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HP -FEM FOR REACTION-DIFFUSION EQUATIONS

II. ROBUST EXPONENTIAL CONVERGENCE FOR MULTIPLE

LENGTH SCALES IN CORNER DOMAINS. ∗

LEHEL BANJAI† , JENS M. MELENK‡ , AND CHRISTOPH SCHWAB§

Abstract. In bounded, polygonal domains Ω ⊂ R2 with Lipschitz boundary ∂Ω consisting
of a finite number of Jordan curves admitting analytic parametrizations, we analyze hp-FEM dis-
cretizations of a linear, second order, singularly perturbed reaction diffusion equations on so-called
geometric boundary layer meshes. We prove, under suitable analyticity assumptions on the data,
that these hp-FEM afford exponential convergence, in the natural “energy” norm of the problem,
as long as the geometric boundary layer mesh can resolve the smallest length scale present in the
problem. Numerical experiments confirm the exponential convergence.
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1. Introduction. The need for accurate numerical approximations of solutions
to singularly perturbed partial differential equations in nonsmooth domains arises
in a wide range of applications. Higher order numerical methods must cope with
the appearance of boundary layers and their interaction with geometric corner and
edge singularities. They are due to length scales introduced into weak solutions by
small or large parameters in the differential operator. Accordingly, a large body
of numerical analysis research has been developed during the past decades on their
efficient numerical resolution; we mention only [21, 23] and the references there for
reaction-advection-diffusion problems, and [27] for viscous, incompressible flow. The
discretization methods presented and surveyed in [23] are of fixed order and of Finite
Difference or Finite Element type. They account specifically for the appearance of
boundary and interior layers in solutions of the singularly perturbed boundary value
problems. Being of fixed order, the corresponding discretization methods can afford at
best fixed, algebraic orders of convergence whose convergence is, however, robust: the
constants implicit in a priori error bounds are independent of the singular perturbation
parameters and, hence, of the physical length scales in solutions that are implied by
the singular perturbation of the governing equations.

As it is well-known, elliptic boundary value problems in domains Ω with piecewise
analytic boundary for differential operators with analytic in Ω coefficients and forcing
terms admit exponential convergence rates by Galerkin approximations with local
mesh refinement and concurrent, judicious increase of the polynomial degree. This
so-called hp-Finite Element approach has been analyzed in a series of papers, see [5,29]
and, more recently, in [25,26,28], and the references there, for regular elliptic boundary
value problems.
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The study of parametric regularity and proof of robust, algebraic convergence
rates of discretizations for singularly perturbed, elliptic boundary value problems on
polygons seems to have been initiated by G.I. Shiskhin in the 1980s [32].

For singular perturbation problems, corresponding results on robust exponential
convergence rates and corresponding analytic regularity estimates for solutions have
been obtained in a series of papers in the 1990s, see [15, 16,18,19] and the references
there. The results from [15, 16, 19] were restricted to domains Ω with smooth (ana-
lytic) boundary ∂Ω. In [20] analytic regularity results for elliptic reaction-diffusion
problems in two space dimensions that are uniform with respect to the perturbation
parameter were obtained. These results allowed us in [19] to prove robust exponential
convergence of hp-FEM with so-called two-element and geometric boundary layer
meshes, in domains Ω with a smooth (analytic) boundary ∂Ω. In [18], an analytic
regularity theory for solutions of linear, singularly perturbed elliptic reaction-diffusion
problems in polygonal domains Ω as depicted in Fig. 1.1 was developed. In these
works, elliptic singular perturbations with exactly one small length scale were consid-
ered. Examples of elliptic singular perturbation problems where several characteris-
tic length scales appear simultaneously comprise in particular dimensionally reduced
models of curved thin solids (“shells”) in so-called “bending-dominated” states (see,
e.g., [9] and the references there for a detailed discussion of possible length scales),
and linear, elliptic reaction-diffusion boundary value problems that result from im-
plicit time-discretizations of parabolic evolution equations and, more recently, from
discretizations of fractional powers of elliptic operators (see, e.g., [6,17] and the refer-
ences there). Further applications of the presently developed results arise in electro-
magnetics in so-called eddy-current models (where the small parameter is a complex
number) (see, e.g., [8] and the references there), and in hp-FEM for advection-diffusion
problems where stability, in addition to consistency, is a major issue (see, e.g., [10,16]).

The present work extends in the reaction-diffusion case the hp-error analysis of
Part I [19] to polygons and addresses the question how to approximate problems
with multiple scales. The meshes presented here are also appropriate in situations
where the precise length scales are unavailable, as is the case for example in problems
from computational mechanics, see, e.g. [9]. We next present a model singularly
perturbed linear elliptic diffusion problem, where the perturbation parameter 0 < ε ≤
1 dictates the single boundary length scale ε. We hasten to add that the ensuing hp-
approximation results hold, independent of the particular model problem, and apply
to a wider range of singular perturbations, as plate and shell models with possibly
multiple length scales. See, e.g., [2, 9, 12, 13] and the references there.

1.1. Model reaction-diffusion problem. In a bounded domain Ω ⊂ R2,
which is assumed to be scaled to unit size, and for a parameter 0 < ε ≤ 1, we
consider the hp-FE approximation of the model reaction-diffusion Dirichlet problem

(1.1) − ε2∇ · (A(x)∇uε) + c(x)uε = f in Ω, uε = 0 on ∂Ω.

We assume

(1.2)
A, c, f analytic on Ω, independent of ε,
A symmetric, positive definite uniformly in Ω, c ≥ c0 > 0 on Ω.

We again emphasize that we consider (1.1) for illustration. The scope of the robust
exponential hp convergence rate bounds below extends well beyond (1.1) to more
complex, singularly perturbed PDE such as those in [2, 9, 12].
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Fig. 1.1. Example of a curvilinear polygon

1.2. Geometric Preliminaries. In (1.2), the domain Ω ⊂ R2 is a curvilinear
polygonal domain, schematically depicted in Fig. 1.1. Specifically, the boundary ∂Ω
is assumed to consist of J ∈ N closed curves Γ(i). Each curve Γ(i) in turn is assumed
to be partitioned into finitely many open, disjoint, analytic arcs Γ

(i)
j , in the sense that

there are numbers Ji ∈ N such that

Γ(i) =

Ji⋃

j=1

Γ
(i)
j , i = 1, . . . , J .

Here, analytic arcs Γ
(i)
j admit nondegenerate, analytic parametrizations, i.e.,

Γ
(i)
j =

{
x
(i)
j (θ)|θ ∈ (0, 1)

}
, i = 1, ..., J, j = 1, ..., Ji .

with the coordinate functions x
(i)
j , y

(i)
j of x

(i)
j (θ) = (x

(i)
j (θ), y

(i)
j (θ)) assumed to be

(real) analytic functions of θ ∈ [0, 1] and such that

min
θ∈[0,1]

{∣∣∣∣
d

dθ
x
(i)
j (θ)

∣∣∣∣
2

+

∣∣∣∣
d

dθ
y
(i)
j (θ)

∣∣∣∣
2
}
> 0 j = 1, ..., Ji, i = 1, ..., J .

We denote ∂Γ
(i)
j = {A(i)

j−1,A
(i)
j } where A

(i)
j−1 = x

(i)
j (0) and A

(i)
j = x

(i)
j (1). For each

boundary component Γ(i), we enumerate {A(i)
j }Ji

j=1 cyclically, counterclockwise by

indexing with j modulo Ji, thereby identifying in particular A
(i)
j := A

(i)
j+Ji

. The

interior angle at A
(i)
j is denoted ω

(i)
j ∈ (0, 2π). For notational simplicity, we assume

henceforth that J = 1, i.e., ∂Ω consists of a single component of connectedness. We

write Aj = A
(1)
j , Γj for Γ

(1)
j , xj = x

(1)
j , yj = y

(1)
j . Then, in a vicinity of any point

x ∈ ∂Ω, a curvilinear polygon Ω is analytically diffeomorphic to either a half-space,
or to a plane sector with vertex situated at the origin.

1.3. Contributions. The principal contribution of the present paper is robust,
exponential convergence of a class of hp-FEM approximations of the singular pertur-
bation problem (1.1) under the analyticity assumptions (1.2), in curvilinear polygons
Ω as described in Section 1.2. The convergence proof in Sections 3 and 4 is done
under a scale resolution condition that corresponds, roughly speaking, to the hp-FE
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partitions resolving the shortest length scale that occurs in the solution uε, and it
is strongly based on parameter-explicit, analytic regularity results for the parametric
solution family {uε : 0 < ε ≤ 1} ⊂ H1

0 (Ω) of (1.1), which were obtained by one of
the authors in [18]. Importantly, and distinct from earlier work on robust exponen-
tial hp-FE convergence for (1.1), a patch-based convergence proof is developed which
also enables an algorithmic, patchwise-structured anisotropic mesh specification, de-
scribed in Section 2, which is applicable in domains Ω of the generality admitted in
Section 1.2. As we show in numerical experiments in Section 5, the recently devel-
oped, automatic mesh generator NETGEN [24] does produce automatically, i.e., with-
out “expert pruning”, anisotropic, geometric meshes in Ω with the required boundary
and corner refinement which satisfy the requirement of the present robust, exponential
convergence bounds.

1.4. Outline of this paper. In Section 2, we introduce the geometric mesh fam-
ilies in Ω which underlie our robust exponential convergence results. The meshes re-
quire concurrent anisotropic geometric partitions of Ω towards the boundary ∂Ω, and
towards the corners Aj . We define these meshes in a macro-element fashion based on
an initial, coarse regular partition of the physical domain Ω into a macro-triangulation
consisting of a regular, finite, and fixed partition of the physical domain Ω which is
described in Section 2.1. Its elements will be referred to as (macro) patches and are as-
sumed to be images of a finite number of quadrilateral reference patches under analytic
patch maps. The reference patches are key in ensuring robust exponential conver-
gence rate bounds of our hp-FEM approximation. Following earlier work [15, 16, 18],
we consider so-called geometric boundary layer meshes, denoted by T L,n

geo,σ. We intro-
duce these in Def. 2.3. Unlike the so-called “two-element” meshes considered earlier
in [30, 31], which are designed to approximate only a single small scale in a robust
way, the presently considered geometric boundary layer meshes afford robust expo-
nential convergence rates of hp-FEM also in the presence of multiple physical length
scales. This situation arises in a number of applications (e.g., [6, 9]). Section 2.3 in-
troduces the geometric boundary layer mesh, first on the reference patches, and then
in Section 2.4 in curvilinear polygons.

Section 3 is devoted to the polynomial approximation of functions on geometric
boundary layer meshes. The approximation is based on Gauss-Lobatto interpola-
tion operators in the reference triangle, indicated by △, and in the reference square,
indicated by �, in Section 3.1. These are then assembled into (nodal) patch approx-
imation operators on the geometric boundary layer patches in Section 3.2. Then,
the robust hp-approximation of corner singularities and boundary layer functions is
proved. These functions are the key solution components of singularly perturbed
problems in polygons such as the model problem (1.1).

Section 4 assembles the patch hp-approximation results and interpolants into a
global approximation operator, and presents the main result of this paper: robust
exponential convergence rate bounds for the global hp-interpolation of the solution of
(1.1) assembled from the patch approximations.

Section 5 presents several illustrative numerical experiments in polygons, which
underline the theoretical results. They are based on hp-meshes that are furnished by
the automated mesh generation procedure NETGEN [24] to make the point that the
somewhat technical construction of geometric boundary layer meshes is, in principle,
available and feasible automatically. Appendix A contains proofs of auxiliary results
on analytic regularity estimates under analytic changes of variables. Appendix B
collects (mostly known) results on univariate polynomial approximation for convenient
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reference in the main text.

1.5. Notation. We employ standard notation for Sobolev spaces. Constants
C, γ, b > 0 may be different in different instances. However, they will be inde-
pendent of parameters of interest such as ε ∈ (0, 1] and the polynomial degree q.
The notation ∇nu stands for the collection of all partial derivatives of order n and
|∇nu|2 =

∑
|α|=n

n!
α! |Dαu|2. Points in R2 will be denoted depending on the context as

either x = (x, y) (physical domain) or x̃ = (x̃, ỹ) (patch domains) or x̂ = (x̂, ŷ) (ref-
erence domains). We abbreviate {x̃ = 0}, {ỹ = 0}, and {x̃ = ỹ} for the line segments
{x̃ = (0, ỹ) | 0 < ỹ < 1}, {x̃ = (x̃, 0) | 0 < x̃ < 1}, and {x̃ = (x̃, ỹ) | 0 < x̃ = ỹ < 1},
respectively. We write {ỹ ≤ x̃} for {x̃ = (x̃, ỹ) | ỹ ≤ x̃}. The origin will be denoted

0 = (0, 0). The reference square and triangle are Ŝ := (0, 1)2 and T̂ := {(x̂, ŷ) | 0 <
x̂ < 1, 0 < ŷ < x̂}. The region covered by the reference patch will be denoted

S̃ := Ŝ = (0, 1)2. It will be convenient to introduce T̃ := T̂ and set T̃ flip := S̃ \ T̃ . We
denote the space of polynomials of total degree q by Pq = span{xiyj | 0 ≤ i+ j ≤ q};
the tensor product space Qq is Qq = span{xiyj | 0 ≤ i, j ≤ q}.

T̃ BL,L
geo,σ

ỹ

x̃

T̃ C,n
geo,σ

ỹ

x̃

trivial patch

ỹ

x̃
T̃ T,L,n
geo,σ

S̃1 = (0, σL)2

ỹ

x̃

T̃ M,L,n
geo,σ

S̃1 = (0, σL)2

ỹ

x̃
Fig. 2.1. Patch mesh structures in axiparallel reference patch co-ordinates. Top row: reference

boundary layer patch T̃ BL,L
geo,σ with L layers of geometric refinement towards {ỹ = 0}; reference

corner patch T̃ C,n
geo,σ with n layers of geometric refinement towards (0, 0); trivial patch. Bottom row:

reference tensor patch T̃ T,L,n
geo,σ with n layers of refinement towards (0, 0) and L layers of refinement

towards {x̃ = 0} and {ỹ = 0}; reference mixed patch T̃ M,L,n
geo,σ with L layers of refinement towards

{y = 0} and n layers of refinement towards (0, 0). Geometric entities shown in boldface indicate

parts of ∂S̃ that are mapped to ∂Ω. These patch meshes are transported into the curvilinear polygon
Ω shown in Fig. 1.1 via analytic patch maps FKM .

2. Macro triangulation. Geometric boundary layer mesh. Our robust
exponentially convergent hp approximation is based on so-called geometric boundary
layer meshes, denoted by T L,n

geo,σ. To facilitate our error analysis, the T L,n
geo,σ are gen-

erated as push-forwards of a small number of so-called reference patches, which are

partitions of S̃, under the patch maps. The images of S̃ under the patch maps form
a (coarse) macro triangulation of Ω satisfying some minimal conditions, which are
described in Section 2.1. This concept was also used in the context of hp-FEM for
singular perturbations in [18, Sec. 3.3.3] and in [11].
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geo,σ

T̃1 := {0 < x̃ < σL,
0 < ỹ < x̃}
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x̃

ỹ

T̃ C,half,n
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ỹ

T̃ C,half,flip,n
geo,σT̃ flip

x̃

ỹ

Fig. 2.2. From left to right: half-patches T̃ M,half,L,n
geo,σ , T̃ C,half,n

geo,σ , and T̃ C,half,flip,n
geo,σ . They are

given by the elements of T̃ C,n
geo,σ and T̃ M,L,n

geo,σ below the diagonal {ỹ = x̃} and the mirror image of

T̃ C,half,n
geo,σ at the diagonal {ỹ = x̃}.

T B M C

M

B

T B T

B

B

B

B

TBBBBT

B

Ω
B M C

M
∂Ω Aj

Fig. 2.3. Left panel: example of an L-shaped domain decomposed into 27 patches (T , B, M ,
C indicate tensor, boundary layer, mixed, corner patches; empty squares stand for trivial patches).
Right panel: Zoom-in near the reentrant corner.

2.1. Macro triangulations. We assume given a fixed macro-triangulation T M =
{KM |KM ∈ T M} of Ω consisting of curvilinear quadrilaterals KM with bijective

element maps FKM : S̃ → KM that are analytic in S̃ and that in addition satisfy the
usual compatibility conditions. I.e., the partition T M does not have hanging nodes
and, for any two distinct elements KM

1 ,KM
2 ∈ T M that share an edge e, their respec-

tive element maps induce compatible parametrizations of e (cf., e.g., [18, Def. 2.4.1]
for the precise conditions).

Each element of the fixed macro-triangulation T M is further subdivided according
to one of the refinement patterns in Definition 2.1 (see also [18, Sec. 3.3.3] or [11]).
The actual triangulation is then obtained by transplanting refinement patterns on
the square reference patch S̃ into the physical domain Ω by means of the element
maps of the macro-triangulation, i.e., by the patch maps FKM , resulting in the actual
triangulation T . Then, for any element K ∈ T , the element maps FK : K̂ → K
are concatenations of affine maps AK : K̂ → K̃, which realize the mapping from
K̂ ∈ {Ŝ, T̂} to the elements in the patch refinement pattern, and the analytic patch
maps FKM . That is, the element maps have the form FK = FKM ◦ AK for an affine
AK . Throughout the article, we will denote by K̂ ∈ {Ŝ, T̂} the reference element

corresponding to an element K of a triangulation, and we will denote by K̃ the
elements of the triangulation of the reference patterns. Points in the reference patch
S̃ are denote x̃ = (x̃, ỹ) ∈ S̃; variables (x, y) are employed to indicate points in Ω,

and x̂ = (x̂, ŷ) are used for point of the reference square Ŝ and reference triangle T̂ .

2.2. Refinement patterns in the reference configuration. The following
refinement patterns, which are depicted in Fig. 2.1, are based on geometric refinement
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towards a vertex and/or an edge; the parameter L controls the number of layers of
refinement towards an edge whereas the natural number n ≥ L measures the number
of geometric refinements towards vertices.

Definition 2.1 (admissible refinement patterns). Given σ ∈ (0, 1), L, n ∈ N0

with n ≥ L the following refinement patterns are admissible:

1. The trivial patch: The reference square S̃ is not further refined. The corre-

sponding triangulation of S̃ consists of the single element: T̂ = {S̃}.
2. The geometric boundary layer patch T̃ BL,L

geo,σ : S̃ is refined anisotropically to-
wards {ỹ = 0} into L elements as depicted in Fig. 2.1 (top left). The mesh

T̃ BL,L
geo,σ is characterized by the nodes (0, 0), (0, σi), (1, σi), i = 0, . . . , L, and

the corresponding rectangular elements generated by these nodes.
3. The geometric corner patch T̃ C,n

geo,σ: S̃ is refined isotropically towards (0, 0) as
depicted in Fig. 2.1 (top middle). Specifically, the reference geometric corner

patch mesh T̃ C,n
geo,σ in S̃ with geometric refinement towards (0, 0) and n layers

is given by triangles and based on the nodes (0, 0), and (0, σi), (σi, 0), (σi, σi),
i = 0, 1, ..., n.

4. The tensor product patch T̃ T,L,n
geo,σ : S̃ is triangulated in S̃1 := (0, σL)2 and

S̃2 := S̃\S̃1 separately as depicted in Fig. 2.1 (bottom left). The triangulation

of S̃1 is a scaled version of T̃ C,n−L
geo,σ and based on the nodes (0, σi), (σi, 0),

i = L, . . . , n. The triangulation of S̃2 is based on the nodes (σi, σj), i, j =
0, . . . , L.

5. The mixed patches T̃ M,L,n
geo,σ : The triangulation consists of both anisotropic

elements and isotropic elements as depicted in Fig. 2.1 (bottom right) and is

obtained by triangulating the regions S̃1 := (0, σL)2, S̃2 :=
(
S̃ \ S̃1

)
∩{ỹ ≤ x̃},

S̃3 := S̃ \ (S̃1 ∪ S̃2) separately. The set S̃1 is a scaled version of T̃ C,n−L
geo,σ

based on the nodes (0, σi), (σi, 0), i = L, . . . , n. The triangulation of S̃2 is
based on the nodes (σi, 0), (σi, σj), 0 ≤ i ≤ L, i ≤ j ≤ L and consists of
rectangles and triangles, and only the triangles abut on the diagonal {x̃ = ỹ}.
The triangulation of S̃3 consists of triangles only and is based on the nodes
(0, σi), (σi, σi), i = 0, . . . , L.

Remark 2.2. We kept the list of admissible patch refinement patterns in Defini-
tion 2.1 small in order to reduce the number of cases to be discussed for the hp-FE
error bounds. A larger number of refinement patterns provides greater flexibility in
the mesh generation. In particular, the reference patch meshes of Def. 2.1 do not
contain general quadrilaterals but only rectangles; this restriction is not essential but
leads to some simplifications in the hp-FE error analysis. Also certain types of an-
isotropic triangles (e.g., splitting anisotropic rectangles along the diagonal), which are
altogether excluded in the present analysis, could be accommodated at the expense of
additional technicalities.

The addition of the diagonal line in the reference corner, tensor, and mixed
patches is done to be able to apply the regularity theory of [18]. It is likely not neces-
sary in actual computations. We also mention that with additional constraints on the
macro triangulation T M the diagonal line could be dispensed with in certain situations
as is illustrated in Section 2.4.

2.3. Geometric boundary layer mesh. The following definition of the geo-
metric boundary layer mesh T L,n

geo,σ formalizes the patchwise construction of meshes
on Ω based on transplanting the meshes of the reference configurations to Ω via the
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patch maps FKM .

Definition 2.3 (geometric boundary layer mesh T L,n
geo,σ in Ω). Let T M be a

fixed macro-triangulation consisting of quadrilaterals with analytic element maps that
satisfy [18, Def. 2.4.1].

Given σ ∈ (0, 1), L, n ∈ N0 with n ≥ L, a regular mesh T L,n
geo,σ in Ω is called a

geometric boundary layer mesh if the following conditions are satisfied:
1. T L,n

geo,σ is obtained by refining each element KM ∈ T M according to one of
the refinement patterns given in Definition 2.1 using the given parameters σ,
L, and n.

2. The resulting mesh T L,n
geo,σ is a regular triangulation of Ω, i.e., it does not

have hanging nodes. Since the element maps for the refinement patterns are
assumed to be affine, this requirement ensures that the resulting triangulation
satisfies [18, Def. 2.4.1].

For each macro-element KM ∈ T M, exactly one of the following cases is possible:
3. KM ∩ ∂Ω = ∅. Then the trivial patch is selected as reference patch.
4. KM satisfies KM∩∂Ω = {Aj} for a vertex Aj of Ω. Then the corresponding

reference patch is the corner patch T̃ C,n
geo,σ. Additionally, FKM(0) = Aj.

5. KM ∩ ∂Ω = e for an edge e of KM and neither endpoint of e is a vertex
of Ω. Then the refinement pattern is the boundary layer patch T̃ BL,L

geo,σ and
additionally FKM({ỹ = 0}) ⊂ ∂Ω.

6. KM ∩ ∂Ω = e for an edge e of KM and exactly one endpoint of e is a vertex
Aj of Ω. Then the refinement pattern is the mixed layer patch T̃ M,L,n

geo,σ and
additionally FKM({ỹ = 0}) ⊂ ∂Ω as well as FKM(0) = Aj.

7. Exactly two edges of a macro-element KM are situated on ∂Ω. Then the
refinement pattern is the tensor patch T̃ T,L,n

geo,σ . Additionally, it is assumed
that FKM({ỹ = 0}) ⊂ ∂Ω, FKM({x̃ = 0}) ⊂ ∂Ω, and FKM(0) = Aj for a
vertex Aj of Ω.

8. KM ∩ ∂Ω is a single point P that is not a vertex of Ω. Then the refinement
pattern is the corner patch T̃ C,L

geo,σ with L layers of geometric mesh refinement
towards P . Additionally, it is assumed that FKM(0) = P ∈ ∂Ω.

Finally, the following technical condition ensures the existence of certain meshlines:
9. For each vertex Aj of Ω, introduce a set of lines

ℓ =
⋃

KM : Aj∈KM

{FKM({ỹ = 0}), FKM({x̃ = 0}), FKM({x̃ = ỹ}) }.

Let Γj, Γj+1 be the two boundary arcs of Ω that meet at Aj. Then there exists
a line e ∈ ℓ such that the interior angles ∠(e,Γj) and ∠(e,Γj+1) are both less
than π.

Remark 2.4. The last condition, requirement 9. in Definition 2.3, is merely a
technical condition that results from our applying the regularity theory for singular
perturbations of [18]. Very likely, it could be dropped.

The condition that FKM(0) ∈ ∂Ω or that FKM({ỹ = 0}) ⊂ ∂Ω are not conditions
on the patch geometry but on the maps FKM . They are not essential but introduced
for notational simplicity. They could be enforced by suitably concatenating the maps
FKM with an orthogonal transformation.

Remark 2.5. The meshes T L,n
geo,σ are refined towards both vertices and edges of Ω.

The parameter L ∈ N0 measures the number of layers of geometric refinement towards
∂Ω whereas the parameter n ∈ N characterizes the number of layers of geometric
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B B CL

B B CL

B M Cn

M

B
CL

Fig. 2.4. Generating a boundary layer mesh from a regular triangulation T 0: solid lines are
the triangulation T 0, dashed lines connect edge midpoints with element barycenters to create a mesh
consisting of quadrilaterals. B stands for boundary layer, M for mixed, CL for corner layer patches

T̃ C,L
geo,σ, C

n for corner layer patches T̃ C,n
geo,σ, empty quadrilaterals are trivial patches.

refinement towards the vertices. For L = 0 (or, more generally, L fixed), the meshes
T 0,n
geo,σ, n = 1, 2, . . ., realize the “geometric meshes” introduced in [3, 4] (see also [29,

Sec. 4.4.1]) for the hp-FEM applied to elliptic boundary value problems with piecewise
analytic data.

Example 2.6. Fig. 2.3 (left and middle) shows an example of an L-shaped do-
main with macro triangulation and suitable refinement patterns.

2.4. Geometric boundary layer meshes in curvilinear polygons. Geo-
metric boundary layer meshes can be constructed in various ways. A first approach,
which is in line with the illustration in Fig. 2.3, is to create one layer of quadrilat-
eral elements that partition a tubular neighborhood T∂Ω of ∂Ω. Each quadrilateral K
should fall into one of the following 3 categories: a) K∩∂Ω is an edge of K; b) K∩∂Ω
consists of two contiguous edges and the shared vertex is a vertex of Ω; c) K ∩∂Ω is a
vertex of Ω. In the second step, refinement patterns from Definition 2.3 are applied to
each quadrilateral. In the final step, Ω′ := Ω\T∂Ω is triangulated under the constraint
that the boundary nodes of the triangulation of Ω′ on ∂Ω′ coincide with the nodes of
the triangulation of T∂Ω that also lie on ∂Ω′. This triangulation of Ω′ could be chosen
to consist of triangles (and/or quadrilaterals). All elements of that triangulation will
be denoted “trivial patches”; we mention without proof that the approximation result
holds also if we include “trivial” triangles in the list of refinement patterns.

Geometric boundary layer meshes can also be constructed for general (curvilinear)
polygons Ω starting from any regular initial triangulation T 0 of Ω. This triangulation
T 0 is assumed to consist of (curvilinear) triangles with analytic element maps and
satisfying the “usual” conditions for triangulations as spelled out in [18, Def. 2.4.1].
Then, the geometric boundary layer mesh is generated in 3 steps (cf. Fig. 2.4):

1. (Ensure condition 9 of Def. 2.3) For each vertex Aj of Ω verify if an edge e of
T 0 splits the interior angle at Aj into two angles each less than π. If not, then
suitably split an appropriate triangle abuting onAj into two triangles (so that
the newly introduced edge will satisfy this condition) and remove the newly
introduced hanging node by a mesh closure. The resulting triangulation has
again analytic element maps and satisfies [18, Def. 2.4.1]; it is again denoted
T 0.

2. (Create a macro triangulation T M consisting of quadrilaterals only.) Split
each triangle K ∈ T 0 into 3 quadrilaterals as follows: split the reference tri-
angle T̂ into 3 quadrilaterals K̂i, i = 1, 2, 3, characterized by the vertices of
T̂ , its barycenter, and by the 3 midpoints of the edges of T̂ . The element



10 L. Banjai, J. M. Melenk, Ch. Schwab

maps of the 3 quadrilaterals FK(K̂i), i = 1, 2, 3, are obtained by concatenat-

ing the bilinear bijections FK̂i
: S̃ → K̂i with FK . The triangulation T M

of Ω obtained in this way realizes a decomposition of Ω into (curvilinear)
quadrilaterals, and the element maps satisfy [18, Def. 2.4.1].

3. (Generate the geometric boundary layer mesh.) The refinement pattern for
each K ∈ T M is determined since K falls into exactly one of the categories
3—8 of Definition 2.3 as can be seen by the following observations: a) At
most 2 edges of K are on ∂Ω (since the two edges that meet in the barycenter
of the parent triangle cannot be on ∂Ω). b) If two edges of K are situated on
∂Ω, then they have to be subsets of the two edges of the parent triangle with
common vertex V ; since T 0 is a regular triangulation, the common vertex
V has to be a vertex of Ω. Additionally, if necessary, the assumptions on
where the reference element vertex 0 and/or the edges {ỹ = 0}, {x̃ = 0} are
mapped can be ensured by suitably adjusting the element map with the aid of
an orthogonal transformation of S̃. Finally, condition 9 of Def. 2.3 is satisfied
by step 1.

It remains to see that after selecting the refinement patterns the resulting triangulation
satisfies [18, Def. 2.4.1]. This follows from the fact that the parameters σ, L, n are
the same for all macro elements and the structure of the refinement patterns: If an
edge e of the macro triangulation inherits a further refinement from a refinement
pattern, then the edge either lies on ∂Ω (which is immaterial for the question of
satisfying [18, Def. 2.4.1]) or it is in Ω and exactly one of its endpoints V lies on
∂Ω. This edge e is shared by two macro elements. If V is a vertex of Ω, then the
refinement patterns are such that the induced 1D-mesh on e is the same geometric
mesh with n layers for both macro elements. If V ∈ ∂Ω is not a vertex of Ω, then
the induced 1D-mesh on e is the same geometric mesh with L layers for both macro
elements. Hence, the resulting mesh satisfies [18, Def. 2.4.1].

2.5. Properties of the mesh patches. We note that parts of the mixed patch,
the tensor patch, and the corner patch are identical or at least structurally similar.
For the analysis of the approximation properties of hp-FEM on geometric boundary
layer meshes it is therefore convenient to single out these meshes:

Definition 2.7 (half-patches, cf. Fig. 2.2). The mixed half-patch T̃ M,half,L,n
geo,σ and

the corner half-patch T̃ C,half,n
geo,σ on T̃ = {(x̃, ỹ) | 0 < x̃ < 1, 0 < ỹ < x̃} are obtained

by restricting T̃ M,L,n
geo,σ and T̃ C,n

geo,σ to T̃ . The flipped corner half-patch T̃ C,half,flip,n
geo,σ

on T̃ flip := {(x̃, ỹ) | 0 < x̃ < 1, x̃ < ỹ < 1} is obtained by reflecting T̃ C,half,n
geo,σ at the

diagonal {(x̃, x̃) | x̃ ∈ (0, 1)} of S̃.

We will approximate functions on boundary layer meshes T L,n
geo,σ with the aid of an

elementwise defined operator Πq. To estimate the total error in L2-based norms, the
elemental error contributions are summed up on each mesh patch separately. The
following Lemma 2.8 provides tools to conveniently do that. In order to formulate
Lemma 2.8, we introduce some additional notation, which represents the pull-back of
the parts of the boundary of the reference patch that is mapped to ∂Ω and is marked
by bold lines or dots in Figs. 2.1 and 2.2:

ΓC := ΓC,half := ΓC,half,flip := {0},(2.1a)

ΓBL := ΓM := ΓM,half := {ỹ = 0},(2.1b)

ΓT := {ỹ = 0} ∪ {x̃ = 0} ∪ {0}.(2.1c)
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Lemma 2.8 (properties of mesh patches). The reference patches (cf. Def. 2.1)
and half patches (cf. Def. 2.7) have the following properties:

(i) The triangular elements K̃ of the reference patches are shape regular with shape

regularity constant depending solely on σ. For the rectangular elements K̃ of the
reference patches, the element maps AK̃ : K̂ → K̃ are affine with

A′
K̃

=

(
hK̃,x̃

hK̃,ỹ

)
,

where hK̃,x̃, hK̃,ỹ ≤ 1 are the side lengths (in ỹ and x̃-direction) of K̃. We
denote

(2.2) hK̃,min := min{hK̃,x̃, hK̃,ỹ}, hK̃,max := max{hK̃,x̃, hK̃,ỹ}.

(ii) There is cdist > 0 depending only on σ such that for all triangular elements K̃

of a reference patch T̃ or a half-patch T̃ the following dichotomy holds:

either K̃ ∩ Γ 6= ∅ or dist(K̃,Γ) ≥ cdisthK̃ ,

where hK̃ = diam(K̃) and Γ ∈ {ΓC,ΓC,half,ΓC,half,flip,ΓT,ΓM,ΓM,half,ΓBL} for

T̃ ∈ {T̃ C,n
geo,σ, T̃ C,half,n

geo,σ , T̃ C,half,flip,n
geo,σ , T̃ T,n

geo,σ, T̃ M,L,n
geo,σ , T̃ M,half,L,n

geo,σ , T̃ BL,L
geo,σ}, respectively.

(iii) There is cdist > 0 depending only on σ such that for all rectangular elements K̃

of a reference patch T̃ or half-patch T̃ , the following dichotomy holds:

Either K̃ ∩ Γ = ∅ or dist(K̃,Γ) ≥ cdisthK̃,min,

where Γ ∈ {ΓT,ΓM,ΓM,half,ΓBL} for T̃ ∈ {T̃ T,n
geo,σ, T̃ M,L,n

geo,σ , T̃ M,half,L,n
geo,σ , T̃ BL,L

geo,σ},
respectively.

(iv) There is cdist > 0 depending only on σ such that for all rectangular elements K̃

of a mixed patch, a mixed half-patch, or a tensor patch there holds dist(K̃,0) ≥
cdisthK̃,max.

(v) There is C > 0 depending only on σ such that for all elements K̃ of a reference

patch or half-patch there holds dist(K̃,0) ≤ C diam K̃.

(vi) Let δ > 0 and consider a reference patch or half-patch. Let T̃ △ be the collection
of triangles of that reference patch or half-patch that do not abut on the vertex
0. Then, there exists a constant C > 0 depending solely on δ and σ such that

∑

K̃∈T̃ △

hδ
K̃

≤ C.

(vii) Let δ > 0 and consider a reference mixed patch, tensor patch, mixed half-patch or

corner half-patch. Let T̃ � be the collection of rectangles of that reference patch.
Then there exists a constant C > 0 depending solely on δ and the parameter σ
such that

∑

K̃∈T̃ �

hK̃,min

hK̃,max

hδ
K̃,max

≤ C.
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(viii) Let δ ∈ (0, 1], α > 0, and consider a reference patch or half-patch. Let T̃ △ be
the collection of triangles of that reference patch or half-patch that do not abut
on the vertex 0. Then, there holds, with a C > 0 depending solely on δ, α, and
σ,

∀ε ∈ (0, 1] :
∑

K̃∈T̃ △

(hK̃/ε)
δe−αh

K̃
/ε ≤ C.

(ix) Let δ ∈ (0, 1], α > 0, and consider a reference mixed patch, mixed half-patch, or

a reference tensor patch. Let T̃ � be the collection of rectangles of that reference
patch. Then there exists a constant C > 0 depending solely on δ, α, and σ such
that

∀ε ∈ (0, 1] :
∑

K̃∈T̃ �

hK̃,min

hK̃,max

(hK̃,max/ε)
δe−αh

K̃,max
/ε ≤ C.

Proof. Items (i)–(v) follow by construction.
Since items (vi), (vii) are shown by similar arguments, we only prove the case of

(vii) for the specific case of the mixed patch as shown in Fig. 2.1, bottom right panel.

Inspection of that panel shows that for each K̃ ∈ T̃ � we have hK̃,min = hK̃,ỹ and
hK̃,max = hK̃,x̃. Additionally, the elements can be enumerated as Ki,j , i = 1, . . . , L,

j = 1, . . . , i with hKi,j ,x ∼ σL−i, hKi,j ,y ∼ σL−j . Hence,

∑

K̃∈T̃ �

hK̃,min

hK̃,max

hδ
K̃,max

.

L∑

i=1

i∑

j=1

σL−j

σL−i
σ(L−i)δ .

L∑

i=1

σδ(L−i) . 1.(2.3)

The proof of items (viii), (ix) is also done in similar ways. Therefore, we will only
show (ix). The key observation is that by comparing sums with integrals, there is a
constant C > 0 depending solely on δ, α, and σ such that

(2.4) ∀ε ∈ (0, 1] :

∞∑

i=0

(σi/ε)δe−ασi/ε ≤ C.

The proof of (ix) now follows by a reasoning similar to that in (2.3).

3. Approximation on the reference elements and on the reference con-

figurations. In Sec. 3.1 we construct polynomial approximation operators on the
reference square and triangle that coincide with the Gauss-Lobatto interpolant on the
edges, which affords convenient H1-conforming approximations. Sec. 3.2 studies the
approximation properties of spaces of piecewise polynomials on the reference patches.
It is shown that functions of boundary layer or corner layer type can be approximated
at exponential rates, robustly in the parameter ε that characterizes the strength of
the layer.

3.1. Polynomial approximation operators on the reference element.

We introduce polynomial approximation operators on the reference triangle T̂ in
Lemma 3.1 and the reference square Ŝ in Lemma 3.2. Before actually doing so,
we highlight a technical detail: the triangular elements (on the reference patches)
are shape-regular so that isotropic scaling arguments can be brought to bear; only
the rectangles (of the reference patches) may be anisotropic, for which tensor prod-
uct polynomial approximation operators (specifically, the Gauss-Lobatto interpolation
operator) are used for their favorable anisotropic scaling properties.



hp FEM for reaction-diffusion 13

Lemma 3.1 (element-by-element approximation on triangles). Let T̂ be the ref-

erence triangle. Then for every q ∈ N, there exists a linear operator Π̂△
q : C(T̂ ) → Pq

with the following properties:
(i) For each edge e of T̂ , (Π̂△

q u)|e coincides with the Gauss-Lobatto interpolant iq
of u|e on edge e.

(ii) (projection property) Π̂△
q v = v for all v ∈ Pq.

(iii) (stability) There exists a constant C > 0 such that for every q ∈ N there holds

∀u ∈W 1,∞(T̂ ) : ‖u− Π̂△
q u‖W 1,∞(T̂ ) ≤ Cq4‖∇u‖L∞(T̂ ),

∀u ∈ C(T̂ ) : ‖u− Π̂△
q u‖L∞(T̂ ) ≤ Cq2‖u‖L∞(T̂ ).

(iv) Let A be one of the vertices of T̂ and β ∈ [0, 1). Then there is C > 0 (depending
only on β) such that, provided the right-hand side is finite,

‖u− Π̂△
q u‖L∞(T̂ ) + ‖u− Π̂△

q u‖H1(T̂ ) ≤ Cq4‖ dist(·,A)β∇2u‖L2(T̂ ).

(v) Let u ∈ C∞(T̂ ) satisfy, for some Cu, γ > 0 and for some h, ε ∈ (0, 1],

∀n ∈ N0 : ‖∇nu‖L∞(T̂ ) ≤ Cuγ
nhn max{n+ 1, ε−1}n.

Then there are δ, C, η, b > 0 depending solely on γ such that, under the provision
that the scale resolution condition

(3.1)
h

qε
≤ δ

is satisfied, there holds

‖u− Π̂△
q u‖W 1,∞(T̂ ) ≤ CCu

((
h

h+ η

)q+1

+

(
h

qεη

)q+1
)

≤ CCue
−bq min{1, h/ε}.

Proof. The operator Π̂△
q is taken as the one defined in [18, Thm. 3.2.20], where

items (i)–(iii) are shown (the W 1,∞-estimate follows with an additional polynomial
inverse estimate). Item (iv) is taken from [18, Prop. 3.2.21]. For Item (v), we note
that the projection property of (ii) and the stability assertions (iii) reduce the error
estimate to a best approximation problem, which can be taken from [14, Lemma C.2].

Lemma 3.2 (approximation properties of the Gauss-Lobatto interpolant). Let Ŝ
be the reference square. For each q ∈ N the tensor-product Gauss-Lobatto interpolation

operator Π̂�
q : C(Ŝ) → Qq satisfies the following:

(i) (projection property) Π̂�
q v = v for all v ∈ Qq.

(ii) For each edge e, the restriction (Π̂�
q u)|e coincides with the univariate Gauss-

Lobatto interpolant iq of u|e on e.
(iii) (stability)

∀u ∈ C(Ŝ) : ‖u− Π̂�
q u‖L∞(Ŝ) ≤ Cq‖u‖L∞(Ŝ),

∀u ∈ C1(Ŝ) : ‖∂x̂(u− Π̂�
q u)‖L∞(Ŝ) ≤ Cq4‖∂xu‖L∞(Ŝ),

∀u ∈ C1(Ŝ) : ‖∂ŷ(u− Π̂�
q u)‖L∞(Ŝ) ≤ Cq4‖∂yu‖L∞(Ŝ).
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(iv) Let u ∈ C∞(Ŝ) satisfy for some Cu, γ > 0, εx, εy, hx, hy ∈ (0, 1] and all
(n,m) ∈ N2

0

(3.2) ‖∂mx̂ ∂nŷ u‖L∞(Ŝ) ≤ Cuγ
n+mhmx h

n
y max{n+ 1, ε−1

y }n max{m+ 1, ε−1
x }m.

Then there are constants δ, C, η, b > 0 depending solely on γ such that under
the scale-resolution condition

(3.3)
hx
qεx

+
hy
qεy

≤ δ

there holds

‖∂x̂(u− Π̂�
q u)‖L∞(Ŝ)

≤ CCu
hx
εx

[
εx

(
hx

hx + η

)q

+

(
hx
εxqη

)q

+

(
hy

hy + η

)q+1

+

(
hy
εyqη

)q+1
]
,

‖∂ŷ(u− Π̂�
q u)‖L∞(Ŝ)

≤ CCu
hy
εy

[(
hx

hx + η

)q+1

+

(
hx
εxqη

)q+1

+ εy

(
hy

hy + η

)q

+

(
hy
εyqη

)q
]
,

‖u− Π̂�
q u‖L∞(Ŝ)

≤ CCu

[(
hx

hx + η

)q+1

+

(
hx
εxqη

)q+1

+

(
hy

hy + η

)q+1

+

(
hy
εyqη

)q+1
]
.

Proof. Items (i), (ii) are well-known. We let Λq denote the Lebesgue constant of
the univariate Gauss-Lobatto interpolation operator of polynomial degree q ∈ N (cf.
Lemma B.2). The L∞-stability in (iii) follows from tensor product arguments, viz.

‖Π̂�
q u‖L∞(Ŝ) ≤ Λ2

q‖u‖L∞(Ŝ) and the (generous) bound Λ2
q ≤ Cq for q ≥ 1. For the

remaining estimates, we introduce the tensor-product Gauss-Lobatto interpolation
operator Π̂�

q = iq ⊗ iq = ix̂q ⊗ iŷq , where we use the superscipts x̂ and ŷ to emphasize
the variable with respect to which the univariate Gauss-Lobatto interpolant acts.
From

u− iŷq ⊗ ix̂qu = u− (I⊗iŷq)u+ I⊗iŷq(u− ix̂q ⊗ Iu)

we get in view of the univariate stability bound Lemma B.2

‖∂x̂(u− ix̂q ⊗ iŷpu)‖L∞(Ŝ) . Λq sup
x̂∈(0,1)

inf
v∈Pq

‖∂x̂u(x, ·)− v‖L∞(0,1)

+ q2Λ2
q sup
ŷ∈(0,1)

inf
v∈Pq

‖∂x̂(u(·, ŷ)− v)‖L∞(0,1);(3.4)

an analogous estimate holds for ∂y(u− ix̂q ⊗ iŷqu). The estimate (3.4) gives the stability
estimates in W 1,∞ of (iii) by selecting v = 0 in the infima. The estimate (3.4)

reduces the question of approximation on Ŝ to questions of univariate polynomial
approximation. The pertinent approximation results to prove item (iv) are given in
Lemma B.1.
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3.2. Approximation on the reference patches. In this section, we study the
approximation of functions on the reference patches (or the half-patches) described
in Defs. 2.1, 2.7. The non-trivial reference patches consist of meshes that are refined
towards 0, which can resolve algebraic singularities at 0, and meshes that are aniso-
tropically refined towards the edge {ỹ = 0}, which can resolve algebraic singularities
at {ỹ = 0} or boundary layers. We show exponential approximability of functions
that have algebraic singularities at 0 or boundary layers at {ỹ = 0}.

Throughout this section, we will use the notation

(3.5) r̃(·) := dist(0, ·)

In this section, we present piecewise polynomial approximations on reference patches
using the following elementwise defined interpolation operator:

(3.6) (Π̃q)|K̃u :=

{
Π̂△

q (u ◦AK̃) if K̃ is a triangle △
Π̂�

q (u ◦AK̃) if K̃ is a rectangle �,

where AK̃ : K̂ → K̃ = AK̃(K̂) ⊂ S̃ is the affine bijection between the reference
element and the corresponding element on the reference patch. The edge-traces of
the interpolators Π̂△

q and Π̂�
q coincide with the univariate Gauss-Lobatto interpolation

operator on the edges of K̂. Hence, H1-conformity of the elementwise defined operator
Π̃q is ensured. We will frequently use the stability estimates

(3.7) ‖Π̃qu‖L∞(K̃) ≤ Cq2‖u‖L∞(K̃), ‖∇Π̃qu‖L∞(K̃) ≤ Cq4‖∇u‖L∞(K̃);

these estimates are easily seen to hold for triangles with the isotropic scaling property
and Lemma 3.1, (iii). The anisotropic nature of the rectangles is accounted for by
separately scaling the bounds for the partial derivatives in Lemma 3.2, (iii).

3.2.1. hp-FE approximation of corner singularity functions.

Lemma 3.3 (approximation of corner singularity functions).

(i) Let T̃ ∈ {T̃ M,half,L,n
geo,σ , T̃ C,half,n

geo,σ , T̃ C,half,flip,n
geo,σ , T̃ C,n

geo,σ, T̃ T,n
geo,σ}. Let O be the region

covered by the elements of T̃ , i.e., let O = S̃ if T̃ is a reference patch, O = T̃
if T̃ ∈ {T̃ C,half,n

geo,σ , T̃ M,half,L,n
geo,σ } is a reference half-patch and O = T̃ flip if T̃ =

T̃ C,half,flip,n
geo,σ . Let ũ be analytic on O and assume there exist constants ε ∈ (0, 1],

β ∈ [0, 1), γ, Cu > 0 such that for all p ∈ N0 and all x̃ ∈ S̃

(3.8) |∇p(ũ(x̃)− ũ(0))| ≤ Cuε
−1γp(r̃(x̃)/ε)1−β r̃(x̃)−p max{p+ 1, r̃(x̃)/ε}p+1 .

Then, there are constants C, b, κ > 0 depending only on γ, σ, and β (in
particular, independent of ε, n, L) such that under the scale resolution condition

(3.9) qε ≥ κ

there holds

(3.10) ‖ũ− Π̃qũ‖L∞(O) + ‖∇(ũ− Π̃qũ)‖L2(O) ≤ CCu

(
q9σn(1−β) + e−bq

)
.

(ii) Let T̃ ∈ {T̃ BL,L, S̃}. Let ũ be analytic on S̃ and assume that there are constants
Cu, γ > 0 such that for every p ∈ N0

(3.11) ‖∇pũ‖L∞(S̃) ≤ Cuγ
p max{p+ 1, ε−1}p+1.
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Then there are constants C, b, κ > 0 depending only on γ and σ (in particular,
they are independent of ε and L) such that under the constraint (3.9) there holds

(3.12) ‖ũ− Π̃qũ‖W 1,∞(S̃) ≤ CCue
−bq.

Proof. Proof of (i): Step 1: Elements abutting on 0: Only triangles △ may

abutt on 0. Let K̃ be such a triangle. From (3.8) and estimating (generously)
max{1, r̃(·)/ε}3 . ε−3, we get the existence of C > 0 independent of ε ∈ (0, 1]
with

(3.13) ∀x̃ ∈ K̃ : |∇2ũ(x̃)| ≤ C(r̃(x̃))−1−βε−5+β .

By scaling this bound and invoking Lemma 3.1, (iv), we get with hK̃ := diam K̃ for

any fixed β̃ ∈ (β, 1)

‖ũ− Π̃qũ‖L∞(K̃) + ‖∇(ũ− Π̃qũ)‖L2(K̃) ≤ Cq4h1−β̃

K̃
‖r̃β̃∇2ũ‖L2(K̃)(3.14)

(3.13)

≤ Cq4h1−β̃

K̃
ε−5+βhβ̃−β

K̃

qε≥κ

≤ Cq4+5−βh1−β

K̃
. q9−βσn(1−β).

Step 2: Elements not abutting on 0: From Lemma 2.8, (v) we get r̃(·) . hK̃ =

diam K̃ on K̃. The regularity assumption (3.8) then implies that there exist (suitably
adjusted) constants C, γ such that for all p ∈ N0

‖∇p(ũ− ũ(0))‖L∞(K̃) ≤ Cγpε−3+βh1−β

K̃
r̃−p max{p+ 1, ε−1}p .(3.15)

We now consider the approximation on triangles and rectangles separately.
Step 2.1: K̃ is a triangle △. Lemma 2.8, (ii) implies in particular that hK̃ . r̃(·)

on K̃. Scaling the bounds (3.15) to the reference element K̂ = T̂ therefore gives for

û := ũ ◦ AK̃ , where AK̃ : K̂ → K̃ is the affine element map for K̃, the existence of
constants C, γ > 0 such that

(3.16) ∀p ∈ N0 : ‖∇̂p(û− û(0))‖L∞(K̂) ≤ Cγpε−3+βh1−β

K̃
max{p+ 1, ε−1}p .

In order to be able to apply the approximation properties of Lemma 3.1, we note

max{p+ 1, ε−1}p = max{(p+ 1)p, ε−p(p+ 1)−p(p+ 1)p}

= (p+ 1)p max{1, ε−p(p+ 1)−p} ≤ (p+ 1)p max{1, (1/ε)
p

p!
}

≤ (p+ 1)pe1/ε
qε≥κ

≤ (p+ 1)peq/κ.(3.17)

Inserting (3.17) into (3.16) yields that there are constants C > 0, γ > 0 such that

(3.18) ∀p ∈ N0 : ‖∇p(û− û(0))‖L∞(K̂) ≤ Ceq/κε−3+βh1−β

K̃
γp(p+ 1)p.

We are in a position to apply Lemma 3.1. The parameter δ in (3.1) is determined by
γ. In view of qε ≥ κ, we can ensure condition (3.1) by selecting κ sufficiently large to
obtain from Lemma 3.1 with a b > 0 depending only on γ

‖û− Π̂△
q û‖W 1,∞(K̂) ≤ Ch1−β

K̃
eq/κε−3+βe−bq,
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We may assume that κ is so large that 1/κ−b ≤ −b/2 to absorb eq/κ. Finally, in view
of qε ≥ κ, we can also absorb the factor ε−3+β . q3−β in the exponentially decaying

one by adjusting b. Upon scaling from K̂ to K̃ we get the existence of constants b,
C > 0 such that

(3.19) ∀q ∈ N : ‖ũ− Π̃qũ‖L∞(K̃) + ‖∇(ũ− Π̃qũ)‖L2(K̃) ≤ Ch1−β

K̃
e−bq.

Step 2.2: K̃ is a rectangle �. We argue as in the case of a triangle in Step 2.1.

Starting point is again the regularity assertion (3.8). The rectangle K̃ has side lengths

hK̃,ỹ ≤ hK̃,x̃ ≤ 1. From Lemma 2.8, (iv) we have hK̃,ỹ ≤ hK̃,x̃ ≤ Cr̃(·) on K̃. Hence,

the (anisotropic) scaling to the reference square Ŝ of the estimates (3.8) yields, for all
(n,m) ∈ N2

0, in view of (3.17)

‖∂mx ∂ny (û− û(0))‖L∞(Ŝ) ≤ Cε−3+βh1−β

K̃,x̃
γn+mhm

K̃,x̃
hn
K̃,ỹ

h
−(n+m)

K̃,x̃
eq/κ(n+m)n+m

(B.9)

≤ ε−3+βh1−β

K̃,x̃
γn+meq/κn!m!,(3.20)

where we again possibly adjusted the value of γ. Lemma 3.2 (with hy = hK̃,ỹ/hK̃,x̃ ≤ 1

and εx = εy = 1 there) yields with the regularity estimates (3.20) the existence of
constants C, b > 0 such that for all q ∈ N0

‖û− Π̂�
q û‖L∞(K̂) + ‖∂x̂(û− Π̂�

q û)‖L∞(K̂) ≤ Cε−3+βh1−β

K̃,x̃
e−bq,

‖∂ŷ(û− Π̂�
q û)‖L∞(K̂) ≤ Cε−3+βh1−β

K̃,x̃

hK̃,ỹ

hK̃,x̃

e−bq,

where the factor eq/κ was absorbed again in the exponentially decaying term by taking
κ sufficiently large. We obtain on S̃

‖∂x̃(ũ− Π̃qũ)‖L2(S̃) ≤ Cε−3+β
√
hK̃,x̃hK̃,ỹh

−1

K̃,x̃
h1−β

K̃,x̃
e−bq

qε≥κ

≤ C
√
hK̃,ỹ/hK̃,x̃h

1−β

K̃,x̃
e−bq,(3.21a)

‖∂ỹ(ũ− Π̃qũ)‖L2(S̃) ≤ C
√
hK̃,ỹ/hK̃,x̃h

1−β

K̃,x̃
e−bq,(3.21b)

‖(ũ− Π̃qũ)‖L∞(S̃) ≤ Ch1−β

K̃,x̃
e−bq,(3.21c)

where again we adjusted the values of the constants b, C in both estimates to absorb
algebraic factors in q.

Step 3: Summation of the elemental errors: We note that the element size hK̃ of
the elements abutting on 0 is hK̃ ∼ σn. For the finitely many contributions from the

(triangular) elements K̃ touching 0 we have by (3.14) the existence of C > 0 such
that for every q ≥ 1

∑

K̃ : 0∈K̃

‖ũ− Π̃qũ‖2H1(K̃)

(3.14)

≤ Cq18σ2n(1−β).

The sum of squared error contributions over all triangular elements not touching 0 is
also bounded by e−2bq by combining (3.19) and Lemma 2.8, (vi). Likewise, the sum
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over all rectangular elements is bounded by e−2bq by combining (3.21) and Lemma 2.8,
(vii).

Proof of (ii): The proof is similar to the proof of case (i) and can be obtained from
it by formally setting β = 0 and r̃ ≡ 1 and dropping the error contribution q8σn(1−β)

which is due to the small elements touching 0.

3.2.2. hp-FE approximation of boundary layer functions.

Lemma 3.4 (approximation of boundary layer functions). Fix c1 > 0.

(i) Let T̃ ∈ {T̃ M,half,L,n
geo,σ , T̃ BL,L

geo,σ}. Let T̃ ′ ⊂ T̃ and let O := interior
(
∪{K̃ | K̃ ∈ T̃ ′}

)

be the union of the elements of T̃ ′. Let ũ be analytic on O and satisfy for some
Cu, γ, α > 0, ε ∈ (0, 1] and for all (m,n) ∈ N2

0 and all x̃ = (x̃, ỹ) ∈ O

(3.22) |∂mx̃ ∂nỹ ũ(x̃)| ≤ Cuγ
n+mm! max{n, ε−1}ne−αỹ/ε.

Assume that L is such that the scale resolution condition

(3.23) σL ≤ c1ε

is satisfied. Then there are constants C, b > 0 depending only on γ, α, c1, σ
such that

(3.24) ∀q ∈ N : ‖ũ− Π̃qũ‖L∞(O) + ε‖∇(ũ− Π̃qũ)‖L∞(O) ≤ CCue
−bq.

(ii) Let T̃ ′′ ⊂ T̃ C,half,n
geo,σ or T̃ ′′ ⊂ T̃ C,half,flip,n

geo,σ . Let O := interior
(
∪{K̃ | K̃ ∈ T̃ ′′}

)
be

the union of the elements of T̃ ′′. Let ũ be analytic on O and satisfy for some
Cu, γ, α > 0, ε ∈ (0, 1]

(3.25) ∀p ∈ N0 ∀x̃ ∈ O : |∇pũ(x̃)| ≤ Cuγ
p max{p, ε−1}pe−αr̃(x̃)/ε.

Assume that n is such that c1 > 0, n ∈ N satisfies the scale scale resolution
condition

(3.26) σn ≤ c1ε

is satisfied. Then, there are constants C, b > 0 (depending only on γ, α, c1, σ)
such that

(3.27) ∀q ∈ N : ‖ũ− Π̃qũ‖L∞(O) + ε‖∇(ũ− Π̃qũ)‖L∞(O) ≤ CCue
−bq.

Proof. Proof of (ii): We only consider the case T ′′ ⊂ T̃ C,half,n
geo,σ as the case T ′′ ⊂

T̃ C,half,flip,n
geo,σ is handled similarly. We note that the patch T̃ C,half,n

geo,σ consists of triangles

only, which are all shape-regular. Let K̃ ⊂ O be a triangle and let hK̃ = diam K̃. In

the case that K̃ touches 0, the condition (3.26) implies that hK̃ . σn . c1ε so that

(3.28)
hK̃
qε

.
1

q
.

Hence, for every fixed choice of the constant c1 there exists q0 = q0(c1) ∈ N (inde-
pendent of ε) such that for every q ≥ q0 one has the scale resolution condition (3.1).
Then, Lemma 3.1, (v) implies for suitable b > 0 (independent of ε)

(3.29) ‖ũ− Π̃qũ‖L∞(K̃) + ε‖∇(ũ− Π̃qũ)‖L∞(K̃) . e−bq.
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If K̃ does not touch 0, we distinguish between two further cases. In the first case,
we assume that hK̃/(qε) ≤ δ and proceed as above: The scale resolution condition
(3.1) is satisfied, and we arrive again at (3.29). In the case hK̃/(qε) ≥ δ, we note that

Lemma 2.8, (ii) implies dist(K̃,0) ≥ c2hK̃ ≥ c2δqε. Hence, by the decay properties
of ũ in (3.25) we have

(3.30) ‖ũ‖L∞(K̃) + ε‖∇ũ‖L∞(K̃) ≤ Ce−αc2hK̃
/ε ≤ Ce−αc2qδ.

In view of the stability properties (3.7), we conclude

‖ũ− Π̃qũ‖L∞(K̃) + ε‖∇(ũ− Π̃qũ)‖L∞(K̃) . e−bq.(3.31)

Proof of (i): We distinguish between triangular and rectangular elements.

Approximation of ũ on triangular elements K̃: Triangular elements do not appear

in boundary layer patches T̃ BL,L
geo,σ but only in T̃ M,half,L,n

geo,σ . For patches T̃ M,half,L,n
geo,σ

inspection (cf. Fig. 2.2) shows that two types of triangles occur: the first type are the

triangles K̃ in T̃ \ T̃1 on which one has r̃(x̃, ỹ) ∼ ỹ (uniformly in L, n). The second

type are the triangles in T̃1. For the first type, we have from (3.22) the regularity
assertion (with suitably adjusted Cu, γ, α independent of ε)

∀x̃ ∈ K̃ ∀n ∈ N0 : |∇nũ(x̃)| ≤ Cuγ
n max{n, ε−1}ne−αr̃(x̃)/ε.

This is the same regularity assumption that underlies the proof of part (ii) of the
lemma so that the same arguments can be brought to bear as in the case of part (ii).

For the second type of triangles, i.e., K̃ ⊂ T̃1 ⊂ (0, σL)2, the resolution assumption
(3.23) implies for the element size hK̃ . σL . ε. Hence, again Lemma 3.1, (v) is
applicable and yields the desired exponential approximation.

Approximation of ũ on rectangular elements K̃: The case of rectangular elements

K̃ with side lengths hK̃,x, hK̃,y is similar to the case of triangles. We note that the

patches T̃ BL,L
geo,σ and T̃ M,half,L,n

geo,σ are such that hK̃,ỹ ≤ hK̃,x̃ ≤ 1. The anisotropic scaling

from K̃ to K̂ and the regularity assumption (3.22) show that the pull-back û to K̂
satisfies for all (m,n) ∈ N2

0

‖∂mx̂ ∂nŷ û‖L∞(K̂) ≤ Ce−α dist(K̃,{ỹ=0})/εhm
K̃,x̃

hn
K̃,ỹ

γn+mm! max{n+ 1, ε−1}n .

That is, û satisfies the analytic regularity condition (3.2) with εy = ε, εx = 1, hx =

hK̃,x̃, hy = hK̃,ỹ and Cu = Ce−α dist(K̃,{ỹ=0})/ε. We observe that the resolution

condition (3.3) can be achieved if K̃ touches the line {ỹ = 0} in view of (3.23)

provided that q ≥ q0 ≥ 1 for suitable q0 (depending on c1, σ, γ). If K̃ does not
touch the line {ỹ = 0}, then two cases may occur: If the resolution condition (3.3)
is still satisfied then we obtain again exponential convergence. If not, we note that
hK̃,ỹ ≤ hK̃,x̃ and that we may assume hK̃,x̃/q ≤ δ/2 by assuming q ≥ q0 ≥ 1

(note: trivially, hK̃,x̃ ≤ 1 so that q0 ≥ 2/δ will work). Furthermore, Lemma 2.8,

(iii) reveals again that dist(K̃, {ỹ = 0}) ≥ c3hK̃,ỹ; since hK̃,ỹ/(εq) ≥ δ/2 we get

dist(K̃, {ỹ = 0})/ε ≥ qc3δ/2. Hence, exp(−α dist(K̃, {ỹ = 0})/ε) ≤ exp(−qαc2δ/2)
and we may argue as in the case of triangles that ũ is exponentially (in q) small on

K̃. The stability of Π̃q given in (3.7) then concludes the argument.
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3.2.3. hp-FE approximation of corner layer functions.

Lemma 3.5 (approximation of corner layer functions). Fix c1 > 0. Let T̃ ∈
{T̃ M,half,L,n

geo,σ , T̃ C,half,n
geo,σ , T̃ C,half,flip,n

geo,σ , T̃ C,n
geo,σ, T̃ T,n

geo,σ}. Let T̃ ′ ⊂ T̃ and let O := interior
(
∪{K̃ | K̃ ∈

T̃ ′}
)
be the union of the elements of T̃ ′. Let ũ be analytic on O and satisfy for some

β ∈ [0, 1), ε ∈ (0, 1], Cu, γ, α > 0

(3.32) ∀x̃ ∈ O ∀p ∈ N0 : |∇pũ(x̃)| ≤ Cuε
β−1γp(r̃(x̃))1−β−pp!e−αr̃(x̃)/ε.

Assume that n ∈ N is such that the scale resolution condition

(3.33) σn ≤ c1ε.

is satisfied. Then there are constants C, b > 0 depending only on γ, α, c1, σ, and β
(in particular, they are independent of ε, q, n, L) such that for all q ∈ N

‖ũ− Π̃qũ‖L∞(O) ≤ CCu

(
e−bq + q4εβ−1σn(1−β)

)
,(3.34)

‖ũ− Π̃qũ‖L2(O) + ε‖∇(ũ− Π̃qũ)‖L2(O) ≤ CCuε
(
e−bq + q4εβ−1σn(1−β)

)
.(3.35)

In the estimates (3.34), (3.35) the term q4εβ−1σn(1−β) can be dropped if O does not
touch 0.

Proof. The approximation of functions of corner layer type ũ proceeds structurally
along the same lines as in the case of the singularity functions in Lemma 3.3. We
distinguish between the elements touching 0 and the remaining ones.

K̃ touches 0: Selecting β̃ ∈ (β, 1) we obtain by arguing as in (3.14)

‖ũ− Π̃qũ‖L∞(K̃) + ‖∇(ũ− Π̃qũ)‖L2(K̃) . h1−β̃

K̃
q4‖r̃β̃∇2ũ‖L2(K̃)

. q4(hK̃/ε)
1−β .(3.36)

Since hK̃ . σn for elements K̃ touching 0, their contributions lead to the term

q4εβ−1σn(1−β).
K does not touch 0: We distinguish between triangular and rectangular elements.

Step 1: K̃ is a triangular element: As in the case of the approximation in
Lemma 3.3, we get from Lemma 3.1, (v) and scaling that (for suitably adjusted
C, α)

‖ũ− Π̃qũ‖L∞(K̃) + ‖∇(ũ− Π̃qũ)‖L2(K̃) ≤ C(hK̃/ε)
1−βe−bqe−αh

K̃
/ε.(3.37)

Step 2: K̃ is a rectangular element: We recall hK̃,ỹ ≤ hK̃,x̃ ≤ 1. By Lemma 2.8, (iv)

we have r̃(·) ∼ hK̃,x̃ on K̃. As in the case of Lemma 3.3 we observe for the pull-back

to the reference element K̂

∀(m,n) ∈ N2
0 : ‖∂mx̂ ∂nŷ û‖L∞(K̂) ≤ C(hK̃,x̃/ε)

1−βe−αh
K̃,x̃

/εγn+mn!m!h
m−(m+n)

K̃,x̃
hn
K̃,ỹ

.

Using Lemma 3.2, (iv) (with εx = εy = 1 and hy = hK̃,ỹ/hK̃,x̃, hx = 1 there), we
arrive at

‖û− Π̂�
q û‖L∞(K̂) ≤ C(hK̃/ε)

1−βe−bqe−αh
K̃,x̃

/ε,(3.38)

‖∂x̂(û− Π̂�
q û)‖L∞(K̂) ≤ C(hK̃/ε)

1−βe−bqe−αh
K̃,x̃

/ε,(3.39)

‖∂ŷ(û− Π̂�
q û)‖L∞(K̂) ≤ C(hK̃/ε)

1−β
hK̃,ỹ

hK̃,x̃

e−bqe−αh
K̃,x̃

/ε.(3.40)
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x = (x, y)

ρj

θj
Aj

Ωj

Ωj+1

Γj

Ωj

Aj

Γj+1 Ωj+1

Γ̃′
j

Γ̃′
j+1

Γ′
j

Fig. 4.1. Left: boundary fitted coordinates ψj : (ρj , θj) 7→ (x, y). Right: typical situation at a
reentrant corner: boundary fitted coordinates (ρj , θj) and (ρj+1, θj+1) are valid in the regions Ωj ,

Ωj+1, respectively. Γ̃j and Γ̃j+1 are analytic continuations of Γj , Γj+1. The analytic arc Γ′
j is

such that the angles ∠(Γ′
j ,Γj) and ∠(Γj+1,Γ

′
j) are both less than π.

Step 3 (L∞-bound): Since supt>0 t
1−βe−t < ∞, the L∞-estimates follow easily from

(3.36), (3.37) (3.38).
Step 4 (energy norm estimate): Proceeding as in Step 3 of the proof of Lemma 3.3

we set eK̃ := ũ− Π̃qũ and get, using hK̃ . ε for the elements abutting on 0:

∑

K̃ : K̃ abutts on 0

‖eK̃‖2
L2(K̃)

+ ε2‖∇eK̃‖2
L2(K̃)

(3.36)

. q8
∑

K̃ : K̃ abutts on 0

(h2
K̃
+ ε2)(hK̃/ε)

2(1−β) . q8ε2βσ2n(1−β).

For the remaining elements, we consider the triangular elements and the rectangular
ones. In both cases, we employ the simple observation

(3.41) ‖eK̃‖L2(K̃) . hK̃‖eK̃‖L∞(K̃) = ε
hK̃
ε

‖eK̃‖L∞(K̃).

The sum over all triangles, collected in T̃ △, yields by combining (3.37) and (3.41)
with Lemma 2.8, (viii)

∑

K̃∈T̃ △

‖eK̃‖2
L2(K̃)

+ ε2‖eK̃‖2
H1(K̃)

. ε2e−2bq.

Likewise, the sum over all rectangular elements, collected in T̃ �, yields by combining
Lemma 2.8, (ix) with (3.38), (3.41) for the L2-part and with (3.39), (3.40) for the
H1-part ∑

K̃∈T̃ �

‖eK̃‖2
L2(K̃)

+ ε2‖eK̃‖2
H1(K̃)

. ε2e−2bq.

This concludes the proof.

4. hp-FE approximation of singularly perturbed problems on geometric

boundary layer meshes. The principal result of the present paper is a robust,
exponential approximation result for solutions of the singular perturbation problem
(1.1), (1.2) in curvilinear polygonal domains from spaces based on geometric boundary
layer meshes that are able to resolve the length scales present in the problem. The
meshes are independent of ε but subject to the (weak) scale resolution condition (4.1).
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Ω0 = Ω6

Fig. 4.2. The subdomains Ωj on which the boundary layer expansion uBLε is defined in terms
of boundary fitted coordinates (ρj , θj).

Theorem 4.1. Let the Lipschitz domain Ω ⊂ R2 be a curvilinear polygon with J
vertices as described in Section 1.2. Let A, c, f satisfy (1.2). Fix c1 > 0. Let T L,n

geo,σ

be a geometric boundary layer mesh in sense of Definition 2.3.
Then there are constants C, b, β > 0 depending solely on the data A, c, f , Ω, on

the parameter c1, on the (fixed) macro-triangulation T M, and on σ ∈ (0, 1) such that
the following holds: If ε ∈ (0, 1] and L satisfy the scale resolution condition

(4.1)
σL

ε
≤ c1,

then for every q, n ∈ N the solution uε ∈ H1
0 (Ω) of (1.1) can be approximated from

Sq
0(Ω, T L,n

geo,σ) such that

inf
v∈Sq

0 (Ω,T L,n
geo,σ)

‖uε − v‖ε,Ω ≤ Cq9
[
εβσ(1−β)n + e−bq

]
,(4.2)

N := dimSq
0(Ω, T L,n

geo,σ) ≤ C
(
L2q2 card T M + nq2J

)
.(4.3)

Proof. We employ the regularity theory for the solution uε presented in [18,
Thms. 2.3.1, 2.3.4]. The infimum in (4.2) is realized with the aid of an interpola-
tion operator Πq defined elementwise by

(Πqu)|K ◦ FK :=

{
Π̂△

q (u ◦ FK) if K is a triangle

Π̂�
q (u ◦ FK) if K is a rectangle.

Here, the operator Π̂△
q is defined in Lemma 3.1 and the operator Π̂�

q in Lemma 3.2.

Note that since Π̂△
q and Π̂�

q reduce to the Gauss-Lobatto interpolation operator on

the edges of the reference element, the operator Πq indeed maps into Sq
0(Ω, T L,n

geo,σ).
We recall that the element maps FK have the form

FK = FKM ◦AK ,

where AK : K̂ → K̃ := AK(K̂) = F−1
KM(K) ⊂ S̃ is an affine bijection. Indeed, for

triangular elements it is clear that AK is affine and for rectangular elements, this
follows from the special form of the reference patches (cf. also Lemma 2.8, (i)).

The notation û denotes the pull-back of u to the reference element, i.e., û :=
u|K ◦ FK whereas ũ := (u ◦ FKM)|K̃ = û ◦ A−1

K is the corresponding function on K̃.

We recall the notation Π̃q from (3.6) and note that on a macro-element KM we have

(Πqu) ◦ FKM = Π̃qũ.
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For k ∈ N0 we have for all elements K ⊂ KM with K̃ = F−1
KM(K)

∀v ∈ Hk(K) : ‖v ◦ FKM‖Hk(K̃) ∼ ‖v‖Hk(K),(4.4a)

∀v ∈W k,∞(K) : ‖v ◦ FKM‖Wk,∞(K̃) ∼ ‖v‖Wk,∞(K),(4.4b)

where in both cases the constants implied in ∼ depend solely on k and the macro-
element KM. The equivalences (4.4) show that the approximation error v − Πqv on

K is equivalent to the corresponding error ṽ − Π̃q ṽ on K̃.
The approximation theory distinguishes between the “asymptotic case” qε ≥ κ of

large polynomial degree q and the “preasymptotic case” qε ≤ κ, where the parameter
κ > 0 (depending only on A, c, f , Ω, the macro-triangulation, and σ) is of size O(1)
and will be determined in the course of the analysis of the “asymptotic case” in Step I.

Step I: Asymptotic case qε ≥ κ. We consider mesh patches KM that abutt on a
vertex Aj and those with a positive distance from the vertices separately in Steps I.1
and I.2.

Step I.1: KM abutts on a vertex Aj : The regularity of [18, Thm. 2.3.1] asserts
the existence of C, γ > 0, βj ∈ [0, 1) such that with rj(·) := dist(·,Aj), there holds
for every p ∈ N0 and for every 0 < ε ≤ 1
(4.5)
|∇p(uε(·)− uǫ(Aj))| ≤ Cγpε−1 min{1, rj(·)/ε}1−βj (rj(·))−p max{p+ 1, rj(·)/ε}p+1.

Recall from (3.5) that r̃(·) = dist(·,0). Set ũε := uε ◦ FKM . Note FKM(0) = Aj

and r̃(x̃) ∼ rj(FKM(x̃)). The analyticity of FKM and Lemma A.2 imply, for suitably
modified constants C, γ independent of ε ∈ (0, 1], for every p ∈ N

(4.6)

|∇p(ũε(·)− ũ(0))| ≤ Cγpε−1 min{1, r̃/ε}1−βj (r̃(·))−p max{p+ 1, r̃(·)/ε}p+1 on K̃.

Lemma 3.3 then yields

‖ũε − Π̃qũε‖L∞(KM) + ‖∇(ũε − Π̃qũε)‖L∞(KM) ≤ Cq9
(
σ(1−βj)n + e−bq

)

provided that κ is a sufficiently large (depending on γ).
Step I.2: KM does not abutt on a vertex Aj : [18, Thm. 2.3.1] asserts

(4.7) ∀x ∈ KM ∀p ∈ N0 : |∇pu(x)| ≤ Cγp max{p+ 1, ε−1}p+2

for constants C, γ > 0 independent of ε ∈ (0, 1]. Since KM is a trivial patch, it
consists of a single (curvilinear) quadrilateral. The analyticity of FKM = FK and
Lemma A.2 imply, for suitably modified C, γ independent of ε ∈ (0, 1], that

(4.8) ∀x̂ ∈ Ŝ ∀p ∈ N0 : |∇pû(x̂)| ≤ Cγp max{p+ 1, ε−1}p+2 .

Lemma 3.2 then implies that there are C, b > 0 such that for sufficiently large, fixed
κ and for every ε ∈ (0, 1] and every q ∈ N holds

‖û− Π̂qû‖L∞(KM) + ‖∇(û− Π̂qû)‖L∞(Ŝ) ≤ Ce−bq .

Step I.3: Combining the approximation results of Steps I.1, I.2 for the finitely
many patches leads to the desired estimate (4.2).

Step II: Preasymptotic case qε ≤ κ. The parameter κ has been fixed in Step I
through the appeal to Lemmas 3.3 and 3.2. In the regime qε ≤ κ, we employ
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the regularity theory of [18, Thm. 2.3.4], which furnishes the decomposition uε =
wε+χ

BLuBLε +χCLuCLε +rε into a smooth part wε, a boundary layer part uBLε , a corner
layer part uCLε , and a small remainder rε; the functions χBL, χCL are suitable local-
izations near the boundary and the vertices of Ω. We approximate each of these four
contributions in turn.

Step II.1: Approximation of wε. By [18, Thm. 2.3.4] the smooth part wε is
analytic on Ω with constants independent of ε. Therefore, one can show ‖wε −
Πqwε‖W 1,∞(Ω) ≤ Ce−bq using similar techniques as in the asymptotic case above
(essentially, setting ε = 1 there and ignoring the special treatment of the elements
abutting on the vertices of Ω).

Step II.2: Approximation of χBLuBLε .
Step II.2.a: Regularity of uBLε : The regularity of uBLε in [18, Thm. 2.3.4] is de-

scribed in terms of boundary fitted coordinates (cf. Fig. 4.1). Associated with each
edge Γj are fitted coordinates (ρj , θj), where ρj is the distance from the analytic con-

tinuation Γ̃j of the boundary arc Γj , and θj is a parametrization of Γj . The map
ψj : (ρj , θj) 7→ (x, y) ∈ Ω is analytic with an analytic inverse. An analytic arc Γ′

j

emanates from each vertex Aj , which can be chosen arbitrarily but is assumed to be
such that the angles between Γj and Γ′

j and between Γj+1 and Γ′
j are both less than

π. Condition 8 of Definition 2.3 ensures that Γ′
j can be chosen to be a meshline of a

boundary layer mesh since it can be chosen as the image of an edge of S̃ or a diagonal
of S̃ under a patch map.

The regions Ωj ⊂ {x ∈ Ω | dist(x,Γj) < δ} for a sufficiently small δ are confined
by the lines Γj , Γ

′
j , and Γ′

j−1 as shown in Fig. 4.2. By [18, Thm. 2.3.4], the function

uBLε is analytic on each Ωj and satisfies there, for constants C, γ, α > 0 independent
of ε ∈ (0, 1] and all (m,n) ∈ N0,

|∂nρj
∂mθju

BL

ε ◦ ψj(ρj , θj)|
[18, Thm. 2.3.4]

≤ Cε−nγn+mm!e−αρj/ε

≤ Cγn+m max{n+m, ε−1}n+me−αρj/ε .(4.9)

Finally, the cut-off function χBL is supported by ∪jΩj and is identically 1 near ∂Ω.
Step II.2.b: Approximation of χBLuBLε far from ∂Ω: In the interest of sim-

plicity of notation, we make the assumption that patches KM touching ∂Ω are
fully contained in the tubular neighborhood ∪jΩj of ∂Ω. Since patches KM not
touching ∂Ω have a positive distance from ∂Ω, the function χBLuBLε is exponentially
small (in 1/ε) there; in view of the stability (3.7) (and thus the stability of Πq)
‖χBLuBLε − Πp(χ

BLuBLε )‖W 1,∞(K) ≤ Ce−b/ε for K ∈ KM. Since q/κ ≤ 1/ε the error
contribution of these patches is controlled in the desired fashion.

Step II.2.c: Approximation of χBLuBLε near ∂Ω: Let KM be a patch touching
∂Ω. Consider, for a fixed j the pull-back F−1

KM(KM ∩ Ωj). By the assumptions of
the boundary layer mesh (Def. 2.3) this pull back is either empty, the full square

S̃, half the square T̃ = {x̃ = (x̃, ỹ) | 0 < x̃ < 1, 0 < ỹ < x̃}, or the other half

T̃ flip = {x̃ = (x̃, ỹ) | 0 < x̃ < 1, x̃ < ỹ < 1}.
To fix ideas, let us assume that KM is a mixed patch. The reference mixed patch

restricted to T̃ is the half-patch T̃ M,half,L,n and its restriction to T̃ flip is T̃ C,half,flip,n.
We approximate (χBLuBLε ) ◦ FKM on these two parts separately, starting with the

approximation on T̃ . The assumptions on boundary layer meshes (Def. 2.3) allow

us to assume that FKM(T̃ ) ⊂ Ωj for some j. We recall that FKM maps the edge

{ỹ = 0} of T̃ to (a subset of) ∂Ω, which corresponds to ρj = 0 in the boundary fitted
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coordinates. The shape-regularity of FKM implies that ψ−1
j ◦ FKM has the form

(4.10) T̃ ∋ (x̃, ỹ) 7→ (ρj , θj) = (ỹρ(x̃, ỹ), θ(x̃, ỹ))

for a pair of functions ρ, θ with ρ ≥ ρ0 > 0. The analyticity of ψ−1
j and FKM implies

that ρ and θ are in fact analytic on T̃ . Hence, the transformed function

(4.11) ũBLε := uBLε ◦ FKM = uBLε ◦ ψj ◦ (ψ−1
j ◦ FKM)

admits by Lemma A.1 and (4.9) the analytic regularity
(4.12)

∀(m,n) ∈ N2
0 ∀(x̃, ỹ) ∈ T̃ : |∂mx̃ ∂nỹ ũBLε (x̃, ỹ)| ≤ Cγm+nm! max{n+ 1, ε−1}ne−bỹ/ε,

where the constants C, γ, b > 0 are independent of ε ∈ (0, 1]. We decompose the

set of elements T̃ M,half,L,n into two sets T̃1 := {K̃ ∈ T̃ M,half,L,n
geo,σ | χ̃BL|K̃ ≡ 1} and

T̃2 := T̃ M,half,L,n
geo,σ \ T̃1. For the elements of T̃1, Lemma 3.4, (i) and (4.12) give that

there are C, b > 0 such that for every q ∈ N and every K̃ ∈ T̃1

(4.13) ‖χ̃BLũBLε − Π̃q(χ̃
BLũBLε )‖L∞(K̃) + ε‖χ̃BLũBLε − Π̃q(χ̃

BLũBLε )‖L∞(K̃) ≤ Ce−bq.

For the elements of the set T̃2, we use (4.10) to see that K̃ ∈ T̃2 implies dist(K̃, {ỹ =
0}) > c for some c > 0 that depends solely on FKM and ψj . Hence, the smoothness
of χ̃BL and (4.12) provide ‖χ̃BLũBLε ‖W 1,∞(K̃) ≤ Ce−b/ε for suitable C, b > 0 and every

K̃ ∈ T̃2. Hence, the stability properties of Π̃q provided in (3.7) and q/κ ≤ 1/ε imply

for all K̃ ∈ T̃2

(4.14) ‖χ̃BLũBLε − Π̃q(χ̃
BLũBLε )‖L∞(K̃) + ε‖χ̃BLũBLε − Π̃q(χ̃

BLũBLε )‖L∞(K̃) ≤ Ce−bq.

Let us now sketch the arguments for the approximation of χ̃BLũBLε on T̃ flip. For

notational simplicity, assume that FKM(T̃ flip) ⊂ Ωj . (If FKM(T̃ flip) ⊂ Ωj′ for some
different j′, then replace j with j′ in what follows.) The regularity assertion (4.12)

is still valid. Next, one observes that on T̃ flip, one has ỹ ∼ r̃(x̃, ỹ) = dist((x̃, ỹ),0).
Hence, recalling (4.12), ũBLε even satisfies, for suitable C, b > 0 and all p ∈ N0,

(4.15) |∇pũBLε | ≤ Cmax{p+ 1, ε−1}pe−br̃(·)/ε on T̃ flip.

Replacing the appeal to Lemma 3.4, (i) with that to Lemma 3.4, (ii), we may argue
as above to obtain

‖χ̃BLũBLε − Π̃qχ̃
BLũBLε ‖L∞(T̃ flip) + ε‖∇(χ̃BLũBLε − Π̃qχ̃

BLũBLε )‖L∞(T̃ flip) ≤ Ce−bq.

This concludes the arguments for the approximation of ũBLε on a mixed patch T̃ M,L,n
geo,σ .

The approximation on corner patches T̃ C,n
geo,σ, tensor patches T̃ T,n

geo,σ, or boundary layer

patches T̃ BL,L
geo,σ is similar.

Step II.3: Approximation of χCLuCLε : Structurally, the proof is similar to the
procedure in Step II.2. From [18, Thm. 2.3.4] we have in a neighborhood Bj of vertex
Aj that uCLε satisfies on (Bj ∩ Ωj) ∪ (Bj ∩ Ωj+1) with rj = dist(·, Aj)

(4.16) ∀p ∈ N0 : |∇puCLε | ≤ Cγpp!εβj−1(rj(·))1−p−βje−αrj(·)/ε,
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where C, α > 0 and βj ∈ [0, 1) are independent of ε ∈ (0, 1]. Let KM be a patch
abutting on Aj . Such a patch has to be either a corner patch or a mixed patch. Then
KM∩Ωj (and similarly KM∩Ωj+1) consists of one or two half-patches that are push-

forwards of T̃ ′ ∈ {T̃ M,half,L,n
geo,σ , T̃ C,half,n

geo,σ , T̃ C,half,flip,n
geo,σ }. For simplicity of exposition,

assume that KM ⊂ Bj . By the analyticity of FKM , the shape regularity of FKM

together with FKM(0) = Aj , and Lemma A.2 we get that ũCLε := uCLε ◦ FKM satisfies
on O := F−1

KM(KM ∩ Ωj)

(4.17) ∀p ∈ N0 : |∇pũCLε | ≤ Cγpp!εβj−1(r̃(·))1−p−βje−αr̃(·)/ε;

here, we suitably adjusted C, γ, α > 0. We also note that the pull-back χ̃CL is smooth
and identically 1 near 0. Hence, using Lemma 3.5 we obtain

‖χ̃CLũCLε − Π̃q(χ̃
CLũCLε )‖L2(O) + ε‖∇(χ̃CLũCLε − Π̃q(χ̃

CLũCLε )‖L2(O)

≤ C
(
εe−bq + εβjq4σn(1−βj)

)
.

Step II.4: Approximation of rε: We approximate rε by zero. We note that [18,
Thm. 2.3.4] asserts that rε|∂Ω = 0 and that ‖rε‖H1(Ω) ≤ Ce−b/ε for suitable C, b > 0
independent of ε ∈ (0, 1].

Theorem 4.1 restricted to ε ∈ (0, 1]. For ε ≥ 1, (1.1) is regularly perturbed and
exponential convergence is afforded by standard hp-approximation results [18, 29].
For completeness, we state

Proposition 4.2. Assume the hypotheses on Ω and the data A, c, f as in The-
orem 4.1. Let T L,n

geo,σ be a geometric boundary layer mesh. Then, there are constants
C, b > 0, β ∈ [0, 1) depending solely on A, c, f , the analyticity properties of the patch
maps for the macro-triangulation, and σ such that for any ε ≥ 1, the solution uε of
(1.1) satisfies for every n, L, q ∈ N

(4.18) inf
v∈Sq

0 (Ω,T L,n
geo,σ)

‖uε − v‖H1(Ω) ≤ Cε−2
(
q9σ(1−β)n + e−bq

)
.

Proof. The solution uε ∈ H1
0 (Ω) satisfies

(4.19) −∇ · (A∇uε) + ε−2cuε = ε−2f in H−1(Ω).

For ε ≥ 1, the term ε−2c represents a regular perturbation and the analytic regularity
theory for linear, second order elliptic boundary value problems (e.g. [5] and the
references there) is applicable. The resulting regularity assertions are then those
employed in the “asymptotic case” in the proof of Theorem 4.1 with ε = 1 there. The
factor ε−2 in (4.18) is a reflection of the fact that the right-hand side of (4.19) include
the factor ε−2.

5. Numerical experiments. For 0 < ε ≤ 1 and f ≡ 1 we consider the Dirichlet
problem: find uε ∈ H1

0 (Ω) such that

−ε2∆uε + uε = f in H−1(Ω).

Here, the domain Ω is either the unit square Ω1 = (0, 1)2, the so-called “L-shaped,
polygonal domain” Ω2 ⊂ R2 determined by the vertices {(0, 0), (1, 0), (1, 1), (−1, 1),
(−1,−1), (0,−1)}, or the square domain with a slit Ω3 = (−1, 1)2 \ (−1, 0]× {0}.
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Fig. 5.1. Examples of geometric boundary layer meshes for the three domains Ω = Ωj , j =
1, 2, 3, ordered from left to right (cf. Sec. 5).

In Figure 5.1 we show examples of the meshes used for the three domains. These
are constructed using the NGSolve/Netgen package [24]. For the square domain Ω =
Ω1 the resulting mesh is the geometric boundary layer mesh T L,L

geo,σ with L = 4 and
σ = 0.25. The same parameters are used in NGSolve/Netgen to construct the meshes
for the other two domains, with the resulting meshes differing slightly from the strict
definition of T L,L

geo,σ near the re-entrant corners. Nevertheless, we denote these meshes

also by T L,L
geo,σ and make use of the finite element spaces Sq

0(Ω, T L,L
geo,σ).

For each p = 1, 2, 3, . . . , we use the finite element space Sq
0(Ω, T L,L

geo,σ) with uni-
form polynomial order q = p and with L = p refinement levels towards boundaries
and corners with refinement factor σ = 0.25. We denote by uhε ∈ Sp

0 (Ω, T p,p
geo,σ) the

corresponding finite element solution. We measure the error in energy norm

(5.1) error =
(
ε2‖∇(uε − uhε )‖2L2(Ω) + ‖uε − uhε‖2L2(Ω)

)1/2
,

where uhε denotes the discrete solution. In place of the (unknown, for the considered
examples) exact solution uε we use a numerical approximation on a sufficiently fine
mesh. The plots of the estimated numerical errors for the three domains are depicted
in Figures 5.2–5.4. Evidently, exponential convergence occurs. In agreement with the
theoretical analysis, the experimentally observed exponential convergence has two
regimes: (i) an asymptotic regime in which the scale resolution condition σp . ε is
satisfied and (ii) a pre-asymptotic regime with σp & ε. The observed exponential
convergence in the preasymptotic regime (not rigorously shown in Theorem 4.1) is
plausible for the following reason: the approximation error for boundary layer func-
tions is dominated by the error on the elements touching the boundary and is of size
O(σp/2) for every p ∈ N. The approximation error of the corner layer functions is
likewise dominated by the error on the elements abutting on the vertices of Ω and is
of size O(σp(1−β)) for every p ∈ N and some fixed β ∈ [0, 1).

6. Conclusions. We established robust exponential convergence of hp-FEM for
solutions of elliptic singular perturbation problems in polygons. These solutions con-
tain, usually, boundary layers, corner singularities and combinations of the two. We
admitted possibly multiple length scales, and built the hp-FE approximations on
(patches of) geometric boundary layer meshes as described in Section 2, and depicted
in Fig. 2.1. The hp-FEM on this class of partitions is capable to resolve exponential
boundary- and corner-layers with multiple physical length scales under a scale reso-
lution condition that incorporates the smallest physical length scale. The number of
geometric mesh refinements to achieve this grows only logarithmically with respect to
the smallest length scale.

As we explained in the numerical experiments section meshes of this type are
generated, in general geometries, by specialized mesh generators such as NETGEN
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Fig. 5.2. Convergence in the energy norm (5.1) for the square domain for different values of ε
and q = L = n = p.

1 2 3 4 5 6 7 8 9

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Fig. 5.3. Convergence in the energy norm (5.1) for the L-shaped domain for different values
of ε and q = L = n = p.
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Fig. 5.4. Convergence in the energy norm (5.1) for the slit domain for different values of ε
and q = L = n = p.
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[24]. We hasten to add, however, that our analysis can readily be extended to cover
more general partitions, such as geometric boundary layer meshes that also contain
anisotropic triangles.

The focus of the present work was on robust exponential convergence rate bounds
for singular perturbation problems in nonsmooth domains by hp finite element meth-
ods. We proved that they afford robust, exponential convergence on patchwise struc-
tured meshes with possibly anisotropic, geometric refinement towards the “support
set” (i.e., the subset of Ω off which the layer components decay exponentially), of
the boundary and corner layers. As a rule, robust exponential convergence requires
genuine hp-FE capabilities, i.e. simultaneous mesh refinement and polynomial degree
increase, as featured in the hp-FE spaces {Sp

0 (Ω, T p,p
geo,σ)}p≥1 used in our numerical

experiments. The corresponding, patchwise structured triangulations can be auto-
matically generated by specialized mesh generators, in domains of engineering interest
(see, e.g., [24]). Although we mainly considered the model linear, second order ellip-
tic singular perturbation problem (1.1), corresponding solution families are known to
arise for several common models in solid and fluid mechanics, see, e.g. [2,9,12,13] and
the references there.

The underlying concept of using patchwise structured meshes to approximate
parametric solution families to linear, elliptic singularly perturbed boundary value
problems extends also to h-version FEM. Here, in patches abutting on the bound-
ary analogs of so-called “Shishkin meshes”, see, e.g., [32], [23, Sec. 3.5.2], could be
employed to achieve robust, algebraic rates of convergence under weaker, finite or-
der differentiability assumptions on the data A, c, and f than the presently assumed
analyticity in Ω of these data.

The model problem (1.1) considers homogeneous Dirichlet boundary conditions.
The approximation result Theorem 4.1 relies on the regularity results of [18], which
decomposes the solution (1.1) into boundary and corner layer components. Similar
decompositions can be expected to hold also for other boundary conditions. Then the
approximation results of Section 3 are applicable indicating that hp-FEM on similarly
patchwise structured meshes will likewise lead to robust exponential convergence.

Appendix A. Analytic changes of variables. The following lemma shows
how boundary layer functions are transformed under the patch maps if the edge
{ỹ = 0} of S̃ is mapped to a subset of ∂Ω:

Lemma A.1. Let Gx ⊂ R× R+ be a domain. Let the map M : (x̃, ỹ) 7→ (θ, ρ) be
of the form M(x̃, ỹ) = (θ̌(x̃, ỹ), yρ̌(x, y)) for some functions θ̌, ρ̌ ≥ ρ0 > 0 that are
analytic on closure(Gx), i.e., there are constants CM , γM > 0 such that ‖∇nθ̌‖L∞(Gx),
‖∇nρ̌‖L∞(Gx) ≤ CMγ

n
Mn! for all n ∈ N0. Let Ox ⊂ Gx be open and let O be an open

neighborhood of M(Ox). Let u be analytic on O and assume that, for some function
Cu and some constants b > 0, γ > 0, there holds

∀(m,n) ∈ N2
0 ∀(ρ, θ) ∈ O : |∂nρ ∂mθ u(θ, ρ)| ≤ Cu(θ, ρ)e

−bρ/εγn+mm! max{n, ε−1}n.

Then there are constants b′, γ̃ > 0 (depending only on b, γ, and M) such that the
function ũ := u ◦M satisfies with the notation (ρ, θ) =M(x̃, ỹ)

∀(m,n) ∈ N2
0 ∀(x̃, ỹ) ∈ Ox : |∂nỹ ∂mx̃ ũ(x̃, ỹ)| ≤ Cu(θ, ρ)e

−b′ỹ/εγn+mm! max{n, ε−1}n.

Proof. The proof uses arguments employed in [18, Sec. 4.3]. Consider a fixed
(x̃, ỹ) ∈ Ox and set (θ′, ρ′) = M(x̃, ỹ). Then (θ, ρ) 7→ u(θ, ρ) is holomorphic on the
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polydisc
B1/γ(θ

′)×B1/(γe)(ρ
′) ⊂ C2

with the bound

|u(θ′ + ζ1, ρ
′ + ζ2)| ≤ Cu(ρ

′, θ′)e−bρ′/ε 1

1− γ|ζ1|

[
1

1− γe|ζ2|
+ exp (γ|ζ2|/ε)

]
.(A.1)

Since the functions θ̌, ρ̌ are holomorphic on the closure of M(Gx), there are C1, δ > 0
(independent of (x̃, ỹ) ∈ G) such that for ζ1, ζ2 ∈ Bδ(0) ⊂ C there holds

∣∣θ̌(x̃+ ζ1, y + ζ2)− θ̌(x̃, ỹ)
∣∣ ≤ C1 [|ζ1|+ |ζ2|] ,

|(ỹ + ζ2)ρ̌(x̃+ ζ1, ỹ + ζ2)− ỹρ̌(x̃, ỹ)| ≤ C1 [y(|ζ1|+ |ζ2|) + |ζ2|] ,

and we may assume that δ > 0 is such that for ζ1, ζ2 ∈ Bδ(0) we have M(x̃+ ζ1, ỹ +
ζ2) ∈ B1/(2γ)(θ

′)×B1/(2γe)(ρ
′). This implies in view of (A.1) the bounds

|ũ(x̃+ ζ1, ỹ + ζ2)| = |u(M(x̃+ ζ1, ỹ + ζ2))|
(A.2)

≤ CCu(θ
′, ρ′)e−bρ′/ε exp(C1γ|ζ2|/ε) exp

(
C1γỹ

[
|ζ1|+ |ζ2|

]
/ε
)
.(A.3)

For δ1, δ2 < δ Cauchy’s integral formula for derivatives gives

∂α1

x̃ ∂α2

ỹ ũ(x̃, ỹ) = −α1!α2!

4π2

ˆ

ζ1∈∂Bδ1
(0)

ˆ

ζ2∈∂Bδ2
(0)

ũ(x+ ζ1, y + ζ2)

(−ζ1)α1+1(−ζ2)α2+1
dζ1dζ2

so that

∣∣∣∂α1

x̃ ∂α2

ỹ ũ(x̃, ỹ)
∣∣∣ ≤ CCu(ρ

′, θ′)e−bρ′/ε α1!

δα1
1

α2!

δα2
2

exp(C1γδ2/ε) exp(C1γy(δ1 + δ2)/ε)

Selecting δ1 = δ := bρ0/(4C1) and δ2 = min{(|α2| + 1)ε, δ} yields the desired result
with b′ = b/2 since C1ỹ(δ1 + δ2)/ε ≤ 2δC1ỹ/ε ≤ 2δC1ρ

′/ρ0 = b/2.

The following lemma shows how functions that may have a singular behavior are
transformed under analytic changes of variables:

Lemma A.2 ( [18, Lemma 4.3.3]). Let G̃ ⊂ R2 be a domain and M : G̃→ R2 be

analytic on closure(G̃). Let Õ ⊂ G̃ be open and O be an open neighborhood of M(Õ).
Let u be analytic on O and assume that for some (positive) function Λ, r : O → R

and some γ ≥ 0 there holds

(A.4) ∀n ∈ N0 ∀x ∈ O : |∇nu(x)| ≤ Λ(x)γn max{(n+ 1)/r(x), ε−1}n.

Then the function ũ := u ◦M is analytic on Õ and there are constants C, γ̃ > 0
depending solely on M and γ such that for each x̃ ∈ Õ there holds with the notation
x =M(x̃)

∀n ∈ N0 : |∇nũ(x̃)| ≤ CΛ(x)γ̃n max{(n+ 1)/r(x), ε−1}n.

Proof. The statement is taken from [18, Lemma 4.3.3] except that we explicitly
allow r to be a function of x. The proof is similar to that of Lemma A.1. We fix
x̃ ∈ G̃ and set x = M(x̃). The assumption (A.4) implies that u has a holomorphic
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extension to Bcr(x)(x) ⊂ C2 with c > 0 depending solely on γ. Additionally, we have
the bound for z ∈ Bcr(x)(x) ⊂ C2 (we write r = r(x))

|u(x+ z)| ≤ Λ(x)

∞∑

n=0

1

n!
|z|n|∇nu(x)| ≤ C

[
1

1− |z|/(cr) + exp(C ′|z|/ε)
]
.

for suitable C, C ′. The analyticity of M on closure(G̃) implies the existence of δ > 0

(independent of x̃ = (x̃, ỹ) ∈ G̃) such that

M(x̃+Bδr(0), ỹ +Bδr(0)) ⊂ B 1
2 cr(x)

(x).

For α ∈ N2
0 let θ := min{δr(x), (|α| + 1)ε}. The Cauchy integral theorem for deriva-

tives gives

∂α1

x̃ ∂α2

ỹ ũ(x̃, ỹ) = −α1!α2!

4π2

ˆ

z1∈∂Bθ(0)

ˆ

z2∈∂Bθ(0)

ũ(M(x̃+ (z1, z2)))

(−z1)α1+1(−z2)α2+1

so that we get

|∂α1

x̃ ∂α2

ỹ ũ(x̃, ỹ)| . α1!α2!θ
−|α| [1 + exp(C ′θ/ε)]

. |α|! max{(δr(x))−1, (|α|+ 1)−1ε−1}|α| [1 + exp(C ′|α|)] ,

which proves the asserted estimate.

Appendix B. Univariate Approximation.

Lemma B.1. Let I = (−1, 1) and u ∈ C∞(I) satisfy, for some constants Cu,
γu > 0 and some h ∈ (0, 1], ε ∈ (0, 1] the bound

(B.1) ∀n ∈ N0 : ‖Dnu‖L∞(I) ≤ Cu(γuh)
n max{n, ε−1}n.

Then there are constants C, η, δ > 0 depending solely on γu such that under the
constraint

(B.2)
h

εq
≤ δ

there holds

(B.3) ∀q ∈ N : inf
v∈Pq

‖u− v‖W 1,∞(I) ≤ CCu

((
h

h+ η

)q+1

+

(
h

ηεq

)q+1
)
.

Proof. We start with the observation that Taylor’s theorem yields for x > 0

(B.4)
∑

n≥q+1

1

n!
xn = ex −

q∑

n=0

xn

n!
=

1

q!

ˆ x

0

(x− t)qet dt ≤ xq+1

q!
ex.

Case 1: Let eγuh < 1/2. Then the Taylor series of u about x0 = 0 converges in I and
the Taylor polyomials Tq ∈ Pq satisfy the error bounds

‖u− Tq‖L∞(I) ≤
∞∑

n=q+1

|Dnu(0)|
n!

≤ Cu

∞∑

n=q+1

(γueh)
n +

(γuh/ε)
n

n!

(B.4)

≤ Cu

(
(γueh)

q+1

1− (γueh)
+

(γuh/ε)
q+1

q!
eγuh/ε

)

(B.8)

≤ Cu

(
2(γueh)

q+1 + C(γ′h/(εq))q+1eγuh/ε
)
,
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for suitable γ′ > γu. The assumption (B.2) allows us to estimate eγuh/ε ≤ eγuδq and
the desired result follows for the L∞-estimate. An analogous argument applies for
the W 1,∞-estimate.

Case 2: Let 1 ≥ h > 1/(2eγu). Introduce for ρ > 1 the ellipse Eρ := {z ∈
C | |z−1|+|z+1| < ρ+1/ρ} and set Gκ(I) := ∪x∈IBκ(x). By geometric considerations
(e.g., with the aid of [7, Lemma 3.14]) one has E1+κ ⊂ Gκ(I). Taylor’s theorem gives
that u is holomorphic on G1/(γuh)(I) and for every κ < 1/(γuh) we have
(B.5)

‖u‖L∞(Gκ) ≤ Cu

∞∑

n=0

1

n!
(hγuκ)

n max{n, ε−1}n ≤Cu

[
1

1− eγuhκ
+ exp(κγuh/ε)

]
.

Well-established polynomial approximation results (see, e.g., [1, Thm. 6]) then yield
for fixed κ > 0 the existence of ρ1 = ρ1(κ) > 1 such that

inf
v∈Pq

‖u− v‖W 1,∞(I) ≤ CCuρ
−q
1 ‖u‖L∞(Gκ) ≤ CCuρ

−q
1 eκγuh/ε ≤ CCuρ

−q
1 eκγuδq.

Fix 1 < ρ2 < ρ1. Then we may select δ > 0 sufficiently small so that there exists a
constant C > 0 such that

∀q ∈ N : inf
v∈Pq

‖u− v‖W 1,∞(I) ≤ CCuρ
−q
2 .

Using h ≥ 1/(2eγu) and suitably choosing η, we can estimate

ρ−q
2 ≤

(
h

h+ η

)q

.

Lemma B.2 (stability of the 1d-Gauss-Lobatto (GL) interpolant). Let I =
[−1, 1]. There exists a constant C > 0 such that for any q ∈ N, the Gauss-Lobatto
interpolation operator iq : C(I) → Pq satisfies:

‖u− iqu‖L∞(I) ≤ (1 + Λq) inf
v∈Pq

‖u− v‖L∞(I), Λq = C ln(q + 1),(B.6)

‖(u− iqu)
′‖L∞(I) ≤ C(1 + q2Λq) inf

v∈Pq

‖(u− v)′‖L∞(I).(B.7)

Proof. The bound (B.6) follows from the projection property of the Gauss-Lobatto
interpolation; the logarithmic growth of the Lebesgue constant Λq is shown in [33].

For (B.7), we estimate for arbitrary v ∈ Pq

‖(u− iqu)
′‖L∞(I) ≤ ‖(u− v)′‖L∞(I) + ‖(iq(u− v))′‖L∞(I)

. ‖(u− v)′‖L∞(I) + q2‖iq(u− v)‖L∞(I) . ‖(u− v)′‖L∞(I) + q2Λq‖u− v‖L∞(I).

Constraining v to satisfy v(−1) = u(−1) the result follows from a Poincaré inequality.

Finally, we recall two inequalities of Stirling’s type.

∀n ∈ N :
√
2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n ,(B.8)

∀n ∈ N0 ∀α ∈ N0 : α!n! ≥ 2−(α+n)(α+ n)! ≥ (2e)−(α+n)(α+ n)α+n.(B.9)

(B.8) follows from [22]. In B.9, the first bound follows from the binomial formula∑m
ν=0

(
m
ν

)
xν = (1 + x)m and the second bound follows from (B.8).
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[24] J. Schöberl. Netgen an advancing front 2d/3d-mesh generator based on abstract rules. J.
Comput. Visual. Sci., 1:41–52, 1997.
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