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Abstract. We couple the mixed variational problem for the generalized Hodge-Helmholtz or
Hodge-Laplace equation posed on a bounded three-dimensional Lipschitz domain with the first-kind
boundary integral equation arising from the latter when constant coefficients are assumed in the
unbounded complement. Recently developed Calderón projectors for the relevant boundary integral
operators are used to perform a symmetric coupling. We prove stability of the coupled problem
away from resonant frequencies by establishing a generalized G̊arding inequality (T-coercivity). The
resulting system of equations describes the scattering of monochromatic electromagnetic waves at
a bounded inhomogeneous isotropic body possibly having a “rough” surface. The low-frequency
robustness of the potential formulation of Maxwell’s equations makes this model a promising starting
point for Galerkin discretization.
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1. Introduction. Inside a bounded inhomogeneous isotropic physical body Ωs,
the potential formulation of Maxwell’s equations in frequency domain driven by a
source current J with angular frequency ω > 0 reads [11]

curl
(
µ−1(x) curlU

)
+ iωǫ(x)∇V − ω2ǫ(x)U = J

div
(
ǫ(x)U

)
+ iωV = 0,(1.1)

where the Lorentz gauge relates the scalar potential V to the vector potential U in
(1.1). Elimination of V using this relation leads to the Hodge-Helmholtz equation

curl
(
µ−1(x) curlU

)
− ǫ(x)∇ div

(
ǫ(x)U

)
− ω2ǫ(x)U = J.

Away from the source current, in the unbounded region Ω′ := R
3\Ωs outside the

scatterer, where we assume a homogeneous material with scalar constant permeability
µ0 and dielectric permittivity ǫ0, equation (1) reduces to

curl curlU− η∇ divU− κ2U = 0,

with constant coefficients η = µ0ǫ
2
0 and κ2 = µ0ǫ0ω

2.
The material coefficients are assumed to be bounded in R

3, i.e. µ, ǫ ∈ L∞(R3).
In a non-dissipative medium, the functions µ and ǫ are real-valued and uniformly
positive. Dissipative effects are captured by adding non-negative imaginary parts to
the coefficients [4, Sec. 1.1.3]. We follow [21] and explicitly suppose that

0 < µmin ≤ Re(µ) ≤ µmax, 0 ≤ Im(µ),

0 < ǫmin ≤ Re(ǫ) ≤ ǫmax, 0 ≤ Im(ǫ).

0 ≤ Re

(
κ2
)
, 0 ≤ Im

(
κ2
)
.
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Let Ωs ⊂ R
3 be a bounded domain with Lipschitz boundary Γ =: ∂Ω [36, Def.

2.1]. We suppose for simplicity that its de Rham cohomology is trivial. For given data
J ∈ L2(Ωs), gR ∈ H−1/2(divΓ), gn ∈ H−1/2(Γ), ζD ∈ H1/2(Γ) and ζt ∈ H−1/2(curlΓ),
we are interested in the following PDEs in R

3:

Transmission Problem

Volume equations

curl
(
µ−1(x) curlU

)
− ǫ(x)∇ div

(
ǫ(x)U

)
− ω2ǫ(x)U = J, in Ωs,(1.2a)

curl curlUext − η∇divUext − κ2 Uext = 0, in Ω′,(1.2b)

Transmission conditions

γ−R,µ(U) = γ+RUext + gR, γ−n,ǫ(U) = γ+n (Uext) + gn, on Γ,(1.3a)

γ−D,ǫ(U) = η γ+DUext + ζD, [γtU]Γ = ζt, on Γ,(1.3b)

where the traces are defined for a smooth vector-field U by

γ−R,µ(U) := −γ−τ
(
µ−1 (x) curl(U)

)
, γ+R (Uext) := −γ+τ

(
curl

(
Uext

))
,

γ−D,ǫ(U) := γ−
(
div
(
ǫ (x) U

))
, γ+D(Uext) := γ+

(
div
(
Uext

))
,

γ−n,ǫ(U) := γ−n (ǫ (x) U) γ±t (U) := n×
(
γ±τ (U)

)
.

We used in those definitions the classical traces

γ (U) := U
∣∣
Γ
, γn (U) := γ (U) · n, γτ (U) := γ (U)× n.

Each of these traces can be extended by continuity to larger Sobolev spaces. The
more detailed functional analysis setting in which they must be considered will be
reviewed in the next section.

The equations (1.3a) and (1.3b) are transmission conditions for Hodge–Helmholtz
and Hodge–Laplace problems [21, Sec. 2.1.2]. In literature, condition (1.3a) is labeled
as “magnetic”, while (1.3b) is referred to as “electric” (simply because one recovers
the magnetic field by taking the curl of the potential U). It is very well possible
to “guess” these transmission conditions either by glancing at equation (1.2a) or by
translating the classical boundary conditions for the electric and magnetic fields to
the potential formulation [11]. However, it is emphasized in [14] and [15] that the
traces also appear formally in Green’s formula

∫

Ω′

U ·
(
−∆ηV

)
dx−V ·

(
−∆ηU

)
dx = −η〈γ+n U, γ+DV〉+ η〈γ+DU, γ+n V〉

+ 〈γ+RV, γ+t U〉 − 〈γ+RU, γ+t V〉,

where −∆η := curl curl− η div∇ is the Hodge-Laplace operator.
For positive frequencies ω > 0, we supplement (1.2a)-(1.3b) with the variants of

the Silver-Muller’s radiation condition imposed at infinity provided in [21]. In the
static case where κ = ω = 0, we seek a solution in an appropriate weighted Sobolev
space that accounts for decay conditions [35, Sec. 2.5].
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Remark 1. When derived from Maxwell’s equations stated in terms of the mag-
netic and electric fields, the classical wave equation for an electric field E reads

(1.4) curl
(
µ−1 (x) curlE

)
− κ2 ǫ (x) E = J.

The regularizing term ǫ∇div (ǫU) which appears in (1.2a), but not in (1.4), makes
for a significant structural difference [21]. For suitable boundary conditions, the zero-
order term ω2ǫU in (1.2) is a compact perturbation in the weak formulation of the
Hodge-Helmholtz equation. Ergo, coercivity of the associated boundary value problem
is preserved in the low frequency limit ω → 0. This is not the case for the “Maxwell
operator” found on the left hand side of (1.4), whose associated scattering equation
is characterized by an “incessant conversion” between electric and magnetic energies
that play symmetric roles [10]. Functionally, the infinite dimensional kernel of the
curl operator thwart compactness of the embedding H (curl,Ωs) →֒ L2 (Ωs). This
is different from the weak variational formulation of the scalar Helmholtz equation
−∆u − κ2u = f . In that model of acoustic scattering, potential energy turns out to
be a compact perturbation of the kinetic energy due to by Rellich’s compact embedding
H1 (Ωs) →֒ L2 (Ωs).

Remark 2. It is stressed in [11] that from the rapid development in quantum
optics emerged the need for electromagnetic models valid in both classical and quantum
regimes. Robustness of the potential formulation of Maxwell’s equations in the low
frequency limit makes it a promising candidate for bridging physical scales.

Remark 3. The terminology used above is rooted in geometry. The equations
(1.2a)-(1.2b) contain generalized instances of the Hodge–Helmholtz operator −∆ −
κ2Id = δ d+d δ − κ2Id as it applies to differential 1-forms defined over 3D differen-
tiable manifolds. When ω = κ = 0, the left hand sides reduce to applications of the
Hodge-Laplace operator. We refer to [25] and [23] for a thorough introduction to the
formulation of Maxwell’s equations in terms of differential/integral forms.

Remark 4. Boundary integral operators of the second-kind were extensively stud-
ied in the literature devoted to the Hodge-Laplace and Hodge-Helmholtz operators
acting on differential forms over smooth manifolds (e.g. [30], [31], [35] and [28]).
However, little attention was paid to the formulation of Hodge-Helmholtz/Laplace
boundary value problems as first-kind boundary integral equations. Only recently,
a boundary integral representation formula for Hodge-Helmholtz/Laplace equation in
three-dimensional Lipschitz domains was derived in [14] which leads to boundary in-
tegral operators of the first-kind inducing bounded and coercive sesquilinear forms in
the natural energy spaces for that equation. These innovative investigations are par-
ticularly relevant to the numerical analysis community. Operators admitting natural
variational formulations in well-known energy trace spaces via duality are appealing
for the development and numerical analysis of new Galerkin discretizations. For the
case κ2 = 0 of the Hodge–Laplace operator in 3D, a thorough a priori analysis of a
Galerkin BEM was already proposed in [15] with additional experimental evidence.

In the following, we couple the mixed formulation of the weak variational prob-
lem associated to (1.2a) with the first-kind boundary integral equation arising from
(1.2b) using these recently developed Calderón projectors for the Hodge–Helmholtz
and Hodge-Laplace operators. This paves the way for the design of finite element
methods discretizing Hodge-Laplace and Hodge-Helmholtz transmission problems.
The proof of the well-posedness of the coupled problem relies on T-coercivity (c.f.
[13]).
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2. Preliminaries. In the subsequent analysis, we will make use of various spaces
that have become classical in the literature concerned with electromagnetism. Devel-
opment of the trace-related theory for Lipschitz domains can be followed in [6], [7] and
[9]. We summarize its details to fix notation and recall important results. In the next
subsections, we slightly generalize the traces to account for the varying coefficients of
(1.2a) and adapt them to the system of equations at hand. In Section 2.4, we extend
the analysis performed in [24] for the classical electric wave equation to the boundary
integral operators arising from Hodge-Helmholtz and Hodge-Laplace problems. In
this section, Ω can denote either Ωs or Ω′.

2.1. Volume function spaces. As usual, L2(Ω) and L2(Ω) denote the Hilbert
spaces of square integrable scalar and vector-valued functions defined over Ω. We
denote their inner products using round brackets, e.g. (·, ·)Ω. Similarly, for k ∈ N,
Hk(Ω) and Hk(Ω) refer to the corresponding Sobolev spaces. We write C∞

0 (Ω) for
the space of smooth compactly supported function in Ω, but denote by D(Ω)3 the
analogous space of vector fields to simplify notation. Their closures H1

0 (Ω) and H1
0(Ω)

in the norms of H1(Ω) and H1(Ω), respectively, are the kernels of the scalar and
vector-valued Dirichlet traces, which we both denote γ alike. C∞(Ω) is defined as
the space of uniformly continuous functions over Ω that have uniformly continuous
derivatives of all order. The Banach spaces

H(div,Ω) := {U ∈ L2(Ω) | div(U) ∈ L2(Ω)},
H(ǫ; div,Ω) := {U ∈ L2(Ω) | ǫ(x)U ∈ H(div,Ω)},
H(curl,Ω) := {U ∈ L2(Ω) | curl (U) ∈ L2(Ω)},
H (∇div,Ω) := {U ∈ H (div,Ω) | div(U) ∈ H1(Ω)},

H (ǫ;∇div,Ωs) := {U ∈ L2(Ω) | ǫ(x)U ∈ H (∇div,Ω)},
H(curl2,Ω) := {U ∈ H(curl,Ω) | curl(U) ∈ H(curl,Ω)},

H(µ−1; curl2,Ω) := {U ∈ H(curl,Ω) |µ−1 curl(U) ∈ H(curl,Ω)},

equipped with the obvious graph norms will prove to be important.
The variational space for the primal variational formulation of the classical and

generalized Hodge–Helmholtz/Laplace operator is given by

X(∆,Ω) := H(curl2,Ω) ∩H (∇div,Ω) .

A subscript is used to identify spaces of locally integrable functions/vector fields,
e.g. U ∈ L2

loc(Ω) if and only if φU is square-integrable for all φ ∈ C∞
0 (R3). We denote

with an asterisk the spaces of functions with zero mean, e.g. H1
∗ (Ω).

2.2. Trace spaces. Rademacher’s theorem [19, Thm. 3.1.6] guarantees that
the boundary Γ =: ∂Ω of a Lipschitz domain Ω admits a surface measure σ and an
essentially bounded unit normal vector field n ∈ L∞(Γ) directed toward the exterior
of Ω. These ingredients warrant Gauß’ formulae [29, Thm. 3.34].

2.2.1. Classical traces. For U,V ∈ C∞(Ω) and P ∈ C∞(Ω), the two identi-
ties div(UP ) = div(U)P + U · ∇P and div(U × V) = curl(U) · V − curl(V) · U
hold; therefore, the divergence theorem yields —whenever the integrals are defined—
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Green’s formulae (+ for Ω = Ωs)

±
∫

Ω

div(U)P +U · ∇P dx =

∫

Γ

γ (P ) γn (U) dσ,(2.1a)

±
∫

Ω

U · curl (V)− curl (U) ·V dx =

∫

Γ

γ (V) · γτ (U) dσ,(2.1b)

where (2.1b) is valid since γ (U×V) · n = −(γ (U) × n) · γ (V) is defined almost
everywhere. Since the unique extension γ : H1

loc(Ω) → H1/2(Γ) of the Dirichlet trace
is a bounded operator with a continuous right-inverse E [29, Thm. 3.37], these traces
can be extended by continuity to bounded operators γn : Hloc (div,Ω) → H−1/2(Γ)
and γτ : Hloc (curl,Ω) → H−1/2(Γ) with null spaces ker(γn) = H0(div,Ω) :=

D(Ω)3
H(div,Ω)

and ker(γτ ) = H0(curl,Ω) := D(Ω)3
H(curl,Ω)

[20, Chap. 2]. Evi-
dently, these extensions generalize (2.1a) to functions U ∈ H(div,Ω), P ∈ H1(Ω)
[32, Thm. 3.24] and (2.1b) to U ∈ H(curl,Ω), V ∈ H1(Ω) [32, Thm. 3.29], where
the boundary terms are to be understood as duality parings 〈·, ·〉Γ with pivot spaces
L2(Γ) and L2(Γ), respectively.

While the normal component trace γn described thus is seen to be surjective
[20, Cor. 2.8], it is evident from (v × n) · n = 0 ∀v ∈ L2(Γ) that the image of
the tangential trace γτ acting on Hloc (curl,Ω) is a tangential proper subspace of
H−1/2(Γ). Naturally, the same holds true for the extension γt : Hloc (curl,Ω) →
H−1/2(Γ) of the tangential components trace γt(U) := n× γτ (U).

Tangential differential operators are required to remedy this problem. For ξ ∈
H1/2(Γ), let curlΓ(ξ) ∈ H−1/2(Ω) be uniquely determined by

〈γ(V ), curlΓ(ξ)〉Γ = 〈γτ (∇V ), ξ〉Γ, ∀V ∈ C∞(Ω).

As curl ◦ ∇ = 0, ∇
(
H1

loc(Ω)
)
⊂ Hloc (curl,Ω), and the operator γτ ◦ ∇ : H1

loc(Ω) →
H−1/2(Ω) is bounded accordingly. In that sense, curlΓ : H1/2(Γ) → H−1/2(Γ) is
adjoint to the vectorial tangential curl operator curlΓ := γτ ◦ ∇ ◦ E : H1/2(Γ) →
H−1/2(Γ), whose definition is independent of the choice of right-inverse since H1

0(Ω) ⊂
ker(γτ ◦ ∇). Concretely, Green’s formulae show that curlΓ = γn ◦ curl ◦ E . Inde-
pendence of this expression from the choice of lifting E is guaranteed by the inclusion
of H1

0(Ω) in ker (γn ◦ curl). Similarly, the tangential divergence divΓ : H1/2(Γ) →
H−1/2(Ω), defined as the rotated operator divΓ(p) := curlΓ (n× p), is adjoint to the
negative surface gradient ∇Γ := γt ◦ ∇ ◦ E , that is 〈∇Γ q,p〉τ = −〈 q, divΓ (p)〉.

The space of traces H
1/2
T (Γ) := γt(H

1
loc(Ω)) and of rotated traces H

1/2
R (Γ) :=

n×H
1/2
T (Γ) are complete when equipped with the norms

‖v‖
H

1/2
T (Γ)

:= inf{U ∈ H1
loc(Ω) | γt(U) = v}, ‖u‖

H
1/2
R (Γ)

:=‖n× u‖
H

1/2
T (Γ)

,

that enforce continuity of the traces [9, def. 2.2].

Lemma 2.1 (See [24, Lem. 3.2]). The embeddings H
1/2
T (Γ), H

1/2
R (Γ) →֒ L2

t (Γ)
are compact.

Based on these intermediate spaces, we define subspaces

H−1/2(curlΓ,Γ) := {ξ ∈ H
−1/2
T (Ω) | curlΓ(ξ) ∈ H−1/2(Γ)},(2.2a)

H−1/2(divΓ,Γ) := {p ∈ H
−1/2
R (Ω) | divΓ(p) ∈ H−1/2(Γ)},(2.2b)
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onto which γt and γτ are continuous and surjective [9, Thm. 4.1], respectively. These
subspaces can be put in duality with a pairing 〈·, ·〉τ for which L2

t (Γ), the space of
square integrable tangent vector fields on Γ, act as pivot space [9, Sec. 5]. Then, the
extension of (2.1b) to any U,V ∈ H(curl,Ω) reads [32, Thm. 3.31]

(2.3) ±
∫

Ω

U · curl (V)− curl (U) ·V dx = 〈γt (V) , γτ (U)〉τ .

Finally, upon defining γR := −γτ ◦curl : Hloc(curl
2,Ω) → H−1/2(divΓ,Γ), which

satisfies for all V ∈ H(curl,Ω) the crucial integral identity

(2.4) ±
∫

Ω

curl curlU ·V − curlU · curlV dx = 〈γt(V), γR(U)〉τ ,

and γD := γ ◦div : Hloc(∇div,Ω) → H1/2(Γ), we are equipped with a full set of traces
to tackle Hodge–Laplace and Hodge–Helmholtz problems.

We indicate with curly brackets the average

{γ•} :=
1

2

(
γ+• + γ−•

)

of a trace and with square brackets its jump

[γ•] := γ−• − γ+•

over the interface Γ, • = R, D, t, τ , or n. Analogous notation will be used for the
compounded traces introduced in the next section.

Warning. Notice the sign in the jump [γ] = γ− − γ+, which is often taken to be
the opposite in the literature!

Lemma 2.2 (See [14, Lem. 6.4]). The surface divergence extends to a continuous

surjection divΓ : H−1/2(divΓ,Γ) → H
−1/2
∗ (Γ), while curlΓ : H

1/2
∗ → H−1/2(divΓ,Γ)

is a bounded injection with closed range such that curlΓ(ξ) = ∇Γ(ξ) × n for all
ξ ∈ H1/2(Γ). They satisfy divΓ ◦ curlΓ = 0.

2.2.2. Compounded trace spaces. As explained in [14, Sec. 3], a theory of
differential equations for the Hodge–Helmholtz/Laplace problem in three dimensions
entails partitioning our collection of traces into two “dual” pairs. Accordingly, we
now introduce new mappings T −

D,ǫ : Hloc(curl,Ωs) ∩Hloc(ǫ;∇div,Ωs) → HD(Γ) and

T −
N,µ : Hloc(µ

−1; curl2,Ωs) ∩Hloc(ǫ; div,Ωs) → HN (Γ) which we define by

T −
D,ǫ (U) :=

(
γ−t (U)
γ−D,ǫ(U)

)
, T −

N,µ (U) :=

(
γR,µ(U)
γ−n,ǫ(U)

)
,

respectively, where

HD := H−1/2(curlΓ,Γ)×H1/2(Γ), HN := H−1/2(divΓ,Γ)×H−1/2(Γ).

The related classical compounded traces are defined similarly by
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T +
D (U) :=

(
γ+t (U)
γ+D,η(U)

)
, T +

N (U) :=

(
γR(U)
γn(U)

)
.

The choice of subscripts is motivated by the analogy between this pair of traces
and the classical Dirichlet and Neumann boundary conditions for second-order elliptic
BVPs. The trace spaces HD and HN are put in duality using the sum of the inherited
component-wise duality parings. That is, for ~p = (p, q) ∈ HN and ~η = (η, ζ) ∈ HD,
we define

(2.5) 〈~p, ~η〉 := 〈p,η〉τ + 〈q, ζ〉Γ.

The importance of the spaces (2.2a)-(2.2b) is highlighted by this next result.

Lemma 2.3 (See [14, Lem. 3.2]). The compound traces TD and TN have contin-
uous right inverses, i.e. lifting maps RD : HD → X(∆,Ω) and RN → X(∆,Ω),
respectively.

2.3. Boundary potentials. By exploiting the radiating fundamental solution

Gν(x) := exp
(
iν|x|

)
/4π|x|

for the scalar Helmholtz operator ∆− ν2Id, it is shown in [14, Sec. 4.2] that a distri-
butional solution U ∈ L2(R3) such that U|Ωs

∈ X(∆,Ωs) and U|Ω′ ∈ Xloc(∆,Ω
′) of

the homogeneous (scaled) Hodge–Helmholtz/Laplace equation (1.2b) with constant
coefficients η > 0, κ ≥ 0, stated in the whole of R3 with radiation conditions at infin-
ity as considered in Section 1, affords a representation formula.

Representation Formula

(2.6) U = SLκ · [TN (U)] +DLκ · [TD(U)].

Letting κ̃ = κ/
√
n, the Hodge-Helmholtz single layer potential is explicitly given

by

(2.7) SLκ

((
p

q

))
= −Ψκ(p)−∇ψ̃k

(
divΓ(p)

)
+∇ψκ̃(q),

where the Helmholtz scalar single-layer, vector single-layer and the regular poten-
tials are written individually for p ∈ H−1/2(divΓ,Γ) and q ∈ H−1/2(Γ) as
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ψκ̃(q)(x) :=

∫

Γ

q(y)Gκ̃(x− y) dσ(y), x ∈ R
3\Γ,(2.8a)

Ψκ(p)(x) :=

∫

γ

p(y)Gκ(x− y) dσ(y), x ∈ R
3\Γ,(2.8b)

ψ̃κ(q)(x) :=

∫

Γ

q(y)
Gκ −Gκ̃

κ2
(x− y) dσ(y), x ∈ R

3\Γ,(2.8c)

respectively. The expression (2.7) is derived with (2.8a)-(2.8c) understood as du-
ality pairings. However, if the essential supremum of p, q and divΓ(p) is bounded,
then they can safely be computed as improper integrals [14, Rmk. 4.2].

Lemma 2.4 (See [24, Lem. 4.1]). The single layer potentials (2.8a) and (2.8b)

are continuous mappings ψν : H−1/2(Γ) → H1
loc(R

3) and Ψν : H
−1/2
T (Γ) → H1

loc(R
3).

The classical potentials solve the equations

− div∇ψκ̃(q) = κ̃2ψκ̃(q),(2.9a)

−∆Ψκ(p) = κ2Ψκ(p),(2.9b)

−div∇ψ̃κ(q) = ψκ(q) +
1

η
ψκ̃(q),(2.9c)

and satisfy the identity [27, Lem. 2.3]

divΨν(p) = ψν (divΓp) , ∀p ∈ H−1/2(divΓ,Γ).(2.10)

These observations are used along with Lemma 2.4 in the proof the following lemma.

Lemma 2.5 (See [14, Sec. 5]). The potentials ∇ψκ̃, Ψκ and ∇ψ̃κ are continuous
mappings from H−1/2(Γ) and H−1/2(divΓ,Γ) into X(∆,Ωs) or Xloc(∆,Ω

′).

Corollary 2.6. The Hodge–Laplace/Helmholtz single layer potential is a con-
tinuous map from HN into X(∆,Ωs) or Xloc(∆,Ω

′).

Ultimately, we will resort to a Fredholm alternative argument to prove well-
posedness of the coupled system. It is therefore evident that the compactness prop-
erties of the boundary integral operators introduced in the next Lemma will be ex-
tensively used both explicitly and implicitly —notably through exploiting the results
found in [14, Sec. 6].

Lemma 2.7 (see [33, Lem. 3.9.8] and [10, Lem. 7]). For any ν ≥ 0, the following
operators are compact:

γ± (ψν − ψ0) :H
−1/2(Γ) → H1/2(Γ)

γ±n (∇ψν −∇ψ0) :H
−1/2(Γ) → H−1/2(Γ)

γ±t (Ψν −Ψ0) :H
−1/2(divΓ,Γ) → H−1/2(curlΓ,Γ)

γ±n ∇ψ̃ν :H−1/2(Γ) → H−1/2(Γ)
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Proof. Compactness of the second boundary integral operator listed in the state-
ment of Lemma 2.7 immediately entails compactness of

ν2γ±n ∇ψ̃ν = γ±n (∇ψν −∇ψν̃) = γ±n (∇ψν −∇ψ0)−
(
γ±n (∇ψν̃ −∇ψ0)

)

by linearity. While it seems that blow-up occurs in ψ̃ν as ν → 0, ∇ψ̃ν happens to be
an entire function of ν that vanishes at ν = 0 [14, Sec. 4.1].

The Hodge-Helmholtz double layer potential is given for η ∈ H−1/2(curlΓ,Γ) and
ξ ∈ H1/2(Γ) by

(2.11) DLκ

((
η

ξ

))
:= curlΨκ(η × n) + Υκ(ξ).

We recognize in (2.11) the (electric) Maxwell double layer potential (c.f. [24, Sec.
4], [10, Eq. 28]) and the normal vector single-layer potential

Υκ(ξ) :=

∫

Γ

ξ(y)Gκ(x− y)n(y) dσ(y), x ∈ R
3\Γ,(2.12)

in which appears the matrix-valued fundamental solution

Gκ := GκId +
1

κ2
∇2 (Gκ −Gκ̃)

satisfying −∆ηGκ − κ2Gκ = δ0Id exploited in [14] and detailed in [21, App. A].

Lemma 2.8 (See [14, Sec. 5.4]). The normal vector single layer potential Υκ is
a continuous mapping Υκ : H1/2(Γ) → H1

loc(R
3).

This surface potential solves the equation

(2.13) −∆ηΥκ(ξ) = κ2Υκ(ξ)

and satisfies the identity [14, Sec.5.4]

(2.14) curlΥκ(ξ) = curlΨκ(ξn)

These results can be used in proving the following lemma.

Lemma 2.9 (See [14, Sec. 5]). The potentials curlΨκ(· × n) and Υκ are con-
tinuous mappings from H−1/2(curlΓ,Γ) and H

1/2(Γ) respectively, into X(∆,Ωs) and
Xloc(∆,Ω

′).

Corollary 2.10. The Hodge-Helmholtz double layer potential is a continuous
map from HD into X(∆,Ωs) or Xloc(∆,Ω

′).

2.4. Integral operators. The well-known Caldéron identities are obtained from
(2.6) upon taking the classical compounded traces on both sides and utilizing the jump
relations
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Jump Relations

[TD] · DLκ(~η) = ~η, [TN ] · DLκ(~η) = 0, ~η ∈ HD,(2.15a)

[TD] · SLκ(~p) = 0, [TN ] · SLκ(~p) = ~p, ~p ∈ HN ,(2.15b)

given in [14, Thm. 5.1]. The operator forms of the interior and exterior Caldéron
projectors defined on HD ×HN , which we denote P

−
κ and P

+
κ respectively, enter the

Caldéron identites:
(
{TD} · DLk + 1

2 Id {TD} · SLk

{TN} · DLk {TN} · SLk + 1
2 Id

)

︸ ︷︷ ︸
=: P−

κ

(
T −
D U

T −
N U

)
=

(
T −
D U

T −
N U

)
,(2.16a)

(
−{TD} · DLk + 1

2 Id −{TD} · SLk

−{TN} · DLk −{TN} · SLk + 1
2 Id

)

︸ ︷︷ ︸
=: P+

κ

(
T +
D Uext

T +
N Uext

)
=

(
T +
D Uext

T +
N Uext

)
,(2.16b)

Note that P
−
κ + P

+
κ = Id and that the range of P+

κ coincides with the kernel of P−
κ

and vice-versa [10, Sec. 5]. As a consequence of the jump relations (2.15a)-(2.15b),
the representation formula (2.6) and the Lemma 2.3, we obtain the next proposition.

Lemma 2.11 (See [36, Lem. 6.18], [10, Thm. 8] and [14, Prop. 5.2]). The pair

of “magnetic” and “electric” traces (~η ~p)
⊤ ∈ HD ×HN is valid interior or exterior

Cauchy data, if and only if it lies in the kernel of P+
κ or P

−
κ respectively, i.e.

ker
(
P
+
κ

)
= {(~η ~p)

⊤ :=
(
T −
D (U) , T −

N (U)
)⊤

∈ HD ×HN

∣∣U ∈ X (∆,Ωs) ,

∆ηU+ κ2U = 0 in Ωs},

ker
(
P
−
κ

)
= {(~η ~p)

⊤ :=
(
T −
D (U) , T −

N (U)
)⊤

∈ HD ×HN

∣∣U ∈ Xloc

(
∆,Ω′

)
,

∆ηU+ κ2U = 0 in Ω′,U satisfying radiation conditions at infinity as in [21]}.
Inspecting equations (2.16a)-(2.16b) reveals that the Caldéron projectors share a

common structure. They can be written as

P
−
κ =

1

2
Id + Aκ and P

+
κ =

1

2
Id− Aκ,

where the Caldéron operator is given by

Aκ =

(
A

DD
κ A

ND
κ

A
DN
κ A

NN
κ

)
:=

(
{TD} · DLκ {TD} · SLκ

{TN} · DLκ {TN} · SLκ

)
: HD ×HN → HD ×HN .
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An analog of the operator matrix Ak was found convenient in the study of the
boundary integral equations of electromagnetic scattering problems [10, Sec. 6]. It is
known from [14] that the off-diagonal blocks of Ak independently satisfy generalized
G̊arding inequalities making them of Fredholm type with index 0. Injectivity holds
when κ2 lies outside a discrete set of “forbidden resonant frequencies” accumulating
at infinity [14, Sec. 3]. In the static case κ = 0, the dimensions of ker

(
{TN} · SL0

)

and ker
(
{TD} · DL0

)
are finite and agree with the zeroth and first Betti number of

Γ, respectively. [14, Sec. 7]
In the case of the classical electric wave equation, the boundary integral operators

involved in the Caldéron projectors enjoy a hidden symmetry:

Lemma 2.12 (See [24, Lem. 5.4] and [10, Lem. 6]). There exists a compact linear
operator Ck : H−1/2(divΓ,Γ) → H−1/2(divΓ,Γ) such that

〈{γR}Ψk(p),η〉τ = 〈p, {γt}Ψκcurl(η × n)〉τ + 〈Ckp,η〉τ

for all p ∈ H−1/2(divΓ,Γ) and η ∈ H−1/2(curlΓ,Γ).

We will extend Lemma 2.12 to the integral operators defined for the scaled Hodge-
Helmholtz/Laplace equation to better characterize the structure of (2.4). The sym-
metry we are about to reveal in the diagonal blocks of the Caldéron projectors will
be crucial in the derivation of the main T-coercivity estimate of this work. It will
be exploited for complete cancellation, up to compact terms, of the operators lying
on the off-diagonal of the block operator matrix associated to the coupled variational
system introduced in Section 3. The following lemmas are required.

Lemma 2.13. There exists a compact linear operator Ck : H−1/2(Γ) → H−1/2(Γ)
such that

〈{γn}∇ψκ̃(q), ξ〉Γ = −〈q, {η γD}Υκ(ξ)〉Γ + 〈Ckq, ξ〉,

for all q ∈ H−1/2(Γ), ξ ∈ H1/2(Γ).

Proof. This proof utilizes a strategy found in [24, Lem. 5.4] and [8, Thm. 3.9].
Let ρ > 0 be such that Bρ is an open ball containing Ωs. We will indicate with a hat
(e.g. γ̂) the traces taken over the boundary ∂Bρ of that ball. Due to the lemmas 2.5
and 2.9, we can use the extension of formula (2.1a) to compare the following terms.

On the one hand, using the scalar Helmholtz equation (2.9a) and recalling that
κ̃ = κ/

√
η, we have

〈η γ−D ∇ψκ̃(q), γ
−
n Υκ(ξ)〉Γ

=

∫

Ωs

η div
(
∇ψκ̃(q)

)
divΥk(ξ) + η∇div

(
∇ψκ̃(q)

)
·Υκ(ξ) dx

= −
∫

Ωs

κ2ψκ̃(q)divΥk(ξ) dx−
∫

Ωs

κ2∇ψκ̃(q) ·Υκ(ξ) dx,(2.17)
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and similarly,

〈η γ+D∇ψκ̃(q), γ
+
n Υκ(ξ)〉Γ =

∫

Ω′∩Bρ

κ2ψκ̃(q) divΥk(ξ) +∇ψκ̃(q) ·Υκ(ξ) dx

+〈η γ̂+D∇ψκ(q), γ̂
+
n Υκ(ξ)〉∂Bρ .

On the other hand, using (2.9a) together with the scaled Hodge-Helmholtz equation
(2.13), we also have

〈 γ−n ∇ψκ̃(q), η γ−D Υκ(ξ)〉Γ

=

∫

Ωs

η div
(
∇ψκ̃(q)

)
divΥκ(ξ) dx+

∫

Ωs

η∇ψκ̃(q) · ∇divΥκ(ξ) dx

= −
∫

Ωs

κ2ψκ̃(q) divΥκ(ξ) dx +

∫

Ωs

∇ψκ̃(q) · curl curlΥκ(ξ) dx

−
∫

Ωs

κ2∇ψκ̃(q) ·Υκ(ξ) dx.(2.18)

Equations (2.17) and (2.18) together yield

〈 γ−n ∇ψκ̃(q), η γ−D Υκ(ξ)〉Γ = 〈η γ−D ∇ψκ(q), γ
−
n Υκ(ξ)〉Γ

+

∫

Ωs

∇ψκ̃(q) · curl curlΥκ(ξ) dx .

Similarly, the terms involving the exterior traces satisfy

〈γ+n ∇ψκ̃(q), η γ
+
DΥκ(ξ)〉Γ = 〈η γ+D∇ψκ(q), γ

+
n Υκ(ξ)〉Γ− 〈η γ̂+D∇ψκ(q), γ̂

+
n Υκ(ξ)〉∂Bρ

−
∫

Ω′∩Bρ

∇ψκ̃(q) · curl curlΥκ(ξ) dx + 〈γ̂+n ∇ψκ̃(q), η γ̂
+
DΥκ(ξ)〉∂Bρ

.

From the first row of the jump properties [14, Sec. 5]

[γD]∇ψκ̃(q) = 0, [γn]Υκ(ξ) = 0,(2.19a)

[γD]Υκ(ξ) = ξ/η, [γn]∇ψκ̃(q) = q,(2.19b)

we obtain, by gathering the above results, integrating by parts again and using the
fact that curl ◦ ∇ ≡ 0,

〈γ−n ∇ψκ̃(q), η γ
−
DΥκ(ξ)〉Γ = 〈η γ+D∇ψκ(q), γ

+
n Υκ(ξ)〉Γ +

∫

Ωs

κ2∇ψκ̃(q) ·Ψκ(ξn) dx

= 〈γ+n ∇ψκ̃(q), η γ
+
DΥκ(ξ)〉Γ +

∫

Bρ

∇ψκ̃(q) · curl curlΥκ(ξ) dx

+〈η γ̂+D∇ψκ(q), γ̂
+
n Υκ(ξ)〉∂Bρ − 〈γ̂+n ∇ψκ̃(q), η γ̂

+
DΥκ(ξ)〉∂Bρ .

= 〈γ+n ∇ψκ̃(q), η γ
+
DΥκ(ξ)〉Γ + 〈γt∇ψκ̃(q), γRΥκ(ξ)〉∂Bρ

+〈η γ̂+D∇ψκ(q), γ̂
+
n Υκ(ξ)〉∂Bρ

− 〈γ̂+n ∇ψκ̃(q), η γ̂
+
DΥκ(ξ)〉∂Bρ

.(2.20)
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Fortunately, when restricted to domains away from Γ, the potentials are C∞-
smoothing. Hence, their evaluation on ∂Bρ, the highlighted terms in (2.20), induce
compact operators. This shows that for some compact operator Ck : H−1/2(Γ) →
H−1/2(Γ),

(2.21) 〈γ−n ∇ψκ̃(q), η γ
−
DΥκ(ξ)〉Γ = 〈γ+n ∇ψκ̃(q), η γ

+
DΥκ(ξ)〉Γ + 〈Ckq, ξ〉Γ.

The jump identities (2.19b) for the potentials yield formulas of the form {γ∗}K =
γ±∗ K ± (1/2)Id, where ∗ = n, D and K = ∇ψκ̃, Υκ accordingly. Substituting each
one-sided trace involved in the two leftmost duality pairings of (2.21) for the integral
operators using these equations completes the proof.

Lemma 2.14. For all p ∈ H−1/2(divΓ,Γ) and ξ ∈ H1/2(Γ), we have

〈p, γ±t Υκ(ξ)〉τ = 〈γ±n Ψκ(p), ξ〉Γ + 〈γ±n ∇ψ̃κ(divΓ(p)), ξ〉Γ.

Proof. In the following calculations, the boundary integrals are to be understood
as duality pairings. Since p ∈ L2

t (Γ) is a tangent vector field lying in the image of
γt, the tangential trace operator can safely be dropped in expanding these integrals
using the definitions of Section 2.3. On the one hand, this leads to

(2.22) 〈p, γ±t Υκ(ξ)〉τ =

∫

Γ

∫

Γ

ξ(y)p(x) ·
(
Gκ(x− y)n(y)

)
dσ(y) dσ(x)

=

∫

Γ

∫

Γ

ξ(y)Gκ(x− y)p(x) · n(y) dσ(y) dσ(x)

+

∫

Γ

∫

Γ

ξ(y)p(x) ·
(
∇2G̃κ(x− y)n(y)

)
dσ(y) dσ(x),

where G̃κ := (Gκ −Gκ̃) /κ
2.

On the other hand, the same observation implies that 〈p,∇ΓγV)〉τ = 〈p, γ∇V)〉τ
for any V ∈ H1

loc(R
3), and thus that

〈γ±n ∇ψ̃κ(divΓ(p)), ξ〉Γ =

∫

γ

∫

γ

ξ(y)n(y) · ∇G̃κ (y − x) divΓ
(
p(x)

)
dσ(y) dσ(x)

= −
∫

γ

∫

γ

ξ(y)p(x)∇x

(
n(y) · ∇G̃κ (y − x)

)
dσ(y) dσ(x)

=

∫

γ

∫

γ

ξ(y)p(x)
(
∇2G̃κ(x− y)n(y)

)
dσ(y) dσ(x),

where we have remembered that the tangential divergence defined in Section 2.2.1 was
adjoint to the negative surface gradient. Recognizing the Helmholtz vector single-layer
potential in the first expression on the right hand side of (2.22) concludes the proof.

Symmetry of Calderón Projector Up to Compact Perturbations

Proposition 2.15. There exists a compact operator Ck : HN → HN such that

〈ANN
κ (~p), ~η〉 = −〈~p,ADD

κ (~η)〉+ 〈Ck~p, ~η〉

for all ~η := (η, ξ)
⊤ ∈ HD and ~p := (p, q)⊤ ∈ HN .
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Proof. Recall that ANN
κ = {TN}·SLκ and A

DD
κ = {TD}·DLκ. Since curl◦∇ = 0,

〈{γR}∇ψk̃(q),η〉τ = 0 and 〈{γR}∇ψ̃k(divΓ(p)),η〉τ = 0; therefore,

(2.23) 〈{TN} · SLk(~p), ~η〉 = 〈−{γR}Ψκ(p),η〉τ + 〈{γn}∇ψκ̃(q), ξ〉Γ
− 〈{γn}Ψκ(p), ξ〉Γ − 〈{γn}∇ψ̃κ(divΓ(p)), ξ〉Γ.

Since div ◦ curl = 0, we also have {γD} curlΨκ = 0. Hence, we need to compare
(2.23) with

〈~p, {TD} ·DLk(~η)〉 = 〈p, {γt}curlΨk(η×n)〉τ + 〈q, {η γD}Υκ(ξ)〉Γ+ 〈p, {γt}Υκ(ξ)〉τ .

The desired result follows by combining Lemma 2.12, Lemma 2.13 and Lemma 2.14.

As consequence of Proposition 2.15, we have

(2.24)
(
P
+
κ

)∗
11

=̂
(
P
−
κ

)
22
,

where =̂ is used to indicate equality up to compact terms.

3. Coupled problem. In this section, we derive a variational formulation for
the system (1.2a)-(1.3b) which couples a mixed variational formulation defined in the
interior domain to a boundary integral equation of the first kind that arises in the
exterior domain.

As proposed in [3], we introduce a new variable P = −div
(
ǫ(x)U

)
into equation

(1.2a). Applying Green’s formulae (2.4) in Ωs, we obtain

∫

Ωs

µ−1 curlU · curlV dx+

∫

Ωs

ǫ∇P ·V dx

−ω2

∫

Ωs

ǫU ·V dx+ 〈γ−R,µU, γ
−
t V〉τ = (J,V)Ωs

,

∫

Ωs

P Q dx−
∫

Ωs

ǫU · ∇Q dx+ 〈γ−n,ǫU, γ−Q〉Γ = 0

(3.1)

for all V ∈ H (curl,Ωs), Q ∈ H1(Ωs). The volume integrals in these equations enter
the interior symmetric bi-linear form

(3.2) Bκ

((
U

P

)
,

(
V

Q

))
:=

∫

Ωs

µ−1 curlU · curlV dx+

∫

Ωs

ǫ∇P ·V dx

+

∫

Ωs

P Q dx−
∫

Ωs

ǫU · ∇Q dx− ω2

∫

Ωs

ǫU ·V dx

related to the one supplied for the Hodge-Laplace operator in [2, Sec. 3.2]. We aim to
couple (3.2) with the BIEs replacing the PDEs in Ω′. We may utilize the transmission
conditions (1.3a)-(1.3b) to amend (3.1) to the variational equation

Bκ

((
U

P

)
,

(
V

Q

))
+
〈
T +
N (Uext),

(
γ−t V

γ−Q

)〉
= G

((
V

Q

))
,
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which sports a functional G
(
(VQ)⊤

)
:= (J,V)Ωs

−〈(gR gn)
⊤, (γ−t V γ−Q)⊤〉 bounded

over the test space. The exterior Calderón projector can be used to express the so-
called Dirichlet-to-Neumann operator in different ways.

Introducing the jump conditions into the first exterior Calderón identity given on
the first line of (2.16b) along with a new unknown ~p = T +

N (Uext) yields a variational
system

(3.3)

Bκ

((
U

P

)
,

(
V

Q

))
+
〈
~p,

(
γ−t V

γ−Q

)〉
= G

((
V

Q

))
,

〈(
{TD} · DLκ +

1

2
Id

)
T −
D,ǫ(U), ~a

〉
+
〈
{TD} · SLκ (~p) , ~a

〉
= R (~a) ,

for all (VQ)⊤ ∈ H (curl,Ωs)×H1(Ωs) and ~a ∈ HN , resembling the original Johnson-
Nedélec coupling [5]. The new functional appearing on the right hand side of (3.3) is
defined as R (~a) := 〈

(
{TD} · DLκ + 1

2 Id
)
(ζt, ζD)⊤, ~a〉.

Following the exposition of Costabel in [17], we also retain the second exterior
Calderón identity —in which we again introduce the jump conditions to eliminate
the dependence on the exterior solution— and insert the resulting equation in (3.3)

to obtain the symmetrically coupled problem: find ~U := (U, P )⊤ ∈ H (curl,Ωs) ×
H1(Ωs) and ~p ∈ HN such that

Bκ

(
~U, ~V

)
+
〈(

−{TN} · SLκ +
1

2
Id

)
~p,

(
γ−t V

γ−Q

)〉

+
〈
− {TN} · DLκ

(
γ−t U

−γ− (P )

)
,

(
γ−t V

γ−Q

)〉
= F

(
~V
)

〈(
{TD} · DLκ +

1

2
Id

)(
γ−t U

−γ− (P )

)
, ~a
〉
+
〈
{TD} · SLκ (~p) , ~a

〉
= R (~a) ,

(3.4)

for all ~V := (V, Q)⊤ ∈ H (curl,Ωs) ×H1(Ωs), ~a ∈ HN . Yet again, the right hand
side of our system of equations has been modified to bear a new bounded linear
functional F (~V) := G (V ) + 〈−{TN} · DLκ(ζt ζD)⊤, (γ−t V, γ−Q)⊤〉.

In terms of the Calderón projector, problem (3.4) can be rewritten more succinctly
as
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Symmetrically Coupled Problem

Find ~U := (U, P )⊤ ∈ H (curl,Ωs)×H1(Ωs) and ~p ∈ HN such that

Bκ

(
~U, ~V

)
+
〈(

−A
NN
κ +

1

2
Id

)
~p,

(
γ−t V

γ−Q

)〉

+
〈
− A

DN
κ

(
γ−t U

−γ− (P )

)
,

(
γ−t V

γ−Q

)〉
= F

(
~V
)

〈(
A

DD
κ +

1

2
Id

)(
γ−t U

−γ− (P )

)
, ~a
〉
+
〈
A

DD
κ (~p) , ~a

〉
= R (~a) ,

(3.5)

for all ~V := (V, Q)⊤ ∈ H (curl,Ωs)×H1(Ωs), ~a ∈ HN .

Remark 5. Part of the justification for using mixed formulations for problems
involving the Hodge–Helmholtz/Laplace operator is the need to move away from trial
spaces contained in H(curl,Ωs)∩H(div,Ωs), because the latter doesn’t allow for viable
discretizations using finite elements [2]. While from (3.3) the issue seems to reap-
pear after using the Caldéron identities, the benefits of the introduced new unknown
P ∈ H1(Ωs) conveniently carries over to the coupled system (3.5) upon substituting
−γ− (P ) in place of γD,ǫ(U) in T −

D,ǫ(U).

In the following proposition, we call forbidden resonant frequencies the interior
“Dirichlet” eigenvalues of the scaled Hodge-Laplace operator with constant coefficient
η = µ0ǫ

2
0. That is, κ2 is a forbidden frequency if there exists 0 6= U ∈ X(∆,Ω) with

∆ηU = κ2U and T −
D U = 0. We refer the reader to [14], where the spectrum of the

scaled Hodge-Laplace operator is completely characterized. See for e.g. [34], [33], [12],
[18] and [16] for an overview of the issue of spurious resonances in electromagnetic
and acoustic scattering models based on integral equations.

Proposition 3.1. Suppose that κ2 ∈ C avoids forbidden resonant frequencies. By
retaining an interior solution U ∈ H (curl,Ωs) and producing Uext ∈ Xloc(∆,Ω

′)
using the representation formula (2.6) for the Cauchy data (~p, T −

D,ǫU − (ζt, ζD)⊤)

with γ−D,ǫ(U) = −γ− (P ), a solution to (3.5) solves the transmission system (1.2a)-
(1.3b) in the sense of distribution.

Proof. The proof follows the approach in [24, Lem. 6.1]. Since D(Ωs)
3×C∞

0 (Ωs)
is a subset of the volume test space, any solution to the problem (3.5) solves (1.2a) in

Ωs in the sense of distribution. It follows that (3.1) holds for all admissible ~V, which
reduces (3.5) to the variational system

−
〈
~q,

(
γ−t V

γ−Q

)〉
+
〈(

−A
NN
κ +

1

2
Id

)
~p,

(
γ−t V

γ−Q

)〉
−
〈
A

DN
κ (~ξ),

(
γ−t V

γ−Q

)〉
= 0

〈(
A

DD
κ +

1

2
Id

)
~ξ, ~η
〉
+
〈
{AND

κ (~p) , ~η
〉
= 0

where ~q := T −
N,µ(U)− (gR, gn)

⊤ and ~ξ := T −
D,ǫ(U)− (ζt, ζD)⊤.
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We recognize in the equivalent operator equation

(3.6)

(
A

NN
κ + 1

2 Id A
DN
κ

A
ND
κ A

DD
κ + 1

2 Id

)

︸ ︷︷ ︸
P
−

κ

(
~p
~ξ

)
=

(
~p− ~q
0

)

the interior Caldéron projector (2.16a) whose image, by Lemma 2.11, is the space of
valid Cauchy data for the homogeneous (scaled) Hodge–Laplace/Helmholtz interior

equation with constant coefficient η. In particular, ~p− ~q = T −
N

(
Ũ
)
for some vector-

field Ũ ∈ X (∆,Ωs) satisfying

∆ηŨ− κ2Ũ = 0, in Ωs

T −
D

(
Ũ
)
= 0, on Γ.

(3.7)

If κ2 6= 0, we rely on the hypothesis that κ2 doesn’t belong to the set of forbidden
resonant frequencies to guarantee injectivity of the above boundary value problem
[14, Prop. 3.7]. Otherwise, a trivial de Rham cohomology implies that zero is not a
Dirichlet eigenvalue. We conclude that Ũ = 0 is the unique trivial solution to (3.7).
Therefore, for the right hand side of (3.6) to exhibit valid Neumann data, it must be
that ~p = ~q.

By Lemma 2.11 again, the null space of the interior Caldéron projector P−
κ coin-

cides with valid Cauchy data for the exterior boundary value problem (1.2b) comple-
mented with the radiation conditions at infinity introduced in Section 1. In particular
(~p, ~ξ)⊤ is valid Cauchy data for that exterior Hodge-Helmholtz/Laplace problem and

Uext = SLκ (~p) + DLκ

(
~ξ
)
solves (1.2b) and (1.3b) by construction. The fact that

~p = T +
N

(
Uext

)
solves (1.3a) is confirmed by the earlier observation that ~p = ~q.

Corollary 3.2. Suppose that κ2 ∈ C avoids forbidden resonant frequencies. A

solution pair
(
~U, ~p

)
to the coupled problem (3.5) is unique.

Remark 6. We show in [34] that when κ2 happens to be a resonant frequency,
the interior solution U remains unique. This is no longer true for ~p however, which
is in general only unique up to Neumann traces of interior Dirichlet eigenfunctions
of ∆η associated to the eigenvalue κ2. Fortunately, this kernel vanishes under the
exterior representation formula obtained from (2.6).

Remark 7. In principle, the CFIE-type stabilization strategy proposed in [26] for
the (scalar) Helmholtz transmission problem could also be attempted here to get rid
of the spurious resonances haunting the coupled problem (3.5), but such developments
lie outside the scope of this work.

4. Space decompositions. Using the classical Hodge decomposition, a general
inf-sup condition for Hodge–Laplace problems posed on closed Hilbert complexes was
derived in [2]. However, as orthogonality won’t be required, we rather opt for the
enhanced regularity of the regular decomposition suggested in [10] and [14].

Lemma 4.1 (See [1, Lem. 3.5]). There exists a continuous linear lifting L :
H(div,Ωs) ∩ ker(div) → H1(Ωs) such that div(LU) = 0 and curl (LU) = U.

Lemma 4.2. The operator Z : H (curl,Ωs) → H1(Ωs) defined by

Z (U) := L
(
curl (U)

)
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is a continuous projection with ker (Z) = ker (curl) ∩ H (curl,Ωs) and satisfying
curl

(
Z(U)

)
= curl (U).

The following corollary follows immediately from Rellich theorem.

Corollary 4.3. The projection operator of Lemma 4.2 is compact as a mapping
Z : H (curl,Ωs) → L2(Ωs).

The subspaces X(curl,Ωs) := Z
(
H (curl,Ωs)

)
and N (curl,Ωs) := ker (curl) ∩

H (curl,Ωs) provide, by vitrue of the continuity of Z, a stable direct regular decom-
position

H (curl,Ωs) = X(curl,Ωs)⊕N (curl,Ωs) .

A decomposition with similar properties can be designed for H−1/2 (divΓ,Γ). We
define J : H−1/2(Γ) → H1(Ωs) by J(g) = L (∇U), where U ∈ H1

∗ (Ωs) := {U ∈
H1(Ωs) :

∫
Ωs
U dx = 0} solves the Neumann problem

∆U = 0, in Ωs,(4.1)

γ−n (∇U) = g, on Γ.

This map is well-defined, since (4.1) ensures that ∇U ∈ Dom(L).

Lemma 4.4. The operator ZΓ : H−1/2 (divΓ,Γ) → H
1/2
R (Γ) defined by

(4.2) ZΓ := γτ ◦ J ◦ divΓ
is a continuous projection with ker(ZΓ) = ker (divΓ) ∩H−1/2 (divΓ,Γ) and satisfying
divΓ

(
ZΓ(p)

)
= divΓ (p) .

As before, the extra regularity of the range, in this case provided by Lemma 2.1, leads
to a valuable corollary.

Corollary 4.5. The projection operator of Lemma 4.4 is compact as a mapping

ZΓ : H−1/2 (divΓ,Γ) → H
−1/2
R (Γ).

The subspaces X (divΓ,Γ) := ZΓ
(
H−1/2 (divΓ,Γ)

)
and N (divΓ,Γ) := ker (divΓ) ∩

H−1/2 (divΓ,Γ) provide a stable direct regular decomposition

H−1/2 (divΓ,Γ) = X (divΓ,Γ)⊕N (divΓ,Γ) .

In the following, we may simplify notation by using U⊥ := ZU, p⊥ := ZΓp,
U0 := (Id− Z)U and p0 :=

(
Id− ZΓ

)
p.

A very useful property of this pair of decompositions is stated in the next propo-
sition.

Lemma 4.6 (See [24, Lem. 8.1] and [24, Lem. 8.2]). The operators

(
γ−t

)∗
◦
(
{γR}Ψκ +

1

2
Id

)
: N (divΓ,Γ) → N (curl,Ωs)

′
,

and

(
γ−t

)∗
◦
(
{γR}Ψκ +

1

2
Id

)
: X (divΓ,Γ) → X (curl,Ωs)

′

are compact.
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Another benefit of this pair of regular decompositions will become explicit in the
poof of Lemma 5.9 found in the next section (see equation (5.9)).

It follows from Lemma 2.2 that divΓ : X (divΓ,Γ) → H
−1/2
∗ (Γ) is a continuous

bijection. The bounded inverse theorem guarantees the existence of a continuous

inverse (divΓ)
† : H

−1/2
∗ (Γ) → X (divΓ,Γ) such that

(divΓ)
† ◦ divΓ = Id

∣∣∣
X(divΓ,Γ)

, divΓ ◦ (divΓ)† = Id
∣∣∣
H

−1/2
∗ (Γ)

.

We denote Q∗ : H1(Ωs) → H1
∗ (Ωs) the projection onto mean zero functions.

5. Well-posedness of the coupled variational problem. We use the direct
decompositions introduced in Section 4 to prove that the bilinear form associated to
the coupled system (3.1) of Section 3 satisfies a generalized G̊arding inequality.

The coupled variational problem (3.5) translates into the operator equation

(5.1) Gκ

(
~U
~p

)
=

(
F

R

)
∈
(
H (curl,Ωs)×H1(Ω)

)′
× (HN )

′
.

Letting Bκ : H (curl,Ωs)×H1 (Ωs) →
(
H (curl,Ωs)×H1 (Ωs)

)′
be the operator

〈Bκ

(
~U
)
~V〉 := Bκ

(
~U, ~V

)

associated with the Hodge-Helmholtz/Laplace volume contribution to the system, the

operator Gκ :
(
H (curl,Ωs)×H1(Ω)

)
×HN →

(
H (curl,Ωs)×H1(Ω)

)′ × (HN )
′
can

be represented by the block operator matrix

(5.2) Gκ =




Bκ−



(
γ−t

)∗
(
γ−
)∗


 · ADN

κ ·
(
γ−t
−γ−

) 

(
γ−t

)∗
(
γ−
)∗


 ·

(
P
+
κ

)
22

(
P
−
κ

)
11

·
(
γ−t
−γ−

)
A

ND
κ



,

shown here in “variational arrangement”.
The symmetry revealed in (2.24) makes explicit much of the structure of the

above operator. We have introduced colors to better highlight the contribution of
each individual block in the following sections.

Our goal is to design an isomorphism X of the test space and resort to compact
perturbations of Gκ ◦X−1 to achieve an operator block structure with diagonal blocks
that are elliptic over the splittings of Section 4 and off-diagonal blocks that fit a skew-
symmetric pattern. Stability of the coupled system can then be obtained from the
next theorem.

Theorem 5.1 (See [10, Thm. 4]). If a bilinear form a : V × V → C on a
reflexive Banach space V is T-coercive:

(5.3)
∣∣a (u,Xu) + c (u, u)

∣∣ ≥ C‖u‖2V ∀u ∈ V,

with C > 0, c : V × V → C compact and X : V → V an isomorphism of V , then the
operator A : V → V ′ defined by A : u 7→ a(u, ·) is Fredholm with index 0.
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The authors of [8] refer to (5.3) as “Generalized G̊arding inequality”, because

∣∣a (u,Xu)
∣∣ ≥ C‖u‖2V −

∣∣c (u, u)
∣∣ , ∀u ∈ V,

generalizes the classical G̊arding inequality which reads

b(u, u) ≥ C1‖u‖2Hℓ(Ω) − C2‖u‖L2(Ω) , ∀u ∈ Hℓ
0(Ω),

for some C2 ≥ 0, C1 > 0, where b is a bilinear form associated to a uniformly elliptic
operator of even order 2ℓ. Assuming that (5.3) holds with X = Id, a simple proof of
the stability estimate

‖u‖V ≤ C‖f‖V ′ ,

obtained for the unique solution of the operator equation Au = f when A is injective
is given in [36, Thm. 3.15]. A proof of the general case can be deduced from [22].

T-coercivity theory is a reformulation of the Banach-Nec̆as-Babus̆ka theory. The
former relies on the construction of explicit inf-sup operators at the discrete and
continuous levels, whereas the later develops on an abstract inf-sup condition [13].

In deriving the following results, it will be convenient to denote ~U :=
(
U, P

)⊤

and ~p := (p, q)
⊤
.

5.1. Space isomorphisms. In this section, we take up the challenge of finding
a suitable isomorphism X. We build it separately for the function spaces in Ωs and
on the boundary Γ. Crucial hints are offered by the construction of the sign-flip
isomorphism of [10].

We start with devising an isomorphism Ξ of the volume function spaces and show
that the upper-left diagonal block of Gκ satisfy a generalized Gůarding inequality.

Under the assumption that Ωs has trivial de Rham cohomology, there exists a
bijective “scalar potential lifting” S : N(curl,Ωs) → H1

∗ (Ωs) satisfying ∇S (U) = U.
The Poincaré-Friedrichs inequality guarantees that this map is continuous.

Notice that since it also follows from the Poincaré-Friedrichs inequality that ∇ :
H1

∗ (Ωs) → N(curl,Ωs) is injective, S◦∇ : H1(Ωs) → H1
∗ (Ωs) is a bounded projection

onto the space of Lebesgue measurable functions having zero mean. It’s nullspace
consists of the constant functions in Ωs.

Isomorphism of the Volume Function Spaces

Proposition 5.2. For any θ > 0 and β > 0, the bounded linear operator Ξ :
H (curl,Ωs)×H1(Ωs) → H (curl,Ωs)×H1(Ωs) defined by

Ξ
(
~U
)
:=


 U⊥ −U0 + β∇P
−θ
(
J
(
U0
)
+ βmean (P )

)

 .

has a continuous inverse. In other words, Ξ is an isomorphism of Banach spaces.

Proof. By showing that Ξ is a bijection, the theorem follows as a consequence of
the bounded inverse theorem.

Let (V Q)
⊤ ∈ H (curl,Ωs) × H1(Ωs). Since ∇Q ∈ N (curl,Ωs), we immedi-

ately have Z
(
V⊥ − θ−1∇Q

)
= V⊥ and (Id− Z)

(
V⊥ − θ−1∇Q

)
= −θ−1∇Q. Hence,
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relying on the resulting observation that ∇S

((
V⊥ − θ−1∇Q

)0)
= −θ−1∇Q and ex-

ploiting that mean
(
H1

∗ (Ωs)
)
= {0}, we have

Ξ





 V⊥ − θ−1∇Q
β−1

(
S
(
V0
)
− θ−1Q

)




 =

(
V

S (∇Q) +mean (Q)

)
.(5.4)

Since H1(Ωs) decomposes into the stable direct sum of H1
∗ (Ωs) and the space of

constant functions in Ωs, (5.4) shows that Ξ is surjective.

Now, suppose that Ξ
(
~V
)
= Ξ

(
~U
)
. Then, we have

U0 −V0 = ∇S

(
U0 −V0

)
= β∇

(
mean (Q− P )

)
= 0.

Since the considerations of Section 4 readily yield that V⊥ = U⊥, we conclude that
V = U. In turn, it follows that ∇P = ∇Q and mean(P ) = mean(Q). Therefore, Ξ
is injective.

We now turn to the design of an isomorphism for the Neumann trace space HN

and prove that the lower-right block A
ND
κ of Gκ satisfies a generalized Gůarding

inequality.

Isomorphism of the Trace Spaces

Proposition 5.3. For any τ > 0 and λ > 0, the bounded linear operator ΞΓ :
HN → HN defined by

ΞΓ(~p) :=

(
p⊥ − p0 − λ (divΓ)

†
Q∗q

−τ
(
divΓ (p) + λmean (q)

)
)

has a continuous inverse. In other words, ΞΓ is an isomorphism of Banach spaces.

Proof. We proceed as in proposition 5.2. Since (divΓ)
†
Q∗q ∈ X(divΓ,Γ), we have

ZΓ
(
ΞΓ
1 (~p)

)
= p⊥−(divΓ)

†
Q∗q. Using that mean◦divΓ = 0 and (divΓ)

†
divΓp = p⊥,

we evaluate

ΞΓ



(
−p0 − τ−1 (divΓ)

†
Q∗q

λ−1
(
−divΓ(p)− τ−1q

)
)
 =

(
p0 + p⊥

Q∗q +mean (q)

)
.

This shows that ΞΓ is surjective.
Suppose that XΓ(~p) = XΓ(~a). It is immediate that p0 = a0. On the one hand,

we obtain from XΓ
1 (~p) = XΓ

1 (~a) that

(5.5) p⊥ − a⊥ = λ (divΓ)
†
(Q∗q − Q∗b) .

On the other hand, XΓ
2 (~p) = XΓ

2 (~a) implies that

(5.6) divΓ (p− a) = λmean (q − b) .

Relying on the fact that divΓ = divΓ ◦ ZΓ again, combining (5.5) and (5.6) yields

Q∗q +mean(q) = Q∗b+mean(b).
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Evidently, (5.5) then also guarantees that p⊥ = a⊥. We can finally conclude that XΓ

is injective and thus the result follows from the bounded inverse theorem.

In the following, we will write ΞΓ
1 and ΞΓ

2 for the components of the isomorphism
of the trace space.

5.2. Main result. The main result of this work, stated in Theorem 5.6, states
that the operator Gκ associated with the coupled system (3.5) is well-posed when κ2

lies outside the discrete set of forbidden frequencies described in [14]. It relies on two
main propositions, whose proofs are postponed until the end of section 5.

The first claims that the diagonal ofGκ (as a sum of block operators) is T-coercive.

Proposition 5.4. For any frequency ω ≥ 0, there exist a compact operator K :
H (curl,Ωs) ×H1(Ωs) × HN → H (curl,Ωs) ×H1(Ωs) × HN , a positive constant
C > 0 and parameters θ > 0 and τ > 0, possibly depending on Ωs, ǫ, µ, κ and ω,
such that

Re

〈
diag (Gκ)

(
~U
~p

)
,

(
Ξ ~
U

ΞΓ~p

)〉
+
〈
K

(
~U
~p

)
,

(
~
U
~p

)〉

≥ C
(
‖U‖2

H(curl,Ωs)
+‖P‖2H1(Ωs)

+‖~p‖2HN

)

for all ~U := (U P )
⊤ ∈ H (curl,Ωs)×H1(Ωs) and ~p ∈ HN .

The proof of this proposition will rely on several steps: Lemma 5.8, Lemma 5.9
and Lemma 5.10.

The second proposition states that the off-diagonal blocks are compact operators.
The proof of that fact relies on definitions and results that belong to the next technical
section. It will materialize as the last piece of the puzzle that completes the proof of
the T-coercivity of Gκ.

Proposition 5.5. For any frequency ω ≥ 0, there exists, for a suitable choice of
τ , β, θ and λ, a continuous compact endomorphism K of the space H (curl,Ωs) ×
H1(Ωs)×HN such that

(5.7) Re

〈
(
Gκ − diag (Gκ)

)
(
~U
~p

)
,

(
Ξ ~
U

ΞΓ~p

)〉
=
〈
K

(
~U
~p

)
,

(
~
U
~p

)〉
.

The main result seamlessly follows from the two previous propositions.
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T-Coercivity of the Coupled System

Theorem 5.6. For any ω ≥ 0, there exists an isomorphism Xκ of the trial space
H (curl,Ωs) × H1(Ωs) × HN , and compact operator K : H (curl,Ωs) × H1(Ωs) ×
HN →

(
H (curl,Ωs)×H1(Ωs)

)′ ×H′
N such that

Re

〈
(Gκ +K)

(
~U
~p

)
,X

(
~
U
~p

)〉
≥ C

(
‖U‖2

H(curl,Ωs)
+‖P‖2H1(Ωs)

+‖~p‖2HN

)

for some positive constant C > 0.

Proof. The proof will amount to the recognition that the choices of parameters
in the previous Proposition 5.4 and Proposition 5.5 are compatible.

The following corollary is immediate upon applying Theorem 5.1.

Corollary 5.7. The system operator Gk : H (curl,Ωs) × H1(Ωs) × HN →(
H (curl,Ωs)×H1(Ωs)

)′ ×H′
N associated with the variational problem (3.5) is Fred-

holm of index 0.

Injectivity, guaranteed when κ2 avoids resonant frequencies by corollary 3.2, yields
well-posedness.

5.3. Compactness and coercivity. Equipped with the isomorphism Ξ, let us
now study coercivity of the bilinear form Bκ defined in (3.2) and associated to the
Hodge–Helmholtz/Laplace operator.

Lemma 5.8. For any frequency ω ≥ 0 and parameter β > 0, there exist a positive
constant C > 0 and a parameter θ > 0, possibly depending on Ωs, µ, ǫ and ω, and a
compact bounded sesqui-linear form K defined over H (curl,Ωs)×H1(Ωs), such that

Re


Bκ

(
~U,Ξ

(
~
U

))
− K

(
~U, ~U

)

 ≥ C

(
‖U‖2

H(curl,Ωs)
+‖P‖2H1(Ωs)

)

for all ~U := (U, P )
⊤ ∈ H (curl,Ωs)×H1(Ωs).

Proof. As curl
(
U0
)
= 0, curl (∇P ) = 0, and ∇ ◦mean = 0, we evaluate

Bκ



(
U

P

)
,




U
⊥ −U

0
+ β∇P

−θ
(
S

(
U

0
)
+ βmean

(
P
))






=

(
µ−1curl

(
U⊥
)
, curl

(
U⊥
))

Ωs

+
(
ǫ∇P,U⊥

)
Ωs

−
(
ǫ∇P,U0

)
Ωs

+β (ǫ∇P,∇P )Ωs

+ θ
(
ǫU⊥,U0

)
Ωs

+ θ
(
ǫU0,U0

)
Ωs

− ω2
(
ǫU⊥,U⊥ −U0 + β∇P

)
Ωs

− ω2
(
ǫU0,U⊥

)
+ ω2

(
ǫU0,U0

)
− βω2

(
ǫU0,∇P

)

−
(
P, θS

(
U0
))

Ωs

−
(
P, θβmean(P )

)
Ωs
.
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Upon application of the Cauchy-Schwartz inequality, the bounded sesqui-linear form

K

(
~U, ~U

)
:=
(
ǫ∇P,U⊥

)
Ωs

−
(
P, θS

(
U0
))

Ωs

+θ
(
ǫU⊥,U0

)
Ωs

−ω2
(
ǫU0,U⊥

)
Ωs

− ω2
(
ǫU⊥,U⊥ −U0 + β∇P

)
Ωs

−
(
P, θβmean(P )

)
Ωs

is shown to be compact by Proposition 4.3 and the Rellich theorem. Using Young’s
inequality twice with δ > 0, we estimate

Re

(
Bκ

(
~U,Ξ

(
~U
))

− K

(
~U, ~U

))
≥ µ−1

max

∥∥∥curlU⊥
∥∥∥
2

Ωs

+

(
ǫmin

(
θ + ω2

)
− δ ǫmax

(
1 + βω2

))∥∥∥U0
∥∥∥
2

Ωs

+Re

(
ǫmin β − 1

δ
ǫmax

(
1 + βω2

))
‖∇P‖2Ωs

.

The operator curl : Z
(
H (curl,Ω)

)
→ L2 (Ωs) is a continuous injection, hence

since its image is closed in L2 (Ωs), it is also bounded below. Hence, for any β > 0,
choose δ > 0 large enough, then θ > 0 accordingly large, and the desired inequality
follows.

The complex inner products

(a, b)−1/2 :=

∫

Γ

∫

Γ

G0 (x− y) a(x) b(y) dσ(x) dσ(y),

(a,b)−1/2 :=

∫

Γ

∫

Γ

G0 (x− y)a(x) · b(y) dσ(x) dσ(y),

defined over H−1/2(Γ) and H−1/2 (divΓ,Γ) respectively, are positive definite Hermi-
tian forms and they induce equivalent norms on the trace spaces. Combined with the
stability of the decomposition introduced in Section 4, this observation also allows us
to conclude that

a 7→
∥∥divΓ (a)

∥∥
−1/2

+
∥∥∥(Id− PΓ)a

∥∥∥
−1/2

also defines an equivalent norm in H−1/2 (divΓ,Γ).
Let us denote the two components of the isomorphism Ξ by

Ξ1(~U) := U⊥ −U0 +∇P, and Ξ2(~U) := −θ
(
S

(
U0
)
+ mean (P )

)
.

We now derive an estimate similar to the one found in Lemma 5.8 that completes
the proof of the coercivity of the upper-left diagonal block of Gκ.

Lemma 5.9. For any frequency ω ≥ 0 and parameter β > 0, there exist a positive
constant C > 0 and a parameter θ > 0, possibly depending on Ωs, µ, ǫ and κ, and
a compact linear operator K : H (curl,Ωs) ×H1(Ωs) → H (curl,Ωs) ×H1(Ωs) such
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that

Re

(〈
−A

DN
κ

(
γ−t U

−γ− (P )

)
,


γ

−
t Ξ1

~
U

γ−Ξ2
~
U



〉

+
〈
K
(

γ−t U

−γ− (P )

)
,


γ

−
t Ξ1

~
U

γ−Ξ2
~
U



〉)

≥ C

∥∥∥∥∥∥

(
γ−t U

γ−(P )

)∥∥∥∥∥∥

2

HD(Ωs)

for all ~U := (U P )
⊤ ∈ H (curl,Ωs)×H1(Ωs).

Proof. We indicate with a hat equality up to a compact perturbation (e.g. =̂).
The jump conditions (2.15a) yield {TN} · DLκ = TN · DLκ. We deduce from [14, Sec.
6.4] that,

(5.8)
〈
− TN · DLκ

(
γ−t U

−γ− (P )

)
,

(
γ−t Ξ1

~U

γ−Ξ2
~U

)〉

=̂

(
divΓ

(
n× γ−t U)

)
, divΓ

(
n× γ−t Ξ1

~U)
))

−1/2

− κ2
(
n× γ−t U,n× γ−t Ξ1

~U
)
−1/2

+

(
n× γ−t U, curlΓ

(
γ−Ξ2

~U
))

−1/2

−
(
n× γ−t Ξ1

~U, curlΓ
(
γ− (P )

))
−1/2

=

(
divΓ

(
γ−τ U)

)
, divΓ

(
γ−τ Ξ1

~U)
))

−1/2

− κ2
(
γ−τ U, γ−τ Ξ1

~U
)
−1/2

−
(
γ−τ U, curlΓ

(
γ−Ξ2

~U
))

−1/2

+
(
γ−τ Ξ1

~U, curlΓ
(
γ− (P )

))
−1/2

We consider each component of the isomorphim Ξ in turn. Since Lemma 4.2
guarantees that Z (U) ∈ H1(Ωs), γτ ◦ Z is a continuous mapping H (curl,Ωs) →
H

1/2
R (Ωs) found compact by Lemma 2.1. Therefore,

γ−τ Ξ1

(
~U
)
= γ−τ U⊥ − γ−τ U0 + βγ−τ ∇P

=̂ZΓ
(
γ−τ U

)
−
(
Id− ZΓ

)
γ−τ U+ β curlΓ

(
γ−P

)
.(5.9)

Let’s introduce expression (5.9) in the various terms of (5.8) involving Ξ1(~U). Lemma
4.4 yields

(
divΓ

(
γ−τ U)

)
, divΓ

(
γ−τ Ξ1

~U)
))

−1/2

=̂

(
divΓ (γτU) , divΓ

(
ZΓ
(
γ−τ U

)))

−1/2

−
(
divΓ (γτU) , divΓ

((
Id− ZΓ

)
γ−τ U

))

−1/2

+ β

(
divΓ (γτU) , divΓ

(
curlΓ

(
γ−P

)))

−1/2

=
(
divΓ

(
γ−τ U

)
, divΓ

(
γ−τ U

))
−1/2

.
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Similarly,

− κ2
(
γ−τ U, γ−τ Ξ1

~U
)
−1/2

=̂ κ2
((

Id− ZΓ
)
γ−τ U,

(
Id− ZΓ

)
γ−τ U

)

−1/2

− βκ2
((

Id− ZΓ
)
γ−τ U, curlΓ

(
γ−P

))

−1/2

and

(
γ−τ Ξ1

~U, curlΓ
(
γ− (P )

))
−1/2

=̂−
((

Id− ZΓ
)
γ−τ U, curlΓ

(
γ− (P )

))

−1/2

+ β
(
curlΓ

(
γ−P

)
, curlΓ

(
γ− (P )

))
−1/2

.

We now want to evaluate the terms involving Ξ2(~U). We introduce

curlΓ

(
γ−Ξ2

~U
)
= −θγ−τ ∇

(
S(U0) +mean(P )

)
= −θ

(
Id− ZΓ

)
γ−τ U,

in (5.8) to obtain

−
(
γ−τ U, curlΓ

(
γ−Ξ2

~U
))

−1/2

= θ

((
Id− ZΓ

)
γ−τ U,

(
Id− ZΓ

)
γτU

)

−1/2

Using Young’s inequality twice with δ > 0,

Re



〈
− {TN} · DLκ

(
γ−t U

−γ− (P )

)
,

(
γ−t Ξ1

~U

γ−Ξ2
~U

)〉



=̂
∥∥∥divΓ

(
γ−τ U

)∥∥∥
2

−1/2
+

(
Re

(
κ2
)
+ θ

)∥∥∥∥
(
Id− ZΓ

)
γ−τ U

∥∥∥∥
2

−1/2

+ β
∥∥∥curlΓ

(
γ− (P )

)∥∥∥
2

−
((

Id− ZΓ
)
γ−τ U, curlΓ

(
γ− (P )

))

−1/2

− βRe

(
κ2
)((

Id− ZΓ
)
γ−τ U, curlΓ

(
γ−P

))

−1/2

≥
∥∥∥divΓ

(
γ−τ U

)∥∥∥
2

−1/2
+

(
β − 1

δ

(
1 + βRe

(
κ2
)))∥∥∥curlΓ

(
γ− (P )

)∥∥∥
2

+

(
Re

(
κ2
)
+ θ − δ

(
1 + βRe

(
κ2
)))∥∥∥∥

(
Id− ZΓ

)
γ−τ U

∥∥∥∥
2

−1/2

.

The operator curlΓ : H1
∗ (Ωs) → H−1/2 (divΓ,Γ) is a continuous injection [14, Lem.

6.4]. It is thus bounded below. Since the mean operator has finite rank, it is compact.
Therefore, for any β > 0, choose δ > 0 large enough, then θ > 0 accordingly large,
and the desired inequality follows by equivalence of norms.
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Lemma 5.10. For any frequency ω ≥ 0, there exist a compact linear operator
K : HN → HD, a positive constants C > 0 and parameters τ > 0 and λ > 0, possibly
depending on Ωs, µ, ǫ and κ, such that

Re

(〈
A

ND
κ (~p) ,ΞΓ~p

〉
+
〈
K ~p, ~p

〉)
≥ C‖~p‖2HN

for all ~p ∈ HN . In particular, for Re
(
k2
)
6= 0, the inequality holds with τ = 1/κ2.

Proof. We indicate with a hat equality up to a compact perturbation (e.g. =̂).
The jump conditions (2.15b) yield {TD} · SL (~p) = TD · SL (~p). We deduce from [14,

Sec. 6.3] and the compact embedding of X (divΓ,Γ) into H
−1/2
R (Γ) that

〈
TD · SL (~p) ,ΞΓ~p

〉
=̂−

(
p0,ΞΓ

1 (p)
)
−1/2

−
(
q, divΓ

(
ΞΓ
1 (p)

))

−1/2

−
(
divΓ(p),Ξ

Γ
2~p
)
−1/2

− κ2
(
q,ΞΓ

2 (~p)
)
−1/2

=̂
(
p0,p0

)
−1/2

−
(
q, divΓ(p

⊥)
)
−1/2

+ λ (q,Q∗q)−1/2

+ τ
(
divΓ(p), divΓ(p)

)
−1/2

+ τκ2
(
q, divΓ(p

⊥)
)
−1/2

.

When Re
(
κ2
)
> 0, setting τ = 1/κ2 immediately yields the existence of a compact

linear operator K : HN → HD such that

〈
TD · SL (~p) ,ΞΓ~p

〉
+
〈
K~p,ΞΓ~p

〉
≥ C

(∥∥divΓ (p)
∥∥2
−1/2

+
∥∥∥p0

∥∥∥
2

−1/2
+‖Q∗q‖2−1/2

)
.

When κ2 = 0, the same inequality is obtained for any λ > 0 by using Young’s
inequality as in the proof of Lemma 5.9 and choosing τ large enough. The claimed
inequality follows by equivalence of norms.

Equipped with the previous three lemmas, we are now ready to prove Lemma 5.4.

Proof of Proposition 5.4. For any parameters β > 0 and λ > 0, the choices of δ
and θ in the proofs of Lemma 5.8 and Lemma 5.9 are not mutually exclusive. The
choice of τ in Lemma 5.10 is independent of that choice of θ.

Finally, The off-diagonal blocks remain to be considered. We will show that, up
to compact perturbations, a suitable choice of parameters in the isomorphisms Ξ and
ΞΓ of the test space leads to a skew-symmetric pattern in Gκ. In other words, up
to compact terms, the volume and boundary parts of the system decouples over the
space decompositions introduced in Section 4.

Proof of Proposition 5.5. We indicate with a hat equality up to a compact per-
turbation (e.g. =̂). The isomorphisms Ξ and ΞΓ were designed so that favorable
cancellations occur in evaluating the left hand side of (5.7).

From the jump properties (2.15b), we have {TN}SLκ = T −
N SLκ−(1/2)Id. There-
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fore, as in (2.23), we evaluate

(5.10)
〈(

P
+
κ

)
22
~p,


γ

−
t Ξ1

~
U

γ−Ξ2
~
U



〉
=
〈(

−{TN} · SLκ +
1

2
Id

)
~p,


γ

−
t Ξ1

~
U

γ−Ξ2
~
U



〉

=
〈
− T −

N · SLκ (~p) ,


γ

−
t Ξ1

~
U

γ−Ξ2
~
U



〉
+
〈
~p,


γ

−
t Ξ1

~
U

γ−Ξ2
~
U



〉

= 〈γ−RΨκ (p) , γ
−
t Ξ1

~
U〉τ − 〈γ−n ∇ψκ̃ (q) , γ

−Ξ2
~
U〉Γ + 〈γ−n Ψκ (p) , γ

−Ξ2
~
U〉Γ

+ 〈γ−n ∇ψ̃κ (divΓp) , γ
−Ξ2

~
U〉Γ + 〈p, γ−t Ξ1

~
U〉τ + 〈q, γ−Ξ2

~
U〉Γ

=̂ 〈γ−RΨκ

(
p0
)
, γtU

⊥〉τ−〈γ−RΨκ

(
p0
)
, γtU0〉τ+β 〈γ−RΨκ

(
p0
)
, γt∇P 〉τ

+ 〈γ−RΨκ

(
p⊥
)
, γtU

⊥〉τ−〈γ−RΨκ

(
p⊥
)
, γtU0〉τ + β 〈γ−RΨκ

(
p⊥
)
, γt∇P 〉τ

+ θ 〈γ−n ∇ψκ̃ (q) , γ
−S

(
U

0
)
〉Γ − θ 〈γ−n Ψκ (p) , γ

−S

(
U

0
)
〉Γ

− 〈γ−n ∇ψ̃κ (divΓp) , θ γ
−S

(
U

0
)
〉Γ+〈p0, γ−t U

⊥〉τ+〈p⊥, γ−t U
⊥〉τ−〈p0, γ−t U

0〉τ

−〈p⊥, γ−t U
0〉τ+β 〈p0, γ−t ∇P 〉τ + β 〈p⊥, γ−t ∇P 〉τ − θ 〈q, γ−S

(
U0
)
〉Γ,

where we have used that the finite rank of the mean operator implies compactness.
Similarly, using Proposition 2.15, we find

(5.11)
〈(

P
−
κ

)
11

(
γ−t U

−γ− (P )

)
,ΞΓ~p

〉
=
〈(

γ−t U

−γ− (P )

)
,
(
P
+
κ

)
22
ΞΓ~p

〉

=̂ 〈γ−RΨκ

(
p⊥
)
, γtU

0〉τ−〈γ−RΨκ

(
p0
)
, γtU

⊥〉τ − λ 〈γ−RΨκ

(
(divΓ)

†
Q∗q

)
, γ−t U0〉τ

+ 〈γ−RΨκ

(
p0
)
, γtU

⊥〉τ−〈γ−RΨκ

(
p0
)
, γtU

⊥〉τ−λ 〈γ−RΨκ

(
(divΓ)

†
Q∗q

)
, γ−t U⊥〉τ

− τ 〈γ−n ∇ψκ̃

(
divΓp

⊥
)
, γ−P 〉 − 〈γ−n Ψκ

(
p⊥
)
, γ−P 〉Γ + 〈γ−n Ψκ

(
p0
)
, γ−P 〉Γ

+ λ 〈γ−n Ψκ

(
(div)

†
Q∗q

)
, γ−P 〉Γ − 〈γ−n ∇ψ̃κ

(
divΓp

⊥
)
, γ−P 〉Γ

+λ 〈γ−n ∇ψ̃κ (Q∗q) , γ
−P 〉Γ+〈γ−t U0,p⊥〉τ+〈γ−t U⊥,p⊥〉τ−〈γ−t U⊥,p0〉τ−〈γ−t U0,p0〉τ

−λ 〈γ−t U⊥, (divΓ)
†
Q∗q〉Γ − λ 〈γ−t U0, (divΓ)

†
Q∗q〉+ τ 〈γ−P, divΓ

(
p⊥
)
〉Γ.

Many terms in these equations can be combined and asserted compact by Lemma
4.6. They are indicated in blue. When summing the real parts of (5.10) and (5.11),
the terms in red cancel. Relying on Lemma 2.7, some terms amount to compact
perturbations so that we may replace κ and κ̃ by 0 in those instances.
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We have arrived at the following identity:

Re



〈(

Gκ − diag (Gκ)
)
(
~U
~p

)
,

(
Ξ ~
U

ΞΓ~p

)〉



=̂ Re

(
β 〈γ−RΨ0

(
p⊥
)
, γt∇P 〉τ + θ 〈γ−n ∇ψ0 (q) , γ

−S

(
U

0
)
〉Γ

−θ 〈γ−n Ψ0 (p) , γ
−S

(
U

0
)
〉Γ+β 〈p⊥, γ−t ∇P 〉τ − θ 〈q, γ−S

(
U0
)
〉Γ

− λ 〈γ−RΨ0

(
(divΓ)

†
Q∗q

)
, γ−t U0〉τ − τ 〈γ−n ∇ψ0

(
divΓp

⊥
)
, γ−P 〉Γ

−〈γ−n Ψ0

(
p⊥
)
, γ−P 〉Γ + 〈γ−n Ψ0

(
p0
)
, γ−P 〉Γ + λ 〈γ−n Ψ0

(
(div)

†
Q∗q

)
, γ−P 〉Γ

−λ 〈γ−t U0, (divΓ)
†
Q∗q〉τ + τ 〈γ−P, divΓ

(
p⊥
)
〉Γ
)
.

(5.12)

We claim that the terms colored in green are compact. Indeed, the integral
identities of Section 2.2.1 together with equality (2.10) yield

〈γ−n Ψ0 (p) , γ
−S

(
U

0
)
〉Γ ≤

(∥∥ψ0 (divΓp)
∥∥
L2(Ωs)

+
∥∥Ψ0 (p)

∥∥
L2(Ωs)

)∥∥∥U0
∥∥∥
L2(Ωs)

,

〈γ−n Ψ0 (p) , γ
−P 〉Γ ≤

(∥∥ψ0 (divΓp)
∥∥
L2(Ωs)

+
∥∥Ψ0 (p)

∥∥
L2(Ωs)

)
‖P‖H1(Ωs)

〈γ−n Ψ0

(
(div)

†
Q∗q

)
, γ−P 〉Γ ≤

(∥∥ψ0 (Q∗q)
∥∥
L2(Ωs)

+
∥∥Ψ0 (divΓp)

∥∥
L2(Ωs)

)
‖P‖H1(Ωs)

Since Lemma 2.4 states that ψ0 : H−1/2(Γ) → H1(Ωs) and Ψ0 : H−1/2(Γ) → H1(Ωs)
are continuous, compactness is guaranteed by Rellich Theorem.

To go further, we need to settle for a choice of parameters in the volume and
boundary isomorphisms. Choose τ to satisfy the requirements of Lemma 5.10, then
set β = τ . We are still free to let θ satisfy both Lemma 5.8 and Lemma 5.9, and then
choose λ = θ.

Under this choice of parameters, the terms in orange vanish, because we have
〈p⊥γ−t ∇P 〉τ = 〈p⊥,∇Γγ

−P 〉τ = −〈divΓ
(
p⊥
)
, γ−P 〉Γ, and similarly

〈γ−t U0, (divΓ)
†
Q∗q〉τ = 〈γ−t ∇S

(
U0
)
, (divΓ)

†
Q∗q〉τ = −〈γ−S

(
U0
)
, Q∗q〉Γ.

Finally, relying on (2.9a), (2.9b) and (2.10) once more, we observe that

〈γ−RΨ0

(
p⊥
)
, γ−t ∇P 〉τ =

(
curl curlΨ0

(
p⊥
)
,∇P

)

Ωs

=

(
∇ψ0

(
divΓp

⊥
)
,∇P

)

Ωs

= 〈γ−n ∇ψ0

(
divΓp

⊥
)
, γ−P 〉Γ.

A similar derivation shows that

〈γ−n ∇ψ0 (q) , γ
−S

(
U

0
)
〉Γ =̂ 〈γ−RΨ0

(
(divΓ)

†
Q∗q

)
, γ−t U0〉τ .
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We conclude that for such a choice of parameters,

Re



〈(

Gκ − diag (Gκ)
)
(
~U
~p

)
,

(
Ξ ~
U

ΞΓ~p

)〉

 =̂ 0,

which concludes the proof of this proposition.

6. Conclusion. Section 3 offers a system of equations coupling the mixed for-
mulation of the variational form of the Hodge-Helmholtz and Hodge-Laplace equation
with first-kind boundary integral equations. Well-posedness of the coupled problem
was obtained using a T-coercivity argument demonstrating that the operator associ-
ated to the coupled variational problem was Fredholm of index 0. When κ2 ∈ C avoids
resonant frequencies, the operator’s injectivity was guaranteed, and thus stability of
the problem was obtained along with the existence and uniqueness of the solution.
For such κ2, Proposition 3.1 showed how solution to the coupled variational problem
are in one-to-one correspondence with solutions of the transmission system.

The symmetrically coupled system (3.5) offers a variational formulation of the
transmission problem (1.2) in well-known energy spaces suited for discretization by
finite and boundary elements. It is therefore a promising starting point for Galerkin
discretization.
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