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DEEP RELU NEURAL NETWORK EXPRESSION

FOR

ELLIPTIC MULTISCALE PROBLEMS

VIET HA HOANG1 AND CHRISTOPH SCHWAB2

Abstract. We analyze expression rates of deep ReLU neural network (DNN)
approximations for several solution families of two-scale, linear, second order
elliptic boundary value problems with either locally periodic or quasi-periodic
setting. We prove that DNNs can approximate the multiscale solution families
with error δ > 0 in the norm of the Sobolev space H1 at an NN expression
rate which is essentially independent of the scale parameter ε.

1. Introduction

After fundamental advances in classification related tasks in data science and in
data intensive applications, recent years have seen a brisk advance of deep neural
networks (DNNs) for the numerical solution of partial differential equations. There
has been a broad research effort to harness the approximation capabilities of DNNs
for the numerical approximation of solutions of PDEs

Many of the publications and results in recent years have been algorithmic in
nature, i.e., algorithms were proposed which offered capability of approximation of
solutions of PDEs. We mention only [20, 23, 25] for so-called “physics-informed”
DNNs which use, in some form, explicitly first principles of physical processes (e.g.
conservation of mass, momentum, energy) modelled by the PDE under considera-
tion. Additional applications to computational uncertainty quantification of PDEs
by means of DNNs have also been proposed in recent years; let us mention only
[27, 26] and the references there, and [24] for theory. It has been found in these ref-
erences that depth of NNs is very beneficial for enhanced approximation properties
of the DNNs.

These computational developments have been paralleled, with slight delay, by
theoretical insights which explain the at times competitive approximation proper-
ties, or “expressive power” of DNNs, i.e., the ability of the DNN to represent a
PDE solution to, say, accuracy δ > 0 in a physically meaningful norm (which is
not, in general, the mean square or pointwise error, but rather an “energy norm”
induced by the physical properties of the PDE of interest).

Expression rate analysis of ReLU DNNs for various function systems have been
given in [21]. These results emphasize quantative expression rate bounds which
are more refined, in a sense, than the early results on universality of DNNs from
the 90ies; these results are surveyed in [22] and the references there. Expression
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rate analysis of DNNs for data-to-QoI maps in PDE constrained Bayesian inverse
problems has recently been provided in [12].

1.1. Previous Results. Numerous references have appeared in recent years which
propose algorithms for the numerical approximation of PDE solution families by
DNNs. We mention only [27, 25, 24, 26] and the references there for DNN based
PDE solvers, and [4, 23], and the references there. In particular, in these references
DNNs were proposed as a PDE solution discretization, and the NN parameters in
the training process were obtained from minimizing a physical variational princi-
ple, such as, e.g., the potential energy in the system described by a particular NN
configuration. Without aiming at a complete list, we mention recent works which
address the mathematical analysis of expressive power of DNNs; we focus on refer-
ences with particular relevance to the presently developed results. Representative
papers of this direction of thought are [27, 25, 24, 26] and the references there for
DNN based PDE solvers, and [4, 23, 2].

Also DNN approximation theory has advanced in recent years. After fundamen-
tal results on DNN universality in 90ies (see [22] and the references there) in recent
years, more refined results on DNN expressive power rates for specific classes of
inputs have been developed. We mention only [5, 17, 19, 6, 30]. In these works,
the DNN approximation of certain elementary functions, most notably univariate
polynomials, has been analyzed. One remarkable result in [17, 30] is that ReLU
DNNs are able to represent polynomials of high degree at an exponential rate in
terms of the DNN size, despite their realizations being continuous, piecewise affine
functions.

Viceversa, fixed order, piecewise polynomials such as splines and continuous,
piecewise affine “Courant” Finite Element functions are equivalent to ReLU DNNs
(see, e.g., [11] [19] for the (elementary) details of the argument).

To establish DNN expression rates for linear elliptic partial differential equations
(PDEs for short) with multiple scales that are explicit in the scale parameter in the
PDE and in the expression error is the purpose of the present paper.

1.2. Contributions. In the present paper, we make the following contributions.
For a classical, linear elliptic 2-scale homogenization problem, with periodic depen-
dence of the diffusion coefficient on the fast variable, we prove rates of expression
for DNN approximation of the parametric family {uε : 0 < ε ≤ 1} ⊂ H1

0 (D) of
solutions. This regularity is optimal under the assumption that the forcing f of
the elliptic PDE in D is in H−1(D) and the coefficient function is Lipschitz. More
restrictive structural hypotheses on the data f and a will, of course, imply corre-
sponding stronger expression rate results, and we shall explore some of these here
as well.

To prove DNN expression rate bounds for solutions of the two-scale PDE, we
construct DNN approximations of the solution in two steps: first, using (classical)
2-scale asymptotic expansions with explicit Fourier series expansion of the 2-scale
corrector with respect to the fast scale and, subsequently, by ReLU DNN reapprox-
imation of the Fourier expansion. Here, a key observation is the moderate increase
of DNN depth with respect to the Fourier index k and the scale parameters ε, which
was pointed out in [10]. These results are limited to homogenization problems with
two separated scales in coefficients. In the final section, we prove several general-
izations. In particular, we indicate in one space dimension that DNNs are capable
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of similar approximation rates for considerably more general coefficients; among
these are almostperiodic and certain classes of fractal coefficient functions.

1.3. Structure of this paper. The structure of the present paper is as follows.
In Section 2 we present formulation of the homogenization problem. In particular,
we define the function space setting, and recapitulate known results on existence,
uniqueness and on regularity of the two scale family of solutions. Furthermore, we
indicate results and error bounds on the 2-scale asymptotics of the solution family
{uε : 0 < ε ≤ 1} which will be required subsequently for the derivation and proof
of the DNN expression rate bounds. In Section 3 we present basic notation and
terminology of the DNNs which we shall consider for the solution approximation.
In particular, we focus on so-called deep ReLU NNs. Section 4 has our main results:
ReLU DNN expression rate bounds for the solution family {uε : 0 < ε ≤ 1/2} ⊂
H1

0 (D) of the two-scale problem (2.1) - (2.2), for f ∈ H−1(D) which are explicit in
the H1(D)-accuracy of the NN and in the scale parameter ε. Section 5 discusses
various conclusions and generaliations. In particular, also an extension of the results
to problems with a continuum of scales, i.e., without scale separation.

Throughout the paper, by #, we denote Banach spaces of periodic function over
the period cube Y.

2. Two-scale Model Elliptic Homogenization Problem

Let D ⊂ R
d be a bounded polytope of dimension d ≥ 1 with plane faces so

that ∂D is Lipschitz and denote by Y = (0, 1)d the cell in R
d. We also assume

that diam(D) = O(1) in order to render the notion of two-scale problem with
nondimensional small scale parameter 0 < ε ≤ 1/2 meaningful1.

Assume given a diffusion coefficient a ∈ C0(D×Y;Rd×d
sym) (subsequently, some-

what stronger smoothness requirements will be imposed in order to obtain approx-
imation rate bounds for DNNs).

Assume in particular that for every x ∈ D, the map [Y ∋ y 7→ a(x, y)] is Y-
periodic, and that a is elliptic: there exist constants 0 < amin ≤ amax < ∞ such
that

(2.1) ∀x ∈ D, y ∈ Y, ∀ξ ∈ R
d : amin|ξ|

2 ≤ ξ⊤a(x, y)ξ ≤ amax|ξ|
2 ,

where | · | denotes the Euclidean norm of a vector ξ in R
d.

Let ε > 0 be a small quantity that represents the microscopic scale of the physical
problem. We denote the two scale coefficient aε : D → R

d×d
sym as

aε(x) = a(x,
x

ε
).

We denote V = H1
0 (D) and assume given f ∈ V ′ = H−1(D), where duality is taken

w.r. to the pivot space L2(D). We consider the elliptic problem

(2.2) −∇ · (aε∇uε) = f in D

with homogeneous Dirichlet boundary condition uε = 0 on ∂D. The variational
form of (2.2) reads: given f ∈ V ′ and 0 < ε ≤ 1/2, find uε ∈ V such that for every
v ∈ V holds

(2.3) (a(·,
·

ε
)∇uε,∇v) = (f, v) .

1The assumption 0 < ε ≤ 1/2 is to render | log ε| uniformly bounded from 0
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Here, (·, ·) signifies the L2(D)-innerproduct, extended in the right hand side of (2.3)
in the usual way to a duality pairing between V ′ and V by density and continuity.
The ellipticity (2.1) and the assumption f ∈ V ′ imply that for every 0 < ε < 1
the weak problem (2.3) admits a unique solution uε ∈ V . We are interested in the
expression of the solution set {uε(x) : x ∈ D, 0 < ε ≤ 1/2} by DNNs.

We summarize some well known results in the theory of homogenization for (2.2).
Formally, the usual two-scale asymptotic expansion (e.g. [3, 1, 16])

(2.4) uε(x) = u0(x,
x

ε
) + εu1(x,

x

ε
) + . . . ,

where ui(x, y) are Y-periodic with respect to y implies that u0 does not depend
on y. Furthermore, the first order “corrector” term u1 can be written in terms
of u0 and of the solution of a parametric family of so-called “unit-cell problems”
(assuming sufficient regularity of this solution w.r. to the slow variable x).

Specifically, for i = 1, . . . , d, and for every x ∈ D, let N i(x, ·) denote a Y-periodic
function of y ∈ Y which is the solution of the parametric (with parameter x ∈ D)
family of unit cell problems:

(2.5) −∇y · (a(x, y)(e
i +∇yN

i(x, y))) = 0 in Y .

Here ei is the ith unit vector in the standard basis of Rd. It is known (e.g. [3, 1, 16])
that the so-called corrector term in (2.4) has separated form:

(2.6) u1(x, y) =

d∑

i=1

∂u0
∂xi

(x)N i(x, y).

When u0 and N i are sufficiently smooth functions of their arguments, we have the
following approximations for uε.

Proposition 2.1. Assume that u0 ∈ H2(D) and that N i ∈ C1(D̄, C1
per(Ȳ)

⋂
H2

per(Y)).
Then

(2.7)
∥∥∥∇uε − [∇u0(·) +∇yu1(·,

·

ε
)]
∥∥∥
L2(D)

≤ cε1/2

where the positive constant c does not depend on ε.

Remark 2.2. Estimate (2.7) has been established under stronger regularity condi-
tions in the literature. For example, under the assumption u0 ∈ H2(D)∩W 1,∞(D)
and u0 ∈ C2(D̄) in [3, pg.66] and [16, pg. 28], respectively. However, (2.7) holds
under the weaker regularity assumption u0 ∈ H2(D) (see, e.g, [15, Prop. 5.1]).

3. Deep ReLU neural networks

We adopt the notations in the recent publications [10, 21] and the references
there.

We denote the ReLU activation σ(x) = max{x, 0}. A DNN with a d-dimensional
input and NL dimensional output is a map Φ : Rd → R

NL such that

Φ(x) =WL(σ(WL−1(σ(. . . σ(W1(x)) . . .)))),

where Wl is a linear map from R
Nl−1 → R

Nl such that Wl(x) = Alx + bl where
Al ∈ R

Nl×Nl−1 and bl ∈ R
Nl . Here, x ∈ R

d with N0 = d being the input dimension
and NL being the output dimension. We shall say that the DNN has L layers and
L − 1 hidden layers. Let M be the total nonzero entries of the matrices Al and
vectors bl, M is the connectivity of the network. We have that M ≤ LW (W + 1)
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whereW = maxlNl denotes the width of the network. We denote the class of these
DNNs as NNL,M,d,NL

.
To develop a DNN approximation for the solution uε of the two-scale, homoge-

nization problem (2.2), we will use the following results.
The first is a (by now widely used) result on the approximate realization of the

product of two real numbers by a suitable ReLU NN, due to [30]

Lemma 3.1. There is a constant c such that for m > 0 and δ > 0, there is a
NN ×̃(a, b) ∈ NNL,M,2,1 with L ≤ c log(m2/δ), and M ≤ c log(m2/δ) and width
W ≤ 12 such that

‖×̃(a, b)− ab‖L∞((−m,m)2) ≤ δ.

The next result, which is a key technical step in the DNN emulation of the fine
scale corrector in elliptic homogenization, addresses the ReLU NN expression of
oscillatory functions, and is, in the form used here, proved in [10, Thm. IV.1].

Lemma 3.2. There is a positive constant c such that, for every a,m > 0, and

for every δ ∈ (0, 1] there exist a ReLU NN c̃os ∈ NNL,M,1,1, a ReLU NN s̃in ∈
NNL,M,1,1 with depth L ≤ c((log δ)2 + log(am)) and of size M ≤ c((log δ)2 +
log(am)) with fixed width W ≤ 16 such that there holds,

‖ cos(at)− c̃os(at)‖L∞(−m,m) ≤ δ,

and
‖ sin(at)− s̃in(at)‖L∞(−m,m) ≤ δ.

4. DNN expression rates for two-scale elliptic equations

We recapitulate results from the expression of first order, Lagrangean Finite
Element spaces on regular, simplicial partitions of convex polyhedra D ⊂ R

d with
Lipschitz boundary ∂D consisting of a finite number of d− 1 planes for d ≥ 2. We
consider in particular a nested family of shape regular partitions T l, l = 0, 1, 2, ... of
D into simplices T ∈ T l of meshsize hl := max{diam(T ) : T ∈ T l} = O(2−l). The
simplices in T l are obtained by dividing each simplex T ∈ T l−1 into 2d congruent
subsimplices (so-called uniform, or also called “red”, mesh refinement).

LetN l denote the set of all nodes of the triangulation T l. For each node xi ∈ N l,
we denote by G(i) the union of all simplices that contain xi. We assume that the
partition is locally convex for all l, i.e. G(i) is a convex set for all xi ∈ N l. Let V l

be the space of all continuous functions which are linear in each simplex in T l. We
then have the following result, from [11].

Lemma 4.1. For the locally convex shape regular triangulation family T l of D ⊂
R

d, each function in V l can be represented exactly by a ReLU DNN in NNL,M,d,1

where L = O(d) and M = O(2dL).

For approximating functions with Sobolev regularity, we use the following result
(Ern and Guermond [8, Theorem 6.4 and Lemma 6.3]).

Lemma 4.2. There is a linear map Jl : L
1(D) → V l such that

‖Jlφ‖L∞(D) ≤ c‖φ‖L1(D) ∀φ ∈ L1(D)

and
‖φ− Jlφ‖L2(D) ≤ c inf

φl∈Vl

‖φ− φl‖L2(D) ∀φ ∈ L2(D)

where the contant c is independent of l and φ.
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From this, we will construct a ReLU DNN for approximating the solution of the
two scale elliptic problem (2.2). We have the following result.

Theorem 4.3. Assume that u0 ∈ H2(D) and u1 ∈ H1(D, Hp
#(Y)) with p ≥ 2+d/2.

Then, there exists a constant c > 0 such that, for every 0 < δ ≤ 1/2 and for every

0 < ǫ ≤ 1/2 there is a ReLU DNN D̃uε1 ∈ NNL,M,d,d with depth and width bounded
by

L ≤ c(d+ (log δ)2 + | log ε|) , M ≤ c(δ−d + δ−2/(2p−2−d)(d+ | log ε|)),

respectively, and a ReLU DNN ũ0 ∈ NNL,M,d,1 with L ≤ cd and M ≤ cδ−d such
that ∥∥∥∇uε −∇ũ0 − D̃uε1

∥∥∥
L2(D)d

≤ c(δ + ε1/2).

Proof We consider the Fourier expansion of u1(x, y)

(4.1) u1(x, y) =
∑

k∈Zd

[ak(x)cos(2πk · y) + bk(x)sin(2πk · y)].

Without loss of generality, we assume that
∫
Y
u1(x, y)dy = 0 for all x ∈ D. As

u1 ∈ H1(D, Hp
#(Y)),

∑

k∈Zd

|k|2p(‖ak‖
2
H1(D) + ‖bk‖

2
H1(D)) <∞ .

We consider a finitely truncated approximation of u1, and define for K ∈ N

uK1 :=
∑

k∈Zd,|k|≤K

[ak(x)cos(2πk · y) + bk(x)sin(2πk · y)].

Then, there exists a constant c > 0 such that for every K ∈ N holds

‖∇yu1(·,
·

ε
)−∇yu

K
1 (·,

·

ε
)‖L2(D) ≤ c

∑

k∈Zd,|k|>K

|k|(‖ak‖L2(D) + ‖bk‖L2(D))

≤ c
∑

k∈Zd,|k|>K

|k|1−p(|k|p‖ak‖L2(D) + |k|p‖bk‖L2(D))

≤ c


 ∑

k∈Zd,|k|>K

|k|2(1−p)




1/2
 ∑

k∈Zd,|k|>K

|k|2p‖ak‖
2
L2(D) + |k|2p‖bk‖

2
L2(D)




1/2

≤ cK1+d/2−p.

We choose K so that K1+d/2−p ≈ δ, i.e., K = Kδ := ⌈δ−2/(2p−2−d)⌉.
To approximate ak and bk, we consider the quasiinterpolant Jl introduced in

Lemma 4.2. For k ∈ Z
d, we consider a resolution level lk ∈ N which will be

specified exactly below. We then have

‖ak − Jlkak‖L2(D) ≤ c2−lk‖ak‖H1(D),

and

‖bk − Jlkbk‖L2(D) ≤ 2−lk‖bk‖H1(D).
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By Lemma 4.1, Jlkak and Jlkbk can be exactly represented by DNNs ãk ∈ NNL,M,1,1

and b̃k ∈ NNL,M,1,1 where L = O(d) and M = O(2dlk). We then have

‖
∑

k∈Zd,|k|≤K

akk cos(2πk ·
x

ε
)−

∑

k∈Zd,|k|≤K

ãkk cos(2πk ·
x

ε
)‖L2(D)

≤
∑

k∈Zd,|k|≤K

|k|‖ak − ãk‖L2(D) ≤ c
∑

k∈Zd,|k|≤K

|k|2−lk‖ak‖H1(D)

≤ c
∑

k∈Zd,|k|≤K

2−lk |k|1−p|k|p‖ak‖H1(D)

≤ c


 ∑

k∈Z,|k|≤K

2−2lk |k|2(1−p)




1/2
 ∑

|k|≤Zd,|k|≤K

|k|2p‖ak‖
2
H1(D)




1/2

≤ c


 ∑

k∈Zd,|k|≤K

2−2lk |k|2(1−p)




1/2

.

We choose lk so that 2−lk |k|1−p = δ|k|−s where s > d/2, i.e. lk := ⌈− log2(δ|k|
p−1−s)⌉.

We then have

‖
∑

k∈Zd,|k|≤K

akk cos(2πk ·
x

ε
)−

∑

k∈Zd,|k|≤K

ãkk cos(2πk ·
x

ε
)‖L2(D) ≤ cδ.

Similarly,

‖
∑

k∈Zd,|k|≤K

bkk sin(2πk ·
x

ε
)−

∑

k∈Zd,|k|≤K

b̃kk sin(2πk ·
x

ε
)‖L2(D) ≤ cδ.

Let c̃os be a ReLU NN such that

(4.2) ‖ cos(2πk ·
x

ε
)− c̃os(2πk ·

x

ε
)‖L∞(D) ≤ δk

where δk is to be chosen later. We have

‖
∑

k∈Zd,|k|≤K

ãkk cos(2πk ·
x

ε
)− ãkkc̃os(2πk ·

x

ε
)‖L2(D)

≤
∑

k∈Zd,|k|≤K

‖ãk‖L2(D)|k|δk =
∑

k∈Zd,|k|≤K

‖ãk‖L2(D)|k|
pδk|k|

1−p

≤


 ∑

k∈Zd,|k|≤K

‖ãk‖
2
L2(D)|k|

2p




1/2
 ∑

k∈Zd,|k|≤K

δ2k|k|
−2(p−1)




1/2

.

We choose δk = δ|k|p−1−s where s > d/2. Then

‖
∑

k∈Zd,|k|≤K

ãkk cos(2πk ·
x

ε
)− ãkkc̃os(2πk ·

x

ε
)‖L2(D) ≤ cδ.

Similarly, let s̃in be a DNN such that

(4.3) ‖ sin(2πk ·
x

ε
)− s̃in(2πk ·

x

ε
)‖L∞(D) ≤ δk.

Then
‖

∑

k∈Zd,|k|≤K

b̃kksin(2πk ·
x

ε
)− b̃kks̃in(2πk ·

x

ε
)‖L2(D) ≤ cδ.
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We note that (4.2) and (4.3) are achieved if the NNs c̃os and s̃in belong toNNL,M,d,1

and if there exists a constant c > 0 such that for all k ∈ N, δ, ε > 0 it holds

(4.4) L ≤ c((log δk)
2 + log(c|k|

1

ε
)) = c(| log δ|2 + log |k|+ | log ε|),

and

(4.5) M ≤ c((log δk)
2 + log(c|k|

1

ε
) + d) = c(| log δ|2 + log |k|+ | log ε|+ d).

With these choices of lk and δk, we deduce that there exists a constant c > 0 such
that for 0 < δ ≤ 1/2 and for K ∈ N

‖
∑

k∈Zd,|k|≤K

kak cos(2πk ·
·

ε
)− kãk c̃os(2πk ·

·

ε
)‖L2(D) ≤ cδ.

Now we consider the multiplication ãk(x)c̃os(2πk · x
ε ) and b̃k(x)s̃in(2πk · x

ε ). To
realize it via DNNs, for each k, we consider the approximate ReLU multiplication
network ×̃k from [30] such that

‖ãk(·)c̃os(2πk ·
·

ε
)− ×̃k(ãk(·), c̃os(2πk ·

·

ε
))‖L∞(D) ≤ ηk,

and

‖b̃k(·)s̃in(2πk ·
·

ε
)− ×̃k (̃bk(·), s̃in(2πk ·

·

ε
))‖L∞(D) ≤ ηk,(4.6)

where we choose ηk = δ|k|−r for r > d+ 1. With this choice of ηk, we have that

‖
∑

k∈Zd,|k|≤K

kãk(·)c̃os(2πk ·
·

ε
)− k×̃k(ãk(·), c̃os(2πk ·

·

ε
))‖L∞(D) ≤ δ.

As ak is uniformly bounded in L1(D) so ãk is uniformly bounded in C(D̄) with
respect to k. Further, from (4.2), we find that c̃os(2πk · ·

ε ) is uniformly bounded in

L∞(D) with respect to k. Therefore, (4.6) holds if ×̃k ∈ NNL,M,2,1 where L ≤ c(1+
| log δ|+log |k|) andM ≤ c(1+ | log δ|+log |k|). Let dũε be the DNN that performs

the summation
∑

k∈Zd,|k|≤K k×̃k(ãk(·), c̃os(2πk ·
·
ε ))+k×̃k (̃bk(·), s̃in(2πk ·

·
ε )). This

network can be represented by

∑̃
k∈Zd,|k|≤K

(
IdR×̃k •

(
IdRãk(·), IdRc̃os(2πk ·

·

ε
)

)
, IdR×̃k •

(
IdRb̃k(·), IdRs̃in(2πk ·

·

ε
)

))

where
∑̃

denotes the DNN for summation, and the round parenthesis denotes
parellelization. The number of layers in the identity networks IdR is chosen so that
the networks are of the same depths.

The depth of this network is

O(max
k

{depth(×̃k), depth(ãk), depth(̃bk), depth(c̃os(2πk ·
·

ε
), depth(s̃in(2πk ·

·

ε
)})

= O(d+ (log δ)2 + | log ε|+ logK) = O(d+ (log δ)2 + | log ε|).

The number of nonzero weights of this nework is

O

( ∑

|k|≤K

δ−d|k|d(1+s−p) + (log δ)2 + log |k|+ | log ε|+ d

)
.
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When p satisfies 2 + s− p < 0, with K = O(δ−2/(2p−2−d)), the size of this network
is

O(δ−d + δ−2/(2p−2−d)((log δ)2 + | log ε|+ d) + δ−2d/(2p−2−d)| log δ|)

= O(δ−d + δ−2d/(2p−2−d)| log δ|+ δ−2/(2p−2−d)(| log ε|+ d)).

When p > 2 + d/2, we can choose s > d/2 such that 2 + s − p < 0. In this case,
2/(2p− 2− d) < 1. Thus the size of the network is

O(δ−d + δ−2/(2p−2−d)(| log ε|+ d)).

�

Remark 4.4. The regularity conditions required in Theorem 4.3 are satisfied when
the coefficient a and the right hand side f in (2.2) are sufficiently smooth. In
particular, if the two scale coefficient a ∈ C1(D̄, C0(Ȳ)), then a0 ∈ C1(D̄). If
furthermore D is a convex domain and f ∈ L2(D), then u0 ∈ H2(D) ([9]). Further,

if a ∈ C1(D̄, Hp
#(Ȳ) ∩ Cp−1

# (Ȳ)), then the solution of the cell problem (2.5) N i ∈

C1(D̄, Hp(Ȳ)) ([28], Theorem 20.1) which implies u1 ∈ H1(D, Hp
#(Y)).

5. Conclusion, Generalization and Further Results

We analyzed the DNN expression rate of the solution family {uε : 0 < ε ≤ 1/2} ⊂
H1

0 (D) for the linear, elliptic 2-scale homogenization problem. Under the given
(weak) regularity assumptions on the problem data (i.e. coefficient a , source term
f) we showed that the parametric family of solutions admits corresponding DNN
approximations with error bounded (in the H1(D)-norm in the physical domain
D) by δ > 0 with ReLU DNNs of depth O(d + (log δ)2 + | log ε|) and connectivity
O(δ−d + δ−2/(2p−2−d)(d+ | log ε|)) under the regularity condition u0 ∈ H2(D) and
u1 ∈ H1(D, Hp

#(Y)).
Let us now indicate further results and generalizations of the presently obtained

results.

5.1. Stronger Expression Rate Bounds. In the present work, we obtained DNN
expression rate bounds for linear, elliptic second order PDEs. We proved that ReLU
DNNs are able to express solutions within a prescribed accuracy at complexity
bounds which increase logarithmically with respect to the scale parameter ε. The
mathematical approach consisted in reapproximation of the first order corrector
term in the 2-scale asymptotic expansion of the solution uε. The expression rate
bounds were obtained using finite Sobolev regularity of the 2-scale corrector func-
tion. Similar results could probably be obtained by expressing the 2-scale corrector
resulting from the so-called 2-scale convergence approach, where approximation
rates by sparse grid approximations have been considered in [14, 13]. Solutions to
two scale linear elasticity problems can also be obtained in the same way [29].

5.2. Multiple Scales and Nonlinear Problems. The results of the present pa-
per were derived for linear, elliptic divergence form PDEs with two separated scales.
The 2-scale convergence result and the asymptotic structure (2.4) of the solution
with the cell-problems (2.5) are also available for problems with multiple, separated
scales. We refer for examples to [14, 15], [13] , [29] and the references there. The
analysis in these references differs from the presently proposed one in that here, the
(Y-periodic) “scale interaction function” u1(x, y) in (2.6), (2.7) is expanded into
Fourier series, whereas in [14, 15], [13] it is approximated by so-called sparse grid
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approximations. There is a corresponding DNN counterpart to such approxima-
tions, see e.g. [18]. However, the approximation results in [18] can not be directly
used in the present context, as they assume “isotropic” sparse approximations and
sparse grids.

5.3. Nonperiodic Coefficients. The present results and their generalizations and
extensions in the mentioned references are valid subject to the assumptions of scale-
separation and of periodic fine-scale dependence of the coefficient a(x, y) in (2.2).
The presently obtained DNN expression rate bounds were based on the asymptotic
structure (2.4) of the parametric solution family {uε : 0 < ε ≤ 1/2} ⊂ H1

0 (D) and
on the regularity of the fine-scale function u1(x, y) in (2.4). Let us here indicate that
corresponding results can also be expected in considerably more general settings.

To this end, consider D = (0, 1), f ∈ L2(D) and the nonperiodic diffusion coeffi-
cient a(x) which satisfies

(5.1) 0 < a− ≤ a ≤ a+ <∞ a.e. x ∈ D .

We consider the two-point boundary value problem

(5.2) − (a(x)u′)′ = f in D , u(0) = 0, a(1)u′(1) = g.

Under these assumptions, (5.2) admits, for every f ∈ L2(D), a unique solution
u ∈ V := {v ∈ H1(D) : v(0) = 0}. This solution u ∈ V admits the representation

(5.3) u′(x) =
1

a
(x)(F (x) + c) , x ∈ D

where F ∈ H1(D) denotes the antiderivative of f ∈ L2(D) and c ∈ R denotes a
constant of integration which depends on the Neumann datum g in (5.2).

DNNs ũ which approximate the exact solution u of (5.2) can be based on the

formula (5.3). To this end, for any 0 < δ ≤ 1/2 we assume at hand DNNs F̃ and ã
such that

(5.4) ‖a− ã‖L∞(D) ≤ δ , ‖F − F̃‖L2(D) ≤ δ ,

(concrete choices will be discussed below) and which are such that there exist
constants 0 < ã− ≤ ã+ <∞ with

(5.5) ã− ≤ ã(x) ≤ ã+ for x ∈ D .

Define a ReQU DNN via the ReLU approximation

(5.6) ũ′ := ×̃(inv ◦ ã, F̃ + c)

of u′ and subsequent integration: for x ∈ D and with u(0) = 0 in (5.2) we obtain

(5.7) ũ(x) :=

∫ x

0

ũ′(ξ)dξ , x ∈ D .

Evidently, ũ is a piecewise quadratic spline in C1(D) with ũ(0) = 0.
In (5.6), the operation ×̃ denotes the approximate ReLU multiplication network

of [30] and the operation inv denotes the ReLU NN approximation of the inversion

map inv : x 7→ 1/x. Concrete ReLU DNN constructions {f̃n}n≥1 which approxi-
mate this reciprocal map inv were given in [12, Appendix C]. There holds
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Lemma 5.1. [12, Lemma C.1] Let 0 < a < b < ∞. There exists κ > 0 and
constants C0, C1 > 0 that are independent of a, b such that for every n ∈ N, there
exists a ReLU NN f̃n such that

sup
x∈[a,b]

∣∣∣∣
1

x
− f̃n(x)

∣∣∣∣ ≤ C0
⌈log(b/a)⌉

a

(
1 +

1

b− a

)
exp

(
−

κ√
⌈log(b/a)⌉

n

)
.

Furthermore, the size and depth of the ReLU DNN f̃n is bounded as

(5.8)
depth(f̃n) ≤ C1(1 + n log(n) + log3(n))

and

size(f̃n) ≤ C1[1 + n2(log(n) + log(
√
⌈log(b/a)⌉))] .

Based on this result, which we use to emulate the map a(x) 7→ 1/a(x) with
a := ã− and b := ã+, we are in position to bound the DNN expression error
e := u − ũ in H1(D). Due to e(0) = 0, it suffices to bound the seminorm. To this

end, we write with the ReLU NN f̃n from Lemma 5.1, for n ∈ N to be selected
(5.9)

e′ =
F − F̃

a
+

(
1

a
−

1

ã

)
F̃ +

(
1

ã
− f̃n ◦ ã

)
F̃ +

(
×(f̃n ◦ ã, F̃ )− ×̃(f̃n ◦ ã, F̃ )

)
.

Here, the binary operation ×(·, ·) denotes the exact multiplication of (ReLU) NNs
(which is not a ReLU NN), wherefore we approximate × by the approximate (still
binary) operation ×̃ from [24, Prop. 3.1]. We estimate
(5.10)

‖e′‖L2(D) ≤
1

a−
‖F − F̃‖L2(D) +

∥∥∥∥
1

a
−

1

ã

∥∥∥∥
L∞(D)

‖F̃‖L2(D)

+‖(ξ−1 − f̃n) ◦ ã‖L∞(D) + ‖(f̃n ◦ ã)F̃ − ×̃(f̃n ◦ ã, F̃ )‖L2(D)

=: I + II + III + IV .

To prove DNN expression rate bounds, we estimate terms I through IV . From
(5.4) and (5.1), we have I ≤ δ/a−. To bound II, we write 1/a− 1/ã = (a− ã)/aã.
Therefore, with (5.4),

∥∥∥∥
1

a
−

1

ã

∥∥∥∥
L∞(D)

≤
1

a−ã−
‖a− ã‖L∞(D) ≤

1

a−ã−
δ .

To bound III, we use Lemma 5.1 with a := ã− and b := ã+. We obtain that there
exist constants C(ã−, ã+) > 0 and b(ã−, ã+) > 0 such that for every n ∈ N exists a

ReLU DNN f̃n with

(5.11) III ≤ C(ã−, ã+) exp(−b(ã−, ã+)n) .

Thus, III ≤ δ ≤ 1/2 is ensured by choosing n(δ) ≥ c| log δ| for some c > 0

sufficiently large (but independent of δ). The size and the depth of the DNNs f̃n
are bounded as in (5.8), with n(δ) in place of n.

For term IV , we use [24, Prop. 3.1] or Lemma 3.1. We obtain for 0 < δ ≤ 1/2

‖(f̃n ◦ ã)F̃ − ×̃δ(f̃n ◦ ã, F̃ )‖L2(D) ≤ δ

with size(×̃δ) = O(log(1/δ)) and depth(×̃δ) = O(log(1/δ)). This verifies that the

ReLU DNN ũ′ defined in (5.6) satisfies the consistency

(5.12) ‖u′ − ũ′‖L2(D) ≤ δ .
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Bounds on size and depth of the NN ũ can be obtained as follows:

(5.13) L(ũ) ≤ L(×̃δ) + L(ã) + L(f̃n(δ)) + L(F̃ ),

and

(5.14) M(ũ) ≤M(×̃δ) +M(ã) +M(f̃n(δ)) +M(F̃ ).

We next discuss several particular hypothesis-classes on a and on f in (5.2), (5.1)
which allow obtaining quantitative DNN expression rate bounds for the correspond-
ing solution sets.

1. Finite (Low) Sobolev Regularity. Under the sole assumption f ∈ L2(D)
(as we assumed here), F ∈ H1(D). Denoting by IhF the continuous, piecewise
polynomial nodal interpolation of degree 1 on a uniform partition of D of width
0 < h < 1, we have

‖F − IhF‖L2(D) ≤ Ch‖F ′‖L2(D) = Ch‖f‖L2(D) .

In the same way, for a ∈W 1,∞(D),

‖a− Iha‖L∞(D) ≤ Ch‖a′‖L∞(D) .

On the other hand, IhF corresponds exactly to a (shallow) ReLU NN F̃h of depth

1 and width resp. size M(F̃ ) = O(h−1). This verifies the second item in (5.4) with

F̃ = F̃h, and ascertains accuracy δ > 0 at fixed DNN depth 1 and at DNN size
M(F̃ ) = O(δ−1). A generic Lipschitz coefficient a will likewise admit a shallow
ReLU approximation ãh with fixed DNN depth 1 and DNN size M(ã) = O(δ−1).

2. Poly-log DNN expression of a and f .
It has been recently observed in [10] and [7] that ReLU DNNs allow approxi-

mating certain fractal functions a(x) of low Besov regularity at exponential rates,
in terms of NN size and depth; in particular, the so-called Weierstrass functions
and the Takagi class of functions. Accuracy δ > 0 is achieved in L∞(D) with the
NN size and depth being only polylogarithmic w.r. to δ. The self-similarity of such
functions precludes scale-separation which we used in Theorem 4.3.

To study corresponding DNN expression rates for the solution u of (5.2)we as-
sume here, generically, that a and F belong to the class polylog(k,X) defined for
k ∈ N and a suitable Banach space X with norm ‖ ◦ ‖X as

(5.15)
polylog(k,X) :=

{
v ∈ X : ∀0 < δ ≤ 1 ∃ ṽδ ∈ NNReLU

L,M,1,1 :

‖v − ṽδ‖X ≤ δ, L,M ≤ c(1 + | log δ|k)
}
.

For a we shall choose X = L∞(D) and X = L2(D) for F .

Theorem 5.2. Consider the model problem (5.2)with data

a ∈ polylog(ka, L
∞(D)), F ∈ polylog(kf , L

2(D)).

There exists C > 0 such that for all admissible a, F and for every prescribed
accuracy 0 < δ ≤ 1/2, there exists a ReLU DNN ũ′δ ∈ NNL,M,1,1 such that

‖u′ − ũ′δ‖L2(D) ≤ δ;

and such that

L ≤ C(| log δ|max{1,ka,kf} + | log δ| log | log δ|),

M ≤ C(| log δ|max{1,ka,kf} + (log δ)2 log | log δ|).



DEEP RELU NEURAL NETWORK EXPRESSION FOR ELLIPTIC MULTISCALE PROBLEMS13

Examples:
(i) The class of Weierstrass functions

Wp,a =

∞∑

k=0

pk cos(akπx)

belongs to polylog(3, L∞(D)) (see [10] page 52). We consider the positive coefficient
of the form A(x) +Wp,a(x) where ess-inf A(x) is sufficiently large.

(ii) We consider the class of Tagaki functions

F =
∑

k≥1

tkg(ψ◦k)

where |t| < 1; and ψ◦k denotes the k-fold composition of the function ψ. Assuming
that g and ψ can be represented exactly by ReLU DNN, then, the antiderivative
F ∈ polylog(1, C([0, 1])) (see [7] page 28).

Further examples for fractal coefficients a with very low Sobolev regularity are
developed in [10] and [7]. The preceding argument will provide DNN expression
rate bounds for the corresponding solution families of the univariate boundary value
problem (5.2).

3. Almost-periodic coefficient We now depart from the periodic setting
considered above, and assume that the multiscale coefficient is almost periodic. In
this case, a well-developed theory of homogenization is still available (see, e.g., [16,
Chap. 7.4] and the references there). Assume given {an}n≥0, {bn}n≥1 ⊂W 1,∞(D),
{ξn}n≥1, {ζn}n≥1 ⊂ R. We consider (5.2) with quasi-periodic coefficient of the form

a(x) = a0(x) +

∞∑

n=1

[an(x) cos(
x

ε
ξn) + bn(x) sin(

x

ε
ζn)].

To ensure convergence of the series in this representation, we assume the following
bounds: there are real numbers p > 1, q > 0, c0 > 0 such that for every n ∈ N

(5.16) ‖an‖W 1,∞(D) ≤ c0/n
p, ‖bn‖W 1,∞(D) ≤ c0/n

p, |ξn| ≤ c0n
q, |ζn| ≤ c0n

q.

We assume further that there is a positive constant a− such that

ess-inf
x∈D

a0 ≥
∞∑

n=1

2c0n
−p + a−,

so that

ess-inf
x∈D

a(x) ≥ a−.

For N ∈ N, we denote by

aN (x) = a0(x) +
N∑

n=1

[an(x) cos(
x

ε
ξn) + bn(x) sin(

x

ε
ζn)].

We then have

‖a− aN‖L∞(D) ≤ 2
∑

n>N

c0n
−p ≤ cN−p+1.

Choosing N = ⌈δ−1/(p−1)⌉, we then have ‖a − aN‖L∞(D) ≤ cδ. For each n, we
choose a resolution hn for the piecewise linear nodal interpolation such that
(5.17)
‖an−Ihn

an‖L∞(D) ≤ chn‖an‖W 1,∞(D) ≤ δn−s, ‖bn−Ihn
bn‖L∞(D) ≤ chn‖bn‖W 1,∞(D) ≤ δn−s
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for s > 1. Then the functions Ihn
an and Ihn

bn can be represented exactly by the

ReLU networks ãn and b̃n with O(1) depth and O(δ−1n−p+s) connectivity. From
Lemma 3.2, cos( ·

εξn) and sin( ·
εζn) can each be approximated by ReLU NNs, which

we denote by c̃os( ·
εξn) and s̃in( ·

εζn). These approximations have accuracy

‖ cos(
·

ε
ξn)− c̃os(

·

ε
ξn)‖L∞(D) ≤ δ, ‖ sin(

·

ε
ζn)− s̃in(

·

ε
ζn)‖L∞(D) ≤ δ.

From Lemma 3.2, we have

L(c̃os(
·

ε
ξn)) ≤ c((log δ)2+log n+| log ε|), M(c̃os(

·

ε
ξn)) ≤ c((log δ)2+log n+| log ε|),

and

L(s̃in(
·

ε
ξn)) ≤ c((log δ)2+log n+| log ε|), M(s̃in(

·

ε
ξn)) ≤ c((log δ)2+log n+| log ε|).

Let
āN (x) =

∑

n≤N

ãn(x)c̃os(
x

ε
ξn) + b̃n(x)s̃in(

x

ε
ζn).

We then have

āN (x)− aN (x) =
∑

n≤N

[
(ãn(x)− an(x))c̃os(

x

ε
ξn) + (b̃n(x)− bn(x))s̃in(

x

ε
ζn) +

an(x)(c̃os(
x

ε
ξn)− cos(

x

ε
ξn)) + bn(x)(s̃in(

x

ε
ζn)− sin(

x

ε
ζn))

]
.

Then
‖āN − aN‖L∞(D) ≤ cδ

∑

n≤N

(n−s + n−p) ≤ cδ.

Now we define the NN

ãN =
∑

n≤N

×̃1(ãn, c̃os(
·

ε
ξn)) + ×̃1(b̃n, s̃in(

·

ε
ζn)),

where the multiplication ReLU NN ×̃1 achieves the accuracy δ−1−1/(p−1) and has
O(| log δ|) layers and O(| log δ|) connectivity. We then have ‖ãN − a‖L∞(D) ≤ cδ

The networks ãn, b̃n, c̃os(
·
εξn), s̃in(

·
εζn) are performed in parallel. The depth of the

network ũ′ is bounded by

max{L(ã0), L(ãn), L(b̃n), L(c̃os(
·

ε
ξn)), L(s̃in(

·

ε
ζn)}+ L(×̃1) + L(inv) + L(×̃) + L(F̃ )

≤ c(| log(δ)|2 + logN + | log ε|+ | log δ|2 log | log δ|)
≤ c(| log δ|2 log | log δ|+ | log ε|).

The connectivity of the network is bounded by

M(ã0) +

N∑

n=1

[M(ãn) +M(b̃n) +M(c̃os(
·

ε
ξn)) +M(s̃in(

·

ε
ζn))]

+NM(×̃1) +M(×̃) +M(inv) +M(F̃ )

≤ c(δ−1 + δ−1
N∑

n=1

n−p+s +N(log δ)2 +N | log ε|

+

N∑

n=1

log n+N | log δ|) + | log δ|2 log | log δ|) .

Assume that p > 2, we can choose s > 1 in (5.17) such that p− s− 1 > 0.
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We then have

M(ũ′) ≤ cδ−1 + cδ−1/(p−1)| log ε|.

We arrive at the following result.

Theorem 5.3. Assume that functions an, bn and the constants ξn and ζn sat-
isfy conditions (5.16). Then for every 0 < δ ≤ 1/2, there exists a NN ũ with
O(| log δ|2 log | log δ|+ | log ε|) layers and O(δ−1+δ−1/(p−1)| log ε|) connectivity such
that

‖u′ − ũ′‖L2(D) ≤ cδ.

In conclusion, for linear, second order elliptic boundary value problems in diver-
gence form with multiscale coefficients, we analyzed the expressive power of ReLU
neural networks for the corresponding solution families.

For the classical, periodic setting of homogenization, in d ≥ 1 space dimension,
we proved in Theorem 4.3 expressive power estimates for the 2-scale solutions which
are explicit in the scale parameter ǫ and the expression accuracy δ > 0. The main
result is that the deep ReLU NNs achieve scale resolution with depth which increases
logarithmic with respect to the scale parameter ǫ.

For several classes of nonperiodic coefficients of low Sobolev and Besov regularity,
in particular for fractal coefficients from the Weierstrass and Takagi classes, we
established likewise exponential expressivity.
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