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Abstract

We study the electromagnetic field scattered by a metallic nanoparticle with dispersive material

parameters placed in a homogeneous medium in a low frequency regime. We use asymptotic

analysis and spectral theory to diagonalise a singular integral operator, which allows us to write

the field inside and outside the particle in the form of a complete and orthogonal modal expansion.

We find the eigenvalues of the volume operator to be associated, via a non-linear relation, to the

resonant frequencies of the problem. We prove that all resonances lie in a bounded region near the

origin. Finally we use complex analysis to compute the Fourier transform of the scattered field

and obtain its modal expansion in the time domain.
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1 Introduction

1.1 Position of the problem

Modal analysis has been a useful tool in wave physics to understand the behaviour of complex systems
and to numerically compute the response to an excitation. For a bounded, lossless system, the operator
∆−1 associated with the wave equation with Dirichlet or Neumann boundary conditions is compact and
self-adjoint when studied in the right functional spaces. Hence it can be diagonalised and a complete
basis of eigenmodes with real eigenfrequencies can be exhibited. The response of the system to an
excitation can then be computed by summing the response of each mode to the excitation.

However, when the system exhibits loss (by absorption or radiation), the operator cannot be diag-
onalised with the classical spectral theorem and the eigenfrequencies have a negative imaginary part.
Using sophisticated micro-local analysis and building on the Lax-Phillips scattering theory [21], several
authors have obtained resonance expansions in various cases.

We refer to [28, 33] for a general presentation of resonance expansions and to the recent book [17]
for the state of the art. These expansions rely on high frequency estimates of the resolvent and, to
the best of our knowledge, rigorous resonance expansions for the transmission problem in unbounded
domains have so far only been obtained for the local scalar wave equation [26, 25] with non-negative
coefficients until the recent progress of [8, 9], which deals with non-locality in time. One should also
note that the spectral analysis used in these papers is far from elementary and hardly accessible to the
non-specialist of semi-group theory and micro-local analysis, thus making these results difficult to use.

Nevertheless, in the physics community modal analysis is heavily used in numerical nano-photonics
(see the review paper [20] and references therein) to study the interaction of light with resonant
structures such as nanoparticles and metamaterials, which are described by the non-local Maxwell
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equations. In practice, modes (or generalised eigenvectors) are computed by solving, in the frequency
domain, the source-free Maxwell’s equations satisfying the outgoing radiation condition. Several prac-
tical and theoretical issues naturally arise with this approach. Fields oscillating at a complex frequency
with negative imaginary part solving the radiation condition diverge exponentially in space (Lamb’s
so called exponential catastrophe [29]), making physical interpretations difficult and numerical compu-
tations in large domain very problematic without renormalisation techniques [30]. Generalised modes
are not an orthogonal family, making energy considerations difficult. The density of the linear span of
the family of modes has not been shown, raising questions about the possibility of representation of
any electromagnetic field as a sum of modes.

In this article, we study the electromagnetic field scattered by a metallic nanoparticle in a low fre-
quency regime, which is the one relevant for applications as it roughly corresponds to the visible/infra-
red frequency range and will be defined more precisely in section 3.4.

1.2 Main contributions

For a metallic nanoparticle D under the illumination Ein at frequency ω, we give a Laurent series
expansion in ω for the electromagnetic field inside the particle:

E(ω) =
∑

n

αn(ω)

ω − ωn

〈
Ein(ω), en

〉
en in D,

where en are eigenvectors of some singular integral operator, αn are holomorphic functions and the
poles ωn belong to the lower complex half plane and depend on the size and shape of D (see Lemma 4.1).
We also give a similar expansion for the scattered field outside the particle (see Proposition 4.1)). Note
that (ωn) are not the static resonances predicted by the static theory of electromagnetic fields, but
dynamic resonances that take into account retardation effects due to the non-zero ratio size of the
particle over the wavelength of the incoming field in the frequency range considered (see Section 3).
This is important since the static theory does not give a good approximation of resonant frequencies for
moderate size nanoparticles [22, Section IV-B]. We also show that all the resonances lie in a bounded
region near the origin of the lower complex half plane. From this pole expansion, using only elementary
complex analysis tools (Paley-Wiener and residue theorems), we give a resonance expansion for the low-
frequency part of the electromagnetic field in the time domain in Theorem 5.1. Since the poles lie in a
bounded region near the origin, we can capture all the resonances with a low frequency approximation,
without the need for the usual high-frequency resolvent estimates required for resonance expansions in
the Lax-Phillips setting. To the best of our knowledge, it is the first time that an expansion of this type
is obtained using only integral operator theory and elementary spectral analysis. We show that in the
time domain, causality ensures that the electromagnetic field does not diverge exponentially in space.
Similar results were obtained in [12] for a non-dispersive dielectric spherical scatterer in any frequency
range. Our result is valid for an arbitrarily shaped scatterer (with some regularity conditions) and for
dispersive media, but only for low frequencies. We would like to point out that despite the apparent
similarities, our approach is very different from diagonalising the volume integral operator from the
Lippmann-Schwinger equation at a fixed real frequency ω ∈ R, as it is done in [10], since, in these
expansions, the poles obtained depend on the working frequency ω and cannot be used to compute
the electric field in the time domain with a residue theorem.

1.3 Sketch of the article

The paper is structured in the following way: We start from the classical volume integral equation at
frequency ω for the electric field E, which reads, for a scatterer D constituted of a dispersive material
under the excitation Ein,

(
I − γ−1(ω)T ω

)
E = Ein in D,
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where T ω is a singular integral operator and γ is a non-linear function of ω that depends on the
model for the permittivity of the scatterer (Section 2.3). We begin by studying the static-limit oper-
ator T 0. Using links with the Neumann-Poincaré operator and the Plemelj symmetrisation principle
in H−1/2(∂D), we build an eigenbasis for T 0 (Section 2.4). Then, writing T ω as a perturbation of T 0

and using a perturbative spectral analysis technique, we compute the eigenvalues of T ω (Section 2.5).
We then compute the roots of the equation γ(ω) ∈ σ(T ω) and define these as the resonant frequencies
of the system (Section 3). In Section 4 we give the Laurent series for the electric field. Finally, in
Section 5 we give the resonance expansion for the low-frequency part of the electromagnetic field in
the time domain.

2 Maxwell’s equations for a metallic resonator

2.1 Problem geometry

We are interested in the scattering problem of an incident spherical wave on a plasmonic nanoparticle.
The homogeneous medium is characterised by the electric permittivity εm and the magnetic perme-
ability µm. Let D be a smooth bounded domain in R

3, of class C1,α for some α > 0, characterised
by electric permittivity εc and magnetic permeability µc. We assume the particle to be non-magnetic,
i.e., µ = µc = µm in R

3. We define the wavenumbers kc = ω
√
εcµc and km = ω

√
εmµm. Let

ε = εcχ(D) + εmχ(R3 \ D̄), where χ denotes the characteristic function. We denote by c0 the speed
of light in vacuum, c0 = 1/

√
ε0µ0, and by c the speed of light in the medium, c = 1/

√
εmµm. Let

D = z + δB, where B is the reference domain and contains the origin and D is located at z ∈ R
3 and

has a characteristic size δ small compared to the operating wavelength δkm ≪ 1. Let ν be the normal
vector. Throughout this paper, we assume that εm and µm are real and positive. We also assume that
ℑεc ≤ 0.

Hereafter we use the Drude model [24] to express the electric permittivity of the particle:

εc(ω) = ε0

(
1−

ω2
p

ω2 + iωT−1

)
, (1)

where the positive constants ωp and T are the plasma frequency and the collision frequency or damping
factor, respectively. We write εm =

√
nε0 where n is the refractive index of the medium.

2.2 Formulation

For a given incident wave (Ein,Hin) solution to Maxwell’s equations




∇×Ein = iωµmHin in R
3,

∇×Hin = −iωεmEin − i
1

ωµm
pδs in R

3,

where the source at s has a dipole moment p ∈ R
3, let (E,H) be the solution to the following Maxwell

equations: 



∇×E = iωµH in R
3 \ ∂D,

∇×H = −iωεE in R
3 \ ∂D,

[ν ×E] = [ν ×H] = 0 on ∂D,
(2)

subject to the Silver-Müller radiation condition:

lim
|x|→∞

|x|(√µm(H−Hin)× x̂−√
εm(E−Ein)) = 0,

where x̂ = x/|x|. Here, [ν ×E] and [ν ×H] denote the jump of ν ×E and ν ×H along ∂D, namely,

[ν ×E] = (ν ×E)
∣∣
+
− (ν ×E)

∣∣
−
, [ν ×H] = (ν ×H)

∣∣
+
− (ν ×H)

∣∣
−
.
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Proposition 2.1. If I [εc] 6= 0 , then problem (2) is well-posed. Moreover, if we denote by (E,H) its
unique solution, then (E,H)

∣∣
D

∈ H(curl, D) and (E,H)
∣∣
R3\D

∈ Hloc(curl,R
3 \D).

Proof. The well-posedness is addressed in [31, 15, 6]. �

2.3 Volume integral equation for the electric field

We now recall the well-known Lippmann-Schwinger equation [4] satisfied by the electric field for a
non-magnetic particle:

E(x) = Ein(x) +
εm − εc

εm

(ω
c

)2 ˆ

D

Γ
ω
c (x, y)E(y)dy, x ∈ R

3, (3)

where Γ
ω
c , the dyadic Green’s function, is defined in Appendix A.2. Consequently, it suffices to derive

an approximation for the electric field E inside D and insert it in the right-hand side of (3) to obtain
an expression for E for all points outside.

Lemma 2.1. Using the dyadic Green’s function, one can express the incident field as

Ein(x) = Γ
ω
c (x, s)p, x ∈ R

3. (4)

Proof. For x ∈ R
3, the incident fields solves

∇×∇×Ein(x)−
(ω
c

)2
Ein(x) = pδs(x)

so

Ein(x) =
(
Γ

ω
c ∗ pδs

)
(x) =

ˆ

R

Γ
ω
c (x− y)pδs(y)dy = Γ

ω
c (x, s)p.

Definition 2.1. We denote the contrast γ by

γ(ω) =
εm

εm − εc(ω)
.

Restricting equation (3) to D yields the following integral representation.

Proposition 2.2. The electric field inside the particle satisfies the volume integral equation:

(
γ(ω)I − T

ω
c

D

)
E = γ(ω)Ein in D, (5)

where T
ω
c

D : L2(D,R3) → L2(D,R3) is a singular integral operator of the Calderón-Zygmund type,
defined in Appendix B.1.

Proof. See [13, Chapter 9] or [14]. �

T
ω
c

D is neither compact nor self-adjoint on L2(D) so diagonalising T
ω
c

D directly to find a modal
expansion for E is not possible. However, when ω = 0 (in the static regime), the operator T 0

D has nice
properties.
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2.4 The static regime

2.4.1 Main results

Lemma 2.2. In the static limit, when ωδc−1 → 0, (5) becomes:

(
γ(ω)I − T 0

D

)
E = γ(ω)∇U in +O

(
ωδc−1

)
in D, (6)

where ∇U in is the orthogonal projection of Ein on the space W ⊂ L2(D,R3) (W is the space of
gradient of harmonic functions, see Lemma 2.3 for more details).

The goal of this section is to show that the following theorems hold:

Theorem 2.1 (Spectral decomposition of T 0
D). The set of eigenvalues (γn)n∈N of T 0

D

∣∣
W

is discrete,
and the associated eigenfunctions (en)n∈N form an orthonormal basis of W. Hence we have:

T 0
D

∣∣
W

=
∑

n

γn〈en, ·〉L2en,

and γn ∈ ]0, 1].

Theorem 2.2 (Modal decomposition in the static regime). When ωδc−1 → 0,

E =
∑

n

γ(ω)

γ(ω)− γn

〈
Ein, en

〉
L2 en in D.

Proof. Theorem 2.2 is a direct consequence of Theorem 2.1 and equation (6).

2.4.2 Proof of Theorem 2.1

Recall the following orthogonal decomposition.

Lemma 2.3. We have
L2(D,R3) = ∇H1

0 (D)⊕H(div 0, D)⊕W,

where H(div 0, D) is the space of divergence free L2 vector fields and W is the space of gradients of
harmonic H1-functions.

We start with the following result from [15]:

Proposition 2.3. T 0
D is a bounded self-adjoint map on L2(D,R3) with ∇H1

0 (D), H(div 0, D) and W

as invariant subspaces. On ∇H1
0 (Ω), T 0

D[e] = e, on H(div 0, D), T 0
D[e] = 0 and on W:

ν · T 0
D[e] =

(
1

2
I +K∗

D

)
[e · ν] on ∂D,

where K∗
D is the Neumann-Poincaré operator defined in Section B.1.

Proof. The proof can be found in [18, 15]. �

From this, it immediately follows that the following corollary holds.

Corollary 2.1. Let γ 6= 1. Let e 6≡ 0 be such that

γe− T 0
D[e] = 0 in D.
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Then,

e ∈ W,

∇ · e = 0 in D,

γe = ∇SD[e · ν] in D,

γe · ν =

(
1

2
I +K∗

D

)
[e · ν] on ∂D,

where SD is the single-layer potential defined in Section B.1.

Remark 2.1. It has been shown in [1, 6] that the plasmonic resonances are linked to the eigenvalues
of the Neumann-Poincaré operator. Corollary 2.1 shows that the volume integral approach and the
surface integral approach are consistent with one another.

We now have all the tools to prove Theorem 2.1. With Proposition B.2 one can build a basis of
eigenvectors (φn)n∈N for K∗

D in H∗(∂D), associated to the eigenvalues (λn)n∈N. Using Corollary 2.1
one can see that the gradient of the single layer potentials of this eigenbasis is a basis of W constituted
of eigenvectors of T 0

D with eigenvalues γn = 1
2 + λn, n ∈ N.

2.5 Dynamic regime

Our strategy is to work in a perturbative regime where ωδc−1 is small but not zero, where we compute

the eigenvalues of T
ω
c

D as perturbations of eigenvalues of T 0
D and use the eigenvectors of T 0

D to build a
modal basis.

Recall that when the ratio of the size of the particle over the wavelength in the surrounding medium
ωδc−1 is small but not zero, the governing equation for the electric field is

(
γ(ω)I − T

ω
c

D

)
E = γ(ω)Ein in D.

In order to get a modal decomposition similar to the static case one, we need to study the eigenvalues

of T
ω
c

D as perturbations of eigenvalues of T 0
D. This was done in [5, Section 4] and we recall here the

main results.

Lemma 2.4. Let γn0
be a simple eigenvalue for T 0

D. Then, if |ωδc−1| is small enough, there exists a

neighbourhood V ⊂ C of γn0 such that T
ω
c

D has exactly one eigenvalue in V denoted λn0(ω).

Proposition 2.4. The following asymptotic formula for the perturbed eigenvalues holds:

γn0
(ω) = γn0

+
〈(

T
ω
c

D − T 0
D

)
en0 , en0

〉
L2(B,R3)

+ o
(
ω2δ2c−2

)
, (7)

where en0
∈ L2(D,R3) is a unitary eigenvector for T 0

D associated with γn0
.

Remark 2.2. In [5] the remainder is of order ωδc−1 only. Nevertheless, it has been shown in [7],
in the formalism of layer potentials and boundary integrals, that the perturbation of the eigenvalues is
actually of order ω2δ2c−2.

Proposition 2.5. Let g ∈ L2(D,R3). If f ∈ L2(D,R3) is a solution of
(
γ(ω)I − T

ω
c

D

)
f = g,

then

〈f , en0〉L2 ∼ 〈g, en0〉L2

γ(ω)− γn0
(ω)

∼ 〈g, en0
〉L2

γ(ω)− γn0
−
〈(

T
ω
c

D − T 0
D

)
en0

, en0

〉
L2

+ o (ω2δ2c−2)
.
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Using the governing equation for the field inside the particle we immediately get a modal expansion
inside the particle.

Corollary 2.2 (Modal expansion in the dynamic case). When ωδc−1 ≪ 1,

E =
∑

n

γ(ω)

γ(ω)− γn(ω)

〈
Ein, en

〉
L2(D,R3)

en +O
(
ωδ

c

)
in D

with

γn(ω) = γn +
〈(

T
ω
c

D − T 0
D

)
en, en

〉
L2(D,R3)

+ o
(
ω2δ2c−2

)
.

The Lippmann-Schwinger equation allows us to extend the expansion outside the particle:

Corollary 2.3 (Modal expansion outside the particle).

E(x) = Ein(x) +
(ω
c

)2∑

n

1

γ(ω)− γn(ω)

〈
Ein, en

〉
L2

ˆ

D

Γ
ω
c (x, y)en(y)dy +O

(
ωδ

c

)
, x ∈ R

3 \D.

Before we can study the electric field in the time domain, we need to determine the localisation of
the poles. In the next section we study the roots of the equations:

γ(ω) = γn (static regime),

γ(ω) = γn(ω) (dynamic regime).

Remark 2.3. (Equivalent method with boundary integral operators). Corollary 2.1 shows that there is
a strong link between the surface integral operator and the volume integral operator. A similar type of
modal expansion can be obtained using layer potential operators. The layer potential operators describ-
ing the scattering problem act on L2

T (∂D) the space of vector fields in L2 tangential to the particle.
The vectorial equivalent of the Neumann-Poincaré operator that appears cannot be symmetrised as
easily as K∗

D in the scalar case. One has to perform a Helmholtz type decomposition on the L2
T (∂D)

vector fields, and the symmetrisation is only valid on one of the subspaces, see [1, section 4] for more
details. The computation of the perturbed spectrum can be carried through, as in [7]. Nevertheless, the
computations are quite technical, making the result more difficult to read and interpret.

3 Static and dynamic plasmonic resonances

Definition 3.1. A static plasmonic resonance can occur when γ(ω) ∈ σ
(
T 0
D

)
. A dynamic plasmonic

resonance can occur when the contrast parameter γ(ω) ∈ σ
(
T

ω
c

D

)
.

In what follows we use the lower-case character ω for real frequencies and the upper-case character
Ω for complex frequencies.

3.1 Static plasmonic resonances

Proposition 3.1. Assuming εm ∈ R
+ and using the Drude model (1) the static plasmonic resonances

have an explicit formula: Ωn = Ω′
n + iΩ′′

n such that for n ≥ 1,

Ω′
n =

√√√√√
ω2
p

1− γn − 1

γn

εm
ε0

− 1

4T2
,

Ω′′
n = − 1

2T
.

The static plasmonic resonances all lie in the lower part of the complex plane and their real parts are
bounded.
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Proof. Let γn ∈ σ(T 0
D):

εm
εm − εc(ω)

= γn ⇔ εc(ω) = εm

(
1− 1

γn

)

⇔
ω2
p

ω2 + iωT−1
= 1− γn − 1

γn

εm
ε0

⇔ Ω′2 − Ω′′2 + 2iΩ′Ω′′ + iΩ′T−1 − Ω′′T−1 =
ω2
p

1− γn − 1

γn

εm
ε0

,

which gives the result.

In the non-restrictive case where the particle is embedded in vacuum, εm = ε0, the expression for
the static resonant frequency simplifies to

Ω′
n =

√
γnω2

p −
1

4T2
,

Ω′′
n = − 1

2T
.

3.2 First approximation of dynamic plasmonic resonances

Finding the frequencies ω at which a dynamic plasmonic resonance can occur is the non-linear eigen-
value problem of

finding ω s.t. γ(ω) ∈ σ
(
T

ω
c

D

)
. (8)

In the case where the particle is small compared to the wavelength of the incoming electric field (i.e.
in a regime where δkm ≪ 1), it is possible to get an approximation of the dynamic plasmonic resonant
frequencies (Ωn(δ))n∈N solutions of (8) by the following perturbative approach:

1. Compute the eigenvalues γn of T 0
D on W:

σ(T 0
D) = (γn)n∈N

,

as well as the associated eigenfunctions en ∈ W.

2. Compute Ωn solutions of

γ(Ωn) = γn.

3. Compute the eigenvalues of the perturbed operator

γn(δΩn) = γn +

〈(
T

Ωn
c

D − T 0
D

)
en, en

〉

L2

.

4. Compute Ωn(δ) solutions of

γ(Ωn(δ)) = γn(δΩn).

5. Iterate the process if higher accuracy is needed.
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3.3 Convergence analysis

This method can be seen as the first algorithmic step of a fixed-point method to determine the correct
plasmonic resonant frequency. In the following proposition we show that the algorithm is convergent.
Assume, without loss of generality, that εm = ε0, and that εc is given by the Drude model (1).

Lemma 3.1. The function γ : Ω 7−→
(
1− εc(Ω)

ε0

)−1

has an inverse

γ−1 :

{
Ω ∈ C,ℜ(Ω) > 1

4(ωpT)2
,ℑ(Ω) ≤ 0

}
−→ {Ω ∈ C,ℜ(Ω) > 0,ℑ(Ω) ≤ 0} .

Moreover, for any γmax >
1

4(ωpT)2
and for ℜ(Ω) ∈

[
1

4(ωpT)2
, γmax

]
,

0 < ℜ
(
γ−1(Ω)

)
≤ √

γmaxωp.

Proof. We first write:

ε0
ε0 − εc(Ω)

= Z ⇐⇒ Ω2 + iΩT−1 = ω2
pZ ⇐⇒ Ω =

−iT−1 ±
√
−T−2 + 4ω2

pZ

2
.

Define γ−1 := Ω 7−→ 1

2

(
−iT−1 +

√
−T−2 + 4ω2

pΩ
)
.

Proposition 3.2. Let
(
Ω

(k)
n

)
k∈N

be defined by

Ω(0)
n = γ−1(γn)

Ω(k+1)
n = γ−1

(
γn +

〈(
T

Ω
(k)
n
c

D − T 0
D

)
en, en

〉

L2

)
.

If δ
ωp

c
≤ 1

2
and γn − (ωpT)

−2 > 2

(
δγ−1(γn)

c

)2

= 2

(
δΩ

(0)
n

c

)2

then the sequence is convergent and

we denote Ωn(δ) its limit.

Remark 3.1. Note that γn is a sequence in ]0, 1]N converging to 1/2. In two dimensions, the conver-
gence is algebraic for circles, geometric for ellipses. For an ellipse of semi-axes a, b with a < b, the
eigenvalues are simply:

γn =
1

2
+

1

2

(
a− b

a+ b

)n

.

In three dimensions, the formula for the eigenvalues is more complicated and uses elliptic integrals but
the behaviour is the same. See [2, Chapter 2] for more details.

Remark 3.2. These convergence bounds are not sharp, they are just sufficient conditions. They show
that the range of validity of the method is much better than the static approach. The first condition
gives a condition on the size of the particle for convergence. The second condition is a condition on
both the size and the shape. The smallest eigenvalue of the operator T 0

D needs to be bounded away from
zero.

Indeed, to study plasmonic resonances of a metallic nanoparticle in the static regime at optical
frequencies, one has to take ω ∈ [2, 5] · 1015 Hz, and has to consider a particle whose size is negligible
compared to the wavelength of the surrounding medium δω/c ≪ 1. This means that the particle has
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a radius of a couples of nanometers at most (see for instance [11, 23]). Here, since ωp = 2 · 1015Hz,
the first condition is satisfied for particles up to several hundreds of nanometers. The second condition
depends on the shape of the particle. Assuming that γn is somewhere between 0.2 and 0.8 (so not

too close to 0, true for any ellipse with eccentricity e ≤ 0.8 for instance) and Ω
(0)
n is in the optical

frequencies [ωp, 2ωp] then the second criterion is valid for (δωp/c)
2 ≤ 1/20 which is δ . 100nm.

Proof. Define F (ω) := γ−1
(
γn +

〈(
T

ω
c

D − T 0
D

)
en, en

〉
L2

)
and G(ω) := γn +

〈(
T

ω
c

D − T 0
D

)
en, en

〉
L2

.

γ−1 is meromorphic and (γ−1)′(z) = ω2
p

(
−T−2 + 4ω2

pz
)−1/2

. Noting that G(ω) − γn ∼ δ2ω2/c2, we
have that G′(ω) ∼ 2δ2ω/c2. Therefore we have:

F ′(ω) =G′(ω)
(
γ−1

)′
(G(ω))

=
ωpG

′(ω)

2
√

G(ω)− (2Tωp)
−2

≤δωp

c
.

Now, taking ℜ(ω) ≤ Nωp for any N ∈ N
∗ and δωp/c < 1−1/N2 we get that |G(ω)| ≤ 1+N2δ2ω2

p/c
2 ≤

N2. Using Lemma 3.1 with γmax = N2 we have |F (ω)| ≤ Nωp. So we have the stability of the region
{ω ∈ C, ℜ(ω) ≤ Nωp, ℑ(ω) < 0} and the fact that F is a contraction. Hence the convergence of the
sequence holds.

Remark 3.3. The assumption that εc(ω) follows a simple Drude model is not restrictive. One could
take a more sophisticated model for the permittivity of the metallic nanoparticle, such as the one given
in [27]. The computations to find sufficient conditions for the convergence of the method would be a
lot heavier, but essentially εc(ω) would have a similar behaviour and one can check numerically that
the iterative process converges for particles that satisfy similar size conditions.

3.4 Range of validity

For a particle D = z+ δB, the perturbed quasi-static method to describe the field at a frequency ω in
the optical frequencies is pertinent if the following two conditions are met:

1. The sufficient conditions of Proposition 3.2 on δ are met, for accurate computations of the
retarded quasi-static resonances. This could be written as δ ≤ δmax(B).

2. The frequency ω corresponds to a perturbed quasi-static regime ω . c/δ.

We can then define, for each particle shape B, a maximum radius δmax(B) and for each radius a
maximum frequency

]0, δmax(B)[ −→ R
+

δ 7−→ R(δ) :=
c

δ
. (9)

The fact that the sequence is converging can be interpreted this way. If the operator T 0’s eigenvalues
are not too small, the corresponding static resonant frequencies are not too big. And if the sequence
above is convergent, then the perturbed resonant frequencies are all in a range where the behaviour of
the electromagnetic field is described by the perturbative approach.

Corollary 3.1 (Localisation of the poles in the complex plane). Under the convergence conditions
given in proposition 3.2, the plasmonic resonances are all located in the following bounded region of
the lower complex half plane. More over, all resonances are in a bounded region near the origin: if
δωpc

−1 < 1/2 then |Ωn(δ)| < R(δ).
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Proof. Assume that the sequence

Ω(0)
n = γ−1(γn)

Ω(k+1)
n = γ−1

(
γn +

〈(
T

Ω
(k)
n
c

D − T 0
D

)
en, en

〉

L2

)
.

is convergent (i.e. under the conditions of proposition 3.2). Then the convergence is geometric and

|Ωn(δ)| ≤
∣∣Ω0

n

∣∣+
∣∣Ωn(δ)− Ω0

n

∣∣

≤
∣∣Ω0

n

∣∣+
∑

k

∣∣∣Ω(k+1)
n − Ω(k)

n

∣∣∣

≤
∣∣Ω0

n

∣∣+
∑

k

(
δωp

c

)2k

4 Modal expansion for the electric field

We can now give a pole expansion of the scattered electric field.

Lemma 4.1. In the quasi-static limit, when ωδ/c ≪ 1, the following modal decomposition for the
electric field inside the particle holds:

E =
∑

n

γ(ω)

γ(ω)− γn(Ωn(δ)) + o(ω2δ2c−2)

〈
Ein, en

〉
L2 en +O

(
ωδ

c

)
in D,

where (en)n∈N is an orthonormal basis of W for the usual L2(D,R3) scalar product, and γn(Ωn(δ))

are the second order approximation eigenvalues of T
ω
c

D at the dynamic plasmonic resonant frequency
ω = Ωn(δ) on W associated with the eigenvectors en.

Proposition 4.1. In the quasi-static regime, when ωδ/c ≪ 1, the following modal decomposition for
the scattered field holds for x ∈ R

3:

Esca(x) = E(x)−Ein(x)

=
∑

n

1

γ(ω)− γn(Ωn(δ)) + o(ω2δ2c−2)

〈
Ein, en

〉
L2

(ω
c

)2 ˆ

D

Γ
ω
c (x, y)en(y)dy +O

(
ωδ

c

)
.

(10)

Proof. Substituting the field inside D from Lemma 4.1 into (3) concludes the proof.

Remark 4.1. Note that this method of constructing the modes by defining a modal basis inside the res-
onator for L2(D) and expanding the modes outside of the resonators leads to non-diverging eigenmodes
for ω ∈ R.

One can see that the function ω 7→ Esca(ω) is meromorphic and has simple poles at ω = Ωn(δ).
One can define the so-called quasi-normal modes as the excitation independent part of the residue of
Esca at each pole.

Definition 4.1. The quasi-normal modes are the functions defined by

En(x) =





en(x), x ∈ D,
(
Ωn(δ)

c

)2 ˆ

D

Γ
Ωn(δ)

c (x, y)en(y)dy, x ∈ R
3 \D.

(11)
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Remark 4.2. About the completeness of quasi-normal modes. Lemma 4.1 states that {En} is a basis
of the subspace W ⊂ L2(D). It is a complete basis for the space of solutions of the Maxwell equations
in D.

Remark 4.3 (About the infinite sum). . In this article we do not need to consider a far-field ap-
proximation. The closer the source to the scatterer, the larger the number of modes the sum needs to
take into account. Nevertheless, the sum is not really infinite as in most papers only the first couple
of modes are considered.

Since Ωn(δ) has a negative imaginary part the quasi-normal modes do not belong to L2 and diverge
exponentially as |x| → ∞.

In the next section we will show that in the time domain, the scattered field can be expressed using
a resonance expansion without any divergence problems by using a residue theorem.

5 Time domain approximation

Given a wideband signal f̂ : t 7→ f̂(t) ∈ C∞
0 ([0, C1]), for C1 > 0, we want to express the time domain

response of the electric field to an oscillating dipole placed at a source point s. We assume that most
of the energy of the excitation is concentrated in the low frequencies (i.e., in frequencies corresponding
to wavelengths that are much larger than the particle, such that the response of the particle can be
studied via the perturbed quasi-static theory). This means that for a fixed δ we can pick η ≪ 1 and ρ
such that

ˆ

R\[−ρ,ρ]

|f(ω)|2dω ≤ η,

ρδ

c
≤ 1,

where f : ω 7→ f(ω) is the Fourier transform of f̂ . The goal of this section is to establish a resonance
expansion for the low-frequency part of the scattered electric field in the time domain. Introduce, for
ρ > 0, the truncated inverse Fourier transform of the scattered field Esca given by

Pρ

[
Êsca

]
(x, t) =

ˆ ρ

−ρ

Esca(x, ω)e−iωtdω.

Recall that z is the centre of the resonator and δ its radius. Let us define

t±0 (s, x) :=
1

c
(|s− z|+ |x− z| ± 2δ) ,

the time it takes to the signal to reach first the scatterer and then observation point x. The term
±2δ/c accounts for the maximal timespan spent inside the particle.

Proposition 5.1. The incident field has the following form in the time domain:

Êin(x, t) =

ˆ

R

Γ
ω
c (x, s)pf(ω)e−iωtdω

=
f̂(t− |x− s|/c)

4π|x− s| p+ c2D2
x

f̂ ′′(t− |x− s|/c)
4π|x− s| p.

Proof. See Appendix A.3.
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Theorem 5.1. For a particle of size δ ≤ δmax, the scattered field has the following form in the time
domain for x ∈ R

3 \D:

Pρ

[
Êsca

]
(x, t) =





O
(
R(δ)−N

)
, t ≤ t−0 ,

2πi

∞∑

n=1

Res (Esca(x,Ω),Ωn(δ)) e
−iΩn(δ)t +O

(
1

t
R(δ)−N

)
, t ≥ t+0 ,

(12)

for N a large positive integer with Ωl(δ) the plasmonic resonant frequencies of the particle, given by
Proposition 3.2 and R(δ) is given by equation (9).

Remark 5.1. The resonant frequencies Ωl(δ) have negative imaginary parts, so Theorem 5.1 expresses
the scattered field as the sum of decaying oscillating fields. The imaginary part of Ωl(δ) accounts for
absorption losses in the particle as well as radiative losses.

Remark 5.2 (About the remainder R(δ)). Since for a particle of finite size δ our expansion only
holds for a range of frequencies |ω| ≤ R(δ), we cannot compute the full inverse Fourier transform and
we have a remainder that depends on the maximum frequency that we can use. Since that maximum
frequency R(δ) behaves as c/δ we can see that the remainder gets arbitrarily small for small particles.
For a completely point-like particle one would get a zero remainder.

Remark 5.3. If we had access to the full inverse Fourier transform of the field, of course, since the
inverse Fourier transform of a function which is analytic in the upper-half plane is causal we would
find that in the case t ≤ (|s− z|+ |x− z| − 2δ) /c, Esca(x, t) = 0. Nevertheless, our method only works
for a truncated low frequency estimate of the scattered field, hence the arbitrarily small remainder.

Proof. We start by studying the time domain response of a single mode to a causal excitation at the
source point s. Therefore, according to Proposition 4.1 we need to compute the contribution Ξn of
each mode en, that is,

ˆ ρ

−ρ

Ξn(x, ω)e
−iωtdω

:=

ˆ ρ

−ρ

[
1

γ(ω)− γn(δΩn) + o(ω2δ2c−2)

〈
Γ

ω
c (·, s)pf(ω), en

〉
L2

(ω
c

)2 ˆ

D

Γ
ω
c (x, y)en(y)dy

]
e−iωtdω.

We need the following lemma:

Lemma 5.1.

Γ
ω
c (x, z) = −ei

ω
c
|x−z|A(x, z, ω/c)

4π|x− z| ,

where A is given in Appendix A.2, and behaves like a polynomial in ω.

One can then write:

〈
Γ

ω
c (·, s)pf(ω), en

〉
L2

(ω
c

)2 ˆ

D

Γ
ω
c (x, y)en(y)dy =

(ω
c

)2
f(ω)

ˆ

D×D

ei
ω
c
(|x−y|+|s−v|)A(x, y, ω/c)en(y)

4π|x− y| en(v) ·
A(s, v, ω/c)p

4π|s− v| dvdy. (13)

Now we want to apply the residue theorem to get an asymptotic expansion in the time domain.
Note that:

ˆ ρ

−ρ

Ξn(x, ω)e
−iωtdω =

˛

C±

Ξn(x,Ω)e
−iΩtdΩ−

ˆ

C±
ρ

Ξn(x,Ω)e
−iΩtdΩ,

13



where the integration contour C±
ρ is a semicircular arc of radius ρ in the upper (+) or lower (-) half-

plane, and C± is the closed contour C± = C±
ρ ∪ [−ρ, ρ]. The integral on the closed contour is the main

contribution to the scattered field by the mode en and can be computed using the residue theorem to
get, for ρ ≥ ℜ[Ωn(δ)],

˛

C+

Ξn(x,Ω)e
−iΩtdΩ = 0,

˛

C−

Ξn(x,Ω)e
−iΩtdΩ = 2πiRes

(
Ξn(x,Ω)e

−iΩt,Ωn(δ)
)
.

Since Ωn(δ) is a simple pole of ω 7→ γ(ω)

γ(ω)− γn(ωδ)
we can write:

˛

C−

Ξn(x,Ω)e
−iΩtdΩ = 2πiRes (Ξn(x,Ω),Ωn(δ)) e

−iΩn(δ)t.

To compute the integrals on the semi-circle, we introduce:

Bn(y, v,Ω) =
Ω2

γ(Ω)− γn(δ)

A(x, y,Ω/c)en(y)en(v) ·A(s, v,Ω/c)p

16c2π2|x− y||s− v| (y, v) ∈ D2.

Note that Bn(·, ·,Ω) behaves like a polynomial in Ω when |Ω| → ∞. Given the regularity of the

input signal f̂ ∈ C∞
0 ([0, C1]), the Paley-Wiener theorem [32, p.161] ensures decays properties of its

Fourier transform at infinity. For all N ∈ N
∗ there exists a positive constant CN such that for all

Ω ∈ C

|f(Ω)| ≤ CN (1 + |Ω|)−NeC1|ℑ(Ω)|.

We now re-write the integrals on the semi-circle

ˆ

C±
ρ

Ξn(x,Ω)e
−iΩtdΩ =

ˆ

C±
ρ

f(Ω)

ˆ

D×D

Bn(y, v,Ω)e
iΩ( |x−y|+|s−v|

c
−t)dvdydΩ.

Two cases arise.

Case 1: For 0 < t < t−0 , i.e., when the signal emitted at s has not reached the observation point x,
we choose the upper-half integration contour C+. Transforming into polar coordinates, Ω = ρeiθ for
θ ∈ [0, π], we get:

∣∣∣eiΩ(
|x−y|+|s−v|

c
−t)
∣∣∣ ≤ e(t

−
0 −t)ℑ(Ω) ∀(y, v) ∈ D2,

and
∣∣∣∣∣

ˆ

C+
ρ

Ξn(x,Ω)e
−iΩtdΩ

∣∣∣∣∣ ≤
ˆ π

0

|f(ρeiθ)|e−ρ(t−0 −t) sin θ

ˆ

D×D

|Bn(y, v,Ω)|dvdydθ,

≤ ρCN (1 + ρ)−N max
θ∈[0,π]

‖Bn(·, ·, ρeiθ)‖L∞(D×D)π
1− eρ[C1−(t−0 −t)]

ρ(t−0 − t− C1)
,

where we used that for θ ∈ [0, π/2], we have sin θ ≥ 2θ/π ≥ 0 and − cos θ ≤ −1 + 2θ/π. The usual
way to go forward from here is to take the limit ρ → ∞, and get that the limit of the integral on the
semi-circle is zero. However, we work in the quasi-static approximation here, and our modal expansion
is not uniformly valid for all frequencies. So we have to work with a fixed maximum frequency ρ.
However, the maximum frequency ρ depends on the size of the particle via the hypothesis ρ ≤ R(δ).
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Since N can be taken arbitrarily large and that Bn behaves like a polynomial in ρ whose degree does
not depend on n, we get that, uniformly in n ∈ N:

∣∣∣∣∣

ˆ

C+
ρ

Ξn(x,Ω)e
−iΩtdΩ

∣∣∣∣∣ = O
(

1

t0 − t− C1
R(δ)−N

)
.

Of course if one has to consider the full inverse Fourier transform of the scattered electromagnetic
field, by causality, one should expect the limit to be zero. However, one would need high-frequency
estimates of the electromagnetic field, as well as a modal decomposition that is uniformly valid for all
frequencies. Since our modal expansion is only valid for a limited range of frequencies we get an error
bound that is arbitrarily small if the particle is arbitrarily small, but not rigorously zero.

Case 2: For t > t+0 , we choose the lower-half integration contour C−. Transforming into polar
coordinates, Ω = ρeiθ for θ ∈ [π, 2π], we get

∣∣∣eiΩ(
|x−y|+|s−v|

c
−t)
∣∣∣ ≤ e(t−t+0 )ℑ(Ω) ∀(y, v) ∈ D2,

and
∣∣∣∣∣

ˆ

C±
ρ

Ξn(x,Ω)e
−iΩtdΩ

∣∣∣∣∣ ≤
ˆ 2π

π

|f(ρeiθ)|eρ(t−t+0 ) sin θ

ˆ

D×D

|Bn(y, v,Ω)|dsdydθ,

≤ ρCN (1 + ρ)−N max
θ∈[0,π]

‖Bn(·, ·, ρeiθ)‖L∞(D×D)π
1− eρ(C1−(t−t+0 ))

ρ(C1 − (t− t+0 ))
,

Exactly as in Case 1, we cannot take the limit ρ → ∞. However, the maximum frequency ρ depends
on the size of the particle via the hypothesis ρ ≤ R(δ). Since R(δ) → ∞ (δ → 0), using the fact that
N can be taken arbitrarily large and that Bn behaves like a polynomial in ρ whose degree does not
depend on n, we get that, uniformly in n ∈ N.

∣∣∣∣∣

ˆ

C±
ρ

Ξn(x,Ω)e
−iΩtdΩ

∣∣∣∣∣ = O
(
1

t
R(δ)−N

)
.

The result of Theorem 5.1 is obtained by summing the contribution of all the modes.

6 Concluding Remarks

In this paper we have shown, through the spectral analysis of singular integral operators of the
Calderón-Zygmund type, that the electromagnetic field scattered by a small particle constituted of
a dispersive media could be expanded in an orthogonal basis inside the particle, and that the modal
expansion could be extended outside the particle by the Lippmann-Schwinger equation (Corollary 2.3).
We have shown that the scattered electromagnetic field is a meromorphic function of the frequency,
and that the poles are the solutions to a non-linear eigenvalue problem, and that they are all located
in a bounded region of the complex lower-half plane. We have shown that the so-called quasi-normal
modes that appear in the physics literature [20] can be defined from this expansion but it is not the
only way [16]. We have then given a resonance expansion in the time domain for the low frequency
part of the scattered electromagnetic field, as a sum of complex exponential (decaying in time) fields,
using only results from surface integral operator theory. We have also shown with elementary complex
analysis that there is no divergence problem at infinity once we are in the time domain.
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A Fundamental solutions

A.1 Green’s function

Definition A.1. Denote by Γk the outgoing Green function for the homogeneous medium, i.e., the
unique solution of the Helmholtz operator:

(
∆+ k2

)
Γk(·, y) = δy(·) in R

3

satisfying the Sommerfeld radiation condition. In dimension three, Γk is given by

Γk(x, y) = − eik|x−y|

4π|x− y| , x, y ∈ R
3.

A.2 Dyadic Green’s function

Definition A.2. Using the scalar function Γk defined in Appendix A.1 as the fundamental solution
to the Helmholtz equation, we now define the matrix-valued function, referred to as the Dyadic Green’s
function, as

Γk(x, y) = −Γk(x, y)I− 1

k2
D2

xΓ
k(x, y), x, y ∈ R

3, (14)

where I is the 3× 3 identity matrix and D2
x denotes the Hessian.

Proposition A.1. Γkm is a Green’s function for the background electric problem, i.e., it satisfies:

∇×∇× Γkm − km
2Γkm = δyI in R

3.

Lemma A.1. The matrix A(x, z, ω) = (A)3p,q=1 introduced in Lemma 5.1 is with entries

App =
1

ω2|x− z|4
[
− 3(xp − zp)

2 + |x− z|2 + 3iω(xp − zp)
2|x− z|+ ω2(xp − zp)

2|x− z|2

− iω|x− z|3 − ω2|x− z|4
]
,

Apq =
1

|x− z|4 (xp − zp)(xq − zq)
[
−3 + 3iω|x− z|+ ω2|x− z|2

]
, for p 6= q.

A.3 In the time domain

In this subsection we compute the inverse Fourier transform of the Green function. For a source located
in s:

Êin(x, t) =

ˆ

R

Γ
ω
c (x, s)pf(ω)e−iωtdω

=−
ˆ

R

Γ
ω
c (x, s)Ipf(ω)e−iωtdω −

ˆ

R

c2

ω2
D2

xΓ
ω
c (x, s)pf(ω)e−iωtdω

=

ˆ

R

eiω|x−s|/c

4π|x− s| f(ω)e
−iωtdωp+ c2D2

x

ˆ

R

eiω|x−s|/c

4π|x− s|
f(ω)

ω2
e−iωtdωp

=

ˆ

R

e−iω[t−|x−s|/c]

4π|x− s| f(ω)dωp+ c2D2
x

ˆ

R

e−iω[t−|x−s|/c]

4π|x− s| g(ω)dωp

=
f̂(t− |x− s|/c)

4π|x− s| p+ c2D2
x

1

4π|x− s| ĝ(t− |x− s|/c)p

=
f̂(t− |x− s|/c)

4π|x− s| p+ c2D2
x

f̂ ′′(t− |x− s|/c)
4π|x− s| p,
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where g(ω) := f(ω)/ω2 and f̂ ′′ is the second derivative of f̂ . Note that f̂ and f̂ ′′ vanish for negative
arguments, which is physically meaningful since for t < |x− s|/c the direct signal has not reached the
observation point yet.

B Properties of integral operators

B.1 Definitions

We start by defining a singular integral operator, sometimes known as the magnetization integral
operator [18].

Definition B.1. Introduce

T k
D :

L2(D,R3) −→ L2(D,R3)

f 7−→ −k2
ˆ

D

Γk(·, y)f(y)dy −∇∇ ·
ˆ

D

Γk(·, y)f(s)dy.

We also need to define the classical single-layer potential operator

Definition B.2.

Sk
D :

L2(∂D) −→ L2(∂D)

ϕ 7−→
ˆ

∂D

Γk(·, y)ϕ(y)dσ(y),

where σ is the Lebesgue measure on ∂D.

We also recall the definition of the Neumann-Poincaré operator

Definition B.3.

Kk
D :

L2(∂D) −→ L2(∂D)

φ 7−→
ˆ

∂D

∂Γk(x, y)

∂ν(x)
φ(y)dσ(y), x ∈ ∂D.

When k = 0, we just write SD and K∗
D for simplicity. The following lemmas can be found in [3,

Chapter 2]:

Lemma B.1. The single-layer potential SD is a unitary operator in H−1/2(∂D) in three dimensions.

Lemma B.2. Calderón identity

SDK∗
D = KDSD in H−1/2(∂D).

For more on the symmetrisation property see also [19].

B.2 Spectral properties of K∗

D

Proposition B.1. If ∂D has C1,α regularity for α > 0 then K∗
D is a compact operator.

Proof. See [3, Chapter 2]

In this whole paper we stand under the C1,α regularity hypothesis for ∂D. We now recall the
Plemelj symmetrisation principle:
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Proposition B.2. Let H∗(∂D) be the Hilbert space H−1/2(∂D) equipped with the following inner
product:

〈u, v〉H∗ = −〈u,SD[v]〉−1/2,1/2 .

Then K∗
D is a self-adjoint operator on H∗.

Proof. This is a direct consequence of Lemmas B.2 and B.1.

Theorem B.1 (Diagonalisation of K∗
D). K∗

D has a discrete set of real eigenvalues λn with associated
eigenvector φn and

K∗
D[φ] =

∑

n

λn 〈φ, φn〉H∗ φn, φ ∈ H−1/2(∂D)

with λn ∈ ]− 1/2, 1/2], λ0 = 1/2 and |λn| → 0 as n → +∞.
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