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Abstract. We consider the problem of recovering the divergence-free velocity field U ∈ L2(Ω)
of a given vorticity F = curlU on a bounded Lipschitz domain Ω ⊂ R

3. To that end, we solve the
‘div-curl problem’ for a given F ∈

[

H0(curl; Ω)
]′
. The solution is given in terms of a vector potential

(or stream function) A ∈ H1(Ω) such that U = curlA. After discussing existence and uniqueness
of solutions and associated vector potentials, we propose a well-posed construction for the stream
function. A numeral example of the construction is presented at the end.
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1. Introduction. Let Ω ⊂ R
3 be a bounded Lipschitz domain. Given a vorticity

field F (x) ∈ R
3 defined over Ω, we are interested in solving the problem of velocity

recovery :

(1.1)

{
divU = 0

curlU = F
in Ω.

This problem naturally arises in fluid mechanics when studying the vorticity
formulation of the incompressible Navier–Stokes equations. Vortex methods, for
example, are based on the vorticity formulation and require a solution of problem (1.1)
in every time-step [8]. While our motivation lies in fluid dynamics, this ‘div-curl
problem’ also is interesting in its own right.

On the whole space R
3, this problem is a classical matter. Whenever F is smooth

and compactly supported, the unique solution U of problem (1.1) that decays to zero
at infinity is given by the Biot–Savart law [13, Proposition 2.16]. However, the case
where Ω is a bounded domain is significantly more challenging.

In numerical simulations of the incompressible Navier–Stokes equations, it is
common to fulfil the constraint divU = 0 only approximately, but it has recently been
demonstrated that such a violation can cause significant instabilities. The importance
for numerical methods to fulfil this constraint exactly was stressed by John et al. [12].
One way of achieving this requirement is the introduction of the stream function, or
vector potential : instead of solving problem (1.1) directly, one seeks an approximation
Ah of an auxiliary vector-field A such that U = curlA. Because of the vector calculus
identity div ◦ curl ≡ 0, the velocity field Uh = curlAh is always exactly divergence
free.

1.1. Summary of Results. In this work, we first collect results concerning the
existence and uniqueness of the velocity fields U solving problem (1.1) and their
associated stream functions A. We will then derive a simple algorithm for solving
problem (1.1) by means of a stream function A. Stability will follow from the
construction. Our results can be summarised as follows.
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1. Existence of Velocity Fields. (Theorem 3.1) Problem (1.1) has a solution

U ∈ L2(Ω) if and only if F ∈
[
H0(curl; Ω)

]′
and 〈F,V〉 = 0 for all V ∈

H0(curl; Ω) with curlV = 0. In Lemma 3.4, we discuss equivalent alternative
formulations of the latter condition.

2. Existence of Stream Functions. (Theorem 4.1) Let the velocity U ∈ L2(Ω)
solve problem (1.1). Then, U can be written in terms of a stream function
A ∈ H1(Ω) as U = curlA if and only if U fulfils

∫
Γi

U · ndS = 0 on each
connected component Γi of the boundary Γ := ∂Ω.

3. Uniqueness. (Theorems 3.7 and 4.2) If Ω is ‘handle-free’, the solution
U ∈ L2(Ω) of problem (1.1) can be made unique by prescribing its normal

trace U · n ∈ H− 1
2 (Γ). Moreover, if the prescribed boundary data fulfils∫

Γi

U · n dS = 0 on each connected component Γi ⊂ Γ of the boundary, there

exist conditions that uniquely determine a stream function A ∈ H1(Ω) such
that U = curlA.

4. Construction of Solutions. (Section 5) The main novelty of this work lies

in the explicit construction of solutions. Given a vorticity F ∈
[
H0(curl; Ω)

]′

fulfilling the conditions of Item 1 and boundary data U ·n ∈ H− 1
2 (Γ) fulfilling

the conditions of Item 2, this construction will yield a stream function A ∈
H1(Ω) such that U = curlA solves problem (1.1). If the domain is handle-free,
the obtained solution will be the uniquely defined stream function A ∈ H1(Ω)
from Item 3.

5. Well-posedness. (Theorem 5.3) From the structure of the construction one
can directly infer its well-posedness. The functions U and A continuously
depend on the given data F ∈

[
H0(curl; Ω)

]′
and U · n ∈ H− 1

2 (Γ).
6. Regularity. (Theorem 6.2) If in addition to the above assumptions the given

data fulfils F ∈ L2(Ω) and U · n ∈ L2(Γ), then U ∈ H
1
2 (Ω) and A ∈ H

3
2 (Ω).

To the best of our knowledge, the existence result of Item 1 has not appeared
in literature for a vorticity F of such low regularity. While the existence of stream
functions A ∈ H1(Ω) is already established, we are unaware of any previous results

concerning their uniqueness or explicit construction. The H
3
2 (Ω) regularity of A will

follow from classical results for the scalar Laplace equation.

1.2. Problematic Approaches. A naive approach for solving problem (1.1)
relies on the observation that

(1.2) –∆U = curl(curlU︸ ︷︷ ︸
=F

)−∇(divU︸ ︷︷ ︸
=0

) = curlF.

Based on this vector-calculus identity, it is tempting to solve three decoupled scalar
Poisson problems –∆Ui = (curlF)i, i = 1, 2, 3, for the components of U, say by pre-
scribing the value of each one on the boundary. However, this approach is problematic.
It is our aim to integrate F, but instead this strategy asks that we differentiate first.
Therefore, it needlessly requires to impose more regularity on the right-hand side.
Moreover, there is no guarantee that its solution is divergence-free. Finally, since the
tangential components of U allow us to compute (curlU) · n on the boundary, the
boundary data must fulfil the compatibility condition (curlU) · n = F · n. We will
later see that the solutions of problem (1.1) are usually not H1(Ω)-regular, and thus
the classic existence and uniqueness results in H1(Ω) for the scalar Poisson problems
–∆Ui = (curlF)i are not applicable either.

Another straightforward approach assumes that F ∈ L2(Ω). One may then extend

F by zero to the whole space, yielding F̃ ∈ L2(R3), and apply the Biot–Savart law
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to this extension. The normal trace U · n on Γ can then be prescribed by adding a
suitable ‘potential flow’. The problem here is that unless F · n = 0 on the boundary,
the zero extension F̃ will not be divergence-free. In this case the Biot–Savart law fails
to yield the correct result. We will later see that this approach can in fact be fixed by
introducing a suitable correction on the boundary.

1.3. Our Results in Context. A famous paper on vector potentials or stream
functions in non-smooth domains is due to Amrouche, Bernardi, Dauge, and Girault [1].
They consider the closely related problem of finding a stream function A such that
U = curlA for a given velocity field U ∈ L2(Ω).

Clearly, the condition U = curlA alone does not uniquely determine A: because of
the vector calculus identity curl ◦ (–∇) ≡ 0, any gradient may be added to A without
changing its curl. It is thus natural to enforce the gauge condition divA = 0. It is shown
in the reference that under these hypotheses, a stream function A1 ∈ H1(Ω) satisfying
divA1 = 0 exists, but its boundary data is unknown. Amrouche et al. also prove the
existence and uniqueness of a tangential stream function AT ∈ H(curl; Ω)∩H0(div; Ω)
such that divAT = 0, and additionally describe a feasible finite element method for
approximating AT.

This is an interesting approach. Nevertheless, it has several drawbacks. In non-
smooth domains, the tangential stream function AT may be significantly less regular
than A1. In particular, functions from H(curl; Ω) ∩H0(div; Ω) may develop strong
singularities near corners of the domain, which makes them difficult to approximate
efficiently [2, Figure 1.3].

Our work builds on the above results and proposes natural conditions that uniquely
determine a vector potential A1 ∈ H1(Ω) without explicitly involving boundary values
of A1. We believe it is because previous approaches do prescribe boundary conditions
like AT · n = 0 that they yield less regular stream functions.

The stream function A1 can be explicitly constructed. The algorithm utilises the
Newton operator: the bulk of the work lies in the explicit computation of a volume
integral. Two companion scalar elliptic equations must also be solved on the boundary
of the domain, but these are easily tackled using standard methods.

2. Basic Definitions and Notions.

2.1. Spaces Defined on Volumes. We denote by D(Ω) := C∞
0 (Ω) the space

of smooth compactly supported functions in Ω, and write D′(Ω) for the space of

distributions. Their vector-valued analogues D(Ω) :=
(
C∞

0 (Ω)
)3

and D′(Ω) are
distinguished by a bold font. In the whole space R

3, we will make use of the space
of smooth functions E(R3) := C∞(R3) and its dual E ′(R3)—the space of compactly
supported distributions. Their vector-valued analogues will be denoted by E(R3) and
E ′(R3), respectively.

We write L2(Ω) and L2(Ω) for the Hilbert spaces of square integrable scalar
and vector-valued functions defined over Ω. Hs(Ω) and Hs(Ω), s > 0, refer to the
corresponding Sobolev spaces. The spaces Hs

0(Ω) and Hs
0(Ω) are defined as the

closures of D(Ω) and D(Ω) in Hs(Ω) and Hs(Ω), respectively. For s < 0 we set

Hs(Ω) :=
[
H−s

0 (Ω)
]′

and Hs(Ω) :=
[
H−s

0 (Ω)
]′
. We will always identify L2(Ω) and

L2(Ω) with their duals, i. e.,
[
L2(Ω)

]′
= L2(Ω) and

[
L2(Ω)

]′
= L2(Ω).

All differential operators are to be understood in the distributional sense. For
example, for U ∈ D′(Ω) the distribution divU ∈ D′(Ω) is defined by:

(2.1) ∀V ∈ D(Ω) : 〈divU, V 〉 := 〈U, –∇V 〉.
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It is well-known that when one restricts the domain of a differential operator, the
space of permitted test-functions for its range can be uniquely enlarged by continuity.
Continuing with the example, for U ∈ L2(Ω) one obtains:

(2.2) ∀V ∈ D(Ω) : 〈divU, V 〉 =

∫

Ω

U · (–∇V ) dx ≤ ‖U‖L2(Ω)‖V ‖H1(Ω).

In this case, the distribution divU ∈ D′(Ω) can be uniquely extended by continuity to

D(Ω)
H1(Ω)

= H1
0 (Ω). It is in this sense that we view divU ∈ H−1(Ω) and write

(2.3) div
∣∣
L2(Ω)

: L2(Ω) → H−1(Ω).

We will often allow the different restrictions of the differential operators under consid-
eration to carry the same name when their domains and ranges are clear.

The Hilbert spaces

(2.4)
H(div; Ω) := {U ∈ L2(Ω) | divU ∈ L2(Ω)},

H(curl; Ω) := {U ∈ L2(Ω) | curlU ∈ L2(Ω)},

are equipped with the norms

(2.5)
‖U‖2

H(div;Ω) := ‖U‖2
L2(Ω) + ‖divU‖2L2(Ω),

‖U‖2
H(curl;Ω) := ‖U‖2

L2(Ω) + ‖curlU‖2
L2(Ω),

respectively. Related ‘homogeneous spaces’ are defined as

(2.6)
H0(curl; Ω) := D(Ω)

H(curl;Ω)
,

H0(div; Ω) := D(Ω)
H(div;Ω)

.

We refer to Amrouche et al. for a detailed exposition of the regularity and
compactness properties of these spaces [1, Sections 2.2 and 2.3]. The definitions of
this subsection will also be used with Ω replaced by R

3.

2.2. Geometry. Throughout this article, we suppose that the Lipschitz domain
Ω ⊂ R

3 of interest is bounded and connected. The so-called Betti numbers are defined
by the dimensions of the cohomology groups associated to the de Rham complex

(2.7) 0 → H1 (Ω)
–∇
−−→ H(curl; Ω)

curl
−−→ H(div; Ω)

div
−−→ L2 (Ω) → 0

as

(2.8)

β0 := dim (ker (–∇)) ,

β1 := dim
(
ker (curl) /–∇

(
H1 (Ω)

))
,

β2 := dim (ker (div) / curl (H(curl; Ω))) .

As a consequence of de Rham’s theorem, these numbers are related to the topo-
logical properties of the domain [2, Theorem 2.2]. Since the kernel of the gradient
is the space of constant functions, the zeroth Betti number indicates the number of
connected components of Ω, which is therefore always assumed to be 1 in this work. β1
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Figure 1. A ring-shaped domain with three cubical holes is an example of a domain having
non-trivial topology [1, Section 3]. There is one ‘handle’ through it: β1 = 1. The red line is a
representative of the equivalence class of non-bounding cycles. The three cubical inclusions (‘holes’)
are not part of the domain: β2 = 3. The boundary Γ has four connected components: Γ1,Γ2,Γ3, and
the domain’s exterior boundary Γ0.

is the genus of the domain, in other words the number of ‘handles’. β2 is the number
of ‘holes’ Θi, i = 1, . . . , β2 in the domain. We define the exterior domain Θ0 via:

(2.9) Θ0 := R
3 \ Ω ∪

(
β2⋃

i=1

Θi

)
.

The domain’s boundary thus always has β2 + 1 connected components Γi := ∂Θi,
i = 0, . . . , β2. A domain with β1 = 0 is called handle-free, hole-free if β2 = 0, and we
say that the topology of Ω is trivial or simple if both β1 = β2 = 0. We refer to Arnold
and al. for more details [3, Section 2].

Their geometric interpretation is best illustrated through an example. In the
domain depicted in Figure 1, β2 = 3: three cube-like holes Θ1, Θ2, and Θ3 were cut
out of the toroidal volume. Their boundaries Γ1, Γ2, and Γ3 are labelled in the figure.
Together with the exterior boundary Γ0, the boundary Γ := ∂Ω = Γ0 ∪ Γ1 ∪ Γ2 ∪ Γ3

thus has four = β2 + 1 connected components.
On the one hand, the value of the second Betti number β2 ∈ N is relevant to

questions regarding the existence results stated in Item 1 and Item 2 of Section 1.
These existence theorems will make use of arbitrary but fixed functions Ti ∈ C∞

0 (R3),
i = 0, . . . , β2, that act as indicators for the the connected components of the boundary:

(2.10) Ti =

{
1 in a neighbourhood of Γi,

0 in a neighbourhood of Γj , j ∈ {0, . . . , β2} \ {i}.

On the other hand, the value of β1 is crucial to the uniqueness results of Item 3.
For simplicity, we will restrict our attention to handle-free domains (β1 = 0), that is
domains for which every loop inside Ω is the boundary of a surface within Ω. The
domain in Figure 1 is not handle-free, as the red loop is a representative of the
equivalence class of non-bounding cycles. In that example, β1 = 1. Nevertheless, we
will make some remarks on what changes in the following results need to be anticipated
in order to recover uniqueness of solutions when β1 > 0.

2.3. Laplace and Newton Operator. The importance of the scalar Laplace
operator –∆ := div ◦ (–∇) for potential theory is obvious, and we assume that the
reader is well aware of the classical existence and uniqueness results for boundary
value problems of the scalar Laplace equation. Its vector-valued analogue is defined
component-wise: –∆V := (–∆V1, –∆V2, –∆V3)

⊤ for all V ∈ D′(Ω). This operator is
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also known as Hodge–Laplacian and can equivalently be written as:

(2.11) –∆V = curl curlV −∇ divV, ∀V ∈ D′(Ω).

The Newton potential is an inverse to the Laplacian on the whole space R
3, and

it will play a key role throughout this work. Let us denote by G(x) := (4π|x|)−1 the
fundamental solution of the Laplacian –∆ on the whole space R

3, that is

(2.12) –∆G(x) = –∆

(
1

4π

1

|x|

)
= δ,

where δ is the standard Dirac distribution centered at the origin. The Newton operator
then is defined on the space of compactly supported distributions E ′(R3) by convolution
with G:

(2.13) N : E ′(R3) → D′(R3), U 7→ G ⋆ U.

In other words, for U ∈ D(R3) we have:

(2.14)
(
NU

)
(x) =

1

4π

∫

R3

U(y)

|x− y|
dy ∈ E(R3),

and for U ∈ E ′(R3):

(2.15) 〈NU, V 〉 = 〈U,NV 〉, ∀V ∈ D(R3).

Its vector-valued analogue N is defined component-wise. For a given U ∈ E ′(R3), the
distribution NU is called the Newton potential of U .

This operator is an inverse for the Laplacian [11, Equations (4.4.2) and (4.4.3)]:

(2.16) ∀U ∈ E ′(R3) : –∆NU = N (–∆U) = U.

Moreover, because it is an operator of convolutional type, it commutes with differenti-
ation [11, Equation (4.2.5)]. With these properties, it is an easy task to derive the
Helmholtz decomposition.

Lemma 2.1 (Helmholtz decomposition). Every compactly supported distribution
U ∈ E ′(R3) can be decomposed into a divergence-free and a curl-free part:

(2.17) U = curlA−∇P,

where A := N curlU ∈ D′(R3) and P := N divU ∈ D′(R3).

Proof. Using the above properties one readily obtains:

(2.18)

U = –∆NU

= curl(curlNU)−∇(divNU)

= curl(N curlU)−∇(N divU).

Application of this operator always increases the Sobolev regularity of a distribution
U ∈ Hs(R3) ∩ E ′(R3) by two, that is N has the following mapping property and is
continuous [16, Theorem 3.1.2]:

(2.19) N : Hs(R3) ∩ E ′(R3) → Hs+2
loc (R3), s ∈ R,
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where

(2.20) Hs
loc(R

3) :=
{
U ∈ D′(R3)

∣∣U |K ∈ Hs(K), ∀K ⊂ R
3 compact

}
.

An analogous result for N follows by component-wise application of the scalar mapping
property.

The Newton potential NU of a compactly supported distribution U ∈ E ′(R3) is
regular outside suppU and decays to zero at infinity [9, Chapter II, §3.1, Proposition 2]:

(2.21) ∀U ∈ E ′(R3) :
(
NU

)
(x) = O

(
|x|−1

)
, |x| → ∞.

Even more importantly, the following result characterises the Newton potential [9,
Chapter II, §3.1, Proposition 3].

Lemma 2.2. Let U ∈ D′(R3) and F ∈ E ′(R3). Then U is the Newton potential of
F , that is U = NF , if and only if:

(2.22)

{
–∆U = F on R

3,

U(x) → 0 as |x| → ∞.

This characterisation allows for the derivation of representation formulæ for solutions
of the Laplace equation on bounded domains, leading to boundary integral equations.
This will appear at the end of this section. Again, analogous results hold for the
vector-valued Newton operator N .

2.4. Conventional Trace Spaces. We collect some classic results to fix the
notation. For a more complete discussion of the trace spaces, the reader is referred to
the books of Sauter and Schwab [16, Chapter 2] and McLean [15, Chapter 3] and the
references therein.

The boundary of a Lipschitz domain admits a surface measure S, allowing the
definition of trace spaces L2(Γ) and L2(Γ) that consist of square-integrable scalar
and vector-valued fields. We again identify these spaces with their respective duals[
L2(Γ)

]′
= L2(Γ),

[
L2(Γ)

]′
= L2(Γ), and use the notation 〈·, ·〉Γ for their duality

pairing on Γ.
As a consequence of Rademacher’s theorem, the boundary of a Lipschitz domain

admits an atlas of regularity W 1,∞. For s ∈ [0, 1] this allows for intrinsic definitions
of Sobolev trace spaces Hs(Γ) and Hs(Γ). Their duals are again denoted by H−s(Γ)
and H−s(Γ).

For functions V ∈ C(Ω) the boundary trace γV is defined as the restriction of V
to Γ:

(2.23) γV := V |Γ.

This operator admits a unique continuous extension to Sobolev spaces Hs(Ω) and is
bounded [16, Theorem 2.6.8]:

(2.24) γ : Hs+ 1
2 (Ω) → Hs(Γ), ‖γV ‖Hs(Γ) ≤ C‖V ‖

H
s+1

2 (Ω)
, s ∈ (0, 1),

where C > 0 is a constant that only depends on s and Ω. Analogous results hold for
the vector-valued trace operator γ.

The trace operator is surjective, and it is possible to construct bounded and
continuous right-inverses γ−1 [16, Theorem 2.6.11]:

(2.25) γ−1 : Hs(Γ) → Hs+ 1
2 (R3), ‖γ−1v‖

H
s+1

2 (R3)
≤ C‖v‖Hs(Γ), s ∈ (0, 1),
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where C > 0 again is a constant that only depends on s and Ω. Such right-inverses
moreover fulfil ‖γ−1v|Ω‖

H
s+1

2 (Ω)
≤ C‖v‖Hs(Γ) and are sometimes called lifting maps.

Again, analogous results hold for the vector-valued liftings γ−1.

2.5. Normal Traces. It is guaranteed from Rademacher’s theorem that the
boundary of a Lipschitz domain has an essentially bounded unit normal vector field
n ∈ L∞(Γ), directed towards the exterior of Ω [16, Theorem 2.7.1]. This allows us to
define the normal component an νu of arbitrary boundary vector-field u ∈ L2(Γ):

(2.26) ν : L2(Γ) → L2(Γ), u 7→ u · n.

By abuse of notation, we will also write ν for the composition ν ◦γ. For sufficiently
smooth functions U and P on Ω a divergence theorem holds [16, Theorem 2.7.3]:

(2.27) 〈νU, γP 〉Γ =

∫

Ω

U · ∇P + P divU dx.

For p ∈ H
1
2 (Γ) arbitrary, we can thus write:

(2.28) 〈νU, p〉Γ =

∫

Ω

U · ∇(γ−1p) + (γ−1p) divU dx.

By means of this formula we see that the operator ν admits a unique and continuous
extension to H(div; Ω), that is:

(2.29) ν : H(div; Ω) → H− 1
2 (Γ).

This operator is surjective, and its kernel is exactly the space H0(div; Ω). It is common
to write U · n instead of νU where applicable.

2.6. Tangential Traces. The theory of tangential trace spaces for Lipschitz
domains has been developed by Buffa et al. [5] Here we will recall the ingredients of
their theory that we will need later on. For u ∈ L2(Γ), one defines its tangential trace
τu and rotated tangential trace ρu via:

(2.30)
τ : L2(Γ) → L2(Γ), u 7→ u− (u · n)n = n× (u× n),

ρ : L2(Γ) → L2(Γ), u 7→ u× n = −n× τu.

Because of the normal vector’s lack of regularity, one will usually only have
τu ∈ L2(Γ), ρu ∈ L2(Γ) and νu ∈ L2(Γ), even if u ∈ H1(Γ). This makes it difficult to
assess the regularity of tangential traces using the intrinsic definitions of trace Sobolev
spaces. Of particular importance is the case of regularity 1

2 , and so one instead defines:

(2.31)
H

1
2

T(Γ) := {τv |v ∈ H
1
2 (Γ) },

H
1
2

R(Γ) := {ρv |v ∈ H
1
2 (Γ) },

with associated quotient norms:

(2.32)

‖u‖
H

1
2
T (Γ)

:= inf
τv=u

‖v‖
H

1
2 (Γ)

,

‖u‖
H

1
2
R (Γ)

:= inf
ρv=u

‖v‖
H

1
2 (Γ)

.
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These are Banach spaces, and it is important to note that these spaces will usually
differ, unless the domain Ω is smooth. They are, however, isomorphic to one another,
through the relation ρu = −n× τu.

For reasons that become more clear below, it is a useful convention to define their
normed duals as:

(2.33)
H

− 1
2

T (Γ) :=
[
H

1
2

R(Γ)
]′
,

H
− 1

2

R (Γ) :=
[
H

1
2

T(Γ)
]′
.

We allow ourselves to reuse the symbols τ and ρ for the composite maps τ ◦ γ
and ρ ◦ γ. For U ∈ H1(Ω), v ∈ H

1
2 (Γ), one can show that the following integration

by parts formulæ hold [5, Equation (27)]:

(2.34)

〈τU,ρv〉Γ =

∫

Ω

(
γ
−1v

)
· curlU−U · curl

(
γ
−1v

)
dx,

〈ρU, τv〉Γ =

∫

Ω

U · curl
(
γ
−1v

)
−
(
γ
−1v

)
· curlU dx.

Via these formulæ one can see that the composite operators τ and ρ admit unique
continuous extensions to the space H(curl; Ω):

(2.35)
τ : H(curl; Ω) → H

− 1
2

T (Γ),

ρ : H(curl; Ω) → H
− 1

2

R (Γ),

making clear the reasoning behind convention (2.33). The kernel of these operators is
exactly the space H0(curl; Ω). It is common to write U× n for ρU and n× (U× n)
for τU where applicable.

These operators, however, are not surjective. One of the main results of the work
of Buffa et al. is the precise characterisation of their ranges [5]. This will require some
more tools, that will be described in the following subsection.

2.7. Trace Calculus. As mentioned before, the boundary of a Lipschitz domain
admits an atlas of regularity W 1,∞. This allows for the direct definition of the trace
gradient –∇Γ : H1(Γ) → L2(Γ) through differentiation of the charts of the atlas [5,
Equation (21)]. The trace divergence divΓ then is defined as the operator dual to
the trace gradient: divΓ := (–∇Γ)

′. Their composition yields the Laplace–Beltrami
operator –∆Γ := divΓ ◦ (–∇Γ), which continuously maps H1(Γ) → H−1(Γ).

The trace curl curlΓ : H1(Γ) → L2(Γ) is defined as the rotated gradient: curlΓ :=
n × (–∇Γ). Denoting its dual operator by curlΓ, one can verify that the Laplace–
Beltrami operator can also be written as –∆Γ = curlΓ ◦ curlΓ.

We will later make use of the fact that this operator is coercive on H1(Γ)/R.
In other words, for any f ∈ H−1(Γ) that satisfies 〈f, 1〉Γi

= 0, i = 0, . . . , β2, the
Laplace–Beltrami equation –∆Γ q = f has a unique solution q ∈ H1(Γ)/R. This
solution continuously depends on f : ‖q‖H1(Γ) ≤ CΓ‖f‖H−1(Γ).

These operators can be extended in several ways. It can be shown that for
U ∈ H2(Ω) one has γU ∈ H1(Γ), and furthermore that the surface gradient satisfies: [5,
Proposition 3.4]

(2.36) –∇Γ γU = τ (–∇U).
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On the one hand, the right side of this equation is also well-defined for U ∈ H1(Ω),
because one then has –∇U ∈ H(curl; Ω). Through this relation –∇Γ and curlΓ can

be extended to operators acting on H
1
2 (Γ):

(2.37)
–∇Γ : H

1
2 (Γ) → H

− 1
2

T (Γ), u 7→ τ
(
–∇(γ−1u)

)
,

curlΓ : H
1
2 (Γ) → H

− 1
2

R (Γ), u 7→ n× (–∇Γ u),

giving rise to restricted dual operators divΓ and curlΓ:

(2.38)
divΓ : H

1
2

R(Γ) → H− 1
2 (Γ), 〈divΓ u, v〉Γ := 〈u, –∇Γ v〉Γ,

curlΓ : H
1
2

T(Γ) → H− 1
2 (Γ), 〈curlΓ u, v〉Γ := 〈u, curlΓ v〉Γ.

All these operators are bounded [5, Proposition 3.6].

On the other hand, one may define H
3
2 (Γ) := γ(H2(Ω)), equipped with the

quotient norm and normed dual H− 3
2 (Γ). The restrictions of –∇Γ and curlΓ to H

3
2 (Γ)

then are continuous as operators [5, Proposition 3.4]:

(2.39)
–∇Γ : H

3
2 (Γ) → H

1
2

T(Γ),

curlΓ : H
3
2 (Γ) → H

1
2

R(Γ),

giving rise to extended dual operators:

(2.40)
divΓ : H

− 1
2

R (Γ) → H− 3
2 (Γ), 〈divΓ u, v〉Γ := 〈u, –∇Γ v〉Γ,

curlΓ : H
− 1

2

T (Γ) → H− 3
2 (Γ), 〈curlΓ u, v〉Γ := 〈u, curlΓ v〉Γ.

One can show that for all U ∈ H(curl; Ω) it holds that [5, Equation (30)]:

(2.41) curlΓ τU = n · curlU,

justifying the notation. But because curlU ∈ H(div; Ω), we also have n · curlU ∈

H− 1
2 (Γ). This gives rise to the following definitions:

(2.42)
H

− 1
2

T (curlΓ; Γ) := {s ∈ H
− 1

2

T (Γ) | curlΓ s ∈ H− 1
2 (Γ)},

H
− 1

2

R (divΓ; Γ) := {s ∈ H
− 1

2

R (Γ) | divΓ s ∈ H− 1
2 (Γ)}.

From (2.41) it then follows that the ranges of the trace maps τ and ρ from (2.35)
can be narrowed down to:

(2.43)
τ : H(curl; Ω) → H

− 1
2

T (curlΓ; Γ),

ρ : H(curl; Ω) → H
− 1

2

R (divΓ; Γ).

It is one of the main results of Buffa et al. that these operators are indeed surjective [5,
Theorem 4.1]. This allowed them to derive Hodge decompositions for these spaces,
which can be seen as trace analogues of the Helmholtz decomposition in Lemma 2.1.

We will only make use of the decomposition for H
− 1

2

R (divΓ; Γ).

Lemma 2.3 (Hodge Decomposition [5, Theorem 5.5]). Let Γ = ∂Ω be the boundary

of a handle-free, bounded Lipschitz domain Ω ⊂ R
3. Then any s ∈ H

− 1
2

R (divΓ; Γ) can
be uniquely decomposed as:

(2.44) s = curlΓ p−∇Γ q,

where p ∈ H
1
2 (Γ)/R and q ∈ H1(Γ)/R with –∆Γ q ∈ H− 1

2 (Γ) are uniquely determined
up to a constant on each connected component Γi, i = 0, . . . , β2 of the boundary.
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2.8. Trace Jumps and a Representation Formula. The trace operators
introduced in the previous sections were all defined with respect to the domain Ω. One
can instead also consider the corresponding traces with respect to the complementary
domain ΩC := R

3 \ Ω. These one-sided traces exist whenever the restriction of a
vector field U ∈ L2

loc(R
3) to the domains Ω and ΩC is sufficiently smooth. If U

is smooth across Γ, then the one-sided traces coincide. Otherwise the difference of
these traces is denoted by the jump operator J·K. For example, for ρ one writes:
JρUK := ρU|Ω − ρ

CU|ΩC . The importance of the jump operator lies in the following
representation formula.

Lemma 2.4. Let U ∈ H1
loc(R

3) fulfil:

(2.45)





–∆U = 0 in R
3 \ Γ,

divU = 0 in R
3,

U(x) → 0 as |x| → ∞.

Then U = N (–∆U) and –∆U = τ
′Jρ curlUK.

Proof. The fact that U = N (–∆U) directly follows from Lemma 2.2. Because
divU = 0 globally, we have –∆U = curl(curlU) and curl(curlU)|R3\Γ = 0. We thus
obtain for all V ∈ D(R3):

(2.46) 〈–∆U,V〉 = 〈curlU, curlV〉 =

∫

Ω

curlU· curlV dx+

∫

R3\Ω

curlU· curlV dx,

where we used that curlU ∈ L2
loc(R

3) since U ∈ H1
loc(R

3). Now, by definition of the
rotated tangential trace:
(2.47)

〈ρ curlU, τV〉Γ =

∫

Ω

curlU · curlV − curl(curlU)︸ ︷︷ ︸
=0

·V dx =

∫

Ω

curlU · curlV dx.

Applying the same methodology to the integral over R3 \Ω and using the definition of
ρ
C yields the desired result, because the fact that V is smooth across Γ guarantees

that JτVK = 0.

3. Velocity Fields. In this section we prove the existence of velocity fields
solving (1.1) as claimed in Item 1. The abstract integrability condition is reformulated
in Lemma 3.4. The uniqueness result for velocity fields presented in Item 3 is also
covered.

3.1. Existence of Velocity Fields.

Theorem 3.1. Suppose that Ω ⊂ R
3 is a bounded Lipschitz domain and let

F ∈
[
H0(curl; Ω)

]′
. The div-curl system

(3.1)

{
curlU = F

divU = 0
in Ω

has a solution U ∈ L2(Ω) if and only if F fulfils the following integrability condition:

(3.2) 〈F,V〉 = 0 ∀V ∈ K(Ω),

where

(3.3) K(Ω) := {V ∈ H0(curl; Ω) | curlV = 0}.
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Remark 3.2. The condition F ∈
[
H0(curl; Ω)

]′
is natural. To see this, note that

for an arbitrary vector-field U ∈ L2(Ω) it holds that

(3.4) ∀V ∈ D(Ω) : 〈curlU,V〉 =

∫

Ω

U · curlV dx ≤ ‖U‖L2(Ω)‖V‖H(curl;Ω).

The distribution curlU ∈ D′(Ω) thus admits a unique continuous extension to

D(Ω)
H(curl;Ω)

= H0(curl; Ω) and the associated operator

(3.5) curl
∣∣
L2(Ω)

: L2(Ω) →
[
H0(curl; Ω)

]′

is continuous. Therefore, any solution U ∈ L2(Ω) of (3.1) must necessarily fulfil

F = curlU ∈
[
H0(curl; Ω)

]′
and this is the reason why we cannot simply demand

F ∈ H−1(Ω).

The integrability condition (3.2) will be enlightened by the alternative formulations
discussed at the end of this section.

Lemma 3.3. Suppose that Ω ⊂ R
3 is a bounded Lipschitz domain and let F ∈

[H0(curl; Ω)]
′. The equation

(3.6) curlW = F

has a solution W ∈ L2(Ω) if and only if F fulfils the integrability condition (3.2).

Proof. The continuous operator

(3.7) curl
∣∣
H0(curl;Ω)

: H0(curl; Ω) → L2(Ω)

has closed range [2, Box 3.1]. The curl operator is symmetric and the dual of the
mapping (3.7) is the operator curl

∣∣
L2(Ω)

given in (3.5). Hence, Banach’s closed range

theorem yields

(3.8) Range
(
curl

∣∣
L2(Ω)

)
=
(
ker curl

∣∣
H0(curl;Ω)

)0
=
(
K(Ω)

)0
.

That is,

(3.9) Range
(
curl

∣∣
L2(Ω)

)
=

{
F ∈

[
H0(curl; Ω)

]′
∣∣∣∣ 〈F,V〉 = 0 ∀V ∈ K(Ω)

}
.

Evidently, problem (3.6) has a solution if and only if F ∈ Range
(
curl

∣∣
L2(Ω)

)
.

This is precisely the statement of the Lemma.

Proof of Theorem 3.1. Lemma 3.3 guarantees the existence of a W ∈ L2(Ω) such
that curlW = F. This function does not necessarily fulfil divW = 0. But in this case
we let P ∈ H1

0 (Ω) denote the unique solution to the Poisson problem

(3.10) –∆P = divW in Ω,

and note that U := W −∇P solves the div-curl system (3.1).

The integrability condition (3.2) is most natural for the chosen method of proof.
However, it is hard to verify in practice. For this reason, it is worthwhile considering
equivalent alternative conditions.
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Lemma 3.4. Suppose that Ω ⊂ R
3 is a bounded Lipschitz domain and let F ∈

[H0(curl; Ω)
]′
. Together, the following conditions are equivalent to the integrability

condition (3.2):

divF = 0 in Ω,(3.11a)

〈F, –∇Ti

∣∣
Ω
〉 = 0 i = 1, . . . , β2.(3.11b)

If in particular F ∈ L2(Ω) and divF = 0, condition (3.11b) is equivalent to:

(3.12)

∫

Γi

F · n dS = 0 i = 1, . . . , β2.

Remark 3.5. Notice that definition (2.10) guarantees that –∇Ti

∣∣
Ω
∈ D(Ω).

Remark 3.6. Together (3.11a) and (3.11b) also imply that 〈F, –∇T0|Ω〉 = 0 holds.
If in particular β2 = 0, it suffices to demand divF = 0.

Proof. (⇒) Since curl ◦ (–∇) ≡ 0, conditions (3.11a) and (3.11b) are immediately
seen to be necessary from the definitions.

(⇐) To see that they also are sufficient, let V ∈ K(Ω) be arbitrary. We may
extend this function by zero outside Ω:

(3.13) Ṽ : R3 → R
3, x 7→

{
V(x) x ∈ Ω,

0 else.

Since ρ(V) = 0, we have curl Ṽ = 0 on all of R3. Since its support is compact, we
may use the Helmholtz decomposition (2.17) to rewrite this extension in terms of

(3.14) Ṽ = curlN curl Ṽ︸ ︷︷ ︸
=0

−∇N div Ṽ︸ ︷︷ ︸
=:P̃

= −∇P̃ .

The restriction P := P̃
∣∣
Ω
belongs toH1(Ω), because –∇P = V ∈ L2(Ω). Moreover,

we see from τ (V) = 0 that P = Ci for some constant Ci ∈ R on each connected

component Γi of the boundary, i = 0, 1, . . . , β2. Because P̃ → 0 at infinity, –∇P̃ = 0

outside Ω, and P̃ ∈ H1
loc(R

3) we have C0 = 0. From the decomposition

(3.15) P =

(
P −

β2∑

i=1

CiTi

∣∣
Ω

)

︸ ︷︷ ︸
=:P0∈H1

0 (Ω)

+

β2∑

i=1

CiTi

∣∣
Ω
,

we obtain

(3.16) 〈F,V〉 = 〈F, –∇P 〉 = 〈F, –∇P0〉︸ ︷︷ ︸
=0, (3.11a)

+

β2∑

i=1

Ci 〈F, –∇Ti

∣∣
Ω
〉

︸ ︷︷ ︸
=0, (3.11b)

= 0.

Thus (3.2) is equivalent to the combination of (3.11a) and (3.11b).
Finally, the equivalence of (3.11b) and (3.12) directly follows from the definition

of the normal trace: if F ∈ L2(Ω) and divF = 0, we also have F ∈ H(div; Ω). Thus F
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has a well-defined normal trace and

(3.17)

∫

Γi

F · n dS =

∫

Γ

(F · n)γTi dS = 〈νF, γTi〉Γ

=

∫

Ω

F · ∇Ti

∣∣
Ω
dx+

∫

Ω

divF︸ ︷︷ ︸
=0

Ti

∣∣
Ω
dx

= 〈F,∇Ti

∣∣
Ω
〉.

3.2. Uniqueness of Velocity Fields.

Theorem 3.7. Let Ω ⊂ R
3 be a bounded, handle-free Lipschitz domain and let

F ∈
[
H0(curl; Ω)

]′
fulfil the integrability condition (3.2). Additionally, let g ∈ H− 1

2 (Γ)
be given such that 〈g, 1〉Γ = 0. Then the div-curl system (3.1) has exactly one solution
U ∈ L2(Ω) with U · n = g on Γ.

Remark 3.8. In Theorem 3.7, the normal trace U · n is well-defined because a
square-integrable solution U of the div-curl system satisfies divU = 0.

Proof. Let us first remark that the condition 〈g, 1〉Γ = 0 is necessary. To see this,
note that because divU = 0, any solution U ∈ L2(Ω) of the div-curl system (3.1)
must fulfil:

(3.18)

∫

Γ

U · n dS =

∫

Ω

divU dx = 0.

Now let W ∈ L2(Ω) denote any solution of the div-curl system, whose existence is
guaranteed by Theorem 3.1. Let P ∈ H1(Ω)/R be the unique solution of the Neumann
problem:

(3.19)

{
–∆P = 0 in Ω,

–∇P · n = g −W · n on Γ.

Then the function U := W −∇P fulfils the conditions of the theorem.
To see that it is unique, let U1,U2 ∈ L2(Ω) denote two solutions of the div-curl

system (3.1) that fulfil U1 · n = U2 · n = g on the boundary Γ. Then their difference
D := U1 −U2 solves

(3.20)





divD = 0 in Ω,

curlD = 0 in Ω,

D · n = 0 on Γ.

In other words, D is a so-called Neumann harmonic field. These functions form a
space of dimension β1 [1, Proposition 3.14][2, Section 4.3]. By hypothesis β1 = 0, and
thus D = 0.

The above proof hints at what needs to be done in order to recover uniqueness in
the case β1 6= 0. One needs to prescribe β1 functionals that determine the Neumann
harmonic components ofU. A construction of these fields and corresponding functionals
can be found in the work of Amrouche et al. [1]

4. Stream Functions. We prove the existence result for stream functions of
Item 2 in this section. The related uniqueness statement of Item 3 is proven in
Theorem 4.2.
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4.1. Existence of Stream Functions. The following theorem is a variant of a
result by Girault and Raviart [10, Theorem 3.4]. We give a different proof, which uses
the Newton operator instead of Fourier transforms.

Theorem 4.1. Let Ω ⊂ R
3 denote a bounded Lipschitz domain. Then U ∈ L2(Ω)

satisfies

divU = 0, in Ω,(4.1a)
∫

Γi

U · n dS = 0, i = 1, . . . , β2,(4.1b)

if and only if there exists a vector-field A ∈ H1
loc(R

3) such that

(4.2)





curlA = U in Ω,

−∆A = 0 in R
3 \ Ω,

divA = 0 in R
3,

A(x) → 0 as |x| → ∞.

Proof. (⇐) Note that the conditions (4.1a) and (4.1b) are exactly the integrability
conditions (3.11a) and (3.12). Because of Lemma 3.3 and Lemma 3.4, these conditions
are necessary to ensure the existence of a vector-field A ∈ L2(Ω) such that U = curlA
in Ω.

(⇒) In order to show sufficiency, the idea is to extend U to R
3 by ‘potential flows’

matching U · n on Γ, then use the Newton operator.
We want to exploit the following scalar functions. For i = 0, we let P0 ∈ H1

loc(Θ0)
denote the solution of the problem:

(4.3)





–∆P0 = 0 in Θ0,

–∇P0 · n = U · n on Γ0,

P0(x) → 0 as |x| → ∞,

whereas for i = 1, . . . , β2 we define Pi ∈ H1(Ωi)/R as the solution of:

(4.4)

{
–∆Pi = 0 in Θi,

–∇Pi · n = U · n on Γi.

Because of condition (4.1b), it is well-known that these problems are well-posed.
We are now ready to extend U to the whole space as

(4.5) Ũ : R3 → R
3, x 7→

{
U(x) x ∈ Ω,

–∇Pi(x) x ∈ Θi, i = 0, ..., β2.

Because JŨ · nK = 0, we have div Ũ = 0 on R
3. Since supp

(
curl Ũ

)
⊂ Ω, curl Ũ ∈

H−1(R3) is compactly supported, and we may define A := N curl Ũ.

We now claim that curlA = Ũ on R
3. From the properties of N it follows that

A ∈ H1
loc(R

3) and A(x) → 0 at infinity. Because N commutes with differentiation,

we have divA = N div curl Ũ = 0 on R
3, and thus:

(4.6)

{
curl(curlA) = –∆A = curl Ũ

div(curlA) = 0 = div Ũ
on R

3.
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The difference D := curlA− Ũ therefore fulfils:

(4.7)

{
–∆D = 0 on R

3,

D(x) → 0 as |x| → ∞,

so that from Lemma 2.2 we conclude D = N0 = 0, that is curlA = Ũ.

4.2. Uniqueness of Stream Functions. When the domain under consideration
is handle-free, then the following uniqueness result holds.

Theorem 4.2. Let Ω ⊂ R
3 be a handle-free, bounded Lipschitz domain (β1 = 0)

and let U ∈ L2(Ω) fulfil the conditions of Theorem 4.1. Then there exists exactly one
vector-field A ∈ H1

loc(R
3) satisfying (4.2).

Proof. Suppose that A1 and A2 are two vector-fields in H1
loc(R

3) satisfying (4.2).
Then their difference D := A1 −A2 ∈ H1

loc(R
3) fulfils:

(4.8)





–∆D = 0 in R
3 \ Γ,

divD = 0 in R
3,

curlD = 0 in Ω,

D(x) → 0 as |x| → ∞.

Thus, Lemma 2.4 is applicable, yielding:

(4.9)

{
D = N (–∆D),

–∆D = τ
′Jρ curlDK.

From the mapping properties of ρ it follows that s := Jρ curlDK ∈ H
− 1

2

R (divΓ; Γ). The
Hodge Decomposition from Lemma 2.3 furthermore yields

(4.10) s := Jρ curlDK = curlΓ p−∇Γ q

for some functions p ∈ H
1
2 (Γ)/R, q ∈ H1(Γ)/R that are uniquely determined up to a

constant on each connected part Γi, i = 0, . . . , β2 of the boundary. It thus suffices to
establish that p = q = 0.

We first consider q. The fact that divD = 0 on R
3 implies that for all V ∈ D(R3):

(4.11) 〈divΓ s, γV 〉Γ = 〈s, –∇Γ γV 〉Γ = 〈s, τ (–∇V )〉Γ =

〈–∆D, –∇V 〉 = 〈div(–∆D), V 〉 = 〈–∆divD, V 〉 = 0,

that is divΓ s = 0. This in turn implies for q:

(4.12) –∆Γ q = divΓ(curlΓ p)︸ ︷︷ ︸
=0

− divΓ ∇Γ q = divΓ s = 0.

But because the Laplace–Beltrami operator –∆Γ is coercive on H1(Γ)/R, we have
have the implication –∆Γ q = 0 =⇒ q = 0, and thus also s = curlΓ p.

Considering p, we note that because curlD = 0 in Ω, we have 0 = (curlD) · n =

curlΓ τD on Γ from (2.41). Thus for all v ∈ H
1
2 (Γ):

(4.13) 0 = 〈curlΓ τD, v〉Γ = 〈τD, curlΓ v〉Γ

= 〈τNτ
′s, curlΓ v〉Γ = 〈τNτ

′ curlΓ p, curlΓ v〉Γ.
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The last expression can be enlightened using a more explicit representation. Following
Claeys and Hiptmair [6, Equations (41) and (42)], under the additional assumption
that curlΓ p, curlΓ v ∈ L∞(Γ), we have:

(4.14) 〈τNτ
′ curlΓ p, curlΓ v〉Γ =

1

4π

∫

Γ

∫

Γ

curlΓ p(y) · curlΓ v(x)

|x− y|
dS(y) dS(x).

Here one clearly recognises the hypersingular boundary integral operator for the scalar
Laplace equation [16, Section 3.3.4]. This operator is known to be coercive on H

1
2 (Γ)/R

[16, Theorem 3.5.3], and we conclude that p = 0.

Let us now make some remarks on the case β1 6= 0. We define ΩC := R
3 \ Ω as

the complementary domain of Ω, and B := curlD|Ω and BC := curlD|ΩC . These
functions are Neumann harmonic fields:

divB = 0, curlB = 0 in Ω, B · n = 0 on Γ,(4.15)

divBC = 0, curlBC = 0 in ΩC , BC · n = 0 on Γ.(4.16)

Ultimately, the idea is to rely on the fact that in handle-free domains the space of
Neumann harmonic fields only contains the zero element, and thus B = 0 and BC = 0.
In the case β1 6= 0, however, neither Ω nor ΩC are handle-free, and in fact we have
βC
1 = β1. The spaces of Neumann harmonic fields on Ω and ΩC then each have

dimension β1.
Buffa has derived the analogue of Lemma 2.3 for the case of Lipschitz polyhedra

with β1 6= 0 [4]. Because β1 = βC
1 , it contains an additional term from the 2β1-

dimensional space of harmonic tangential fields. Half of these components are fixed
because of the condition curlA|Ω = U, the other half concerns the external harmonic
fields. To ensure uniqueness of A, one additionally needs to prescribe the Neumann
harmonic components of UC := curlA|ΩC .

5. Construction of Solutions. In this section, we first provide a construction
for a stream function A ∈ H1

loc(R
3) for the general case of a given vorticity field

F ∈
[
H0(curl; Ω)

]′
. This construction may also be considered an alternative proof of

the existence results of Theorems 3.1 and 4.1.
In computational practice, one will usually have F ∈ L2(Ω). Under this as-

sumption we can simplify the construction, yielding an algorithm that is more easily
implementable.

5.1. The General Case. Let F ∈
[
H0(curl; Ω)

]′
be given and suppose that it

fulfils the integrability condition (3.2), or the equivalent conditions (3.11a) and (3.11b).

Furthermore, let g ∈ H− 1
2 (Γ) be given boundary data such that 〈g, 1〉Γi

= 0, i =
0, . . . , β2.

Our approach is to first find a suitable extension F̃ ∈
[
H(curl;R3)

]′
of F ∈[

H0(curl; Ω)
]′

and then apply the Newton operator to it. Let R ∈ H0(curl; Ω) denote
the Riesz representative of F, i. e., the uniquely determined function R such that for
all V ∈ H0(curl; Ω):

(5.1)

∫

Ω

R ·V + curlR · curlV dx

︸ ︷︷ ︸
=:B(R,V)

= 〈F,V〉.

The expression B(R,V) is not only well-defined for V ∈ H0(curl; Ω), but also for any
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V ∈ H(curl;R3). We thus define F̃ ∈
[
H(curl;R3)

]′
as follows:

(5.2) ∀V ∈ H(curl;R3) : 〈F̃,V〉 := B(R,V).

Obviously F̃ ∈
[
H(curl;R3)

]′
⊂ H−1(R3) extends F and is compactly supported with

supp F̃ ⊂ Ω.
This extension does not necessarily fulfil div F̃ = 0 on all of R3. However, the

following result is useful.

Lemma 5.1. One has div F̃ ∈ H−1(R3). Moreover, there exists a uniquely determ-

ined surface functional f ∈ H− 1
2 (Γ) such that:

(5.3) 〈div F̃, V 〉 = −〈f, γV 〉Γ ∀V ∈ H1(R3),

and

(5.4)

{
〈f, 1〉Γi

= 0, i = 0, . . . , β2,

‖f‖
H

−
1
2 (Γ)

. ‖F‖H0(curl;Ω)′ .

Proof. First note that ∀V ∈ D(R3):

(5.5)

〈div F̃, V 〉 = 〈F̃, –∇V 〉 = B(R, –∇V ) =

∫

Ω

R · (–∇V ) dx

≤ ‖R‖L2(Ω)‖–∇V ‖L2(Ω)

≤ ‖F‖H0(curl;Ω)′‖V ‖H1(Ω).

The distribution div F̃ ∈ D′(R3) thus admits a unique continuous extension to

D(R3)
‖·‖

H1(R3) = H1(R3), and we may write div F̃ ∈ H−1(R3) with ‖ div F̃‖H−1(R3) ≤
‖F‖H0(curl;Ω)′ .

Next, we find that the value 〈div F̃, V 〉 only depends on the Dirichlet trace

γV ∈ H
1
2 (Γ) of the trial function V ∈ H1(R3). To see this, let V1, V2 ∈ H1(R3)

have the same Dirichlet trace, γV1 = γV2. Because γ(V1 − V2) = 0, one finds that
−∇(V1 − V2)|Ω ∈ H0(curl; Ω), and thus:

〈div F̃, V1〉 − 〈div F̃, V2〉 = B
(
R,−∇(V1 − V2)

)
= 〈F,−∇(V1 − V2)|Ω〉

(3.2)
= 0.(5.6)

We may thus define f ∈ H− 1
2 (Γ) as follows:

(5.7) ∀v ∈ H
1
2 (Γ) : 〈f, v〉Γ := −〈div F̃, γ−1v〉,

where γ−1 : H
1
2 (Γ) → H1(R3) is fixed, but may be any linear and bounded lifting

operator. Clearly, we have ‖f‖
H

−
1
2 (Γ)

. ‖F‖H0(curl;Ω)′ , because

(5.8)

〈f, v〉Γ = −〈div F̃, γ−1v〉

≤ ‖F‖H0(curl;Ω)′‖γ
−1v‖H1(R3)

≤ ‖F‖H0(curl;Ω)′‖γ
−1‖

H
1
2 (Γ)→H1(R3)

‖v‖
H

1
2 (Γ)

for all v ∈ H
1
2 (Γ).

Finally, for i = 0, . . . , β2, we have

〈f, 1〉Γi
= 〈f, γTi〉Γ = −〈div F̃, γ−1Ti〉 = 〈F,∇γ−1Ti|Ω〉

(3.2)
= 0.(5.9)
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As a consequence of the preceding lemma we may define q ∈ H1(Γ)/R, uniquely
up to a constant on each connected component of the boundary Γi, i = 0, . . . , β2, as
the solution to the Laplace–Beltrami equation:

(5.10) –∆Γ q = f on Γ,

and furthermore define:

(5.11)
F̂ := F̃− τ

′∇Γq,

Â := N F̂.

Lemma 5.2. One has F̂ ∈ H−1(R3) ∩ E ′(R3), Â ∈ H1
loc(R

3) decaying to zero at
infinity, and moreover:

(5.12)





‖F̂‖H−1(R3) . ‖F‖H0(curl;Ω)′ ,

‖Â‖H1(Ω) . ‖F‖H0(curl;Ω)′ ,

−∆Â = F̂ = 0 on R
3 \ Ω,

−∆Â = F̂ = F on Ω,

div Â = div F̂ = 0 on R
3.

Proof. We first consider the properties of F̂; the corresponding properties of Â
then easily follow from the properties of N .

We already established that F̃ ∈ H−1(R3) and ‖F̃‖H−1(R3) . ‖F‖H0(curl;Ω)′ . For
the surface functional,

(5.13) ‖∇Γq‖L2(Γ) ≤ ‖q‖H1(Γ) . ‖f‖H−1(Γ) . ‖f‖
H

−
1
2 (Γ)

. ‖F‖H0(curl;Ω)′ ,

so that ∀V ∈ D(R3):

〈∇Γq, τV〉Γ . ‖F‖H0(curl;Ω)′‖V‖H1(R3).(5.14)

Thus −τ
′∇Γq ∈ H−1(R3) with

(5.15) ‖ − τ
′∇Γq‖H−1(R3) . ‖F‖H0(curl;Ω)′ .

The fact that F̂ = 0 on R
3 \ Ω is obvious. We have F̂ = F on Ω, because the

surface functional vanishes there.
For the divergence, we note that ∀V ∈ D(R3):

〈∇Γq, τ∇V 〉Γ = 〈∇Γq,∇ΓγV 〉Γ = 〈−∆Γq, γV 〉Γ = 〈f, γV 〉Γ = −〈div F̃, V 〉,(5.16)

and therefore div F̂ = 0.
The properties of Â now directly follow from the mapping properties of the Newton

operator, the fact that it is an inverse to the vector Laplacian, and that N commutes
with differentiation.

With these properties in place, one immediately verifies that Û := curl Â solves
the div-curl system (3.1), but does not necessarily fulfil Û · n = g on Γ. To fix
its normal component, it then suffices to solve the hypersingular boundary integral
equation:

(5.17) ∀v ∈ H
1
2 (Γ) : 〈τNτ

′ curlΓ p, curlΓ v〉Γ = 〈g − curl Â · n, v〉Γ,
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for the unknown p ∈ H
1
2 (Γ)/R. This problem is known to be well-posed, and its

solution continuously depends on Û · n and g [16, Theorem 3.5.3]:

(5.18) ‖p‖
H

1
2 (Γ)

. ‖Û · n− g‖
H

−
1
2 (Γ)

. ‖Û‖H(div;Ω) + ‖g‖
H

−
1
2 (Γ)

. ‖Â‖H1(Ω) + ‖g‖
H

−
1
2 (Γ)

. ‖F‖H0(curl;Ω)′ + ‖g‖
H

−
1
2 (Γ)

.

We now finally define:

(5.19)





s := curlΓ p−∇Γq ∈ H
− 1

2

R (divΓ; Γ),

A := N
(
F̃+ τ

′s
)
∈ H1

loc(R
3),

U := curlA ∈ L2(R3).

Then U solves the div-curl system and U ·n = g on Γ, and A is a stream function
for U. In the case of a handle-free domain, Theorems 3.7 and 4.2 guarantee that these
functions are unique. Moreover, the solution continuously depends on F and g. In
total we have therefore proven the following theorem.

Theorem 5.3. Let F ∈
[
H0(curl; Ω)

]′
be given and fulfil the integrability condition

(3.2), or the equivalent conditions (3.11a) and (3.11b). Furthermore, let g ∈ H− 1
2 (Γ)

be given, such that 〈g, 1〉Γi
= 0 for all i = 0, . . . , β2.

Then a solution to the div-curl system (3.1) with U ·n = g on Γ, and its associated
stream function A are given by (5.19). In case of a handle-free domain U and A are
the uniquely determined functions from Theorems 3.7 and 4.2.

These functions linearly and continuously depend on the data F and g, and we
have:

(5.20) ‖U‖L2(Ω) . ‖A‖H1(Ω) . ‖F‖H0(curl;Ω)′ + ‖g‖
H

−
1
2 (Γ)

.

It is this well-posedness result which makes the construction accessible in practice.
We conclude this subsection with a summary of the construction. In the subsequent
section we give some remarks on its practical implementation.

1. Define F̃ via (5.2).
2. Solve the Laplace–Beltrami equation for q ∈ H1(Γ)/R:

〈∇Γq,∇Γv〉Γ = 〈F̃,∇γ−1v〉 ∀v ∈ H1(Γ).

3. Solve the hypersingular boundary integral equation (5.17) for p ∈ H
1
2 (Γ)/R.

4. Define A and U as in (5.19).

5.2. A remark on square-integrable vorticity fields. The vorticity is often
known in practice to be square-integrable. When that is the case, the construction can
be slightly simplified. Thus, let F ∈ L2(Ω) fulfil the integrability conditions (3.11a)
and (3.12).

We first note that F now possesses a natural extension by zero:

(5.21) F̃ : R3 → R
3, x 7→

{
F(x) x ∈ Ω,

0 else.
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Next, we note that because F ∈ L2(Ω) and divF = 0 in Ω, we also have F ∈

H(div; Ω). Thus F has a normal trace F · n ∈ H− 1
2 (Γ), that by condition (3.12)

satisfies 〈F · n, 1〉Γi
= 0, i = 0, . . . , β2. We may thus instead define q ∈ H1(Γ)/R3 as

the solution to the Laplace–Beltrami equation

(5.22) –∆Γ q = F · n on Γ.

Defining F̂ := F̃− τ
′∇Γq, and Â := N F̂ one verifies that Lemma 5.2 holds. The

term τ
′(–∇Γ q) is the correction to the Biot–Savart law mentioned subsection 1.2.

From this point the construction then proceeds as before.

6. Regularity. We begin this section by recalling a result of Costabel [7].

Lemma 6.1. Let Ω ⊂ R
3 denote a handle-free, bounded Lipschitz domain and let

U ∈ L2(Ω) fulfil:

(6.1) divU ∈ L2(Ω), curlU ∈ L2(Ω).

Then U satisfies U · n ∈ L2(Γ) on Γ if and only if U× n ∈ L2(Γ); and in this case U

fulfils U ∈ H
1
2 (Ω).

This result can directly be applied to solutions of the div-curl system (3.1). In the
following, we show that it also implies higher regularity of the associated stream
functions.

Theorem 6.2. Let Ω ⊂ R
3 be a bounded, handle-free Lipschitz domain. Let

F ∈ L2(Ω) be given and fulfil the integrability condition (3.2), or the equivalent
conditions (3.11a) and (3.12). Furthermore, let g ∈ L2(Γ) be given, such that 〈g, 1〉Γi

=
0 for all i = 0, . . . , β2.

Then, the unique solution U ∈ L2(Ω) of the div-curl system (3.1) with U ·

n = g on Γ fulfils U ∈ H
1
2 (Ω), and its uniquely determined stream function A

from Theorem 4.2 fulfils A ∈ H
3
2

loc(R
3 \ Γ).

Proof. The regularity of U is exactly Costabel’s result Lemma 6.1.
For the regularity of A, we first consider the case g = 0. Thus, let U0 denote

the unique solution of the div-curl system (3.1) that satisfies U0 · n = 0 on Γ, and
let A0 ∈ H1

loc(R
3) denote its associated stream function. An application of the

representation formula for the vector Laplacian then yields:

(6.2)
A0 = N (F̃+ τ

′s0) on R
3,

s0 = JcurlA0 × nK on Γ,

where F̃ ∈ L2(R3) is F’s zero extension as defined in (5.21). Clearly, from the mapping

properties of the Newton operator, it follows that N F̃ ∈ H2
loc(R

3). For the boundary
term we note that from the construction of A0 in the proof of Theorem 4.1 it is clear
that curlA0 = 0 in R

3 \ Ω. This implies that

(6.3) s0 = U0 × n on Γ,

and because of Lemma 6.1 this yields s0 ∈ L2(Γ). The boundary term Nτ
′s0 may

thus alternatively be interpreted as a component-wise application of the scalar single
layer potential operator Nγ′ to the components of s0. For this operator the following
mapping property it is known [16, Remark 3.1.18b]:

(6.4) Nγ′ : L2(Γ) → H
3
2

loc(R
3 \ Γ),
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and thus Nτ
′s0 ∈ H

3
2

loc(R
3 \ Γ).

For general boundary data U · n = g ∈ L2(Γ), one then needs to solve the
hypersingular boundary integral equation:

(6.5) ∀v ∈ H
1
2 (Γ) : 〈τNτ

′ curlΓ p, curlΓ v〉Γ = 〈g, v〉Γ,

for the unknown p ∈ H
1
2 (Γ)/R and set s := s0 + curlΓ p, A := N (F̃+ τ

′s). For the
integral equation the following regularity result is known [16, Theorem 3.2.3b]:

(6.6) g ∈ L2(Γ) =⇒ p ∈ H1(Γ).

Thus curlΓ p ∈ L2(Γ) and by the same arguments as above one obtains that A ∈

H
3
2

loc(R
3 \ Γ).

7. Numerical Illustration of Increased Regularity. We consider the domain
Ω := (0, 1)3 \ [0.1, 0.8]3 and the smooth velocity field U ∈ C∞(Ω) associated to the
vorticity F ∈ C∞(Ω) given by:

(7.1) U(x) :=
1

2



−x2

x1

0


 , F(x) := curlU(x) =



0
0
1


 .

The domain Ω was chosen to be asymmetric, non-smooth, non-convex, and topologically
non-trivial (β2 = 1), while at the same time being ‘easy’ from the viewpoint of meshing.
An illustration is given in Figure 2.

Neither for the tangential potential AT, nor for the potential introduced in this
work explicit expressions are known. Thus, the finite element method by Amrouche et
al. has been implemented to compute AT. [1] For the other stream function, notice
that in this case the Newton potential:

(7.2) N F̃(x) =
1

4π

∫

Ω

dy

|x− y|
·



0
0
1




can be easily evaluated analytically. For the Laplace–Beltrami equation for q as well
as the hypersingular boundary integral equation for p standard Galerkin methods were
used. Note that the method by Amrouche et al. requires to use the velocity field U as
input, while the approach discussed in this work only requires F and the boundary
data U · n.

The numerical results along the line (x1, 0.5, 0.8)
⊤ are shown in Figure 3. One

clearly sees that close to the corners of the interior boundary Γ1 neither solutions are
smooth. But while the tangential potential AT first shows a very steep increase at
x1 = 0.1, followed by a jump-discontinuity, the new potential A only exhibits a small
kink, which suggests more regularity.

8. Conclusions and Outlook. In this work, we have established precise condi-
tions under which a divergence-free velocity field U ∈ L2(Ω) can be recovered from its
given curl and boundary data U · n. Additionally, minor complementary assumptions
on the boundary data guarantees that this velocity field can be represented in terms
of a stream function A ∈ H1(Ω), which can be explicitly constructed. This stream
function is more regular than the tangential vector potential suggested by Amrouche
et al. [1]
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Figure 2. A graphical illustration of the domain used in the numerical experiment, Ω =
(0, 1)3 \ [0.1, 0.8]3. Here only the part where x2 ≥ 0.5 is shown. The domain is asymmetric, has
non-trivial topology, and is not convex. In Figure 3 plots along the indicated line are given.

0 0.2 0.4 0.6 0.8 1
−0.10

−0.05

0

0.05

0.10

0 0.2 0.4 0.6 0.8 1
−0.10

−0.05

0

0.05

0.10

A1 A2 A3

Figure 3. Two different vector potentials for the same velocity field U = 1

2
(−x2, x1, 0)⊤ on

the domain Ω = (0, 1)3 \ [0.1, 0.8]3, plotted along the line (x1, 0.5, 0.8)⊤. On the left: the tangential
vector potential AT ∈ H0(div; Ω) ∩H(curl; Ω) by Amrouche et al. [1] Especially the third component
A3 shows a very steep increase at x1 = 0.1, followed by a jump-type discontinuity. On the right: the

new vector potential A presented in this work. In this case we have A ∈ H
3
2 (Ω); only a small kink

in the components is visible at x1 = 0.1 and x1 = 0.8.

The regularity result of Theorem 6.2 is sharp in several ways. Let us for example
consider the case of a handle-free domain Ω with β1 = 0 and suppose that F ≡ 0.
It is then a classical result that the velocity field U can be written in terms of the
gradient of a scalar potential: U = –∇P , where –∆P = 0 in Ω. Even if the given
boundary data U · n is smooth, it is known from regularity theory for the scalar
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Laplace equation that, on bounded Lipschitz domains, the highest regularity one can
expect is P ∈ H

3
2 (Ω), which therefore only leads to U ∈ H

1
2 (Ω). There are indeed

examples of domains Ω and boundary data U · n where P /∈ H
3
2+ε(Ω) for any ε > 0.

In this sense, the vector potential A ∈ H
3
2 (Ω) introduced in this work has the highest

possible regularity one can expect for arbitrary Lipschitz domains.
However, an interesting question remains. Suppose that the given data F and

U · n are such that the velocity field U does happen to have higher regularity, say
U ∈ Hs(Ω) for some s > 1

2 . McIntosh and Costabel have proven that in this case,
another vector potential As ∈ H1+s(Ω) exists. [14, Corollary 4.7] In other words, there
always exists a stream function that is more regular than its velocity field by one order.
From a numerical point of view, this would be desirable, because the price paid to
approximate As instead of U could be compensated by higher order approximations.
In the numerical example discussed in section 7, such a smooth vector potential is
given by:

(8.1) A∞(x) = −
1

4




0
0

x2
1 + x2

2


 .

However, numerical experiments indicate that the vector potential proposed in this
work is not smooth. Therefore, the problem of devising an algorithm to approximate
reliably and efficiently the

smoothest possible stream function remains open.
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