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Abstract

We present a comprehensive and variational approach to the coupling of electromagnetic field

models with circuit-type models. That coupling relies on integral non-local quantities like voltage

and current for electric ports, magnetomotive force and magnetic flux for magnetic ports, and

linked currents and fluxes for “tunnels” in the field domain. These quantities are closely linked

to non-bounding cycles studied in algebraic topology and they respect electromagnetic power

balance laws. We obtain two dual variational formulations, called E-based and H-based, which

provide a foundation for finite-element Galerkin discretization.
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1 INTRODUCTION

A central issue in computional electromagnetics is the coupling of full field descriptions of electromagnetic phenomena used in one region of space

(“field domain”) with “lumped-element” circuit models (network models/graphical models) in another region of space (“circuit domain”). Both talk

to each other through well-defined zones on the interface, known as ports, terminals, or contacts. Details are given in Section 2.

In this articlewe present a comprehensive and variational treatmentof this coupling based on the two ideas that have emerged as the underpinning

of modern field-circuit coupling approaches:

(I) Electric and/or magnetic coupling between field and circuity domain is entirely channeled through the ports. We discuss the profound

consequences in Section 3.1.

(II) The coupling through ports can completely be described by integral/non-local field quantities, see Section 5 for explanations.

In particular, this approach paves the way for introducing any kind of “lumped parameter excitations” into full Maxwell field models both in time

and frequency domain. It permits us to imposed voltages, currents, and linked fluxes in the most general fashion.

Of course, also this work stands on the shoulders of giants, in particular on those of Alain Bossavit, whose 2000 seminal article on “Most

general non-local boundary conditions for the Maxwell equations in a bounded region” [1] developed several key ideas that also pervade this work.

The most important is the insight that non-local coupling quantities are of topological nature and closely connected to profound mathematical

concepts investigated in (co-)homology theory a field of algebraic topology. We will explain this in Section 3.2. It is a pity that, probably owing to

“inscrutable mathematics”, A. Bossavit’s topology-centered perspective has not received due attention. An exception is the work by L. Kettunen

and S. Suuriniemi [2, 3]. What their work has in common with ours is the appreciation of the role of the fine structure of homology spaces, see

Section 3.2.

Another fundamental idea from [1] is the connection between topological (Poincaré) duality and integration by parts, which we will discuss

in Section 4. As a consequence, energy/power balance laws naturally emerge, commensurate with their central role in field-circuit coupling,

highlighted, for instance, in [4] and [5].
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We acknowledge that the above coupling “axioms” (II) and (I) have also been proposed by G. Ciuprina, D. Ioan and co-workes to lay the foun-

dations of the so-called (M)ECE-technique for defining and classifying port conditions, see [6, 7, 8] and [9, Sect. 5.2.1]. These works, extending

the final paragraph of [1], also link non-local boundary conditions with discretizations of Maxwell’s equations. We will address this in Section 6. Of

course, scores of other articles in computational electromagnetics have been devoted to the treatment of field-cicuit coupling. Most of them are

mainly interested in special cases (“voltage excitation/current excitation”) and are confined to quasi-static settings, see [4, 5, 10, 11, 12, 13, 14, 15]

to name only a few contributions.

Our main contribution consists in the synthesis of all these ideas and their elaboration in a function-space variational framework, leading to the all-

encompassing variational equations (36, “E-based”) and (39, “H-based”), which involve only the physical fields and avoid introducing any potentials.

They cover all possible port-associated excitations including a “topological” inductive coupling through linked fluxes. The variational formulations

can serve as a natural starting point for Galerkin discretization and, subsequently, computer implementation. Thus, this work provides software

developers in computational electromagnetics with an algorithm, that is, a clearly defined sequence of steps, for the treatment of field-circuit

coupling in full generality.

We deliberately opted for a rather mathematical treatment and hope that we have kept the right balance of intuitive and rigorous arguments.

In any case, in the final Section 7 we discuss a very concrete circuit-field coupling problem in frequency domain, in order to demonstrate how to

extract a relevant E-based finite-element model employing our general ideas.

2 GEOMETRIC SETTING

We consider the linear Maxwell’s equations governing the evolution of electromagnetic fields on a bounded Lipschitz domain Ω ⊂ R3 , which we

call the “field domain”. As in the introduction of [1], it is coupled to the rest of the universe through its boundary Γ := ∂Ω, which is partitioned into

four different parts:

Γ = ΓE ∪ ΓM ∪ ΓI ∪ ΓR ,

with mutually disjoint interior and piecewise smooth boundaries. Here ΓE designates the area occupied by Electric contacts, ΓM stands for

Magnetic contacts, ΓI is an Insulated part of the boundary, and ΓR is an artificial boundary on which Radiation conditions are to be imposed.

The contact boundaries have to be topologically simple in the sense of the following assumption.

Assumption 1. (i) Both ΓE and ΓM are the union of topologically trivial ports

ΓE = Γ1
E ∪ · · · ∪ Γ

NE
E , ΓM = Γ1

M ∪ · · · ∪ Γ
NM
M , NE , NM ∈ N0 ,

all of which have a positive distance from each other.

(ii) The radiation boundary is strictly separated from the other parts of Γ.

Here, topogically trivial means that the ports are simply connected (homeomorphic to a disk). The reader can imagine them as images of disks

under bi-Lipschitz mappings.

A typical situation is sketched in Figure 1a. Complicated electric circuits occupy a region of space, the “circuit domain” ΩC , which is tiny com-

pared to the characteristic electromagnetic wavelength. They interact with the electromagnetic fields outside, where wave propagation cannot be

neglected. The unbounded domain R3 \ΩC is truncated toΩ and the impact of truncation is taken into account by absorbing boundary conditions

on ΓR.

Of course, the situation could be reversed withΩ a bounded cavity inΩC , see Figure 1b and [8, Sect. 2]. This can be appropriate when using the

full Maxwell’s equations locally in order to take into account both capacitive and inductive effects, though wave propagation may not be important.

In Section 7 we will document a numerical simulation in such a setting.

For the bulk of our considerations the truncation by ΓR does not matter much, and, thus, in large parts of the remainder of this article we just

ignore the radiation boundary: We assume ΓR = ∅. In addition, for the sake of simplicity we deal with connected circuit domains only, which

implies that Γ = ΓE ∪ ΓM ∪ ΓI = ∂ΩC is connected, too.
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(a) Bounded circuit domain ΩC : radiation conditions are imposed on

the surface ΓR of the artificial computational domain Ω (black box), the
other boundary parts couple to ΩC (blue hollow cylinder)

ΩC Ω

ΓE
1

ΓE
2

ΓM
1

ΓM
2

ΓI

(b) Exterior circuit domain ΩC , which is the unbounded complement

of the bounded field domain Ω, here represented by the blue hollow
cylinder.

FIGURE 1 Two typical situations compliant with Assumption 1 (NE = NM = 2)

3 BOUNDARY CONDITIONS

3.1 Function Spaces for Electromagnetic Fields

Recall that the space of finite-energy electric and magnetic fields in Ω is the Sobolev space1

H(curl,Ω) := {v ∈ L2(Ω) : curl v ∈ L2(Ω)} .

To take into account the ports in a variational setting, we rely on two special closed subspaces. Their definition involves the two tangential traces

γtu(x) := n(x) × (u(x) × n(x)) , γ×u(x) := u(x) × n(x) , x ∈ Γ ,

first defined for smooth vectorfields and then extended to continuous surjective mappings γt : H(curl,Ω) → H− 1

2 (curlΓ,Γ) and γ× :

H(curl,Ω) → H− 1

2 (divΓ,Γ), respectively [17, Thm. 1]. Note that products of these two traces yield “Poynting vectors”, that is power-flux

two-forms: γtE · γ×H = (E×H) · n|Γ. This is closely related to the integration by parts formula
∫

Ω
U · curlV − curlU ·V dx =

∫

∂Ω
γ×U · γtV dS ∀U,V ∈ H(curl,Ω) , (1)

and the fact that the trace spaces H− 1

2 (curlΓ,Γ) andH− 1

2 (divΓ,Γ) are in duality with respect to the L2(Γ)-inner product [17, Thm. 2].

Now we can introduce the key function spaces

• for electric fields (space “E” in [1], see also [8, Sect. 2])

VE := {E ∈ H(curl,Ω) : γtE = 0 on ΓE , curlΓ γtE = 0 on ΓI} , (2)

• and for the magnetic field (space “H” in [1])

VM := {H ∈ H(curl,Ω) : γ×H = 0 on ΓM , divΓγ×H = 0 on ΓI} , (3)

Recall that the scalar-valued surface differential operators curlΓ and divΓ for tangential traces are defined as

curlΓ(γtV) = divΓ(γ×V) = γn(curlV) for V ∈ H(curl,Ω) , (4)

γn the normal components trace, which immediately gives them a meaning for tangential vectorfields in the trace spaces H− 1

2 (curlΓ,Γ) and

H− 1

2 (divΓ,Γ), respectively, as hinted by the notations.

What motivates the choice of the spaces VE and VM ? As for an electric contact Γk
E ⊂ ΓE you may think of a perfect conductor being attached

to Ω, from which any electric field is expelled: γtE|ΓE
= 0 for the electric field E ∈ H(curl,Ω). Similarly, the magnetic fieldH is suppressed at

1Concerning function spaces we adhere to notational conventions widely adopted in the mathematical analysis of numerical methods in computational

electromagnetism, see [16, Ch. 3] and also [17, Sect. 2] for more exotic trace spaces. The space H(curl,Ω) can be viewed as the “space of piecewise

differentiable, tangentially continuous vectorfields”.
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the magnetic contact zones Γℓ
M : γ×H|ΓM

= 0. Conversely, the insulating interface ΓI cannot be penetrated by any fluxes , neither magnetic nor

electric, which, in light of (4), is enforced by the boundary conditions built into the definitions (2) and (3) of VE and VM .

Remark 1. At the radiation boundary we assume general linear impedance boundary conditions

γtE = Z(γ×H) on ΓR , (5)

where Z is a suitable invertible linear operator, possibly non-local both in space and time, meant to offset the effect of truncation approximately.

Therefore, (5) is often called an absorbing boundary condition. Note that the boundary conditions at ΓR do not show up neither in the space VE

nor in VM .

3.2 Tool: (Co-)Homology

Co-homology and its dual theory, homology, is key to understanding obstructions to the existence of potential representations for functions in the

kernel of differential operators, that is, obstructions to being in the range of other differential operators. This issue arises here, because both (2)

and (3) define VE and VM as kernels of the surface differential operators curlΓ and divΓ, respectively.

Σ

σ

σ

FIGURE 2 Γ is the surface of a sphere, Σ the pink area, the dashed -

- - sections of its boundary constitute σ. The blue and green curves are

σ-relative cycles in Σ. The blue cycles are bounding, the green are not

bounding, both relative to σ.

(Co-)homology centers around the concepts of “cycle” and

“boundary”. We give an intuitive and geometric description, which,

nevertheless captures their essence. A slightly more formal treat-

ment from the perspective of chain calculus is offered in the

introduction of [1].

Consider a non-degenerate2 subset Σ ⊂ Γ with sufficiently reg-

ular boundary. In addition, let σ denote a non-degenerate part of

the boundary ∂Σ.

Definition 1 (Cycle). A σ-relative cycle γ ⊂ Σ is a directed curve,

which is either a loop (closed curve) or is open and has both its

endpoints located on σ.

Definition 2 (Bounding). A σ-relative cycle γ is bounding, if there

is a non-degenerate area S ⊂ Σ such that γ = ∂S \ σ.

Examples of bounding and non-bounding cycles are visualized in

Figure 2 taking the cue from [1, Fig. 1].

The following is a rephrasing of a fundamental result of (relative) co-homology theory for 2-surfaces concerning potential representations for

the space of tangential vectorfields

W :=

{
v ∈ H(curlΓ,Σ) :

curlΓ v = 0 in Σ ,

v has vanishing tangential components on σ

}
(6)

based on the space of scalar functions

S := {ϕ ∈ H1(Σ) : ϕ|σ = 0} . (7)

Theorem 1. There is a number N ∈ N0 and a finite set of

(i) non-bounding (relative to σ) fundamental σ-relative cycles γ1, . . . , γN ,

(ii) tangential co-homology vectorfields c1, . . . , cN ∈ W satisfying

∫

γj

cm · ds =




1 form = j ,

0 else,
j,m ∈ {1, . . . , N} , (8)

2Non-degenerate means that the closure of the interior of Σ in Γ must coincide with Σ.
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such that, withW and S as in (6) and (7),

W := gradΓ S + span{c1, . . . , cN} . (9)

Remark 2. The “π
2
-rotated setting”: If curlΓ in (6) is replaced with divΓ, then curlΓ should substitute gradΓ in (9).

Γ1
E

Γ2
E

Γ3
E

Γ1
M

Γ2
M

τ1

τ2

γE3

γE2

∂Γ2
M

FIGURE 3 Torus-shaped ΩC (NT = 2); NE = 3 electric ports in pink, NM = 2 magnetic ports in yellow, fundamental cycles for the relative

homology spaceH1(ΓI , ∂ΓE) are the “topological cycles” τ1, τ2 of class (T) in blue, the “electric connector cycles” γE2 , γ
E
3 of class (CE) in purple,

and the “magnetic port cycles” ∂Γ2
M of class (PE) in green.

Remark 3. We point out that Theorem 1 remains valid when replacing H(curlΓ,Σ) with H− 1

2 (curlΓ,Σ) in (6) and H1(Σ) with H
1

2 (Σ) in (7),

though zero boundary conditions on σ have to be rephrased as the existence of a zero extension in this case.

Remark 4. In homology theory the cycles γ1, . . . , γN mentioned in Theorem 1 are introduced as 1-chains that form a basis of the relative homology

space H1(Σ, σ). From this perspective, the vector fields c1, . . . , cN should be regarded as 2D Euclidean 1-form vector proxies of representatives

of a basis of the relative co-homology spaceH1(Σ, σ), [18, Sect. 2 & 5].

Let us return to the geometric setting outlined in the introduction and to the space VE from (2). Using the notation established above, as regards

the application of Theorem 1 to VE we face the situation Σ = ΓI and σ = ∂ΓE . We need a precise characterization of the σ-relative cycles γi.

As has already been realized in [3, Sect. III.C], the fundamental cycles non-bounding relative to ∂ΓE fall into three different classes, see Figure 3

(also for the color code):

(T) Fundamental non-bounding cycles (“topological cycles”)

τ1, . . . , τNT
, NT := 2β1(ΩC) ,

of Γ, where β1(ΩC) is the first Betti number of ΩC , that is, the number of handles/tunnels of both the circuit domain ΩC and the field

domain Ω.

(CE) NE − 1 directed curves γE2 , . . . , γ
E
NE

⊂ ΓI connecting Γ1
E with the other electric ports Γ2

E , . . . ,Γ
NE
E (“electric connector cycles”),

(PE) the NM − 1 oriented boundaries ∂Γℓ
M , ℓ = 2, . . . , NM , of the magnetic ports Γ2

M , . . . ,Γ
NM
M (“magnetic port cycles”).

Hence, the number of ΓE-relative fundamental cycles is

N := NT +max{NM , 1}+max{NE , 1} − 2 , (10)

and, by Theorem 1, it takes that many co-homology tangential vectorfields to fill the gap between VE and gradients of functions that vanish on

∂ΓE .

The considerations for VM invoke ΓM -relative homology. Again, three different classes of ΓM -relative fundamental cycles can be identified in

addition to class (T) from above, see Figure 4:
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Γ1
E

Γ2
E

Γ3
E

Γ1
M

Γ2
M

τ1

τ2

∂Γ3
E∂Γ2

E

γM2

FIGURE 4 Torus-shaped Γ (β1(ΩC) = 1); electric ports in pink, magnetic ports in yellow, ΓM -relative fundamental cycles in ΓI are τ1, τ2 of class

(T) colored blue, γM2 of class (CM) in green, ∂Γ2
E , ∂Γ

3
E of class (PM) in purple.

(CM) NM − 1 directed curves γM2 , . . . , γMNM
from Γ1

M to every other magnetic port (“magnetic connector cycles”),

(PM) the NE − 1 boundaries ∂Γk
E , k = 2, . . . , NE , of the electric ports Γ2

E , . . . ,Γ
NE
E (“electric port cycles”).

Since ∂ΓI = ∂ΓE ∪ ∂ΓM , Poincaré-Lefschetz duality of homology theory guarantees that the ΓE-relative fundamental cycles for VE can be

put in duality with the ΓM -relative fundamental cycles for VM . This means that we can find finite sets of fundamental cycles of equal cardinality

for both spaces and a bijective “pairing” between both sets that

• pairs the “topological” cycles of class (T) among themselves; theseNT cycles naturally come in pairs of dual cycles3, cf. Assumption 3.

• pairs “connector cycles” of one set with “port cycles” of the other. Note that their numbers NE − 1 and NM − 1, respectively, agree.

Figure 5 and [1, Fig. 2] illustrate this relationship. The paired cycles can always be chosen to intersect transversally; they will be called dual to each

other and the unique dual cycle of a given cycle will be tagged witĥ . Then above statements can be expressed formally as

τ̂m = τNT −m+1 ⇔ τm = τ̂NT −m+1 , m = 1, . . . , NT , (11a)

γ̂Ek = ∂Γk
E ⇔ γEk = ∂̂Γ

k

E , k = 2, . . . , NE , (11b)

γ̂Mℓ = ∂Γℓ
M ⇔ γMℓ = ∂̂Γ

ℓ

M , ℓ = 2, . . . , NM . (11c)

3.3 Boundary scalar potentials

As we have seen in Theorem 1, tangential surface fields with vanishing curlΓ/divΓ can be represented through surface scalar potentials plus

contributions from low-dimensional co-homology spaces. First we focus on γtVE and the co-homology vectorfields associated with ∂ΓE-relative

non-bounding “electric connector cycles” of class (CE) . Those co-homology vectorfields have a simple representation:

Let γEk be a ∂ΓE-relative fundamental cycle of class (CE) connecting Γ1
E and Γk

E , k = 2, . . . , NE . Then the associated tangential co-homology

vectorfield c ∈ VE is given by4

c := gradΓ ϕ
k
E with ϕk

E ∈ H1(Γ) , ϕk
E

∣∣∣
Γk
E

≡ 1 , ϕk
E

∣∣∣
(ΓE∪ΓM )\Γk

E

≡ 0 . (12)

That c satisfies condition (8),
∫
γE
n

c · ds =




1 for n = k ,

0 else
, is an immediate consequence of the fundamental theorem of calculus and the fact

that the cycle γEk connects the two electric ports Γk
E and Γ1

E with ϕk
E

∣∣
Γ1

E
≡ 0. Moreover, let us write

3On a formal level the duality of (oriented) topological cycles can be expressed through their intersection numbers, see see [19, Sect. 6.4] and, in particular,

Chapter 5 of [20].
4Our presentation relies on a few Sobolev spaces. Yet, their deeper mathematical properties will not be important here. For instance, the reader may just

viewH1(Γ) as “the space of continuous, piecewise differentiable scalar functions on Γ”.
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Γ1
E

Γ2
E

Γ3
E

Γ1
M

Γ2
M

τ1 = τ̂2

τ2 = τ̂1

γE3 = ∂̂Γ3
E

γE2 = ∂̂Γ2
E

∂Γ2
M

γ̂E3
γ̂E2

γM2 = ∂̂Γ2
M

FIGURE 5 Torus-shaped Γ (NT = 2,NE = 3,NM = 2): ΓE-relative fundamental cycles for VE as in Figure 3 are drawn with solid lines, their dual

ΓM -relative fundamental cycles are drawn with dashed lines and are marked with a .̂ Study this figure alongside Figure 3 and Figure 4.

• cE2 , . . . , c
E
NM

∈ H(curlΓ,Γ) ∩ VE for the NM − 1 tangential co-homology vectorfields belonging to the ΓE-relative non-bounding

“magnetic port cycles” ∂Γℓ
M , ℓ = 2, . . . , NM , in ΓI of class (PE) ,

• and tE1 , . . . , t
E
NT

∈ H(curlΓ,Γ) ∩ VE for the tangential co-homology vectorfields corresponding to the “topological” ΓE-relative non-

bounding cycles τ1, . . . , τNT
in ΓI of class (T) . As will become clear in Section 3.4, those can be chosen to vanish on ΓM ∪ ΓE .

These co-homology vectorfields will be examined more closely in Section 3.4. Now we are in a position to characterize the tangential trace space

of VE as

γtVE = {m ∈ H− 1

2 (curlΓ,Γ) : curlΓm = 0 onΓI , m = 0 onΓE}

= gradΓ SE +

NM∑

ℓ=2

span{cEℓ } +

NT∑

m=1

span{tEm} + H̃− 1

2 (curlΓ,ΓM ) ,
(13)

with the space of scalar potentials

SE := H̃
1

2

ΓE
(Γ) +

NE∑
k=2

span{ϕk
E} , H̃

1

2

ΓE
(Γ) := {ψ ∈ H

1

2 (∂Ω) : ψ|ΓE
= 0} , (14)

and H̃− 1

2 (curlΓ,ΓM ) standing for the space of tangential traces supported in ΓM :

H̃− 1

2 (curlΓ,ΓM ) := {v ∈ H− 1

2 (curlΓ,Γ) : suppv ⊂ ΓM} . (15)

An analogous representation holds for the magnetic space VM :

γ×VM = {j ∈ H− 1

2 (divΓ,Γ) : divΓj = 0 onΓS , j = 0 on ΓM}

= curlΓSM +

NE∑

k=2

span{cMk }+

NT∑

m=1

span{tMm }+ H̃− 1

2 (divΓ,ΓE) ,
(16)

with the scalar potential space given by

SM := H̃
1

2

ΓM
(Γ) +

NM∑

ℓ=2

span{ϕℓ
M} , H̃

1

2

ΓM
(Γ) := {ψ ∈ H

1

2 (∂Ω) : ψ|ΓM
= 0} , (17)

and a space H̃− 1

2 (divΓ,ΓE) defined in analogy to (15). The other building blocks correspond to those in (13):

• The functions ϕℓ
M ∈ H1(Γ), ℓ = 2, . . . , NM , are constant ≡ 1 on a single magnetic port Γℓ

M and vanish on all other ports.

• The tangential co-homology vectorfields cM2 , . . . , cMNE
∈ H(divΓ,Γ) ∩ VM belong to the ΓM -relative non-bounding boundaries ∂Γk

E ,

k = 2, . . . .,NE .

• The functions tmM ,m = 1, . . . , NT are π
2
-rotated versions of tmE .
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3.4 Construction of tangential co-homology vectorfields

Having settled the case of scalar potentials,we focus on the co-homologyvectorfields cE2 , . . . , c
E
NM

and tE1 , . . . , t
E
NT

. Their construction obeys

an common principle. Each one of them is associatedwith aΓE-relative non-bounding cycle ∂Γ2
M , . . . , ∂Γ

NM
M of class (PE) or τ1, . . . , τNT

of class

(T) , respectively, as we have learned in Section 3.2. There we also identified their dual cycles γMℓ = ∂̂Γℓ
M , ℓ = 2, . . . , NM , and τ̂m = τNT −m+1 ,

m = 1, . . . , NT , see Figure 4.

Dual cycles, also called “cuts” in this context, are key ingredients for our construction. Write cE ∈ {cE2 , . . . , c
E
NM

, tE1 , . . . , t
E
NT

} for a generic

tangential co-homology vectorfield in VE , γ for its associated ∂ΓE-relative fundamental cycle, and γ̂ ⊂ ΓI for the corresponding dual cycle. Then

we can set

cE :=





g̃radΓψ
E on Γ \ ΓM ,

any extension on ΓM ,
with

ψE ∈ H1(Γ \ (ΓM ∪ γ̂)) ,

ψE = 0 on ΓE ,
q
ψE

y
γ̂
= 1 ,

(18)

where JψKγ̂ denotes the jump of a function across the oriented curve γ̂ and g̃radΓ is the (piecewise) surface gradient on Γ \ γ̂. We have enough

flexibility in choosing ψE to ensure that supp cE is inside a neighborhood of γ̂.

We skip the details of the construction of the co-homology vectorfields cMk ∈ H− 1

2 (divΓ,Γ), k = 2, . . . , NE , for VM , which follows similar

lines and just involves a role reversal of ΓM and ΓE , and replacing NM with NE and gradΓ with curlΓ, cf. Remark 2

4 VARIATIONAL FORMULATIONS

The evolution of the electric field E = E(x, t) and of the magnetic field H = H(x, t) in Ω is governed by the transient Maxwell’s equations:

∂t(ǫE) + σE − curlH = 0 , (AL)

∂t(µH) + curlE = 0 . (FL)

with uniformly positive, possibly spatially varying material coefficients ǫ = ǫ(x) and µ = µ(x), and σ = σ(x) ≥ 0. These partial differential

equations can be cast in weak form in two different ways. In both cases we take for granted that E(t) ∈ VE and H(t) ∈ VM for all times.

4.1 E-based weak formulation

We test Ampere’s law (AL) with E′ ∈ VE , integrate over Ω and then integrate by parts by (1), which yields

∫

Ω

(
∂t(ǫE) + σE

)
·E′ −H · curlE′ dx−

∫

Γ
γ×H · γtE

′ dS = 0 ∀E′ ∈ VE . (19)

Appealing to (16) and (13), we can write for the tangential trace of any E′ ∈ VE

γtE
′ = gradΓ ϕ

′
E +

NM∑

ℓ=2

αℓc
E
ℓ +

NT∑

m=1

βmtEm + m̃′ on Γ ; (20)

with ϕ′
E ∈ SE , αℓ, βm ∈ R, m̃′ ∈ H̃− 1

2 (curlΓ,ΓM ), see (15).

We examine the boundary term in (19) and start with the observation that the integrand vanishes onΓM ∪ΓE so that we can confine integration

to ΓI . Then we plug in the representation (20), note that the contribution m̃′ does not matter, and get

∫

ΓI

γ×H · γtE
′ dS =

∫

ΓI

γ×H ·
(
gradΓ ϕ

′
E +

NM∑

ℓ=2

αℓc
E
ℓ +

NT∑

m=1

βmtEm
)
.

Next, embarking on “formal computations”, we use the integration by parts formula

∫

ΓI

v · gradΓ ψ dS = −

∫

ΓI

ψ divΓv dS +

∫

∂ΓI

ψ (n× v) · ds (21)

for all ψ ∈ H
1

2 (ΓI ), v ∈ H− 1

2 (divΓ,ΓI), which yields a sum of circulation integrals

∫

ΓI

γ×H · gradΓ ϕ
′
E dS = −

∫

ΓI

ϕ′
E divΓ(γ×H)︸ ︷︷ ︸

=0

dS +

∫

∂ΓE

ϕ′
E H · ds =

NE∑

k=1

ϕ′
E

∣∣
Γk
E

∫

∂Γk
E

H · ds . (22)
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Again, we use integration by parts according to (21) to deal with the contribution of the co-homology vectorfields cEℓ and tEm. Parallel to the

construction in Section 3.4, we consider a generic co-homology vectorfield cE given by the formula from (18). Refer to that formula for notations.
∫

ΓI

γ×H · cE dS =

∫

ΓI

γ×H · g̃radΓψ
E dS = −

∫

ΓI

divΓγ×H︸ ︷︷ ︸
=0

ψE dS +

∫

∂(ΓI\γ̂)
ψE γtH · ds

(∗)
=

∫

γ̂

r
ψE

z
γ̂
γtH · ds =

∫

γ̂
γtH · ds ,

(23)

because ψEγtH has vanishing tangential component on both ∂ΓE and ∂ΓM . We point out that integration in
∫
∂(ΓI\γ̂)

. . . visits both sides of γ̂

which accounts for the emergence of the jump in step (∗).

Faraday’s law (FL) is kept in “strong form” and just tested withH′ ∈ VM . This results in the final E-based spatial variational formulation: seek

E : [0, T ] → VE , H : [0, T ] → VM , such that

∫

Ω

(
∂t(ǫE) + σE

)
· E′ −H · curlE′ dx−

NE∑

k=2

ϕ′
E

∣∣
Γk
E

∫

∂Γk
E

H · ds−

NM∑

ℓ=2

αℓ

∫

γM
ℓ

γtH · ds−

NT∑

m=1

βm

∫

τ̂m

γtH · ds = 0 ,

∫

Ω

(
∂t(µH) + curlE

)
·H′ dx = 0

(24)

for all E′ ∈ VE with γtE
′ according to (20), and for all H′ ∈ VM . We point out that the dualities (11) have been used to rewrite the circulation

integrals.

4.2 H-based variational formulation

Now, we test Faraday’s law (FL) with H′ ∈ VM and, after integration by parts, arrive at
∫

Ω
∂t(µH) ·H′ +E · curlH′ dx−

∫

Γ
γtE · γ×H′ dS = 0 ∀H′ ∈ VM . (25)

For the rotated tangential trace of the test field we use the representation from (16):

γ×H′ = curlΓϕ
′
M +

NE∑

k=2

αkc
M
k +

NT∑

m=1

βmtMm + j̃′ on Γ , (26)

where ϕ′
M ∈ SM , αk , βm ∈ R, and j̃ ∈ H̃− 1

2 (divΓ,ΓE). Parallel to the developments of Section 4.1 we can convert the boundary terms into

∫

Γ
γtE · curlΓϕ

′
M dS =

NM∑

ℓ=1

ϕ′
M

∣∣
Γℓ
M

∫

∂Γℓ
M

E · ds ,

∫

Γ
γtE · cMk dS =

∫

∂Γk
E

γtE · ds ,

∫

Γ
γtE · tMm dS =

∫

τ̂m

γtE · ds . (27)

This yields the so-calledH-based variational formulation, which involves Ampere’s law (AL) in strong form: seekE : [0, T ] → VE andH : [0, T ] →

VM such that
∫

Ω

(
∂t(ǫE) + σE) ·E′ − curlH ·E′ dx = 0 ,

∫

Ω
∂t(µH) ·H′ +E · curlH′ dx −

NM∑

ℓ=1

ϕ′
M

∣∣
Γℓ
M

∫

∂Γℓ
M

E · ds−

NE∑

k=2

αk

∫

∂Γk
E

γtE · ds−

NT∑

m=1

βm

∫

τ̂m

γtE · ds = 0 ,

(28)

for all E′ ∈ VE and H′ ∈ VM . For the latter we have plugged in the representation (26) of γ×H′ .

Remark 5. If ΓR 6= ∅, the impedance boundary conditions give rise to extra terms
∫

ΓR

(
Z
−1(γtE)

)
(t) · γtE

′ dS and

∫

ΓR

(
Z(γ×H)

)
(t) · γtH

′ dS (29)

entering the first equation of (24) and (28), respectively.

5 PORT CONDITIONS

The electric and magnetic time-dependent port quantities in circuit models are

• The electric potentials Uk = Uk(t) at the electric ports Γ
k
E , k = 2, . . . , NE , Γ1

E assumed to be grounded.

• The electric currents Jk = JK(t) at the electric ports Γk
E , k = 1, . . . , NE . Their sum is zero.

• The magnetomotive forces (M.M.F.) Fℓ = Fℓ(t) at the magnetic ports Γℓ
M , ℓ = 2, . . . , NM , Γ1

M as reference.
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• The magnetic fluxes Ḃℓ = Ḃℓ(t) at the magnetic ports, ℓ = 2, . . . , NM . Those add to zero.

• The linked magnetic fluxes ḂT
m = Ḃm(t), m = 1, . . . , NT , for loops of the circuit domain ΩC .

• The linked electric currents JT
m = JT

m(t),m = 1, . . . , NT , associated with loops of ΩC , too.

We hark back to the representations of tangential traces:

(13) ⇒ γtE(t) = gradΓ ϕE(t) +

NM∑

ℓ=2

αE
ℓ (t)cEℓ +

NT∑

m=1

βE
m(t)tEm + m̃(t) , ϕE ∈ SE ; (30)

(16) ⇒ γ×H(t) = curlΓϕM (t) +

NE∑

k=2

αM
k (t)cMk +

NT∑

m=1

βM
m (t)tMm + j̃(t) , ϕM ∈ SM . (31)

From them and Maxwell’s equations we extract a comprehensive set of expressions for the port quantities, for

electric port potentials: Uk(t) = ϕE(t)|Γk
E

=

∫

γ̂M
k

=γE
k

E(t) · ds , (32a)

electric port currents: Jk(t) = αM
k (t) =

∫

∂Γk
E

H(t) · ds , (32b)

port M.M.F.: Fℓ(t) = ϕM (t)|ΓM
ℓ

=

∫

γ̂E
ℓ

=γℓ
M

H(t) · ds , (32c)

port magnetic fluxes: Ḃℓ(t) = αE
ℓ (t) =

∫

∂Γℓ
M

E(t) · ds , (32d)

linked magnetic fluxes: ḂT
m(t) = βE

m(t) =

∫

τ̂m

E(t) · ds , (32e)

linked electric currents: JT
m(t) = βM

m (t) =

∫

τ̂m

H(t) · ds , (32f)

for all k = 2, . . . , NE , ℓ = 2, . . . , NM ,m = 1, . . . , NT . The formulas in the middle column we may call essential port conditions, because they are

directly imposed on the fields through (30) and (31), whereas the formulas in the right column may be called weak port conditions, because they

permit us to enforce them through terms in the variational formulations.

Remark 6. For the port quantities (32) the indices k and ℓ run from 2. Don’t we neglect fluxes, thus? No, because owing to div curlH =

div curlE = 0, and the boundary conditions inherent in VE/VM we find the flux balance laws

NE∑

k=1

Jk(t) =

NE∑

k=1

∫

∂Γk
E

H(t) · ds = 0 ,

NM∑

ℓ=1

Ḃℓ(t) =

NM∑

ℓ=1

∫

∂Γℓ
M

E(t) · ds = 0 , (33)

which makes it possible to recover the “missing flux” from the others.

In order to endow port conditions with their “natural meaning” in circuit theory we have to impose constraints on the cycles:

(I) The concept of generic port voltages and portM.M.F.s entails the existence of global electric andmagnetic scalar potentials, which, however,

cannot be reconciled with non-zero linked fluxed given as circulations along topological cycles τm , m − 1, . . . , NT . This difficulty can be

resolved by treating the tological cycles as “cuts”, which render Γ \
⋃

m τm topologically trivial. Therefore, once we restrict all connector

cycles to that complement, path integrals along them define meaningful voltages/M.M.F.s.

Assumption 2. None of the connector cycles γE1 , . . . , γ
E
NE

and γM1 , . . . , γMNM
intersects any of the topological cycles τ1, . . . , τNT

.

We can always find connector cycles with this property, because Γ \
⋃

m τm is still connected. The arrangements displayed in Figure 3 and

Figure 4 comply with Assumption 2, and another illustration is given in Figure 6.

The reader must be aware that in the case NT > 0 the choice of the connector cycle is a modeling decision, which will have a big impact

on the resulting electromagnetic fields; simulation results covered in Section 7 will demonstrate this.

(II) We have already taken for granted that the “topological cycles” τm ,m = 1, . . . , NT , come in dual pairs, recall Section 3.2. They are needed

to define the linked fluxes ḂT
m and currents JT

m as non-local coupling quantities in (32e) and (32f). In order to give these quantities their

“natural meaning”, we have to make the following assumption, see Figure 6 for an illustration. For an in-depth discussion of this classification

of topological cycles refer to [21].

Assumption 3. Half of the cycles τm are bounding with respect to ΩC , whereas their duals are bounding with respect to Ω.
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τ1

τ2

γE2

γ

Γ1
E

Γ2
E

ΩC

FIGURE 6 Torus-shaped ΩC with two electric ports, NT = 2, NE = 2: The connector cycle γE2 stays clear of the topological cycles and fulfills

Assumption 2, whereas γ is not admissible given how τ2 is chosen. Note that the topological cycles comply with Assumption 3: τ2 is bounding

with respect to ΩC , τ1 bounds with respect to Ω := R3 \ ΩC .

In fact, this “assumption” could also have been labeled a proposition, because we can always obtain the topological cycles as boundaries

of NT /2 “cuts” in ΩC and Ω, respectively [22, 20, 23]. In [24] it was established that these cuts can be chosen so that they come in pairs

whose boundaries constitute dual topological cycles.

Summing up, Assumption 3 will permit us to view ḂT
m as the electromotive force around a loop of ΩC and JT

m as the current flowing in a

section of it. For instance, in the situation depicted in Figure 6 ḂT
2 is the variation of the magnetic flux through the central tunnel, whereas

JT
2 stands for a current flowing through it.

5.1 Ports in E-based Model (24)

In light of the definition (2) of VE and (30) we write the time-dependent electric field E = E(t) as direct sum (Colors indicate the related cycle

classes as in Section 3.2.)

E(t) = E0(t) + grad(XρE(t)) +
NE∑
k=2

Uk(t) gradXνkE +
NM∑
ℓ=2

Ḃℓ(t)C
E
ℓ +

NT∑
m=1

ḂT
m(t)TE

m , (34)

where

• E0(t) ∈ HΓ\ΓM
(curl,Ω) := {V ∈ H(curl,Ω) : γtV = 0 on Γ \ ΓM} is the electric field in the interior of the field domain Ω,

• ρE(t) ∈ H̃
1/2
ΓE

(ΓI ) := {ψ ∈ H
1

2 (ΓI ∪ ΓE) : ψ = 0 on ΓE} is the scalar surface potential on the insulating parts of the boundary,

• X : H
1

2 (ΓI ∪ ΓE) → H1(Ω) is a continuous extension operator, mapping functions on ΓI ∪ ΓE to functions defined on Ω,

• νkE ∈ H
1

2 (∂Ω) satisfies νkE
∣∣
Γk
E

≡ 1, νkE
∣∣
Γm
E

= 0 for m 6= k, that is, the function νkE attains the value 1 on the electric port Γk
E , is

“continuous”, and vanishes on all other ports,

• CE
ℓ ∈ H(curl,Ω), is an extension of the co-homology tangential surface vectorfield cEℓ into Ω, ℓ = 2, . . . , NM : γtC

E
ℓ = cEℓ ,

• TE
m ∈ H(curl,Ω) extends tEm: γtT

E
m = tEm,m = 1, . . . , NT .

Next, we use the “weak expressions” from the right column of (32) for the port currents Jk from (32b), for the magnetomotive forces Fℓ from (32c),

and for the linked currents from (32f) to replace the three path integrals in (24) with associated port quantities:
∫

∂Γk
E

H · ds −→ Jk ,

∫

γ̂E
ℓ

γtH · ds −→ Fℓ ,

∫

τ̂m

γtH · ds −→ JT
m . (35)

Another change compared to (24) is that we relax the smoothness requirements for themagnetic field toH(t) ∈ L2(Ω) and also allowH′ ∈ L2(Ω),

because no extra regularity is required to render the variational formulation well-defined.

As already done in the derivation of (24), the splitting (34) is also applied to the test field E′, and this yields

(i) two variational equations corresponding to testing with E′
0 ∈ HΓ\ΓM

(curl,Ω) and Xρ′E ∈ H̃
1/2
ΓE

(ΓI ), yielding (36a) and (36b) below,
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(ii) and, from (10), N := NT + max{NM , 1} + max{NE , 1} − 2 equations from testing with gradXνkE , CE
ℓ , and TE

m, k = 2, . . . , NE ,

ℓ = 2, . . . , NM ,m = 1, . . . , NT , resulting in (36c)–(36e) below.

Eventually, we end up with the variational problem:

Seek E0 : [0, T ] → HΓ\ΓM
(curl,Ω), ρE : [0, T ] → H̃

1/2
ΓE

(ΓI ), Uk : [0, T ] → R, Ḃℓ : [0, T ] → R, Uk; [0, T ] → R, Fℓ : [0, T ] → R,

ḂT
m : [0, T ] → R,H : [0, T ] → L2(Ω) such that

∫

Ω

(
∂t(ǫE)(t) + σE(t)

)
·E′

0 −H(t) · curlE′
0 dx = 0 , (36a)

∫

Ω

(
∂t(ǫE)(t) + σE(t)

)
· gradXρ′E dx = 0 , (36b)

∫

Ω

(
∂t(ǫE)(t) + σE(t)

)
· gradXνkE dx −Jk(t) = 0 , (36c)

∫

Ω

(
∂t(ǫE)(t) + σE(t)

)
·CE

ℓ −H(t) · curlCE
ℓ dx −Fℓ(t) = 0 , (36d)

∫

Ω

(
∂t(ǫE)(t) + σE(t)

)
·TE

m −H(t) · curlTE
m dx −JT

m(t) = 0 , (36e)

∫

Ω

(
∂t(µH)(t) + curlE(t)

)
·H′ dx = 0 (36f)

for all E′
0 ∈ HΓ\ΓM

(curl,Ω), ρ′E ∈ H̃
1/2
ΓE

(ΓI), k = 2, . . . , NE , ℓ = 2, . . . , NM ,m = 1, . . . , NT , andH′ ∈ L2(Ω).

Note that in (36) E has to be read as an expression depending affine-linearly on E0 , ρE , Uk ,Ḃℓ, and Ḃ
T
m according to (34).

Formally, there is a mismatch of the number of equations and unknowns in (36) (“Six equations for nine unknowns”), which leaves freedom to

imposed values for port quantities or relationships between them. This is how we can introduce sources and circuit relations into the model.

Remark 7. Elimination of magnetic field. Assume that none of the material coefficients ǫ, σ, and µ depends on time. Then we can

1. differentiate (36a)–(36e) with respect to time t, which amounts to replacing

∂(ǫE)(t) → ǫ∂2tE(t) , σE(t) → σ∂tE(t) , H(t) → ∂tH(t) .

2. move ∂t right in front of H in (36f): ∂t(µH)(t) → µ∂tH.

Subsequently, we can test (36f) with µ−1 curlE′
0 , µ

−1 curlCE
ℓ , and µ−1 curlTE

m, respectively, and use the resulting equation to eliminateH(t)

in (36a), (36d), and (36e). We end up with an evolution equation for the electric fieldE = E(t) alone, second-order in time, which still contains all

the port quantities.

5.2 Ports inH-Based Model (28)

Of course, the approach to (28) runs parallel to the developments of Section 5.1. From (3)/(31) we get the direct-sum representation

H(t) = H0(t) + gradXρM (t) +

NM∑

ℓ=2

Fℓ(t) gradXνℓM +

NE∑

k=2

Jk(t)C
M
k +

NT∑

m=1

JT
m(t)TM

m , (37)

where

• H0(t) ∈ HΓ\ΓE
(curl,Ω) := {V ∈ H(curl,Ω) : γ×V = 0 on Γ \ ΓE} is the magnetic field in the interior of Ω and at the electric ports,

• ρM (t) ∈ H̃
1/2
ΓM

(ΓI ) := {ψ ∈ H
1

2 (ΓI ∪ ΓM ) : ψ = 0 on ΓM} is a magnetic scalar surface potential on ΓI ,

• νℓM ∈ H
1

2 (∂Ω) is equal to 1 on Γℓ
M , and zero on all other magnetic parts and all electric ports.

• CM
k ∈ H(curl,Ω) extends the surface co-homology vectorfield cMk : γ×CM

k = cMk , k = 2, . . . , NE .

• TM
m is an H(curl,Ω)-extension of tHm: γ×TM

m = tMm .

The expressions (32d) and (32a) pave the way for the following replacements of the three path integrals in (28), analogous to (35):
∫

∂Γℓ
M

E · ds −→ Ḃℓ ,

∫

γM
k

γtE · ds −→ Uk ,

∫

τ̂m

γtE · ds −→ ḂT
m . (38)
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As before, the smoothness requirements for E and E′ in (28) are relaxed and we merely demand E,E′ ∈ L2(Ω). This leads to the final H-based

variational formulation taking into account port quantitites:

SeekH0 : [0, T ] → HΓ\ΓE
(curl,Ω), ρM : [0, T ] → H̃

1/2
ΓM

(ΓI), Fℓ : [0, T ] → R, Jk : [0, T ] → R, JT
m : [0, T ] → R, H : [0, T ] → L2(Ω)

∫

Ω
∂t(µH)(t) ·H′

0 +E(t) · curlH′
0 dx = 0 , (39a)

∫

Ω
∂t(µH)(t) · gradXρ′M dx = 0 , (39b)

∫

Ω
∂t(µH)(t) · gradXνℓM dx −Ḃℓ(t) = 0 , (39c)

∫

Ω
∂t(µH)(t) ·Ck

M +E · curlCk
M dx −Uk(t) = 0 , (39d)

∫

Ω
∂t(µH)(t) ·Tm

M +E(t) · curlTm
M dx −ḂT

m(t) = 0 , (39e)

∫

Ω

(
∂t(ǫE)(t) + σE(t)) ·E′ − curlH(t) · E′ dx = 0 (39f)

for all H′
0 ∈ H(curlΓ,Γ)Γ \ ΓE , ρ′M ∈ H̃

1/2
ΓM

(ΓI ), ℓ = 1, . . . , NM , k = 2, . . . , NE , m = 1, . . . , NT , E
′ ∈ L2(Ω), and H =

H(H0, ρM , Fℓ, Jk, J
T
m) as in (37).

Also here we face “six equations versus nine unknowns” and either fixing port quantities, aka, imposing excitation through sources, or adding

circuit equations will remedy this imbalance. I goes without saying that here we can eliminate the electric field E, cf. Remark 7.

5.3 Power Balance

Conservation of energy is a guiding principle in the coupling of fields and circuits [5, 4]. It is also respected in the variational formulations (36) and

(39). We elaborate this for the E-based formulation (36).

The idea is to set E′ := E(t) and H′ := H(t) in (24) and add both resulting equations taking into account (32) and (34)

Jk(t) =

∫

∂Γk
E

H(t) · ds , Fℓ(t) =

∫

γ̂E
ℓ

H(t) · ds , JT
m(t) =

∫

τ̂m

H(t) · ds .

This gives us the power balance relation

d

dt

∫

Ω

1
2
ǫE(t) ·E(t) + 1

2
µH(t) ·H(t) dx +

∫

Ω
σE(t) ·E(t) dx

=

∫

Ω
∂t(ǫE)(t) ·E(t) + ∂t(µH)(t) ·H(t) + σE(t) ·E(t) dx

=

NE∑

k=1

Uk(t)Jk(t) +

βM∑

ℓ=1

Ḃℓ(t)Fℓ(t) +

NT∑

m=1

JT
m(t)ḂT

m(t) . (40)

The products of port quantities give the power flux through each port, which is offset by a change in the electromagnetic field energies and Ohmic

losses. We observe that the six types of port quantities can be arranged into three pairs, products of whose components yield power fluxes. The

same arguments can be employed for theH-based model.

Remark 8. In the case ΓR 6= ∅ another term of the form
∫

ΓR

(
Z
−1(γtE)

)
(t) · γtE(t) dS =

∫

ΓR

(
Z(γ×H)

)
(t) · γ×H(t) dS (41)

emerges on the right-hand side of (40). Straightforwardly, it arises from (29). It represents the power carried off by electromagnetic radiation.

6 FINITE-ELEMENT GALERKIN DISCRETIZATION: LOWEST-ORDER SCHEME

The variational problems (36) and (39) immediately lend themselves to a Galerkin discretization by means of conforming finite elements on a

tetrahedral meshM of Ω, which resolves the ports in the sense that every Γk
E and Γℓ

M is the union of faces of mesh cells. All geometric entities of

the mesh are to be endowed with an intrinsic orientation.

We restrict the discussion to the E-based model (36) and leave the analogous considerations for the H-based model (39) to the reader. We

also focus on lowest-order finite-element approximation, known as edge elements/Whitney-1-forms in the case of finite-element subspaces of

H(curl,Ω) [25, Sect. 3]. Their locally supported basis functions, dubbed “edge basis functions” in the sequel, are associated with edges ofM. We
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remind that edge elements admit discrete potentials and the relevant discrete scalar potentials are provided by M-piecewise linear continuous

functions. Those can be written as linear combinations of node-associated locally supported basis functions. We refer to them as “tent functions”.

The following finite-dimensional trial and test space can be used in (36):

• HΓ\ΓM
(curl,Ω) is replaced with the space Eh spanned by edge basis functions associated with Ω-interior edges of M plus edges in the

interior of magnetic ports.

• The finite element subspace of H̃
1/2
ΓE

(ΓI ) is generated by the traces of those tent functions belonging to the nodes located in the interior

of ΓI and on ∂ΓM . We write Sh for their span.

• For the finite-element approximation of L2(Ω) we simply use the space Ch of M-piecewise constant vectorfields.

The equations (36b) and (36c) feature the extension operator X. In the finite-element setting we use simple nodal truncation: extension of a

M|Γ-piecewise linear function is done by keeping all nodal values on Γ and setting the contributions of all tent functions at nodes in the interior

of Ω to zero.

The next isssue is the representation of the special functions νkE and CM
ℓ occurring in (36c) and (36d), respectively. Those are defined in the

paragraph following (34). The function νkE is simply given as the sum of all tent functions belonging to mesh nodes contained in Γ
k
E . Note the

closure of the set! The partition-of-unity property of the tent function yields the desired properties of the resulting M-piecewise linear function

XνkE .

The construction ofCE
ℓ andTE

m is more challenging. It follows recipes already developed in [21]: As explained in Section 3.4 to everyCE
ℓ there

is an associated dual cycle γMℓ of class (CM), which is an oriented curve. The same applies to every TE
m and its dual cycle is also of class (T).

Assumption 4. We assume that every cycle γMℓ , ℓ = 2, . . . , NM , γEk , k = 2, . . . , NE , and τm ,m = 1, . . . , NT , is a chain of edges ofM.

γ̂

FIGURE 7 Close-up of the collar field cE skirting the dual cycle γ̂. The

red arrows indicate the edges whose edge basis functions will contribute

to cE with weight+1.

This assumption can always be met, provided that the mesh

resolves the topology of Ω. Given a dual cycle γ̂/τ̂m as an edge

chain ⊂ Γ, we can choose the associated co-homology vector

fields cEℓ /tEm as so-called collar fields supported in the triangles

adjacent to the dual cycle γ̂ on “the right side”. For details refer to

Figure 7 and [21]. Afterwards we employ simple nodal truncation

to extend them to finite-element vectorfields on Ω.

Then, given the collar fields cEℓ , we obtainCE
ℓ by simply retaining

the weights of the edge basis functions on Γ and setting all those

for interior edge basis functions to zero, which is the “trivial finite-

element extension procedure”. The same construction applies to

TE
m.

Remark 9. Note that collar fields are extremely sparse under the reasonable assumption that the edge cycles do not behave like surface-filling

curves: viewed as finite-element functions only a few degrees of freedom will be non-zero in the edge basis representations of the collar fields.

Finally, let us exhibit the structure of the semi-discrete evolution problem for theE-based formulation, an ordinary differential equation for the

basis expansion coefficients of the unknown fields plus the port quantities. To that end we introduce the time-dependent coefficient vectors

• ~E = ~E(t) ∈ RnE for the time-dependent vector of edge-basis expansion coefficients of E0,h : [0, T ] → Eh , nE := dim Eh,

• ~ρ = ~ρ(t) ∈ RnS for the tent-basis expansion coefficient vector of XρE,h : [0, T ] → Sh , nS := dimSh,

• ~H = ~H(t) ∈ RnH for the vector of cell values ofHh : [0, T ] → Ch , nH := dim Ch,

• ~U(t) := (U2(t), . . . , UNE
(t))⊤ ∈ RNE−1 (electric port potentials),

~B(t) = (Ḃ1(t), . . . , ḂNM−1(t))
⊤ ∈ RNM−1 (magnetic port fluxes),

~L(t) = (ḂT
1 (t), . . . , ḂT

NT
(t)) ∈ RNT (linked magnetic fluxes),

• ~J(t) = (J2(t), . . . , JNE
(t))⊤ ∈ RNE−1 (electric port currents),

~F (t) = (F2(t), . . . , FNM
(t))⊤ ∈ RNM−1 (port M.M.F.s),

~I(t) = (JT
1 (t), . . . , JT

NT
(t))⊤ ∈ RNT (linked electric currents).
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MEE MρE MUE MBE MLE O

M⊤
ρE Mρρ MUρ MBρ MLρ O

M⊤
UE M⊤

Uρ MUU MBU MLU O

M⊤
BE M⊤

Bρ M⊤
BU MBB MLB O

M⊤
LE M⊤

Lρ M⊤
LU M⊤

LB MLL O

O O O O O MHH




d

dt




~E

~ρ

~U

~B

~L

~H




+




REE RρE RUE RBE RLE −C

R⊤
ρE Rρρ RUρ RBρ RLρ O

R⊤
UE R⊤

Uρ RUU RBU RLU O

R⊤
BE R⊤

Bρ R⊤
BU RBB RLB −Q

R⊤
LE R⊤

Lρ R⊤
LU R⊤

LB RLL −P

C⊤ O O Q⊤ P⊤ O







~E

~ρ

~U

~B

~L

~H




=




0

0

~J

~F

~I

0




. (42)

The mass matrices M∗⋆, ∗, ⋆ ∈ {E, ρ, U,B, L} arise from the Galerkin discretization of the bilinear form (E,E′) 7→
∫
Ω
ǫ(x)E · E′ dx, with the

exception of MHH ∈ RnH ,nH , which is a discretization of (H,H′) 7→
∫
Ω
µ(x)H ·H′ dx on Ch × Ch. The matrices R∗⋆, ∗, ⋆ ∈ {E, ρ, U,B, L}

are produced by the Galerkin discretization of the Ohmic loss blinear form (E,E′) 7→
∫
Ω σ(x)E ·E′ dx on the spaces indicated by the subscripts.

The matrices C ∈ RnE ,nH represent a discrete curl-operator obtained by the Galerkin discretization of (H,E′) 7→
∫
Ω
H · curlE′ dx on

Ch × Eh . The entries of the matrixQ ∈ RNM−1,nH arise from plugging the basis functions of Ch into the linear formsH 7→
∫
Ω
H · curlCE

ℓ dx,

ℓ = 2, . . . , NM , and we get P ∈ RNT ,nH from the Galerkin discretization of (H,E′) 7→
∫
Ω H · curlE′ dx on Ch × span{TE

1 , . . . ,T
E
NT

}.

Remark 10. We consider the semi-discreteE-based model (42) in frequency domain at a fixed frequency f = ω
2π

,ω > 0. This amounts to replacing

∂t → ·iω and treating all quantities as complex amplitudes (phasors). Thus the ordinary differential equation (42) is converted into the linear system



iωMEE +REE iωMρE +RρE −C iωMUE +RUE iωMBE +RBE iωMLE +RLE

iωM⊤
ρE +R⊤

ρE iωMρρ +Rρρ O iωMUρ +RUρ iωMBρ +RBρ iωMLρ +RLρ

C⊤ O iωMHH O Q⊤ P⊤

iωM⊤
UE +R⊤

UE iωM⊤
Uρ +R⊤

Uρ O iωMUU +RUU iωMBU +RBU iωMLU +RLU

iωM⊤
BE +R⊤

BE iωM⊤
Bρ +R⊤

Bρ −Q iωM⊤
BU +R⊤

BU iωMBB +RBB iωMLB +RLB

iωM⊤
LE +R⊤

LE iωM⊤
Lρ +R⊤

Lρ −P iωM⊤
LU +R⊤

LU iωM⊤
LB +R⊤

LB iωMLL +RLL







~E

~ρ

~H

~U

~B

~L




=




0

0

0

~J

~F

~I




. (43)

Provided that the left-upper block indicated in (43) is invertible, which may not be the case for particular “resonant” wavenumbers ω, we can

eliminate the unknowns ~E, ~ρ, and ~H by static condensation and obtain a Schur-complement linear system. Condensing the matrix blocks on (43)

into A, B, C⊤, and D, and writing X :=
(
~E, ~ρ, ~H

)
, P :=

(
~U, ~B, ~L

)
, Q :=

(
~J, ~F , ~I

)
), this procedure can be cast into the following formulas:

(43) ⇔

(
A B

C⊤ D

)(
~X

~P

)
=

(
0

~Q

)
⇒

(
D− C⊤A−1B

)
~P = Q . (44)

The highlighted Schur-complement (NE + NM + NT − 2) × (NE + NM + NT − 2) matrix is a lumped-element multi-port model of the field

domain and its entries can be viewed as generalized impedances, capacities, inductances, etc.

Remark 11. An analysis of the accuracy of solutions of the semi-discrete problem (42) is outside the scope of this work. Please refer to works on

the numerical analysis of finite-element methods for Maxwell’s equations, for example [16]. For the finite-element scheme presented above we

expect first order convergence in the meshwidth, if the field solutions are sufficiently smooth.

7 NUMERICAL TEST:E-BASED FORMULATION

We discuss a conrete simulation in frequency domain at fixed frequencies f = ω
2π

= 50, 200, 1000Hz. We rely on the E-based model (36) and

replace ∂t → ·iω and regard all fields and port quantities as complex-valued phasors. We consider the particular geometry displayed in Figure 8,

which means NE = 2, NM = 0, andNT = 2. Topologically, this resembles the situation of Figure 6.

We short-circuit the electric ports, which amounts to imposingU2 = 0 in the notations of Section 5.1 and in all simulations drive the system by

through a linked magnetic flux ḂT
1 = (3.518 · 10−3 + 1.893 · 10−4i)V (RMS 0.03518V) penetrating the surface bounded by τ1. This is equivalent

to imposing an electromotive force along τ1 , see (32e). Such excitation can model the effect of a current-carrying coil outside the field domain.

We end up with a special frequency-domain version of (36). Given ḂT
1 ∈ C seek5

E = E0 + gradXρE + ḂT
1 TE

1 + ḂT
2 TE

2 [ +U2 gradXν2E ] (45)

5Unknowns are marked with purple color.
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Conducting loop, dimensions

FIGURE 8 Geometry for numerical demonstration: bounded field domain Ω with the shape of a “cubistic torus” (NT = 2), whose complement

represents the unbounded circuit domain ΩC . Central tunnel surrounded by conducting split loop, connected to two electric ports (NE = 2).

Conductivity σ = 106A/Vm inside loop, σ = 0 outside, µ = µ0 , ǫ = ǫ0 everywhere, which leads to an approximate resistance ofR = 2.48mΩ and

inductance of L = 0.45µH. The topological cycles τ1, τ2 are marked in blue, an alternative topological cycle τ ′2 in cyan. Note that τ ′2 runs through

the small gap between the electric ports.

with E0 ∈ H0(curl,Ω), ρE ∈ H̃
1/2
ΓE

(ΓI ), Ḃ
T
2 ∈ C, andH ∈ L2(Ω), JT

2 ∈ C such that

∫

Ω

(
iωǫ(x) + σ(x)

)
E ·E′

0 −H · curlE′
0 dx = 0 , (46a)

∫

Ω

(
iωǫ(x) + σ(x)

)
E · gradXρ′E dx = 0 , (46b)

∫

Ω

(
iωǫ(x) + σ(x)

)
E ·TE

2 −H · curlTE
2 dx −JT

2 = 0 , (46c)

∫

Ω

(
iωµ(x)H + curlE

)
·H′ dx = 0 (46d)

for all E′
0 ∈ H0(curl,Ω), ρ′E ∈ H̃

1/2
ΓE

(ΓI ), and H′ ∈ L2(Ω). In (45) we have hinted that the voltage drop between the electric ports is imposed,

though in this example U2 = 0. This removes a degree of freedom from the trial space for E, which forces us to remove the corresponding one

from the test space. As a consequence (36c) does not contribute to the variational equations.

Next, we eliminate the magnetic fieldH as discussed in Remark 7 by testing (46d) with H′ := curlE′
0 and H′ := curlTE

2 , respectively, and,

similar to [8, Sect. 3], obtain: Seek E as defined in (45) and JT
2 ∈ C such that

∫

Ω

(
iωǫ(x) + σ(x)

)
E ·E′

0 +
1

iωµ(x)
curlE · curlE′

0 dx = 0 , (47a)

∫

Ω

(
iωǫ(x) + σ(x)

)
E · gradXρ′E dx = 0 , (47b)

∫

Ω

(
iωǫ(x) + σ(x)

)
E ·TE

2 +
1

iωµ(x)
curlE · curlTE

2 dx −JT
2 = 0 (47c)

for all E′
0 ∈ H0(curl,Ω) and ρ′E ∈ H̃

1/2
ΓE

(ΓI).
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The unknown JT
2 represents the complex amplitude of the total current flowing through τ2 , whereas ḂT

2 from (45) is the electromotive force

around τ2. The complex amplitude of the current J2 flowing through the electric ports can be recovered from (36c):

J2 =

∫

Ω

(
iωǫ(x) + σ(x)

)
E · gradXν2E dx , (48)

where ν2E has been specified in Section 5.1.

The finite-element Galerkin discretization of (47) is carried out precisely as described in Section 6 using three tetrahedral meshes of increasing

resolution. The mutually dual topological cycles τ1 and τ2 directly enter the model through the co-homology vector fields TE
1 and TE

2 , which we

constructed as “collar fields” skirting the dual cycle according to the algorithm outlined in Figure 7. We choose both τ1 and τ2 as flat rectangles as

indicated in Figure 8. For the cycle τ2 we explore two options,

(i) the cycle bounds a flat surface cutting the conductor, τ2 in Figure 8,

(ii) the cycle runs between the contacts and the associated surface cuts through the air gap of the split conducting loop, τ ′2 in Figure 8.

7.1 Validation: Comparison with Circuit Model

In good approximation the conducting loop can modeled as a linear circuit element with resistance R = 2.488 · 10−3Ω, inductance L = 4.261 ·

10−7H, and vanishing capacitance. These values were determined at ω = 1Hz by means of a high-resolution finite-element computation6. Thus,

we can obtain the resulting frequency-dependent loop current as I = U/Z with U standing for the voltage drop along the loop and Z for the

impedanceR+ iωL. In our newmethod we impose the voltage drop through ḂT
1 and recover the loop current as the unknown JT

2 . Table 1 shows

the results for the exciting voltage amplitudeU = ḂT
1 = (3.518·10−3+1.893·10−4i)V. The results of all computations are in excellent agreement

with the predictions of the circuit model for three different frequencies.

No. of tets. loop current for ω = 50Hz loop current for ω = 200Hz loop current for ω = 1000Hz

coarse mesh 298777 (−1.419− 2.720i · 10−4i)A (−1.372 + 0.218i)A (−0.699 + 0.666i)A

medium mesh 347391 (−1.418− 7.781 · 10−5i)A (−1.370 + 0.218i)A (−0.696 + 0.666i)A

fine mesh 599105 (−1.414− 1.001 · 10−7)A (−1.367 + 0.2180i)A (−0.699 + 0.665i)A

circuit model, I = U/Z (−1.414− 3.265 · 10−6)A (−1.367 + 0.218i)A (−0.694 + 0.670i)A

TABLE 1 Complex amplitudes of currents flowing in the square loop conductor at different frequencies; the results in the top three rows were

obtained by our new method and finite-element Galerkin discretization as described in the main text.

7.2 Case study: Excitation by Linked Fluxes

We study the impact of the choice of cycles. For both options (i) and (ii) we visualize the electric currents in Figure 9 and tabulate JT
2 for different

meshes in Table 2.

50Hz 200Hz 1000Hz

No. of tets J2 for τ2 J2 for τ ′2 J2 for τ2 J2 for τ ′2 J2 for τ2 J2 for τ ′2

coarse mesh 298777 1.0034 1.2 · 10−10 0.9822 3.1 · 10−8 0.6827 5.3 · 10−10

medium mesh 347391 1.0023 1.1 · 10−10 0.9810 3.0 · 10−8 0.6811 5.7 · 10−10

fine mesh 599105 0.9999 5.4 · 10−9 0.9787 5.1 · 10−8 0.6793 1..1 · 10−9

TABLE 2 RMS currents JT
2 for different choices of the topological cycles bounding w.r.t.Ω, see Figure 8, and computed on tetrahedral meshes with

different resolutions. The large fluctuations of the minute values of JT
2 are due to discretization errors. Same currents as in Table 1 when choosing

cycle τ2.

6The computations relied on the code Hadapt developedf at ABB Corp.
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FIGURE 9 f = 50Hz: RMS strength of electric currents in a cross-section of the conducting loop for two choices of topological cycle bounding in

Ω: choice τ2 right, choice τ ′

2
left, different scales used.

The simulation results compiled in Table 2 and displayed in Figure 9 strikingly highlight that the choice of topological cycles with respect to

connector cycles is crucial. We offer the following interpretation of the data of Table 2: The choice τ2 does not intersect the straight connector

cycle between Γ1
E and Γ2

E , directs the electromotive force ḂT
1 along the conducting part of the split loop and, hence, engenders a strong current.

Conversely, choosing τ ′2 forces the connector cycle γE2 to wind around the tunnel and confines the electromotive force to the air gap, where it

cannot cause a significant current. The decreased current for larger frequencies is caused by the self-inductance of the conducting loop.

8 CONCLUSION

We have discussed the most general case of the coupling of a linear full-Maxwell field model posed in a “field domain” with circuit models confined

to a complementary “circuit domain” through non-local quantities associated with either ports (contacts, terminals) on the common interface of

both domains or loops (tunnels, handles) of the circuit domain. We have rigorously derived how to obtain a computable discrete model through

the following steps.

Identification of relative

fundamental cycles on the interface
⇒

E-based orH-based variational

formulations involving port/loop

quantities

⇒
Finite-element Galerkin

discretization

We have focused on variational formulations that directly involve the physical fields E and H, thus circumventing the use of scalar and vector

potentials. Our approach is suitable for both time and frequency domain.

This is the first work to highlight the complications inherent in a non-trivial topology of the circuity domain. If it features loops, numerical

modeling entails making decisions about linked quantities. The single numerical example covered in this work gives a striking demonstration of

unexpected interactions of loop and port quantities.
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