix I of order d. Being valid
for a.e. (x,yi−1) ∈ D × Yi−1 and every unit vector ξ ∈ Rd, the above argument
defines wi ∈ W d

i whose components wik ∈ Wi with k ∈ {1, . . . , d} are given by
wik(x,yi−1, yi) = wξk(x,yi−1, yi) for a.e. (x,yi−1, yi) ∈ D × Yi−1 × Yi and for each
k ∈ {1, . . . , d}. Note that wi is also an element of V d

i . Furthermore, it is the only
element of V d

i such that

∫

D×Yi

(
I +Jiwi

)
Ai ∇iφ = 0 (3.16)

for all φ ∈ Vi. Here, Ji denotes the differential operator returning the Jacobi matrix
with respect to the last variable (varying in Yi), as a function of all variables
(taking value in D × Yi). Since Ai ∈ L∞(D ; C#(Yi ; R

d×d
sym )), one can define

Ai−1 ∈ L∞(D ; C#(Yi−1 ; R
d×d
sym )) by setting

Ai−1(x,yi−1) =

∫

Yi

(
I +Jiwi(x,yi−1, · )

)
Ai(x,yi−1, · )

(
I +Jiwi(x,yi−1, · )

)T

=

∫

Yi

(
I +Jiwi(x,yi−1, · )

)
Ai(x,yi−1, · )

(3.17)

for a.e. x ∈ D and for all yi−1 ∈ Yi−1. By [54], see also [15, Chapter 1,
Theorem 3.9],the matrix function Ai−1, to which we refer as upscaled coefficient,
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satisfies Assumption 3.1 with i − 1 microscales and with the identical positive
constants γ and Γ. The corresponding problem (3.6), involving i variables, is
therefore well posed and has a unique solution (u0, . . . , ui−1) ∈ Vi−1.

Since ui−1 ∈ Vi−1, we have ∇i−1 ui−1 ∈ L2(D × Yi−1)
d. On the other hand, we

have noted that wi ∈W d
i , so we can define ui ∈ Vi by setting

ui(x,yi−1, · ) =
(
wi(x,yi−1, · )

)T ∇i−1 ui−1(x,yi−1) in H1
#(Yi)/R (3.18)

for a.e. x ∈ D and yi−1 ∈ Yi−1. Indeed, this entails that ui(x,yi−1, · ) has the
gradient

∇iui(x,yi−1, · ) = Jiwi(x,yi)∇i−1 ui−1(x,yi−1) in L2(Yi) (3.19)

for a.e. x ∈ D and yi−1 ∈ Yi−1, so that the bound ‖ui‖Vi
. ‖wi‖Wd

i
‖ui−1‖Vi−1 holds

(with a constant implied in “.” determined by the choice of a norm for W d
i ). This

results in (u0, . . . , ui−1, ui) ∈ Vi and, as one verifies using (3.16) and (3.17), also in
that this tuple solves the problem (3.6) with i+ 1 variables.

Applying the above argument iteratively, we obtain the “effective” macroscopic
diffusion coefficient A0 ∈ L∞(D; Rd×d

sym):

A0 =

∫

Y1

· · ·
∫

Yn

(
I +J1w1

)
· · ·

(
I +Jnwn

)
A , (3.20)

which satisfies Assumption 3.1 with zero microscales and with ellipticity and conti-
nuity constants γ and Γ. The “effective” problem for the homogenized limit u0 reads:

find u0 ∈
◦

V such that

∫

D

(∇φ)TA0 ∇u0 =

∫

D

fφ (3.21)

for every φ ∈
◦

V .
Then the solution (u0, . . . , un) ∈ Vn of the limit problem (3.6) with n+1 variables

can be solved using the recursion (3.18), so that the scale-interaction functions ui and
the sums of their gradients given by (3.7) satisfy

ui = wT

i vi−1 and vi =
(
I +Jiwi

)T
vi−1 =

(
I +Jiwi

)T · · ·
(
I +J1w1

)T∇u0 (3.22)

in Vi and L2(D × Yi)
d respectively.

3.4. Approximate recurrence for scale-interaction functions. To obtain
low-rank tensor-structured approximations of (u0, u1, . . . , un) ∈ Vn, we use the
following approximation scheme with a discretization parameter L ∈ N. For
every i = 1, . . . , n, we approximate wi and Jiwi by wL

i and JL
i in W d

i and
L∞(D×Yi−1, L

2(Yi))
d×d respectively. Assuming that u0 and ∇u0 are approximated

by uL0 and vL0 in V and L2(D)d respectively, we follow (3.22) to define the
corresponding approximations uLi and vLi to ui and vi with i ∈ {1, . . . , n}: in Vi and
L2(D × Yi)

d respectively, we set

uLi =
(
wL

i

)T
vLi−1 and vLi =

(
I + JL

i

)T
vLi−1 =

(
I + JL

i

)T · · ·
(
I + JL

1

)T
vL0 . (3.23)

The associated errors can be represented by telescoping sums: for example,

vi − vLi =
(
I +Jiwi

)T · · ·
(
I +J1w1

)T(
v0 − vL0

)

+
i∑

j=1

{ i∏

m=j+1

(
I +Jmwm

)T
}(

Jjwj − JL
j

)T
{ j−1∏

m=1

(
I + JL

m

)T
}
vL0
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for every i ∈ {1, . . . , n}, where sums and products over empty ranges are to be omitted.
Assuming that the errors wi −wL

i , Jiwi − JL
i and v0 − vL0 are bounded, respectively,

in W d
i , L∞(D × Yi−1, L

2(Yi))
d×d and L2(D)d uniformly with respect to L ∈ N and

i ∈ {1, . . . , n}, we obtain, with a positive equivalence constant independent of the
discretization parameter L ∈ N, the bounds

∥∥vi − vLi
∥∥
L2(D×Yi)d

. ‖v0 − vL0 ‖L2(D)d +

i∑

j=1

‖Jjwj − JL
j ‖L∞(D×Yi−1,L2(Yi))d×d (3.24)

and

‖ui − uLi ‖Vi
. ‖v0 − vL0 ‖L2(D)d

+
i−1∑

j=1

‖Jjwj − JL
j ‖L∞(D×Yi−1,L2(Yi))d×d + ‖wi − wL

i ‖Wi
(3.25)

for i ∈ {1, . . . , n}. In Section 4.3.3, we construct particular approximations wL
i , JL

i ,
uLi and vLi with i ∈ {1, . . . , n} and L ∈ N in the finite-element spaces specified in
Section 4.1.2.

4. Approximability under the assumption of analyticity. In the present
section, we investigate regularity and approximability of u0, u1, . . . , un. With the
aim of establishing convergence rates and (quantized) tensor rank bounds which are
independent of the scales, we impose additional assumptions on the data D, A and
f . Specifically, we consider a tensor-product physical domain and analytic data.

The first set of additional assumptions consists in the following.
Assumption 4.1. For every ε and i ∈ {0, 1, . . . , n}, we have εi = 2−λi with

λi ∈ N depending on ε (we set λ0 ≡ 0 for notational convenience). For the physical
domain and the unit cells, we have D = Y1 = · · · = Yn = (0, 1)d. The diffusion
coefficient A is analytic and one-periodic with respect to each of the last nd scalar
variables on D × Yn. The right-hand side f is analytic on D × Yn.

Assumption 4.1 allows to prove that the solution of the one-scale high-dimensional
limiting problem can be approximated by finite-element functions of tensor ranks
that are logarithmic in accuracy. This implies that the solution of the one-scale
high-dimensional limiting problem admits an infinite sequence of approximations that
converge exponentially with respect to the number of parameters used to represent
them.

4.1. Low-order finite-element approximation. In this section, we extend
the construction of finite-element spaces given in Section 2.1.1 to address the boundary
conditions of the high-dimensional problem (3.6) and establish main approximation
results. As stated in Assumption 4.1, we consider the case D = Y1 = · · · = Yn =
(0, 1)d.

4.1.1. Low-order approximation on an interval. For every L ∈ N, we will
use the analysis operators introduced in (2.5) to extract the coefficients of finite-
element approximations belonging to UL and ŪL. To construct such approximations,
we will use the following projection operators, πL : H1(0, 1) → UL and π̄L : L2(0, 1) →
ŪL. The first we define as the operator of continuous, piecewise-linear Lagrange
interpolation at the nodes given in (2.3), in the basis of ϕL

j with j ∈ {0, 1, . . . , 2L}.
The second operator we define as the operator of piecewise-constant L2 approximation
onto the span of ϕ̄L

i with j ∈ {1, . . . , 2L}, which are defined in Section 2.1.1. Note
that (πLu)′ = π̄Lu′ for every u ∈ H1(0, 1). Finally, both the projection operators can
be expressed in terms of the analysis operators defined in (2.5): for all u ∈ H1(0, 1),
and w ∈ L2(0, 1), we have

πLu =
2L∑

i=0

(ΦLu)i ϕ
L
i and π̄Lw =

2L∑

j=1

(Φ̄Lw)i ϕ̄
L
i . (4.1)

16



In the following proposition, we summarize classical bounds for the projection oper-
ators πL and π̄L for L ∈ N.

Proposition 4.2. For all v ∈ C[0, 1]∩C2(0, 1), w ∈ C[0, 1]∩C1(0, 1) and L ∈ N,
the projections πLv and π̄Lw satisfy the error bounds

‖v − πLv‖L∞(0,1) ≤ 2−2L−3 ‖v′′‖L∞(0,1) , ‖(v − πLv)′‖L∞(0,1) ≤ 2−L ‖v′′‖L∞(0,1) ,

‖w − π̄Lw‖L∞(0,1) ≤ 2−L ‖w′‖L∞(0,1)

and the stability bounds

‖πLv‖L∞(0,1) ≤ ‖v‖L∞(0,1) , ‖(πLv)′‖L∞(0,1) ≤ ‖v′‖L∞(0,1) ,

‖π̄Lw‖L∞(0,1) ≤ ‖w‖L∞(0,1) .

4.1.2. Low-order approximation on D × Yi. For every L ∈ N, from the
univariate bases defined above, we obtain by tensorization finite-element spaces

V̄ L =

d⊗

k=1

ŪL ⊂ L2(D) , V L =

d⊗

k=1

UL ⊂ L2(D) ,
◦

V L =

d⊗

k=1

◦

UL = V L ∩H1
0 (D)

(4.2)
of d-variate functions and the corresponding projection operators Π̄L : L2(D) → V̄ L

and ΠL :
(
H1(0, 1)

)⊗d → V L given by

Π̄L =
d⊗

k=1

π̄L and ΠL =
d⊗

k=1

πL . (4.3)

Further, for all i ∈ {0, . . . , n} and L ∈ N, we define

V̄ L
i =

(
V̄ L

)⊗(i+1)
and V L

i = V̄ L
i−1 ⊗ V L (4.4)

and the corresponding operators Π̄L
i : L2(D × Yi) → V̄ L

i and ΠL
i : L2(D × Yi−1) ⊗(

H1(0, 1)
)⊗d → V L

i given by

Π̄L
i =

(
Π̄L

)⊗(i+1)
and ΠL

i = Π̄L
i−1 ⊗ΠL . (4.5)

In particular, we have V̄ L
0 = V̄ L, V L

0 = V L, Π̄L
0 = Π̄L and ΠL

0 = ΠL.
The following accuracy bounds for Π̄L

i and ΠL
i with i ∈ {1, . . . , n} and L ∈ N

can be derived from Proposition 4.2.
Lemma 4.3. Let i ∈ {0, . . . , n} and ‖·‖∞ denote ‖·‖L∞(D×Yi). Assume that

v ∈ C1(D × Yi) and w ∈ C3(D × Yi). Then the following error bounds hold for all
L ∈ N and k ∈ {1, . . . , d}:

‖v − Π̄L
i v‖∞ ≤ 2−L

i∑

j′=0

d∑

k′=1

‖∂j′k′w‖∞ ,

‖w −ΠL
i w‖∞ ≤ 2−L

i−1∑

j′=0

d∑

k′=1

‖∂j′k′w‖∞ + 2−2L−3
d∑

k′=1

‖∂2ik′w‖∞ ,

‖∂ik(w −ΠL
i w)‖∞ ≤ 2−L

i−1∑

j′=0

d∑

k′=1

‖∂j′k′∂ikw‖∞ + 2−L
d∑

k′=1

‖∂2ik′∂ikw‖∞ .

We give a proof of Lemma 4.3 in the Appendix.
For all i ∈ {0, . . . , n} and L ∈ N, the projections produced by the operators

Π̄L
i and ΠL

i , defined by (4.5), can be parametrized by the coefficients

17



extracted using the analysis operators Ψ̄L
i : L2(D × Yi) → C2(i+1)dL

and

ΨL
i : L2(D × Yi−1)⊗

(
H1(0, 1)

)⊗d → C2(i+1)dL

given by

Ψ̄L
i =

i⊗

j=0

Ψ̄L and ΨL
i = Ψ̄L

i−1 ⊗ ΨL (4.6)

for i ∈ {0, . . . , n}, so that, in particular, Ψ̄L
0 = Ψ̄L and ΨL

0 = ΨL.

4.2. High-order approximation.

4.2.1. High-order approximation on an interval. By T̃α with α ∈ N0, we
denote the Chebyshev polynomials of the first kind orthogonal on (0, 1):

T̃α(x) = cos
{
n arccos(2x− 1)

}
for all x ∈ (0, 1) and α ∈ N0 , (4.7)

so that the orthogonality property holds with respect to the weight function ω given
by

ω(x) = 1/
√
x (1− x) for all x ∈ (0, 1) . (4.8)

Specifically, we have

〈T̃α, T̃α′〉L2
ω(0,1) =

∫ 1

0

ω T̃α T̃α′ = δαα′ ‖T̃α‖2L2
ω(0,1) for all α, α′ ∈ N0 , (4.9)

where ‖T̃0‖2L2
ω(0,1) = π and ‖T̃α‖2L2

ω(0,1) =
π

2
for all α ∈ N.

Further, we consider the complex exponentials T̂α with α ∈ Z defined as follows:

T̂α(x) = exp(2πiαx) for all x ∈ (0, 1) and α ∈ Z . (4.10)

These are also orthogonal on (0, 1):

〈T̂α, T̂α′〉L2(0,1) =

∫ 1

0

T̂ ∗
α T̂α′ = δαα′ for all α, α′ ∈ Z . (4.11)

We will use the following notation for the spaces of univariate algebraic and
trigonometric polynomials of degree at most p ∈ N0:

Pp = span{T̃α}pα=0 and P#p = span
{
T̂α

}p

α=−p
, (4.12)

where the span is meant with respect to the field C.
We will use polynomial approximations obtained by the following orthogonal

projections onto Pp and P#p with p ∈ N0:

πp =
1

π
T̃0 〈T̃0, · 〉L2

ω(0,1) +
2

π

p∑

α=1

T̃α 〈T̃α, · 〉L2
ω(0,1) : L

2
ω(0, 1) → Pp ,

π#p = T̂0 〈T̂0, · 〉L2(0,1) +

p∑

±α=1

T̂α 〈T̂α, · 〉L2(0,1) : L
2(0, 1) → P#p .

4.2.2. High-order approximation on D × Yi. For every i ∈ {1, . . . , n},
denoting by id the identity transformation of Cid, let us define the following
tensor-product operators:

Πi,p = π⊗d
p ⊗ π⊗id

#p : L2
ω⊗d⊗id

(D × Yi) → P⊗d
p ⊗P⊗id

#p

for all p ∈ N0. Here, ω denotes the weight function (4.8). The following lemma verifies
that, when applied to analytic functions, these operators yield approximations that
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converge exponentially with respect to p ∈ N0. Proofs for the following two classical
results are provided in the Appendix.

Lemma 4.4. Assume that i ∈ {1, . . . , n} and w ∈ Vi is analytic and one-periodic
with respect to each of the last id scalar variables on D × Yi. Let ǫ0 > 0. Then there
exist positive constants C and c such that, for any ǫ ∈ (0, ǫ0) and for p = ⌈c log ǫ−1⌉,
the following bounds hold for all k ∈ {1, . . . , d} and j ∈ {1, . . . , i}:

‖w −Πi,p w‖L∞(D×Yi) ≤ Cǫ , ‖∂k(w −Πi,p w)‖L∞(D×Yi) ≤ Cǫp2 ,

‖∂jk(w −Πi,p w)‖L∞(D×Yi) ≤ C ǫp .
(4.13)

Lemma 4.5. Let the assumptions of Lemma 4.4 hold and ‖·‖∞ denote
‖·‖L∞(D×Yi). Then there exist positive constants C and c such that, for any L ∈ N

and for p = ⌈cL⌉, the following bounds hold for every k ∈ {1, . . . , d}:

‖∂ik(w −ΠL
i Πi,p w)‖∞ ≤ C p2 2−L and ‖∂ikw − Π̄L

i ∂ikΠi,p w‖∞ ≤ C p2 2−L .

4.3. Low-rank tensor approximation. In this section, for i ∈ {1, . . . , n} and
L ∈ N, we consider

wL
i = (ΠL

i Πi,pL
wik)

d
k=1 ∈

(
V L
i

)d
and JL

i = (Π̄L
i ∂ikΠi,pL

wik′)dk′,k=1 ∈
(
V̄ L
i

)d×d

(4.14)
with a suitable pL ∈ N as approximations to wi and Jiwi, where wi is the solution
of (3.16). Then the approximation scheme (3.23) produces uLi ∈ V L

i and vLi ∈ (V̄ L
i )d.

Section 4.3.1 relates the error of the approximation scheme (3.23), bounded
by (3.24)–(3.25), to the error of wL

i and JL
i as approximations to wi and Jiwi for all

i ∈ {1, . . . , n} and L ∈ N.
In Section 4.3.2, the error bounds proved in Section 4.3.1 are followed by a

quantized tensor-rank analysis, which is based on auxiliary definitions and rank
bounds which are also provided in Section 4.3.2.

The analysis is based on the following assumption regarding the low-rank TT-
MPS approximability of the solution u0 of (3.21) and of its gradient v0 = ∇u0.

Assumption 4.6 (the low-rank approximability of the homogenized solution u0,
with α0 ∈ (0, 1] and with positive constants C0, ν0 and c0). There exist uL0 ∈ V̄ L and
vL0 ∈ (V̄ L)d with L ∈ N such that

‖(u0, v0)− (uL0 , v
L
0 )‖L2(D)d+1 ≤ C0 2

−αL for each L ∈ N (4.15)

and the subspace WL = span{uL0 , vL0,1, . . . , vL0,d} factorizes at every level

ℓ ∈ {1, . . . , L− 1} with rank not exceeding c0L
ν0d.

The purpose of Sections 4.3.3 and 4.3.5 is to bound the growth with respect
to L ∈ N of the maximum ranks (2.15) for the coefficients of uL1 , . . . , u

L
n and UεvLn

under Assumption 4.6, which we justify in Section 4.3.6 in the case of d = 2 physical
dimensions.

4.3.1. Accuracy of the approximation scheme. Under Assumption 4.1,
differentiating the equation expressing the cell problem (3.16) in the strong form for
i ∈ {1, . . . , n}, one verifies that the solutions wi ∈ V d

i with i ∈ {1, . . . , n} are
analytic and therefore satisfy the assumption of Lemma 4.4. This gives that, with a
positive constant c, for any L ∈ N and for

pL = ⌈cL⌉ , (4.16)

the approximations wL
i and JL

i defined by (4.14) satisfy the error bounds

‖wi − wL
i ‖Wi

. L2 2−L and ‖Jiwi − JL
i ‖L∞(D×Yi−1,L2(Yi))d×d . L2 2−L
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The equivalence holds with a positive constant that is independent of L ∈ N and
i ∈ {1, . . . , n}. Then the bounds (3.24)–(3.25) for the approximation scheme (3.23)
show that the resulting approximations uLi ∈ Vi and vLi ∈ L2(D × Yi)

d satisfy the
bounds

‖ui − uLi ‖Vi
,
∥∥vi − vLi

∥∥
L2(D×Yi)d

. ‖v0 − vL0 ‖L2(D)d + L2 2−L (4.17)

with a positive equivalence constant independent of L ∈ N and i ∈ {1, . . . , n}.
4.3.2. Auxiliary subspaces and results. For all L ∈ N and p ∈ N0, we will

use the following notation for the sets of tensors obtained by evaluating d-variate
algebraic and trigonometric polynomials of maximum degree at most p on a uniform
tensor-product grid with 2L nodes in each variable:

PL,d
p = ΨL P⊗d

p ⊂ C
2dL and PL,d

#p = Ψ̄L P⊗d
#p ⊂ C

2dL . (4.18)

Let us extend (4.12) and (4.18) by introducing, for all p ∈ N0, L ∈ N and λ ∈ Z,

P#p,λ = span
{
T̂α(2

λ · )
}p

α=−p
and PL,d

#p,λ = Ψ̄L P⊗d
#p,λ ⊂ C

2dL . (4.19)

We will use several results, stated below, to analyze the low-rank structure of the
approximations uLi ∈ Vi and vLi ∈ L2(D×Yi)

d with i ∈ {1, . . . , n} and L ∈ N, defined
by (3.23) and (4.14).

Proposition 4.7. For all p ∈ N0 and L ∈ N, the subspaces Π̄LP⊗d
p ⊂ V̄ L and

ΠLP⊗d
p ⊂ V L factorize with rank (p + 1)d at every level ℓ ∈ {1, . . . , L − 1} in the

sense of Definition 2.2: PL,d
p ⊂ Pℓ,d

p ⊗ PL−ℓ,d
p .

The proof of Proposition 4.7 follows trivially from the binomial formula applied
to the standard basis of monomials.

An immediate consequence of Proposition 4.7 is that the tensor of the values of any
d-variate polynomial of maximum degree at most p ∈ N at any tensor-product uniform
grid with 2L entries in each dimension can be represented in the QTT decomposition
with ranks not exceeding (p + 1)d. This was originally shown, in the case of d = 1,
in [25, Corollary 13]. The language of space factorization, which we adopt here,
is different from that of [58, 60, 44, 25]; we use it here to mostly avoid lengthy
expressions for explicit basis expansions with numerous indices associated with nodes
of tensor-product grids. We refer to Section 2.1.4 for an exposition of the subspace
interpretation of the TT-MPS decomposition.

The additional notation (4.19) allows to state the following analog of
Proposition 4.7 for trigonometric polynomials, which is an immediate consequence of
the separability of the exponential function.

Proposition 4.8. For all p ∈ N0 and L ∈ N, the subspaces Π̄LP⊗d
#p ⊂ V̄ L and

ΠLP⊗d
#p ⊂ V L factorize with rank (2p + 1)d at every level ℓ ∈ {1, . . . , L − 1} in the

sense of Definition 2.2: PL,d
#p ⊂ Pℓ,d

#p ⊗ PL−ℓ,d
#p,−ℓ .

4.3.3. Approximation of the one-scale high-dimensional limit problem.
The approximations given by (3.23) and (4.14) realize arbitrary accuracy and belong
to tensor products of spaces of algebraic and trigonometric polynomials:

wL
i ∈ Π̄LP⊗d

pL
⊗

i−1⊗

j=1

Π̄LP⊗d
#pL

⊗ΠLP⊗d
#pL

(4.20)

for all L ∈ N and i ∈ {1, . . . , n}. For every L ∈ N, we consider the subspaces

WL = WL = span{uL0 , vL0,1, . . . , vL0,d} ⊂ V̄ L and SL
0 = WL ⊙ Π̄LP⊗d

pL
⊂ V̄ L .

(4.21)
Here and throughout, the sign “⊙” between two spaces denotes the operation of con-
structing the subspace that consists of all pointwise products of all pairs of elements
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from the respective spaces. Assuming that WL factorizes with rank r ∈ N at every
level ℓ ∈ {0, . . . , L} in the sense of Definition 2.2, we obtain from (4.21) and Proposi-
tion 4.7 that SL

0 factorizes with rank r0 = r(pL +1)d at every level ℓ ∈ {0, . . . , L}. In
particular, with ℓ = L, we obtain dimSL

0 ≤ r0.

For all L ∈ N and i ∈ {1, . . . , n}, relations (4.20) and (3.23) with (4.14) result in

vLi ∈ (Q̄L
i )

d with Q̄L
i = SL

0 ⊗
i⊗

j=1

Π̄LP⊗d
#(i+1−j)pL

⊂ V̄ L
i (4.22)

and

uLi ∈ QL
i = SL

0 ⊗
i⊗

j=1

Π̄LP⊗d
#(i+1−j)pL

⊗ΠLP⊗d
#pL

⊂ V L
i . (4.23)

Theorem 4.9. Let Assumptions 2.1 and 4.1 hold and (u0, u1, . . . , un) ∈ Vn be
the solution of (3.6). Consider vL0 ∈ (V̄ L

i )d with L ∈ N satisfying Assumption 4.6
with α0 ∈ (0, 1] and positive constants C0, c0, ν0. Then the approximations uLi ∈ V L

i

with L ∈ N and i ∈ {1, . . . , n} given by (3.23) and (4.14) satisfy the following with
α̃ ∈ (0, α0) (which may be chosen arbitrarily close to α0) and with positive constants
C̃ and c̃ independent of L.

For all L ∈ N and i ∈ {1, . . . , n}, the bound ‖ui − uLi ‖V ≤ C̃ 2−α̃L holds and the
coefficient tensor ΨL

i u
L
i has a decomposition of the form (2.13) with (i + 1)L levels

and with ranks bounded from above by c̃L(n+1+ν0)d.

Proof. Consider i ∈ {1, . . . , n} and L ∈ N. The claimed accuracy bound follows
from (4.17).

To bound the first L ranks, we note that the subspace WL defined in (4.21)
factorizes at every level ℓ ∈ {1, . . . , L} with rank not exceeding c0L

ν0d by
Assumption 4.6. Then, by the argument following (4.21), SL

0 factorizes at every level
ℓ ∈ {0, . . . , L} with rank not exceeding c0L

ν0d(pL + 1)d.

To bound the other ranks, we now consider j ∈ {1, . . . , i} and ℓ ∈ {1, . . . , L}
and factorize QL

i so that the first factor is a subspace of C2jdL+dℓ

. This subspace
corresponds to the finest ℓ levels of the jth microscale and all levels of all coarser scales.
The dimension of this subspace majorates the corresponding rank of ΨL

i u
L
i ∈ ΨL

i (Q
L
i ).

Applying Proposition 4.8, we obtain PL,d
#(i+1−j)pL

⊂ Pℓ,d
#(i+1−j)pL

⊗PL−ℓ,d
#(i+1−j)pL,−ℓ,

where the dimension of both the factors is (2(i + 1 − j)pL + 1)d. Then we have

ΨL
i (Q

L
i ) ⊂ L⊗ M with L= ΨL

i (S
L
0 ) ⊗ ⊗j−1

m=1 P
L,d

#(i+1−m)pL
⊗ Pℓ,d

#(i+1−j)pL
and M=

PL−ℓ,d
#(i+1−j)pL,−ℓ ⊗

⊗i
m=j+1 P

L,d
#(i+1−m)pL

. Using (4.16), we bound the dimension of the

first factor as follows:

dimL≤ (dimSL
0 ) dimPℓ,d

#(i+1−j)pL

j−1∏

m=1

dimPL,d
#(i+1−m)pL

≤ c0L
ν0d(pL + 1)d

j∏

m=1

(2(i+ 1−m)pL + 1)d ≤ c̃L(n+1+ν0)d

with a suitable positive constant c̃ that depends on on n, d, as well as on c and c0, ν0
appearing in (4.16) and in Assumption 4.6 but not on L.

4.3.4. Approximation of the homogenized gradient. In this section, we
analyze the low-rank structure and accuracy of UεvΛn with Λ ∈ N as an approximation
to Uεvn. Index Λ is used because, as we show below, UεvΛn ∈ V̄ λn+Λ, and we choose to
reserve L for the (total) number of levels of the resulting approximation: L = λn+Λ.
As in Section 4.3.3, we develop our analysis here under Assumptions 2.1, 4.1 and 4.6.
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We start with the matrix representation of the averaging operators, defined in
Section 3.2. To this end, for all Λ ∈ N and i ∈ {1, . . . , n}, we define the matrices

EΛ
i =

(
1 0
0 1

)⊗d(λi−1+Λ)

⊗
(
1
1

)⊗d(λi−λi−1)

∈ Rd(λi+Λ)×d(λi−1+Λ) ,

MΛ
i =

(
1 0
0 1

)⊗dλi

⊗ 2−dΛ

(
1 1
1 1

)⊗dΛ

∈ Rd(λi+Λ)×d(λi+Λ) ,

FΛ
i =

(
1
1

)⊗dλi

⊗
(
1 0
0 1

)⊗dΛ

∈ Rd(λi+Λ)×dΛ .

(4.24)

These matrices represent the averaging operator Uεi corresponding to microscale εi
as follows.

Lemma 4.10. Let Λ ∈ N and i ∈ {1, . . . , n}. Consider v ∈ V̄ λi−1+Λ and w ∈ V̄ Λ.
Then Uεi (v ⊗ w) ∈ V̄ λi+Λ and

(Ψ̄λi+Λ ◦ Uεi) (v ⊗ w) = (MΛ
i E

Λ
i Ψ̄

λi−1+Λv)⊙ (FΛ
i Ψ̄Λw) . (4.25)

Proof. Applying Definition 3.4, we obtain Uεi(v ⊗ w) = v̄ · w̃ ∈ V̄ λi+Λ ⊂ L2(D),
where v̄, w̃ ∈ V̄ λi+Λ are given by

v̄(x) =

∫

Yi

v
(
εi

[ x
εi

]
+ εiz

)
dz and w̃(x) = w

({ x
εi

})
for all x ∈ D .

Then we trivially have

(Ψ̄λi+Λ ◦ Uεi) (v ⊗ w) = (Ψ̄λi+Λ v̄)⊙ (Ψ̄λi+Λ w̃) . (4.26)

Let us set vΛ = Ψ̄λi−1+Λ v and wΛ = Ψ̄Λ w.
First, we observe that we have v ∈ V̄ λi+Λ and Ψ̄λi+Λ v = EΛ

i v
Λ. This is due to

thatEΛ
i is the matrix of the embedding V̄ λi−1+Λ → V̄ λi+Λ (with respect to the tensor-

product bases obtained from the univariate ones defined in Section 2.1.1). Note that
the order of the Kronecker factors in (4.24) agrees with the use of transposition (2.9)
in (2.12): the factors can be split into contiguous groups of d factors corresponding
in a one-to-one fashion to the levels of the uniform hierarchical partitioning of D.

Further, the multiplication of EΛ
i v

Λ by MΛ
i amounts to averaging 2dΛ entries

within each of the 2dλi contiguous blocks of the vector EΛ
i v

Λ. Again, the order of
the Kronecker factors in (4.24) agrees with the use of transposition (2.9) in (2.12): in
terms of transforming v, the above averaging of the coefficient vector is nothing else
than averaging v over the translations of εiYi that partition D. This gives Ψ̄λi+Λ v̄ =
MΛ

i E
Λ
i v

Λ.
Finally, the multiplication of wΛ by FΛ

i amounts to translating the coefficient
periodically 2dλi times, so that Ψ̄λi+Λ w̃ = FΛ

i w
Λ.

Combining the above observations with (4.26), we obtain (Ψ̄λi+Λ ◦ Uεi) (v⊗w) =
(MΛ

i E
Λ
i v

Λ)⊙ (FΛ
i w

Λ).
Corollary 4.11. Let Λ ∈ N, i ∈ {1, . . . , n} and ℓ ∈ {0, . . . , λi + Λ}. The

following statements on subspace factorization at level ℓ in the sense of Definition 2.2
hold.

a) For ℓ < min{λi−1 + Λ, λi}, consider a subspace S ⊂ V̄ λi−1+Λ factorizing at
level ℓ with rank r ∈ N. Then the subspace Uεi(S ⊗ V̄ Λ) factorizes at level
ℓ with rank r.

b) For min{λi−1 + Λ, λi} ≤ ℓ ≤ λi, consider a subspace S ⊂ V̄ λi−1+Λ. Then
the subspace Uεi(S ⊗ V̄ Λ) factorizes at level ℓ with rank dimS.

c) For ℓ > λi, consider a subspace T ⊂ V̄ Λ factorizing at level with rank r ∈ N

ℓ−λi and a subspace S ⊂ V̄ λi−1+Λ. Then the subspace Uεi(S⊗T ) factorizes
at level ℓ with rank r · dimS.
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Proof. In each part and for each ℓ, the corresponding subspace factorization
follows from equation (4.25) of Lemma 4.10. The claim regarding the dimension of
the resulting subspace follows immediately from the Kronecker-product form of the
matrices defined in (4.24).

Let us consider the subspace SΛ
0 defined in (4.21). For i = 1, . . . , n, we iteratively

define the subspace

SΛ
i = Uεi

(
SΛ
i−1 ⊗ Π̄ΛP⊗d

#(n+1−i)pΛ

)
⊂ V̄ λi+Λ , (4.27)

where Uεi is given by Definition 3.4. From (4.22) with i = n, recalling Definition 3.6,
we derive

UεvΛn = Uε
n ◦ · · · ◦ Uε

1 (v
Λ
n )

= Uεn ◦ (Uεn−1 ⊗ idYn
) ◦ · · · ◦ (Uε1 ⊗ idY2×···×Yn

) (vΛn ) ∈ SΛ
n

We will now assume that the subspace WΛ factorizes with rank r ∈ N at every
level ℓ ∈ {0, . . . , Λ} in the sense of Definition 2.2 and establish, for all i ∈ {0, . . . , n}
and ℓ ∈ {1, . . . , λi + Λ− 1}, the factorization of SΛ

i at level ℓ with rank

Riℓ =





r0 if λ0 < ℓ ≤ λ1,
...

...

ri−1 if λi−1 < ℓ ≤ λi,

ri if λi < ℓ ≤ λi + Λ− 1,

(4.28)

where r0 = r(pΛ + 1)d and ri = ri−1(2(n+ 1− i)pΛ + 1)d for each i ∈ {1, . . . , n}.
First, as we noted in the discussion following (4.21), SΛ

0 factorizes at every level
ℓ ∈ {0, . . . , λ0 + Λ} with rank R0,ℓ = r0, and dimSΛ

0 ≤ r0.
Next, consider i ∈ {1, . . . , n} and assume that the subspace SΛ

i−1 factorizes at
every level ℓ ∈ {0, . . . , λi−1 + Λ} with rank Ri−1,ℓ. Then, by Corollary 4.11 and
Proposition 4.8, the subspace SΛ

i factorizes at every level ℓ ∈ {0, . . . , λi + Λ} with
rank Riℓ. By induction, the subspace SΛ

n factorizes at every level ℓ ∈ {0, . . . , λn +Λ},
with rank Rnℓ. This implies (see Section 2.1.4) that Ψ̄Λ Uε

nv
Λ
n ∈ C2d(λn+Λ)

has a
representation of the form (2.13) with ranks Rnℓ, ℓ = 1, . . . , λn+Λ−1. The maximum
rank rmax (2.15) and the numberN of effective parameters (2.14) of this representation
can be bounded as follows:

rmax ≤ rn ≤ r (pΛ + 1)d (2(n+ 1)pΛ + 1)nd ≤ c̃ Λθ (4.29)

with θ = (n+ 1 + ν0)d and

N ≤ 2d(λ1 − 1)r20 +

n∑

i=2

2d(λi − λi−1)r
2
i−1 + 2d(Λ+ 1)r2n ≤ c̃ 2 (λn + Λ)Λ2θ ≤ c̃ 2 Lκ .

(4.30)
with κ = 2θ = 2(n + 1 + ν0)d. Here, as above, L = λ1 + Λ is the (total) number of
discretization levels. In (4.29) and (4.30), r0, . . . , rn are bounded for the choice (4.16)
of pΛ and under Assumption 4.6. The constant c̃ therefore depends on n, d, as well as
on c and c0, ν0 appearing in (4.16) and in Assumption 4.6 but not on Λ or ε1, . . . , εn.
However crude the final bounds of (4.29) and (4.30) are, they show that rmax and N
grow at most algebraically with respect to Λ and also, more crudely, with respect to
L = λ1 + Λ.

Summarizing the above discussion and combining the error bound of
Assumption 4.6 with (4.16), (4.17), and (3.12), we obtain the following result.

Theorem 4.12. Let Assumptions 2.1, 4.1 and 4.6 hold. Consider the solution
(u0, u1, . . . , un) ∈ Vn of (3.6). Then the approximations UεvΛn ∈ (V̄ λn+Λ)d with
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Λ ∈ N, defined by (3.23) and (4.14), where vn is defined by (3.7), satisfy the following
with a constant α̃ ∈ (0, α0) (which may be chosen arbitrarily close to α0) and with
positive constants C̃ and c̃ independent of Λ ∈ N and ε > 0.

For all Λ ∈ N, the error bound ‖Uεvn − UεvΛn ‖L2(D)d ≤ C̃ 2−α̃Λ holds and the

coefficient tensor Ψ̄λn+Λ UεvΛn has a decomposition of the form (2.13) with ranks
bounded from above by c̃Λθ, where θ = (n+ 1 + ν0)d.

Note that Theorem 4.12 only bounds the error of approximating the
“homogenized” gradient Uεvn with a low-rank function UεvΛn . This is also why it
involves the scale parameter only via the averaging and evaluation operators.
Whenever the convergence of the homogenization error ‖Uεvn − ∇uε‖L2(D)d as

ε→ 0 can be quantified, Theorem 4.12 leads to a bound for ‖UεvΛn −∇uε‖L2(D)d , as
we elaborate in the next section.

4.3.5. Approximation of the multiscale problem with a single
microscale. To the best of our knowledge, results on the rate of convergence of the
homogenization error are available only in the case of a single (n = 1) microscale
ε1 = 2−λ1 with λ1 ∈ N and under additional smoothness assumptions on u0 (see
Proposition 3.5), so we choose this case to illustrate the results of Section 4.3.4.

Assuming that ‖Uε1v1 −∇uε‖L2(D)d+1 ≤ Cεs1 for any ε1 > 0 with s ∈ (0, 1] and
with a positive constant C, both independent of ε1, and using the notations from the
statement of Theorem 4.12, we obtain

‖UεvΛ1 −∇uε‖L2(D)d ≤ ‖UεvΛ1 − Uεv1‖L2(D)d + ‖Uεv1 −∇uε‖L2(D)d

≤ C̃ 2−α̃Λ + Cεs1 = C̃ 2−α̃Λ + C 2−sλ1 ≤ (C̃ + C) 2−α̃Λ . (4.31)

The last inequality is obtained under the assumption

Λ ≤ s

α̃
λ1 , (4.32)

which allows to absorb the term bounding the error of homogenization.
First of all, we note that, for any fixed ε1 > 0, our analysis yields no asymptotic

error bounds for the low-rank approximation of ∇uε and does not estimate the rate at
which the error converges to zero with respect to the numberN of effective parameters.
This is an artifact of our method of analysis. The error of homogenization which
remains fixed once ε1 has been fixed, precludes the derivation of an ε1-uniform bound
on the maximum rank in terms of accuracy.

Crucial for the meaningful interpretation of the bounds (4.29) and (4.31) is that
the constants involved are all independent of Λ ∈ N and λ1 = log2 ε

−1
1 ∈ N. As a

result, the bounds hold for the whole sequence of low-rank finite-element
approximations indexed by Λ ∈ N and λ1 ∈ N such that (4.32). Any desired
accuracy ǫ of approximation can be realized by finite-element functions with the
corresponding number Λ ≃ log2 ǫ

−1 of discretization levels added to the first
λ1 = log2 ε

−1
1 levels, for all multiscale problems with λ1 ∈ N sufficiently large to

satisfy (4.32). At the same time, the ranks of these approximations are bounded
from above (4.29) uniformly with respect to ε1 = 2−λ1 and grow no faster than
algebraically with respect to Λ, and ǫ therefore decays root-exponentially with
respect to the maximum rank rmax (namely, exponentially with respect to θ

√
rmax).

4.3.6. Physical domains in two dimensions: approximation of functions
with corner singularities. In this section, we consider the case of d = 2 physical
dimensions. By invoking a result from [35, 40], we show that Assumption 4.6 on the
homogenized solution u0 and its gradient v) = ∇u0 holds in that case. Regarding
the case of d = 3 dimensions, we mention that an analogous analysis is currently
available for point singularities [52]. That analysis, however, does not cover all types
of singularities that u0 and v0 may exhibit when d = 3, which is why we restrict our
exposition to the case of d = 2.
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In order to quantify analytic regularity of the solution u0 of the homogenized
equation in a physical domain Ω ⊂ R2, we use spaces of functions defined on Ω that
are analytic on the closure of Ω except for a finite number of corner points where
algebraic singularities of a certain order may occur. The analytic regularity of the
homogenized solution u0, expressed in terms of corner-weighted Sobolev spaces in Ω
allows us to leverage exponential rank bounds of QTT-FEM from [35, 40]. To define
the corner-weighted Sobolev spaces, with any set Θ of a finite number of distinct
points in R2, we associate the weight function χΘ given by

χΘ(x) =
∏

ϑ∈Θ

‖x− ϑ‖2 for all x ∈ R
2 , (4.33)

where ‖ · ‖2 denotes the Euclidean norm on R2.
To quantify the analytic regularity of solutions to the high-dimensional one-scale

problem, we use weighted Sobolev spaces and associated countably normed classes
as introduced in [48, 47, 8, 7, 9] and denoted here by Hm,ℓ

Θ,β(Ω) and Cℓ
Θ,β(Ω) with

ℓ ∈ {1, 2}, m ∈ {0, 1, . . . , ℓ} and β ∈ [0, 1), where Ω ⊂ R2 is a polygonal domain and
Θ is a set of S ∈ N distinct points in Ω.

To express analytic regularity in a form which is suitable to establish exponential
QTT-FE approximation rates, we use corner-weighted Sobolev spaces:

Hm,0
Θ,β (Ω) =

{
u : Ω → R : χ

β+|α|
Θ ∂αu ∈ L2(Ω) if 0 ≤ |α| ≤ m

}

for all ℓ ≥ 0 and

Hm,ℓ
Θ,β(Ω) =

{
u ∈ Hℓ−1(Ω) : χ

β+|α|−ℓ
Θ ∂αu ∈ L2(Ω) if 0 ≤ |α| ≤ m

}

for all m ≥ ℓ ≥ 1, where the differentiation is understood in the weak sense. By
setting

|u|2
Hm,ℓ

Θ,β
(Ω)

=
∑

|α|=m

‖χβ+m−ℓ
Θ ∂αu‖2L2(Ω) for all u ∈ Hm,ℓ

Θ,β(Ω), (4.34)

we introduce |·|Hm,ℓ
Θ,β

(Ω), a seminorm on Hm,ℓ
Θ,β(Ω). Also, by setting

‖u‖2
Hm,0

Θ,β
(Ω)

=

m∑

k=0

|u|2
Hm,0

Θ,β
(Ω)

for u ∈ Hm,0
Θ,β (Ω), m ≥ 0,

‖u‖2
Hm,ℓ

Θ,β
(Ω)

= ‖u‖2Hℓ−1(Ω) +

m∑

k=ℓ

|u|2
Hk,ℓ

Θ,β
(Ω)

for u ∈ Hm,ℓ
Θ,β(Ω), m ≥ ℓ ≥ 1,

we define ‖·‖2
Hm,ℓ

Θ,β
(Ω)

, a norm on Hm,ℓ
Θ,β(Ω) for any ℓ,m ∈ N0 such that m ≥ ℓ.

Definition 4.13 (analyticity of a function with point algebraic singularities, with
positive constants M and ρ). Let β ∈ [0, 1), Ω ⊂ R2 be a polygonal domain, Θ be a

finite set of distinct points in Ω and ℓ ∈ {1, 2}. Then u ∈ Cℓ
Θ,β(Ω) if u ∈ Hℓ,ℓ

Θ,β(Ω)

and there exist positive constants M and ρ such that, for all α ∈ N2
0 with |α| ≥ ℓ− 1,

sup
x∈Ω

χ
β+|α|−ℓ+1
Θ (x)

∣∣∂αu(x)
∣∣ ≤Mρ|α| |α|! .

The following result is a consequence of [7, Theorems 3.4–3.5] for the iterated-
homogenization scheme of (3.16)–(3.19).

Proposition 4.14. Assume that Θ is the set of vertices of the unit square D =
(0, 1)2. Let Assumptions 2.1 and 4.1 hold. Then the solution u0 of the homogenized
problem (3.21) satisfies u0 ∈ C2

Θ,β(D) with some β ∈ [0, 1).
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Note that this statement remains valid for an arbitrary curvilinear polygon with
piecewise-analytic boundary [7]. However, even in the setting of Assumption 4.1, the
exponent β depends on the transformation diagonalizing the diffusion coefficient at
the vertices of D and can be estimated in terms of the spectral bounds γ and Γ.

We will now combine the weighted-analyticity statement of Proposition 4.14 with
rank bounds for the QTT-FE approximation of functions from C2

Θ,β(D) in [35, 40].
Theorem 4.15. Assume that β ∈ [0, 1) and Θ is the set of the vertices of D. Let

u0 ∈ V ∩ C2
Θ,β(D), ν0 = 1 and α0 ∈ (0, 1 − β). Then there exist positive constants

C0, c0 and functions uL0 ∈ V̄ L and vL0 ∈ (V̄ L)d with L ∈ N satisfying Assumption 4.6
(with constants α0, C0, ν0, c0).

Proof. The claim follows from either of [35, Theorem 5.3.7] and [40, Theorem 5.16].

Indeed, there exist positive constants C, c0 and ûL0 ∈
◦

V L with L ∈ N such that
‖u0 − ûL0 ‖H1(D) ≤ CL3 2−(1−β)L and the ranks of ûL0 are bounded from above by
rL = ⌈c0L2⌉ for each L ∈ N.

For each L ∈ N, we consider uL0 ∈ V̄ L and vL0 ∈ (V̄ L)d defined by uL0 = (π̄L)⊗d u0
and vL0,k =

(
(π̄L)⊗(k−1) ⊗ id ⊗ (π̄L)⊗(d−k)

)
∂ku0 ∈ V̄ L for all k ∈ {1, . . . , d}. Bounds

analogous to those of Proposition 4.2 yield ‖uL0 − ûL0 ‖L2(D) . 2−L|ûL0 |H1(D) and
‖vL0 −∇ûL0 ‖L2(D)d . 2−L|ûL0 |H1(D) with equivalence constants independent of L ∈ N.
Then the triangle inequality gives the error bound of Assumption 4.6 with ν0 = 1
and a suitable positive constant C0. Further, the action of the operators π̄L and ∂k,
up to scaling, consists in adding to and subtracting from the coefficient tensor its
single-position shift along the respective dimension; see, e.g, [10, equations (12a)–
(12e)]. This operation preserves the piecewise-polynomial structure used to establish
rank bounds in [35, Lemma 4.6.1 and Corollary 4.6.2] and in [40, Lemma 5.13 and
Corollary 5.14]. Inspecting those proofs, one concludes that the rank analysis given
there applies verbatim to uL0 and vL0 with each L ∈ N: for every ℓ ∈ {0, 1, . . . , L},
we have that the subspace span{uL0 , vL0,1, . . . , vL0,d} ⊂ V̄ L factorizes at level ℓ with
rank at most rL, so that these approximations satisfy Assumption 4.6 with ν0 = 2,
the constants α0 ∈ (0, 1 − β) and c0 appearing above and with a suitable positive
constant C0.

5. Numerical experiments. In the case of d = 2 dimensions, we give a
parallel numerical study of two series of multiscale problems, with analytic and with
discontinuous diffusion coefficients. For the reader’s convenience, we juxtapose in
pairs all plots corresponding to these two series, placing them, within each pair, on
the left and on the right respectively. As above, we work with the physical domain
D = (0, 1)2, n microscales and the unit cells Y1 = · · · = Yn = (0, 1)2.

First, we define Y -periodic functions ba, bd : R
2 → R by setting

ba(y1, y2) = sin2(πy1) sin
2(πy2) and bd(y1, y2) =

{
1 if y1, y2 ∈

(
1
4 ,

3
4

)
,

0 otherwise,
(5.1)

for all y1, y2 ∈ [0, 1]. The multiscale diffusion tensors considered below in this section
involve the above two functions composed with argument rescaling so as to introduce
microscales and the affine function a0 : D → R defined by

a0(x1, x2) = 1 +
x1
2

+
x2
2

for all x1, x2 ∈ (0, 1) , (5.2)

which we use to introduce macroscale dependence.
The diffusion coefficients are constructed as follows. For a number n ∈ N0 of

microscales ε1, . . . , εn and fixed oscillation amplitudes µ1, . . . , µn ∈ (0, 1), we define
aa, ad : D × Y1 × · · · × Yn → R:

aa = a0⊗ (1−µ1ba)⊗· · ·⊗ (1−µnba) and ad = a0⊗ (1−µ1bd)⊗· · ·⊗ (1−µnbd) .
(5.3)
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Figure 5.1: The graphs of the scalar diffusion coefficients aε
a

(left) and aε
d

(right) with
a single (n = 1) microscale ε1 = 2−2 = 1

4 , and with oscillation amplitude µ1 = 0.2,
see (5.1) and (5.4) Here, λ = − log2 ε1 = 2 is the index of the level at which the factors
introduced via ba and bd oscillate. The diffusion coefficients used in our experiments
involve up to n = 5 such microscales, specified in (5.8) and (5.9), the finest one being
ε5 = 2−40 ≈ 9 · 10−13.

Then we consider Aa, Ad : D × Y1 × · · · × Yn → R given by Aa = I · aa and Ad = I ·
ad, where I is the identity matrix of order two. Note that Aa satisfies both Assump-
tions 2.1 and 4.1, whereas Ad fails to satisfy either (namely, the continuity and an-
alyticity conditions) due to jump discontinuities with respect to the “fast” variables.
Nevertheless, the functions Aa and Ad induce by (2.1) the respective diffusion coef-
ficients2 Aε

a
, Aε

d
∈ L∞(D; Rd×d

sym ). These are given by Aε
a
= I · aε

a
and Aε

d
= I · aε

d
,

where aε
a
, aε

d
∈ L∞(D) are the scalar diffusion coefficients defined by

aε
a
(x) = a0(x) ·

(
1− µ1ba

( x

ε1

))
· · ·

(
1− µnba

( x

εn

))
and

aε
d
(x) = a0(x) ·

(
1− µ1bd

( x

ε1

))
· · ·

(
1− µnbd

( x

εn

))
for a.e. x ∈ D.

(5.4)

The graphs of the scalar diffusion coefficients aε
a

and aε
d

with a single (n = 1)
microscale ε1 = 1

4 and oscillation amplitude µ1 = 0.2 are shown in Figure 5.1.
Both Aε

a
and Aε

d
satisfy the uniform lower and upper bounds stipulated in

Assumption 2.1 with the constants γ =
∏n

i=1(1− µi) and Γ = 2. The corresponding
multiscale problems of the form (2.2) with the right-hand side function
f = 1 ∈ L2(D), which are the weak formulations of the boundary-value problems

{
∇Taε

a
∇uε = 1 on D,
uε = 0 on ∂D

and

{
∇Taε

d
∇uε = 1 on D,
uε = 0 on ∂D,

(5.5)

are therefore well-posed, as we discussed in Section 2. These are the two series of
multiscale problems that we study numerically in this section.

5.1. Analytic coefficients (left plots). We note that the coefficient aa is
analytic with respect to all variables for any number n of microscales, and the
corresponding problems all satisfy Assumption 4.1, under which we analyzed
homogenization approximations to the exact solutions obtained via the one-scale
limit problem.

Let us denote by Θ the set of the corners of D and consider the corresponding
weight function χΘ given by (4.33). The solution uε is analytic on D but exhibits a

2In the experiments presented here, we immediately treat multiscale problems. The microscales
ε1, . . . , εn are therefore fixed and no longer depend on any scale parameter. The superscript ε serves
purely as a notational device, distinguishing, in particular, Aε

a, A
ε

d
, aεa, a

ε

d
from Aa, Ad, aa, ad.
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singularity at every corner ϑ ∈ Θ. Specifically, uε is the product of χ2
Θ logχΘ and

of a function analytic on D; see [17, Theorem 13 in §8 of Chapter 2] or [51, 48, 47].
This means, first of all, that uε ∈ H1+α(D) holds for α ≤ 1 but not for α > 1. In
particular, the quasi-optimality bound (2.23) then holds with α = 1. Furthermore,
we have uε ∈ C2

Θ,0(D) in the sense of Definition 4.13 for any fixed positive microscales
ε1, . . . , εn, but the constants in the definition cannot be chosen independently of the
microscales.

In the present setting, the upscaled coefficients (3.17) all inherit isotropy from
Aε

a
, so that the homogenized coefficient A0 given by (3.20) is isotropic. Together

with the boundary conditions of (5.5), this implies [8, 9] that u0 ∈ H2(D) and,
furthermore, u0 ∈ C2

Θ,0(D). By Theorem 4.15, u0 has an infinite sequence of low-
rank approximations satisfying Assumption 4.6.

Finally, we note that in the case of a single (n = 1) microscale the hypothesis
of Proposition 3.5 is satisfied and the bound (3.11) holds. The discussion given in
Section 4.3.5 therefore applies to this case.

5.2. Discontinuous coefficients (right plots). The coefficient ad, on the
other hand, exhibits jump discontinuities with respect to the “fast” variables for any
positive number n of microscales, and the corresponding problems therefore all fail to
satisfy Assumption 4.1 and to be covered by the analysis given in the present paper.

The discontinuous coefficients give rise to solutions of low regularity. For any
positive ε1, . . . , εn, the jump discontinuities in the diffusion coefficient aε

d
induce jump

discontinuities in ∇uε, leading, in particular, to uε 6∈ H1+α(D) for any α ≥ 1
2 . Locally,

on every Ω ⊂ D such that aε
d

is constant on Ω, we have uε ∈ H1+α(Ω) if and only if
α < α∗, where α∗ ≥ 2

3 is a critical exponent determined, in our setting, by the ratio
of the values of aε

d
on the two sides of ∂Ω. For details, we refer to the work [16],

which covers the discontinuous coefficients we consider here. Since the interfaces
across which aε

d
(and hence of ∇uε) is discontinuous are aligned with the partitioning

underlying the finite-element spaces V L and V̄ L when L ≥ λn (see Section 2.1 and
Assumption 4.1), a convergence bound analogous to (2.23) holds with any α ∈ (0, α∗),
in a suitable broken norm and with a positive constant on the right-hand side.

As our numerical results demonstrate below, the solutions of multiscale problems
with diffusion coefficients aε

d
have low-rank approximations as efficient as the solutions

of the problems with the analytic coefficients aε
a
.

5.3. Experiment design. We present below a numerical study of the
low-rank approximability (in the sense of Section 2.1) of the weak solutions uε of the
problems (5.5) with n ∈ {0, . . . , 5} microscales given by (5.8) and (5.9) and with the
corresponding diffusion coefficients (5.4). Since the exact solutions are not available
in closed form, we approximated them by solving sufficiently fine discretizations of
the problems. The numerical experiments were performed3 in Julia, on a
desktop computer, with a peak RAM usage of 6Gb, using the package
TensorRefinement.jl [36] and a numerical method that was developed
independently from the present paper and will be presented in a forthcoming
publication [37]. For a brief overview of the key approaches for solving linear
systems in the TT-MPS representation that are currently available in the literature,
we refer to Section 2.2 above. For each problem (5.5) (with every number n of
microscales and every diffusion coefficient we considered), the following was done.

First, an approximate solution ũε of a discretization with 51 levels was
computed in the QTT representation (2.13), (2.8). Second, for a selected range of
L ∈ {2, . . . , 50}, a projection ũε,L of (ũε,∇ũε) onto (V L)3 and a low-rank
approximation ūε,L ∈ (V L)3 of ũε,L such that

‖ūε,L − (ũε,∇ũε)‖L2(D)3 ≤ q ‖ũε,L − (ũε,∇ũε)‖L2(D)3 (5.6)

3The code and data of the numerical experiments will be made publicly available at
github.com/vladimirkazeev/kors2.
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Figure 5.2: Multiscale problems (5.5): the projection error ‖ũε,L − (ũε,∇ũε)‖L2(D)3

(vertical axes) against the number L of discretization levels (horizontal axes).
Top. Problems with a single microscale each, see Section 5.4.
Bottom. Problems with up to five microscales each, see Section 5.5.
Left. Diffusion coefficients aε

a
. Right. Diffusion coefficients aε

d
.

For every i ∈ {1, . . . , 5}, the markers for the experiments with the finest microscale
2−8i are not shown for L < 8i. For each i ∈ {1, . . . , 5}, the microscale 2−8i is depicted
by a dotted vertical line L = 8i of the color corresponding to the experiments with
that microscale as the finest one. Each reference line (gray) represents the dependence
C 2−αL with the value of α indicated along the line and with a positive constant C.

were computed for q = 3
2 . By the triangle inequality, the low-rank QTT approximation

ūε,L ∈ (V L)3 satisfies the following accuracy bound:

‖ūε,L − (uε,∇uε)‖L2(D)3 ≤ 3

2
‖ũε,L − (ũε,∇ũε)‖L2(D)3 + ‖ũε − uε‖H1(D) . (5.7)

For each problem, an optimal a posteriori error estimate and the dependence of the
right-hand side of (5.6) on L were used to select the range of L for each problem so
as to ensure that For our choice of the range of L for each problem, the first term
on the right-hand side of (5.7) dominates the second and serves as a suitable proxy
for the error we aim to track, given on the left-hand side of (5.7). This means that
ũε sufficiently accurately approximates the exact solution uε and the exact low-rank
structure of ūε,L therefore sufficiently accurately reflects the low-rank approximability
of (uε,∇uε).

5.4. A single microscale (top plots). In this series of experiments, we con-
sider a single (n = 1) fixed microscale ε1 and the corresponding oscillation amplitude
µ1 set as follows:

ε1 = 2−λ1 with µ1 =
1

2
for λ1 = 8i , where i ∈ {0, . . . , 5} . (5.8)
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Figure 5.3: Multiscale problems (5.5): the number N of effective parameters (2.14) of
the QTT representation of ūε,L (vertical axes) against the number L of discretization
levels (horizontal axes).
Top. Problems with a single microscale each, see Section 5.4.
Bottom. Problems with up to five microscales each, see Section 5.5.
Left. Diffusion coefficients aε

a
. Right. Diffusion coefficients aε

d
.

For each i ∈ {1, . . . , 5}, the microscale 2−8i is depicted by a dotted vertical line L = 8i
of the color corresponding to the experiments with that microscale as the finest one.
Each reference line (gray) represents the dependence N = c Lκ with the value of κ
indicated along the line and with a positive constant c. For each i ∈ {1, . . . , 5}, the
solid line without markers and in the respective color shows the bound (2.15) for N
in terms of the maximum rank rmax obtained experimentally (the latter is plotted in
Figures 5.4 and 5.5).

In the case of i = 0, which we include for comparison, we have λ1 = λ0 ≡ 1 (the
microscale coalesces with the macroscale), so that aε

a
= a0(1− 1

2ba) and aε
d
= a0(1−

1
2bd).

5.5. Several microscales (bottom plots). In this series of experiments, we
consider n ∈ {0, . . . , 5} fixed microscales ε1, . . . , εn and corresponding oscillation
amplitudes µ1, . . . , µn set as follows:

εi = 2−λi with µi = 2−i for λi = 8i , where i ∈ {1, . . . , 5} . (5.9)

In the case of n = 0, which we include for comparison, we have aε
a
= aε

d
= a0.

5.6. Discussion. The error ‖ũε,L − (ũε,∇ũε)‖L2(D)3 is shown in Figure 5.2.
Consistently with the discussion regarding discrete solutions given in Section 2.2
above, this error decays exponentially with respect to L, i.e., algebraically with
respect to the step 2−L of the virtual grid (2.4). The exponent α reflects the
Sobolev smoothness of the solution. In the experiments with analytic diffusion
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Figure 5.4: Multiscale problems (5.5): the maximum rank (2.15) rmax of the QTT
representation of ūε,L (vertical axes). against the number L of discretization levels
(horizontal axes)
Top. Problems with a single microscale each, see Section 5.4.
Bottom. Problems with up to five microscales each, see Section 5.5.
Left. Diffusion coefficients aε

a
. Right. Diffusion coefficients aε

d
.

coefficients, we observe α = 1, which is in agreement with the discussion given in
Section 5.1. In the experiments with discontinuous coefficients, we observe α ≈ 0.89
in the case of a single microscale (n = 1), which agrees with Section 5.2. Indeed,
by [16, equations (21a) and (21b)], the bound for the index of local Sobolev

smoothness is α∗ = 4
π tan−1

√
5√
7
≈ 0.8934 when the diffusion coefficient jumps by a

factor of two. In the case of n > 1 microscales (the bottom right plot), that ratio
varies locally, from one interface to another, between 1 − µ1 and 1 − µn, which
results in convergence with intermediate values of α.

Figures 5.3 and 5.4 show how the number N of parameters (2.14) and the
maximum rank (2.15) rmax of the computed representations (2.13) of ūε,L ∈ (V L)3

depend on L for each problem. For N , we observe

N ≤ C λκ0
n

(
L

λn

)κ

(5.10)

with positive constants C and κ0 that do not depend on the problem within each
series of experiments and with a positive constant κ that does. For the experiments
with discontinuous coefficients, Figure 5.3 shows that the slopes decrease as L
increases. That is consistent with our understanding that none of our experiments is
in the asymptotic regime for N corresponding to large L, which requires L ≫ λn.
Nevertheless, the experimentally observed bound (5.10) is of practical relevance
since our experiments push the number L of levels to the limit imposed by the
double-precision floating-point format. Figure 5.3 shows also, in solid colored lines
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Figure 5.5: Multiscale problems (5.5): the maximum rank (2.15) rmax of the QTT
representation of ūε,L (vertical axes) against the number Λ of discretization levels
beyond the finest microscale (horizontal axes)
Top. Problems with a single microscale each, see Section 5.4.
Bottom. Problems with up to five microscales each, see Section 5.5.
Left. Diffusion coefficients aε

a
. Right. Diffusion coefficients aε

d
.

Each reference line (gray) represents the dependence rmax = cΛθ with the value of θ
indicated along the line and with a positive constant c.

without markers, the bound (2.15) for N in terms of L and rmax for the QTT
decompositions obtained experimentally, which is rather crude compared to the
actual values of N .

Figure 5.5 reports the dependence of the maximum QTT rank rmax (2.15) of the
representations of ūε,L ∈ (V L)3 on Λ = L − λn for each problem, which is precisely
what we analyzed theoretically in Sections 4.3.4 and 4.3.5.

Specifically, for each problem, we observe rmax ≤ CΛθ with positive constants
C and θ depending on the problem. We note that in the experiments with one
microscale (n = 1, top plots), the values of rmax are almost the same for each Λ
independently of λ1. Qualitatively, this behavior agrees with the theoretical bound
stated in Theorem 4.12. However, for none of the problems considered does θ exceed
two, and our theoretical value θ = 2n + 4 is noticeably larger. Such a discrepancy
between theoretical bounds and experimentally observed dependencies is remarkable
but not at all unexpected or uncommon, see Remarks 2.3 and 2.4 above and, for
example, [40, Section 6.2.2].

Furthermore, in the case of n > 1, the exponential decay (5.9) of µi with respect
to the microscale index i allows to adapt the polynomial degree for each microscale
variable by letting the respective values of c in (4.16) decrease linearly with respect
to the microscale index. This has a positive effect even for the approximation of Uεvn
by analytical techniques we constructed in our theoretical analysis. In addition, the
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product form (5.4) of the diffusion coefficients allows to strengthen (4.22) and (4.23) in
the sense that, for each i ∈ {1, . . . , n}, the functions wL

i (4.14), and vLi , u
L
i are also of

product form. Their factors corresponding to D,Y1, . . . , Yi can then be approximated
independently, which means that the rank bound developed in Section 4.3.4 can be
improved in this particular setting.

Finally, comparing Figures 5.4 and 5.5 for the problems with one microscale
(n = 1), we note that the dependence of rmax on L in the pre-asymptotic regime of
L ≃ λ1 is described as algebraic growth with respect to Λ = L− λ1 more accurately
(and with an exponent independent of λ1) than with respect to L. For any positive C
and θ, the dependence rmax = CΛθ corresponds to a straight line in a plot of log rmax

against logΛ, which becomes a curved line in a plot of log rmax against logL. While
the asymptotic slope for L → ∞ equals θ for both the lines, in the pre-asymptotic
regime, the slope of the latter line grows linearly with respect to λ1 at any fixed Λ > 0:

d logΛθ

d logL
= θ

(
1 +

λ1
Λ

)
. (5.11)

This elementary calculation explains the growth of the pre-asymptotic slopes in the
log-log plots of N and rmax against L (the top plots in Figures 5.3 and 5.5) with
respect to λ1.

6. Conclusions and outlook. We analyzed theoretically and studied
numerically the approximability of the solution of a linear elliptic second-order
multiscale diffusion problem in a multilevel tensor decomposition. In our analysis, as
the first of several intermediate approximations, we used the approximation of the
solution and of its derivatives obtained by homogenization. The homogenization
procedure was represented by a high-dimensional but one-scale limit problem, for
which we assumed the analyticity of the data. The resulting analyticity of the
solution of the limit problem allowed to construct approximations of accuracy
converging exponentially with respect to a discretization parameter and of tensor
ranks bounded algebraically with respect to the same discretization parameter. That
led us to an analogous result for the corresponding solution of the original, multiscale
problem, where the above discretization parameter takes the role of the number of
discretization levels beyond the finest microscale. The behavior of the tensor ranks
predicted by our analysis is confirmed in half of our numerical experiments.

The other half of our numerical experiments extends beyond the strong
analyticity assumptions, which are necessary for the particular way of constructing
QTT-FE approximations used in the theoretical analysis presented here. Those
experiments involve jump discontinuities in the diffusion coefficient and clearly
indicate that analogous theoretical results can be expected for non-analytic data.
Another example is the setting of a perforated medium, when the unit cells have
“holes”. In both these settings, the gradient vn (3.7) exhibits singularities on inner
interfaces within the respective unit cells or on the boundaries thereof. The
corresponding generalization of one-scale limit problems for perforated media is
given in [20]. The remainder of our approximation scheme can be adapted
accordingly, with suitable spaces replacing the factors on the right-hand side
of (4.20). Regularity results for parametric unit-cell problems in countably normed
spaces are available (for n = 1 microscale and d = 2 space dimensions) in [53]. When
combined with the QTT-FE approximations developed in [40, 35] and with the
treatment of complex geometry developed in [35, Sections 3 and 5], these can be
expected to lead to accuracy and rank bounds of QTT-FE approximation analogous
to those obtained here.

Furthermore, similar results for homogenization hold for other settings, such as
the so-called reticulated structures and lattice materials (see the survey [21] and the
references therein) and for other types of PDEs (see, e.g., [73, 74, 75, 18, 67] and the
references therein). The corresponding development of QTT-FE approaches for
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these problem classes is a natural extension of the present analysis. Additionally, we
point out that high-dimensional one-scale limit problems with the same tensor
structure as those considered here arise also for certain non-periodic multiscale
problems, which fall into the class of the so-called homogenization structures, as
proposed by Nguetseng in [56]. Finally, we emphasize also that analogous
homogenization results are available for nonlinear problems with multiple scales; we
refer to [29] and to the references therein for further details. The results of the
present paper indicate that such problems can also be solved efficiently by QTT-FE
discretization in combination with a nonlinear solver.

7. Appendix.

Proof of Lemma 4.3.
Proof. Let id denote the identity transformation with respect to a scalar variable

ranging in (0, 1). For all L ∈ N and k ∈ {1, . . . , d}, the errors bounded by the claim
can be represented by telescoping sums as follows:

v − Π̄L
i v =

d∑

k′=1

Π̄L
i−1 ⊗

{( k′−1⊗

k=1

πL

)
⊗
(
id− πL

)
⊗ id

⊗(d−k′)

}
v

+
i∑

j′=1

d∑

k′=1

Π̄L
j′−1 ⊗

{( k′−1⊗

k=1

π̄L

)
⊗
(
id− π̄L

)
⊗ id

⊗(d−k′)

}
⊗ id

⊗(i−j′)d ⊗ id
⊗d v ,

w −ΠL
i w =

d∑

k′=1

Π̄L
i−1 ⊗

{( k′−1⊗

k=1

πL

)
⊗
(
id− πL

)
⊗ id

⊗(d−k′)

}
w

+

i∑

j′=1

d∑

k′=1

Π̄L
j′−1 ⊗

{( k′−1⊗

k=1

π̄L

)
⊗
(
id− π̄L

)
⊗ id

⊗(d−k′)

}
⊗ id

⊗(i−j′)d ⊗ id
⊗d w ,

∂ik(w −ΠL
i w) =

d∑

k′=1

Π̄L
i−1 ⊗

{( k′−1⊗

k=1

πL

)
⊗ ∂ik

(
id− πL

)
⊗ id

⊗(d−k′)

}
w

+

i∑

j′=1

d∑

k′=1

Π̄L
j′−1 ⊗

{( k′−1⊗

k=1

π̄L

)
⊗
(
id− π̄L

)
⊗ id

⊗(d−k′)

}
⊗ id

⊗(i−j′)d ⊗ id
⊗d∂ikw .

Applying Proposition 4.2 to these representations, we obtain the claimed bounds.

Proof of Lemma 4.4.
Proof. The exponentials and shifted Chebyshev polynomials defined by (4.10)

and (4.7) form orthogonal bases in the spaces L2(0, 1) and L2
ω(0, 1) respectively, where

ω is the Chebyshev weight function given by (4.8). It follows from the assumption
that w ∈ L2

ω⊗d⊗id
(D × Yi), so that w can be represented by the following absolutely

convergent series:

w =
∑

α∈Nd
0

∑

β1∈Zd

· · ·
∑

βi∈Zd

cα,β1,...,βi

( d⊗

k=1

T̃αk

)
⊗

( i⊗

j=1

d⊗

k=1

T̂βjk

)
in L2

ω⊗d⊗id
(D×Yi) .

(7.1)
Let us set κ0 = 1, κα = κ−α = 2 (−1)α for each α ∈ N and κα = κα1

· · ·καd
for

all α ∈ Zd. Then, due to (4.9) and (4.11), the coefficients of the series (7.1) can be
expressed as follows:

cα,β1,...,βi
=
κα
πd

〈( d⊗

k=1

T̃αk

)
⊗

( i⊗

j=1

d⊗

k=1

T̂βjk

)
, w

〉
L2

ω⊗d⊗id
(D×Yi)

(7.2)
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for all α ∈ Nd
0 and β1, . . . , βi ∈ Zd.

The entire function z: C → C given by z(ζ) = (1 − cos 2πζ)/2 for all ζ ∈ C

bijectively maps each of the intervals (0, 1/2) and (1/2, 1) onto (0, 1), with opposite
orientations. Then, introducing Z= z⊗d ⊗ id : C(i+1)d → C(i+1)d, we can substitute
Z in (7.2) to express the coefficients of w as follows:

cα,β1,...,βi
=

∑

σ∈{±1}d

ĉσ⊙α,β1,...,βi
for all α ∈ N

d
0 and β1, . . . , βi ∈ Z

d , (7.3)

where “⊙” denotes the component-wise multiplication of multi-indices (so that σ⊙α =
(σ1α1, . . . , σd αd) for any σ ∈ {±1}d and α ∈ Nd

0) and

ĉβ0,β1,...,βi
= κβ0

〈 i⊗

j=0

d⊗

k=1

T̂βjk
, w ◦ Z

〉
L2(D×Yi)

for all β0, β1, . . . , βi ∈ Z
d . (7.4)

For every δ > 0, the function z bijectively maps Sδ =
{
ξ − iη : ξ ∈ (0, 1) , η ∈

(0, δ)
}
⊂ C onto Eδ =

{
(1 − aη cos 2πξ)/2 − i (bη sin 2πξ)/2: ξ ∈ (0, 1) , η ∈ (0, δ)

}
,

where aη = cosh 2πη and bη = sinh 2πη for every η > 0. Note that Eδ ∪ ((1− aδ)/2, 1]
is the image of the standard open Bernstein ellipse with parameter ρ = e2πδ (with foci
±1 and semi-axes aδ and bδ) under the affine mapping C ∋ z 7→ (1− z)/2 ∈ C. Since
the function w is analytic on D × Yi by assumption, it admits analytic continuation
to an open neighborhood of D × Yi. Specifically, for some δi0, δi1, . . . , δii > 0, it has a
unique continuous extension to Gi, where Gi = Ed

δi0
×Sid

δij
, that is holomorphic on Gi.

We identify the original function w with this extension and set Mi = supz∈Gi
|w(z)|.

For the domain Di = S
(i+1)d
δij

, we have Gi = Z(Di) and supζ∈Di
|(w ◦ Z)(ζ)| = Mi.

Furthermore, w◦Z is holomorphic on Di, continuous on Di = Z(Di) and one-periodic
with respect to each of its (i+1)d variables. Using these properties and applying the
Cauchy–Goursat theorem for the domain Di, we obtain

ĉβ0,β1,...,βi
= κα

∫
· · ·

∫

×i
j=0[−iδij ,1−iδij ]d

( i⊗

j=0

d⊗

k=1

T̂ ∗
βjk

)
(w ◦ Z)

and hence |ĉβ0,β1,...,βi
| ≤ Miκα exp(−∑i

j=0 2πδij |βj | ) for all β0, β1, . . . , βi ∈ Nd
0.

Then (7.3) gives

|cα,β1,...,βi
| ≤ 2dMiκα exp

(
−

i∑

j=0

2πδij |βj |
)

(7.5)

for all α ∈ Nd
0 and β1, . . . , βi ∈ Zd.

Now we set δ∗ = min{δi0, δi1, . . . , δii} and verify the claimed bounds for c =
(2πδ∗)−1, p = ⌈c log ǫ−1⌉ and a suitable positive constant C. Let I0 = {0, 1, . . . , p−1},
J0 = {0,±1, . . . ,±(p − 1)} and I1 = N0

r I0, J1 = Zr J0. Using the product index
sets Iµ = Iµ1 × · · · × Iµd

and Jµ = Jµ1 × · · · × Jµd
with µ ∈ {0, 1}d, we can recast

the expansion (7.1) in L2
ω⊗d⊗id

(D × Yi) as follows:

w =

(i+1)d∑

m=0

∑

µ,ν1,...,νi∈{0,1}d :

|µ|+∑i
j=1|νj |=m

∑

α∈Iµ

β1∈Jν1···
βi∈Jνi

cα,β1,...,βi

( d⊗

k=1

T̃αk

)
⊗

( i⊗

j=1

d⊗

k=1

T̂βjk

)
. (7.6)

In the right-hand side of (7.6), the term of the outer sum corresponding to m = 0 is
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Πi,p w, and the remainder can be bounded using (7.5):

‖w −Πi,p w‖L∞(D×Yi) ≤
(i+1)d∑

m=1

∑

µ,ν1,...,νi∈{0,1}d :

|µ|+
∑i

j=1|νj |=m

∑

α∈Iµ

β1∈Jν1···
βi∈Jνi

|cα,β1,...,βi
|

≤ 2dMi 2
d−1 2id

(1− λ)(i+1)d

(i+1)d∑

m=1

ǫm
(
(i+ 1)d

m

)
≤ C0ǫ , (7.7)

where λ = e−2πδ∗ ∈ (0, 1) and C0 = 2dMi(i + 1)d 2(i+1)d−1(1 + ǫ0)
(i+1)d−1/(1 −

λ)(i+1)d > 0. This gives the first of the bounds (4.13) with any constant C ≥ C0,
selected independently of ǫ.

For derivatives of the shifted Chebyshev polynomials and exponentials, we have
‖T̃ ′

α‖L∞(0,1) = 2α2 for all α ∈ N0 and ‖T̂ ′
β‖L∞(0,1) = 2π|β| for all β ∈ Z. Note that

there exist positive constants γ1 and γ2 such that
∑∞

β=r βλ
β ≤ γ1(1−λ)−1r

∑∞
β=r λ

β

and
∑∞

β=r β
2λs ≤ γ2(1 − λ)−2r2

∑∞
β=r λ

β for any r ∈ N0. Using this, we obtain, as
in (7.7), the following inequalities:

‖∂k(w −Πi,p w)‖L∞(D×Yi) ≤
2γ2C0ǫp

2

(1− λ)2
, ‖∂jk(w −Πi,p w)‖L∞(D×Yi) ≤

2πγ1C0ǫp

1− λ
.

for all k ∈ {1, . . . , d} and j ∈ {1, . . . , i}. This proves the last two of the bounds (4.13)
with a suitable positive constant C independent of ǫ ∈ (0, ǫ0).

7.1. Proof of Lemma 4.5.
Proof. Let L ∈ N. Using the triangle inequality, we bound the errors as follows:

‖∂ik (w −ΠL
i Πi,p w)‖∞ ≤ ‖∂ik (id−Πi,p)w‖∞ + ‖∂ik (id−ΠL

i )Πi,p w‖∞ ,

‖∂ikw − Π̄L
i ∂ikΠi,pw‖∞ ≤ ‖∂ik(id−Πi,p)w‖∞ + ‖(id− Π̄L

i )∂ikΠi,p w‖∞
(7.8)

for every k ∈ {1, . . . , d}. By Lemma 4.4, there exist positive constants C0 and c such
that, for p = ⌈cL⌉, we have

‖∂k (id−Πi,p)w‖∞ ≤ C0 p
22−L , ‖∂jk (id−Πi,p)w‖∞ ≤ C0 p 2

−L . (7.9)

Certain derivatives of Πi,p w can be bounded in terms of first-order derivatives
of Πi,p w using the Bernstein’s inequality for trigonometric polynomials. Applying it
together with the bounds (7.9) and Lemma 4.3, we obtain

‖∂ik (id−ΠL
i )Πi,p w‖∞ ≤ 2−L

d∑

k′=1

‖∂k′∂ikΠi,p w‖∞

+ 2−L
i−1∑

j′=1

d∑

k′=1

‖∂j′k′∂ikΠi,p w‖∞ + 2−L
d∑

k′=1

‖∂2ik′∂ikΠi,p w‖∞

≤ 2−L
d∑

k′=1

2πp ‖∂k′Πi,p w‖∞ + 2−L
i−1∑

j′=1

d∑

k′=1

2πp ‖∂j′k′Πi,p w‖∞

+ 2−L
d∑

k′=1

(2πp)2 ‖∂ikΠi,p w‖∞ ≤ 2−L
d∑

k′=1

2πp
{
‖∂k′w‖∞ + C0 p

22−L
}

+ 2−L
i∑

j′=1

(2πp)2
{
‖∂jkw‖∞ + C0 p

22−L
}
≤ C1 p

2 2−L (7.10)
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for every k ∈ {1, . . . , d} with a positive constant C1 independent of L. The same
approach leads to the bound

‖(id−Π̄L
i )∂ikΠi,p w‖∞ ≤ 2−L

d∑

k′=1

‖∂k′∂ikΠi,pw‖∞+2−L
i∑

j′=1

d∑

k′=1

‖∂j′k′∂ikΠi,pw‖∞

≤ 2−L
d∑

k′=1

2πp ‖∂k′Πi,pw‖∞ + 2−L
i∑

j′=1

d∑

k′=1

2πp ‖∂j′k′Πi,pw‖∞

≤ 2−L
d∑

k′=1

2πp
{
‖∂k′w‖∞ + C0 p

2 2−L
}
+ 2−L

i∑

j′=1

d∑

k′=1

2πp
{
‖∂j′k′w‖∞ + C0 p 2

−L
}

≤ C2 p
2 2−L (7.11)

for every k ∈ {1, . . . , d} with a positive constant C2 independent of L. Combining
inequalities (7.10) and (7.11) with (7.9) and (7.8), we obtain the claimed error bounds
with C = C0 +max{C1, C2}.
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