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Abstract 

 Discontinuous Galerkin (DG) methods have become mainstays in the accurate solution of 

hyperbolic systems, which suggests that they should also be important for computational 

electrodynamics (CED). Typically DG schemes are coupled with Runge-Kutta timestepping, 

resulting in RKDG schemes, which are also sometimes called DGTD schemes in the CED 

community. However, Maxwell’s equations, which are solved in CED codes, have global mimetic 

constraints. In Balsara and Käppeli [von Neumann Stability Analysis of Globally Constraint-

Preserving DGTD and PNPM Schemes for the Maxwell Equations using Multidimensional 

Riemann Solvers, Journal of Computational Physics, 376 (2019) 1108-1137] the authors presented 

globally constraint-preserving DGTD schemes for CED. The resulting schemes had excellent low 

dissipation and low dispersion properties. Their one deficiency was that the maximal permissible 

CFL of DGTD schemes decreased with increasing order of accuracy. The goal of this paper is to 

show how this deficiency is overcome. Because CED entails the propagation of electromagnetic 

waves, we would also like to obtain DG schemes for CED that minimize dissipation and dispersion 

errors even more than the prior generation of DGTD schemes. 
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 Two recent advances make this possible. The first advance, which has been reported 

elsewhere, is the development of a multidimensional Generalized Riemann Problem (GRP) solver. 

The second advance relates to the use of Two Derivative Runge Kutta (TDRK) timestepping. This 

timestepping uses not just the solution of the multidimensional Riemann problem, it also uses the 

solution of the multidimensional GRP. When these two advances are melded together, we arrive 

at DG(TD)2 schemes for CED, where the first “TD” stands for time-derivative and the second 

“TD” stands for the TDRK timestepping. The first goal of this paper is to show how DG(TD)2 

schemes for CED can be formulated with the help of the multidimensional GRP and TDRK 

timestepping. The second goal of this paper is to utilize the free parameters in TDRK timestepping 

to arrive at DG(TD)2 schemes for CED that offer a uniformly large CFL with increasing order of 

accuracy while minimizing the dissipation and dispersion errors to exceptionally low values. The 

third goal of this paper is to document a von Neumann stability analysis of DG(TD)2 schemes so 

that their dissipation and dispersion properties can be quantified and studied in detail.  

 At second order we find a DG(TD)2 scheme with CFL of 0.25 and improved dissipation 

and dispersion properties; for a second order scheme. At third order we present a novel DG(TD)2 

scheme with CFL of 0.2571 and improved dissipation and dispersion properties; for a third order 

scheme. At fourth order we find a DG(TD)2 scheme with CFL of 0.2322 and improved dissipation 

and dispersion properties. As an extra benefit, the resulting DG(TD)2 schemes for CED require 

fewer synchronization steps on parallel supercomputers than comparable DGTD schemes for 

CED. We also document some test problems to show that the methods achieve their design 

accuracy. 
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1) Introduction 

 Several areas of science and engineering rely on the accurate, time-dependent 

computational solution of Maxwell’s equations – known as Computational Electrodynamics 

(CED). The finite-difference time-domain (FDTD) method (Yee [62], Taflove [56], Taflove and 

Hagness [57], [59], Taflove, Oskooi and Johnson [58]) has been one of the leading methods in 

CED for over half a century. FDTD relies on the staggering of the variables for the electric and 

magnetic fields, which provides a direct interpretation of the two curl-type equations given by 

Faraday’s Law and the generalized Ampere’s Law. The staggering also naturally satisfies the 

constraint equations given by Gauss’s Laws for electric and magnetic charge, albeit on a staggered 

pair of control volumes. On a simple Cartesian mesh, every electric field vector component is 

surrounded by four circulating magnetic field vector components, and every magnetic field vector 

component is surrounded by four circulating electric field vector components.  This compactly 

staggered arrangement of primal variables is the source of the FDTD method’s strength and 

versatility and allows the method to globally satisfy the divergence constraints. However, it is also 

important to realize that the FDTD scheme was designed in an era that predates many modern 

advances in the numerical solution of hyperbolic systems. As a result, many of those advances 

have not been incorporated in the FDTD algorithm. A very prominent example consists of realizing 

that the FDTD scheme is restricted to second order of accuracy, especially when spatially varying 

material properties are involved. In subsequent paragraphs, we take stock of recent advances for 

hyperbolic systems and their impact on CED, which also enables us to set the goals for this paper. 

 Maxwell’s equations are a hyperbolic system, and there have been significant advances in 

the numerical solution of hyperbolic systems in the last few decades. Specifically, the higher order 

Godunov schemes, which were initially formulated at second order, have all been extended to 

higher orders. The higher order accuracy provides significantly lower dispersion and dissipation 

in wave propagation, both of which are desirable in CED. The design philosophy underlying higher 

order Godunov schemes is very general and applies to any hyperbolic system, therefore one 

expects that they might also apply to CED. Such schemes rely on a detailed analysis of the wave 

propagation characteristics of a hyperbolic system, and Riemann solvers that contribute to the 

solution usually encapsulate this information. It is very desirable to incorporate the physics of 

Riemann solvers into CED schemes (Munz et al. [43], Ismagilov [39], Barbas and Velarde [21]; 
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and references therein) where a set of one dimensional Riemann solvers were worked out for CED. 

Because these methods are based on finite volume approaches, they are often referred to as finite 

volume time domain (FVTD) methods. However, in their native form, these FVTD methods for 

CED do not have the ability to preserve the divergence constraints inherent in Faraday’s Law and 

the generalized Ampere’s Law. Discontinuous Galerkin time domain (DGTD) methods provide 

another approach to attaining high order of accuracy. These DGTD schemes are outgrowths of the 

original DG methods of Reed and Hill [47], Cockburn & Shu [25], [27], [28], Cockburn, Hou & 

Shu [26]. While FVTD schemes reconstruct all the higher order moments of the primal variables, 

DGTD schemes take all these higher order moments and endow them with time-evolution based 

on the governing equations. Therefore, it is widely believed that increasingly high order DGTD 

schemes might become almost spectrally accurate in their ability to propagate electromagnetic 

radiation. Since CED simulates the propagation of electromagnetic waves, it is believed that higher 

order DGTD schemes might be well-suited to CED. However, previous generations of DGTD 

schemes for CED were not globally constraint-preserving (Hesthaven and Warburton [37], 

Cockburn, Li and Shu [29] Kretzschmar et al. [40], Egger et al. [32], Bokil et al. [22], Chen and 

Liu [24]; Ren et al. [48]; Wang et al. [60]; Sun et al. [55], Angulo et al. [1]). We see, therefore, 

that classical FVTD and DGTD schemes cannot be naïvely extended to have all the constraint-

preserving advantages for FDTD. 

 The picture begins to become clearer when one starts looking at recent advances in 

numerical magnetohydrodynamics (MHD). The MHD equations consist of Faraday’s law for the 

evolution of the magnetic field coupled to the usual hydrodynamic equations with additional forces 

resulting from the Lorentz force law. Just like CED, Faraday’s law in MHD simulations has to be 

evolved in time in a mimetic, constraint-preserving fashion. As a result, two important advances 

had to be introduced in numerical MHD, which carry over quite naturally to CED. In the next 

paragraph we explain how those advances were originated in MHD; the paragraph after that will 

explain how they have been extended to CED.  

 In order to have a mimetic scheme for MHD, the magnetic field components are collocated 

at the faces of the mesh, while the electric field components are collocated at the edges of the 

mesh. This gives the same Yee-scheme type staggering of variables that is also used to advantage 

in FDTD schemes for CED. However, the fluid variables are collocated at the zone centers and 
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can be reconstructed over the volume of each zone, as is traditionally done in any higher order 

Godunov scheme. The facially-collocated magnetic field variables then have to be reconstructed 

for each zone just like the fluid variables. A constraint-preserving reconstruction strategy was 

crucial to starting with the facial magnetic field components and making a high order 

representation of the magnetic field available throughout the zone. This reconstruction strategy, 

which is consistent with the constraint from Gauss’ law for magnetic fields, was presented in 

Balsara [2], [3], [4], Balsara and Dumbser [9], Xu et al. [63], Balsara et al. [13]. It ensures that the 

magnetic field is available over the same volume as the fluid flow variables. Once the magnetic 

field and flow variables are available within each volume, we wish to find the electric field 

variables at each edge of the mesh. However, at each edge of a Cartesian mesh, we will have four 

sets of MHD variables, one from each of the four zones that surround that edge. The only way to 

obtain the unique electric field associated with the edge under consideration is via a 

multidimensional Riemann solver. Such multidimensional Riemann solvers were formulated by 

Balsara [5], [6], [8], [11], Balsara, Dumbser and Abgrall [7], Balsara and Dumbser [10], Balsara 

et al. [12], Balsara and Nkonga [17]. Using these twin advances of a constraint-preserving 

reconstruction of the magnetic field and the multidimensional Riemann solver, Balsara and 

Käppeli [14] were able to formulate a mimetic DGTD scheme for MHD.  

 In a sequence of recent papers (Balsara et al. [13], [15], [16]) the above-mentioned 

advances have also been extended to design constraint-preserving, higher order Godunov, FVTD 

schemes for CED. (These FVTD schemes also benefited from the ADER time discretization of 

Dumbser et al. [31].) Globally constraint-preserving DGTD schemes for CED were also 

formulated by Balsara and Käppeli [18]. Hazra et al. [36] have also implemented such DGTD 

schemes and shown them to work with their design accuracies even for problems that have strong 

variation in material properties. Therefore, a basic goal was achieved, i.e. one had access to a fully 

constraint-preserving DGTD scheme for CED with its attendant spectral-like accuracies that could 

work at up to fifth order of accuracy even in the presence of spatially varying permittivity and 

permeability. The higher order schemes in the DGTD family also show diminishing dissipation 

and improved dispersion with increasing order; which is a very salutary sign. However, the 

resulting schemes showed the same trend that we see in all DG schemes – i.e., the timestep reduces 

as the order of accuracy of the DG scheme is increased. Two recent advances make it possible to 

improve on the already very accurate family of DGTD schemes. First, it has become possible to 
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modify the timestepping strategy so as to reduce the dissipation and improve the CFL number. 

Second, a novel generation of multidimensional generalized Riemann problem (GRP) solvers have 

been designed which make it feasible to implement the above-mentioned timestepping strategies. 

The overarching goal of this paper is to document the first of these two advances and show how it 

opens the door to improved DGTD schemes with large time steps and low dissipation and 

dispersion for CED. The second of these two advances has already been documented in Balsara et 

al. [20]. 

  Traditionally, in numerical work for hyperbolic PDEs, strong stability preserving Runge-

Kutta (SSP-RK) schemes have been used for the time-evolution of hyperbolic systems. Such 

schemes (Shu and Osher [52], [53], [54], Spiteri and Ruuth [50], [51], Gottlieb et al. [34]) try to 

reduce the total variation in the solution at the end of a timestep. They are very useful for non-

linear hyperbolic systems, where the presence of shocks can otherwise cause the total variation in 

the solution to increase. However, the time update of linear systems like CED does not necessarily 

mandate the strong stability preserving property. Instead, for CED, the optimal time-evolution 

strategies should lower the dispersion and dissipation of the numerical scheme while 

simultaneously enabling a large timestep. This encourages us to seek alternative timestepping 

strategies which are more suited to linear systems. A very interesting class of methods for 

integrating ordinary differential equations (ODEs) with high order of accuracy was presented in 

Chan and Tsai [23]. Those authors realized that for ODEs of the form  it is sometimes 

very inexpensive to additionally evaluate the second derivative  . In other 

words, by incorporating the second derivative into the update strategy one can obtain a scheme 

with fewer stages and higher order of accuracy per stage. Chan and Tsai [23] called their schemes 

two-derivative Runge-Kutta (TDRK) schemes. Grant et al. [35] then extended this idea to arrive 

at what they call SSP-TS (Strong Stability Preserving – Taylor Series) schemes for the time-update 

of non-linear hyperbolic systems.  

 It should be noted that the SSP-TS schemes of Grant et al. [35] are, in some sense, abstract 

constructions because those authors do not give us much guidance on how the time-derivative of 

a numerical flux is to be obtained. Without a practical, implementable, strategy for obtaining that 

time-derivative, an SSP-TS scheme is not very useful. Indeed, the only examples that Grant et al. 

[35] show in their paper are nominal ones. In another line of inquiry, Balsara and his co-workers 

( )/y f y=

( ) ( ) ( )/ / /y g y f y f y= º
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were developing generalized Riemann problem (GRP) solvers. Such GRP solvers can be applied 

to any hyperbolic system and they indeed provide an implementable approach for obtaining the 

time-derivative of a numerical flux. The GRP solvers, therefore, make it feasible to design SSP-

TS schemes for any hyperbolic system. In Goetz et al. [33] and Balsara et al. [19] we presented 

this novel class of one-dimensional GRP solvers which are capable of making SSP-TS schemes 

practicable. However, please realize that FVTD and DGTD schemes for CED require 

multidimensional Riemann solvers; therefore, TDRK-based DGTD schemes for CED require the 

existence of multidimensional GRP solvers. This milestone was breached in Balsara et al. [20]. It 

opens the door to TDRK-based DGTD schemes for CED. The first goal of this paper is to 

formulate TDRK-based DGTD schemes. (In Balsara et al. [20] we only documented TDRK-based 

FVTD schemes because the design of TDRK-based DGTD schemes was deemed to be too much 

of a challenge to be breached in one paper.) We refer to the novel schemes for CED by the compact 

name of DG(TD)2 schemes because the first “TD” stands for time-derivative and the second “TD” 

stands for the TDRK timestepping.  

 The SSP-TS schemes have a strong stability preserving property but use a Taylor series 

expansion (i.e. a second derivative evaluation) in the time-update strategy. However, for a linear 

hyperbolic system like CED, the SSP property is not truly needed. On the other hand, some 

desirable properties like low dispersion, low dissipation and robust CFL are highly desired. 

Therefore, the second goal of this paper is to utilize all the free parameters in TDRK timestepping 

to arrive at DG(TD)2 schemes for CED that optimize the desirable features mentioned above. Such 

attempts to obtain low dissipation and low dispersion schemes has indeed been attempted within 

the context of Runge-Kutta timestepping (Hesthaven and Warburton [38], Sarmany et al. [49], 

Diehl et al. [30] , Niegemann et al. [44] , Williamson [61]). However, it has never been attempted 

within the context of TDRK schemes. 

 Prior work on DG schemes has shown that there are several very valuable insights to be 

gained by analyzing the stability of such schemes (Liu et al. [42], Zhang and Shu [65], Yang and 

Li [64], Balsara and Käppeli [14], [18]). As the third goal this paper, we document a von Neumann 

stability analysis of DG(TD)2 schemes for CED which have low dissipation and dispersion while 

permitting a robust timestep. In a subsequent paper we will document practical, fully-working 

DG(TD)2 schemes for CED which work with spatially varying material properties. 
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 In Section 2 we introduce the Two Derivative Runge-Kutta (TDRK) timestepping and 

identify the free parameters that will be used in the ensuing optimization study. In Section 3 we 

explain how DG(TD)2 schemes are obtained from their DGTD predecessors. A von Neumann 

stability analysis of second order DG(TD)2 schemes reveals that they have several very desirable 

properties that should be developed at higher orders. In Section 4 we show how the two-stage 

TDRK timestepping can be optimized to yield improved third order DG(TD)2 schemes for CED. 

In Section 5 we show how the three-stage TDRK timestepping can be optimized to yield improved 

fourth order DG(TD)2 schemes for CED. Von Neumann stability analyses for the optimized third 

and fourth order DG(TD)2 schemes for CED are also presented in Sections 4 and 5 respectively. 

 

2) Description of Two Derivative Runge-Kutta (TDRK) Timestepping 

 Consider the PDE that is formally written as 

            (2.1) 

where  is a vector of M components and  is negative of the gradient of the fluxes. We 

assume that a suitable GRP solver is available which provides  , which is the time-derivative 

of . (The GRP solver takes as its inputs not just the states that are usually sent into a Riemann 

solver but also the multidimensional gradients of those states. It produces as its output, not just the 

fluxes but also the time derivatives of the fluxes.) The time-explicit two-derivative RK schemes 

with “s” internal stages can be written as 

     (2.2) 

where we start the timestep with  and the above timestepping scheme enables us to evolve 

the solution  at time  to a solution  at time  . We now document the two-
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stage and three-stage schemes in their own sections and identify the parameters that can be 

optimized. 

2.1) Two-Stage TDRK Scheme 

 The two-stage TDRK scheme that can be up to fourth order accurate in time is written as 

     (2.3) 

The condition for ensuring first order of accuracy is 

           (2.4) 

The condition for ensuring second order of accuracy is 

          (2.5) 

The conditions for ensuring third order of accuracy are 

        (2.6) 

The conditions for ensuring fourth order accuracy are 

  (2.7) 

If all of the above conditions are satisfied, the TDRK scheme in eqn. (2.3) becomes fourth order 

accurate. The unique choice of parameters that give rise to full fourth order of accuracy is given 

by Chan and Tsai [23] 
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Of course, we have the option of settling for lower than fourth order of accuracy as long as the 

resultant scheme gives us some other very desirable features. In other words, if the spatial accuracy 

is just third order, we do not object to a temporal accuracy that is also restricted to third order as 

long as we get some additional nice attributes in our numerical method. We explore that next. 

 We realize from eqns. (2.4), (2.5), (2.6) and (2.7) that only the first three of those four 

equations are needed in order to ensure third order accuracy. Therefore, two of the six coefficients 

in eqn. (2.3) for the time update are indeed free. We realize that the process of choosing which two 

coefficients to pick is not unique. However, we pick  and  . With this choice, 

eqns. (2.4), (2.5) and (2.6) uniquely allow us to identify the rest of the four coefficients as 

   (2.9) 

We see, therefore, that within a two-stage TDRK scheme there is the freedom to optimize a scheme 

that is third order accurate in space and time. We can, therefore, make a two-parameter plot in 

 space where we plot out one or the other desirable feature. We can also plot out multiple 

such features. For example, we might prioritize the process of obtaining the largest CFL but we 

may additionally want to minimize the dissipation or dispersion so that they lie below certain 

thresholds. We can then use such machine-generated plots to identify for us the regions in the two-

parameter  space where we may expect good performance of the resultant scheme. The last 

step could possibly involve a human being who could identify schemes that meet certain criteria 

of excellence that a computationalist may subjectively want in his/her schemes. 
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 The three-stage TDRK scheme that can be up to sixth order accurate in time is written as 

  (2.10) 
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           (2.11) 

The condition for ensuring second order of accuracy is 

        (2.12) 

 

The conditions for ensuring third order of accuracy are 

     (2.13) 

The conditions for ensuring fourth order accuracy are 

   (2.14) 

The conditions for ensuring fifth and sixth order of accuracy are documented in the appendix of 

Grant et al. [35]. They are not very relevant to the discussion of this paper which is why we do not 

document them here. Eqs. (2.11), (2.12), (2.13) and (2.14) represent eight conditions for the twelve 

coefficients of the three-stage TDRK scheme. Hence, we realize that we have four degrees of 

freedom available for the optimization. 
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variation. Furthermore, we assume vanishing current and charge densities. That is the usual level 

of simplification that is used in the CED field when carrying out a von Neumann stability analysis. 

The corresponding form of the extended Ampère’s law for the evolution of the electric 

displacement field  reads 

 .          (3.1) 

Likewise, Faraday’s law for the evolution of the magnetic induction  reads 

 .          (3.2) 

Both fields are subject to the involution constraints 

 and .         (3.3) 

 As Balsara and Käppeli [18], we introduce one further simplification by assuming that all 

significant variations are restricted to the two-dimensional xy-plane. We focus on the transverse 

electric TEz mode by letting the z-component of the electric displacement field  and the x- and 
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transverse magnetic TMz mode due the symmetry properties of the DGTD and DG(TD)2 schemes 

(see Balsara and Käppeli [18]). The CED equations can then be written in the compact form 
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of the von Neumann stability analysis below. The DG(TD)2 schemes would in principle be 

generalizable to three dimensions and the practically relevant unstructured meshes. However, this 

would be beyond the scope of the present publication. 
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 In the rest of the section, we show how the DGTD schemes that were documented in 

Sections 3 and 4 of Balsara and Käppeli [18] can now be extended to yield DG(TD)2 schemes. We 

only need to demonstrate this for second order because the process becomes self-evident after that. 

This extension is shown in Sub-section 3.1. In Sub-section 3.2 we present the von Neumann 

stability analysis for such a second order DG(TD)2 scheme, showing that it results in a scheme 

with dissipation and dispersion that are an improvement over those of a DGTD scheme with SSP-

RK timestepping. 

3.1) Second Order Single-Stage DG(TD)2 Scheme Obtained from Second Order Two Stage 

DGTD Scheme 

 We start by pointing out that the DGTD and the here presented DG(TD)2 schemes are not 

traditional DG schemes for conservation laws due to the curl-type CED equations and their 

constraint-preservation properties. Therefore, we call them DG-like schemes. We refer to Section 

II of Balsara and Käppeli [14] for a detailed comparison between the DG-like schemes and a 

traditional DG scheme. 

 Although we are interested in two-dimensional schemes, we begin by outlining the 

schemes on a three-dimensional mesh. This is important to appreciate the constraint-preserving 

DG-like formulation. The restriction to two dimensions and the TEz mode follows then easily. One 

computational zone of a uniform Cartesian three-dimensional mesh with zone widths  , , 

 is shown in Fig. 0. The zone spans the domain 

. Let  be the unit outward pointing 

normal of a face (of the considered zone) and  be the face’s area. Concretely, say we take the 

right x-face in Fig. 0 that contains the field component  we wish to evolve with eqn. (3.1). Then 

 and  is the area of the face. Now say we take the upper y-face in Fig. 0 that 

contains the field component  we wish to evolve with eqn. (3.1). Then  and  

is the area of the face. In order to find the evolution equations for the field components, we project 

eqn. (3.1) into a space of test functions. The test functions will be identical to the trial functions 

and will be made explicit below. To make the DG-like projection, we first multiply the extended 

Ampère’s law eqn. (3.1) with a test function . Then we restrict the attention to the face  by 

xD yD

zD

−Δx / 2,+Δx / 2⎡⎣ ⎤⎦ × −Δy / 2,+Δy / 2⎡⎣ ⎤⎦ × −Δz / 2,+Δz / 2⎡⎣ ⎤⎦ n̂
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ˆ ˆ=n x A
n
= ΔyΔz
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n
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taking the scalar product with the unit normal  of that face. Next, we integrate over the considered 

face to get 

    (3.5) 

where the elementary vector identity 

        (3.6) 

and Stokes’ theorem were used. The boundary of the face is denoted by  and the infinitesimal 

line element by . Eqn. (3.5) is the desired Galerkin projection applied to Ampère’s law eqn. 

(3.1) (a curl-type equation) at a face of the mesh. The second term is a numerical flux integrated 

along the edges of the face under consideration. Realize that at the edges, four states (from four 

neighboring zones) come together. This requires the usage of a multidimensional Riemann solver. 

(Note that this is also the case in a two-dimensional setting when a z-edge collapses to a vertex in 

the xy-plane.) This term is analogous to the numerical flux term in a traditional DG scheme. The 

third term is an integral over the face and it is analogous to the volume term in a traditional DG 

scheme. 

 Along the same lines, one derives a Galerkin projection applied to Faraday’s law eqn. (3.2) 

at a face of the mesh: 

.    (3.7) 

Next, we specialize the discussion to the here relevant two-dimensional case by suppressing any 

variation in the z-direction. 

 From Fig. 0, we see that the second order accurate representation of the x-component of 

the displacement vector at  is given by 

 .        (3.8) 
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The trial functions are  and , i.e. the zeroth and first orthogonal Legendre 

polynomials over the interval . Similarly, the second order accurate 

representation of the y-component of the displacement vector at  is given by 

 .        (3.9) 

The trial functions are  and , i.e. the zeroth and first orthogonal Legendre 

polynomials over the interval . In like fashion, the second order accurate 

representation of the z-component of the magnetic induction vector is represented in the xy-plane 

as 

 .      (3.10) 

The trial functions are  ,  and , i.e. orthogonal 

Legendre polynomials over . Observe that in keeping with the 

philosophy for Discontinuous Galerkin schemes, all the modes/trial functions in the above three 

equations have been endowed with time-dependence. This ensures that as the order of accuracy is 

increased, the DG schemes approach spectral accuracy. 

 The evolution equations for the modes of the x-component of the displacement vector at 

 are then obtained by instantiating eqn. (3.5). With  and the test function  

, eqn. (3.5) gives us  

 .  (3.11a) 

Likewise, with  and the test function  in eqn. (3.5) we get 
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   (3.11b) 

Here  and  are magnetic induction 

components that are obtained at the two endpoints of the right x-face. They are obtained by the 

application of a two-dimensional Riemann solver at the edges of the mesh (explicit expressions 

are given below). Also notice that the terms within angled brackets , represent suitably high 

order line averages within a face, i.e. 

  . 

These terms with an angled bracket are to be obtained with a suitably high order quadrature over 

each face of the mesh. In this work, since the z-variation is suppressed, we use the well-known 

one-dimensional Gauss-Legendre quadrature to carry out the facial integrals. One-dimensional 

Riemann problems in the right face being considered will furnish the  component 

of the magnetic induction field that is to be used in the angled brackets. These Riemann problems 

are solved at each of the quadrature points in the x-face. Let the two states have subscripts L (for 

left) and R (for right). Then  is given explicitely by 

 .       (3.12) 

 The evolution equations for the modes of the y-component of the displacement vector at 

 are obtained by instantiating eqn. (3.5). Using  and the test function , 

eqn. (3.5) then gives us 

 .  (3.13a) 
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With  and the test function  in eqn. (3.5) we get 

   (3.13b) 

Here again,  and  are magnetic induction 

components that are obtained at the endpoints of the upper y-face. They are obtained by the 

application of a two-dimensional Riemann solver at the edges of the mesh (explicit expressions 

are given below). One-dimensional Riemann problems in the upper face being considered will 

furnish the  component of the magnetic induction field that is to be used in the 

angled brackets: 

. 

These Riemann problems are solved at each of the quadrature points in the y-face. Let the two 

states have subscripts D (for down) and U (for upper). Then  is given explicitely 

by 

.       (3.14) 

The two-dimensional Riemann solver will provide the magnetic induction 

 at the edges of the mesh. Let the four states that come together be 

labelled by subscripts RU (for right-upper), LU (for left-upper), LD (for left-down) and RD (for 

right-down). Then  is given explicitely by 
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 .      (3.15) 

We refer to Balsara et al. [15], [16] for complete derivation and further details. 

Eqns. (3.11a) and (3.13a) taken together also ensure that the mean electric displacement field 

components within the faces of the mesh preserve the constraint-preserving property at a discrete 

level. In other words, we retrieve the traditional Yee-type update. 

 The evolution equations for the modes of the z-component of the magnetic induction are 

obtained by instantiating eqn. (3.7) at a z-face. Note that suppressing the z-variation implies that 

both the near and far z-faces of Fig. 0 have the same z-component of the magnetic induction vector, 

thus ensuring that the solenoidality constraint in eqn. (3.3) is always satisfied for the magnetic 

induction. (The far z-face in Fig. 1 is not shown.) With  and the test function  in 

eqn. (3.7) then gives us 

     (3.16a) 

Alike, with  and the test function  in eqn. (3.7) also gives us 

  (3.16b) 

And finally, with  and the test function  in eqn. (3.7) further gives us 
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   (3.16c) 

From the above three equations, note that angled brackets again represent suitably high order line 

averages in the edges that surround the z-face. Notice that the angled brackets in the above three 

equations contain the electric displacements obtained from one-dimensional Riemann solvers. In 

x-direction we have two states, labelled by L (for left) and R (for right), coming together. The 

solution of the one-dimensional Riemann problem is then given explicitly by 

.        (3.17) 

Likewise, in y-direction we have two states, labelled by D (for down) and U (for upper), coming 

together. The solution of the resulting one-dimensional Riemann problem is 

 .        (3.18) 

Also notice the introduction of curly brackets, i.e.  , in eqns. (3.16b) and (3.16c). These curly 

brackets denote suitably high order area averages within the z-face of Fig. 0: 

 . 

As always, they have to be obtained via a suitably high order two-dimensional quadrature formula. 

Notice that in order to compute the angled brackets along the edges and the curly brackets over 

the faces, the electric displacement components  and  are needed at all locations in the zone. 

This is obtained by the constraint-preserving reconstruction developed in Section III of Balsara et 

al. [15]. 

 Up to this point, the narrative in the previous three paragraphs, i.e. the narrative 

surrounding eqns. (3.11), (3.13), (3.16), tracks the narrative in Balsara and Käppeli [18]. However, 
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notice that in Balsara et al. [20] a new type of invention was made. It was based on a 

multidimensional GRP solver. The multidimensional GRP solver sits on top of the 

multidimensional Riemann solver. The multidimensional GRP solver takes in not just the input 

states of the multidimensional Riemann solver but also their spatial derivatives. For a very small 

increase in computational complexity, the multidimensional GRP solver returns not just the starred 

and double starred variables in eqns. (3.11), (3.13), (3.16) but also their time-derivatives. As a 

result, if we think of eqns. (3.11), (3.13), (3.16) as being analogous to eqn. (2.1) then we realize 

that the right-hand sides of those equations give us the analogue of . Now realize that the 

multidimensional GRP solver gives us the time-derivative of the right-hand sides of eqns. (3.11), 

(3.13), (3.16); i.e. the analogue of  . As a result, a second order accurate in space and time 

scheme can be devised by the following time-stepping strategy 

         (3.19) 

The point to be emphasized is that this is all achieved with a very small increase in computational 

cost. But there is a catch which is easy to miss. The update must be truly multidimensional, in 

keeping with the fact that the governing PDE is also truly multidimensional. 

 For the sake of completeness, we now give explicit expressions for the time-derivatives 

obtained from the multidimensional GRP solver. We specialize the expressions for the here 

considered simplified CED equations. For a complete derivation and full generality, we refer to 

Balsara et al. [20]. Let us begin with the time-derivatives of the right-hand sides of eqns. (3.11) 

and (3.13). For the right x-face at  with a left (L) and right (R) state interacting, the 

time-derivative of the magnetic induction  is given explicitly by 

     (3.20) 
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For the upper y-face at  with a down (D) and upper (U) state interacting, the time- 

derivative of the magnetic induction  is given explicitly by 

    (3.21) 

Eqns. (3.20) and (3.21) are the time-derivatives of eqns. (3.12) and (3.14), respectively. For the 

time-derivative of the magnetic induction along the edges of the mesh with right-upper (RU), left-

upper (LU), left-down (LD) and right-down (RD) states interacting, the time-derivative 

 is explicitely given by 

     (3.22) 

Eqn. (3.22) is the time-derivative of eqn. (3.15). Next let us focus on the time-derivatives of the 
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     (3.23) 

For the upper y-face at  with a down (D) and upper (U) state interacting, the time- 

derivative of the electric displacement  is given explicitly by 

    (3.24) 

Eqns. (3.23) and (3.24) are the time-derivatives of eqns. (3.17) and (3.18), respectively. Note that 

the spatial derivatives in the above expressions are readily obtained from the modes evolved in the 

DG(TD)2 schemes. 

 Let us emphasize the last point from the previous two paragraphs in considerable detail; 

just to make sure that the message is driven home. In eqns. (3.11), (3.13), (3.16), the double starred 

variables on the right-hand sides will indeed get multidimensional updates because they are 

obtained from a multidimensional GRP solver. That solver will indeed factor in all the spatial 

derivatives and include them in the update using a Cauchy-Kovalevskaya procedure. However, 

notice that eqns. (3.11b) and (3.13b) also involve single starred variables. If one is using a DGTD 

update of the sort that is described in Balsara and Käppeli [18] then it is indeed acceptable to use 

a one-dimensional Riemann solver for the update of the angled brackets in eqns. (3.11b) and 

(3.13b). However, if one is using a DG(TD)2 update of the sort described here, then the time-

derivatives of the single starred variables in those angled brackets must include the gradients in 

the directions that are transverse to the direction of the GRP in addition to including the gradients 

that are in the direction of the GRP! A similar consideration applies to the single starred variables 

within the angled brackets in eqns. (3.16). Furthermore, consider the terms within the curly 

brackets in eqns. (3.16b) and (3.16c); the terms within those curly brackets must also be updated 

multidimensionally. It is only when all the potential multidimensional effects are included that the 

resulting DG(TD)2 scheme becomes stable and consistent with the governing PDE. 

 In this Sub-section we have shown how to start with a globally constraint-preserving 

DGTD scheme for CED and upgrade it to yield a globally constraint-preserving DG(TD)2 scheme 

for CED. In this Sub-section, we have carried out such an exercise in great detail for the second 
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order DGTD scheme in Balsara and Käppeli [18]. We now point out that Section 4 of Balsara and 

Käppeli [18] also describes a globally constraint-preserving third order DGTD scheme and 

Appendix B of the same paper describes an analogous fourth order DGTD scheme. As a result, it 

is now possible to upgrade those DGTD schemes to yield higher order globally constraint-

preserving DG(TD)2 schemes for CED. 

 

3.2) von Neumann Stability of the Second Order, Single-Stage DG(TD)2 Scheme 

 Eqn. (3.19) from the previous Sub-section can be combined with the analysis in Sub-

section 3.2 from Balsara and Käppeli [18]. This gives us a strategy for carrying out a von Neumann 

stability analysis of the second order, single-stage DG(TD)2 scheme described in the previous Sub-

section. The scheme has a maximal CFL number of 0.25. The same CFL was obtained in Balsara 

and Käppeli [18] where second order SSP-RK timestepping was conjoined with DG schemes for 

CED. We see, therefore, that the CFL stemming from the use of TDRK timestepping is the same 

as the CFL stemming from the use of SSP-RK timestepping. 

 In CED we would like electromagnetic waves to propagate as isotropically as possible 

relative to the computational mesh. They should propagate with speeds that are as close as possible 

to the speed of light. Since electromagnetic waves are not dissipated as they propagate in perfect 

insulators with uniform dielectric properties, we want the dissipation of the numerical scheme to 

be as small as possible. Moreover, we would like all these desirable properties to hold for 

electromagnetic waves with a wavelength that spans as few zones as possible. We are helped in 

this regard by the fact that our DG(TD)2 scheme is linear, at least when limiters are not used. The 

von Neumann stability analysis can give us an abundance of insights with regard to 

electromagnetic wave propagation on a Cartesian computational mesh. Operationally, we work on 

a Cartesian mesh with . Fig. 4.2 from Taflove and Hagness [57] presents a von Neumann 

analysis-based study of electromagnetic wave propagation in FDTD, thereby providing the 

motivation for an analogous study in this section. We now ask the important question:- Does the 

resulting scheme give us any advantage in terms of dissipation or dispersion? 

 For the results shown in this Sub-section, we held the CFL number to be 95% of the 

maximal allowable CFL number. For each direction of electromagnetic wave propagation, the von 

x yD = D
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Neumann stability analysis then gives us an amplification factor which is the largest absolute value 

of the eigenvalues of the amplification matrix. It also gives us a phase speed for the propagation 

of the waves. Ideally, we want the amplification factor to be as close to unity as possible. We also 

want the phase speed of the waves to be as close to the speed of light as possible. For the second 

order DG(TD)2 scheme, we plot out the dissipation and dispersion for electromagnetic waves that 

span five and ten zones. For comparison purposes, we also show the same information for second 

order DGTD with SSP-RK timestepping and second order FDTD schemes. Figs. 1a and 1b show 

the dissipation and dispersion for waves that span five zones and propagate at all possible 

directions on a Cartesian mesh. Figs. 1c and 1d show the dissipation and dispersion for waves that 

span ten zones and propagate at all possible directions on a Cartesian mesh. We see that the Yee 

scheme is dissipation-free, as expected for a scheme that uses a symplectic (leap frog) time update 

strategy. But we also happily notice from Figs. 1a and 1c that the second order DG(TD)2 scheme 

has lower dissipation compared to second order DGTD scheme from Balsara and Käppeli [18] that 

utilizes SSP-RK timestepping. We attribute that to the fact that the time update for the second 

order DG(TD)2 scheme in eqn. (3.19) is better centered in time. Now let us compare Figs. 1b and 

1d for the dispersion properties of the schemes that we are considering. We clearly see that all 

second order DG schemes offer better dispersion properties compared to the second order FDTD 

scheme. Furthermore, we find that the second order DG(TD)2 scheme offers more isotropic 

propagation of electromagnetic radiation compared to the second order DGTD scheme from 

Balsara and Käppeli [18] that utilizes SSP-RK timestepping. This shows us that DG(TD)2 schemes 

have some desirable properties which could even be improved on as we go to higher orders. The 

narrative in this Sub-section has, therefore, given us incentive to develop DG(TD)2 schemes with 

even higher orders of accuracy. 

 

4) Optimal DG(TD)2 Schemes at Third Order 

 In this section we demonstrate how the two-stage TDRK timestepping scheme from Sub-

Section 2.1 can be optimized to yield a third order, two-stage DG(TD)2 scheme for CED. In this 

paper we show how the resulting scheme can be optimized to have some desirable features. These 

schemes derive their value from the fact that much of the information that is used in the 

construction of a Riemann solver can indeed be re-used in the construction of the GRP solver. As 
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a result, one gets the GRP solver for only a mild amount of additional cost compared to a Riemann 

solver. But the payoff, in terms of improved CFL, lower dissipation and lower dispersion can be 

substantial.  

 This section has been split into two sub-sections. Sub-section 4.1 describes the 

optimization of the third order, two-stage DG(TD)2 scheme. Sub-section 4.2 describes the results 

from the von Neumann stability analysis of the third order, two-stage DG(TD)2 scheme. 

4.1) Optimization of the Third Order, Two-Stage DG(TD)2 Scheme 

 We would, of course, like to maximize the CFL. But we would also like to maximize the 

CFL within the context of obtaining a scheme that has low dissipation and low dispersion. This 

identifies the desirable features that we would pick out, though to some extent the choice is 

subjective. In Sub-section 2.1 we identified a two-parameter  space. For each point in this 

space we can evaluate one or the other desirable feature. Fig. 2a shows the permitted CFL in the 

two-parameter space. Figs. 2b and 2c show us the maximum dissipation and dispersion errors that 

an electromagnetic wave spanning five zones would have if it were propagated at any angle on a 

Cartesian mesh. Figs. 2d and 2e show us the maximum dissipation and dispersion errors that an 

electromagnetic wave spanning ten zones would have if it were propagated at any angle on a 

Cartesian mesh. Such plots can be obtained from a von Neumann stability analysis of the DG 

scheme. For our purposes, the lowest possible dissipation corresponds to an amplification factor 

of unity, as obtained from the von Neumann stability analysis. Consequently, Figs. 2b and 2d plot 

out the maximum of the absolute value of the deviation of the amplification factor from unity. 

Furthermore, for our purposes, the lowest possible dispersion corresponds to a phase of 

propagation that coincides with the speed of light. For the phase error we evaluate the fractional 

deviation of the numerical phase speed  from the speed of light  (I.e., we consider 

). These deviations can again be obtained from the von Neumann stability analysis. Consequently, 

Figs. 2c and 2e plot out the maximum of the absolute value of the deviation in the fractional phase 

speed from zero. In other words, optimal wave propagation with the true speed of light would 

cause the deviation in the phase speed to become zero.  

 Fig. 2a shows us the region of parameter space where the CFL is colorized for each point 

in parameter space. The sub-regions of parameter space where the CFL is close to maximum is 

( )1 2
,u u

!ν
p

c ( !ν
p
− c) / c
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shown by a deep red color in Fig. 2a. However, let us also focus on Figs. 2b and 2c which colorize 

the dissipation and dispersion errors. Since the dissipation is the more important parameter, we 

overplot on Fig. 2b the contours that correspond to a maximum deviation of the amplification 

factor from unity by two parts in a thousand and three parts in a thousand. Since the waves in Figs. 

2d and 2e span ten zones, we overplot on Fig. 2d the contours that correspond to a maximum 

deviation of the amplification factor from unity by one part in ten-thousand and three parts in ten-

thousand. We see that, generally speaking, the dissipation becomes smaller as we move in a north-

easterly direction in Figs. 2b and 2d. Likewise, the phase accuracy improves as we move in a north-

easterly direction in Figs. 2c and 2e. Now let us circle back to Fig. 2a. We realize that the ranges 

of parameters that would give us exceptionally low dissipation and exceptionally low dispersion 

would also force us to settle for an exceptionally low CFL. This is why we have to optimize our 

choices. We do that next. 

 We see from Fig. 2a that we could get a CFL that is as large as 0.34. However, from Figs. 

2b and 2d we see that such a scheme would have substantial dissipation. Similarly, we see from 

Figs. 2c and 2e that the scheme would have substantial dispersion. We therefore ask, “What is the 

acceptable range of CFLs that we could tolerate, and furthermore, where in the two-parameter plot 

of Fig. 2a are those CFLs reached?”. The two solid curves in Fig. 2a correspond to a CFL of 0.162, 

which was the largest CFL that Balsara and Käppeli [18] found for three-stage, SSP-RK-based, 

DGTD schemes for CED. To show some advantage in our new two-stage DG(TD)2 scheme, we 

would like it to match or improve on the CFL of the SSP-RK-based, DGTD scheme (recall that 

the latter scheme had a limiting CFL of 0.162). That is why we overplotted the solid lines in Fig. 

2a. The colors in Fig. 2a prevent us from seeing the overplotted lines very clearly, which is why 

we present Fig. 3. In Fig. 3 we remove the colorization from Fig. 2a, we retain the blue solid lines 

from Fig. 2a and we also overlay, as red curves, the lower contour from Fig. 2b. Apart from that, 

Fig. 3 shows the same two-parameter space as Fig. 2a. (The lower contour in Fig. 2d is not as 

restrictive as the lower contour in Fig. 2b, which is why we show only the lower contour from Fig. 

2b.) An optimal scheme should lie north-east of that lower contour in Fig. 3 and it should also 

retain a robust CFL. We, therefore, see that the range of parameters where we would get optimal 

schemes is indeed very limited – but it is not a null set! The logic of this paragraph and the previous 

paragraph illustrates that an optimal region can be found and that it can be found simply by asking 

a computer to span a very large parameter space. I.e. the machine teaches us where to look for 
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optimal schemes. The magenta, blue and green circles that are shown in Fig. 3 identify a reasonable 

search space where we will look for optimal schemes with the aid of the human eye and human 

intuition. The green diamond shows the location of the fourth order scheme. Clearly, we see that 

the fourth order scheme will have too small a CFL; i.e. a CFL of 0.1323 which is less than 0.162. 

The red cross shows the location in parameter space of the scheme that produces the largest CFL 

of 0.34. 

4.2) von Neumann Stability of the Third Order, Two-Stage DG(TD)2 Scheme 

 The next step in the optimization process requires combining human intuition and an 

optimization algorithm.  

 First let us start with human intuition. For each of the circles that we identified in Fig. 3, 

we plot out the dissipation and dispersion for electromagnetic waves that span five and ten zones. 

Figs. 4a and 4b show the dissipation and dispersion for waves that span five zones and propagate 

at all possible directions on a Cartesian mesh. Figs. 4c and 4d show the dissipation and dispersion 

for waves that span ten zones and propagate at all possible directions on a Cartesian mesh. The 

black curves in Fig. 4 show the third order, three-stage SSP-RK-based, DGTD scheme from 

Balsara and Käppeli [18]. The green curves in Fig. 4 show the use of a fourth order TDRK 

timestepping from eqn. (2.8); this scheme has a smaller CFL of 0.1323 and is third order accurate 

in space while retaining fourth order accuracy in time. It corresponds to parameters that are shown 

by the green diamond in Fig. 3. We see that it is an improvement over the third order DGTD 

scheme from Balsara and Käppeli [18]; but it suffers from a smaller CFL. The aquamarine, 

magenta and blue curves in Fig. 4 correspond to the parameters shown with the aquamarine, 

magenta and blue circles in Fig. 3. The red curves in Fig. 4 show the scheme that has the optimal 

CFL of 0.34 and corresponds to the red cross in Fig. 3. 

 We can now begin to understand the different schemes that we have generated using our 

human intuition. Let us first focus on the red curves in Fig. 4. These curves correspond to the two-

stage, third-order DG(TD)2 scheme that has the largest possible CFL. While we would be inclined 

to like this scheme based on the machine search, Figs. 4a and 4c show us that the scheme only 

achieves its large CFL at the expense of introducing substantial dissipation. Furthermore, we see 

that waves that are propagating in mesh-aligned directions will also suffer from dissipation. We 
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would like to have a scheme that shows minimal dissipation for wave propagation in mesh-aligned 

directions. For this reason, we use our human intuition to realize that despite the optimal CFL, this 

scheme is not the most attractive scheme. We also see that the green curve in Fig. 4 produces the 

least overall dissipation. Therefore, if one is willing to tolerate a lower CFL, the third order in 

space DG(TD)2 scheme that uses the fourth order TDRK timestepping from eqn. (2.8) would also 

be acceptable. Focus now on the aquamarine, magenta and blue curves in Figs. 4b and 4d. We see 

that they have dispersion properties that are slightly superior to both the green curve and the black 

curve. Their CFL is also substantially larger than 0.1323 or 0.162, indicating a clear advantage. 

Now focus on the aquamarine, magenta and blue curves in Figs. 4a and 4c. We see that they have 

substantially lower dissipation compared to the black curve (which is the original third order 

DGTD scheme from Balsara and Käppeli [18])! Clearly, the SSP-RK is a sub-optimal timestepping 

strategy for CED. We see, however, that the aquamarine, magenta and blue curves have dissipation 

that is slightly inferior to the dissipation in the green curve, as expected. We see, therefore, that 

our optimization exercise has produced several positive results.  

 The blue dot in Fig. 3 is especially noteworthy because it identifies the parameters that are 

closest to the green diamond in Fig. 3. This also gives us the realization that scheme performance 

is smoothly varying in many parts of the search space (though not in all parts of the search space). 

Therefore, we get the idea that we can use one optimal scheme to discover other contiguous 

schemes that are optimized to have slightly different advantages. For these reasons we accept the 

blue dot inb Fig. 3 as providing us with the optimal scheme. It has  . With 

this choice of optimized parameters we can finally write down the optimal, third order DG(TD)2 

scheme by specifying the coefficients in eqn. (2.3) as:- 

     (4.1) 

This completes our description of the optimized third order DG(TD)2 scheme for CED that was 

obtained from human intuition. It has a CFL of 0.2085. 
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 We now realize that relying on human intuition is a slow and sub-optimal process. 

Therefore, we ask a computer to use the optimization algorithms in Powell [45], [46] and Johnson 

[41] to optimize further. Many promising DG(TD)2 schemes were found, including one which had 

dissipation and dispersion that were lower than the one in eqn. (4.1) along with offering a larger 

CFL of 0.2571. We also obtained yet another scheme with a CFL of 0.3265, however, it again 

proved to have larger dissipation and dispersion than we would have liked. For the sake of 

completeness, Table I shows the full set of third order coefficients that we obtained along with 

their CFL. We encourage use of the last row of that table because it offers the best compromise 

between a reasonably large CFL along with very low dissipation and dispersion. 

 

Table I shows the full set of third order coefficients that we obtained along with their CFL. The 

first three rows document schemes that were obtained via human optimization. The last two rows 

document schemes that were obtained via machine optimization. 
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 We now document the dissipation and dispersion properties of the optimal DG(TD)2 

scheme that we found through machine-driven optimization in Fig. 5. To give the reader 

perspective, we also show the analogous results from original the three-stage DGTD scheme from 

Balsara and Käppeli [18] which uses SSP-RK timestepping. We also show the results from the 

large CFL scheme that the machine found. We see that the dispersion and dissipation properties 

of the DGTD scheme from Balsara and Käppeli [18] are indeed somewhat inferior. The DG(TD)2 

scheme with a CFL of 0.2571 has dispersion that is comparable to the DG(TD)2 scheme with a 
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CFL of 0.3265. However, the former scheme has dissipation properties that are an improvement 

to the latter scheme, which is why we prefer the former scheme. 

 Please notice that all but one of the schemes in Table I have positive coefficients. Only the 

second row in Table I has one negative coefficient; and that scheme was obtained by human 

optimization. In light of the fact that machine-driven optimization in Fig. 5 yields improved results 

to human-driven optimization, we now feel free to use machine-driven optimization in subsequent 

parts of the paper. 

 

5) Optimal DG(TD)2 Schemes at Fourth Order 

 We now demonstrate how a three-stage TDRK timestepping scheme from Sub-Section 2.2 

can be optimized to yield a fourth order, three-stage DG(TD)2 scheme for CED that has very 

desirable features. An examination of eqns. (2.11) to (2.14) shows that we have eight equations 

and twelve free parameters in the TDRK time update. Therefore, it is a four parameter optimization 

and that is out of the scope of human-driven optimization. Consequently, we need to use machine-

driven optimization using the software mentioned in the previous section. The objective is to 

maximize the CFL while fulfilling the eight order constraints. We will see that it indeed yields a 

scheme with minimal dissipation and dispersion. Fig. 6 is identical in spirit to Fig. 5. However, it 

documents the dissipation and dispersion for electromagnetic waves that span five and ten zones 

for the machine-optimized fourth order schemes that we have found. Our optimized DG(TD)2 

scheme allows a maximum CFL of 0.2322. The original fourth order DGTD scheme with SSP-RK 

timestepping is also shown in order to provide a point of reference; it allows a maximum CFL of 

0.2153. We also show the SSP-TS scheme from Grant et al. [35]; which allows a maximum CFL 

of 0.1936. We see from Fig. 6 that the DG(TD)2 scheme offers the lowest dissipation and 

dispersion amongst the three schemes that we have compared. The other two schemes in Fig. 6 

have higher levels of dissipation, owing to the fact that they are SSP schemes. Comparing Fig. 6 

to Fig. 5, we see that the optimized fourth order schemes are better compared to the optimized 

third order schemes. 
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 Our task is now to document the fourth-order three-stage DG(TD)2 schemes that we have 

found. Please refer to eqn. (2.10) for the coefficients. The optimal scheme, which minimizes 

dissipation and dispersion and permits a large CFL of 0.2322 is given by 

 

            (5.1) 

For completeness, we also document the timestepping scheme from Grant et al. [35], which has a 

maximum CFL of 0.1936. Notice that because it is an SSP scheme, it has lower CFL and yet a 

larger amount of dissipation and dispersion. It is given by 

         (5.2) 

It is also worth pointing out that the analysis of Grant et al. [35] was not based on having an 

underlying discretization of a PDE, whereas the analysis done here draws on a genuine PDE 

system. This completes our discussion of fourth-order three-stage DG(TD)2 schemes. 

 

6) Numerical tests 

 In this section, we present a numerical accuracy analysis of the second-, third- and fourth-

order accurate DG(TD)2 schemes designed in this paper. We use the same test setup as Balsara et 

al. [15]. The test problem consists of a plane polarized electromagnetic wave propagating in 

vacuum along the north-east diagonal of a uniformly discretized computational domain spanning 
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 meter with periodic boundary conditions. The magnetic induction is initialized 

with the following magnetic vector potential 

. 

The components of the magnetic induction vector are then obtained at the zone faces by the well-

known relationship . Likewise, the electric displacement is initialized with an electric vector 

potential given by 

 

and the components of the electric displacement vector are then obtained at the zone faces by the 

relation . Here  is the speed of light and  F/m is the free space 

permittivity. The problem was run from initial time  until  

seconds when the wave has travelled once through the computational domain. 

 Tables II, III and IV show the accuracy analysis for the second-, third- and fourth-order 

DG(TD)2 schemes. The errors and order of accuracy in the -component of the electric 

displacement vector and the -component of the magnetic induction are shown at final time  of 

the simulation. We observe that all the schemes indeed meet their design order of accuracy. As 

already observed for the RKDG schemes in Balsara and Käppeli [18], our novel DG(TD)2 schemes 

have the very desirable property that they reach their design accuracies at fairly low resolutions. 

Table II shows the accuracy analysis for the second-order DG(TD)2 scheme for the 

propagation of an electromagnetic wave in vacuum. A CFL that was 95% of the maximum 

was used. The errors and accuracy in the y-component of the electric displacement vector 

(measured at the y-faces) and z-component of the magnetic induction (measured as zone 

averages) are shown. 
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82 
1.74E-04 - 2.76E-04 - 

162 

3.64E-05 2.25 5.66E-05 2.29 

322 
8.21E-06 2.15 1.28E-05 2.14 
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1.98E-06 2.05 3.10E-06 2.05 

1282 
4.88E-07 2.02 7.67E-07 2.02 

2562 
1.22E-07 2.01 1.91E-07 2.01 

5122 
3.03E-08 2.00 4.77E-08 2.00 

Zones    error    accuracy    error    accuracy 

82 
9.24E-02 - 1.36E-01 - 

162 

1.89E-02 2.29 2.96E-02 2.20 

322 
4.32E-03 2.13 6.78E-03 2.13 

642 
1.05E-03 2.04 1.65E-03 2.04 

1282 
2.60E-04 2.01 4.08E-04 2.01 

2562 
6.47E-05 2.00 1.02E-04 2.00 

5122 
1.62E-05 2.00 2.54E-05 2.00 

 

Table III shows the accuracy analysis for the third-order DG(TD)2 scheme for the 

propagation of an electromagnetic wave in vacuum. A CFL that was 95% of the maximum 

was used. The errors and accuracy in the y-component of the electric displacement vector 

(measured at the y-faces) and z-component of the magnetic induction (measured as zone 

averages) are shown. 

Zones    error    accuracy    error    accuracy 

82 
6.28E-05 - 9.15E-05 - 

162 

7.26E-06 3.11 1.13E-05 3.02 

322 
8.77E-07 3.05 1.38E-06 3.04 

642 
1.08E-07 3.02 1.70E-07 3.02 

1282 
1.35E-08 3.01 2.12E-08 3.01 
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2562 
1.68E-09 3.00 2.64E-09 3.00 

5122 
2.10E-10 3.00 3.30E-10 3.00 

Zones    error    accuracy    error    accuracy 

82 
3.01E-02 - 4.69E-02 - 

162 

3.69E-03 3.03 5.75E-03 3.03 

322 
4.57E-04 3.01 7.16E-04 3.01 

642 
5.70E-05 3.00 8.96E-05 3.00 

1282 
7.14E-06 3.00 1.12E-05 3.00 

2562 
8.93E-07 3.00 1.40E-06 3.00 

5122 
1.12E-07 3.00 1.76E-07 3.00 

 

Table IV shows the accuracy analysis for the fourth-order DG(TD)2 scheme for the 

propagation of an electromagnetic wave in vacuum. A CFL that was 95% of the maximum 

was used. The errors and accuracy in the y-component of the electric displacement vector 

(measured at the y-faces) and z-component of the magnetic induction (measured as zone 

averages) are shown. 

Zones    error    accuracy    error    accuracy 

82 
6.15E-06 - 9.56E-06 - 

162 

4.17E-07 3.88 6.54E-07 3.87 

322 
2.65E-08 3.98 4.15E-08 3.98 

642 
1.65E-09 4.00 2.60E-09 4.00 

1282 
1.03E-10 4.00 1.62E-10 4.00 

2562 
6.45E-12 4.00 1.01E-11 4.00 

5122 
4.04E-13 4.00 6.35E-13 4.00 

Zones    error    accuracy    error    accuracy 

82 
2.49E-03 - 3.71E-03 - 

162 

1.95E-04 3.67 3.03E-04 3.61 
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322 
1.32E-05 3.88 2.07E-05 3.87 

642 
8.56E-07 3.95 1.34E-06 3.95 

1282 
5.42E-08 3.98 8.51E-08 3.98 

2562 
3.41E-09 3.99 5.36E-09 3.99 

5122 
2.15E-10 3.99 3.37E-10 3.99 

 

 In the considered idealized setting, Poynting’s theorem implies that Maxwell’s equations 

conserve the electromagnetic energy analytically. However, given the nature of our DG(TD)2 

schemes, energy conservation at the discrete level is not guaranteed. From the consistency of the 

schemes with Maxwell’s equation, it is expected that the electromagnetic energy is conserved with 

near-perfect precision in the limit of high numerical resolution, i.e. when the electromagnetic 

waves are resolved by a large number of zones. Given the limitation in computational resources, 

it is therefore desirable that a scheme preserves the electromagnetic energy as well as possible on 

the smallest number of zones per wavelength. 

 In order to assess the energy conservation properties of the presented DG(TD)2 schemes, 

we compute the electromagnetic energy after one periodic orbit as a function of the number of 

zones of the computational mesh for the second-, third- and fourth-order schemes. This is shown 

in Fig. 7. This figure should be compared to Fig. 9a in Balsara and Käppeli [18]. We observe that 

the new DG(TD)2 schemes have considerably lower energy losses. For a more quantitative 

comparison, we also show the information in tabulated form in Table V. The latter table has to be 

compared to the relevant entries (first three rows) in Table 15 of Balsara and Käppeli [18]. Here 

also we observe that the DG(TD)2 schemes enjoy improved energy preservation properties 

especially at low resolution. However, please note that the quadratic energy preservation for the 

DG schemes in Balsara and Käppeli [18] was already quite excellent; so the present DG(TD)2 

schemes improve on an already salutary situation. 

Table V shows the quantitative values of the magnetic energy at the end of the simulation for 

the simulations documented in Fig. 7. We show the order of the scheme (and reconstruction 

strategy) and the kind of timestepping in the first two columns. The remaining columns show 
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the resolution of the mesh and the electromagnetic energy in the simulation at the end of the 

run. 

Scheme Timestepping 8x8 zones 16x16 zones 32x32 zones 64x64 zones 128x128 zones 

DG P=1 TDRK(1,2) 0.880 0.982 0.998 1.000 1.000 

DG P=2 TDRK(2,3) opt. 0.900 0.988 0.999 1.000 1.000 

DG P=3 TDRK (3,4) opt. 0.995 1.000 1.000 1.000 1.000 

 

 In order to illustrate the computational advantage of the presented DG(TD)2 schemes, we 

present runtime (wall-clock) ratios between the new schemes and the DGTD with SSP-RK 

timestepping schemes from Balsara and Käppeli [18]. The runtimes were measured on identical 

machines of the EULER cluster at ETHZ. Moreover, all schemes were implemented within the 

same computer code in order to avoid (as much as possible) any systematic bias stemming from 

software design and implementation. The results are displayed in Table VI. We note that the 

DG(TD)2 schemes show a substantial increase in computational efficiency on the considered 

simple test problem. 

Table VI shows the runtime (wall-clock) ratios between DG(TD)2 schemes with optimized 

TDRK timestepping and the DGTD schemes with SSP-RK timestepping. The second order 

schemes use TDRK(1,2)/SSP-RK2 timestepping. The third order schemes use TDRK(2,3) 

opt./SSP-RK3 timestepping. The fourth order schemes use TDRK(3,4) opt./SSP-RK(5,4) 

timestepping. 

Zones DG P=1, TDGTD/TDG(TD)2 DG P=2, TDGTD/TDG(TD)2 DG P=3, TDGTD/TDG(TD)2 

82 1.00 1.36 1.61 

162 1.31 1.58 1.53 

322 1.29 1.29 1.44 

642 1.19 1.66 1.53 

1282 1.51 1.34 1.29 

2562 1.85 1.58 1.52 
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5122 1.42 1.66 1.45 

 

7) Conclusions 

 In this paper we have achieved three main goals applied to CED. First, we have shown how 

the recent globally constraint-preserving DG schemes by Balsara and Käppeli [14], [18] can be 

meld together with two recent advances. The first advance is the recently developed 

multidimensional Generalized Riemann Problem (GRP) solver for CED by Balsara et al. [20]. The 

second advance is the use of Two-Derivative Runge-Kutta (TDRK) timestepping. The resulting 

schemes have been named DG(TD)2, where the first “TD” stands for Time-Derivative and the 

second “TD” for TDRK timestepping. We have thoroughly described the novel schemes in a two-

dimensional Cartesian setting. Second, we have used the free parameters in TDRK timestepping 

to achieve uniformly large CFL with increasing order of accuracy while minimizing the dissipation 

and dispersion errors. And thirdly, we have documented the von Neumann stability analysis of the 

DG(TD)2 schemes and quantified in detail their dissipation and dispersion properties. 

 At second order we find a DG(TD)2 scheme with CFL of 0.25 and improved dissipation 

and dispersion properties; for a second order scheme. At third order we present a novel DG(TD)2 

scheme with CFL of 0.2571 and improved dissipation and dispersion properties; for a third order 

scheme. At fourth order we find a DG(TD)2 scheme with CFL of 0.2322 and improved dissipation 

and dispersion properties. As an extra benefit, the resulting DG(TD)2 schemes for CED require 

fewer synchronization steps on parallel supercomputers than comparable DGTD schemes for 

CED. We also document some test problems to show that the methods achieve their design 

accuracy. The new DG(TD)2 schemes also show excellent preservation of quadratic 

electromagnetic energy on the computational mesh. 

 It would be interesting to combine the present approach to classical RKDG schemes 

without constraint-preserving properties, as used e.g. in Computational Fluid Dynamics for the 

Euler or Navier-Stokes equations. In principle, the combination of a (multidimensional) GRP 

solver together TDRK timestepping could lead to similar improvements of the CFL stability 

constraint. However, this is beyond the scope of the present paper and will be dealt with in a 

forthcoming publication. 
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Fig. 0 shows us that the primal variables of the DG scheme, given by the 

normal components and their higher moments for the magnetic induction 

and electric field displacement. These variables are facially-collocated 

and are explicitly shown in the figure for the two-dimensional second 

order accurate DG scheme. They undergo an update from Faraday’s law 

and the generalized Ampere’s law respectively. The components of the 

primal magnetic induction vector and its higher moments are shown by 

the thick blue arrows while the components of the primal electric 

displacement vector and its higher moments are shown by the thick red 

arrows. The edge-collocated electric displacement fields, which are used 

for updating the facial magnetic induction components, are shown by the 

thin blue arrows close to the appropriate edge. The edge-collocated 

magnetic induction fields, which are used for updating the facial electric 

displacement components, are shown by the thin red arrows close to the 

appropriate edge. 



Fig. 1. For the second order DG(TD)2 scheme, we plot out the dissipation and dispersion for electromagnetic waves that span five 

and ten zones. For comparison purposes, we also show the same information for second order DGTD with SSP-RK timestepping

and second order FDTD schemes. Figs. 1a and 1b show the dissipation and dispersion for waves that span five zones and 

propagate at all possible directions on a Cartesian mesh. Figs. 1c and 1d show the dissipation and dispersion for waves that span 

ten zones and propagate at all possible directions on a Cartesian mesh.

a) b)

c) d)



Fig. 2a shows the permitted CFL in the two-parameter space. Figs. 2b and 2c show us the maximum dissipation and dispersion 

error that an electromagnetic wave spanning five zones would have if it were propagated at any angle on a Cartesian mesh. Figs. 

2d and 2e show us the maximum dissipation and dispersion error that an electromagnetic wave spanning ten zones would have if 

it were propagated at any angle on a Cartesian mesh.

a) b)

d) e)

c)



In Fig. 3 we remove the colorization from Fig. 2a, we retain the blue solid lines from Fig. 2a and we also overlay, as two red 

curves, the lower contour from Fig. 2b. Apart from that, Fig. 3 shows the same two-parameter space as Fig. 2a. The magenta, 

blue and green circles that are shown in Fig. 3 identify a reasonable search space where we will look for optimal schemes with 

the aid of the human eye and human intuition. The green diamond shows the location of the fourth order scheme. The red cross 

shows the location of the scheme that produces the largest CFL.



Fig. 4. For each of the dots that we identified in Fig. 3, we plot out the dissipation and dispersion for electromagnetic waves that 

span five and ten zones. The human-optimized schemes are shown. Figs. 4a and 4b show the dissipation and dispersion for waves 

that span five zones and propagate at all possible directions on a Cartesian mesh. Figs. 4c and 4d show the dissipation and 

dispersion for waves that span ten zones and propagate at all possible directions on a Cartesian mesh. The original third order 

DGTD scheme with SSP-RK timestepping is also shown to provide a point of reference.

a) b)

c) d)



Fig. 5 is identical in spirit to Fig. 4. However, it documents the dissipation and dispersion for electromagnetic waves that span 

five and ten zones for the machine-optimized third order schemes that we have found. The original third order DGTD scheme 

with SSP-RK timestepping is also shown to provide a point of reference.

a) b)

c) d)



a) b)

c) d)

Fig. 6 is identical in spirit to Fig. 5. However, it documents the dissipation and dispersion for electromagnetic waves that span 

five and ten zones for the machine-optimized fourth order schemes that we have found. The original fourth order DGTD scheme 

with SSP-RK timestepping is also shown to provide a point of reference.



Fig. 7 shows the electromagnetic energy after one periodic orbit as a function of number of zones along one direction of the two-

dimensional mesh for second- (blue line), third- (green line) and fourth-order (red line) DG(TD)2 schemes.


