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SPURIOUS RESONANCES IN COUPLED DOMAIN–BOUNDARY

VARIATIONAL FORMULATIONS OF TRANSMISSION PROBLEMS IN

ELECTROMAGNETISM AND ACOUSTICS
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Abstract. We develop a framework abstracting the features shared by a few transmission prob-
lems arising in electromagnetic scattering and acoustics. We show that spurious resonances haunt-
ing coupled domain-boundary formulations which exploit direct boundary integral equations of

the first kind originate from the formal structure of their Calderón identities. Using this observa-
tion, the kernel of the coupled problem is characterized explicitly and we show that it completely

vanishes under the exterior representation formula.
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1. Introduction

Transmission problems in electromagnetism and acoustics can model the following typical experiment. An
incident wave penetrates an object and travels inside the possibly inhomogeneous medium. Concurrently,
it also scatters at its surface and propagates in the outside homogeneous region to eventually decay at
infinity. Simulation of the complete phenomenon entails coupling the interior and exterior problems. A vast
literature is devoted to the design of such couplings for physical situations involving an increasing amount
of intricacies. Notably, the described setting is considered in [15], [19], [8], [18] and [25].

On the one hand, domain based variational methods offer a familiar way of modeling wave propagation
where material properties vary. The texts [2], [17], [1] and [22] are thorough analyses for electromagnetism.
Standard references such as [26] and [12] introduce the reader to the Helmholtz operator as it appears in
acoustic scattering.

On the other hand, boundary integral equations are capable of describing the behavior of the waves in
unbounded homogeneous regions, because they provide valid Cauchy data that can be fed to the representa-
tion formula. Their complete derivation and properties can be found in [23], [20] and [21]. In the following,
we consider in particular the direct boundary integral equations of the first kind detailed in [24], [7] and [11].

While transmission problems have unique solutions for all frequencies, boundary integral equations ob-
tained for an exterior problem involving an Helmholtz-like second-order operator P−λId are haunted by the
existence of “spurious frequencies”: the kernel of the Dirichlet-to-Neumann map supplied by the first exterior
Calderón identity corresponds to the space of interior Dirichlet λ-eigenfunctions of P. Similarly, the related
Neumann eigenspace corresponds to the kernel of the Neumann-to-Dirichlet map supplied by the second
exterior Calderón identity. This issue was investigated for the electric field integral in [10]. Eigenvalues of
the Laplacian were studied in [14] and [24] from the perspective of resonant frequencies.

Unsurprisingly, this deficiency of the boundary integral equations carries over to the the coupled domain-
boundary variational formulations. Its consequences for the symmetric approach to the coupling problem
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in the context of electromagnetism (classical E–H formulation) and acoustics (Helmholtz equation) were
stated without proof in [7] and [19], respectively.

In this essay, we unite a few symmetric domain-boundary variational formulations for the time-harmonic
solutions of transmission problems in electromagnetism and acoustics under a common framework. Three
particular problems are discussed in section 2.2. Costabel’s symmetric approach detailed in [13] is generalized
to allow for the mixed formulation of the interior problem. The lack of uniqueness due to resonant frequencies
is shown to result from the formal structure of the Calderón identities. The phenomenon is thus shared by
all three couplings under consideration. The kernel of the astract coupled problem is fully characterized in
section 4.

We point out that from a practical/algorithmic point of view, the post-processing required to recover the
scattered waves in the exterior region rescue uniqueness of the solutions. Indeed, the kernel of the Dirichlet-
to-Neumann map vanishes under the representation formula. Therefore, while these so-called “spurious
resonant frequencies” generally cause instabilities after discretization that may bring about the need for
regularization strategies, their mere existence is harmless to the physical validity of the domain-boundary
coupling models. This explains how classical coercive symmetric couplings remain nonetheless valuable pilot
formulations for Galerkin discretization. We refer to [24] for an introduction to a classical approach originally
suggested by Brakhage and Werner [3] to regularize the indirect BIEs for the Helmholtz operator. We also
point out that a CFIE-type stabilization procedure for the Helmholtz transmission problem is studied in [16],
where a symmetric coupling stable for all positive frequencies is obtained.

2. Formal framework

2.1. Notation and conventions. Let Ω− ⊂ R
3 be a bounded simply connected domain with Lipschitz

boundary Γ := ∂Ω−. We think of Ω− as a bounded inhomogeneous volume occupied by an object with
a possibly “rough” surface. It is common to take Ω− to be a curvilinear polyhedron. Throughout this
work, we use Ω generically to denote either Ω− or Ω+ := Ω−\R3. Physically, Ω+ often represents an
unbounded homogeneous air region around Ω−. We let L2 (Ω) and L2 (Γ) denote, respectively, spaces of
square-integrable fields over Ω and Γ. We forgo more precise definions, as they will eventually be instantiated
in turn as spaces of complex functions, three-dimensional vector fields and direct products of vector fields.
Whenever it is possible, we try in particular problems to use bold letters to differentiate vector quantities
from scalars. Capitals are often used to denote fields defined over a volume, while small characters usually
refer to boundary variables. The space of smooth fields compactly supported in Ω is written D (Ω). The
subscript ‘loc’ is used to extend a given space V to the larger space Vloc comprising all functions u such
that uψ ∈ V for all ψ ∈ D (Ω). A prime will be used to indicate the dual of a space, e.g. V ′. Duality
paring is written with angular brackets, e.g.

〈
·, ·
〉
, but we also often allow ourselves to substitute integrals

for these angular brackets when we want to emphasize L2(Ω) and L2(Γ) as pivot spaces or highlight the
analogy between the identities introduced in this formal framework and Green’s classical formulas.

We call weak differential operator matrices the various linear operators that can be represented by a
matrix of partial derivatives. We understand their arrangement in weak sense. If no particular structure is
recognized, then we must accept to define them on the Sobolev space H1(Ω). However, in the models we
consider in this work, the partial derivatives often sum up to form divergence and curl operators respectively
defined on

H (div,Ω) := {U ∈ L
2 (Ω) | divU ∈ L

2 (Ω)},

H (curl,Ω) := {U ∈ L
2 (Ω) | curlU ∈ L

2 (Ω)}.

They are quantities weakening the Green’s identities

±

∫

Ω∓

div(U)P +U · ∇P dx =

∫

Γ

P (U · n) dσ,(1a)

±

∫

Ω

U · curl (V)− curl (U) ·V dx =

∫

Γ

V · (U× n) dσ,(1b)
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where n(x) stands for the unit normal boundary vector field oriented outward from Ω−. The same notation
is kept throughout this section.

2.2. “Helmholtz-like” operators. We consider a formally self-adjoint linear second-order weak differential
operator matrix

P : Xloc (Ω) → L
2 (Ω) .

In accordance with this definition, we assume that Xloc (P; Ω) ⊂ L2
loc (Ω). Ultimately, our goal is to develop

variational transmission equations in which exterior problems of the form

(2) (P− λ Id)Uext = 0 in Ω+

are formulated using BIEs. When Re (λ) > 0 and Im (λ) ≥ 0, we say that the operator on the left hand side
of (2) is Helmholtz-like.

We have in mind to encompass a practical range of well-kown operators. The following examples are
important in the study of acoustic and electromagnetic scattering.

2.2.1. Helmholtz acoustics. The simplest ones are obtained from elliptic operators acting on scalar real-
valued functions, of which the Laplacian

−∆ := − div ◦ ∇ = −
3∑

i=1

∂2
i

is the most famous example. It is found differentiating a suitably scaled pressure amplitude U in the scalar
Helmholtz equation

(3) − div (∇U)− κ2r(x)U = 0

that models the travel of plane time harmonic sound waves with real positive wave number κ > 0. While
the bounded refractive index r(x) may vary inside the inhomogeneous body Ω−, it stays constant in the
unbounded air region Ω+. BIEs offer the most flexible way of tackling the exterior problem, but a domain
formulation is best suited to deal with the interior inhomogeneity. Because of the simplicity of its toy-
examples, acoustic scattering thus presents itself as a canonical example to illustrate the relevance of coupled
domain–boundary variational formulations.

In this framework, the domain of the Laplace operator is easily seen to be

Hloc (∆,Ω) := {U ∈ H1
loc(Ω)| ∇U ∈ Hloc (div,Ω)}.

Boundary value problems are stated using the classical Dirichlet and Neumann traces

γ∓U (x) = lim
Ω∓∋y→x

U(y),

γ∓
n U (x) = − lim

Ω∓∋y→x
n(x) · ∇U (y),

which enter Green’s identity (1a). These traces are well-defined on smooth scalar fields and extend by
continuity to the Sobolev spaces

γ∓ : H1
loc

(

Ω∓
)

→ H1/2 (Γ) ,(4a)

γ∓
n : Hloc (∆,Ω) → H−1/2 (Γ) .(4b)

The classical symmetric coupling for (3) derived in [19] fits the abstract framework of the next sections.
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2.2.2. E–H electromagnetism. As explained in the introduction, we also consider the non-elliptic linear
operators arising in the simulation of electromagnetic scattering phenomena. Prevalent in the literature and
widely used in engineering applications is the curl curl operator

(5) E 7→ curl
(

µ−1(x) curlE
)

entering the frequency domain formulation of the electric wave equation

(6) curl
(

µ−1(x) curlE
)

− ω2ǫ(x)E = 0,

in which ǫ(x) and µ(x) are material properties known respectively as the dielectric and permeability tensors.
Again, these quantities are assumed constant outside the scatterer. This is the most standard time-harmonic
model for the propagation of an electromagnetic wave with angular frequency ω. As opposed to the Helmholtz
equation of acoustic scattering, the unknown is a vector-valued function.

We note that the curl curl operator (5) with constant coefficient µ(x) = µ0 could also be represented by
the operator matrix

(7) P := µ−1
0






0 −∂3 ∂2
∂3 0 −∂1
−∂2 ∂1 0






2

.

Its domain of definition is

Hloc(curl
2,Ω) := {E ∈ Hloc(curl,Ω) | curl(E) ∈ Hloc(curl,Ω)}.

Well-posed boundary value problems are established for the electric wave equations by weakening the tan-
gential traces

γ∓
t E(x) := n(x)× γτ

(
E(x)

)
,(8a)

γ∓
R E(x) := −γ∓

τ curlE(x),(8b)

where γ∓
τ E := E × n enters Green’s identity (1b). The “magnetic trace” γ∓

R E plays a role akin to the
Neumann trace (4b). The relatively recent development of tangential traces theory for Lipschitz domains
can be followed in [4], [5] and [6]. A symmetric domain-boundary variational coupling falling under the
framework of the next sections is performed in [18].

2.2.3. A-φ electromagnetism. Equation (6) is obtained upon combining the dynamical equations

curlE = −iωµ(x)H, curlH = iωǫ(x)E,

that are part of the E–H formulation of Maxwell’s equations. When the magnetic and electric fields are
expressed in terms of the vector and scalar electromagnetic potentials, which satisfy H = µ−1(x) curlA and
E = −∂tA−∇φ, these two equations instead combine to form

curl
(

µ−1(x) curlA
)

+ iωǫ(x)∇φ− ω2ǫ(x)A = 0.

Elimination of φ using the Lorentz gauge

(9) div
(
ǫ(x)A

)
+ iωφ = 0

leads to the Hodge-Helmholtz equation

(10) curl
(

µ−1(x) curlA
)

− ǫ(x)∇ div
(
ǫ(x)A

)
− ω2ǫ(x)A = 0.

The link behind electromagnetism and geometry through the Hodge-Laplace operator is the subject of a vast
literature. Because (10) is robust in the low-frequency limit ω → 0, its extension to inhomogeneous material
through the generalized Lorentz gauge (9) has resurfaced relatively recently as an interesting alternative
to the standard electric wave equation for the simulation of some contemporary physical experiments in
quantum optics [9].
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When the material properties ǫ(x) = ǫ0 and µ(x) = µ0 are assumed constant, equation (10) reduces to

(11) curl curlA− η∇ divA− κ2
A = 0,

where η = µ0ǫ
2
0 and κ2 = µ0ǫ0ω

2. The domain of the Hodge-Helmholtz operator on the left hand side is the

intersection space Hloc

(

curl2,Ω
)

∩Hloc (∇div,Ω), where

Hloc (∇div,Ω) := {U ∈ Hloc (div,Ω) | divU ∈ H1
loc(Ω)}.

A pair of suitable traces for the formulation of boundary value problems is given by

T ∓
mg A(x) :=

(

γ∓
R A(x)
γ∓
n A(x)

)

,(12a)

T ∓
el A(x) :=

(

γ∓
t A(x)

η γ∓divA(x)

)

.(12b)

Notice that their ranges are product spaces. This is partly due to the fact that the A–φ potential formulation
of Maxwell’s equations initially introduced two unknowns in the wave equation. Going back to the Lorentz
gauge (9), we see in the context of transmission problems that the second component of the “electric trace”
(12b) is in hiding a continuity condition for the scalar potential. Once again, it is the “magnetic trace”
T ∓
mg A that resemble the Neumann trace.
The natural trial and test spaces readily obtained upon establishing domain based variational formulations

for (11) using (1a) and (1b) are unfortunately not viable for discretization by finite elements. This is the
reason why in [25] the mixed formulation

curl curlA+∇P − κ2
A = 0,

η div (A) + P = 0,
(13)

is generalized to accommodate variable coefficients. The weak differential operator matrix

L :=

(

curl curl− κ2Id ∇
η div −Id

)

is well defined over Hloc

(

curl2,Ω
)

×H1
loc(Ω) and therefore more convenient to model the interior problem.

This subtlety justifies generalizing Green’s first formula in Assumption 6, because integration by parts yields

(14)

∫

Ω−

〈
L

(

A

P

)

,

(

V

Q

)

〉
dx = Φκ





(

A

P

)

,

(

V

Q

)

+
〈

T +
mg(A),

(

γ−
t V

γ−Q

)
〉

,

where the left hand side sports the bilinear form

Φκ





(

A

P

)

,

(

V

Q

)

 :=

∫

Ωs

µ−1
curlA · curlV dx+

∫

Ωs

ǫ∇P ·V dx+

∫

Ωs

P Q dx

−

∫

Ωs

ǫA · ∇Q dx− ω2

∫

Ωs

ǫA ·V dx.

The observation that for solutions of (13) we have
(

γ−
t A

γ−P

)

=

(

Id 0
0 −Id

)

T −
el A(x)

ultimately leads to important symmetries that were extremely useful in [25] for the derivation of coercivity
estimates.
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2.3. Boundary value problems. The first step in the formulation of BVPs for P is to establish a definition
of boundary data.

Assumption 1 (Green’s second formula). There exist two non-trivial Hilbert spaces of distributions HN

and HD, supported on Γ, that are dual under a pairing
〈
·, ·
〉

Γ
, together with continous and surjective linear

operators

T
∓
D : XD

loc

(

Ω∓
)

→ HD (Γ) ,

T
∓
N : XN

loc

(

Ω∓
)

→ HN (Γ) ,

admitting continuous right inverses and satisfying Green’s second formula

(15)

∫

Ω∓

PU · V − U · PV dx = ±
〈
T

∓
NU,T

∓
DV
〉

Γ
∓
〈
T

∓
NV,T

∓
DUΓ

〉

for all u, v ∈ Xloc

(

Ω∓
)

. We evidently assume that the domain of P lies in the intersection of XD
loc (Ω) and

XN
loc (P; Ω).
By analogy with the boundary value problems arising from the operators introduced in section 2.2, it is

reasonable to suppose that D (Ω) ⊂ ker
(

T
∓
D

)

∩ ker
(

T
∓
N

)

. Roughly speaking, this simply asks for the traces

of fields vanishing on the boundary to vanish. Moreover, we take for granted that
[
TD (φ)

]
=
[
TD (φ)

]
= 0

whenever φ is continuously differentiable across Γ. The square brackets indicate the jump [T•] := T
−
• − T

+
•

of a trace, specified by • = D or N , over the boundary Γ.

The archetypes behind these operators are the Dirichlet and Neumann traces (4a)-(4b), but (8a)-(8b)
and (12b)-(12a) also satisfy the assumption.

Given boundary data g ∈ HD (Γ) and η ∈ HN (Γ), we use the traces supplied in Assumption 1 to impose
boundary conditions in the statement of interior and exterior BVPs:

(DP∓
λ )







PU − λU = 0, in Ω∓

T
∓
DU = g, on Γ,

radiation conditions at ∞, if Ω = Ω+

(NP∓
λ )







PU − λU = 0, in Ω∓

T
∓
NU = η, on Γ,

radiation conditions at ∞, if Ω = Ω+.

Assumption 2 (Uniqueness for exterior BVPs). The solutions to the exterior BVPs (DP+
λ ) and (NP+

λ )

are unique in X
(

Ω+
)

.

2.4. Representation by boundary potentials. Given a formally self-adjoint weak differential operator
matrix L and a locally integrable source term F , we say that LU = F holds in Ω in the sense of distributions
if

(16)
〈
LU, V

〉
:=

∫

Ω

U · LV dx =

∫

Ω

F · LV dx

for all V ∈ D(Ω). From this point of view, we have U,F ∈ D (Ω)′ and the action of L is extended by the left
hand side of (16) to be also defined on the space of distributions. That is to say, the solution U is interpreted
as a bounded linear functional over the space of test functions.
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Let U ∈ L2
loc

(

R
3
)

be such that U |Ω− ∈ X
(

Ω−
)

and U |Ω+ ∈ Xloc

(

P; Ω+
)

with (P− λId)U |Ω∓ = 0,

where the restrictions are to be understood in the sense of distributions. Using Green’s second formula (15),
we obtain

〈PU − λU, ψ〉 =
〈
[TDU ] ,TNψ

〉

Γ
−
〈
TDψ, [TNU ]

〉

Γ

for all smooth compactly supported fields ψ defined over R3. Therefore, in the sense of distributions,

(17) PU − λU =
(

T
−
N

)∗

[TDu]−
(

T
−
D

)∗

[TNu] ,

where the mappings
(

T
−
N

)∗

and
(

T
−
D

)∗

are adjoint to T
−
N and T

−
D, respectively.

Assumption 3 (Fundamental solution). There exists a smooth (possibly matrix-valued) complex Green
tensor Gλ defined over R

3\{0} satisfying

(P− λ Id) ◦Gλ = δ0 Id

as a distribution and whose components respect the decay conditions at infinity stated in (DP∓
λ ) and (NP∓

λ ).
On the right hand side, δ0 is standard notation for the Dirac distribution centered at 0, i.e. 〈δ0, ψ〉 = ψ(0)
for all ψ ∈ D(R3).

Convoluting with Gλ on both sides of (17) yields the representation formula

(18) U = SLλ

(
[TNU ]

)
+DLλ

(
[TDU ]

)
,

where we have defined for all g ∈ HD (Γ) and η ∈ HN (Γ) the layer potentials

SLλ(g) := −Gλ ⋆

((

T
−
D

)∗

g

)

,

DLλ(η) := Gλ ⋆

((

T
−
N

)∗

η

)

.

Here, ⋆ indicates the convolution operation.

2.5. Boundary integral operators. Boundary integral equations for the Dirichlet problems (DP∓
λ ) and

(DP∓
λ ) are obtained by establishing the famous Caldéron identities.

Assumption 4 (Jump identities). The boundary potentials SLλ : HN (P; Γ) → Xloc (P; Ω) and DLλ :

HD (P; Γ) → Xloc (P; Ω) are continuous and satisfy the jump relations

[TD]DLλ = Id, [TD]DLλ = 0,

[TD]SLλ = 0, [TN ]SLλ = Id.

Applying averaged traces {T•} := 1/2
(

T
+
• + T

−
•

)

specified with • = D and N to SLλ and DLλ yields

four continuous boundary integral operators:

Aλ := {TD} SLλ : HN (Γ) → HD (Γ) ,

Bλ := {TN} SLλ : HN (Γ) → HN (Γ) ,

Cλ := {TD}DLλ : HD (Γ) → HD (Γ) ,

Dλ := {TN}DLλ : HD (Γ) → HN (Γ) .
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Taking the traces on both sides of the representation formula (18) and using the jump relations of Assumption
4, we obtain the interior and exterior Caldéron identities

(

Cλ + 1
2
Id Aλ

Dλ Bλ + 1
2
Id

)

︸ ︷︷ ︸

P
−

λ

(

T
−
DU

T
−
NU

)

=

(

T
−
DU

T
−
NU

)

,

(

−Cλ + 1
2
Id −Aλ

−Dλ −Bλ + 1
2
Id

)

︸ ︷︷ ︸

P
+

λ

(

T
+
DU

T
+
NU

)

=

(

T
+
DU

T
+
NU

)

,

respectively. Note that P+
λ +P

−
λ = Id so that the range of P+

λ coincides with the kernel of P−
λ and vice-versa.

The next theorem is a consequence of the existence of continuous right inverses for the traces stated in
Assumption 1. It promotes the Caldéron projectors to a pivotal role in domain–boundary formulations of
transmission problems.

Lemma 1. A pair of boundary data (g, η) ∈ HD (Γ)×HN (Γ) is valid interior or exterior Cauchy data of
some distribution u ∈ X (Ω) that solves the homogeneous equation Pu− λu = 0 in Ω∓ if and only it lies in
the kernel of P+

λ or P
−
λ , respectively.

2.6. Boundary integral equations. The rows of the exterior Caldéron identities give rise to the following
two direct variational BIEs of the first kind for the exterior Dirichlet (DP∓

λ ) and Neumann (NP+
λ ) problems

respectively:

(DBPλ)






Seek ξ ∈ HN (Γ) satisfying
∫

Γ

Aλξ · ζ dσ = −

∫

Γ

(

Cλ +
1

2
Id

)

g · ζ dσ

for all ζ ∈ HN (Γ) .

(NBPλ)






Seek a ∈ HD (Γ) satisfying
∫

Γ

Dλξ · ζ dσ = −

∫

Γ

(

Bλ +
1

2
Id

)

η · ζ dσ

for all ζ ∈ HD (Γ) .

3. Coupled domain–boundary variational formulations

Now, let L be a weak linear differential operator defined on X
(

L,Ω−
)

satisfying Assumption 1 with

traces T
−
L,D and T

−
L,N . Simlarly, allow P to be defined on X

(

P,Ω∓
)

such that it satisfies assumptions 1 to

4 with traces T∓
P,D and T

∓
P,N .

We are interested in well-posed transmission problems

(TPλ)







LU = f, in Ω−

PUext + λUext = 0, in Ω+

T
−
L,DU = T

+
P,DU

ext + g, on Γ,

T
−
L,NU = T

+
P,NU

ext + η, on Γ,

radiation conditions at ∞.
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This presupposes that the images of the traces are such that

HD := HD (P; Γ) = HD (L; Γ) ,

HN := HN (P; Γ) = HN (L; Γ) .

Assumption 5. Given a source term f ∈ L2
(

Ω−
)

and boundary data (g, η) ∈ HD ×HN, the transmission

problem (TPλ) is uniquely solvable in L2
(

R
3
)

.

The idea behind the so-called symmetric approach to marrying domain and boundary variational formu-
lations originally developed in [13] for problems involving linear strongly elliptic differential operators is to
introduce a particularly clever choice of Dirichlet-to-Neumann map

DtN : HD → HN

into Green’s first formula—the validity of which, following Costabel, we must also require here.

Assumption 6 (Green’s first formula). There exist a non-trivial subspace V
(

Ω−
)

⊂ XD
(

L; Ω−
)

and a

bilinear form Φ : V
(

Ω−
)

×V
(

Ω−
)

→ R such that

(19)

∫

Ω−

LU · V dx = Φ (U, V ) +
〈
T

−
L,NU,TL,ΦV

〉

Γ

for every U ∈ X
(

L; Ω−
)

and V ∈ V
(

Ω−
)

. We assume that TL,Φ : V
(

Ω−
)

→ HD is surjective and

continuous.

We have introduced yet another linear trace mapping TL,Ψ in place of the Dirichlet trace that would
justifiably be expected by analogy with the classic Green’s first formula. It is true that this map happens to
be the Dirichlet trace when L is the scalar Helmholtz operator or the classical electric wave operator. The
reason behind this generalization becomes apparent from equation (14). Its purpose is to generalize Green’s
first formula to account for mixed formulations.

Assumption 6 states that for g ∈ HD,

(IVP)







Seek U ∈ V
(

Ω−
)

∩ {T−
L,DU = g} satisfying

Φ (U, V ) = 0

for all V ∈ V
(

Ω−
)

∩ ker (TL,Φ) .

is a weak variational formulation for the interior Dirichlet problem

(IP)

{

LU = 0, in Ω−

T
∓
L,DU = g, on Γ.

By testing with V ∈ D

(

Ω−
)

, we immediately find that a solution U ∈ V
(

Ω−
)

solves LU = 0 in the sense

of distributions. Therefore, it also solves (IP) in L2 (Ω) if it is regular enough. It is necessary and sufficient

that U ∈ X
(

L; Ω−
)

. It is thus reasonable to assume the following regularity result.

Assumption 7 (Regularity). A distribution U ∈ V
(

Ω−
)

which solves LU = 0 in the sense of distributions

also belongs to X
(

L; Ω−
)

.
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Either row of the exterior Caldéron projection P
+
λ realizes a Dirichlet-to-Neumann map [24, Sec. 3.7]:

A−1
λ

(

Cλ +
1

2
Id

)

: HD → HN ,

(

−Bλ +
1

2
Id

)−1

Dλ : HD → HN .

Costabel’s insight was to combine both rows into the expression

DtN := −Dλ −

(

−Bλ +
1

2
Id

)

A−1
λ

(

Cλ +
1

2
Id

)

.

Introducing the transmission conditions into (19), the scattering problem (TPλ) can be cast into the
operator equation

ΨU − (TL,Φ)∗
(

DtN
+ ◦ T−

DU
)

= r.h.s.,

where (TL,Φ)∗ : HN → XN
(

L; Ω−
)

denotes the adjoint of TL,Φ and ΨU (V ) := Φ (U, V ).

Of course, we dispense with the explicit inverse of Aλ by introducing an auxiliary unknown ξ ∈ HN and
seeking a solution pair to the following variational problem.

(CPλ)






Seek (U, ξ) ∈ V (Ω)×HN satisfying

Φ (U, V ) +
〈
(

−Bλ +
1

2
Id

)

ξ,TL,ΦV
〉

+
〈
−DλT

−
L,DU,TL,ΦV

〉
= RV (v) ,

〈
(

Cλ +
1

2
Id

)

T
−
L,DU, ζ

〉
+
〈
Aλ ξ, ζ

〉
= RT (ζ) ,

for all (V, ζ) ∈ V (Ω)×HN .

A few terms were moved to the continuous functionals on the right hand sides. In particular,

RV (V ) :=

∫

Ω−

f · V dx−
〈
η,TLΦV

〉
−
〈
Dλg,TL,ΦV

〉
,

RT (ζ) :=
〈
(

Cλ +
1

2
Id

)

g, ζ
〉
.

4. Resonant frequencies

We call Dirichlet or Neumann resonant frequency any eigenvalue in the Dirichlet or Neumann spectrum

ΛD

(

P,Ω−
)

:= {λ ∈ C| ∃U ∈ X
(

P; Ω−
)

, 0 6= U solving(DP−
λ ) with g = 0},

ΛN

(

P,Ω−
)

:= {λ ∈ C| ∃U ∈ X
(

P; Ω−
)

, o 6= U solving(NP−
λ ) with η = 0},

respectively. Given a frequency λ ∈ ΛD or ΛN , we denote the λ-eigenspaces by

Eλ
D

(

P,Ω−
)

:= {U ∈ X
(

P; Ω−
)

|U solving (DP−
λ ) with g = 0},

Eλ
N

(

P,Ω−
)

:= {U ∈ X
(

P; Ω−
)

|U solving (NP−
λ ) with η = 0},

respectively.
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4.1. Kernels of first-kind direct boundary integral equations. The eigenfunctions in Eλ
D

(

P,Ω−
)

and Eλ
N

(

P,Ω−
)

foil uniqueness of solutions of the boundary integral problems (DBPλ) and (NBPλ). The

next lemmas completely characterize the kernels of the operators Aλ and Dλ.

Lemma 2. ker (Aλ) = T
−
P,N

(

Eλ
D

(

P,Ω−
))

Proof. (⇐) Suppose that λ ∈ ΛD and let 0 6= U ∈ Eλ
D

(

P,Ω−
)

. By Lemma 1, the valid Cauchy data
(

0,T−
P,NU

)

∈ HD ×HN for the interior problem is in the kernel of the exterior Caldéron projection. The

first row of the matrix equation
(

−AλT
−
P,NU(

−Bλ + 1
2
Id
)
T

−
P,NU

)

=

(

−Cλ + 1
2
Id −Aλ

−Dλ −Bλ + 1
2
Id

)(

0
T

−
P,NU

)

= P
+
λ

(

0
T

−
P,NU

)

= 0(20)

reads T−
P,NU ∈ ker (Aλ).

(⇒) If ξ ∈ HN is such that Aλξ = 0, then

P
+
λ

(

0
ξ

)

=

(

0
(
−Bλ + 1

2
Id
)
ξ

)

.

Lemma 1 then guarantees that
(

0,
(
−Bλ + 1

2
Id
)
ξ
)⊤

is valid Cauchy data for the exterior boundary value

problem (DP+
λ ). By Assumption 2, the unique solution to (DP+

λ ) with g = 0 is trivial, so it must be that
Bλξ =

1
2
ξ. Therefore, we find that

P
−
λ

(

0
ξ

)

=

(

Cλ + 1
2
Id Aλ

Dλ Bλ + 1
2
Id

)(

0
ξ

)

=

(

0
ξ

)

We conclude relying on Lemma 1 again that there exists 0 6= U ∈ Eλ
D

(

P,Ω−
)

with T
−
P,NU = ξ. �

Because of the formal symmetry in the structure of the Caldéron identities, we also conclude from the
above demonstration that the kernel of Dλ is spanned by the Dirichlet traces of the interior Neumann
eigenfunctions of P.

Lemma 3. ker (Dλ) = T
−
P,D

(

Eλ
N

(

P,Ω−
))

The operators on the right hand sides of (DBPλ) and (NBPλ) display similar properties.

Lemma 4. ker
(
−Bλ + 1

2
Id
)
= T

−
P,N

(

Eλ
D

(

P,Ω−
))

Proof. (⇐) Suppose that λ ∈ ΛD and let U ∈ Eλ
D

(

P,Ω−
)

. Using Theorem 1, the valid Cauchy data
(

0,T−
P,NU

)

∈ HD ×HN belongs to the kernel of P+
λ . We read from (20) that T−

P,NU ∈ ker
(
−Bλ + 1

2
Id
)
.

(⇒) If
(
−Bλ + 1

2
Id
)
ξ = 0, then similarly as in the proof of Lemma 2,

P
+
λ

(

0
ξ

)

=

(

−Aλξ
0

)

,

which by Lemma 1 shows that (Aλξ, 0) is valid Cauchy data for the exterior boundary value problem. By
Assumption 2, the unique solution to (DP+

λ ) with η = 0 is trivial, so it must be that Aλξ = 0. The conclusion
follows from Lemma 2. �

The following result shouldn’t come as a surprise now.
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Lemma 5. ker
(
−Cλ + 1

2
Id
)
= T

−
P,D

(

Eλ
N

(

P,Ω−
))

Corollary 1. A solution to the Dirichlet variational problem (DBPλ) is unique if and only if λ /∈ ΛD.

Corollary 2. A solution to the Neumann variational problem (NBPλ) is unique if and only if λ /∈ ΛN .

4.2. Kernel of the domain-boundary symmetric coupling. At this point, we are well equipped to
study the kernel of the operator

P :=




Ψ−

(

T
−
L,Φ

)∗

Dλ ◦ T−
L,D

(

T
−
L,Φ

)∗ (
−Bλ + 1

2
Id
)

(
Cλ + 1

2
Id
)

Aλ





shown here in “variational arrangement”.

Proposition 1. The following are equivalent.

(1) (U, ξ) ∈ V(Ω−)×HN is in the kernel of P.
(2) The pair (U, ξ) ∈ V(Ω−)×HN is such that

• LU = 0 in the sense of distribution,

•
(

T
−
L,NU − ξ

)

∈ T
−
P,NE

λ
D

(

P,Ω−
)

,

•
(

T
−
L,DU,T

−
L,NU

)

is valid Cauchy data for (DP+
λ ).

Proof. (1 ⇒ 2) Suppose that (U, ξ) ∈ V(Ω−)×HN is such that

〈
ΨU, V

〉
+
〈
(

−Bλ +
1

2
Id

)

ξ,TL,ΦV
〉
+
〈
−DλT

−
L,DU,TL,ΦV

〉
= 0,

〈
(

Cλ +
1

2
Id

)

T
−
L,DU, ζ

〉
+
〈
Aλ ξ, ζ

〉
= 0.

There are three elements that we need to check.
Testing with V ∈ D (Ω), we immediately find that LU = 0 holds in the sense of distributions .
Therefore, we can rely on Assumption 7 and use the generalized version (19) of Green’s first formula to

obtain
〈
(

−Bλ +
1

2
Id

)

ξ,T−
L,ΦV

〉
+
〈
−DλT

−
L,DU,T

−
L,ΦV

〉
=
〈
T

−
L,NU,T

−
L,ΦV

〉
,(21)

〈
(

Cλ +
1

2
Id

)

T
−
L,DU, ζ

〉
+
〈
Aλ ξ, ζ

〉
= 0.(22)

This allows us to evaluate

P
+
λ

(

T
−
L,DU

ξ

)

=

(

−Cλ + 1
2
Id −Aλ

−Dλ −Bλ + 1
2
Id

)(

T
−
L,DU

ξ

)

=

(

T
−
L,DU

T
−
L,NU

)

,

where the last equality was obtained by adding T
−
L,DU on both sides of (22). By Theorem 1, this tells us

that the pair
(

T
−
L,DU,T

−
L,NU

)

∈ HD ×HN is valid exterior Cauchy data for (DP+
λ ) .

As such, it must lie in the kernel of the interior Caldéron projector. Since from (21) and (22) respectively
we know that

AλTL,DU = −Aλξ,

DλTL,DU =

(

−Bλ +
1

2
Id

)

ξ − TL,NU,
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we find that

0 = P
−
λ

(

T
−
L,DU

T
−
L,NU

)

=

(

Cλ + 1
2
Id Aλ

Dλ Bλ + 1
2
Id

)(

T
−
L,DU

T
−
L,NU

)

=






Aλ

(

T
−
L,NU − ξ

)

(
−Bλ + 1

2
Id
) (

ξ − T
−
L,NU

)




(23)

and conclude from Lemma 2 that T−
L,NU − ξ ∈ T

−
P,NE

λ
D

(

P,Ω−
)

.

(2 ⇒ 1) Since T
−
L,NU − ξ is the interior Neumann trace of a Dirichlet λ-eigenfunction of P, it follows from

Lemma 2 and Lemma 4 that

AλT
−
NU = Aλξ,

and (

−Bλ +
1

2
Id

)

T
−
NU =

(

−Bλ +
1

2
Id

)

ξ.

Moreover, because LU = 0 in the sense of distributions, then Assumption 7 guarantees that U ∈ X
(

L,Ω−
)

with
〈
ΨU, V

〉
=
〈
− T

−
L,NU,TL,ΦV

〉

Γ
for all V ∈ V

(

Ω−
)

.

Therefore,

〈
P

(

U
ξ

)

,

(

V
ζ

)

〉
=
〈
(

Cλ + 1
2
Id Aλ

−Dλ −Bλ + 1
2
Id

)(

T
−
L,DU

T
−
L,NU

)

−

(

0
T

−
L,NU

)

,

(

TL,ΦV
ζ

)
〉

=
〈
(

Id 0
0 −Id

)

P
−
λ

(

T
−
L,DU

T
−
L,NU

)

,

(

TL,ΦV
ζ

)
〉

vanishes for all (V, ζ) ∈ V (Ω) ×HN , since valid exterior Cauchy data for P − λId lies in the kernel of the
interior Caldéron projector. This shows (U, ξ) ∈ ker (P). �

The previous characterization is technical, but it tells us a lot more than meets the eye. It leads to the
following main result.

Theorem 1. The interior function U ∈ V
(

Ω−
)

of a solution pair (U, ξ) ∈ V
(

Ω−
)

× HN solving the

coupled variational problem (CPλ) is always unique. If λ /∈ ΛD, then the boundary data ξ is also unique.

It is otherwise only unique up to summation with a boundary function lying in T
−
P,N

(

Eλ
D

(

P,Ω−
))

. In

other words,

(24) ker (P) = {0} × T
−
P,NE

λ
D

(

P,Ω−
)

.

Proof. Suppose that the pair
(

U in, ξ
)

∈ V(Ω−) × HN is in the kernel of P. By Proposition 1, U in ∈

X
(

L,Ω−
)

and it solves LU in = 0 in the sense of distributions. The lemma also guarantees that the boundary

field
(

T
−
L,DU

in,T−
L,NU

in
)

is valid Cauchy data for (DP+
λ ). Thus, ∃Uext ∈ X

(

P,Ω+
)

with PU − λU = 0

satisfying T
−
L,DU

in = T
+
P,DU

ext and T
−
L,NU

in = T
+
P,NU

ext.

The function U ∈ L2
(

R
3
)

defined by U |Ω− := U in and U |Ω+ := Uext, where the restrictions are

understood in the sense of distributions, is a solution to the transmission problem (TPλ) with g = 0 and
η = 0. Therefore, by Assumption 5, it can only be the trivial solution.

In particular, U in = 0. Going back to Proposition 1 with this new information, we are left with the

assertion that ξ ∈ T
−
P,NE

λ
D

(

P,Ω−
)

. �
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4.3. Recovery of field solution in Ω+. In practice, one is less interested by the solution pair
(

U in, ξ
)

of

(CPλ) than by the actual simulation
(

U in, Uext
)

solving the transmission problem (TPλ). To recover the

exterior function Uext, we use the exterior representation formula

(25) Uext = −SLλ

(

T
+
P,NU

)

−DLλ

(

T
+
P,DU

)

obtained from (18). This step was called post-processing in the introduction.

It goes as follows. The right hand side of (25) defines an operator R : HD ×HN → X
(

P,Ω+
)

by

R

(

h
ζ

)

= −SLλ (ζ)−DLλ (h)

Therefore, given a solution pair
(

U in, ξ
)

solving (CPλ), one retrieves the value of the scattered wave at a

location x ∈ Ω+ in the exterior region by computing

(26) Uext (x) = R

(

TL,DU
in − g
ξ

)

(x) .

Because (24) was established in Theorem 1, we need to verify the following.

Proposition 2. {0} × T
−
P,NE

λ
D

(

P,Ω−
)

⊂ ker (R)

Proof. Let ξ ∈ T
−
P,NE

λ
D

(

P,Ω−
)

. Using the jump identities of Assumption 4, we notice that

T
+
P,D R

(

0
ξ

)

= −{TP,D} SLλ (ξ)

= −Aλ (ξ)

vanishes by Lemma 2. We conclude that R

(

0
ξ

)

solves (DP+
λ ) with g = 0. By assumption 2, this can only

occur for R (0 ξ)⊤ = 0 in L2
(

Ω+
)

. �

Since R is linear, this confirms uniqueness of the pair
(

U in, Uext
)

, and along with it validity of the

coupled problem (CPλ) as a physical model for electromagnetic and acoustic transmission problems.

5. Conclusion

We have abstracted the common characteristics of the three particular problems presented in 2.2. As a
consequence, Costabel’s original symmetric coupling was generalized to allow for a larger class of operators.
The issues raised by spurious resonant frequencies were found to be rooted in the formal structure detailed
by the framework of section 2. In section 4, the consequences of their existence were investigated. In
doing so, the kernels of the operators entering the problems (DBPλ), (NBPλ) and (CPλ) were completely
characterized. It was also shown that the Neumann eigenfunctions which thwart the uniqueness of solutions
for the coupled problem vanish under the exterior representation formula, thus showing that the complete
field solution U remains unique despite the existence of spurious resonance frequencies. Symmetric couplings
therefore remain valuable starting point for Galerkin discretization.
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