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Mathematical modelling of plasmonic strain sensors*
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Abstract

We provide a mathematical analysis for a metasurface constructed of plasmonic nanoparticles
mounted periodically on the surface of a microcapsule. We derive an effective transmission condi-
tion, which exhibits resonances depending on the inter-particle distance. When the microcapsule
is deformed, the resonances are shifted. We fully characterise the dependence of these resonances
on the deformation of the microcapsule, enabling the detection of strains at the microscale level.
We present numerical simulations to validate our results.
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1 Introduction

There is high value in early and real-time detection of deformation in materials. Most methods
are invasive and do not allow for in-situ evaluation. In [9], gold nanoparticles were embedded on
microcapsules subjected to uni-axial strain. Upon mechanical stress, the authors observed a change
in color of the microcapsule. These experimental results motivate a mathematical modelling of the
phenomenon. The aim of this paper is to use spectral analysis, building upon the works reported in [1]
for non-resonating particles and [5] for a one-dimensional grating in the half-space, to derive a rigorous
relation between the applied mechanical strain and the observed extinction shift.

Driven by the search of materials that achieve full control of wave propagation, the field of metama-
terials has been undergoing considerable developments in the last decades. Metamaterials are artificial
materials. Their building blocks are often locally resonant elements, whose features are an order of
magnitude smaller than the operating wavelength. The properties, geometry, and size of the subwave-
length resonant elements strongly alter the wave propagation in the structure. In this article, we show
that the microcapsules synthesised in [9] are in fact metasurfaces and that they owe their extraor-
dinary sensing properties to the periodic arrangement of resonating gold nanoparticles embedded on
their surface.

The desired optical effects are achieved by a phenomenon called surface plasmon resonance. Surface
plasmon resonance occurs when the free electrons at the surface of a metal oscillate with a maximum
amplitude. The surface plasmon resonance induces a strong absorption of the incident light by the
nanoparticles. It is determined by a number of parameters: the nature of the metal, the dielectric
properties of the background medium, the size, shape and configuration of the particles, among oth-
ers; these allow a remarkably sophisticated degree of control over the desired optical response. The
resonance is especially powerful and acute for noble metals, making gold a strong candidate for the
sensitivity sensor. Another advantage of choosing gold is that its resonance occurs in the visible range
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Figure 1 — Not-to-scale schematic of the microcapsule before and after deformation.

of the electromagnetic spectrum [380 — 740nm|, making the changes visible to the naked eye. In [9],
the microcapsules have dimensions 4 — 30um, and the nanoparticles have mean diameters 40 nm 425
nm; the resonators are indeed subwavelength. In [4, 6, 7], the plasmonic resonances of a single particle
are characterised in terms of the spectrum to some integral operator, known as the Neumann-Poincaré
operator.

In this paper, we mathematically formulate the scattering problem and derive an effective trans-
mission condition using layer potential techniques (see Definition B.1). We show that the absorption
properties of the metasurface are associated with the eigenvalues of a periodic Neumann-Poincaré type
operator. The thinness of the layer allows us to employ homogenisation techniques and effectively re-
place the plasmonic particles by an approximate transmission condition. In contrast with quasi-static
plasmonic resonances of single nanoparticles, the quasi-static plasmonic resonances of periodically ar-
ranged nanoparticles depend on their size and configuration. We exploit well-known results on the
periodic Green function and on the spectrum of its associated Neumann-Poincaré operator to fully
characterise the resonances in terms of the structure’s periodicity.

For simplicity, we reduce the problem to two dimensions where the microcapsule is a disk in the
R2-plane and the nanoparticles are equally spaced disks mounted on its perimeter, see Figure 1. We
assume that the nanoparticles stay equally spaced on the elongated ellipse. We model the propagation
of light with the scalar wave equation and illuminate with a plane wave.

The rest of the paper is structured as follows: We begin in section 2 by formulating the problem
setting; in section 3 we solve a hierarchy of equations from which we derive the effective transmission
condition; next, we fully characterise the transmission condition in terms of the periodicity in section
4, and validate it against numerical simulations; we conclude in section 5 with a discussion of our
results, generalization to three dimensions, and other future directions.

2 Problem setting

We consider a particle D occupying a smooth bounded domain in R?, of class C'® for some a > 0,
characterised by electric permittivity €. and magnetic permeability p., both of which may depend on
w, the frequency of the incoming wave. The particle D has a characteristic size  small compared
to the operating wavelength. For ease of notation, we will write § < 1 in what follows instead of
the correct homogeneous approximation dw/c < 1, where ¢ is the speed of light in the medium. The
background medium is characterised by its electric permittivity €,, and its magnetic permeability i, .
Throughout this paper, we assume that ¢, and p,, are real and positive and that k,, is of order one.
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Figure 2 — Plane grating of periodically arranged nanoparticles on (a), on (b) after stretched coordi-
nates.

We also assume that Se. < 0, Ru. < 0 and Spe < 0. We define the wavenumbers k. = w, /.. and
km = w\/Emfim-

The particle is repeated periodically on the perimeter of a disk 2 of radius r centred at the origin
representing the microcapsule. Let N be the number of particles and D = U | D; be the collection of
periodically arranged particles. We assume the particles to be placed on the roots of unity, so their
centres have coordinates in the complex plane z; = rexp (2inl/N), for  =0,..., N — 1, see Figure 1.
Let € = e.X(D) + emx(R?*\ D) and p = pex(D) + pm X (R? \ D), where x denotes the characteristic
function. Let u’(x) = exp (ikm# - ) be the incident wave, where  is the unit incidence direction.

Upon mechanical stress, the elastic circular microcapsule deforms into an ellipse. We choose the
medium to be water, which is incompressible. For the microcapsule’s surface to be conserved, its
perimeter has to increase, which in turn increases, on average, the inter-particle distance. Not-to-scale
circular and elliptic microcapsules are sketched in Figure 1. In our approximation, the layer of particles
stays periodic under the stretch and the period increases. Moreover, we consider the elastic layer on
which the nanoparticles are mounted to be infinitely thin.

We use the Helmholtz equation to model the propagation of light. The total potential u satisfies
the following equations

1
A\ (uVu) +w?eu =0 in R?,

ul, = ul_ on 9D, (1)
Soul _tou oo
Hom OV + pe OV | _

as well as the outgoing radiation condition

O(u — u?)
0|z

— ik (u — u)

=0 (|x|*3/2) as || — oo. 2)

Here, 9 - /Ov denotes the normal derivative and the subscripts + and — are used to denote evaluation
from outside and inside 0D, respectively.

It was shown in [1] that the curvature of the microcapsule does not appear at the first order
approximation in ¢ of the periodic particles. So the approximate transmission conditions will be
determined by studying the infinite periodic one-dimensional grating shown in Figure 2(a), where now
D = U2, D;. When considering the boundary layer, we use the scaled coordinates £ = (£1,&2), as
shown in panel (b) of the same figure, and denote by d/J the inter-particle distance. The particles are
repeated along the & -axis. We assume d and 0 to be of the same order of magnitude.



3 Boundary layer approximation

Assume that the capsule € is of class C!. For x in a neighborhood of 012, let s be the curvilinear abscissa
of the orthogonal projection of 2 on 9 and let —n be the signed distance from Q. Following [1], for
2 in a neighbourhood of 052, we introduce the ansatz

u(@) = v (z) + ul® (g %) +6 (u (@) + ufy) (g %)) +0(5%). (3)
Both «(® and u(") are solutions to a Helmholtz equation and do not satisfy boundary conditions on
the plasmonic particles. The boundary-layer correctors ugﬁ and ugﬁ are introduced to correct the
transmission conditions on the particles boundary, and are exponentially decaying as |€2| (&2 = n/d)
goes to infinity. Note that the convergence of (3) was proved in [1] for the half-plane setting with
Dirichlet boundary conditions. The same arguments as those in [1] apply here.

By substituting the asymptotic expansion (3) into (1) we find that the leading-order term u(%)
solves

{Au(o) +k2u® =0 in R*\ Q and Q,

0) 4)

u(® — ' satisfies the outgoing radiation condition (2) as |z| — oc.

The leading-order boundary-layer term ug)L) corrects the transmission conditions on 9D up to order

O(9) , and hence it solves

1 _
V. (MWQ{) +w?eul® =0 in (R2\D)uD,
u](303 = ugjﬁ on 0D,
Co (5)
Loug | 1oug| /1 1 ou®
ZBLE i on dD,
Pm OV e OV He  Hm v
ug)g is exponentially decaying away from 0f.

We consider now a re-scaled problem where a particle occupies a bounded domain B = D/§ and is
repeated periodically on the & -axis with period d/d, see Figure 2(b). We denote by B the collection
of these re-sized particles. We introduce two functions oV and o and four complex constants

aé})’*, ag})’i aé?’*, ag)ﬁ that satisfy in the variable £ = (£1,&2) and for [ = 1,2,
Aa =0 in (R*\ B) UB,
a(l)‘ = a(l)‘ on 0B,
+ —
iaai(l) _ iaa(l) - (1 _ 1) y on 9B (6)
fm OV |, pe Ov pe  fm) ’
a®) — oszo)”L is exponentially decaying as £, — 400,
a® — agQ’_ is exponentially decaying as £&; — —o0.

Then u}(goﬁ defined by
ou®
1)
0 |: 61‘1 ((Eh()) (a (

oul0)
1)
0 { Oy (21,0) (a <

solves (5) up to order O(5?).

0
uly (z) =




Lemma 3.1. Using the periodic single-layer potential Spy and the periodic Neumann-Poincaré oper-
ator K% defined in Appendiz B, we can write the solutions to (6) as

-1

o) =8py (M= Kpy) ], 1=12 (™

where I denotes the identity operator and the contrast A is given by

Hm + [he
N=_"m  7c 8
2(Mm _Mc) ( )

Proof. We search for densities ¥; € H~z(dB) such that a) = Sp;[¥;]. From Lemma B.1, the
periodic single-layer potential is harmonic in (R2 \B) U B and continuous across 0B and so, we are
left with the normal derivative jump condition. O

Lemma 3.2. The following expansions hold for 1 = 1,2, £ = (&1,&2),

aD(§) = alF + Oexp(—£&)) as & — +00,
aD(¢) = al)™ + O(exp(&)) as & — —00,
with
o = —all~ =0, )
5 e ¢]ay2 <¢j7y2>?-[*
(2),+ — . O(BB) 10

where {\;} are the eigenvalues of K*B,ﬁ and {¢;} a corresponding orthonormal basis of eigenvectors.

Proof. We use the expansions of the periodic Green’s function derived in Lemma A.2. As & — 400,
we have by definition

0 (e) = /8 Gl6.) (M = Kiy) ! bl (o (€),

- /aB (6(522; & 1;3) (M= Kp,) ™ 1] (Q)do(C) + O (exp(~£2))

- _% G (M~ Kjy) ™ ] (Q)do () + O (exp(—£2))
OB
> <¢j7y> *
_ _% B> #@dy(@da(() + O (exp(—€2))

=0

O (exp(—&2))

Z ¢ja7/l 5(dB) <¢J?C2> 1/2, 1/2
" 2d = A=A

% (65, Whage o (6522)
= ZZ Lo 2;"(83)+ (exp(~£)).

A=X)(E

where we used (¢, Vl>H3(aB) =0 and

/aB (M = K50) " [ (¢)do(¢) = 0.



Indeed, let ¥ = ()\I — IC}}’ﬁ) [u1]. Since [, vydo = 0, we have

/aB()\I—IC*B,ﬁ)[\II} da:/aB\I/()J—ICB’u)U] do — ()\_;)/GB\IIZOdU.

Finally, A # 1/2, and so f op Y do = 0. The last equality follows from

1
(5 = Aj) (2, C2>—1/2,1/2 = (¢j; V2>7-L;§(83) )

which is obtained by integration by parts. We prove that a(oé)’+ = 0 by symmetry; indeed we have

6 —
oW =g | &I Kiy) '] (Q)da(Q),

-2 ([ etk w0 -

OB~

G (M= K p) o] <<>da<<>) ,

where we split the boundary integral into an upper and lower half-space, on BT and B, respectively.

A change of variable ¢/ = —( in the second integral gives ¢} = —(2 and v1(¢’) = v1(¢) and hence, the
sum vanishes.

The proof for & — —oo follows the same steps. O

Since there is no jump of u across 0, u{*) must correct the jump of ug)ﬁ. Hence, the first-order
term u) solves

AuV + k2w =0 in R?\ Q and Q,
1 1)
v v
- (11)
0
u(l)‘ _ u(l)‘ = —2ad+ u® on O,
+ — 61/
uM — ! satisfies the outgoing radiation condition (2) at infinity.

4 Effective transmission condition and strain sensing

4.1 Effective transmission condition

By writing w,pp = u® + 0u") we find uapp to be the solution of

Atapp + k2 tapp = 0 in R?\ Q and ©,
L”(;app = Lgapp on 01},
v + 174 _ (12)
du,
uapp|+ — Uapp|_ = —25a(@7+ ~opp on 0f,
Uapp — U' satisfies the outgoing radiation condition (2) at infinity.

We have derived an effective transmission condition on 9€2, which is proportional to ag)7+. From (10),

a'2" blows up at w for which the spectrum of K% 4 coincides with the contrast A(w). Notice that
the eigenvalues {\;},;en depend implicitly on the ratio §/d. So as the period increases, the frequency
at which a plasmonic resonance occurs will be shifted to the right (i.e., the red). This follows from



Lemma B.2. From equation (15), it is clear that as the period increases, which is equivalent to the
particle radius decreasing (1 < 0), eigenvalues {\; };en are larger.

The contrast can be written explicitly in terms of the frequency, using, for instance, the Drude
model [13], to express the magnetic permeability of the particles as:

W2
= 1 — P
He(w) = o w? +iwT-1 )7

where the positive constants w, and T are the plasma frequency and the collision frequency or damping
factor, respectively. Here, pg is the magnetic permeability in vacuum. In the non-restrictive case where
the medium is vacuum, i.e., u,, = ug, the contrast has the simple expression
2, o om—1
w? + wT 1
AMw)=—F—— 3
Wp

Now, solving A; = A(w) yields (Rw)? = (X; + 3) w2 — T~2/4, which tells us that when the eigenvalues
{A;}jen are larger, the frequency is larger. As the wavelength is inversely proportional to the frequency,
A = 27¢/w, a period increase will shift the absorption peak to smaller wavelengths. This is consistent
with the experimental results reported in [9, 10].

4.2 Capsule’s deformation

The microcapsule’s deformation under mechanical stress is characterised by the Taylor parameter
(D, 0): a deformation index D := (Ly; — L9)/(L1 + L), where L; and Lo are the major and minor
axes of the ellipse and an orientation angle 6 [12, 8, 11]. In our particular case, the capsule’s surface
is conserved so L; = 72/Lo, where 7 is the disk radius before elongation, and the strain is uni-axial
on a film so 8 = 0. The perimeter of the ellipse can be approximated by P = W\/é\/L% + L3. On the
other hand, P =~ Nd, where N was the number of nanoparticles. Therefore, by measuring the position
of the absorption peak of the microcapsule, one can calculate the inter-particle distance and in turn
fully characterise the deformation.

4.3 Numerical illustration

We now show numerical computations to further validate our results. In [9], the capsules are roughly
stretched by a factor of three, which corresponds to approximately doubling the inter-particle distance:

P dwEPAGRE
P d 21 T

where P and P’ are the perimeters of the circle and the ellipse, respectively. Figure 3 shows ‘af@’*

as a function of the wavelength for different periods but for a fixed radius. The larger the distance
between the gold nanoparticles, the more red-shifted the plasmon peak is, which is consistent with our
theoretical result in Lemma B.2.

Remark 4.1. As the volume fraction of the nanoparticles increases, the absorption peak broadens and
shifts to the red, as reported in [10], which explains why our absorption peaks are in the UV range and
not in the visible range.

5 Conclusion
The mathematical modelling presented in this article gives a rigorous justification for the results

reported in [9], where gold nanoparticles were used as building blocks to design strain sensing mi-
crocapsules. Using the spectral properties of the Neumann-Poincaré operator we derived an effective
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Figure 3 — )af)?’*‘ as a function of the wavelength for linearly increasing unit cell sizes, from d = 1

(blue contour) to d = 2 (purple contour), with a fixed radius § = 0.45. Water was used for the
homogeneous medium (g, = (1.77)%g¢) and gold for the nanoparticles. For the plasma frequency and
damping factor we used T = 10~!s and w, = 2- 10571

transmission condition and investigated the dependency of the effective transmission condition with
respect to changes in the nanoparticles spacing.

Although the nanoparticles were modelled as disks, the calculations were conducted for an arbi-
trary shape, one with a sufficiently smooth boundary, and only the numerical computations shown in
Figure 3 are specific to circles. This result could be extended to a two-dimensional array of spherical
nanoparticles mounted on a two-dimensional surface.

A Periodic Green’s function
Definition A.1. Let us define the one-dimensional periodic Green’s function in R? as the function

Gy : R? — C satisfying
AG(€) = do <g+ <7;do>> (13)

neEZ

Lemma A.1. Let £ = (£1,&2). Then

5 )
Gy(¢) = % In [sinh2 (ng) + sin? (Wd&ﬂ’ (14)
satisfies (13).

Proof. The proof can be found in [2] in the special case d/é = 1. Adding the multiplicative factor is
straightforward. O

Let us denote by G4(&,() == G4(§ — ¢).



Lemma A.2. The following expansions hold for Gy at infinity:
5(52 — Cg) In2

Gy(§) = od  or T O(exp(—£2)) as § — 400,
G e ) 5 & = —oo.

Proof. As &5 — 400, we have

Gy(€,Q) = *hl -Slnhz ( (& — C2)> + sin? ( )ﬂ

1 '. o
— %ln _smh <d|§2<2 } +O< smh (&2) >

= iln exp (775 |§2C2|) —ex < — &2 — (2

. yi ] - — + O (In (1 4+ exp(—2¢2))),
1 [ ) In
— o (e - al) | - 52 + O enl-6).
_ 0§ —G) 2
=222 B2 Oew(-6).
The proof is similar for &, — —oo. O

B Periodic boundary integral operators

In what follows, let H*(0B) be the usual Sobolev space of order s on 9B and let Hy denote the
zero-mean subspace of H.

Definition B.1. We define the one-dimensional periodic single- and double-layer potentials and the
one-dimensional periodic Neumann-Poincaré operator, respectively, for B & ]72%, 2%[ x R of class
Che for some 0 < a < 1,

Spy: H 3(0B) — H]. (R?), H?(dB)

¢ +— Spylol(z) = - Gy(z,y)d(y)do(y), = €R? z€0B;

Dpy: H?(0B) — HJ, (R?), H? (0B)
B 0Gy(z,y)
61— Dpylola) = [ LD
Kiy: H %(0B) — H™2(9B)

menmmwzé

#(y)do(y), =€ R*\9IB, x€ B,

0Gy(z,y)
B Ov(z)

Lemma B.1. We recall the following classical results [2].

o(y)do(y), =€ IB.

(i) For any ¢ € H™2(dB), Sp.y is harmonic in B and in |-, & x R\ B.

(ii) The following Plemelj’s symmetrization principle identity (also known as Calderdn’s identity)
holds:

ICB7uSB7u = SB,ﬁIC*B,)i on Hﬁé(aB),

where Kp 4 is the L?-adjoint of Kb



(iii) The operator K7 , : H(;%(aB) — H&é(aB) is self-adjoint in the Hilbert space HE(0B) which is
HO_%(Z')B) equipped with the following inner product:

(u, ”>H5(33) = —(u, Spg[v]) ,

11

272
with — (-,-) _1 1 being the duality pairing between HO_% (OB) and HO% (0B), which makes H(OB)
equivalent to HJ%@B).

(iv) If OB is of class CY%, for some a > 0, then K% 4 is compact. Let (\j, ¢;)jen, be the eigenvalues
and normalized eigenfunctions of Kp 4 in H*(0B). Then A\; €] —1/2,1/2], \g =1/2 and A\; — 0
as j — 0o.

(v) Since Kpy[l] = 1/2, it holds that

/ ¢;jdo=0 for j #0.
OB

(vi) The following trace formulae hold for ¢ € H2(OB):

Spiloll, = Spulell_,

Dpyloll. = <$;I+’C37u> [¢],
883,}i[¢] _ 1 *
T |, (i21+KB,ﬁ> [¢].

(vii) The following representation formula holds:

oo

K*B,ﬂ[¢] = ZAJ <¢v ¢j>’H3(8B) (ij V¢ € HS(@B)

1=0
The following result on the shape derivative of the eigenvalues of IC*B’ﬁ follows from [3].

Lemma B.2. Let B, = {z + nv(z),x € OB} for |n| small enough. Suppose that \;(B) is simple.
Then

X (By) :Aj(B)—n(Aj —;) (Aﬁé) /8B|¢j|2d0+77/33

Proof. Following [3, p.54], we have

0S4

o7 do+0 (n°).  (15)

9]

B . 0Dp g 32837;1
Ks,:=Kpys+n {5!1/ o +0 (),

where 0 - /OT denotes the tangential derivative. Therefore, since A; is assumed to be simple,

oD ] 0°S j
R e Y IR

X (B) — n/aB [apgﬁ[@} _9 ‘ZBT’EW] Sp,gld;]do + O (1)

oS ;
Aj(3)+n/(33937ﬁ[¢j]’gfj[m da—n/aB

)‘j (Bn)

0SB 4

2
2
5T da—|—(9(77),

(¢;]

10



by a standard perturbation argument. Hence, using the jump relations in Lemma B.1 (vi), it follows

that
1 1 oS
e =yt (n-5) (vry) [ elac-n [ %08

2
do + O (772) .
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